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Abstract
The g-formula can be used to estimate the treatment effect while accounting for confounding bias in observational studies.
With regard to time-to-event endpoints, possibly subject to competing risks, the construction of valid pointwise confidence
intervals and time-simultaneous confidence bands for the causal risk difference is complicated, however. A convenient solution
is to approximate the asymptotic distribution of the corresponding stochastic process by means of resampling approaches.
In this paper, we consider three different resampling methods, namely the classical nonparametric bootstrap, the influence
function equipped with a resampling approach as well as a martingale-based bootstrap version, the so-called wild bootstrap.
For the latter, three sub-versions based on differing distributions of the underlying randommultipliers are examined.We set up
a simulation study to compare the accuracy of the different techniques, which reveals that the wild bootstrap should in general
be preferred if the sample size is moderate and sufficient data on the event of interest have been accrued. For illustration, the
resampling methods are further applied to data on the long-term survival in patients with early-stage Hodgkin’s disease.

Keywords Average treatment effect · Bootstrap · Confidence interval · G-formula · Time-to-event data

1 Introduction

Causal inference provides tools to compare treatment strate-
gies in studies that do not permit random allocation of
subjects to therapy groups, e.g., for ethical reasons or sim-
ply because it is not feasible. Special analysis methods are
necessary because in non-randomized trials, risk factors are
likely to be distributed unequally across treatment groups
and as a consequence, side-by-side comparisons will lead to
biased estimation of the direct treatment effect (Yang et al.
2010; Nørgaard et al. 2017). Randomized trials benefit from
causal analysis tools, too, for instancewhendealingwith non-
compliance or selection bias. In this manuscript, we focus
on the control of confounding bias. The idea of the coun-
terfactual approach to causal inference is to model the mean
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outcome in a hypothetical world where all participants of
the study are exposed to the same intervention—possibly
‘counter to the fact’, i.e., contrary to the treatment they
actually received. Causal conclusions can then be drawn by
contrasting the obtained estimates for the treatment levels of
interest (Rubin 1974); (Hernán and Robins 2020 Sect. I.1).
In case of time-to-event endpoints, statisticians need to take
additional difficulties into account, however, as the analy-
sis of right-censored data requires particular techniques. The
hazard ratio, which is the common measure of the treatment
effect for time-to-event data, comes along with several issues
when the aim is to draw causal inferences: In the first place,
it is non-collapsible. Thus, the causal effect estimate in the
entire population may differ fundamentally from the aver-
age of the causal effect estimates across subgroups, even
if the variable defining these subgroups is no confounder
(Martinussen and Vansteelandt 2013; FDA 2023). Another
drawback is selection bias, which has e.g., been described by
Aalen et al. (2015). Selection bias occurs because the hazard
function only takes survivors into account, but if treatment
does indeed affect survival, the distribution of the risk factors
will deviate between survivors in the two treatment groups
as time progresses. Apart from that, the hazard ratio—as a
single value—fails to convey potentially time-varying effects
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and also depends on the duration of the study (Hernán 2010).
We therefore consider the risk difference as effect measure
instead. Our target estimand is based on the cumulative inci-
dence function, which quantifies the risk of experiencing a
specific event type out of one or more possible causes until a
given time point. This way, a competing risks framework
is accommodated on top, which covers the standard sur-
vival setting as a special case. Examples of observational
studies that compare treatment effects using the cumulative
incidence function include Philipps et al. (2020); Butt et al.
(2021); Chauhan et al. (2022).
Beside the estimated average treatment effect, researchers
are often also interested in further statistical inference. The
stochastic process associated with the estimated cumula-
tive incidence function is rather complex, making it difficult
to derive exact confidence intervals and bands, though. A
commonly applied remedy is the classical nonparametric
bootstrap proposed by Efron (1981) (cf. Neumann and Bil-
lionnet 2016; Stensrud et al. 2020; Stensrud et al. 2016),
even though this resampling method is not optimal in sev-
eral situations, e.g., when dealingwith dependent data (Singh
1981; Friedrich et al. 2017). Ozenne et al. (2020) presented
an alternative approach based on the influence function, and
as counting processes are inherent to time-to-event analy-
sis, resampling methods relying on martingale theory further
suggest themselves.

In this paper, we illustrate that apart from the method
proposed by Ozenne et al. (2020), the classical bootstrap as
well as the martingale-based wild bootstrap also accurately
approximate the distribution of the stochastic process at hand.
Wecompare the performance of these resampling approaches
in terms of the resulting confidence intervals and bands by
means of simulations as well as an applied data example
recording the long-term outcomes of early-stage Hodgkin’s
disease patients.
The remainder of this manuscript is organized as follows:
Sect. 2 establishes the setting and notation as well as the
causal estimator for the average treatment effect. In Sect. 3,
we introduce the three mentioned resampling approaches.
The simulation study and the analysis of the Hodgkin’s dis-
ease data are presented in Sects. 4 and 5. Finally, the paper
concludes with a discussion.

2 Average treatment effect for
right-censored data with competing risks

We consider a competing risks setting with K failure types.
Let the absolutely continuous random variables T and C
denote an individual’s event and censoring time, respectively.
The observed data include T ∧ C , the minimum of T and C ,
as well as an indicator D ∈ {0, 1, . . . , K }, which represents
the type of failure. W.l.o.g., let D = 1 imply that a subject

experienced the event of interest. If D = 0, the event time
is censored, i.e., C < T . Besides, we observe a binary treat-
ment indicator A and a bounded, p-dimensional vector Z
of baseline covariates. Throughout this paper, suppose that
the data sample {(Ti∧Ci , Di , Ai , Zi )}i∈{1,...,n} is indepen-
dent and identically distributed (i.i.d.), and does not include
any tied event times. It is further assumed that Ti and Ci are
conditionally independent given (Ai , Zi ).

In the presence of competing events, onemay be interested
in either the direct or the total effect of treatment on the event
of interest (Young et al. 2020). The direct effect reflects the
impact of the studied therapy in a hypothetical setting where
all competing events have been eliminated, whereas the total
effect additionally takes the impact of the therapy mediated
by competing events into account. Neither of these charac-
terizations is generally preferable over the other: While the
direct effect may help to better understand the mechanisms
by which the treatment affects the outcome, interventions
that eradicate competing events are rare, and thus, the total
effect is typically more relevant in practice. We will focus on
the estimation of total effects hereafter.
For a fixed time point t within the study time interval [0, τ ],
we define the average treatment effect of interest in the entire
population as AT E(t) = E

(
F1
1 (t) − F0

1 (t)
)
. The expres-

sion Fa
1 (t) = P(T a ≤ t, Da = 1) refers to the potential

cumulative incidence function for cause 1 under treatment
a ∈ {0, 1}, applying the counterfactual notation as in Hernán
and Robins (2020). Accordingly, Fa

1 (t) describes the proba-
bility of observing the event of interest until time t , had all
study participants received treatment a.
In order to ensure identifiability of AT E , the subsequent
assumptions need to be fulfilled (see e.g., Hernán and
Robins 2020, Sect. I.3 for a thorough description): Con-
ditional exchangeability holds if there are no unmeasured
confounders. For given covariate values, the risk among
the treated subjects is thereby equal to the risk among the
untreated subjects, had they been treated, and vice versa.
A formal definition of conditional exchangeability requires
independence between 1{T a ≤ τ, Da = 1} and A, condi-
tional on Z, for a ∈ {0, 1}. (We use 1{·} here and in the
following to denote the indicator function.) Furthermore,
the positivity assumption applies if the conditional treat-
ment probability P(A = 1 | z) is bounded away from 0 and
1 for covariate values z on the support of fZ(z), so that both
therapies A = 0 and A = 1 are possible. Lastly, the inter-
ventions A = 0 and A = 1 need to be well-defined, with
1{T ≤ τ, D = 1} = 1{T A ≤ τ, DA = 1}. This condition
is referred to as consistency, and it ensures that the observed
and potential risks are equal if the actual and counterfactual
therapy coincide.
Assuming that exchangeability, positivity and consistency
apply and there is no interference between the potential
outcomes of distinct individuals, the g-formula yields an esti-
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mate of the average treatment effect (Ozenne et al. 2020):

ÂT E(t) = 1

n

n∑

i=1

(
F̂1(t | A = 1, Zi ) − F̂1(t | A = 0, Zi )

)
.

Here, any assumptions made when modelling F̂1 need to be
fulfilled in order to obtain a meaningful estimator. Despite
the issues pointed out by Aalen et al. (2015), it is rea-
sonable to derive the cumulative incidence function—and
hence ÂT E—from hazard rates; the key point is that the
causal interpretation of the effect estimate relies on F̂1. Let
�̂k(t | a, z), k ∈ {1, . . . , K } be the estimator of the cause-
specific, conditional cumulative hazard, and define

F̂1(t | a, z) =
∫ t

0
exp

(

−
K∑

k=1

�̂k(s | a, z)

)

d�̂1(s | a, z),

in line with the characterization proposed by Benichou and
Gail (1990). One possibility to obtain �̂k(t | a, z) is to fit a
cause-k specific Cox model with covariates A and Z, i.e.,

�̂k(t | a, z) = �̂0k(t) exp(β̂k Aa + β̂
T
kZ z),

with β̂k = (β̂k A, β̂
T
kZ)T representing the estimated vector of

regression coefficients. The covariates may in fact vary for
the individual causes, since different event types are possi-
bly associated with distinct risk factors—provided that A is
included in the model for the cause of interest. The Breslow
estimator eventually yields the following approximation of
the cumulative baseline hazard (Breslow 1972):

�̂0k(t) =
∫ t

0

dNk(s)
∑n

i=1 Yi (s) exp(β̂k A Ai + β̂
T
kZZi )

.

We define the counting process Nk(t) as
∑n

i=1 Nki (t) with
Nki (t) = 1{Ti ∧Ci ≤ t, Di = k}, such that dNk(t) repre-
sents the increment of Nk(t) over the infinitesimal time inter-
val [t, t + dt). The at-risk indicator Yi (t) = 1{Ti ∧Ci ≥ t}
further specifies whether subject i is part of the risk set just
prior to time t .

3 Confidence intervals and bands

Pointwise confidence intervals and time-simultaneous con-
fidence bands are routinely reported in clinical trials as they
help to assess the (un)certainty of an estimate. In a series of
studies with underlying average treatment effect AT E , it is
expected that (1 − α) · 100% of the confidence intervals for
AT E(t) at level (1 − α) include the true average treatment
effect at a given time t . Confidence bands extend this concept

to time intervals, meaning that (1 − α) · 100% of the confi-
dence bands for AT E at level (1 − α) will cover the true
average treatment effect over the entire interval of interest. It
is not straightforward to define such confidence regions for
AT E , however, due to the complexity of the stochastic pro-
cess Un(t) = √

n ( ÂT E(t) − AT E(t)). As a workaround,
we aim to approximate the limiting distribution of Un by
means of different resampling approaches.

3.1 Efron’s bootstrap

The most common way to derive confidence intervals for
AT E is the use of the classical nonparametric bootstrap
(Efron 1981), which does not require knowledge of the
true underlying distribution. By repeatedly drawing with
replacement from the data and calculating a statistical func-
tional of interest in each of the drawn samples, one tries
to approach the distribution of the functional in the target
population. In the given context, we obtain the estimates
{ ÂT E∗

b(t)}b∈{1,...,B} from B bootstrap samples of the original
data, each having size n. An asymptotic confidence interval
at level (1 − α) can, for instance, be determined by setting
the empirical α

2 and (1 − α
2 ) quantiles of the bootstrap esti-

mates as limits. Furthermore, we construct an asymptotic
simultaneous confidence band over the time interval [t1, t2]
as

[
ÂT E(t) − qEB

1−α

√
ν̂EB(t), ÂT E(t) + qEB

1−α

√
ν̂EB(t)

]
,

with ν̂EB(t) referring to the empirical variance of the boot-
strap estimates and qEB

1−α denoting the (1 − α) quantile of

{

sup
t∈[t1,t2]

∣
∣∣∣∣

ÂT E∗
b(t) − 1

B

∑B
b̃=1

ÂT E∗
b̃
(t)

√
ν̂EB(t)

∣
∣∣∣∣

}

b∈{1,...,B}
.

Note that the absolute value is considered here and in the
following to increase the stability of the empirical quantiles.
The classical bootstrap yields asymptotically correct results
in many less intricate settings (as long as the considered data
are i.i.d.), and its theoretical validity in the given context is
proven by Rühl and Friedrich (2023) based on martingale
arguments. While the implementation of Efron’s bootstrap
is rather simple, the computation time can become exces-
sivewith large sample sizes andmultiple bootstrap iterations,
though.

3.2 Influence function

Another method to obtain confidence intervals for AT E has
been described by Ozenne et al. (2020). Supposing that the
underlying model is correct, the functional delta method
yields an approximation of the asymptotic distribution of
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Un at a given time point w.r.t. the influence function of the
average treatment effect. More specifically,

Un(t) = 1√
n

n∑

i=1

IF(t; Ti ∧Ci ,Di ,Ai ,Zi ) + oP (1)

D−→ N
(
0,

∫
(IF(t; s,d,a,z))2 dP(s,d,a,z)

)
,

as n tends to infinity. Here, P(t, d, a, z) denotes the joint
probability distribution of the data (T ∧ C, D, A, Z). The
definition of the influence function IF according to Ozenne
et al. (2020, 2017) can be found in Sect. 1.1 of the supple-
mentary material. Besides, we use N throughout this paper
to symbolize the normal distribution. It follows that the plug-
in estimator ν̂ IF (t) = 1

n

∑n
i=1 ( ÎF(t; Ti ∧Ci ,Di ,Ai ,Zi ))

2 is
consistent for the asymptotic variance of Un(t) and thus,
asymptotic confidence intervals are easy to calculate with-
out the need of resampling. The construction of confidence
bands, on the other hand, is more involved. This is because
the dependence between the increments of the process Un

must be taken into account whenmaking inferences concern-
ing multiple time points. It can be shown that Un converges
weakly to a zero-mean Gaussian process on the Skorokhod
space D[0, τ ] (Rühl and Friedrich 2023), and thus, we can
derive an asymptotic (1 − α) confidence band for AT E over
the interval [t1, t2] in line with the resampling approach
described by Scheike and Zhang (2008):

[
ÂT E(t) − q IF

1−α

√
ν̂ IF (t), ÂT E(t) + q IF

1−α

√
ν̂ IF (t)

]
.

Here, q IF
1−α denotes the (1 − α) quantile of

{

sup
t∈[t1,t2]

∣∣
∣∣∣

n∑

i=1

ÎF(t; Ti ∧Ci ,Di ,Ai ,Zi )√
ν̂ IF (t)

· GIF;(b)
i

∣∣
∣∣∣

}

b∈{1,...,B}
,

for B independent standard normal vectors {(GIF;(b)
1 , . . . ,

GIF;(b)
n )T }b∈{1,...,B}.

As compared to the classical bootstrap, the influence func-
tion approach significantly reduces the computation time,
considering that the resampling step builds upon repeated
generation of random variables rather than the recalculation
of functionals based on various individual data sets.

3.3 Wild bootstrap

A third resampling method arises from the fact that the
limiting distribution of Un may be represented in terms of

martingales: It can be shown that

Un(t) =
K∑

k=1

n∑

i=1

(∫ t
0 Hk1i (s, t) dMki (s)

+ ∫ τ

0 Hk2i (s, t) dMki (s)
) + op(1),

for functions Hk1i and Hk2i as defined in Sect. 1.2 of the sup-
plementary material and Mki (t) = Nki (t) − ∫ t

0 Yi (s) d�k

(s | Ai , Zi ), k ∈ {1, . . . , K }, i ∈ {1, . . . , n} (Rühl andFriedrich
2023). Note that Mki is a martingale relative to the history
(Ft )t≥0 that is generated by the data observed until a given
time, i.e., E (dMki (t) | Ft−) = 0 and

Var (dMki (t) | Ft−) = Yi (t) d�k(t | Ai , Zi ).

Provided that Aalen’s multiplicative intensity model (Aalen
1978) applies, the characterization of the variance equals
the conditional expectation of dNki (t) given the past Ft−.
This motivates the general idea of the wild bootstrap: By
replacing dMki (t) with the product of dNki (t) and suitable
randommultipliersGWB

i , k ∈ {1, . . . , K }, i ∈ {1, . . . , n}, we
can approximate the asymptotic distribution ofUn . The initial
method described by Lin et al. (1993) only covers standard
normal multipliers, but was later extended to more general
resampling schemes (cf. Beyersmann et al. 2013; Dobler et
al. 2017). In Rühl and Friedrich (2023), we followed ideas
of Cheng et al. (1998); Beyersmann et al. (2013) and Dobler
et al. (2017) to formally prove that, conditional on the data,
the wild bootstrap estimator of Un ,

Ûn(t) =
K∑

k=1

n∑

i=1

(
Ĥk1i (Ti ∧Ci , t) Nki (t)GWB

i

+Ĥk2i (Ti ∧Ci , t) Nki (τ )GWB
i

)
,

converges weakly to the same process as Un on D[0, τ ].
(Here, the estimates Ĥk1i and Ĥk2i are calculated by plug-
ging appropriate sample estimates into the definition of Hk1i

and Hk2i .)

Remark 1 The following choices of multipliers GWB
i fulfill

the necessary conditions for the wild bootstrap (cf. Dobler et
al., 2017):

• GWB
i

i.i.d.∼ N (0, 1), i.e., independent standard normal
multipliers (according to theoriginal resampling approach
by Lin et al., 1993);

• GWB
i

i.i.d.∼ Pois(1) − 1, that is, independent and centered
unit Poisson multipliers (in line with the proposition of
Beyersmann et al.,2013);

• GWB
i ∼ Bin

(
Y (Ti ∧Ci ),

1
Y (Ti∧Ci )

)
− 1 with Y (t) =∑n

i=1 Yi (t) and (GWB
i1

⊥⊥ GWB
i2

) | Fτ for i1 �= i2, i.e., con-
ditionally independent, centered binomial multipliers.
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This version of the wild bootstrap is equivalent to the
so-called weird bootstrap described in Andersen, Bor-
gan, Gill, and Keiding (1993, Subsect. IV.1.4), as Dobler
et al. (2017) illustrate.

For a set of multiplier realizations {(GWB;(b)
1 , . . . ,

GWB;(b)
n )T }b∈{1,...,B}, one obtains the asymptotic (1 − α)

confidence interval

[
ÂT E(t) − 1√

n
qWB
1−α(t), ÂT E(t) + 1√

n
qWB
1−α(t)

]
,

with (1 − α) quantile qWB
1−α(t) of {|Û (b)

n (t)|}b∈{1,...,B}. Sim-
ilarly, an asymptotic simultaneous (1 − α) confidence band
over the interval [t1, t2] is specified by

[
ÂT E(t) − 1√

n
qWB
1−α

√
ν̂WB(t),

ÂT E(t) + 1√
n
qWB
1−α

√
ν̂WB(t)

]
,

considering the empirical variance estimator ν̂WB(t) of
{Û (b)

n (t)}b∈{1,...,B} and the (1 − α) quantile qWB
1−α of

{

sup
t∈[t1,t2]

∣∣∣∣∣
Û (b)
n (t)

√
ν̂WB(t)

∣∣∣∣∣

}

b∈{1,...,B}
.

The described bootstrap, just like the approach based on the
influence function, takes only a fraction of the time required
by the classical bootstrap. In addition,martingale-based anal-
ysis approaches for time-to-event data are built upon the
condition of independent right-censoring and do not rely on
a strict i.i.d. setup (Andersen et al., 1993, Subsect. III.2.2).
Therefore, they are less sensitive to dependencies inherent to
the data, where Efron’s approach is known to fail (Rühl et al.
2022; see also Friedrich et al.,1981; Singh, 2017).

4 Simulation study

In order to compare the performance of the resampling
approaches described in Sect. 3, we simulated competing
risks data following the same scheme as in Ozenne et al.
(2020), and constructed confidence intervals and bands using
the proposed methods.

4.1 Data generation

The generated data comprised twelve independent covari-
ates, namely, Z1, . . . , Z6 following a mean-zero normal
distribution and Z7, . . . , Z12 being Bernoulli distributed
with parameter 0.5. Each covariate affected the treatment

probability, the event time distributions of two compet-
ing failure causes and a conditionally independent cen-
soring time in an individual manner (see Table 1 and
Fig. S1 in the supplementary material for a directed acyclic
graph). The treatment indicator A was for instance derived
from a logistic regression model with linear predictor
α0 + log(2) · (Z1 − Z2 + Z6 + Z7 − Z8 + Z12). Here, the
intercept α0 controls the overall frequency of treatment.
Apart from that,we simulated the event timebasedon amulti-
state model with Weibull hazards λd(t) = 0.02 t exp (βd A A
+βT

dZZ
)
for Z = (Z1, . . . , Z12) and corresponding param-

eters βd A and βdZ , d ∈ {1, 2} (cf. Beyersmann, Latouche et
al. 2009). The censoring time was generated independently
with hazard λC (t) = 2

γ
t exp (βT

CZZ), where γ determines
the intensity of censoring.

This general simulation scheme served as a basis for a
variety of scenarios, each implemented with sample sizes of
n ∈ {50, 75, 100, 200, 300} and treatment effects according
to parameter β1A ∈ {−2, 0, 2}. By default, about half of the
observations were assigned to be treated, and the event of
interest was observed in a third, half or two thirds of the
subjects until time t = 9, corresponding to the case where
β1A = −2, 0, 2, respectively. The frequency of censoring
amounted to 17%, 14% or 11% by t = 9, whereas the com-
peting event affected 41%, 31% or 21% of the subjects.
Among the examined scenarios were settings with vary-
ing degrees of censoring (namely, 0%, 14% and 30% in
the case without treatment effect, i.e., β1A = 0), treatment
frequencies of 22% as well as 86% and non-unit variances
(0.25 and 4, respectively) of the normally distributed covari-
ates Z1, . . . , Z6. Besides, we considered a standard survival
scenario without competing events that involved type II cen-
soring with staggered entry in order to investigate a setting
with independent, but not random censoring (Rühl et al.
2022). For an overview of the different scenarios, see Table 2.

Confidence intervals (at time points t ∈ {1, 3, 5, 7, 9}) and
bands (over the time interval [0, 9]) for the average treatment
effect were derived by applying Efron’s bootstrap (EBS),
the influence function approach (IF) and the wild bootstrap
(WBS) to each generated data set, using 1000 resampling
replications, respectively. The WBS was realized with stan-
dard normal, Poisson and binomial multipliers according to
Remark 1. We then assessed the performance of the distinct
methods bymeans of the associated 95% coverage probabili-
ties and the widths of the confidence ranges. The simulations
were repeated 5000 times for each scenario to keep theMonte
Carlo standard error for the coverage below 0.75%.

We approximated the true average treatment effect in
the mentioned scenarios empirically, as the analytic form
of AT E(t) is hard to evaluate in the presence of multiple
covariates. For that purpose,we simulated 1000data setswith
sample size n = 100, 000 as previously described, but with
random treatment assignment independent of the covariates
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Table 1 Effects of the covariates on the treatment probability, event and censoring times

Covariate Odds ratio w.r.t. Hazard ratio w.r.t. Hazard ratio w.r.t. Hazard ratio w.r.t.
Treatment probability1 event of interest2 competing event3 censoring4

A – exp (β1A), exp (β2A) exp (βCA)

β1A ∈ {−2, 0, 2} = 1.0 = 1.0

Z1, Z7 exp (α1) = exp (α7) exp
(
β1,1

) = exp
(
β1,7

)
exp

(
β2,1

) = exp
(
β2,7

)
exp

(
βC,1

) = exp
(
βC,7

)

= 2.0 = 2.0 = 0.5 = 0.5

Z2, Z8 exp (α2) = exp (α8) exp
(
β1,2

) = exp
(
β1,8

)
exp

(
β2,2

) = exp
(
β2,8

)
exp

(
βC,2

) = exp
(
βC,8

)

= 0.5 = 1.0 = 1.0 = 1.0

Z3, Z9 exp (α3) = exp (α9) exp
(
β1,3

) = exp
(
β1,9

)
exp

(
β2,3

) = exp
(
β2,9

)
exp

(
βC,3

) = exp
(
βC,9

)

= 1.0 = 2.0 = 1.0 = 1.0

Z4, Z10 exp (α4) = exp (α10) exp
(
β1,4

) = exp
(
β1,10

)
exp

(
β2,4

) = exp
(
β2,10

)
exp

(
βC,4

) = exp
(
βC,10

)

= 1.0 = 1.0 = 1.0 = 2.0

Z5, Z11 exp (α5) = exp (α11) exp
(
β1,5

) = exp
(
β1,11

)
exp

(
β2,5

) = exp
(
β2,11

)
exp

(
βC,5

) = exp
(
βC,11

)

= 1.0 = 1.0 = 2.0 = 1.0

Z6, Z12 exp (α6) = exp (α12) exp
(
β1,6

) = exp
(
β1,12

)
exp

(
β2,6

) = exp
(
β2,12

)
exp

(
βC,6

) = exp
(
βC,12

)

= 2.0 = 2.0 = 2.0 = 0.5

1 P(A = 1) = expit
(
α0 + αZ

T Z
)
, with αZ = (α1, . . . , α12)

T

2 λ1(t) = 0.02 t exp
(
β1A A + β1Z

T Z
)
, with β1Z = (β1,1, . . . , β1,12)

T

3 λ2(t) = 0.02 t exp
(
β2A A + β2Z

T Z
)
, with β2Z = (β2,1, . . . , β2,12)

T

4 λC (t) = 2
γ
t exp

(
βCA A + βCZ

T Z
)
, with βCZ = (βC,1, . . . , βC,12)

T

Table 2 Overview of the simulation scenarios

Scenario % Censored at t = 9 1 % Type 1 events at t = 9 1 % Treated Var(Z1)

β1A =−2 β1A =0 β1A =2 β1A =−2 β1A =0 β1A =2

No censoring 0.0 0.0 0.0 35.7 56.1 70.3 56.4 1.00

Light censoring 16.7 14.0 11.0 32.2 51.5 66.2 56.4 1.00

Heavy censoring 35.3 29.7 23.0 27.0 44.5 60.1 56.4 1.00

Low treatment probability 14.9 14.0 13.1 43.7 51.5 56.6 22.3 1.00

High treatment probability 18.2 14.0 8.3 23.5 51.5 75.6 85.8 1.00

Low variance of the covariates 13.7 10.7 7.3 32.4 55.2 72.0 57.4 0.25

High variance of the covariates 22.0 20.2 17.9 32.6 45.6 56.4 54.6 4.00

Type II censoring 49.7 39.2 25.0 50.0 49.5 48.4 56.4 1.00

1 For the scenario with type II censoring, the percentages of censoring and type 1 events are determined at t = 10, t = 5, and t = 2.5, for
β1A = −2, 0, 2, respectively

and no censoring. For each of these data sets, the difference
F̂1(t | A = 1)− F̂1(t | A = 0)was determined, and our final
estimate of the true average treatment effect is the median of
the 1000 resulting values. Because of the large sample sizes
considered, this approximation should be fairly close to the
true value. Figure1 depicts the approximated average treat-
ment effect except for the scenarios with non-unit variance of
the covariates Z1, . . . , Z6 and those with type II censoring.

4.2 Results

The WBS attained coverage probabilities of the pointwise
confidence intervals thatwere, in total, the closest to the target

level of 95%. The mean absolute deviation across all scenar-
ios, sample sizes and time points was 2.42% for theWBS vs.
2.49% and 2.61% for the IF and the EBS, respectively. (See
Sects. 2.2 and 2.4 in the supplementary material for the cov-
erage probabilities in the scenarios not presented here as well
as the correspondingMonte Carlo standard errors.) Through-
out nearly all settings, the confidence intervals obtained by
the EBS yielded coverages above those derived from the dif-
ferent WBS versions, whereas the IF intervals included the
true average treatment effect the least frequently. Figure2
illustrates this ranking in the case with low-level censoring
and a positive average treatment effect (i.e., β1A = 2, refer-
ring here and in the following to the sign of the causal risk
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Fig. 1 Approximation of the true average treatment effect

difference; that is, a positive average treatment effect indi-
cates that the potential cumulative incidence under treatment
is higher than that under no treatment).We observed simi-
lar outcomes in the other scenarios that involved treatment
effects according to β1A ∈ {0, 2} (see Figures S3, S5, S7, S8,
S10, S13, S15, and S16 in the supplementary material), even
though the performance of the resampling methods varied
for early analysis time points (see e.g., Fig. 3).

An exception was the setting with widely dispersed
covariates: Here, all methods provided rather conservative
confidence intervals, and as a consequence, the IF approach
achieved the most accurate coverages (see Figs. S18 and
S19 in the supplementary material). The same effect was
also encountered in the scenarios with negative treatment
effect (β1A = −2, see e.g., Fig. 4), once again excluding
the setting with high variance of the covariates (where the
EBS performed best for larger sample sizes, see Fig. S17 in
the supplementary material). A common feature of all the
schemes that yielded coverages along the lines of Fig. 4 is
that the proportion of observed type 1 events was lower than
in the scenarios with β1A ∈ {0, 2}. This is due to the preva-
lence of the competing event, and the IF approach seems to
be slightly more suitable to cope with that condition than the
bootstrap methods.

On the other hand, the IF yielded fairly low coverage prob-
abilities in several settingswithout treatment effect (see Fig. 3
and Figs. S2, S5, S7, S10, S15, and S21 in the supporting
material). This issue remains with increasing sample sizes.
Ozenne et al. (2020) encountered a similar pattern and con-
sidered a non-robust version of the influence function-based
variance, which performed somewhat better.
The WBS generally reached its full potential towards later
time points, when a sufficient amount of data was available.
This became apparent in the scenario with type II censor-
ing and a positive average treatment effect: Because of the
absence of any competing events, we evaluated the confi-
dence intervals at earlier times t ∈ {0.5, 1, 1.5, 2, 2.5}, and
the WBS did not reach coverages as close to 95% as those
obtained by the IF and the EBS until t = 2 (see Fig. S22 in
the supporting material). For an explanation of this observa-

tion, note that thewild bootstrap process Ûn(t) is based on the
products Nki (t)GWB

i , for i ∈ {1, . . . , n}, k ∈ {1, . . . , K }. At
early time points, the counting processes Nki jump only
rarely, and chances are that the few corresponding multi-
pliers GWB

i do not reflect the target distribution very well.
Towards later times, a higher number of multipliers is taken
into account, though, so the distribution of dNki (·)GWB

i will
be closer to that of the martingale increments.
Against our expectations, the simulations revealed no signif-
icant superiority of the martingale-based methods in case of
type II censoring with staggered entry, despite non-random
censoring. It appears as if the dependence within the data
was too weak for the sample sizes considered (cf. Rühl et al.,
2022).

The coverage probabilities of the time-simultaneous con-
fidence bands followed a similar trend as was observed for
the pointwise intervals (see Sects. 2.3 and 2.4 in the supple-
mentary material): While the highest and lowest coverages
in almost all scenarios with positive or no average treat-
ment effect were attained by the EBS and IF, respectively,
there were only small differences in most of the settings
with β1A = −2. However, the EBS bands were especially
accurate given positive average treatment effects (β1A = 2,
see e.g., Fig. 5). On average, the mean absolute discrepancy
between the simulated coverages and the nominal level of
95% was 4.75% in comparison to 5.53% and 5.70% for the
WBS and the IF approach, respectively.

Our results imply further that the choice of the multiplier
for the WBS does not have any significant impact. Since
the confidence intervals derived using the approaches of Lin
et al. (1993) and Beyersmann et al. (2013) were occasionally
wider than those resulting from the weird bootstrap, the latter
method yielded lower coverages. Which of the multipliers
provided the most accurate outcomes varied depending on
the situation, however.
Other than that, the IF produced narrower intervals than
any of the WBS versions, and in case of a negative aver-
age treatment effect, either approach lead to considerably
greater variation in the interval width by comparison with
the scenarioswhereβ1A ∈ {0, 2}. Interestingly, this effect did
not apply to the EBS. The extent of the EBS-based intervals
ranged between or above the remaining widths, apart from
the settings with β1A = −2. As the sample sizes increased,
however, all resampling methods lead to nearly equally wide
confidence intervals (cf. Fig. 6).

The widths of the confidence bands furthermore related to
one another in the same way as their pointwise counterparts.

Due to the small sample sizes we considered, the number
of observed events did occasionally not suffice to achieve
convergencewhen the cause-specificCoxmodelswere fitted.
This is why some of the coverage probabilities are based on
less than 5000 iterations for the influence function approach
as well as the wild bootstrap, and less than 1000 bootstrap
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Fig. 2 Coverage of the confidence intervals in the scenario with light censoring (11% censored observations) and a positive average treatment
effect (β1A = 2)

Fig. 3 Coverage of the confidence intervals in the scenario with high treatment probability (86% treated observations) and no treatment effect
(β1A = 0)

Fig. 4 Coverage of the confidence intervals in the scenario with no censoring (0% censored observations) and a negative average treatment effect
(β1A = −2)
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Fig. 5 Coverage of the
confidence bands in the scenario
with high treatment probability
(86% treated observations) and
a positive average treatment
effect (β1A = 2)

Fig. 6 Width of the confidence
intervals at time t = 5 in the
scenario with no censoring (0%
censored observations) and a
positive average treatment effect
(β1A = 2); note the spacing of
the x-axis

samples when using Efron’s approach. (The frequency of
the convergence issues is shown in Table S10 in the supple-
mentary material.) Results for the settings with n = 50 and
β1A = 2 should hence be analyzed with care.

Eventually, a last note is in order about the computation
times of the distinct methods: The IF and EBS approaches
have been implemented in the function ‘ate’ of the R (R Core
Team, 2021) package riskRegression by Gerds and
Kattan (2021) (see Sect. 2.1.2 in the supplementary material
for more information on the software we used). The calcu-
lations are sped up significantly by interfacing C++ code
for the IF method and parallelizing the computation of the
bootstrap replicates for the EBS. We extracted and adapted
the parts of the code that were relevant for our purposes. In
addition, C++ was also integrated to implement the WBS.
The simulations were run on a high-performance comput-
ing cluster that operates on 2.4 GHz Intel® processors with
128 GB RAM, where we used 16 cores for parallel compu-
tations. Fig. 7 summarizes the resulting execution times for
each resampling method.

Clearly, theEBS is several times slower than themultiplier-
based methods and therefore, the IF approach as well as the
WBS can in practice be implemented with a higher number
of resampling repetitions, so that the accuracy of the resulting
confidence regions is expected to be higher.

5 Real data application

To illustrate the performance of the resampling approaches
when applied to real-world study data, we considered records
of the long-term disease progression among patients with
early-stage Hodgkin’s lymphoma (i.e., stage I or II) (Pin-
tilie 2006). These data are available within the R package
randomForestSRC (data ’hd’, Ishwaran and Kogalur
2022) and comprise information on 865 subjects who were
treated at the Princess Margaret Hospital in Toronto between
1968 and 1986, either with radiation alone (n = 616) or a
combination of radiation and chemotherapy (n = 249). We
studied the time (in years) from diagnosis until the com-
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Fig. 7 Computation times in the
scenario with no censoring (0%
censored observations) and a
positive average treatment effect
(β1A = 2). The height of the
bars illustrates the mean
computation time; note the
spacing of the x-axis

Table 3 Summary of the Hodgkin’s disease data

Covariate Treatment
Radiation alone (n = 616) Radiation and chemotherapy (n = 249)

Age, mean (SD) 35.93 (16.37) 33.77 (12.86)

Sex: male 331 (53.73%) 132 (53.01%)

Lymphoma stage: I 266 (43.18%) 30 (12.05%)

Mediastinum involvement

None 382 (62.01%) 82 (32.93%)

Small 211 (34.25%) 77 (30.92%)

Large 23 (3.73%) 90 (36.14%)

Extranodal disease 29 (4.70%) 50 (20.08%)

peting events of relapse and death, respectively. Random
values of very small extent (i.e., normally distributed vari-
ables with mean zero and variance 10−6) were added to the
event times in order to break any ties in the data that emerged
due to rounding. Covariates recorded include age, sex, clini-
cal stage of the lymphoma, size of mediastinum involvement
and whether the disease was extranodal (see Table 3 for a
summary of the data). For our analysis, we assume that these
variables are sufficient for confounding adjustment, and that
the positivity and consistency conditions aremetw.r.t. the two
therapies. Moreover, tests on the scaled Schoenfeld residuals
of the Cox models for both causes did not suggest any viola-
tions of the proportional hazards assumption apart from the
variable age in the relapse model (Grambsch and Therneau
1994; see Figs. S46 and S47 in the supplementary mate-
rial). The estimated coefficient in a corresponding model
with time-dependent covariate is nearly constant over time,
though. We thus use simple Cox models (with time-constant
covariates) to derive the average treatment effect.

Our analysis suggests that after 30 years, the risk of
relapse would be reduced by 17.89% in a hypothetical setting
where every subject had been treated with both radiation and
chemotherapy as compared to the case where everyone had

received radiation therapy only (see Fig. S48 in the supple-
mentary material). Simultaneously, the risk of death would
be raised by 9.49%between these scenarios (see Fig. 8). Note
how the AT E concerning relapse drops rather sharply within
the first 5 years, whereas the AT E w.r.t. death increases
gradually over the entire 30-year interval. In conclusion,
treatmentwith the combined therapy seems to effectively pre-
vent relapse in the studied population, but since we consider
competing causes, a decrease in relapse events will leave
more subjects who die without prior relapse.
In Fig. 8, it can be seen that all resampling methods lead to
fairly similar confidence intervals concerning the effect on
death. Yet the EBS confidence bands are notably wider than
those derived from the remaining approaches.

On the other hand, relapse events are observed more than
twice as often as deaths, which is why the corresponding
confidence intervals and bands are closer to each other.

6 Discussion

The article at hand compares three resampling methods for
the derivation of confidence intervals and bands for the aver-
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Fig. 8 Confidence intervals (left) and bands (rights) for the average treatment effect on the risk of death

age treatment effect in competing risks settings (although the
influence function-based confidence intervals, strictly speak-
ing, do not rely on resampling). As our simulations show, the
wild bootstrap yields correct coverage levels for pointwise
confidence intervals in the presence of rather small data sets,
provided that sufficient events have been observed until the
considered time point. This applies regardless of the type of
multiplier that is implemented (i.e., standard normal, cen-
tered Poisson, or weird bootstrap multipliers). The theory
behind the wild bootstrap relies on martingales and there-
fore accommodates counting processes, which are naturally
used to represent time-to-event data. As a consequence, it is
straightforward to tackle common issues in survival analy-
sis, such as e.g., left-truncation. (Note the controversy about
left-truncation in causal contexts, though, cf. Hernán, 2015;
Vandenbroucke and Pearce 2015.) If competing events pre-
vail (like it was the case in the scenarios with β1A = −2 in
our simulation study), one may prefer the influence function
approach (or a non-robust version, as proposed by Ozenne
et al. 2020, if the treatment is unlikely to have any effect),
and if earlier time points are examined, the classical bootstrap
seems to be a reasonable choice. The latter also achieves very
accurate coverages with respect to time-simultaneous confi-
dence bands. As the amount of available data increases, the
differences between the distinct resampling approaches fade
away. Efron’s simple bootstrap, which is most commonly
used in practice, requires considerable computation time,
however. What is more, dependencies might cause issues
with this resampling method (Singh 1981; Friedrich et al.
2017; Rühl et al. 2022), even though our simulations did not
disclose any major bias in this context.
The three covered approaches were additionally compared
given real data on the long-term risk of relapse and death
among patients with early-stage Hodgkin’s disease (Pin-
tilie 2006). While the outcomes are generally quite similar,

Efron’s bootstrap generated somewhat wider confidence
bands for the average treatment effect on the risk of death.

It should benoted that for consistent estimationof the aver-
age treatment effect, the model for the cumulative incidence
function must be correctly specified. Instead of the cause-
specific Coxmodel used here, one might employ alternatives
such as the nonparametric additive hazards model proposed
by Aalen (1980) (cf. Ryalen et al. 2018), or the Fine-Gray
regression model for F1(t | a, z) adopting the subdistribu-
tion approach (see Rudolph et al. 2020 or the more technical
discourse by Young et al., 2020 for a discussion on cause-
specific vs. subdistribution measures in causal frameworks).
In the latter case, however, additional considerations on the
associated stochastic process are necessary to make infer-
ences on ÂT E .
We did not address estimators based on inverse probability of
treatmentweighting (IPTW,which requires correct specifica-
tion of a treatment model rather than the outcome model) or
the doubly-robust version combining both the g-formula and
IPTW. This is because one would need to derive the asymp-
totic distributions of the corresponding processes to justify
the application of any resampling methods, which is beyond
the scope of this work. Only the representation of the pro-
cesses based on the influence function has been determined
already, see Ozenne et al. (2020) for more details.
In order to handle complex conditions that are often observed
in real-world trials with time-varying treatments, a possible
subject of future work is the extension of the investigated
resampling methods to settings that involve time-dependent
confounding. The standard time-dependent Cox analysis has
been shown to yield incorrect results in such settings (Hernán
et al. 2000), which iswhy it is important to incorporate appro-
priate models (see e.g. Keogh et al. 2023).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-024-10420-
w.
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Mathematical statistics and probability theory (pp. 1-25). New
York: Springer (1980)

Aalen, O.O., Cook, R.J., Røysland, K.: Does Cox analysis of a random-
ized survival study yield a causal treatment effect? Lifetime Data
Analysis 21, 579–593 (2015)

Andersen, P.K., Borgan, ø., Gill, R.D., Keiding, N.: Statistical models
based on counting processes (1st ed.). Springer, New York (1993)

Benichou, J., Gail, M.H.: Estimates of absolute cause-specific risk in
cohort studies. Biometrics 46(3), 813–826 (1990)

Beyersmann, J., Di Termini, S., Pauly, M.: Weak convergence of the
wild bootstrap for the Aalen-Johansen estimator of the cumulative
incidence function of a competing risk. Scandinavian Journal of
Statistics 40(3), 387–402 (2013)

Beyersmann, J., Latouche, A., Buchholz, A., Schumacher, M.: Simulat-
ing competing risks data in survival analysis. Statistics inMedicine
28, 956–971 (2009)

Breslow, N.E.: Contribution to discussion of paper by DR Cox. Journal
of the Royal Statistical Society, Series B 34, 216–217 (1972)

Butt, J.H., De Backer, O., Olesen, J.B., Gerds, T.A., Havers-Borgersen,
E., Gislason, G.H., Fosbøl, E.L.: Vitamin K antagonists vs. direct
oral anticoagulants after transcatheter aortic valve implantation in

atrial fibrillation. European Heart Journal Cardiovascular Pharma-
cotherapy 7(1), 11–19 (2021)

Chauhan, L., Pattee, J., Ford, J., Thomas, C., Lesteberg, K., Richards,
E., Beckham, J.D.: A multicenter, prospective, observational,
cohort-controlled study of clinical outcomes following coron-
avirus disease 2019 (COVID-19) convalescent plasma therapy in
hospitalized patients with COVID-19. Clinical InfectiousDiseases
75(1), e466–e472 (2022)

Cheng, S.C., Fine, J.P., Wei, L.J.: Prediction of cumulative incidence
function under the proportional hazards model. Biometrics 54(1),
219–228 (1998)

Dobler, D., Beyersmann, J., Pauly, M.: Non-strange weird resampling
for complex survival data. Biometrika 104(3), 699–711 (2017)

Efron, B.: Censored data and the bootstrap. Journal of the American
Statistical Association 76(374), 312–319 (1981)

FDA: Adjusting for covariates in randomized clinical trials for drugs
and biological products. Draft guidance for industry (2023)

Friedrich, S., Brunner, E., Pauly, M.: Permuting longitudinal data in
spite of the dependencies. Journal of Multivariate Analysis 153,
255–265 (2017)

Gerds, T.A., Kattan, M.W.: Medical risk prediction models: With ties
to machine learning (1st ed.). Chapman and Hall/CRC (2021)

Grambsch, P.M., Therneau, T.M.: Proportional hazards tests and diag-
nostics based on weighted residuals. Biometrika 81(3), 515–526
(1994)

Hernán,M.A.: The hazards of hazard ratios. Epidemiology 21(1), 13–15
(2010)

Hernán, M.A.: Counterpoint: epidemiology to guide decision-making:
moving away from practice-free research. American Journal of
Epidemiology 182(10), 834–839 (2015)

Hernán, M.A., Brumback, B., Robins, J.M.: Marginal structural models
to estimate the causal effect of Zidovudine on the survival of HIV-
positive men. Epidemiology 11(5), 561–570 (2000)

Hernán, M.A., Robins, J.M.: Causal inference: What if. Chapman &
Hall/CRC, Boca Raton (2020)

Ishwaran, H., Kogalur, U.B.: Fast unified random forests for sur-
vival, regression, and classification (rf-src) [Computer soft-
ware manual]. manual. Retrieved from https://cran.rproject.org/
package=randomForestSRC (R package version 3.1.1) (2022)

Keogh, R.H., Gran, J.M., Seaman, S.R., Davies, G., Vansteelandt, S.:
Causal inference in survival analysis using longitudinal obser-
vational data: Sequential trials and marginal structural models.
Statistics in Medicine 42(13), 2191–2225 (2023)

Lin, D.Y.,Wei, L.J., Ying, Z.: Checking the Coxmodel with cumulative
sums of martingale-based residuals. Biometrika 80(3), 557–572
(1993)

Martinussen, T., Vansteelandt, S.: On collapsibility and confounding
bias in Cox and Aalen regression models. Lifetime Data Analysis
19(3), 279–296 (2013)

Neumann, A., Billionnet, C.: Covariate adjustment of cumulative inci-
dence functions for competing risks data using inverse probability
of treatment weighting. Computer Methods and Programs in
Biomedicine 129, 63–70 (2016)

Nørgaard, M., Ehrenstein, V., Vandenbroucke, J.P.: Confounding in
observational studies based on large health care databases: prob-
lems and potential solutions -a primer for the clinician. Clinical
Epidemiology 9, 185–193 (2017)

Ozenne, B.M.H., Scheike, T.H., Staerk, L., Gerds, T.A.: On the estima-
tion of average treatment effects with right-censored time to event
outcome and competing risks. Biometrical Journal 62(3), 751–763
(2020)

Ozenne, B.M.H., Sørensen, A.L., Scheike, T.H., Torp-Pedersen, C.,
Gerds, T.A.: riskRegression: predicting the risk of an event using
Cox regression models. The R Journal 9(2), 440–460 (2017)

Philipps, W., Fietz, A.-K., Meixner, K., Bluhmki, T., Meister, R.,
Schaefer, C., Padberg, S.: Pregnancy outcome after first-trimester

123

https://cran.r-project.org/web/packages/randomForestSRC
https://cran.r-project.org/web/packages/randomForestSRC
https://github.com/jruehl/ATESurvival
https://github.com/jruehl/ATESurvival
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://cran.rproject.org/package=randomForestSRC
https://cran.rproject.org/package=randomForestSRC


Statistics and Computing           (2024) 34:101 Page 13 of 13   101 

exposure to fosfomycin for the treatment of urinary tract infection:
an observational cohort study. Infection 48, 57–64 (2020)

Pintilie, M.: Competing risks: A practical perspective. John Wiley &
Sons (2006)

RCoreTeam (2021).R:A language and environment for statistical com-
puting [Computer software manual]. Vienna, Austria. Retrieved
from https://www.Rproject.org/Rubin,

Rubin, D.B.: Estimating causal effects of treatments in randomized and
nonrandomized studies. Journal ofEducational Psychology, 66 (5),
688–701 (1974)

Rudolph, J.E., Lesko, C.R., Naimi, A.I.: Causal inference in the face of
competing events. Current Epidemiology Reports, 7 (3), 125-131
(2020)

Ryalen, P.C., Stensrud, M.J., Fosså, S., Røysland, K.: Causal inference
in continuous time: an example on prostate cancer therapy. Bio-
statistics, 21(1), 172-185 (2020)

Ryalen, P.C., Stensrud, M.J., Røysland, K.: Transforming cumulative
hazard estimates. Biometrika 105(4), 905–916 (2018)

Rühl, J., Beyersmann, J., Friedrich, S.: General independent censoring
in event-driven trials with staggered entry. Biometrics 79, 1737–
1748 (2022)

Rühl, J., Friedrich, S.: Asymptotic properties of resampling-based pro-
cesses for the average treatment effect in observational studieswith
competing risks. arXiv:2306.02970 [math-STAT] (2023)

Scheike, T.H., Zhang, M.-J.: Flexible competing risks regression mod-
eling and goodness-of-fit. Lifetime Data Analysis 14, 464–483
(2008)

Singh, K.: On the asymptotic accuracy of Efron’s bootstrap. TheAnnals
of Statistics 9(6), 1187–1195 (1981)

Stensrud, M.J., Young, J.G., Didelez, V., Robins, J.M., Hernán, M.A.:
Separable effects for causal inference in the presence of competing
events. Journal of the American Statistical Association 117(537),
175–183 (2020)

Vandenbroucke, J., Pearce, N.: Point: incident exposures, prevalent
exposures, and causal inference: does limiting studies to persons
who are followed from first exposure onward damage epidemiol-
ogy?American Journal of Epidemiology 182(10), 826–833 (2015)

Yang, W., Zilov, A., Soewondo, P., Bech, O.M., Sekkal, F., Home, P.D.:
Observational studies: going beyond the boundaries of randomized
controlled trials. Diabetes Research and Clinical Practice 88, 3–9
(2010)

Young, J.G., Stensrud, M.J., Tchetgen Tchetgen, E.J., Hernán, M.A.:
A causal framework for classical statistical estimands in failure-
time settings with competing events. Statistics in Medicine 39,
1199–1236 (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://www.Rproject.org/Rubin
http://arxiv.org/abs/2306.02970

	Resampling-based confidence intervals and bands for the average treatment effect in observational studies with competing risks
	Abstract
	1 Introduction 
	2 Average treatment effect for right-censored data with competing risks 
	3 Confidence intervals and bands 
	3.1 Efron's bootstrap
	3.2 Influence function 
	3.3 Wild bootstrap 

	4 Simulation study 
	4.1 Data generation
	4.2 Results 

	5 Real data application 
	6 Discussion 
	Acknowledgements
	References


