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Abstract—Network operators require real-time traffic mon-
itoring insights to provide high performance and security to
their customers. It has been shown that artificial intelligence and
machine learning (ML) can improve the visibility of telemetry
systems, especially with encrypted traffic. However, current
solutions cannot cope with high traffic rates and volumes in large-
scale networks. To realize the ML-driven network intelligence
paradigm at terabit scale, we design Marina, a system that
spreads monitoring over a highly efficient data plane, which
can extract traffic statistics at line rate, and a powerful ML
server, which can run monitoring inference using complex ML
models. We apply temporal microaggregation into sub-second
time slots and extract moment-based statistics. These allow to
flexibly obtain accurate ML-based monitoring decisions during
the next time slot. To demonstrate the scalability of our design,
we implement and evaluate a Marina data plane prototype on
a Barefoot Wedge 100BF-65X P4 switch, which can monitor
more than 520,000 concurrent flows at full switching capacity of
6.4Tbps. We validate the analytics capabilities enabled by our
Marina implementation for four ML-driven real-time monitoring
tasks with a broad set of standard ML models, achieving
comparable or better than state-of-the-art results.

Index Terms—Network monitoring, artificial intelligence,
machine learning, encrypted traffic, real-time monitoring, P4,
programmable data plane.

I. INTRODUCTION

THE GROWING number of users, devices, and
applications, as well as the increasing complexity of
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Fig. 1. Design principles for the deployment of ML-based network telemetry
systems.

networks, push network operators to deploy broader and
more efficient network monitoring solutions to improve
their visibility, to quickly detect and resolve performance
or security issues, as well as to optimize resources. While
flow-level network telemetry approaches (e.g., NetFlow [1],
sFlow [2], IPFIX [3]) provide valuable insights on how a
network is operating, they are limited with respect to the
monitoring capacity (amount of traffic/flows), expressiveness
(set of monitored statistics), and accuracy (sampling). In
addition, their coarse temporal granularity (typically, export
intervals are 1 minute or higher) does not align well with
real-time monitoring tasks. Thus, packet-level monitoring
capabilities and small temporal granularity are desired for
deriving actionable management decisions in real-time.

Traditionally, deep packet inspection (DPI) has been used
on the full packet stream to identify applications or threats in
the network, and even to obtain application-layer information
regarding the health of applications such as voice or video
streaming. However, the increasing network and application
complexity and the wide adoption of end-to-end traffic encryp-
tion are drastically limiting the visibility of operators on the
performance of services consumed by their customers. This
has given rise to a wider adoption of artificial intelligence
and machine learning (ML) technology to improve traffic
monitoring at scale. These approaches have been successfully
applied to flow-level data [4], [5], [6] and packet-level (time
series) data [7], [8], [9], even for the case of encrypted
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network traffic [10], [11], [12], [13]. Still, running ML-
driven monitoring applications in real-time and at line rate
is challenging. The combination of fine-grained, per-flow and
per-session monitoring requirements with the high volume
of data observed in modern wide area networks (WANs),
data center networks (DCNs), or enterprise networks impose
difficult-to-meet targets, and the performance of deployable
solutions often falls short in large-scale networks.

In general terms, a typical ML-driven network traffic
monitoring workflow consists of three consecutive steps, as
depicted in Figure 1. It starts by analyzing the (encrypted)
network traffic, followed by a feature extraction of this
data into a vector representation, which serves as input to
the ML data analytics model. Different design principles
are applied in the literature to integrate this ML workflow
with traditional network telemetry approaches. Offline or out-
of-band processing (top part of Figure 1) is typically the
starting point for model development and academic endeavors
(e.g., [14], [15]). For this, the monitored traffic has to be captured
or mirrored, and forwarded on an external server. Stream
processors are software-based and provide high flexibility in
terms of features and analytics. They can reach excellent
monitoring performance given sufficient compute resources and
time for computing features, as well as training and applying
complex models. However, limited traffic processing capacities
and absence of real-time monitoring capabilities typically
make this approach infeasible for deployment in operational
networks.

Many current network telemetry approaches leverage
novel capabilities in softwarized and virtualized networks
(SDN/NFV), using sophisticated software packet process-
ing technologies [16] and programmable data planes
(PDP) [17], [18]. They have opened the door for the con-
ception of more flexible, real-time monitoring capabilities
using programmable switches [19], [20] or commodity hard-
ware [21]. These systems can analyze the massive traffic
volumes in real-time, i.e., at line rate without impacting packet
forwarding, and thus, network performance. At the same time,
they can be used to implement in-network feature extraction
to reduce the amount of data forwarded to an out-of-band
stream processor (middle part of Figure 1). By deploying a
powerful server, the data analysis can be scaled to support
complex models in real-time, and can, in theory, leverage the
full analytics flexibility of software-based stream processors.
In practice, however, this flexibility in terms of number and
types of realizable monitoring tasks is limited or dictated by
the extracted feature set. Here, hardware and processing con-
straints of the network device and potential service disruption
during reprogramming of the device significantly reduce the
feature flexibility. Therefore, the in-network feature extraction
system has a pivotal role.

In-network ML (bottom part of Figure 1) integrates the ML
model directly into the data plane, either offloading feature
extraction to an external system [22], [23], or by integrating both
the feature extraction process and the ML model [24], [25], [26],
in which case the monitoring system might provide high
capacities and real-time capabilities. However, in-network ML
requires heavy tailoring and simplification of the specific ML
model, given the limited operations supported by high-speed

programmable hardware, losing flexibility in terms of feature
and ML analytics capabilities.

To effectively manage large-scale traffic while offering rich
analytics capabilities, our focus is on efficient in-network
extraction of monitoring information and out-of-band process-
ing on a powerful server, as shown in the middle part of
Figure 1. However, in contrast to existing network telemetry
systems, we design our system Marina (MAchine-learning-
based Real-time Network traffic Analytics) explicitly for
ML-based real-time network traffic monitoring at terabit scale.
The rationale of Marina is to devote and max out the limited
data plane resources to extract statistics, which are useful for
ML-based traffic analytics, even in case of encrypted traffic.
All subsequent and more complex workflow tasks, i.e., feature
generation from the extracted statistics and model inference,
are executed on a powerful ML server. This is possible,
as ML models can be trained to leverage the generated
feature sets to achieve excellent performance for different
real-time traffic monitoring tasks. This includes traffic/device
classification, application health (e.g., Quality of Experience),
and fault/anomaly detection (e.g., intrusion detection), which
we demonstrate in this work.

We distinguish from existing solutions, which often apply
techniques like sampling (e.g., [1], [2], [27], [28]), sketching
(e.g., [29], [30], [31]), or filtering/querying (e.g., [19], [20],
[21], [32], [33]), and do not explicitly consider the ML-based
network intelligence paradigm. Instead, Marina implements
a temporal microaggregation of packets using sub-second
time slots and extracts moment-based traffic statistics. This
allows a fine-grained tracing of traffic characteristics for each
monitored flow at sub-second granularity. These statistics can
subsequently be mapped into a high-dimensional feature space,
which offers high visibility and discriminative power to the
downstream analytics and provides high flexibility for apply-
ing arbitrarily complex ML models for different monitoring
tasks. By controlling placement and compute resources of the
ML server, we can obtain actionable results for all monitored
flows within the next time slot, i.e., with sub-second delay.

The contributions of this paper are as follows:
1 Marina system design (Section 2): we present a novel

concept for data plane extraction of moment-based statistics at
line rate in combination with ML-based analytics on a pow-
erful server. Our design relies on temporal microaggregation
of packets into sub-second time slots and allows to flexibly
realize different ML-driven real-time monitoring tasks with
high accuracy at scale, even for encrypted traffic.

2 Marina data plane implementation (Section 3) and
evaluation (Section 4): our implementation of the Marina data
plane on a Barefoot Wedge 100BF-65X P4 switch maxes out
the data plane resources to monitor up to 6.4Tbps of traffic
in 524,288 concurrent flows over 65 QSFP 100Gbps ports. It
generates less than 385Mbps monitoring traffic, and can keep
monitoring granularity and delay until obtaining monitoring
results for all flows as low as 500ms. For the sake of repro-
ducibility and as an additional contribution, we make Marina’s
code publicly available at: https://github.com/lsinfo3/Marina

3 Marina ML-based real-time traffic monitoring
(Section 5): we validate the analysis capabilities enabled by
Marina for four different use cases, namely, encrypted traffic
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classification, video streaming application health/Quality of
Experience, intrusion detection, and IoT device classification.
We achieve comparable or better than state-of-the-art results
with standard ML models.

II. Marina SYSTEM DESIGN

Monitoring large networks with high traffic volumes and
rates, such as ISP, data center, or enterprise networks, faces
well known challenges (e.g., [33], [34], [35]). In particular,
our system design addresses the following challenges to enable
ML-driven real-time traffic monitoring at terabit scale.

Scalability: the monitoring system must be able to cope
with high traffic volumes in a large number of flows within
its hardware resources. Extracting the monitored information
from packets must happen at line rate, while ensuring that the
monitoring does not negatively impact the basic forwarding
mechanism, and thus, the network performance or stability.

Overhead: the telemetry system must keep the monitoring
overhead as low as possible. Resource allocation of the
system should be constant, i.e., constant memory per flow,
and independent of the traffic load. Traffic generated by the
monitoring system must not overload the management network
or any out-of-band consumer of the monitored data, such as
compute or storage servers.

Expressiveness: the monitoring system must provide suf-
ficient compute resources to support a wide range of
performance- and security-related telemetry tasks with high
accuracy. It must be able to provide monitoring results on
different time scales like real-time insights, records of termi-
nated flows, or periodic aggregate reports. Moreover, it must
allow to consider relationships between flows and provide
monitoring results for sets of related flows, e.g., a browser
session using several connections. As traffic encryption hides
important information contained in inner protocol header fields
and payloads, the monitoring system must make the best use
of information that is always available (i.e., information which
cannot be hidden by encryption). Consequently, monitoring
must be independent of traffic encryption by design, providing
the same accurate insights if the traffic is encrypted or not.
Nevertheless, aiming to overcome the limited visibility due to
encryption, it must allow to obtain valuable monitoring results
for many different monitoring tasks.

Flexibility: network operators require network telemetry to
be flexible, such that they can add or change monitoring tasks
at any time without affecting the network. They need to be able
to deploy Marina at different vantage points and combine the
monitoring results to obtain network-wide insights. Moreover,
it must be possible to store monitored information, e.g., to re-
visit or analyze the historical state of the network, to detect
changes, or to forecast trends.

Trade-offs: while scalability and extracted monitoring
data are limited by the data plane capabilities, there is
a trade-off between the number of monitored flows and
the generated traffic and load at the server. Additionally,
the number and complexity of generated features and exe-
cuted ML models impact the processing time at the server,
depending on the server’s compute resources. This results

in a trade-off with the monitoring granularity and real-time
capabilities of our system. We investigate these trade-offs in
Section 4.

A. Design Principles

We design our system Marina for real-time traffic monitor-
ing at terabit scale by implementing three design principles:

1 The data plane must do the heavy lifting work and
carry most of the monitoring burden. Its task is to reduce
the data volume as early as possible, but at the same time
extract valuable information. To be able to observe Tbps
traffic, our system is designed to be deployed at a core network
element or gateway where many high speed links interconnect.
Data planes are built to forward high volumes of traffic, but
offer limited computational or storage resources. Nevertheless,
specialized devices (e.g., programmable switches, FPGAs, or
ASICs) can execute packet operations at line rate, such as
arithmetic calculations, without affecting the forwarding and
the network performance. We require such a specialized device
for Marina and install a data plane program to efficiently
forward and monitor at line rate for all ports. We allocate
constant memory to each flow, aiming to max out the data
plane resources to monitor as many flows in parallel as
possible. The controller should be located on the same device
for efficient communication with the data plane. It instructs
the data plane which flows to monitor and where to forward
packets by installing appropriate flow rules, and exports the
monitored data.

2 We move all complex operations to a powerful server.
It can efficiently take over the more sophisticated work
on the reduced data, namely, generating feature sets and
running model inference for a large number of monitored
flows and ML-based monitoring models. The server can
be equipped with appropriate and specialized compute and
storage resources, which allows to further speedup tasks on
many CPUs or GPUs in parallel. To avoid overloading the
server, its service rate (processing of transmitted data and
ML inference) has to be higher than the arrival rate (export
of monitored data from the data plane). Controlling server
placement, server resources, and complexity of features and
models allows to enforce an upper bound on the service
time, and thus, makes real-time monitoring possible. A single
server can serve one or more data planes, or multiple servers
can be combined into a server cluster. This allows to merge
data from multiple vantage points and obtain network-wide
insights. Finally, the server (cluster) allows to offer a rich
API for network operators to inspect and visualize the stored
data and monitoring results, as well as to flexibly change or
add monitoring tasks. As the monitoring flexibility is on the
controller or server side, we avoid having to restart the data
plane device to change the data plane program, which would
result in network downtime. The monitoring results can then
be sent to, e.g., a network management system. Note that
the development of a server API and the selection of traffic
engineering decisions based on the inferred results are beyond
the scope of this work.
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3 The key to the success of our system is how to link the
first two design principles. In particular, we need to extract
a small amount of valuable information, which allows to
realize the monitoring tasks with high accuracy. To achieve
this, we perform temporal microaggregation on the data plane.
We temporally divide the packets per flow into fixed-length
time slots. We use statistical descriptors to characterize the
traffic within each time slot in constant memory. We read
out and reset the descriptors after each time slot, and export
them to the server. The stream of descriptors provides a
fine-granular approximation of the observed traffic, which
allows the ML models at the server to accurately infer the
monitoring metrics. However, it is important to configure the
time slot duration appropriately. As discussed above, to avoid
overloading the server and allow for real-time monitoring,
the time slot duration has to be higher than the end-to-
end monitoring delay consisting of data plane register read,
transmission between controller and server, feature generation,
and ML inference. Additionally, the time slot duration not
only defines the real-time capability of the entire monitoring
system, but it also impacts the temporal granularity of the
stream of descriptors, and consequently, the accuracy of the
monitoring. Thus, we minimize the slot length to below 1 s.

B. Monitoring of Encrypted Traffic

As end-to-end encryption of Internet applications is becom-
ing the norm, enabled by protocols such as transport layer
security (TLS), we have no longer access to application-layer
information. This renders DPI ineffective without requiring
additional privacy-invasive methods (e.g., TLS interception),
and thus, substantially limits the visibility of many network
telemetry systems. Traffic encryption allows to only extract
information from the IP and transport protocol (TCP/UDP)
headers. Available information includes the flow 5-tuple
(src/dst IP addresses and port numbers plus protocol type),
packet size, TCP flags, or header options. In addition, a
network element can track the inter-arrival time (IAT) of
packets, i.e., the time since the last packet of the same flow has
been forwarded. Despite this limited information, we can still
derive temporal and volumetric traffic information on a per-
flow basis, i.e., how much traffic is transmitted over time. For
this, it is sufficient to inspect the 5-tuple and track packet sizes
and IATs. This information is highly valuable for performance-
and security-related network monitoring, as it allows, for
example, to identify characteristic device/application traffic
patterns or to detect when device/application traffic patterns
deviate from normal.

Since extracting and storing full time series of packet sizes
and IATs is infeasible at terabit scale, we employ temporal
microaggregation as discussed above and characterize their
distributions within each time slot using statistical descriptors.
We decide to use moments, i.e., sample moments about
the origin, as they provide valuable insights and can be
computed on the data plane in constant memory using only
simple arithmetic operations. To compute the k-th sample
moment, it is required to raise the observed values to the
power of k, sum the resulting powers, and divide by the

total number of packets. Note that this computation naturally
allows to obtain packet count and traffic volume. These
raw moments may then be converted into central moments
and standardized moments, allowing to compute the most
important named properties of the distribution (mean, variance,
standard deviation, coefficient of variation, skewness). It also
allows to accurately approximate the observed distributions
(cf. truncated Hausdorff moment problem [36]).

While higher-order moments are computationally expensive,
especially when considering the limited resources on
the data plane, we advocate for computing at least the
first three moments. The reason is that skewness (third
standardized moment) describes where the distribution
mass is concentrated, e.g., towards small/large packets or
towards bursty/isolated packets. Skewness plays an important
role in many monitoring scenarios, also being one of the
reasons why sketching emerged decades ago (cf. AMS
sketches [37]). The suitability and generality of considering
sample moments and derived features is also confirmed when
looking at related work, where they are widely adopted for
a multitude of use cases, such as real-time anomaly/intrusion
detection [38], [39], [40], traffic classification [41],
QoE inference [10], [12], or IoT device fingerprinting
[15], [42], [43].

We are not limited to use only the meta-information (times-
tamp, src/dst IP address and port number, protocol type) and
statistics (moments and derived features) of a single time slot
and flow as input for the ML-based monitoring prediction.
Instead, we can perform derivations/augmentations (e.g., infer
IP ranges, domain name, or service type from the meta-
information in the 5-tuple) and aggregations at the server
side. Considering the temporal dimension, for example, we
can aggregate the statistics of consecutive time slots (e.g., in
a sliding window fashion [12]) to cover larger time spans.
For this, the corresponding moments have to be multiplied
with their packet counter to obtain summed powers again,
which can then be added together. Moreover, we can consider
a time series of statistics from consecutive time slots as
input to sequential ML models, such as popular recurrent
neural networks (RNNs). Besides the temporal dimensions,
aggregations can also be performed in the spatial dimension.
For example, the summation statistics of a matching pair
of unidirectional flows can be added or combined to derive
features for bidirectional traffic, e.g., ratio of uplink/downlink
packets or volume, or total traffic volume. It is also possible
to merge or concatenate feature sets of a larger set of
related flows, such as multiple TCP connections of a single
application having the same source IP address (e.g., using
hierarchical embeddings [44]). Similarly, feature sets from
different vantage points, e.g., considering the same flows or
the same types of service, can be merged or concatenated to
infer network-wide insights. In short, as all data is gathered
on the server, we can process the collected meta-information
and statistics as well as derived and augmented information
from single/multiple time slots, single/multiple flows, and/or
single/multiple vantage points on the server as needed in
order to obtain accurate monitoring results for our desired
monitoring tasks.
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Fig. 2. Implementation of Marina prototype.

Depending on the generated features, many ML models can
be applied to realize the monitoring task. This ranges from
shallow ML (e.g., decision trees) to elaborate methods such
as deep learning (DL), or (deep) reinforcement learning (RL),
which can provide accurate traffic insights. The limitations
to feature generation and model inference are given by the
expressiveness of the extracted statistics and the time con-
sumption for processing on the ML server, which adds to the
end-to-end monitoring delay, and thus, affects time slot length.

III. Marina DATA PLANE PROTOTYPE

Figure 2 gives an overview of the Marina implementation.
To fulfill the hardware requirements of the Marina data
plane, we implement the prototype on a Barefoot Wedge
100BF-65X P4-enabled Tofino switch. As current P4 hardware
exhibits several limitations in terms of stateful processing,
memory capacity, and the complexity of available operations,
we highlight workarounds and approximations that went into
developing the prototype implementation.

Packet Forwarding: the switch performs statistics extrac-
tion in addition to (a) bridging the traffic, (b) L2 switching, or
(c) L3 routing. To do this, the Packet Forwarding component
(depicted at the bottom left) uses the Forwarding TCAM
(depicted above the packet forwarding component) or metadata
information attached to the ingress ports to identify the cor-
responding egress port. The available TCAM memory limits
the number of forwarding flow rules to roughly 1.5 million
flow rules. If the switch is used as a bridge (man-in-the-middle
device), the number of forwarding rules is of no concern,
but the number of available ports is halved. Note that the
installation of forwarding rules is not part of the P4 controller
developed in this work.

Packet Classification and Flow Instantiation: after iden-
tification of the egress ports, packets pass through the Packet
Classification module, which uses the Classification TCAM to
identify flows requiring further processing. For this, we reuse
concepts known from reactive OpenFlow [45] applications.
We maintain the set of relevant flows to be monitored in the
Classification TCAM. If a packet is not matched, it either
belongs to an irrelevant flow and can be ignored, or is part
of a new flow. In the latter case, it needs to be sent to the
controller. Our design is not impacted by the well known
problems of reactive flow processing [46], [47], [48], as the
controller application runs on the switch’s host controller,
which communicates with the data plane over the internal PCIe

interface, offering minimal delay and a throughput of up to
31Gbps (PCIe Gen3 x4). For TCP, new flows can be easily
detected based on TCP SYN flags. For UDP, we need to track
which flows have been already seen. We employ a combination
of a partitioned Bloom filter [49], [50] in the data plane and a
counting Bloom filter [51] at the controller. They ensure that
we can efficiently identify previously seen, but irrelevant UDP
flows with an acceptably small false positive rate of below 1%,
when packets of 400,000 irrelevant UDP flows are present.
This is expected, due to the probabilistic nature of the applied
Bloom filter. A false positive hit results in missed relevant
flows that are falsely classified as irrelevant by the Bloom
filter. Finally, all TCP SYN packets and the first packets of
unknown UDP flows are forwarded to the controller.

For each new flow, the controller checks whether it is
relevant for monitoring. If so, it assigns a flow id, inserts
the corresponding rules into the data plane Classification
TCAM, and allocates register slots for the statistic compu-
tation. Additionally, it stores the mapping between 5-tuple
and register slots, such that the 5-tuple can be exported
together with the corresponding statistics as meta-information.
Likewise, flow ids and allocated register slots are freed when
a flow is considered ended. The removal of TCP flows is
straightforward, based on the tracking of packets with the
TCP FIN flag or a flow timeout. To remove a UDP flow
from the counting Bloom filter, we use a probabilistic aging
technique [52]. It decrements the corresponding entries of the
counting Bloom filter with an eviction probability that controls
the retention time. We configured it to obtain an average flow
retention time of 25 s. Any changes in the counting Bloom
filter are mirrored to the binary Bloom filter on the data
plane.

The controller decides on the relevance of flows in the
Flow Instantiation module, e.g., based on flow 5-tuple or
IP range. Additionally, we might be interested to selectively
monitor the traffic of a certain application, e.g., to monitor
application health. To identify which flows may belong to
these applications, we rely on the hostnames of the contacted
servers, which we obtain from parsing DNS requests [53].
Therefore, all DNS responses are forwarded to the controller’s
DNS to IP Mapping module, where an IP Database with
relevant IP addresses is constructed. For example, to monitor
YouTube, the database is filled with all IP addresses for
googlevideo.com – the domain used by YouTube’s video chunk
HTTP requests. In case of DNS over TLS (DoT) or DNS over
HTTPS (DoH), where we no longer can leverage the clear
text from DNS requests and responses to differentiate between
flows, we use the Server Name Indication (SNI) field of TLS.
For this purpose, we forward TLS Client Hello packets to the
controller’s SNI to IP mapping module. As a result, we obtain
a similar database as for DNS. For example for YouTube
with DoT or DoH enabled, we therefore look for TLS Client
Hello packets having a SNI, which contain googlevideo.com.
As some applications like video streaming use several flows
in parallel, we additionally implement a session mode, which
assigns all flows with the same source IP to the same registers.
This allows to monitor the aggregated application traffic,
which saves data plane resources and facilitates downstream
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TABLE I
STATISTICS AND META-INFORMATION THAT CAN BE COMPUTED AT LINE RATE BY Marina ON A BAREFOOT WEDGE

100BF-65X. log∗ DENOTES THE APPROXIMATION OF THE LOGARITHM BASED ON LOOKUP TABLES

Fig. 3. Data plane stages: register/table allocation. Support registers are
shown in gray.

analytics. The controller can seamlessly switch between flow
and session mode during runtime.

Statistic Computation: following our design principle, we
implement the calculation of sample moments for the distribu-
tion of packet size and packet inter-arrival time, while maxing
out the data plane resources. Figure 3 shows the allocation of
registers and matching tables on the data plane stages. The
packet first traverses the ingress pipeline (top), is switched to
the correct egress port, and finally traverses the corresponding
egress pipeline (bottom). The statistic computation is limited
by the number of stages of the switch – in total 24, 12 on
ingress and 12 on egress – and by the computation capabilities
of the ALUs at each stage. Resources are further limited
by the stages required for Packet Forwarding and Packet
Classification. Thus, we are able to realize only the first
three moments of the packet size and IAT distribution on our
P4 switch. More specifically, as detailed in Table I, we count
the number of packets and compute (for both distributions)
the sums of (a) the raw values, the (b) square of the values,
and (c) the cubes of the values. We also track the timestamp
of the last arrival as a support statistic for the computation of
the inter-arrival times.

Here again, the hardware limitations of the switch forced us
to resort to certain abstractions for the computation process.
Consider computing the statistical moments of the packet size
distribution, i.e., the summed powers of the packet size. The
packet size can be easily computed by subtracting various
header lengths from the total packet size. However, recording
the sum of packet sizes using byte granularity in a 32 bit
register is likely to result in overflows, e.g., a flow sending
at 100Gbps would overflow the register more than three
times per second. Moreover, the sum of squared packet sizes,

which allows to derive the variance, would overflow after
just around 2000 packets of size 1500B. Additionally, as the
data plane supports only 32 bit addition and subtraction, we
also need to approximate multiplications by pre-computing
TCAM rules as shown in [54]. Although the P4 compiler sup-
ports 64 bit registers, we cannot perform arithmetic operations
on them. Implementing 64 bit arithmetic would be possible
using multiple registers with intermediate overflow detection.
However, we decided for a simpler approach, based on the
assumption that the magnitude of packet sizes and IATs could
still provide valuable information.

This was realized by using the logarithm of the packet sizes
and IATs instead of the actual value. This way, a 32 bit register
is sufficient to record the summed powers of logarithmic
values. As the logarithm is not natively supported by the ALUs
of the switch, it is computed using a ternary match table in
TCAM, constructed as described in [54], mapping input values
using a longest prefix match on the binary representation
to their approximate logarithm. Hence, the implementation
column in Table I denotes the approximated logarithm as log∗.
Note that register overflows can still occur on long-running
or large volume flows for these statistics. We investigate the
impact of these approximations on the performance of the
monitoring tasks in Section 5.

Monitored Flows: The number of concurrent flows that can
be monitored is effectively limited by the memory capacity of
the data plane and the selected statistics. The Barefoot Wedge
100BF-65X has 4 parallel pipelines with 12 stages. Each
stage contains 80 blocks of SRAM with 128 kbit each. 48 of
those blocks, i.e., 6Mbit, are available as stateful memory. A
register always occupies whole blocks, at most 35 blocks, and
requires one additional block for organizational purposes. If
the selected statistics are 32 bit values, the maximum number
of slots in a register is 35· 128·102432 = 143, 360. This is then the
theoretical maximum number of flows that can be monitored
in a single pipeline. However, there is a trade-off between
the number of monitored flows and the number of selected
statistics.

To simplify register addressing we use a power of two,
resulting in a flow capacity of 217 = 131, 072 flows per
data plane pipeline, thus, 4 · 217 = 524, 288 unidirectional
flows at most, as the switch has four independent data plane
pipelines. In session mode, we summarize all uplink/downlink
flows together by recording separate values for the aggregated
uplink/downlink traffic only. This allows us to monitor 218 =
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262, 144 bidirectional sessions in parallel. These numbers are
derived using the memory capacities of the Intel Tofino 1
chipset. Next generation devices are expected to be equipped
with more memory for both SRAM and TCAM, and could
hence monitor more flows or compute additional statistics.

Export Module: the controller reads all data plane statistics
registers at regular time intervals, appends the corresponding
meta-information (5-tuple in flow mode, 3-tuple in session
mode), and transmits them via the 1Gbps management
interface of the switch to an external ML server. This results in
328 bit generated monitoring data per flow per time slot. Our
first approach of using the Apache Thrift interface provided
by the Tofino SDE failed, as it needed on average 3 s for
a complete read of all registers. Thus, we implemented a
custom controller library with access to internal functions
based on the suggestions of Yu et al. [55]. This allows us to
circumvent the Thrift layer and achieve a much smaller read
duration of 268ms, independently of the number of monitored
flows. Nevertheless, the number of monitored flows affects
the transmitted data volume, and thus, the minimal end-to-end
monitoring delay. As the end-to-end monitoring delay has to
be smaller than the time slot length for real-time monitoring,
there is a trade-off on how small the time slot can be set,
which we analyze in Section IV.

Feature Generation and ML Inference: the server
receives the extracted statistics and meta-information collected
from the data plane and generates feature sets as input to ML
models. Depending on the monitoring task, different features
can be derived as discussed in Section II-B and depicted in
Table I. The computed features are assembled into feature
sets and forwarded to ML models to infer the monitoring
predictions. In this work, we adopt the majority of features,
which have also been computed in [12], because they cover the
most important characteristics of the packet stream and can be
computed in an online fashion [12]. Note that, although there is
basically no limit to what and how many features and models
can be used, the feature generation and model inference times
impact the end-to-end monitoring delay. To preserve the real-
time properties of the entire monitoring system, the server
enforces a fixed upper bound on the end-to-end monitoring
delay to be less than the time slot length, which can be easily
achieved by controlling server placement, compute resources,
feature generation, and model complexity. Using a powerful
server also ensures that the resulting ML predictions for all
sessions can be forwarded in real-time, e.g., to a network
management system. In addition, the server can offer an API
for network operators to inspect and visualize the stored data
and monitoring results, as well as to flexibly change or add
monitoring tasks at any time. This would instruct the Marina
controller to change which flows are classified as relevant, or
it would deploy another ML model on the server.

IV. PERFORMANCE OF Marina SYSTEM

To showcase the real-world performance of Marina, we first
highlight the isolated performance of all involved components
and subsequently demonstrate the total end-to-end monitoring
delay from collecting data plane statistics to obtaining ML

Fig. 4. Blocking probability for different mean session durations for
increasing session arrival rates.

predictions. As described above, we deploy the Marina data
plane on a Barefoot Wedge 100BF-65X P4-enabled Tofino
switch with 65 QSFP 100Gbps ports for a total data rate of
6.4Tbps. The controller application runs on the switch’s host
controller – an 8-core Intel Xenon CPU with 32GB of memory
running Ubuntu 18.04. Note that we do not validate the total
data rate of the switch through dedicated measurements as it
is a technical specification of the device. Instead, we focus
only on the performance of the controller and data plane
applications as well as the ML pipeline, as their operations
will ultimately limit the performance of the entire Marina
system to accurately monitor all relevant flows. Thus, for the
evaluations in our testbed, the switch was connected to two
servers – each equipped with 10-core Intel Xenon CPUs, a
Mellanox ConnectX-5 series NIC offering two 100Gbps ports,
200GB of memory, and running Ubuntu 18.04. The Marina
ML server is equipped with a 64 core Xenon CPU, 8 GPUs
(RTX 2080Ti 11GB), and 768GB RAM and is connected via
the 1Gbps network management interface of the switch.

Flow Arrival Rate: the P4 switch has enough memory
for Marina to support up to 524,288 unidirectional flows (or
262,144 bidirectional sessions) in parallel. We explore the
impact of this limitation by assessing the probability to drop
incoming sessions when the system is in a steady state, given
a certain arrival rate of new, relevant sessions, for an average
flow duration ranging from 30 s to 600 s, see Figure 4.

We assume that the arrival process of new flows is a
superposition of multiple independent renewal processes that
can be modeled as a Poisson process with a total arrival rate λ,
according to the Palm-Khintchine theorem [56], [57]. Using λ
and the amount of available memory, we compute the blocking
probability of the system using the Erlang-B formula [56].
Thereby, we assume that the arrival rate to the four individual
pipelines of the switch is equally distributed.

For a mean session duration of 60/600 seconds, Marina
can handle 4411/441 new sessions per second while ensuring
a blocking probability below 1%. To put these results into
perspective, we use the data obtained in [58] on YouTube video
streaming characteristics, and assume a session duration of
600 seconds. This translates into approximately 14.2 million
users that can be handled by a single P4 data plane device
assuming an average request rate, and 3.5 million users when
considering the peak request rate reported in [58].

Controller Operations: to ensure real-time capabilities of
the control plane, we explore each involved operation in
isolation. To achieve this, we conducted stress tests on both the
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Fig. 5. Mean operations per second for critical controller and data plane
operations.

P4 switch control plane API and the controller. We employed
custom benchmark scripts written in C to execute the same
type of operation repeatedly in a loop. This allows us to
identify the maximum number of operations of a specific
type that can be supported per second, as shown in Figure 5.
Controller operations are evaluated on the left side – meaning
operations that do not involve the data plane (cf. Figure 2).
The DNS to IP Mapping component is able to parse 2.3 ·
106 DNS responses per second. The Bloom filter used for
the Flow Instantiation component is able to handle 2.2 · 106
operations per second. The packet handler of Marina, which
is responsible for processing incoming packets of new flows,
is able to handle almost 4.2 ·106 packets per second, showing
that none of the benchmarked operations form a bottleneck for
the system.

Data/Control Plane Interactions: regarding interactions
with the data plane – Figure 5 on the right – the controller is
able to perform around 260,000 Bloom filter write operations
per second. Moreover, it can execute up to 63,000 match table
insertions and 94,000 remove operations per second. Thus,
63,000 match table insertions per second are the bottleneck
of the data plane API. Similarly, we evaluate the maximum
rate at which flow modifications can be performed at runtime
to determine the maximum burst arrival rate of new flows.
For this, we used a sequence of TCP SYN and FIN packets,
which forced the continuous creation and removal of flows on
the data plane, and sent it over the switch at increasing rates.
Our benchmarks show that the controller is able to process
50,000 flow changes per second. This means that the total
set of 524,288 flows that can be monitored by the switch in
parallel can be replaced roughly every 20 seconds.

ML Inference Speed: the inference speed depends on the
number, type, and complexity of used ML models as well
as the compute resources of the server. The specific model,
which provides the highest accuracy, depends on the actual
monitoring task at hand, cf. results in Section 5. As random
forest models proved to provide a good trade-off between high
accuracy and fast inference speed, we evaluate the time to
infer predictions for a specific number of flows on a single
GPU depending on the model complexity. To be able to run
the trained scikit-learn model on GPU, we use Microsoft’s
Python library Hummingbird,1 which converts the Random
Forest model to a PyTorch model under the hood. For the
analysis, we vary the number of input features (F), number
of trees (T), and tree depth (D) compared to a baseline. The

1https://github.com/microsoft/hummingbird

Fig. 6. Random forest inference time on single GPU.

Fig. 7. Total end-to-end monitoring delay from data plane statistics extraction
to ML inference.

results in Figure 6 show that, even when using a large set of
100 features and an expensive model with 100 trees of depth
10, we can obtain monitoring predictions for one million flows
in less than 350ms on just one GPU. In the following, we
assume the performance of this model to perform a worst-case
analysis of the end-to-end monitoring delay.

End-to-End Monitoring Delay: the total time to read
the statistics from the data plane, to transmit them to the
ML server, to generate features, and finally, obtain the ML
predictions is shown in Figure 7. Note again that this end-
to-end monitoring delay defines the real-time capabilities of
Marina and provides a lower bound on the monitoring time
slot duration at the data plane. Thus, it is the most important
system parameter, which we need to minimize to improve the
monitoring granularity and accuracy of Marina. The register
read operation is performed by the controller through an API
call to the data plane and is independent of the number of
flows present in the system, as every call polls all registers
that have been defined at compile time. Naturally, the time to
transmit the polled statistics to the ML server scales with the
number of available flows, shown along the x-axis. We include
measurement values for one million flows to put the scalability
of our approach into perspective, even if current hardware only
supports 524,288 flows. Note that the register read duration
will actually be different when supporting one million flows
on a different hardware, which we do not reflect in the figure
for comparison purposes. In addition to the register read, we
investigate the transmission duration depending on the RTT
between the controller and the ML server to assess the need for
optimal server placement. Finally, the ML server augments the
raw statistics by computing a set of 100 derived features and
applies the pretrained random forest model. Here, we use all
available resources of our ML server, i.e., 64 cores for feature
generation and 8 GPUs for ML inference. The data shows that
the transmission between controller and ML server contributes
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a significant fraction of the total end-to-end monitoring delay,
while simultaneously being one parameter for optimization. It
can be seen that even with an RTT of 100ms, we are able
to perform sub-second predictions, while predictions in less
than 500ms are possible for a local server. Specifically, when
monitoring 524,288 flows, Marina transmits a total of 21.5MB
for every time slot and can achieve a minimum time slot length
of 429ms. Thus, when using a round-number time slot length
of 500ms, Marina generates 385Mbps of monitoring traffic
(including protocol overhead) per P4 switch towards the ML
server.

V. Marina’S ML-BASED REAL-TIME

MONITORING PERFORMANCE

We study the resulting monitoring performance, which can
be realized based on our Marina prototype, for four different
real-time traffic monitoring use cases, namely, traffic classifi-
cation, application health (video streaming), security/anomaly
detection (intrusion detection), and device classification (IoT).
As different ML models can benefit differently from the
extracted statistical features, we compare the performance
of several widely used ML models. The ML Inferencing
component uses either a shallow model, e.g., Decision Tree
(DT), Random Forest (RF), Extremely Randomized Trees
(ERT), Gradient Boosting (GB), XGBoost (XGB), or K-
nearest neighbor (KNN), or a Deep Neural Network (DNN),
namely, a simple feedforward network with three to eight hid-
den layers with 64 to 1024 neurons each and ReLU activation.
Model hyper-parameters are optimized during training, using
either sklearn’s GridSearch [59] for the shallow models, or
Optuna [60] for the DNN. We split the data sets into 80%
training, 10% validation, and 10% test data, balancing the
training data set by oversampling.

We use the features as described in Table I with Marina
monitoring time slot set to 1 s. We additionally perform
macroaggregations of time slots to consider these features on
three different time scales. We use features for the current
time slot, a trend macro time slot consisting of the three last
time slots, and a session macro time slot consisting of all
time slots since the beginning of the flow or session. Note
that we deliberately choose to use minimal feature engineering
and standard model selection to showcase a lower bound on
the ML performance that can be realized with Marina with
publicly available data sets. When deploying Marina in an
operational network, the ML workflow (feature generation,
model development) can easily be optimized for the actual
monitoring tasks at hand considering the available compute
resources at the server. This can be expected to further improve
the performance results presented here.

We will investigate the performance for two versions of
the feature set. First, we take the actual features as generated
from the statistics extracted by Marina. Since the prototype
has to use approximations due to the lack of certain ALU
operations and 64-bit arithmetic, we also consider an ideal
version with the same features, but without approximations.
Thus, this version indicates what performance Marina could
achieve on future data plane hardware using the same features,

Fig. 8. Hit rates for ISCXVPN2016 traffic classification into 14 applica-
tions/traffic types.

but overcoming current feature computation limitations. We
will compare the performance of both feature sets to the best
state-of-the-art (SOTA) results from literature, which were
obtained using the same data sets. We are aware that ML
results from literature are never perfectly comparable since
they are influenced by data set splits (training, validation,
test set), feature selection and preprocessing, search space
for model selection and hyperparameter tuning, as well as
time budget for model training. Still, SOTA results provide
a numerical anchor, which helps to sort in the utility of our
Marina system for real-time traffic monitoring. All numerical
results are detailed in Tables III-VI in Appendix-B.

1 Encrypted Traffic Classification: a vital part of network
management is the identification of ongoing network traffic,
as it enables more advanced tasks such as ensuring QoS and
anomaly detection [61]. It can be carried out with varying
granularity, such as identifying a specific application (e.g.,
Spotify versus Skype) or the traffic type (e.g., video versus
chat) [61], [62], [63]. We utilize the ISCXVPN2016 data
set [64] (only non-VPN traffic), which contains traces for
various encrypted traffic types like email, chatting, file trans-
fer, but also for various applications like Spotify, YouTube,
Skype, and Facebook. To investigate a more challenging and
fine-grained classification task, we also differentiate between
audio, chat, file transfer, and video traffic for the applications
Facebook, Hangouts, and Skype. We exclude some of the
applications like FTPS and SCP, because their single traces
are too short, not allowing us to generate a sufficient number
of valid training and test slots. We split the time slots into
short consecutive sequences of 30 -120 s, and distribute the
sequences such that 80% of the time slots are training data,
10% validation data, and 10% test data. As SOTA comparison
we choose the results reported by Xie et al. [63]. The SOTA
approach here is DL-based, and instead of extracting features,
packet traces are treated like a sentence and information is
extracted similar to NLP tasks.

The performance of the various ML models is depicted in
Figure 8, where the hit rate, i.e., true positive rate, for each
traffic type and application is shown for ideal Marina and
implemented Marina. For each monitoring interval, Marina
performs a real-time prediction. The shown hit rate is com-
puted based on these predictions after the flow has ended.
Our system targets the lowest monitoring interval possible.
Therefore, we do not investigate the relationship between hit
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Fig. 9. F1 scores for stalling/resolution classification, error scores (RMSE
and MAE) for bit rate inference.

rate and slot size/number of slots in this work, but leave this
for future work.

We observe that all ML models perform excellent on the
task and that the differences between ideal and implemented
are only marginal, i.e., the approximations did not cause
any performance loss. We also observe that our models’
performance is on a par or even better (e.g., RF, XGB) than
SOTA [63]. The results show that Marina can be effectively
used by network operators to monitor network traffic types
and applications.

2 Video Streaming Application Health/Quality of
Experience: video streaming is a prime example of an
application, for which prevailing traffic encryption has sub-
stantially limited the visibility of DPI-based network telemetry
systems [65]. To win back visibility into video streaming
application health or Quality of Experience (QoE), ML-
based approaches have been conceived that seamlessly operate
on traffic features extracted from the encrypted stream
of bytes [10], [11], [12], [14], [66], [67]. In particular,
standardized video streaming Quality of Experience (QoE)
models, such as ITU-T P.1203 [68] or P.1204 [69], consider
application-layer key performance indicators for visual quality,
such as resolution and bit rate, as well as critical playback
events such as stalling/re-buffering [70]. Accordingly, we
tackle three separate ML tasks, i.e., stalling and resolution –
binary classification, and bit rate – regression. We compare
to the SOTA results in [12] using an extended data set that
was provided by the authors. It contains the encrypted traffic
of more than 16,000 YouTube video sessions labelled with
ground truth information obtained at the client side. It was
recorded on laptop devices from 2018 to 2019, at different
geographical locations and different networks. Note that the
authors retrained the model on this extended dataset compared
to the initial paper. The feature set is similar to ours and the
authors trained a multitude of ML models (e.g., DT, RF, KNN,
and many more). The data set contains more than 5,000,000
time slots of 1 s, annotated with ground truth information
obtained at the client side. We split into 80% training, 10%
validation, and 10% test data on a per-session basis, balancing
the training data set by oversampling.

Figure 9 summarizes the results. For stalling and video
resolution classification, we show the F1 score for the indi-
vidual classes (no stalling/stalling and standard (SD) and high
definition (HD)) as well as the macro-averaged F1 scores,
where the F1 score of each class accounts equally to the overall

average F1 score independent of the number of available
samples. For bit rate regression, we show root mean square
error (RMSE) and mean absolute error (MAE). Overall, results
for the ideal Marina feature set are on a par with SOTA
results. For all stalling and resolution classes, multiple models
can reach similar performance to the SOTA models using
both ideal and implemented Marina. When considering the
bit rate regression, the performance of ideal and implemented
Marina is again close for DNN, but slightly worse than
SOTA. In general, the performance difference between ideal
and implemented Marina is marginal. These results confirm
that Marina allows network operators to accurately trace the
application health and subjective QoE of a large number of
video streaming users in real-time, while fully preserving the
encryption, and therefore, protecting end users’ privacy.

3 Intrusion Detection: the ever-growing number and com-
plexity of cyberattacks [71] pushes network operators beyond
static defenses, such as firewalls, to deeper Intrusion Detection
Systems (IDSs) [72], [73], relying on DPI technology to detect
and potentially block known malicious traffic. Despite the
complexities and limitations of ML in the networking security
realm [74], there is a growing interest on ML for malicious
traffic detection, in particular as a countermeasure against
attacks hiding in encrypted traffic [38], [75], [76]. We use the
CIC-IDS2017 data set [77], [78], featuring a small network
with a wide variety of attacks, labeled on a per-flow basis.
We are aware of the well-known limitations and issues with
this data set [79]. However, we chose to consider it, as it is
widely used and allows for comparison with SOTA results.
For the SOTA comparison, we use the results reported by
Ho et al. [80], which uses a DNN-based approach, utilizing
the original 78 flow-based features provided by the publishers
of the CIC-IDS2017 dataset in addition to the raw packet
captures. In our case and after processing the packet captures,
the data set contains more than 20,000,000 time slots with
labels from 15 classes: benign or attack, including, e.g.,
brute force, denial of service, and Web attack. For the ML
training, we require a balanced dataset, where benign and
malicious slots appear equally likely so that the model is
able to capture the underlying relationships. As it would be
unmanageable to oversample all attacks to the size of the
majority class “benign” in this highly imbalanced dataset,
it is common practice to undersample the majority class
instead. Thus, we first undersample the benign slots by using
only 10% of the original slots. To obtain a balanced dataset,
we then oversample the attack slots such that their count
equals the number of benign slots. We assign sequences of
consecutive time slots of 30 -300 s length into 80% training,
10% validation, and 10% test data.

Figure 10 summarizes the results for this multi-class clas-
sification problem, reporting the hit rate per attack for all
ML models and both feature sets. Except for the cross-site
scripting (XSS) Web attack, Marina detects all attacks equally
well, reaching an outstanding hit rate of above 99%, which
is on a par with SOTA results [80]. In this use case, we also
observe that the restrictions imposed by the P4 hardware have
hardly any impact, i.e., using the implemented Marina is close
to the performance of the ideal Marina variant. Additionally,
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Fig. 10. Hit rates for CIC-IDS2017 intrusion detection using 14 attacks.

evaluations indicate that most ML models perform equally
good for all attack classes. All in all, we see that Marina
realizes high detection performance for different types of
attacks. Together with its high capacity, it is thus well suited to
support network operators’ security management, monitoring
and detecting intrusions at large, on high-speed links. As
intrusion detection is both a security and an anomaly detection
task, we expect results to transfer also to other anomaly
detection tasks, such as detecting faults or changes in the
network.

4 IoT Device Classification: the increasing number of
non-standard computing devices communicating with each
other on the Internet of Things (IoT) poses security and privacy
risks. Device classification can help network administrators
to improve the network security by gaining an overview of
the network inventory [81], [82]. ML-based solutions have
seen great success for IoT device classification [15], [83],
[84], [85]. We use the CIC-IOT2022 data set [86], in which
60 different IoT devices have been monitored in different
scenarios and over many hours. Here, we focus on the idle and
active experiments with 37 distinct devices only. The goal is to
identify the IoT devices based on their traffic characteristics.
This is relevant in scenarios where IP addresses change
dynamically, or when multiple devices jointly communicate
over a single public IP address using NAT. The considered IoT
devices in this data set include various audio devices, camera
devices, home automation devices, etc., which are based on
different protocols like IEEE 802.11, Zigbee, and Z-Wave.
We split the traffic captures by MAC address to obtain traffic
flows per IoT device. We further ignore all empty time slots
where devices were inactive. We split the time slots into 80%
training, 10% validation, and 10% test data. For ML training,
we randomly sample only 5% of the original time slots and
then balance the IoT devices using oversampling. We compare
our approach to the SOTA results reported by Ma et al. [85],
which utilizes a DL-based approach using packet sequences.

Figure 11 depicts the hit rate distributions of the 37 classes
for the various ML models in the form of boxplots. Results
show that the multi-class problem of device identification
can be adequately solved with Marina, achieving average hit
rates above 93% for RF and ERT, for both the ideal and
implemented Marina feature sets. Compared to SOTA [85],
which proposes a flow-based approach based on embeddings
of packet sequences, Marina provides a superior performance.
Notably, the variance of the SOTA approach is a lot higher. It is

Fig. 11. Distributions and mean (�) of per-class hit rate for CIC-IOT2022
classification into 37 devices.

able to identify some devices perfectly, but it fails to recognize
others entirely, which also causes the high difference between
median and mean. Thus, Marina shows a more consistent
performance regarding all classes. It can also be seen that
for this use case implemented Marina often outperforms ideal
Marina, which seems kind of contradictory as the features are
supposed to become more inaccurate due to the approxima-
tions and transformations. The transformations, however, are
the root cause why implemented Marina performs better here.
They change the underlying distribution of the features, e.g.,
the variance inside the features, and simultaneously change the
co-variances in a beneficial way for the prediction in this case.
Note that while the transformations had a positive effect here,
it can also negatively affect the performance in other cases.

Additionally, providing hit rates of at least 91% for each of
the 37 IoT devices and considering its high capacity, Marina
is an appropriate tool for network operators to classify devices
on the growing Internet of Things.

VI. DISCUSSION

Denial of Service: using the controller to classify unknown
flows into flows that are relevant or irrelevant for monitoring,
forwarding the first packet of each flow to the controller,
has the potential to make the system susceptible to denial of
service attacks. For example, an attack may use SYN flooding
to overload the controller. While our prototype currently does
not implement any mitigation strategy, SYN flood detection
strategies are well known and can be implemented. Moreover,
a load dependent sampling mechanism for new flows can
be added to avoid controller overload. Note that due to the
use of the PCIe interface, there is ample network bandwidth
between the data plane and the controller, and the controller
is a reasonably powerful system by itself.

Traffic Completeness: Marina assumes that all traffic of
a user session is observed. Thus, performance might degrade
due to multi-path routing in combination with packet by
packet multiplexing, asymmetric routing, or other form of link
aggregation splitting the traffic. Assessing the impact of traffic
(in)completeness is beyond the scope of this paper.

DNS Poisoning and Encrypted DNS: the prototype can
rely on a database of IP addresses to decide which flows to
selectively monitor for a given use case. This database can
be either hard coded or dynamically updated using a mapping
of IP addresses to specific domain names of the application,
which are extracted from unencrypted DNS responses. DNS
poisoning, which may insert irrelevant IP addresses into the
IP database, may negatively impact the monitoring system.
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TABLE II
RELATED ML-DRIVEN MONITORING SYSTEMS. (TC – TRAFFIC CLASSIFICATION, QOE – APPLICATION HEALTH/QUALITY OF EXPERIENCE, ID –
INTRUSION DETECTION, IOT – INTERNET OF THINGS, UCA – USE CASE AGNOSTIC, HW/SW – HARDWARE/SOFTWARE PLATFORM, CA – CODE

AVAILABLE, FE – FEATURE EXTRACTION, ✔ – FULFILLED, ✘ – NOT FULFILLED, (✔) – PARTIALLY FULFILLED, (✘) – UNKNOWN)

In addition, the current implementation does not support
encrypted DNS, such as DNS over HTTPS (DoH) or DNS
over TLS (DoT). Still, the assumption that a network operator
has a way to identify relevant IP addresses seems reasonable,
even if DoH or DoT is used within their network, since most
use cases involve well known services.

Concept Drift: Marina relies on ML models which are
trained on labelled data sets for monitoring purposes. The
challenge is on the availability of such data sets. They need
to be representative and available offline for training, while at
the same time there is a need to detect and handle concept
drift during operation, i.e., long-term changes to the data
distributions over time. Possible examples for such changes are
updates of the application or the end user device, or changes
to network configuration. This may require the collection of
new labeled data sets and re-training of the ML models,
e.g., [87]. We note that this is not a problem specific to Marina,
but a generic problem involving ML models in operational
networks. As such, we did not evaluate the impact of concept
drift in this work.

Hardware Requirements: although the Marina data plane
prototype was implemented on a P4-based Tofino switch, our
design can be ported to any data plane device (programmable
switch, FPGA, or ASICs), which provides line rate forwarding
and arithmetic packet operations. Thus, in contrast to other
approaches, we are not affected by Intel’s recent cut of Tofino
network solutions [88].

VII. RELATED WORK

Traditional Solutions: classical flow-based telemetry
approaches such as NetFlow [1], sFlow [2], or IPFIX [3] only
provide coarse-grained monitoring, as they collect statistics
over the whole flow, unsuitable for real-time applications.
In detail, NetFlow timeouts are configured in seconds,

but practical implementations often do not allow for finer
granularities <30 s [89]. Additionally, they often rely on
sampling techniques, as monitoring the whole traffic at line
rate is impossible, possibly skewing/falsifying the traffic obser-
vations.

Sketch-based Solutions: to gain a more fine-grained insight
into the network, sketching algorithms have been popularized
[29], [30], [31], [90], [91], [92], [93], [94], [95], [96], utilizing
customized data structures, e.g., for DDoS mitigation [97].
Sketches generally depict a trade-off between resource con-
sumption and accuracy [30], may only serve a special purpose,
and are not designed with ML-based traffic analytics in
mind.

In-band Network Telemetry: orthogonal to sketching,
INT [98] and extensions, e.g., Probabilistic INT (PINT) [28]
emerged. Instead of approximations, INT makes use of
piggybacking strategies and dumps meta-data onto the
packets. As this imposes a significant overhead, newer
proposals [99] revert back to using lightweight sketchlets with
INT.

Query-driven Languages: often building on INT and/or
sketches, query-driven languages [19], [20], [33], [100] aim
to provide expressive interfaces to run flexible streaming
queries. However, providing these interfaces often comes with
significant overhead, e.g., Sonata [20] renders short (<3 s) time
slots undesirable due to updates of filter rules.

Software-based Solutions: to realize the above dis-
cussed telemetry systems, either software- or hardware-based
implementations are possible. With Marina, we opt for a
hardware-based solution. Though, several software-based aca-
demic (e.g., Retina [21]), commercial (e.g., Corelight [101]),
or open-source (e.g., Zeek [102], nProbe [103], Tstat [104])
solutions exist. While some of them are capable of monitoring
multi-Gbps traffic, they do not scale to Tbps traffic, and/or
are tailored to a specific use case. Zhang et al. [105] provide
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TABLE III
ML PERFORMANCE OF Marina FOR ENCRYPTED TRAFFIC CLASSIFICATION. HIT RATES FOR TRAFFIC CLASSES

TABLE IV
ML PERFORMANCE OF Marina FOR VIDEO STREAMING APPLICATION HEALTH/QUALITY OF EXPERIENCE MONITORING FROM ENCRYPTED TRAFFIC.
F1 SCORES FOR BINARY STALLING AND RESOLUTION CLASSIFICATION, RMSE AND MAE FOR BIT RATE REGRESSION. *SOTA RESULTS ARE NOT

EXACTLY AS GIVEN IN [12] AS AUTHORS PROVIDED AN EXTENDED DATA SET AND RETRAINED THEIR MODEL TO OBTAIN COMPARABLE RESULTS

an overview of such software-based solutions that operate on
a Gigabit scale, but as mentioned by Sonchack et al. [106]
scaling these solutions to huge networks on a Terabit scale
requires a rack full of servers.

ML-driven Solutions: some monitoring solutions imple-
ment the ML network intelligence paradigm, aiming to deploy
ML models or feature extraction on commodity hardware or
programmable switches. Nevertheless, after a vast review of
related literature (see Table II in Appendix-A for the full
taxonomy), we conclude that existing ML-based solutions are
not ready for deployment, as they have unclear performance,
e.g., in terms of overall latency of the whole ecosystem.
Additionally, related works often only operate on data for a
specific use case, i.e., while some approaches might theoret-
ically be applicable for more than the described use case, it
was not evaluated in the corresponding paper.

VIII. CONCLUSION

We introduced Marina, a system for realizing ML-driven
real-time traffic monitoring in large scale networks. Marina
addresses the challenges of scalability up to terabit scale

while minimizing the monitoring overhead and providing
high flexibility, expressiveness, and accuracy for performance-
and security-related traffic monitoring tasks, even in case
of encrypted traffic. The design of Marina is based on
spreading the monitoring over a highly efficient data plane on
a programmable switch, FPGA, or ASIC, which can extract
monitoring data at line rates, and a powerful ML server,
which can run monitoring inference using diverse ML models.
We link both parts by applying temporal microaggregation
of packets per flow into sub-second time slots. We extract
a stream of sample moments of the packet size and inter-
arrival time distributions. This information is available even
for encrypted traffic and provides a valuable description of the
traffic in each time slot that can be leveraged by ML-based
monitoring models. The time slot duration both defines the
real-time capabilities and the monitoring accuracy of Marina,
and thus, must be kept as short as possible.

We implemented a Marina data plane prototype on a
Barefoot Wedge 100BF-65X P4 switch and made the code
publicly available. As current P4 hardware exhibits several
limitations, we had to utilize a P4 bag of tricks to realize
Marina and to approximate the extracted statistics. The Marina
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TABLE V
ML PERFORMANCE OF Marina FOR INTRUSION DETECTION. HIT RATES FOR ATTACK DETECTION (BOT – BOTNET, FTP-P. – FTP-PATATOR, SSH-P. –

SSH-PATATOR, DDOS – DISTRIBUTED DENIAL OF SERVICE, GE – DOS GOLDENEYE, HULK – DOS HULK, SH – DOS SLOWHTTP, SL - DOS
SLOWLORIS, HEARTB. – HEARTBLEED, INFIL. – INFILTRATION, PORT – PORT SCAN, XSS - CROSS-SITE SCRIPTING,

BF - BRUTE FORCE, SQL – SQL INJECTION)

TABLE VI
ML PERFORMANCE OF Marina FOR IOT DEVICE CLASSIFICATION. MEAN AND PERCENTILES OF THE HIT

RATE DISTRIBUTION FOR THE DETECTION OF 37 IOT DEVICES (CLASSES)

prototype maxes out the data plane resources to monitor up
to 6.4Tbps of traffic in 524,288 concurrent flows. It generates
less than 385Mbps of monitoring traffic, and, in combination
with a powerful ML server, it can achieve a monitoring
granularity and end-to-end delay until obtaining monitoring
results for all flows as low as 500ms.

We validated the analysis capabilities provided by Marina
for four different and challenging ML-driven real-time mon-
itoring applications – encrypted traffic classification, video
streaming application health/Quality of Experience monitoring
from encrypted traffic, intrusion detection, IoT device classi-
fication – with a broad set of ML models. For all investigated
tasks, despite the approximations required due to P4 hardware
limitations, the ML inference results enabled by the Marina
prototype are on a par or better than state-of-the-art results.
We found that random forest models provide a good trade-off
between high monitoring accuracy and fast model inference

speed. However, in an operational deployment, the best ML
models can be selected and optimized depending on the
actual monitoring tasks and the available compute resources,
which can be expected to further improve the monitoring
performance. Considering its monitoring capacity at terabit
scale, this confirms that Marina allows to realize different ML-
driven real-time monitoring tasks in large-scale networks with
high accuracy.

APPENDIX

A. Appendix – Taxonomy of ML-driven Solutions

See Table II.

B. Appendix – ML Benchmark Results

See Tables III–VI.
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[16] D. Cerović, V. Del Piccolo, A. Amamou, K. Haddadou, and G. Pujolle,
“Fast packet processing: A survey,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 4, pp. 3645–3676, 4th Quart., 2018.

[17] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

[18] O. Michel, R. Bifulco, G. Rétvári, and S. Schmid, “The pro-
grammable data plane: Abstractions, architectures, algorithms, and
applications,” ACM Comput. Surv., vol. 54, no. 4, pp. 1–36, 2021.

[19] S. Narayana et al., “Language-directed hardware design for network
performance monitoring,” in Proc. ACM SIGCOMM Conf., 2017,
pp. 85–98.

[20] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network teleme-
try,” in Proc. ACM SIGCOMM Conf., 2018, pp. 357–371.

[21] G. Wan, F. Gong, T. Barbette, and Z. Durumeric, “Retina: Analyzing
100GbE traffic on commodity hardware,” in Proc. ACM SIGCOMM
Conf., 2022, pp. 530–544.

[22] C. Zheng et al., “Automating in-network machine learning,” 2022,
arXiv:2205.08824.

[23] G. Siracusano et al., “Running neural networks on the NIC,” 2020,
arXiv:2009.02353.

[24] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and
L. Vanbever, “pForest: In-network inference with random forests,”
2019, arXiv:1909.05680.

[25] C. Zheng et al., “IIsy: Practical in-network classification,” 2022,
arXiv:2205.08243.

[26] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?:
Toward in-network classification,” in Proc. 18th ACM Workshop Hot
Topics Netw., 2019, pp. 25–33.

[27] V. Sekar, M. K. Reiter, and H. Zhang, “Revisiting the case for a
minimalist approach for network flow monitoring,” in Proc. 10th ACM
SIGCOMM Conf. Internet Meas., 2010, pp. 328–341.

[28] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and
M. Mitzenmacher, “PINT: Probabilistic in-band network teleme-
try,” in Proc. Annu. Conf. ACM Special Interest Group Data Commun.
Appl., Technol., Archit., Protoc. Comput. Commun., 2020, pp. 662–680.

[29] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proc. 10th USENIX Symp. Netw. Syst. Design
Implement., 2013, pp. 29–42.

[30] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. ACM SIGCOMM Conf., 2016, pp. 101–114.

[31] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proc. ACM SIGCOMM Conf., 2018, pp. 561–575.

[32] Y. Zhu et al., “Packet-level telemetry in large datacenter
networks,” in Proc. ACM SIGCOMM Conf., 2015, pp. 479–491.

[33] C. Misa, W. O’Connor, R. Durairajan, R. Rejaie, and W. Willinger,
“Dynamic scheduling of approximate telemetry queries,” in Proc.
19th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2022,
pp. 701–717.

[34] M. Yu, “Network telemetry: Towards a top-down approach,” in Proc.
ACM SIGCOMM Comput. Commun. Rev., vol. 49, no. 1, pp. 11–17,
2019.

[35] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos,
and A. Madeira, “FlowLens: Enabling efficient flow classification for
ML-based network security applications,” in Proc. Netw. Distrib. Syst.
Secur., 2021, pp. 1–18.

[36] J. A. Shohat and J. D. Tamarkin, The Problem of Moments, vol. 1.
Providence, RI, USA: Amer. Math. Soc., 1950.

[37] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of
approximating the frequency moments,” in Proc. 28th Annu. ACM
Symp. Theory Comput., 1996, pp. 20–29.

[38] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune:
An ensemble of autoencoders for online network intrusion detec-
tion,” in Proc. 25th Annu. Netw. Distrib. Syst. Secur. Symp. (NDSS),
2018, pp. 1–15.

[39] F. Musumeci, V. Ionata, F. Paolucci, F. Cugini, and M. Tornatore,
“Machine-learning-assisted DDoS attack detection with P4 lan-
guage,” in Proc. IEEE Int. Conf. Commun. (ICC), 2020, pp. 1–6.

[40] F. Musumeci, A. C. Fidanci, F. Paolucci, F. Cugini, and M. Tornatore,
“Machine-learning-enabled DDoS attacks detection in P4 pro-
grammable networks,” J. Netw. Syst. Manage., vol. 30, no. 1, pp. 1–27,
2022.

[41] M. H. Pathmaperuma, Y. Rahulamathavan, S. Dogan, and
A. M. Kondoz, “Deep learning for encrypted traffic classification and
unknown data detection,” Sensors, vol. 22, no. 19, p. 7643, 2022.

[42] A. J. Pinheiro, J. d. M. Bezerra, C. A. Burgardt, and D. R. Campelo,
“Identifying IoT devices and events based on packet length from
encrypted traffic,” Comput. Commun., vol. 144, pp. 8–17, Aug. 2019.

[43] A. Sivanathan, H. H. Gharakheili, and V. Sivaraman, “Managing
IoT cyber-security using programmable telemetry and machine learn-
ing,” IEEE Trans. Netw. Service Manag., vol. 17, no. 1, pp. 60–74,
Mar. 2020.

[44] N. Wehner, M. Ring, J. Schüler, A. Hotho, T. Hoßfeld, and M. Seufert,
“On learning hierarchical Embeddings from encrypted network traf-
fic,” in Proc. IEEE/IFIP Netw. Oper. Manage. Symp., 2022, pp. 1–7.

[45] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[46] W. Braun and M. Menth, “Software-defined networking using
OpenFlow: Protocols, applications and architectural design
choices,” Future Internet, vol. 6, no. 2, pp. 302–336, 2014.

[47] M. P. Fernandez, “Comparing OpenFlow controller paradigms scala-
bility: Reactive and proactive,” in Proc. IEEE 27th Int. Conf. Adv. Inf.
Netw. Appl. (AINA) 2013, pp. 1009–1016.

[48] B. Isyaku, M. S. M. Zahid, M. Bte Kamat, K. Abu Bakar, and
F. A. Ghaleb, “Software defined networking flow table management
of OpenFlow switches performance and security challenges: A sur-
vey,” Future Internet, vol. 12, no. 9, p. 147, 2020.

[49] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.



2788 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

[50] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better bloom filter,” in Proc. Eur. Symp. Algorithms, 2006,
pp. 456–467.

[51] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, Jun. 2000.

[52] J.-J. Lim and K. G. Shin, “Gradient-ascending routing via footprints
in wireless sensor networks,” in Proc. 26th IEEE Int. Real-Time Syst.
Symp., 2005, p. 10.

[53] I. N. Bermudez, M. Mellia, M. M. Munafo, R. Keralapura, and
A. Nucci, “DNS to the rescue: Discerning content and services in a
tangled web,” in Proc. Internet Meas. Conf., 2012, pp. 413–426.

[54] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy,
J. Nelson, and S. Peter, “Evaluating the power of flexible packet
processing for network resource allocation,” in Proc. 14th USENIX
Symp. Netw. Syst. Design Implement., 2017, pp. 67–82.

[55] L. Yu, J. Sonchack, and V. Liu, “Mantis: Reactive programmable
switches,” in Proc. ACM SIGCOMM Conf., 2020, pp. 296–309.

[56] L. Kleinrock, Queueing Systems, Volume I: Theory. Hoboken, NJ,
USA: Wiley, 1975.

[57] D. P. Heyman and M. J. Sobel, Stochastic Models in Operations
Research: Stochastic Processes and Operating Characteristics. Garden
City, NY, USA: Dover Publ., 2003.

[58] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube
network traffic at a campus network–measurements, models, and
implications,” Comput. Netw., vol. 53, no. 4, pp. 501–514, 2009.

[59] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, no. 85, pp. 2825–2830, 2011. [Online]. Available:
http://jmlr.org/papers/v12/pedregosa11a.html

[60] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna:
A next-generation hyperparameter optimization framework,” in Proc.
25th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2019,
pp. 2623–2631.

[61] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” Soft Comput., vol. 24, no. 3, pp. 1999–2012, 2020.

[62] T. Shapira and Y. Shavitt, “FlowPic: Encrypted internet traffic classifi-
cation is as easy as image recognition,” in Proc. IEEE Conf. Comput.
Commun. Workshops, 2019, pp. 680–687.

[63] G. Xie et al., “Sam: Self-attention based deep learning method for
online traffic classification,” in Proc. Workshop Netw. Meets AI ML,
2020, pp. 14–20.

[64] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and VPN traffic using time-related,”
in Proc. 2nd Int. Conf. Inf. Syst. Security Privacy (ICISSP), 2016,
pp. 407–414.

[65] P. Casas, M. Seufert, and R. Schatz, “YOUQMON: A system for on-
line monitoring of YouTube QoE in operational 3G networks,” ACM
SIGMETRICS Perform. Eval. Rev., vol. 41, no. 2, pp. 44–46, 2013.

[66] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan,
“Prometheus: Toward quality-of-experience estimation for mobile apps
from passive network measurements,” in Proc. 15th Workshop Mobile
Comput. Syst. Appl. (HotMobile), Santa Barbara, CA, USA, 2014,
pp. 1–6.

[67] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “A
machine learning approach to classifying YouTube QoE based on
encrypted network traffic,” Multimedia Tools Appl., vol. 76, no. 21,
pp. 22267–22301, 2017.

[68] Parametric Bitstream-Based Quality Assessment of Progressive
Download and Adaptive Audiovisual Streaming Services Over Reliable
Transport, ITU-Rec. P. 1203, Int. Telecommun. Union, Geneva,
Switzerland, 2017. [Online]. Available: https://www.itu.int/rec/T-REC-
P.1203/en

[69] Video Quality Assessment of Streaming Services Over Reliable
Transport for Resolutions Up to 4K, ITU-Rec. P. 1204, Int.
Telecommun. Union, Geneva, Switzerland, 2020. [Online]. Available:
https://www.itu.int/rec/T-REC-P.1204-202001-P/en

[70] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-
Gia, “A survey on quality of experience of HTTP adaptive streaming,”
IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 469–492, 1st Quart.,
2015.

[71] (Check Point Res., San Carlos, CA, USA). Cyber Security
Report 2022, (2022). Accessed: Feb. 8, 2023. [Online]. Available:
https://www.checkpoint.com/downloads/resources/cyber-security-
report-2022.pdf

[72] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey on
SDN based network intrusion detection system using machine learning

approaches,” Peer-to-Peer Netw. Appl., vol. 12, no. 2, pp. 493–501,
2019.

[73] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: Techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, pp. 1–22, 2019.

[74] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in Proc. IEEE Symp.
Security Privacy, 2010, pp. 305–316.

[75] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo,
“Practical real-time intrusion detection using machine learning
approaches,” Comput. Commun., vol. 34, no. 18, pp. 2227–2235, 2011.

[76] N. Gray, K. Dietz, M. Seufert, and T. Hossfeld, “High performance
network metadata extraction using P4 for ML-based intrusion detection
systems,” in Proc. IEEE 22nd Int. Conf. High Perform. Switch. Rout.
(HPSR), 2021, pp. 1–7.

[77] (Can. Inst. Cybersecur., Fredericton, NB, Canada). Intrusion Detection
Evaluation Dataset (CIC-IDS2017). (2017). Accessed: Feb. 8, 2023.
[Online]. Available: https://www.unb.ca/cic/datasets/ids-2017.html

[78] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in Proc. ICISSp, 2018, pp. 108–116.

[79] G. Engelen, V. Rimmer, and W. Joosen, “Troubleshooting an intrusion
detection dataset: The CICIDS2017 case study,” in Proc. IEEE Security
Privacy Workshops (SPW), 2021, pp. 7–12.

[80] S. Ho, S. Al Jufout, K. Dajani, and M. Mozumdar, “A novel intrusion
detection model for detecting known and innovative cyberattacks using
convolutional neural network,” IEEE Open J. Comput. Soc., vol. 2,
pp. 14–25, Jan. 2021.

[81] C. Kuzniar, M. Neves, V. Gurevich, and I. Haque, “IoT device
fingerprinting on commodity switches,” in Proc. IEEE/IFIP Netw. Oper.
Manag. Symp. (NOMS), 2022, pp. 1–9.

[82] H. Jmila, G. Blanc, M. R. Shahid, and M. Lazrag, “A survey of smart
home IoT device classification using machine learning-based traffic
analysis,” IEEE Access, vol. 10, pp. 97117–97141, 2022.

[83] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “IoT sentinel: Automated device-type identification for
security enforcement in IoT,” in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst. (ICDCS), 2017, pp. 2177–2184.

[84] L. Yu, B. Luo, J. Ma, Z. Zhou, and Q. Liu, “You are what you
broadcast: Identification of mobile and IoT devices from (public) Wi-
Fi,” in Proc. 29th USENIX Secur. Symp. (USENIX Secur.), 2020,
pp. 55–72.

[85] J. Ma, Y. Sang, Y. Zhang, X. Xu, B. Feng, and Y. Zeng, “An adaptive
ensembled neural network-based approach to IoT device identification,”
in Proc. 18th EAI Int. Conf., Collaborat. Comput., Netw., Appl.
Workshar., (CollaborateCom), Hangzhou, China, 2023, pp. 214–230.

[86] S. Dadkhah, H. Mahdikhani, P. K. Danso, A. Zohourian, K. A. Truong,
and A. A. Ghorbani, “Towards the development of a realistic
multidimensional IoT profiling dataset,” in Proc. 19th Annu. Int. Conf.
Privacy, Security Trust (PST), 2022, pp. 1–11.
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