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Abstract 
The problem of generating microstructures of complex materials in silico has been approached from various directions 
including simulation, Markov, deep learning and descriptor-based approaches. This work presents a hybrid method that is 
inspired by all four categories and has interesting scalability properties. A neural cellular automaton is trained to evolve 
microstructures based on local information. Unlike most machine learning-based approaches, it does not directly require a 
data set of reference micrographs, but is trained from statistical microstructure descriptors that can stem from a single refer-
ence. This means that the training cost scales only with the complexity of the structure and associated descriptors. Since the 
size of the reconstructed structures can be set during inference, even extremely large structures can be efficiently generated. 
Similarly, the method is very efficient if many structures are to be reconstructed from the same descriptor for statistical 
evaluations. The method is formulated and discussed in detail by means of various numerical experiments, demonstrating 
its utility and scalability.
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Introduction

The generation and analysis of random heterogeneous 
composite materials is a recently emerging research topic 
that aims at accelerating materials engineering by enabling 
digital workflows such as numerical simulation and inverse 
design [1]. Specifically, microstructure characterization and 
reconstruction allows to (i) generate many microstructure 
realizations from a single example, (ii) explore hypotheti-
cal materials by interpolating between microstructures in 
a morphologically meaningful manner, and (iii) create 3D 
models from 2D observations. A multitude of approaches 
has been developed in the last decades that is summarized 
in different review articles [2–4]. For the purpose of this 
work, the existing approaches can be broadly divided in four 

categories1—simulation, Markov random field, deep learn-
ing and descriptor-based approaches. Naturally, some algo-
rithms in the literature can be identified as hybrid methods 
that fall into two or more of these categories. After discuss-
ing the main ideas of these categories and approaches in 
Sect. 1.1, this work presents an algorithm that bridges all 
four categories and exhibits some very interesting properties 
as described in Sect. 1.2.

Existing Approaches for Microstructure 
Reconstruction

Simulation-based approaches Simulating the microstruc-
ture evolution might be the most direct way. This requires 
to identify and to solve the physical (partial differential) 
equations  (PDEs) that govern the process. An excellent 
overview is given in [2]. As an example, the Cahn–Hilliard 
equation describing phase separation [6] has been studied 
extensively [7–9]. Similarly, for granular structures, given 
a representative set of particles, realistic and dense packing 
can be achieved by simulating gravitational forces [10–12]. 
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As a final, more complex example, grain formation in poly-
crystalline structures has been studied in depth. Simplified 
approaches reduce the description to vertices [13] or grain 
boundaries [14], whereas Monte Carlo methods [15] or cel-
lular automata [16–18] are used to model the evolution of an 
entire 2D pixel field. Recently, neural cellular automata have 
been applied to solidification microstructure modeling [19]. 
Approaches based on the phase field method are probably 
the most developed. Thereby, the evolution of a diffuse indi-
cator function is modeled by an additional differential equa-
tion [20–22] that can be solved, for example, in OpenPhase 
[23]. These approaches are often applied to simulate the 
complex microstructure morphologies that arise in additive 
manufacturing [24–26]. This non-exhaustive list indicates 
that a variety of physical processes are responsible for the 
formation of different material classes. Even if the relevant 
set of physical equations is selected, it can be challenging to 
perform the simulations due to numerical issues or difficul-
ties in parameterizing the underlying constitutive models 
[25, 27]. This motivates the purely image-based approaches 
that are presented in the following.

Markov-based reconstruction As a first purely image-
based method, this subsection discusses a class of recon-
struction algorithms originally developed for computer 
graphics applications which are herein referred to as 
Markov-based approaches. For this purpose, it is worth not-
ing that a microstructure can be modeled as a stationary 
Markov random field if the probability of finding a certain 
phase at a given location does not depend directly on the 
location, but only on the phase distribution in the local 
finite-size neighborhood.

This assumption of locality and stationarity motivates 
reconstruction algorithms that directly rely on this condi-
tional probability to update individual pixels based on their 
neighbor’s values. A very simple implementation inspired 
by texture synthesis [28] might determine individual pixel 
updates by scanning the reference data for the given neigh-
borhood in order to compute a probability [29, 30]. It is 
worth noting that this approach is akin to the multi-point 
statistics method that has been developed in the Geosciences 
literature [31] and has been applied and improved sub-
stantially by Tahmasebi [32–35]. For a better scalability, 
improved algorithms precompute the probabilities for all 
neighborhoods and store them in efficient data structures 
for access during reconstruction [31, 36]. Direct sampling 
methods [37] as well as data structure-based alternatives are 
implemented in MPSLIB [38].

Despite a good local prediction quality, MRF-based 
approaches often fail to accurately reproduce long-range 
correlations. This behavior is related to the neighborhood 
size in the Markovian assumption: Capturing long-range 
correlations requires large neighborhood sizes, which are 
often unfeasible because of a disproportionately increased 

need for training data. Multigrid approaches [35, 39] have 
been shown to alleviate this issue to a certain extent. Fur-
thermore, to condense the information to a compact model 
that is also able to interpolate missing neighborhood patterns 
from similar examples, supervised models have been trained 
to predict a pixel’s phase given its neighborhood. In particu-
lar, decision trees [40] and neural networks [39, 41, 42] have 
been used for 2D and 3D [43] reconstruction. This motivates 
the discussion of purely deep learning-based approaches in 
the following subsection.

Deep learning-based reconstruction In deep learning-
based methods, a generative model is fitted or trained on 
a sufficiently large data set of microstructures and is then 
used to sample new realizations of the same structure. 
Autoencoders [42, 44, 45] and generative adversarial net-
works (GANs) are typical examples that have been applied 
to MCR [46, 47]. For the latter, the merits of modifications 
like conditional GANs [48, 49], StyleGAN [50], and gradi-
ent penalty [51] have also been discussed in the context of 
microstructure generation. Applications to steels [52] and 
earth materials [53] show high image quality. Although 
GANs usually operate on 2D data, 3D-to-3D reconstruc-
tion can be achieved by using 3D convolutions [54, 55]. For 
reconstructing 3D data from 2D examples, a 3D generator 
has been combined with a 2D discriminator [56, 57]. As an 
alternative, the third dimension can be regarded as time by 
combining the GAN with a recurrent neural network [58]. 
To harness the advantage of both, autoencoders and GANs, 
they are sometimes combined by using the decoder simul-
taneously as a generator. This has proven advantageous for 
2D-to-3D reconstruction [59–61] and for extremely small 
data sets [62].

As an alternative, machine learning methods like Bayes-
ian approaches [63] and attention-based models [64–66] are 
equally applicable. Diffusion models, which have recently 
replaced GANs as state-of-the-art in general-purpose image 
generation, have also been applied to microstructure recon-
struction [67, 68] and optimization [69, 70].

Much research is focused on identifying suitable model 
types and adapting them to microstructure reconstruction 
by enabling 2D-to-3D reconstruction [57, 61] making them 
applicable to small data sets [62] or ensuring that certain 
descriptor requirements are met [71, 72]. A major challenge 
lies in defining models with high accuracy that at the same 
time do not require large data sets to be trained on. These 
challenges motivate training-free models such as descriptor-
based reconstruction, as presented in the next subsection.

Descriptor-based reconstruction The central idea behind 
descriptor-based reconstruction methods is to statistically 
quantify the microstructure morphology by means of 
descriptors like volume fractions and spatial n-point cor-
relations [73]. Reconstructing a microstructure from a given 
set of descriptors can then be formulated as an optimization 
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problem directly in the space of possible microstructures. 
Here, the desired microstructure descriptors can be com-
puted from a single microstructure example, making these 
methods very data-efficient.

One of the most well-known descriptor-based reconstruc-
tion methods is the Yeong–Torquato algorithm [73], which 
iteratively swaps individual pixels in the microstructure to 
solve the optimization problem. A detailed discussion is 
given in [74, 75]. This enables high flexibility, as descrip-
tors can be replaced by new alternatives [76, 77] or higher-
fidelity versions of the same descriptor [78, 79]. However, 
even with computationally inexpensive descriptors, the 
Yeong–Torquato algorithm becomes computationally chal-
lenging at high resolutions and in 3D, where billions of itera-
tions are sometimes required for convergence [80]. A com-
mon solution is to use a multigrid scheme [81–85]. Further 
ideas include different-phase neighbor sampling rules [86], 
efficient descriptor updates [80, 87] and optimized direc-
tional weighing of correlation functions [78]. More informa-
tion is given in [3].

As an alternative to the pixel-based Yeong–Torquato 
algorithm, the optimization problem can be formulated in a 
much lower-dimensional space. For this purpose, the micro-
structure is approximated by geometric objects that can be 
described by a few parameters, e.g., ellipsoidal inclusions 
[88–90] or Voronoi or Laguerre cells [91–93].

Independently from the microstructure representation 
[90], differentiable descriptors allow solving the optimiza-
tion problem using a gradient-based optimizer. This idea is 
formulated as differentiable microstructure characterization 
and reconstruction (DMCR) [94, 95] and several approaches 
can be identified as special cases [71, 96, 97].

The Yeong–Torquato algorithm and improved versions 
of it, such as DMCR, have been successfully validated and 
applied to alloys and anisotropic metamaterials [85] sand-
stone [98], rock [99], chalk [100], various soils [101] and 
more. Some versions are publicly available in the open-
source MCRpy package [102].

While descriptor-based approaches are very accurate and 
data-efficient since no training data set is required, they are 
computationally intensive. More specifically, since the opti-
mization is directly carried out in the microstructure space, 
the memory and computational requirements grow quickly 
as the microstructure size increases, especially in 3D.

Hybrid reconstruction approaches The specific and 
unique advantages and disadvantages of all four categories 
of MCR approaches motivate hybrid methods that fall into 
multiple of these categories. Naturally, there is no sharp 
boundary between Markov-based and deep learning meth-
ods if a machine learning model like a neural network is 
used to predict individual pixels based on their neighbor-
hood as in [39–43]. Furthermore, simulation by discre-
tized (partial) differential equations and cellular automata 

resemble Markov-based methods in their locality, but are 
derived from physical principles and sometimes incorpo-
rate various physical quantities (e.g., temperature) beyond 
phase indicator functions. At the boundary between machine 
learning and descriptor-based methods, multiple sequential 
approaches use Gaussian random field-based methods [103] 
to initialize simulated annealing2 [100, 104] and diffusion 
models [72]. Furthermore, the volume fractions [49, 58, 72, 
105, 106], histograms [107] and Gram matrices [10, 108] 
are sometimes added to the loss function of deep learning-
based methods as microstructure descriptors. DRAGen [109] 
combines an automaton-like growth process with a nuclea-
tion point optimization based on classical descriptors and 
allows to use machine learning models for generating input 
data. At the interface between machine learning and physical 
simulation, autoencoders [110] and diffusion models [12] 
have been used as particle generators followed by a gravity 
simulation for aggregate structures. Besides that, the litera-
ture comprises a large number of physics-informed neural 
network approaches that are not discussed herein.

Objectives and Contribution of this Work

This work presents a hybrid approach that is inspired by 
all these categories. Like in a simulation-based approach, 
a partial differential equation models the temporal evolu-
tion of the microstructure. It is, however, not derived from 
physics but learned by a neural network. Similar to the 
Markov-based methods, this network operates based on 
local information and is therefore called neural cellular 
automaton (NCA). This constraint of locality is relaxed not 
by increasing the neighborhood beyond a one pixel distance, 
but by introducing further hidden channels to the micro-
structure function that the NCA can use to encode relevant 
information. Finally, unlike common machine learning or 
Markov-based approaches, the NCA is not trained directly 
on image data or on a set of neighborhoods, but on a sta-
tistical descriptor. This requires the NCA to be retrained 
whenever the statistical descriptor changes, however, it 
reduces the amount of required data to a bare minimum. 
The input image only needs to enable the computation of a 
statistical descriptor; hence the NCA is applicable whenever 
classical training-free approaches like the Yeong–Torquato 
algorithm and DMCR can be used. Furthermore, the size 
of the training data is independent of the image size dur-
ing training, which is again independent from the size of 
the reconstructed structure. Hence, microstructures of mas-
sive resolutions or numbers can be reconstructed with very 
limited additional computational effort. Furthermore, due to 

2  This is technically a hybrid method between two descriptor-based 
approaches.



275Integrating Materials and Manufacturing Innovation (2024) 13:272–287	

the nature of NCA, the algorithm is inherently distributed, 
parallel and robust with respect to perturbations.

In summary, the central idea lies in modeling the differ-
ential equation governing the structure evolution by training 
neural cellular automata (NCA) on statistical descriptors. 
A detailed formulation is given in Sect. 2 and validated by 
various numerical experiments in Sect. 3. A conclusion is 
drawn in Sect. 4.

Neural Cellular Automata 
for Descriptor‑Based Microstructure 
Reconstruction

Based on the work of Mordvintsev et al. [111], the formu-
lation of general neural cellular automata (NCA) is sum-
marized in Sect. 2.1. The main idea of the present work to 
train NCA by arbitrary descriptors is described in Sect. 2.2. 
Finally, the implementation is discussed in Sect. 2.3.

Formulation of Neural Cellular Automata

The general idea behind a cellular automaton is to iteratively 
update individual pixels based on the direct neighbors. In the 
work of Mordvintsev et al. [111], this information source 
is further restricted. The neighboring pixel values are not 
passed directly to the cellular automaton. Instead, they are 
used to compute a discrete approximation to the gradient and 
curvature, which are then passed to the cellular automaton. 
Denoting x ∈ D as a position vector in the microstructure 
domain D ⊂ ℝ

2 and t ∈ T = {t ∈ ℝ | 0 ≤ t ≤ tend} as time, 
the evolution of the microstructure m(x, t) can be written as 
a partial differential equation

where f
�
 is the cellular automaton which maps the value, 

gradient and curvature of the microstructure function to its 
temporal derivative. To be more specific, ∇x(⋅) and ∇2

x
(⋅) 

denote the gradient and Laplace operator, respectively. Fur-
thermore, m takes real values within the arbitrarily chosen 
bounds

A promising extension to multi-phase materials might be 
to declare m as a vector-valued function, where each entry 
represents the indicator function of a distinct phase. In this 
context, the mutually exclusive nature of phase indicator 
functions should be considered, for example by a penalty 
factor. In a neural cellular automaton specifically, a neural 
network is chosen as f

�
 in Eq. 1, where � denotes the param-

eter vector.

(1)
�m(x, t)

�t
= f

�

(
m(x, t),∇

x
m(x, t),∇2

x
m(x, t)

)
,

(2)0 ≤ m(x, t) ≤ 1 ∀ x ∈ D, t ∈ T .

In other words, the NCA defines partial differential equa-
tion (PDE),3 that needs to be discretized and solved in order 
to generate a microstructure. An explicit Euler scheme is 
chosen as a time stepping scheme

where the current solution at time step nt defines the update 
for the next time step nt + 1 . The dependence on x and t 
is dropped for the sake of brevity. The space is naturally 
discretized on an equidistant grid of pixel values, where 
∇x(⋅) and ∇2

x
(⋅) are approximated by a Sobel and Laplace 

filter, respectively. Based on this discretization, the relation 
between the current solution, its spatial derivatives and its 
temporal evolution, i.e., the PDE itself, is learned by the 
NCA.

Given the inability of Markov-based approaches with 
small neighborhood sizes to accurately capture long-range 
correlations, it should be clear that the extremely limited 
local information is not sufficient to train a good NCA. For 
this reason, the augmented microstructure function m�(x, t) 
is introduced which maps a spatial position x at time  t 
to an n-dimensional vector. The first entry of the vector 
contains the normal microstructure function m(x, t) and is 
the only entry that affects the training. The idea behind 
the other entries is that the NCA can choose to allocate 
any quantity that is useful for passing information and 
increasing the image quality. As an example, for an equi-
axed grain microstructure, one channel might contain the 
distance to the next grain boundary. With this, the tempo-
ral evolution reads

For reconstructing a microstructure from the trained 
NCA, m�(x, 0) is initialized by zeros and the system evolves 
freely. Although the learned automaton itself is determin-
istic, the random choice of pixels to update in each itera-
tion makes the output stochastic. Hence, the trained NCA 
can be used for efficiently generating many realizations of a 
random heterogeneous medium that are different but statisti-
cally equivalent.

Training the Model from Microstructure Descriptors

The function  f
�
 is learned by a small neural network 

with two layers as shown in Fig. 1: First, an initial solu-
tion m�(x, 0) = 0 ∀ x is chosen. Secondly, m�(x, t) devel-
ops according to Eq. 4 for a randomly chosen number of 

(3)
mnt+1

− mnt

Δt
= f

�

(
mnt

,∇
x
mnt

,∇2

x
mnt

)
,

(4)
�m�(x, t)

�t
= f

�

(
m

�(x, t),∇
x
m

�(x, t),∇2

x
m

�(x, t)
)

3  To be precise, the NCA defines a PDE system as explained later in 
the document.
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time steps. As a regularization and as a measure to break 
symmetry, asynchronous updates are chosen, whereby in 
every time step, a given percentage of cells is chosen at 
random and only those develop. This fraction is referred 
to as fire rate. The bounds given in Eq. 2 are enforced by 
clipping. Thirdly, a loss function L is computed on the final 
result mend = m(x, tend) . The choice of L is discussed later. 
Note that only mend , i.e., the first component of m′end , con-
tributes to L . Finally, the gradient �L∕�� of the loss func-
tion with respect to the NCA parameters is computed by 
conventional backpropagation and used to update � . Note 
that this limits the number of timesteps during training for 
numerical reasons.

The formulation of the loss function depends on the area 
of application of the NCA. After initially using a pixel-wise 
Euclidean norm error in the RGB space for general-purpose 
image generation [111], Mordvintsev et al. [112] found that 
a Gram matrix-based style loss [113] enable NCAs to be 
applied to texture synthesis [112].

The novelty in the present work lies in realizing that any 
of the known statistical descriptors can be used, as long as 
they can be differentiated with respect to the microstructure 
field. This concept is discussed extensively in [94] and sum-
marized in the following. In practice, the statistical descrip-
tors are mere functions that take the pixel representation of 
the discretized structure as input. Hence, first and foremost, 
the descriptors need to be defined for any pixel values within 

the allowed bounds in Eq. 2. This stands in contrast to the 
Yeong–Torquato algorithm, where the microstructure func-
tion takes one and only one phase ID as value at each pixel. 
Moreover, the descriptor functions must be continuous to 
imply differentiability. To achieve this, sharp thresholds in 
a descriptor definition may need to be replaced by a smooth 
transition for defining a differentiable approximation. 
Finally, the descriptors should be sensitive to changes in 
the microstructure function. This requirement is needed for 
deriving microstructure updates from descriptor gradients. 
Concretely, it means that the gradient of the descriptor with 
respect to the microstructure parametrization should not only 
exist, but also be nonzero as often as possible.

The loss is thus formulated as a mean-squared 
error (MSE) in the descriptor space

where D denotes a statistical descriptor or a weighted con-
catenation of multiple descriptors that is computed on the 
reconstruction result, while Ddes denotes the desired value 
computed from the reference structure. Because mend results 
from the temporal evolution of  f

�
 , it depends on the param-

eter vector � of the NCA. The central idea is training the 
NCA by gradient-based optimization of � to minimize Eq. 5, 
whereby arbitrary descriptors can be incorporated. While 
the Gram matrices used in [112] can be interpreted as a 

(5)L = ‖D(mend) − D
des‖MSE ,

Fig. 1   Training procedure for a neural cellular automaton (NCA): In 
every iteration i, random pixel locations are chosen where the gradi-
ent and curvature is computed numerically. Together with the pixel 
value, these quantities are given to the NCA to predict a pixel update. 

After some time increments, the result is compared to the reference to 
train the NCA. This comparison is only carried out in terms of statis-
tical descriptors
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statistical descriptor, the spatial two- and three-point cor-
relations are more common in microstructure reconstruc-
tion. The idea of using high-dimensional, differentiable 
descriptors for direct microstructure reconstruction is given 
in [94], where an efficient and differentiable formulation of 
the three-point correlations is given. As another example, 
a differentiable approximation to lineal path function is 
presented in [102] and a descriptor based on a hierarchical 
wavelet transform is given in [114]. All these descriptors are 
implemented in MCRpy [102].

Implementation

The implementation of a descriptor-based NCA for micro-
structure reconstruction is carried out based on the code for 
NCA texture synthesis [112] and the differentiable descrip-
tors available in MCRpy [102]. The former code is adapted 
to only a single non-hidden dimension m(x) as opposed to 
three RGB channels. Then, MCRpy is used to define a loss, 
where different descriptors such as Gram Matrices G [71], 
correlations S [74], variation V [95] and volume fraction � 
can be combined and weighed in a single loss function in 
a flexible manner. More information on these descriptors 
is given in [102]. MCRpy makes use of the automatic dif-
ferentiation in TensorFlow to compute the gradient �L∕�m . 
Then, m is backpropagated through time to compute �m∕�� 
and consequently �L∕��.

Finally, a hyperparameter study is carried out on a num-
ber of structures. A 12-dimensional microstructure represen-
tation (i.e., 11 hidden channels) is chosen. Hence, the NCA 
has 12 output and 48 input dimensions. With a single hidden 
layer of 120 neurons, the network amounts to a total of 7332 
parameters. Further hyperparameters like the number of time 
steps are summarized in Table 1.

In order to visually compare the results of descriptor-
based NCA with other methods from the literature, three 
open-source codes are selected from GitHub. To represent 
Markov-based methods, a patch-based texture synthesis4 
algorithm based on [115, 116] and a pixel-based, multi-
resolution texture synthesis5 algorithm based on [117, 118] 
are chosen. Furthermore, MCRpy [102] implements differ-
entiable microstructure characterization and reconstruction 
(DMCR) [94, 95]. While MCRpy is provided by previous 
works of the authors, the former two methods are coded and 
provided by Anastasia Opara. The authors greatly acknowl-
edge this effort and appreciate the will to share software.

Numerical Experiments

The microstructure evolution and the range of applicability 
are investigated in Sect. 3.1. These results are then com-
pared to the literature in Sect. 3.2. Finally, the scalability 
of descriptor-based NCA is demonstrated in Sect. 3.3. All 
numerical experiments are carried out on a laptop with a 
12 th Gen Intel(R) Core(TM) i7-12800 H CPU at 2.40 GHz 
and an Nvidia A2000 GPU with 4 GB VRAM.

Microstructure Evolution and Diversity

Figure 2 shows reconstructions from different real materials 
taken from [71]. The reconstructed structures are not thres-
holded or post-processed in any other way, but the trained 
NCA itself drives the solution to an almost binary structure. 
It can be seen that descriptor-based NCA are applicable to a 
wide variety of fundamentally different structures, ranging 
from relatively noise-free examples like the grain bound-
ary structure and the ceramics to the more noisy sandstone. 
Some limitations can also be seen. As a first limitation, 
although the grain boundary character in the alloy is cap-
tured relatively well, not all lines are connected as in the ref-
erence case. In order to use the results for downstream tasks 
like numerical simulations, a post-processing algorithm is 
first needed to close the gaps or eliminate unnecessary line 
segments. Alternatively, it might be worth investigating if 

Table 1   Hyperparameters chosen in the present work

Therein, the fire rate denotes the fraction of randomly chosen pixels 
to update in each iteration. The descriptors are weighed before com-
bining them to a loss function to compensate for the small numerical 
value of the variation. The weights are given in the same order as the 
corresponding descriptors. For the remaining parameters, the reader 
is referred to the work by Mordvintsev et al. [112].1This technique is 
outlined in [112] and aims to prevent the structures from decaying for 
long simulation times

Parameter Value

Hidden layer size 120
Non-hidden channels 1
Hidden channels 11
Activation function ReLU
Fire rate 0.5
Batch size 4
Checkpointing1 pool size 1024
Learning rate 2 ⋅ 10

−3

Rollout length probability U(32, 64)

Gradient normalization True
Overflow loss coeff 10

4

Descriptors S,G,V

Descriptor weights 1, 1, 100

4  https://​github.​com/​anopa​ra/​textu​re-​synth​esis-​nonpa​ramet​ric-​sampl​
ing.
5  https://​github.​com/​anopa​ra/​multi-​resol​ution-​textu​re-​synth​esis.

https://github.com/anopara/texture-synthesis-nonparametric-sampling
https://github.com/anopara/texture-synthesis-nonparametric-sampling
https://doi.org/https://github.com/anopara/multi-resolution-texture-synthesis
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a different choice of descriptor can be used in order to bet-
ter quantify the connectivity information. Although this 
approach is arguably more elegant, its difficulty lies in the 
requirement that the descriptor should be differentiable with 
respect to the microstructure. As a second limitation, it can 
be seen that the fingerprint-like structure of the copolymer 
is not adequately represented. Although the NCA success-
fully creates individual sub-regions with parallel lines, these 
regions are not sufficiently large and the lines do not exhibit 
smooth curves as in the reference. It is presently unclear 
to the authors how this issue can be addressed. As a third 
limitation, it is noted that the probability distribution of pixel 
values does not exactly match the original structures. Espe-
cially in the carbonate and PMMA, it can be seen that the 
white phase is reconstructed in bright gray color. Similar to 
the first limitation, the authors assume that a post-process-
ing algorithm or a suitable descriptor should be sufficient to 
address this issue.

To provide a better understanding of the generation 
method, the temporal evolution of the microstructure as well 
as the first four hidden dimensions is plotted in Fig. 3. All 
fields are initialized by zero (black) and the structure slowly 
emerges. Different hidden channels take different roles in 
representing structural features. For example, the first hidden 

channel (second row) might be interpreted as a local verti-
cal coordinate in each grain. In contrast, the fourth hidden 
channel (last row) contains a thickened version of the gain 
boundaries. Interestingly, the third hidden channel (second 
to last row) can be interpreted in different ways. It might 
be used as a type of residuum, since its norm decreases as 
the reconstruction converges. As an alternative, it might 
act as a marker for specific features like triple junctions. 
It can be concluded that different channels take different 
roles, although a direct interpretation is neither possible, 
nor necessary.

It is demonstrated in the works of Mordvintsev et al. 
[111, 112] that the NCA-based generation process is often 
robust with respect to perturbations. To test whether this 
trend is transferred to descriptor-based NCA for micro-
structure reconstruction, two numerical experiments are 
carried out. After the generation process has converged 
a good solution, the structure is perturbed by setting all 
values within a circular radius to 0.5. This is applied to all 
channels in Fig. 4 and only to the non-hidden dimension 
in Fig. 5. It can be seen that the structure only recovers in 
the latter case. Besides stressing the key role of the hid-
den channels, this indicates that the robustness of NCA 

(a) Alloy (b) Carbonate (c) Ceramics

(d) Copolymer (e) PMMA (f) Sandstone

Fig. 2   Reconstructions from various real materials. No thresholding or any other type of post-processing is applied. The original samples are 
given in the top left corner and are taken from [71], where they are released under the Creative Commons license [119]
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is only partially observed in descriptor-based NCA for 
microstructure reconstruction.

Comparison to Literature

In order to compare descriptor-based NCA recon-
struction results to the literature, two Markov- and one 

descriptor-based approach is chosen.6 Figure 6 shows the 
results, where only three material classes are selected for 

(a) � 0 (b) � 30 (c) � 60 (d) � 90 (e) � 300

Fig. 3   The evolution of the alloy microstructure over time  t. The first channel is plotted in the top row and the first four hidden channels are 
given below. It can be seen that each hidden channel acts as a distinct feature map

6  The authors were not able to apply deep learning-based algorithms, 
since only a single reference sample is available. Similarly, simula-
tion-based approaches are omitted because they require a detailed 
analysis and modeling of the materials’ underlying physics that 
exceeds the scope of this work.
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the sake of brevity. At a first glance, all methods produce 
high-quality results. Patch-based texture synthesis, how-
ever, does not produce new structural features, but cop-
ies paths from the original structure to different locations 
in the target image. The patch boundaries can be distin-
guished upon closer inspection. As a pixel-based approach, 
multi-resolution texture synthesis does not suffer from this 
phenomenon. However, especially in the alloy, strange 
features like completely vertical grain boundaries can be 
observed and the structure coincidentally repeats itself 
in the top right corner. Furthermore, the highly complex 
fingerprint-like copolymer structure is not captured ade-
quately. Finally, DMCR as a descriptor-based method7 

produces good results for all considered materials. While 
the alloy and ceramics are similarly well reconstructed as 
with the descriptor-based NCA, DMCR produces visually 
superior results for the copolymer. It can be concluded that 
the result quality of NCA outperforms standard Markov-
based techniques and almost reaches that of direct descrip-
tor-based optimization. The advantage, with respect to the 
latter lies in the performance and scalability as discussed 
in the following.

Performance and Scalability

An objective assessment of the reconstruction results in 
terms of microstructure descriptors is paramount to evalu-
ating the accuracy of any reconstruction algorithm. In this 
context, it should be mentioned that the presented method 
is only partially descriptor-based since the descriptors are 

Fig. 4   The role of the hidden channels is illustrated by perturbing the 
microstructure evolution at time t = t� . All pixel values within a given 
radius are set to 0.5. In the presented case, all channels are perturbed, 

whereas in Fig. 5, the hidden channels remain intact. Only the micro-
structure (top) and the first hidden channel (bottom) are plotted for 
brevity. Unlike in Fig. 5, the structure does not recover

Fig. 5   The role of the hidden channels is illustrated by perturbing 
the microstructure evolution at time t = t� . All pixel values within a 
given radius are set to 0.5. In the presented case, the hidden channels 
remain intact, whereas in Fig. 4, all channels are perturbed. Only the 

microstructure (top) and the first hidden channel (bottom) are plotted 
for brevity. Unlike in Fig. 4, the structure recovers, albeit to a differ-
ent solution

7  The Yeong–Torquato algorithm can be expected to yield equally 
good or even better results, however, at a significantly higher compu-
tational cost.
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used during training, but not during sampling. For this rea-
son, independent realizations of the material exhibit ran-
dom deviations from the target descriptor. Naturally, these 
fluctuations are expected to decrease as the microstructure 
size increases.

This is shown in Fig. 7, where the error

between a descriptor D(mend) and its desired value Ddes from 
the reference structure is defined as a mean-squared error 
(MSE). Note that the only difference between ED and the 
loss L defined in Eq. 5 is that the former measures individual 
descriptors, whereas the latter is based on a weighted con-
catenation of multiple descriptors. For all tested descriptors, 
the error converges to a value which is consistently lower 
for the proposed loss model than for the reference NCA-
based texture synthesis method by Mordvintsev et al. [112]. 
It should be noted that the descriptor errors do not converge 
to zero as the resolution increases, but rather to a value that 
depends on the training quality. It is observed that longer 

(6)ED = ‖D(mend) − D
des‖MSE

training and training by larger samples reduces this value 
(not shown here).

An interesting aspect of NCA is that the image sizes dur-
ing training and sampling are independent. This is favorable 
because the sampling is relatively inexpensive and scales 
favorably with the image size compared to other methods. 
To demonstrate this, Fig. 8 shows a reconstruction example 
where the resolution is chosen such that the sampling takes 
as long as the training.8 Three different zoom levels of the 
same structure are shown for visualization purposes. With-
out any multigrid procedures, such large reconstructions are 
very challenging with classical descriptor-based methods.

Generally, the computational cost of sampling a micro-
structure scales linearly in the number of pixels, because 

(a) Reference (b) NCA (c) PBTS (d) MRTS (e) DMCR

Fig. 6   Comparison of three selected materials reconstructions with 
methods from the literature. Patch-based texture synthesis (PBTS) 
and multi-resolution texture synthesis are Markov-based approaches, 
while differentiable microstructure characterization and reconstruc-

tion (DMCR) is descriptor-based. The reconstructed structures are 
two times larger than the reference in each direction. More informa-
tion is given in Sect. 2.3

8  Because the utilized VRAM is not sufficient for the large recon-
struction, it is conducted on the CPU only, whereas the training 
occurs on the GPU. If a similar comparison was made on identi-
cal hardware, significantly larger structures could be reconstructed. 
Regardless, in the authors’ opinion, the presented results demonstrate 
the scalability sufficiently well.
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pixel updates are computed independently by the NCA. A 
comparison with the 2D DMCR algorithm [94] in MCRpy 
[102] is given in Fig. 9. Both methods scale linearly. Sam-
pling from a trained NCA is much faster than reconstructing 
by DMCR, and the computational cost grows more slowly. 
This is because the expensive evaluation of microstructure 
descriptors and iterative optimization are moved to the train-
ing stage. If the training is added to the computational cost 

of the NCA, they are slower for the considered microstruc-
ture sizes. As a conclusion, the expensive training phase of 
an NCA is compensated if large or many microstructures 
are reconstructed. Particularly, the latter might speed up a 
potential future extension for 2D-to-3D reconstruction. Fur-
thermore, unlike with DMCR [94, 95], the sampling can 
be trivially parallelized because updates are based only on 
local information.

(a) Alloy (b) Carbonate (c) Ceramics (d) Copolymer (e) PMMA (f) Sandstone

Fig. 7   Influence of the loss function on the descriptor errors. The vol-
ume fractions � (top), spatial correlations S (middle) and Gram matri-
ces  G (bottom) are compared for different materials (left to right) 
with 25 realizations per resolution. The resolutions are powers of two 
and an offset to the left (reference) and right (proposed) is applied 
only for visualization purposes. If can be seen that regardless of the 

model, material and descriptor, the variance of the descriptor error 
over different realizations decreases as the sample size increases. 
The proposed model consistently outperforms the reference [112]. 
For some structures like the ally (a), the reference model fails to con-
verge, leading to massive discrepancies, whereas for the ceramics (c) 
the differences are relatively small
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Conclusion

A neural cellular automaton (NCA)-based algorithm for 
microstructure reconstruction is presented. The micro-
structure evolution is modeled as a partial differential 
equation which is learned by a small neural network, the 
NCA. Despite the purely local information in the NCA, 
long-range correlations are incorporated by introducing 
hidden dimensions to the microstructure function which 
can be used to communicate information. Unlike with 
previous approaches, this network is not trained on image 
data but on statistical microstructure descriptors. Thus, 
the method incorporates ideas from four different families 
of microstructure generation approaches, namely simula-
tion, Markov, deep learning and descriptor-based methods, 
which are all briefly reviewed. The method is formulated, 
implemented and validated by a number of 2D numerical 
experiments.

Compared to other microstructure reconstruction 
approaches, descriptor-based NCAs have a unique set 

of advantages. The neural network in the NCA enables 
the evolution of highly complex morphologies in a PDE-
like manner without knowledge of the governing physi-
cal equations and the material parameters. It can be con-
trolled by statistical descriptors. However, the sampling 
of structures from a trained NCA is based only on local 
information. This self-assembling nature of the algorithm 
makes it an inherently distributed algorithm and therefore 
trivial to parallelize. The random selection of the pixels to 
be updated makes the method robust with respect to ran-
dom perturbations, as long as not all channels are affected. 
Finally, the method scales very favorably as arbitrarily 
resolved structures can be sampled.

In future work, the main challenge lies in enabling 3D 
reconstruction based on 2D or 3D reference data. The dif-
ficulty therein lies in the memory and computational cost 
of the training procedure. Specifically, the backpropagation 
through all time steps is a bottleneck that is manageable in 
2D, but becomes unfeasible in 3D on current hardware. As 
an alternative, algorithms might be developed that apply 
a trained 2D NCA to sections of a 3D structure. Finally, 
applications to polycrystalline structures motivate an exten-
sion of the NCA to orientation information. Besides intro-
ducing a vector-valued microstructure function in analogy 
to the discussed multi-phase extension, this requires the 
definition of adequate statistical descriptors. To be spe-
cific, the descriptors need to be symmetrized as given by 
the crystal structure and differentiable, even across the 
boundaries of the fundamental zone. Once developed, these 
descriptors also enable extensions of optimization-based 
microstructure reconstruction algorithms like DMCR.
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