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Abstract

Artificial intelligence (AI) for facial diagnostics is increasingly used in the genetics clinic to

evaluate patients with potential genetic conditions. Current approaches focus on one type of

AI called Deep Learning (DL). While DL- based facial diagnostic platforms have a high accu-

racy rate for many conditions, less is understood about how this technology assesses and

classifies (categorizes) images, and how this compares to humans. To compare human and

computer attention, we performed eye-tracking analyses of geneticist clinicians (n = 22) and

non-clinicians (n = 22) who viewed images of people with 10 different genetic conditions, as

well as images of unaffected individuals. We calculated the Intersection-over-Union (IoU)

and Kullback–Leibler divergence (KL) to compare the visual attentions of the two participant

groups, and then the clinician group against the saliency maps of our deep learning classi-

fier. We found that human visual attention differs greatly from DL model’s saliency results.

Averaging over all the test images, IoU and KL metric for the successful (accurate) clinician

visual attentions versus the saliency maps were 0.15 and 11.15, respectively. Individuals

also tend to have a specific pattern of image inspection, and clinicians demonstrate different

visual attention patterns than non-clinicians (IoU and KL of clinicians versus non-clinicians

were 0.47 and 2.73, respectively). This study shows that humans (at different levels of

expertise) and a computer vision model examine images differently. Understanding these

differences can improve the design and use of AI tools, and lead to more meaningful interac-

tions between clinicians and AI technologies.
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Author summary

Artificial intelligence (AI) is increasingly used in medicine. In clinical practice, medical

geneticists often use AI tools to help them examine the facial features of a patient who

might have a genetic condition. While these tools are very popular, less is understood

about how they work, and which parts of the face are most important to the AI tools, espe-

cially compared to medical geneticists. To address this, we performed a study where medi-

cal geneticists (as well as non-clinicians) looked at pictures of people with and without

genetic conditions. We used eye-tracking tools to visualize which parts of the images the

medical geneticists preferentially looked at. We compared this to the parts of the image

that were the most important to the AI tools. We found that the medical geneticists and

the AI tools tended to pay attention to very different features. We also found that medical

geneticists and non-clinicians look at different parts of the images. Understanding how AI

tools examine images compared to clinicians can help ensure the tools function properly,

and could also help perform tasks like alerting medical geneticists to important clinical

findings that could otherwise be overlooked.

Introduction

Deep learning (DL), one subtype of artificial intelligence (AI), is extensively and increasingly

employed in many biomedical areas. For example, generative language models show promise

for analysis of medical records and related data [1]. For genomic data, DL methods been used

for protein modeling and variant classification [2,3]. In medical genetics, clinicians and

researchers often employ DL-based approaches to generate differential diagnoses based on

facial images of individuals with possible genetic conditions [4,5].

Despite controversies and unsettled questions, healthcare is poised for major near-term

changes as AI is implemented into workflows [1]. One crucial issue involves understanding

how AI tools perform and how “choices” made by AI compare with those made by humans,

including people with different levels of expertise [6–8]. For example, generative language

models may sometimes present coherent but incorrect or inconsistent information [9]. As

another example, an analysis of DL to assess chest X-rays for signs of COVID-19 showed that

classifiers can be highly accurate compared to humans but may rely heavily on confounding

information, such as radiographic clues outside of the lung fields [10]. Interestingly, though

DL analysis of facial images has been a major application in medical genetics, relatively little

work has been done to compare how clinicians view images compared to DL models [11].

To further explore this topic, we used an eye-tracking device to measure human visual

attention when inspecting images of individuals with and without genetic conditions. Clini-

cians in our research group first selected images of several relatively common and recognizable

genetic conditions, which were then viewed by other genetic medical experts as well as non-cli-

nicians. We further trained a DL classifier to predict the ground-truth labels of these images

and computed the corresponding saliency map for each image. Saliency maps allow the visuali-

zation of which parts of an image are important to the model when “deciding” how to classify

an image.

First, we examined how well the visual attention maps of genetic medical experts (termed

“clinicians” here) align with the classifier saliency maps. Second, we compared the visual activ-

ity of clinicians and non-clinicians. The comparison metrics for the visual maps are Intersec-

tion-over-Union (IoU) and Kullback–Leibler divergence (KL). IoU binarizes the visual maps

and measures the amount of overlap between two heat maps, whereas KL treats the heat maps
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as continuous probability distributions and calculates the divergence between these two distri-

butions. For both metrics, we found that saliency maps differ substantially from regions of

human attention and that clinicians and non-clinicians assess images differently.

Results

Data collection

In this paper, we selected 10 images for the eye-tracking experiments, one for each of the fol-

lowing conditions: 22q11.2 deletion syndrome (22q11DS, OMIM #188400), Beckwith-Wiede-

mann syndrome (BWS, OMIM #130650), Cornelia de Lange syndrome (CdLS, OMIM

#122470), Down Syndrome (DS, OMIM #190685), Kabuki syndrome (KS, OMIM #147920),

Noonan syndrome (NS, OMIM #163950), Prader-Willi syndrome (PWS, OMIM #176270),

Rubinstein-Taybi syndrome (RSTS1, OMIM #180849), Wolf-Hirschhorn syndrome (WHS,

OMIM #194190), and Williams syndrome (WS, OMIM #194050). Next, six additional images

of unaffected individuals selected to represent images of similarly aged individuals with similar

photographic poses were also chosen as the control group (see more details in Materials and

Methods and references for image sources in S1 Text). In summary, there are 16 images to be

tested in our eye-tracking experiment.

Human participant performance

We divided the human participants into two main groups: 22 clinicians (15 from NIH and

seven from Bonn) and 22 non-clinicians. Table 1 compares the accuracy of the two groups at

Table 1. Summary of results for each image viewed. For a specific image, we count the number of clinicians and non-clinicians who correctly and incorrectly identified

that this image is of an affected or unaffected individual. Column Identified condition name indicates the number of clinicians and non-clinicians who correctly identified

the specific condition. As eye-tracking results for seven individual images had to be discarded for technical reasons, not every image has a complete data from 22 clinicians

and 22 non-clinicians. The images are listed in the order shown to the participants.

Clinicians Non-clinicians

Correct Incorrect Identified

condition name

Correct Incorrect Identified

condition name

WS 17 5 4 13 9 3

Unaffected 22 19 3

RSTS1 21 3 21 1

Unaffected 19 3 14 8

WHS 20 2 19 3

Unaffected 22 20 2

CdLS 22 10 22 5

DS 22 18 21 1 1

Unaffected 15 6 15 6

KS 19 3 11 13 9 2

NS 21 9 21

Unaffected 18 4 18 4

22q11DS 21 1 3 19 3

PWS 16 5 10 12

Unaffected 14 8 19 3

BWS 8 13 1 5 17

abbreviations: BWS: Beckwith-Wiedemann syndrome; CdLS: Cornelia de Lange syndrome; DS: Down Syndrome; KS: Kabuki syndrome; NS: Noonan syndrome; PWS:

Prader-Willi syndrome; RSTS1: Rubinstein-Taybi syndrome; WHS: Wolf-Hirschhorn syndrome; WS: Williams syndrome

https://doi.org/10.1371/journal.pgen.1011168.t001
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identifying whether an image shows a person affected or unaffected with a genetic condition.

Overall, the clinician group was more accurate than the non-clinician group at recognizing

whether an image showed an affected person (correct identification was 85.6% for clinicians

versus 76.9% for non-clinicians, p = 0.0032 by Chi-square). In further responding to a question

about what specific genetic condition the image might depict, non-clinicians were, unsurpris-

ingly, usually unable to identify the disease names. However, some non-clinicians are familiar

with specific conditions based on their work, such as involvement in genetic research.

For the rest of the analysis, we divide all the participants into four subgroups: clinicians and

non-clinicians who correctly or incorrectly identified that an image represents a person with a

genetic condition. We use the terms successful and underperforming clinicians and non-clini-
cians to refer to these subgroups, respectively. For two different test images, the same partici-

pant may fail to recognize the disorders in just one of these images. Hence, for two different

images, the groups of successful clinicians (and likewise non-clinicians) may not have the

same participants.

To understand the average visual behavior of a specific participant group (e.g., successful

clinician group), we computed the average heat map for each test image over all the partici-

pants within the group (see Fig 1 and the Materials and Methods section for further details

about our data preprocessing approach). Two noise-threshold levels were applied, where a

pixel value below the threshold is set to 0. The lower noise-threshold removes spurious visual

signals. The higher noise-threshold removes a large proportion of the signal; thus, we would

analyze only facial regions with the highest visual attention (Figs 2 and S1–S10).

Deep learning classifier performance

Since datasets and/or source codes of widely clinically used DL approaches in medical genetics

cannot be easily shared (e.g., for the tool available via Face2Gene, https://www.face2gene.com/

), we trained our own image classifier in this paper. Our model was trained to predict (identify)

11 different labels (10 diseases and one unaffected group). When considering unaffected and

affected as the only two label choices, our classifier achieves 100% accuracy. Related to the

model’s identification of specific conditions, our classifier correctly labeled 13 out of the 16

test images with the specific genetic condition that person has; averaging over these 13 images,

the prediction probability of the ground truth label is 0.7853. The three misclassified affected

images are CdLS, PWS, and RSTS1. For these three images, the predicted probabilities of the

Fig 1. Example image illustrating the preprocessing step of visual heat maps for subsequent analyses. (a) Original

image of an individual with Down syndrome (DS). (b) For this DS image, conditioned on the group of successful

clinicians, we average the default attention heat maps from the eye-tracking experiments. (c) We removed the

common visual signals (See S27 Fig). (d) Finally, we smooth the image with cv2.boxFilter and increase the color

intensity. Here, compared to (b), in (d) we can better observe the high visual interest for a larger orbital region (not just

the center of the eyes), as well as attention to the ears, which, though barely visible in this image, can be notable

features on physical examination for this condition. The image is freely available for reuse without restriction, courtesy:

National Human Genome Research Institute (www.genome.gov).

https://doi.org/10.1371/journal.pgen.1011168.g001
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ground truth label and incorrect label were: CdLS (0.3196 vs 0.3285 misclassified as NS), PWS

(0.3383 vs 0.4690 misclassified as WS), and RSTS1 (0.0005 vs 0.7976 misclassified as NS).

Because the classification accuracy of RSTS1 is low, we excluded this image in the saliency

map analysis in the next section (S11 Fig contains the analysis for all the affected images). See

more details in the Materials and Methods section below and S1 Text).

Evaluating human visual attention versus saliency map

For a specific input image, one can extract the corresponding saliency map from an image clas-

sifier (see details in the Materials and Methods section, including under the Classifier and
saliency maps heading). This saliency map indicates the regions of the image that the model

deems to be relevant for the prediction of the ground truth label. Our goal is to observe (1)

which regions of an image affect the prediction probability of the ground-truth label and (2)

how well these regions align with the areas most viewed by human clinicians. Hence, the

saliency maps were made with respect to the ground-truth labels, whether or not the model

correctly identifies these ground-truths.

For the analyses, we treat the saliency maps as if they were heat maps. We note the following

key observation. Human visual heat maps produced via the Tobii eye-tracking software are

partially binarized; that is, most of the visual map is blank (i.e., zero pixel value), with only cer-

tain key areas showing a color gradient (i.e., positive pixel value) to indicate key visual activity.

We applied the occlusion saliency method to compute the positive contribution of every patch

of pixels of an image toward the prediction of its ground-truth label. Hence, an occlusion

saliency map typically contains a larger number of positive pixels than the human visual heat

map. Highly unequal numbers of positive pixels between two inputs can lead to unreliable IoU

and/or KL metrics. Hence, we applied a coverage-threshold to the saliency map, where pixel

value below the coverage-threshold is set to 0 and the remaining number of nonzero pixels is

equal to that of the human visual map (Fig 2).

Fig 2. Application of noise-thresholds to human heat maps and coverage-thresholds to model saliency maps. Eye

gaze heat maps are shown for the 22q11DS image used in our experiment. The left-most column shows the original

average heat maps for the successful clinicians and non-clinicians. Low noise-threshold removes possibly spurious

visual interests, and then the higher noise-threshold better indicates facial regions with the most prominent visual

attentions. Two coverage-thresholds were applied to the model saliency map of this image; the objective is to match the

number of positive pixels in the saliency maps with respect to the clinician visual attentions at the low and high-noise

thresholds, respectively. Pixels below the coverage-threshold were set to zero, and the remaining number of positive

pixels are approximately equal to that of the corresponding human visual map. The image is freely available for reuse

without restriction, courtesy: National Human Genome Research Institute (www.genome.gov).

https://doi.org/10.1371/journal.pgen.1011168.g002
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For a specific test image of an affected individual, we computed the IoU score and KL diver-

gence between the saliency map and the average heat map of the successful clinician group at

both low and high noise-thresholds. At each noise-threshold of the human visual attention, we

used grid-search to find the corresponding coverage-threshold for the saliency map, so that

the number of nonzero pixels in the saliency map is approximately equal to that of the human

visual attention. To compute IoU, pixel values above zero were converted into 1; and to com-

pute KL, the pixel values were rescaled into a proper probability distribution. More details are

explained in the Materials and Methods, with results shown in Fig 3 (see also S12 Fig).

Fig 3 shows the IoU and KL metrics averaged over the 9 affected images (excluding RSTS1

for reason mentioned above). We observed significant differences between human visual

attention and what a DL classifier considers important. For example, the average IoU metric

between successful clinicians versus the saliency map were 0.15 and 0.10 at low and high

noise-threshold, respectively. This IoU metric is much less than the metric comparing our cli-

nicians and non-clinician groups (see below). In other words, human heat maps show that our

participants tended to look at very different regions than the classifier per the models we exam-

ined. The KL metric also indicates the same trend, where we observe a high KL value, indicat-

ing a large difference between human visual interest and model saliency maps.

Comparing groups of human participants

We also compared the successful clinicians and non-clinicians for each of the 16 test images, and

then summarized the visual attention differences over all these images. Here, we do not apply a

coverage-threshold because heat maps of two participant groups may naturally have very different

coverages. For example, it is entirely possible that, compared to the experts, non-clinicians’ visual

activities are more dispersed since they may not recognize the signs of the genetic conditions. In

Figs 2 and S1–S10, qualitatively speaking, the visual attentions of these clinicians and non-clini-

cians are more similar at a lower noise-threshold, where only spurious visual signals were

removed, and later become more different at a higher noise-threshold, where only regions with

high visual interests were retained. (Note that figures in S1–S10 and S13–S23 Figs are shown as

segmented versions of the original images due to journal policies regarding resharing of publicly

available images; sources of the original images are provided in the S1 Text file. Segmentation for

the visualization was performed via previously published methods. [12]). Thus, as shown in Figs 2

and S1–S10, although these clinicians and non-clinicians correctly recognize affected versus unaf-

fected individuals, visually speaking, on average these two participant groups do not appear to dis-

play the same trend when assessing the images.

Fig 3. IoU and KL metric comparing the visual attention of successful clinicians and model saliency maps over 9

test disease. A low and high noise-threshold were applied to the clinician heat maps, removing spurious and retaining

only highest visual activity, respectively (see Fig 2). At each noise-threshold of a particular human visual map, an

independent coverage-threshold was applied to the corresponding model saliency map. This coverage-threshold

ensures that a saliency map has equal number of positive pixels as its corresponding human visual map. At both noise-

thresholds, IoU and KL are close to and far from zero, respectively, indicating that quantitatively there are differences

between human and model heat maps.

https://doi.org/10.1371/journal.pgen.1011168.g003
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Fig 4 numerically compares the visual interests of successful clinicians versus successful

non-clinicians. Here, the result aligns with our qualitative inspection in Fig 2. When excluding

low spurious signals with a low noise-threshold, these two subgroups show similar eye-gaze

interests (IoU = 0.47, and KL = 2.73). However, these two subgroups become more different

when considering only the highest visual attention (IoU dropped to 0.34, and KL increased to

4.93). A similar trend is observed when we analyzed on just the set of affected and unaffected

images (S12 Fig).

We further compare the successful and underperforming clinician group. Fig 5 shows that,

on average, these two subgroups of clinicians do not have similar visual interests. The same

trend is seen when stratifying the non-clinicians according to their accuracy. Conditioned

only on participants who misclassified the images, Fig 5 also shows visual attention differences

between clinicians and non-clinicians. Hence, when participants misclassify images, they have

distinct ways of inspecting the images that do not appear to be similarly influenced by some

common confounders in the images (e.g., hairstyles, facial expressions, or earrings that could

affect a participant’s decision). Overall, there seems to be more similar visual attention when a

participant (whether a clinician or not) can correctly identify that a person is affected by a

genetic condition; for example, the IoU values in Fig 4 are higher than those in Fig 5.

We also examined aggregated heat maps produced by each of the clinicians and non-clini-

cians and evaluated whether there were different visual patterns when the same participant

examined affected or unaffected images. As shown in Figs S24–S26 show that participants had

different patterns (ways) of assessing images.

Finally, we examined the AOIs that corresponded to specific dysmorphic features in the

images of affected individuals (S14–S23 Figs). As each test image has more than one AOI that

may be important to the underlying conditions, metrics like duration-of-fixation and time-to-

first-whole-fixation for any single AOI can have high standard deviations, making it difficult

to observe statistical significance. Overall, we did not detect a specific pattern for these AOIs

that differentiated the categories of participants.

Discussion

In clinically oriented analyses, the performance of DL and other AI models have traditionally

been compared to that of human experts, such as evaluating how well DL models versus

humans recognize the presence of metastatic cancer from lymph node sections or assess chest

X-rays from inpatient and urgent care settings [13,14]. There has overall been less attention to

Fig 4. Comparison of visual heat maps of successful (correct) human participants at different noise-threshold

levels. IoU and KL metric compare the visual heat maps of successful clinicians versus successful non-clinicians. When

removing only low spurious signal (“threshold low”), the two groups display more similar visual interests. However,

when considering only regions with high visual interests (“threshold high”), the two groups differ more drastically

(average IoU drops from 0.47 to 0.34, and average KL increases from 2.73 to 4.93). The images are listed in the order in

which images were shown to the participants.

https://doi.org/10.1371/journal.pgen.1011168.g004

PLOS GENETICS Human and computer attention assessing genetic conditions

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011168 February 27, 2024 7 / 20

https://doi.org/10.1371/journal.pgen.1011168.g004
https://doi.org/10.1371/journal.pgen.1011168


comparing the processes of computers and humans when performing tasks. One reason for

this involves the fact that, when DL classifiers emerged, they were not originally designed, nor

were there available saliency approaches, to enable easy visual explanation of their processes.

More recently, saliency methods were developed independently of the DL classifiers, and have

been explored in a variety of biomedical contexts, including related to multiple types of radio-

logic studies (e.g., computed tomography, magnetic resonance imaging, retinal imaging, and

X-rays), electrocardiograms, and in a variety of pathology analyses [15]. These studies primar-

ily focused on comparing saliency results to the portions of biomedical images that had been

annotated to contain the most clinically relevant data, such as specific cell types in pathology

images, but paid less attention to the overall process [16]. This overall process may be impor-

tant to consider to investigate questions like pertinent positives and negatives, as well as to

search for potential confounders.

Against this background, our study has two key results. First, human and computer atten-

tion differs substantially when evaluating images of individuals with potential genetic condi-

tions. This does not mean that one is superior to the other, but these types of analyses and

metrics may be helpful in future studies. For example, methods to compare human and com-

puter attention can be used to explore potential confounders in AI-based analyses, or to

develop methods that improve the accuracy or applicability of AI tools. As AI is increasingly

adopted in clinical scenarios, such studies will be critical to assess model performance. For

generalizability, such future studies would need to be much larger, both in terms of the num-

ber of participants and the number of images and genetic conditions included.

Fig 5. Additional comparisons of human participants. Images are sorted based on the IoU (top row) and KL

(bottom row), which compare the heat maps between different groups of participants. A low noise-threshold was

applied to remove spurious visual activity from the average heat map of each group. These three comparisons show

lower similarity scores than that of successful clinicians versus successful non-clinicians (IoU = 0.47, and KL = 2.73 in

Fig 4). Clinicians tend to show more similar visual interests for WS, PWS, BWS, and unaffected images (left column).

This trend is not seen for non-clinicians (middle column).

https://doi.org/10.1371/journal.pgen.1011168.g005
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Second, clinicians and non-clinicians exhibit different gaze behaviors when assessing

images. This is not surprising, but quantifying these behaviors using methods like these may

be helpful for activities such as ascertaining which phenotypic characteristics may be diagnos-

tically important but which are frequently overlooked. Again, as AI support enters more and

more clinical areas, these types of analyses may point to specific ways to augment the relation-

ship between clinicians and AI tools. For example, data from extremely high-performing clini-

cians in human/classifier comparison experiments may be useful to design the education of

less experienced clinicians or trainees, as well as AI tools [17].

This study has several limitations. These include the number of participants and images

viewed. The images also represent heterogeneous genetic conditions, and eye-tracking behav-

ior may be affected by certain aspects of a particular image. While we grouped clinicians and

non-clinicians into separate categories, there is varying experience and expertise within these

groups, and differences in behavior between individuals. Additionally, our analyses focused on

metrics like human visual attention, which may not reflect what is most important to a person

evaluating an image. For example, an expert clinician may immediately perceive a key visual

clue to a diagnosis and may then move on to spend more time observing less obvious features

or searching the image for subtle clues.

From the DL perspective, we do not claim that our model is highly accurate or represents the

best possible option–our aim was to compare what a DL model weights when analyzing images

to what a human looks at, and we intentionally chose images with a range of performance on

our DL classifier, as well as images that we subjectively felt would have a range of difficulty for

human participants. Along these lines, saliency map analyses were not performed with respect

to the correct and incorrect predicted label, separately. Rather, the DL saliency map analyses

were performed with respect to the ground-truth labels, whether or not the ground-truths are

the model’s correct prediction. The only requirement was that our model’s predicted probabili-

ties for these ground-truths needed to be larger than zero. Otherwise, the saliency map may not

be reliable when the model fails to make any prediction for this ground-truth label [15]. In this

current study, the chosen images each have a set of key condition-specific features unique to

that specific condition, and each condition is relatively distinct from each other. In future stud-

ies, we plan to select a larger number of conditions that have more shared syndromic features

among several different conditions (e.g., many different conditions that all involve facial find-

ings like hypertelorism or upslanted palpebral fissures), which would let us better understand

and compare the behavior of the model and humans, such as when they both incorrectly classify

an image. Overall, while our results show interesting trends, due to small number of test images,

caution should be taken that they will generalize to other or all genetic conditions, to larger

groups of individuals, or to other DL models or AI-based approaches.

As mentioned above, the results here point to multiple future possibilities, including involv-

ing larger numbers of participants and datasets to analyze further how well the results can be

extrapolated. Related eye-tracking experiments could be used to explore multiple questions

germane to genetics, such as with different data types (e.g., radiological studies or other physi-

cal examination features) encountered in clinical practice. Additional work could be done spe-

cifically quantifying different classifiers and saliency methods.

Materials and methods

Ethics statement

This study was approved as IRB exempt by the IRBs of the National Institutes of Health (NIH)

(Bethesda, Maryland, United States) and the University of Bonn (Bonn, Germany). NIH study

ID: 000846; Bonn study ID: 210/23-EP. All participants were adults (the images viewed were of
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previously published pediatric individuals); formal consent was not required, with subjects

agreeing to participate by taking part in the study.

Data collection

Similar to our previous methods [18,19], we selected publicly available images of individuals

between 2 and 18 years of age affected by one of 10 genetic conditions (for reference, we pro-

vide the first OMIM #ID for conditions with multiple OMIM # IDs): 22q11.2 deletion syn-

drome (22q11DS, OMIM #188400), Beckwith-Wiedemann syndrome (BWS, OMIM

#130650), Cornelia de Lange syndrome (CdLS, OMIM #122470), Down Syndrome (DS,

OMIM #190685), Kabuki syndrome (KS, OMIM #147920), Noonan syndrome (NS, OMIM

#163950), Prader-Willi syndrome (PWS, OMIM #176270), Rubinstein-Taybi syndrome

(RSTS1, OMIM #180849), Wolf-Hirschhorn syndrome (WHS, OMIM #194190), and Williams

syndrome (WS, OMIM #194050), as well as images of unaffected individuals similar in age

and ancestral diversity to the affected individuals. The genetic conditions were chosen as they

represent relatively common genetic conditions that involve recognizable craniofacial features,

and with which geneticists would be expected to be at least somewhat familiar [20]. Two genet-

icists (BDS, CTN) and a genetic counselor (RLW) on the study team selected the images to

represent typical images representing the chosen conditions; images of some conditions were

felt to be more difficult to recognize than others. Sixteen images (one image for each of the

above conditions, and six images of unaffected individuals) were selected for the eye-tracking

experiments. The selected images were at least 720-pixel resolution; they were each standardly

cropped, centered, and aligned (e.g., the eyes, nose, and mouth were roughly repositioned at

the same coordinates for all images See S1 Text for image sources; due to journal image shar-

ing policies, images in S1–S10 and S13–S23 Figs are shown as segmented versions of the

images used in the eye-tracking experiments [12].

Eye tracking experiments

The formatted images were embedded in a screen-based eye-tracking system (Tobii Pro X3-

120, Tobii Lab Pro version 1.194.41215; https://www.tobii.com/, Stockholm Sweden). This sys-

tem uses infrared light to detect pupillary movement, which allows the analysis of gaze activity,

such as how long they look at different parts of each image. Eye-tracking experiments took

place in two locations: the National Institutes of Health (NIH) (Bethesda, Maryland, United

States) and the University of Bonn (Bonn, Germany).

After calibration, each participant viewed the 16 images for seven seconds per image, and

answered questions about each image, including whether the image showed a person affected

by a genetic condition, and, if so, what condition the person had. After extensive initial testing,

we chose seven seconds for the viewing time, as subjective feedback and preliminary assess-

ments showed that this amount of time was sufficient to assess an image but minimized visu-

ally revisiting areas of the image in a way that might not further inform the assessment. To

minimize head movement or distractions, questions were asked verbally during the eye-track-

ing portions of the experiment. Responses were documented manually by a study team

member.

The NIH cohort included 17 individuals, including physician geneticists (n = 14) and physi-

cians in genetics subspecialty training (n = 3). The Bonn cohort included 29 total individuals,

including physician geneticists (n = 2) and physicians in genetics subspecialty training (n = 5),

as well as 22 non-clinicians. Some of the non-clinicians in our cohort have some experience

through their work in recognizing genetic conditions. For example, some are graduate
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students who study applications of AI in genetics, and thus are familiar with genetic condi-

tions, but are not trained clinicians.

Data extraction and analysis

We extracted eye-tracking data for analysis in two main ways. First, we extracted individual

heat maps for each participant and image (these heat maps show the relative amount of time

each participant looked at different parts of each image). We used the default Tobii software

settings, but with two changes to enable our analyses: a) we changed the output eye-tracking

radius to 25 pixels, as our preliminary analyses showed that the default 50 pixel radius was

insufficiently precise for comparisons; b) we used a more homogeneous color scheme for the

heat maps (with the following hexadecimal color codes: high: #943126, medium: #B03A2E,

low: #CB4335), which enabled our quantitative analyses to take into account all captured heat

map data, including to compare eye-tracking data with classifier saliency maps.

Second, to enable additional analyses that took into account gaze trajectory behavior to ana-

lyze the timing of participant gaze [21], a dysmorphologist (BDS) manually drew areas-of-

interest (AOIs) for each image (see S14–S23 Figs). The AOI set included only those features

that were listed as having dysmorphic manifestations based on the clinical synopses in OMIM

(https://www.omim.org/) and which were also present in the images. For example, if a condi-

tion were listed in the clinical synopsis section of OMIM as having a dysmorphic manifestation

affecting the eyebrows and that manifestation was present in the image of a person with that

condition used in the survey, an AOI was drawn around the eyebrows. Using the Tobii soft-

ware, we extracted tabular data for analysis based on these defined AOIs.

Prior to analysis, we manually reviewed results and excluded heat maps where eye-tracking

data was not recorded (this occurred for all results for one NIH participant, which may have

been due to ophthalmologic issues like severe myopia, and seven total other isolated eye-track-

ing results for unclear reasons).

We observed that standard heat maps primarily showed that the areas around the eyes,

nose, and mouth are the regions with the highest attention. These common visual attentions

(S27 Fig), which likely reflect standard human behavior, make it difficult to quantitatively

compare the visual activity differences between groups unless accounted for. To mitigate this

issue, we computed the average heat map for all the clinicians and non-clinicians (separately)

over all of the images. We then subtracted this common average gaze pattern (separately for

clinicians and non-clinicians) from each heat map. This does not cause us to ignore these

areas of common facial attention in our analyses but helps account for typical human behavior

when viewing faces. Fig 1 explains our data preprocessing approach.

In our analyses of the images, we focused on four subgroups: clinicians and non-clinicians

who correctly or incorrectly identified that an image represents a person with a genetic condi-

tion. One interest is whether the untrained intuition of a non-clinician aligns with clinician

behavior. In the later sections of our analyses, we use the terms successful and underperforming
clinicians and non-clinicians to refer to the clinicians and non-clinicians who correctly and

incorrectly recognize the presence of a genetic disease for a given test image, respectively. For

two different test images, the same participant may fail to recognize the disorders in both

images. Hence, for two different images, the groups of successful clinicians (and likewise non-

clinicians) may not have the same participants.

To understand the general behavior of a specific participant group (e.g., successful clinician

group), after accounting for the areas of common visual attention, we computed the average

heat map for each test image over all the participants. Two different thresholds were applied to

remove noise from the heat maps, where pixel values below this threshold are set to 0. The
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first, lower noise-threshold is meant to remove spurious visual activities. The second, higher

threshold removes a large proportion of the signal; here, we would analyze only facial regions

with the highest visual attention. At each noise-threshold, to compare the average heat maps

(of two participant groups or against the model), we applied two different metrics: Intersec-

tion-over-Union (IoU), and Kullback–Leibler divergence (KL).

Previous work applied IoU to benchmark human annotations against DL model saliency

maps for chest X-ray images [15]. IoU is symmetric, ranges between 0 and 1, and is intuitive;

that is, when similarity is high, then there is more overlap between two heat maps. We note

that IoU requires the pixel values to be binarized (e.g., 0 or 1). Here, at each noise-threshold,

nonzero pixels (i.e., pixels higher than the noise-threshold) are set as 1 when computing IoU.

This binarization may result in the loss of intensity within both human visual heat maps and

model saliency maps. Thus, we applied a second metric. Our second metric (KL) does not

binarize the pixel values. Instead, KL treats the heat maps as two-dimensional probability dis-

tributions and calculates the divergence between these two distributions [22]. Unlike IoU, KL

is not symmetric and ranges from 0 to infinity. We opted for the symmetric implementation

of KL; that is, we take the average KL (x,y) and KL (y,x) for two inputs x and y. Suppose we

want to compare the average visual attention of a clinician group against a model saliency

map, then the two inputs x and y are the average human heat map and the model saliency

map, respectively. A KL value far from 0 implies that human visual map and model saliency

map are very different.

Standard deviation for the observed IoU (and likewise for KL divergence) was computed

via bootstrapping. Finally, we applied random effects meta-analysis (we refer to this as “RE

Model” in Figs 3, 4, 5, S11, S12, and S26) to summarize the behavioral differences over many

images between the two groups of participants (e.g., successful clinicians versus successful

non-clinicians).

Classifier and saliency maps

Separate from the training and validation set, our test set includes the 16 images used in eye-

tracking experiments and 2–4 additional images for several selected conditions. With the

remaining images in the dataset (not containing any test images), we applied 5-fold cross vali-

dation to train 5 different models. For each iteration of the 5-fold cross validation, we fine-

tuned EfficientNet-B4 pre-trained on ImageNet with respect to the other 4 folds and validate it

on the left-out fold. EfficientNet-B4 was chosen because relatively it is one of the models

requiring a relatively low number of parameters while still obtaining high accuracy on Ima-

geNet [23]. Each image was resized to 448 x 448 pixels, and cross-entropy loss with equal

weights for the diseases was used. Grid-search was performed to find a single set of hyperpara-

meters that works best on average over all the 5-folds. We found the following hyperpara-

meters to work best: batch size 64, dropout rate 0.2, and learning rate 0.00003 for Adam

optimizer [24]. Training scripts are provided in the GitHub links (see Data and code availabil-

ity section). Table A in S1 Text shows the top-k accuracy (acc@k) on the validation set.

After training 5 models from 5-fold cross validation, we built an ensemble classifier by aver-

aging the predictions of these models for a test image. Table B in S1 Text shows the model

performance for the images used in eye-tracking experiments (Table C in S1 Text shows per-

formance on additional selected test images). Again, we aimed to compare which portions of

an image were important to a DL classifier versus human eye-tracking attention, and different

models would be expected to return different results; limitations for our classifier are that [1]

our model misclassifies some images and [2] even when the predictions are correct, the pre-

dicted probabilities for the ground-truth labels may not be close to 1.
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The occlusion saliency method with box size 20 x 20 pixels and stride 10 x 10 was used to

produce the saliency maps [25]. The intuition is to remove a 20 x 20 pixel box from the image

(e.g., set the pixel values within this box to 0) and then measure how much the prediction accu-

racy drops. This approach allows us to identify key regions affecting the classifier output. For

example, if an image region is truly unimportant, then we should not see a change in the classi-

fier output (e.g., the saliency map would have zero values for this region). Conversely, if an

image region contains important syndromic features related to a certain genetic condition,

then removing this region would decrease the prediction probability of this condition. In this

case, the image region is considered to be positively contributing toward the prediction of the

genetic condition (e.g., the saliency map would have nonzero values for this region).

We note that, our goal is to observe: (1) which regions of an image affect the prediction

probability of the ground-truth label; (2) how these regions differ from those areas viewed

most by human clinicians. Hence, we did not conduct the saliency analyses on the correct pre-

dictions and then on the incorrect predictions, separately. Rather, the saliency analyses were

performed with respect to the ground-truth labels regardless of whether or not the model cor-

rectly identifies these ground-truths.

A saliency map for each test image with respect to its ground-truth label was taken as the

average of the saliency maps from each of the models from 5-fold cross validation. As men-

tioned, for a specific test image, this ground-truth label may or may not be the model’s correct

prediction. We only require that the model’s predicted probability of this ground-truth to not

be very close to zero; otherwise, the saliency map may not be reliable when the model fails to

make any prediction for the ground-truth [15]. When comparing to a human visual heat map,

we applied a coverage-threshold to the saliency map. Pixel values below this coverage-thresh-

old are set to zero; grid-search was used to find the best coverage-threshold where the remain-

ing number of non-zero pixels is roughly equal to that of the human visual heat map. This

coverage-threshold ensures that the human visual heat map and model saliency map are con-

tributing equal numbers of “active” pixels toward the computation of the IoU and KL metrics;

otherwise, these metrics can be unreliable.

We observed that, for human visual attentions at the low noise-threshold, the number of

nonzero pixels takes up about 6–8% of the face region for all the test images. Hence, for each

saliency map, the coverage-threshold was set to have 7% of the face region to be nonzero pix-

els. At a high noise-threshold for the human visual attentions, 3–4% of the face region were

nonzero pixels, and thus the coverage-threshold for each saliency map was set to have 3.5% of

the face region to be nonzero pixels.

We acknowledge that there are other models besides EfficientNet-B4 that have been studied

in the context of genetic and other congenital diseases [4,5]. Moreover, there are other saliency

approaches besides the occlusion method. This paper’s combination of EfficientNet-B4 and

the occlusion method seems to return reasonable results. In future studies, we plan to evaluate

other types of image classifiers and saliency approaches.

Supporting information

S1 Fig. (a) Eye gaze heat map of the participants overlayed on a segmented version of the orig-

inal 22q11DS image (see S1 Text for original image sources). The leftmost image is the average

heat map of the successful clinicians (top) and non-clinicians (bottom). We apply two different

noise-thresholds: a low threshold to remove possibly spurious visual interests (middle), and

then a high threshold that more clearly indicates facial regions with high visual attentions

(right). (b) Saliency maps of image with key regions that affect the classifier accuracy. We

apply a low (left) and high coverage-threshold (right) on the saliency maps so that the area
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covered is approximately the same as the low and high noise-threshold, respectively.

(TIF)

S2 Fig. (a) Eye gaze heat map of the participants overlayed on a segmented version of the orig-

inal BWS image (see S1 Text for original image sources). The leftmost image is the average

heat map of the successful clinicians (top) and non-clinicians (bottom). We apply two different

noise-thresholds: a low threshold to remove possibly spurious visual interests (middle), and

then a high threshold that more clearly indicates facial regions with high visual attentions

(right). (b) Saliency maps of image with key regions that affect the classifier accuracy. We

apply a low (left) and high coverage-threshold (right) on the saliency maps so that the area cov-

ered is approximately the same as the low and high noise-threshold, respectively.

(TIF)

S3 Fig. (a) Eye gaze heat map of the participants overlayed on a segmented version of the orig-

inal CdLS image (see S1 Text for original image sources). The leftmost image is the average

heat map of the successful clinicians (top) and non-clinicians (bottom). We apply two different

noise-thresholds: a low threshold to remove possibly spurious visual interests (middle), and

then a high threshold that more clearly indicates facial regions with high visual attentions

(right). (b) Saliency maps of image with key regions that affect the classifier accuracy. We

apply a low (left) and high coverage-threshold (right) on the saliency maps so that the area cov-

ered is approximately the same as the low and high noise-threshold, respectively.

(TIF)

S4 Fig. (a) Eye gaze heat map of the participants overlayed on a segmented version of the orig-

inal DS image (see S1 Text for original image sources). The leftmost image is the average heat

map of the successful clinicians (top) and non-clinicians (bottom). We apply two different

noise-thresholds: a low threshold to remove possibly spurious visual interests (middle), and

then a high threshold that more clearly indicates facial regions with high visual attentions

(right). (b) Saliency maps of image with key regions that affect the classifier accuracy. We

apply a low (left) and high coverage-threshold (right) on the saliency maps so that the area cov-

ered is approximately the same as the low and high noise-threshold, respectively.

(TIF)

S5 Fig. (a) Eye gaze heat map of the participants overlayed on a segmented version of the orig-

inal KS image (see S1 Text for original image sources). The leftmost image is the average heat

map of the successful clinicians (top) and non-clinicians (bottom). We apply two different

noise-thresholds: a low threshold to remove possibly spurious visual interests (middle), and

then a high threshold that more clearly indicates facial regions with high visual attentions

(right). (b) Saliency maps of image with key regions that affect the classifier accuracy. We

apply a low (left) and high coverage-threshold (right) on the saliency maps so that the area cov-

ered is approximately the same as the low and high noise-threshold, respectively.

(TIF)

S6 Fig. (a) Eye gaze heat map of the participants overlayed on a segmented version of the orig-

inal NS image (see S1 Text for original image sources). The leftmost image is the average heat

map of the successful clinicians (top) and non-clinicians (bottom). We apply two different

noise-thresholds: a low threshold to remove possibly spurious visual interests (middle), and

then a high threshold that more clearly indicates facial regions with high visual attentions

(right). (b) Saliency maps of image with key regions that affect the classifier accuracy. We

apply a low (left) and high coverage-threshold (right) on the saliency maps so that the area
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covered is approximately the same as the low and high noise-threshold, respectively.

(TIF)

S7 Fig. (a) Eye gaze heat map of the participants overlayed on a segmented version of the orig-

inal PWS image (see S1 Text for original image sources). The leftmost image is the average

heat map of the successful clinicians (top) and non-clinicians (bottom). We apply two different

noise-thresholds: a low threshold to remove possibly spurious visual interests (middle), and

then a high threshold that more clearly indicates facial regions with high visual attentions

(right). (b) Saliency maps of image with key regions that affect the classifier accuracy. We

apply a low (left) and high coverage-threshold (right) on the saliency maps so that the area cov-

ered is approximately the same as the low and high noise-threshold, respectively.

(TIF)

S8 Fig. (a) Eye gaze heat map of the participants overlayed on a segmented version of the orig-

inal RSTS1 image (see S1 Text for original image sources). The leftmost image is the average

heat map of the successful clinicians (top) and non-clinicians (bottom). We apply two different

noise-thresholds: a low threshold to remove possibly spurious visual interests (middle), and

then a high threshold that more clearly indicates facial regions with high visual attentions

(right). (b) Saliency maps of image with key regions that affect the classifier accuracy. We

apply a low (left) and high coverage-threshold (right) on the saliency maps so that the area cov-

ered is approximately the same as the low and high noise-threshold, respectively.

(TIF)

S9 Fig. (a) Eye gaze heat map of the participants overlayed on a segmented version of the orig-

inal WHS image (see S1 Text for original image sources). The leftmost image is the average

heat map of the successful clinicians (top) and non-clinicians (bottom). We apply two different

noise-thresholds: a low threshold to remove possibly spurious visual interests (middle), and

then a high threshold that more clearly indicates facial regions with high visual attentions

(right). (b) Saliency maps of image with key regions that affect the classifier accuracy. We

apply a low (left) and high coverage-threshold (right) on the saliency maps so that the area cov-

ered is approximately the same as the low and high noise-threshold, respectively.

(TIF)

S10 Fig. (a) Eye gaze heat map of the participants overlayed on a segmented version of the

original WS image (see S1 Text for original image sources). The leftmost image is the average

heat map of the successful clinicians (top) and non-clinicians (bottom). We apply two different

noise-thresholds: a low threshold to remove possibly spurious visual interests (middle), and

then a high threshold that more clearly indicates facial regions with high visual attentions

(right). (b) Saliency maps of image with key regions that affect the classifier accuracy. We

apply a low (left) and high coverage-threshold (right) on the saliency maps so that the area cov-

ered is approximately the same as the low and high noise-threshold, respectively.

(TIF)

S11 Fig. IoU and KL metric comparing the visual attention of successful clinicians and model

saliency maps over all the 10 test diseases (which includes RSTS1). A low and high noise-

threshold were applied to the clinician heat maps, removing spurious and retaining only high-

est visual activity, respectively. At each noise-threshold of a particular human visual map, an

independent coverage-threshold was applied to the corresponding model saliency map. Pixels

of a saliency map below this coverage-threshold were set to zero, and the remaining number of

nonzero pixels would be roughly equal to that of the corresponding human visual map. Cover-

age-threshold ensures that a saliency map has equal number of positive pixels as its
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corresponding human visual map.

(TIF)

S12 Fig. IoU and KL metric comparing the heat maps (at different noise-threshold) of suc-

cessful clinicians versus non-clinicians conditioned on whether the test images are of affected

or unaffected individuals. On average, there is no major differences between how human par-

ticipants view images of affected and unaffected individuals.

(TIF)

S13 Fig. Eye gaze heat map of the participants overlayed on the unaffected images. For each

set, the left most image is the average heat map of the successful clinicians (top) and non-clini-

cians (bottom). We apply two different noise-thresholds: a low threshold to remove possibly

spurious visual interests (middle), and then a higher threshold that more clearly indicates facial

regions with high visual attentions (right).

(TIF)

S14 Fig. We defined the AOIs specific to the HPO-annotated features for the 22q11DS image

(left image). A segmented version of the original image is shown, and the AOIs drawn on the

original image may not perfectly match the segmented version shown (see S1 Text for original

image sources). Boxplots compare duration-of-fixation and time-to-first-whole-fixation.

(TIF)

S15 Fig. We defined the AOIs specific to the HPO-annotated features for the BWS image

(left image). A segmented version of the original image is shown, and the AOIs drawn on

the original image may not perfectly match the segmented version shown (see S1 Text for

original image sources). Boxplots compare duration-of-fixation and time-to-first-whole-

fixation.

(TIF)

S16 Fig. We defined the AOIs specific to the HPO-annotated features for the CdLS image (left

image). A segmented version of the original image is shown, and the AOIs drawn on the origi-

nal image may not perfectly match the segmented version shown (see S1 Text for original

image sources). Boxplots compare duration-of-fixation and time-to-first-whole-fixation.

(TIF)

S17 Fig. We defined the AOIs specific to the HPO-annotated features for the DS image (left

image). A segmented version of the original image is shown, and the AOIs drawn on the origi-

nal image may not perfectly match the segmented version shown (see S1 Text for original

image sources). Boxplots compare duration-of-fixation and time-to-first-whole-fixation.

(TIF)

S18 Fig. We defined the AOIs specific to the HPO-annotated features for the KS image (left

image). A segmented version of the original image is shown, and the AOIs drawn on the origi-

nal image may not perfectly match the segmented version shown (see S1 Text for original

image sources). Boxplots compare duration-of-fixation and time-to-first-whole-fixation.

(TIF)

S19 Fig. We defined the AOIs specific to the HPO-annotated features for the NS image (left

image). A segmented version of the original image is shown, and the AOIs drawn on the origi-

nal image may not perfectly match the segmented version shown (see S1 Text for original

image sources). Boxplots compare duration-of-fixation and time-to-first-whole-fixation.

(TIF)
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S20 Fig. We defined the AOIs specific to the HPO-annotated features for the PWS image (left

image). A segmented version of the original image is shown, and the AOIs drawn on the origi-

nal image may not perfectly match the segmented version shown (see S1 Text for original

image sources). Boxplots compare duration-of-fixation and time-to-first-whole-fixation.

(TIF)

S21 Fig. We defined the AOIs specific to the HPO-annotated features for the RSTS1 image

(left image). A segmented version of the original image is shown, and the AOIs drawn on the

original image may not perfectly match the segmented version shown (see S1 Text for original

image sources). Boxplots compare duration-of-fixation and time-to-first-whole-fixation.

(TIF)

S22 Fig. We defined the AOIs specific to the HPO-annotated features for the WHS image (left

image). A segmented version of the original image is shown, and the AOIs drawn on the origi-

nal image may not perfectly match the segmented version shown (see S1 Text for original

image sources). Boxplots compare duration-of-fixation and time-to-first-whole-fixation.

(TIF)

S23 Fig. We defined the AOIs specific to the HPO-annotated features for the WS image (left

image). A segmented version of the original image is shown, and the AOIs drawn on the origi-

nal image may not perfectly match the segmented version shown (see S1 Text for original

image sources). Boxplots compare duration-of-fixation and time-to-first-whole-fixation.

(TIF)

S24 Fig. For each of the 22 clinicians, we average heat maps over all 10 affected (a) and 6 unaf-

fected (b) images. Each participant displays unique behavior. For example, in (a) the first par-

ticipant (row 1 column 1) and sixth participant (row 2 column 1) showed unequal interest at

the nose area.

(TIF)

S25 Fig. For each of the 22 non-clinicians, we average heat maps over all 10 affected (a) and 6

unaffected (b) images. Each participant displays unique behavior; however, visually this

uniqueness is less detectable compared to S24 Fig.

(TIF)

S26 Fig. We applied a low noise-threshold to remove spurious signals from the visual heat

maps, and then estimated the differences in the visual attention between affected and unaf-

fected images conditioned on the same participant (see S24 and S25 Figs). Participants were

given random IDs of gene names. IoU and KL metric show that a few participants (e.g., clini-

cian EP300) are more consistent with their visual behavior when viewing affected and unaf-

fected images, suggesting that these participants may be looking at similar facial features for

both types of images.

(TIF)

S27 Fig. We take the average of all the visual attention heat maps across all test images for the

clinician (left) and non-clinician groups (right). We observed that most of the visual interests

align with eyes, nose, and mouth areas. To account for normal human behavior when viewing

an image, conditioned on the group expertise (clinician or non-clinician), we subtracted these

common average areas from each individual heat map used for our analyses. This helps

account for typical human behavior when viewing faces but does not cause us to ignore these

areas of common facial attention.

(TIF)
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S1 Text. Contains Tables A-C and additional explanations about the DL model analyses and

image sources.
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