
Information and Computation 298 (2024) 105164
Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Mixed choice in session types

Kirstin Peters a,∗, Nobuko Yoshida b,∗
a Universität Augsburg, Germany
b University of Oxford, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 March 2023
Received in revised form 18 March 2024
Accepted 21 March 2024
Available online 26 March 2024

Keywords:
Session types
Mixed choice
Expressive power

Session types provide a flexible programming style for structuring interaction, and are
used to guarantee a safe and consistent composition of distributed processes. Traditional
session types include only one-directional input (external) and output (internal) guarded
choices. This prevents the session-processes to explore the full expressive power of the
π-calculus where mixed choice was proved more expressive. Recently Casal, Mordido, and
Vasconcelos proposed binary session types with mixed choices (CMV+). Surprisingly, in
spite of an inclusion of unrestricted channels with mixed choice, CMV+’s mixed choice
is rather separate and not mixed. We prove this negative result using two methodologies
(using either the leader election problem or a synchronisation pattern as distinguishing
feature), showing that there exists no good encoding from the π-calculus into CMV+,
preserving distribution. We then close their open problem on the encoding from CMV+
into CMV (without mixed choice), proving its soundness.
© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Starting with the landmark result by Palamidessi in [28] and followed up by results such as [27,29,17,33,36,37] it was
shown that the key to the expressive power of the full π -calculus in comparison to its sub-calculi such as e.g. the asyn-
chronous π -calculus is mixed choice.

Mixed choice in the π -calculus is a choice construct that allows to choose between inputs and outputs. In contrast, e.g.
separate choices are constructed from either only inputs or only outputs. The additional expressive power of mixed choice
relies on its ability to rule out alternative options of the opposite nature, i.e., a term can rule out its possibility to perform
an input by doing an output, whereas without mixed choice inputs can rule out alternative inputs only and outputs may
rule out only alternative outputs.

To compare calculi with different variants of choice, we try to build an encoding or show that no such encoding exists
[3,30]. The existence of an encoding that satisfies relevant criteria shows that the target language is expressive enough to
emulate the behaviours in the source language. Gorla [17] and others [30,39] introduced and classified a set of general crite-
ria for encodability which are syntax-agnostic [17,39]: they are now commonly used for claiming expressiveness of a given
calculus, defining important features which a “good encoding” should satisfy. These include compositionality (homomor-
phism), name invariance (bijectional renaming), sound and complete operational correspondence (the source and target can
simulate each other), divergence reflection (the target diverges only if the source diverges), observability (barb-sensitiveness),
and distributability preservation (the target has the same degree of distribution as the source). Conversely, a separation result,

* Corresponding authors.
E-mail addresses: kirstin.peters@uni-a.de (K. Peters), nobuko.yoshida@cs.ox.ac.uk (N. Yoshida).
https://doi.org/10.1016/j.ic.2024.105164
0890-5401/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).

https://doi.org/10.1016/j.ic.2024.105164
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2024.105164&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kirstin.peters@uni-a.de
mailto:nobuko.yoshida@cs.ox.ac.uk
https://doi.org/10.1016/j.ic.2024.105164
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
i.e., the proof of the absence of an encoding with certain criteria, shows that the source language can represent behaviours
that cannot be expressed in the target. This paper gives a fresh look at expressiveness of typed π -calculi, focusing on choice
constructs of session types.

Session types [20,44] specify and constrain the communication behaviour as a protocol between components in a system.
A session type system excludes any non-conforming behaviour, statically preventing type and communication errors (i.e.,
mismatch of choice labels). Several languages now have session-type support via libraries and tools [43,1]. As the origin
of session types is Linear Logic [18], traditional session types include only one-directional input (external) and output
(internal) guarded choices. To explore the full expressiveness of mixed choice from the π -calculus, recently Casal, Mordido,
and Vasconcelos proposed the binary session types with mixed choices called mixed sessions [7]. We denote their calculus
by CMV+ . Mixed sessions include a mixture of branchings (labelled input choices) and selections (labelled output choices)
at the same linear channel or unrestricted channel. This extension gives us many useful and typable structured concurrent
programming idioms which consist of both unrestricted and linear non-deterministic choice behaviours. We show that in
spite of its practical relevance, mixed sessions in CMV+ are strictly less expressive than mixed choice in the π -calculus even
with an unrestricted usage of choice channels.

This result surprised us. Accordingly, our motivation for this work is to understand the reasons behind this limitation in
the expressive power. We would have expected that using mixed choice with an unrestricted choice channel results into a
choice construct comparable to choice in the π -calculus. But, as we show in the following, mixed choice in CMV+ cannot
express essential features of mixed choice in the π -calculus. First we observe that mixed sessions are not expressive enough
to solve leader election in symmetric networks. Remember that it was leader election in symmetric networks that was used
to show that mixed choice is more expressive than separate choice in the π -calculus (see [28]). Second we observe that
mixed sessions cannot express the synchronisation pattern �. Synchronisation patterns were introduced in [39] to capture
the amount of synchronisation that can be expressed in distributed systems. The synchronisation pattern � was identified in
[39] as capturing exactly the amount of synchronisation introduced with mixed choice in the π -calculus. Finally, we have a
closer look at the encoding from CMV+ into CMV presented in [7]. CMV is the variant of session types that is extended in
[7] with a mixed-choice-construct in order to obtain CMV+ , i.e., CMV has traditional branching and selection but not their
mix. As it is the case for many variants of session types, CMV can express separate choice but has no construct for mixed
choice. By analysing this encoding, we underpin our claim that mixed choice in CMV+ is not more expressive than separate
choice in the π -calculus.

π

CMVCMV+

LE× �×

Our contributions are summarised in the picture on the right. In §3 we prove that
there exists no good encoding from the π -calculus (with mixed choice) into CMV+ ,
where we use the leader election problem by Palamidessi in [28] (LE) as distinguishing
feature (the first ×). In §4 we reprove this result using the synchronisation pat-

tern � from [39] instead as distinguishing feature (the second ×). Then we prove
soundness of the encoding presented in [7] closing their open problem in §5 (). By
this encoding source terms in CMV+ and their literal translations in CMV are related by
coupled similarity [32], i.e., CMV+ is encoded into CMV up to coupled similarity. From
the separation results in §3 and §4 and the encoding into session types with separate
choice in §5 we conclude that mixed sessions in [7] can express only separate choice.

The current paper extends the paper [41] presented at the workshop EXPRESS/SOS’22. The main differences are: (1)
We present additional technical material in §2 including complete definitions of the three considered languages and the
type systems of CMV+ and CMV. (2) We also extend the definitions of encodability criteria in §2, introduce the notion of
distributability from [39] and recall some useful auxiliary results on distributability. (3) In §3 we provide additional informa-
tion on the presented counterexample and the missing proofs. (4) Similarly, we provide the missing proofs in §4. Moreover,
we add the formal definition of the synchronisation pattern M, which captures exactly the amount of synchronisation of
separate choice in the π -calculus, and show that the presented M in CMV+ is well-typed. To prove the final result of this
section, i.e., that there is no good an distributability preserving encoding from the π -calculus into CMV+ , we also prove
that any such encoding would need to translate the conflicts given in the counterexample to conflicts in the translation and
at least one of these conflicts has to split up. (5) In §5 we additionally present the encoding of [7] and explain it and its
non-deterministic choices, as they are an integral part of the encoding. Again we add the missing proofs.

2. Technical preliminaries: mixed sessions and encodability criteria

A process calculus is a language L = (P, �−→) that consists of a set of process terms P (its syntax) and a relation
�−→ ⊆ P ×P on process terms (its reduction semantics), typically building upon some structural congruence ≡ ⊆ P ×P .
We often refer to process terms also simply as processes or terms and use upper case letters P , Q , R, . . . , P ′, P1, . . . to range
over them. Typed languages often define their syntax by a grammar defining the untyped processes Put and a set of typing
rules that define the subset of well-typed processes P ⊂Put of the language.

Assume a countably-infinite set N , whose elements are called names. We use lower case letters such as a, b, c, . . . ,a′, a1,

. . . to range over names. For the π -calculus we additionally assume a set
{

y | y ∈N
}

of co-names. Let τ /∈N ∪ {
y | y ∈N

}
.

The typed languages considered here intuitively distinguish names into session channels, ranged over by x, y, . . ., and name
2

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
variables, ranged over by z, There is, however, no need to formally distinguish between different kinds of names. We
also assume a set of type variables, ranged over by t, t′, . . ., and a set of process variables, ranged over by X, X ′,

The syntax of a process calculus is usually defined by a context-free grammar defining operators, i.e., functions op :
N n × Pm → P . An operator of arity 0, i.e., m = 0, is a constant. The arguments that are again process terms are called
subterms of P .

Definition 2.1 (Subterms). Let (P, �−→) be a process calculus and P ∈P . The set of subterms of P = op (x1, . . . , xn, P1, . . . , Pm)

is defined recursively as:

{P } ∪ {
P ′ | ∃i ∈ {1, . . . ,m}. P ′ is a subterm of P i

}
With Definition 2.1, every term is a subterm of itself; constants have no further subterms. Among other operators,

languages may introduce action prefixes and conditionals as indicated with the concrete languages below. Terms that appear
as subterm of a term with some action prefix or conditional as outermost operator are called guarded, because the guarded
subterm can not be executed before the guarding action or conditional has been reduced.

Following [7] expressions, ranged over by e, e′, . . ., are constructed from variables, unit, and standard boolean operators.
We assume a partial evaluation function eval(·) that evaluates expressions to values, ranged over by v, v ′,

Definition 2.2 (Values). The set of values is given as

v ::= x | true | false | () Values

where x is a variable and () is the unit term.

A scope defines an area in which a particular name is known and can be used. For several reasons, it can be useful to
restrict the scope of a name. For instance to forbid interaction between two processes or with an unknown and, hence,
potentially untrusted environment. Names whose scope is restricted such that they cannot be used beyond their scope are
called bound names. The remaining names are called free names. Let fn(P) denote the set of free names of P . In the case
of bound names, their syntactical representation as lower case letters serves as a place holder for any fresh name, i.e., any
name that does not occur elsewhere in the term. To avoid confusion between free and bound names or different bound
names, bound names can be replaced with fresh bound names by α-conversion ≡α .

We assume that the semantics is given as an operational semantics consisting of inference rules defined on the operators
of the language [42]. For many process calculi, the semantics is provided in two forms, as reduction semantics and as labelled
transition semantics. We assume that at least the reduction semantics �−→ is given as part of the definition, because its
treatment is easier in the context of encodings. A single application of the reduction semantics is called a (reduction) step
and is written as P �−→ P ′ . If P �−→ P ′ , then P ′ is called derivative of P . Let P �−→ (or P ��−→) denote the existence (absence)
of a step from P , and let �=⇒ denote the reflexive and transitive closure of �−→. A sequence of reduction steps is called a
reduction. We write P �−→ω if P has an infinite sequence of steps. We also use execution to refer to a reduction starting
from a particular term. A process that cannot reduce is called stuck.

A substitution σ is a finite mapping from names to names defined by a set of renamings of the form {y1/x1, . . . , yn/xn} =
{y1,...,yn/x1,...,xn}, where we assume that the x1, . . . , xn are pairwise distinct. The application P {y1/x1, . . . , yn/xn} of a substitu-
tion on a term is defined as the result of simultaneously replacing all free occurrences of xi by yi for i ∈ {1, . . . ,n}, possibly
applying α-conversion to avoid capture or name clashes. For all names in N \ {x1, . . . , xn} the substitution behaves as the
identity mapping. We naturally extend substitution to the substitution of name variables by values and type variables by
types. In these cases we often denote substitution as the instantiation of the variable by the respective value or type.

To simplify the presentation, we sometimes treat sequences x̃ = x1, . . . , xn as sets and apply set operations (such as
union) on sequences.

To reason about environments of terms, we use functions on process terms called contexts. More precisely, a context
C ([·]1, . . . , [·]n+m) :N n × Pm → P with n +m holes is a function from n names and m terms into a term, i.e., the term
C (x1, . . . , xn, P1, . . . , Pm) is the result of inserting x1, . . . , xn, P1, . . . , Pm in the corresponding order into the holes of C .

We use barbs or observables to reason about and to compare the behaviour of processes. We write P↓β if P emits the
barb β , where this definition is language specific, i.e., implemented slightly differently in the considered languages. In all
considered languages P reaches a barb β , denoted as P⇓β , if there is some P ′ such that P �=⇒ P ′ and P ′↓β .

Two terms of a language are usually compared using some kind of a behavioural simulation relation. The most commonly
known behavioural simulation relation is bisimulation. A relation R is a bisimulation if any two related processes mutually
simulate their respective sequences of steps, such that the derivatives are again related.

Definition 2.3 (Bisimulation). R is a (weak reduction, barbed) bisimulation if for each (P , Q) ∈R:

• P �=⇒ P ′ implies ∃Q ′. Q �=⇒ Q ′ ∧ (
P ′, Q ′) ∈R

• Q �=⇒ Q ′ implies ∃P ′. P �=⇒ P ′ ∧ (
P ′, Q ′) ∈R

• P⇓β iff Q ⇓β for all barbs β
3

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
(Comπ) yz.P + M | y(x).Q + N �−→ P | Q {z/x} (Tauπ) τ .P + M �−→ P

(Parπ)

P �−→ P ′

P | Q �−→ P ′ | Q
(Resπ)

P �−→ P ′

(νx)P �−→ (νx)P ′

(Structπ)

P ≡ Q Q �−→ Q ′ Q ′ ≡ P ′

P �−→ P ′

where structural congruence ≡ is the least congruence that contains α-conversion and satisfies:

(νx)0≡ 0 (νx)(ν y)P ≡ (ν y)(νx)P P | (νx)Q ≡ (νx)(P | Q) if x /∈ fn(P)

P | 0≡ P P | Q ≡ Q | P P | (Q | R)≡ (P | Q) | R !P ≡ P | !P

Fig. 1. Reduction Semantics (�−→) of the π -Calculus.

Two terms are bisimilar if there exists a bisimulation that relates them. For a language L, let ≈L denote bisimilarity on L.

Another interesting behavioural simulation relation is coupled similarity. It was introduced in [32] and discussed e.g.
in [2]. It is strictly weaker than bisimilarity. As pointed out in [32], in contrast to bisimilarity it essentially allows for
intermediate states (see §5). Each symmetric coupled simulation is a bisimulation.

Definition 2.4 (Coupled Simulation). A relation R is a (weak reduction, barbed) coupled simulation if for each (P , Q) ∈R:

• P �=⇒ P ′ implies ∃Q ′. Q �=⇒ Q ′ ∧ (
P ′, Q ′) ∈R

• P �=⇒ P ′ also implies ∃Q ′. Q �=⇒ Q ′ ∧ (
Q ′, P ′

) ∈R
• P⇓β implies Q ⇓β for all barbs β

Two terms are coupled similar if they are related by a coupled simulation in both directions.

2.1. The Pi-calculus with mixed choice

The π -calculus was introduced by Milner, Parrow, and Walker in [25] and is one of the most well-known process calculi.
Over the time a large number of variants and extensions of the π -calculus emerged. We are relying on the variant used in
[28], since we want to reuse some results and proof techniques from this paper. Accordingly, we consider a variant of the
π -calculus with mixed guarded choice and replication but without matching. This variant is often called the synchronous
or full π -calculus. In the following we denote this calculus simply as the π -calculus.

Definition 2.5 (Pi-Calculus). The set of processes Pπ of the π -calculus is given by:

α ::= y(x) | yz | τ Prefixes

P ::=
∑
i∈I

αi .P i | (νx)P | P | P | !P Processes

A choice
∑

i∈I αi .P i offers for each i in the index set I a subterm guarded by some action prefix αi . An action prefix is
either an input action y(x), and output action yz, or an internal action denoted as τ . We abbreviate the empty sum, i.e., ∑

i∈I αi .P i for I = ∅, by the inactive process 0. Moreover, we often write α1.P1 + . . .+ αn.Pn for a choice
∑

i∈{1,...,n} αi .P i .
The remaining operators introduce restriction (νx)P , parallel composition P | P , and replication !P .

The name x is bound in P by input y(x).P and restriction (νx)P . All other names are free. To simplify the presentation
we often omit trailing 0. Moreover, we sometimes omit the argument of action prefixes if it is irrelevant, i.e., we write y.P
instead of y(x).P if x /∈ fn(P) and we write y.P instead of yz.P if for all matching receivers y(x).Q we have x /∈ fn(Q).

The semantics of the π -calculus is given by the rules in Fig. 1. Since choice is introduced as a set of summands, we nat-
urally have commutativity and associativity of the summands. We rely on the commutativity and associativity of summands
then writing choices as α1.P1 + . . .+ αn.Pn .

Rule (Comπ) defines communication as an interaction of an output and an input action that are composed in parallel
choices. As result of the communication step the name x is substituted by the received name z in the subterm of the input.
Moreover, the respective alternative summands of the two choices that contained the output and the input as well as the
action prefixes of the chosen cases are removed. This step unguards the respective subterms of the output and input.

An internal step with rule (Tauπ) reduces only a single choice. As result again the subterm of the internal action is
unguarded and the alternative summands are removed.
4

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
Rule (Parπ) allows a process to reduce in the context of parallel processes and (Resπ) allows the subterm of a restriction
to reduce. Finally, (Structπ) allows processes to reduce modulo structural congruence.

The observables or barbs of the π -calculus are given as follows.

Definition 2.6 (Barbs, Pi-Calculus). A process P emits an output barb y, denoted as P↓y , if P has an output yz.P ′ as un-
guarded subterm and if y is free in P , i.e., y ∈ fn(P). Similarly, P has an input barb y, denoted as P↓y , if P has an input
y(x).P ′ as unguarded subterm with y ∈ fn(P).

2.2. Mixed sessions

Mixed sessions are a variant of binary session types introduced by Casal, Mordido, and Vasconcelos in [7] with a choice-
construct that combines prefixes for sending and receiving. We denote this language as CMV+ .

A central idea of CMV+ (and the language CMV it is based on) is that channels are separated in two channel endpoints
and that interaction is by two processes acting on the respective different ends of such a channel.

Definition 2.7 (Mixed Sessions). The set of untyped processes Put
CMV+ of CMV+ is given as:

P ::= q y
∑
i∈I

Mi | P | P | (ν yz)P | if v then P else P | 0 Processes

M ::= l∗v.P Branches

∗ ::= ! | ? Polarities

q ::= lin | un Qualifiers

A choice q y
∑

i∈I Mi is declared as either linear (lin) or unrestricted (un) by the qualifier q. It proceeds on a single
channel endpoint y. For every i in the index set I it offers a branch Mi . A branch l∗v.P specifies a label l, a polarity ∗ (!
for sending or ? for receiving), a name v (a value in output actions or a variable for input actions), and a continuation P .
We abbreviate the empty sum, i.e., q y

∑
i∈I Mi for I = ∅, by 0. Moreover, we often write q y (M1 + . . .+ Mn) for a choice

q y
∑

i∈{1,...,n} Mi . Restriction (ν yz)P binds the two channel endpoints y and z of a single channel to P . The remaining
operators introduce parallel composition P | P , conditionals if v then P else P , and inaction 0. We sometimes abbreviate P1 |
. . . | Pn by

∏
i∈{1,...,n} P i .

The variable x is bound in P by input branches l?x.P and the two endpoints of a channel x, y are bound in P by
restriction (νxy)P . All other names are free.

The semantics of CMV+ is given by the rules in Fig. 2. The commutativity and associativity of summands within choices
again follows from choices being defined via a set of summands.

A conditional is reduced to its first subterm with Rule (R-IfTCMV+) if its condition evaluates to true and to its second
subterm with Rule (R-IfFCMV+) if its condition evaluates to false. Communication is by one of the Rules (R-LinLinCMV+),
(R-LinUnCMV+), (R-UnLinCMV+), or (R-UnUnCMV+). In all four cases, the continuation of the sender and the receiver are
unguarded and in the receiver x is substituted by the received value v . These four rules differ w.r.t. the qualifiers of the
involved choices. Linear choices (qualifier lin) are removed in a reduction step, whereas unrestricted choices are persistent.
Rule (R-ParCMV+) allows a process to reduce in the context of parallel processes and (R-ResCMV+) allows the subterm of a
restriction to reduce. Finally, (R-StructCMV+) allows processes to reduce modulo structural congruence.

Definition 2.8 (Barbs, Mixed Sessions). The process P emits the barb y, denoted as P↓y , if P has an unguarded choice
q y

∑
i∈I Mi on a free channel endpoint y ∈ fn(P).

We do not distinguish between output and input barbs here, but instead have barbs on different end points of a channel.
To obtain from Put

CMV+ the set PCMV+ of well-typed processes of CMV+ , a type system is introduced in [7]. The syntax
of types is given as:

T ::= q#{B i}i∈I | end | unit | bool | μt.T | t Types

B ::= l∗T .T Branches

::= ⊕ | & Views

 ::= · |
, x : T Contexts

A type of the form q#{B i}i∈I denotes a channel endpoint, where the view # is either ⊕ for internal choice or & for
external choice. We often call it a choice type. In a branch l∗T1.T2 the type T1 specifies the communicated value whereas
T2 is the type of the continuation. Besides channel endpoints there are types for inaction, the base types for unit and
boolean, and types for recursion.
5

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
(R-IfTCMV+) if true then P else Q �−→ P (R-IfFCMV+) if false then P else Q �−→ Q

(R-LinLinCMV+)
(ν yz)(lin y (l!v.P + M) | lin z (l?x.Q + N) | R) �−→
(ν yz)(P | Q {v/x} | R)

(R-LinUnCMV+)
(ν yz)(lin y (l!v.P + M) | un z (l?x.Q + N) | R) �−→
(ν yz)(P | Q {v/x} | un z (l?x.Q + N) | R)

(R-UnLinCMV+)
(ν yz)(un y (l!v.P + M) | lin z (l?x.Q + N) | R) �−→
(ν yz)(P | Q {v/x} | un y (l!v.P + M) | R)

(R-UnUnCMV+)
(ν yz)(un y (l!v.P + M) | un z (l?x.Q + N) | R) �−→
(ν yz)(P | Q {v/x} | un y (l!v.P + M) | un z (l?x.Q + N) | R)

(R-ParCMV+)

P �−→ P ′

P | Q �−→ P ′ | Q
(R-ResCMV+)

P �−→ P ′

(ν yz)P �−→ (ν yz)P ′

(R-StructCMV+)

P ≡ Q Q �−→ Q ′ Q ′ ≡ P ′

P �−→ P ′

where structural congruence ≡ is the least congruence that contains α-conversion and satisfies:

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0≡ P (ν yz)0≡ 0 (ν yz)P ≡ (νzy)P

P | (ν yz)Q ≡ (ν yz)(P | Q) if y, z /∈ fn(P) (νwx)(ν yz)P ≡ (ν yz)(νwx)P

Fig. 2. Reduction Rules (�−→) of CMV+ .

Following [7], we assume that the index sets I in types are not empty, that the label-polarity-pairs l∗ are pairwise distinct
in the branches of a choice type, and recursive types are contractive, i.e., contain no subterm of the form μt1. . . .μtn.t1 with
n ≥ 1. A type variable t is bound in T by μt.T . All other type variables are free.

Type equivalence � is coinductively defined by the rules:

end� end unit� unit bool� bool

T i � T ′i U i � U ′
i (∀i ∈ I)

q#{l∗i T i .U i}i∈I � q#
{

l∗i T ′i .U
′
i

}
i∈I

T {μt.T/t} � U

μt.T � U

T � U {μt.U/t}
T �μt.U

Two types are dual to each other if they describe well-coordinated behaviour of the two endpoints of a channel. In
particular, input is dual to output and internal choice is dual to external choice. The operator · ⊥ · for type duality is defined
coinductively by the rules:

!⊥? ?⊥! ⊕⊥& &⊥ ⊕ end⊥end

#⊥ � ∗i ⊥ •i T i � T ′i U i ⊥U ′
i (∀i ∈ I)

q#{l∗i T i .U i}i∈I⊥q�
{

l•i T ′i .U
′
i

}
i∈I

T {μt.T/t}⊥U

μt.T ⊥U

T ⊥U {μt.U/t}
T ⊥μt.U

Subtyping introduces more flexibility to the usage of types. In external choices subtyping allows additional branches
in the supertype; for internal choice we have the opposite. The operator T1 <: T2 (T1 is a subtype of T2) is defined
coinductively by the rules:

T2 <: T1 U1 <: U2

l!T1.U1 <: l!T2.U2

T1 <: T2 U1 <: U2

l?T1.U1 <: l?T2.U2

end <: end unit <: unit bool <: bool

J⊆ I B j <: C j (∀ j ∈ J)

q⊕{B i}i∈I <: q⊕{
C j

}
j∈J

I⊆ J B i <: C i (∀i ∈ I)

q&{B i}i∈I <: q&
{

C j
}

j∈J

T {μt.T/t} <: U

μt.T <: U

T <: U {μt.U/t}
T <: μt.U

The predicate · un that is defined by the rules

end un unit un bool un un#{B i}i∈I un
T un

μt.T un

identifies unrestricted types, i.e., types without an unguarded linear choice type.
6

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
(T-UnitCMV+)

un

 � () : unit

(T-TrueCMV+)

un

 � true : bool
(T-FalseCMV+)

un

 � false : bool

(T-VarCMV+)

1,
2 un

1, x : T ,
2 � x : T
(T-SubCMV+)

 � v : T T <: U

 � v : U

(T-OutCMV+)

1 � v : T
2 � P

1 ◦
2 � l!v.P : l!T .U
(T-InCMV+)

, x : T � P

 � l?x.P : l?T .U

(T-InactCMV+)

un

 � 0
(T-ParCMV+)

1 � P1
2 � P2

1 ◦
2 � P1 | P2

(T-IfCMV+)

1 � v : bool
2 � P
2 � Q

1 ◦
2 � if v then P else Q
(T-ResCMV+)

, x : T , y : U � P T ⊥U

 � (νxy)P

(T-ChoiceCMV+)

(
1 ◦
2)q1
1 � x : q2#{l∗i T i .U i}i∈I
{

l∗ j
}

j∈J = {l∗i}i∈I

2 + x : U j � l∗ j v j .P j : l∗ j T j .U j (∀ j ∈ J)

1 ◦
2 � q1 x
∑

j∈J l∗ j v j .P j

Fig. 3. Typing Rules of CMV+ .

Typing contexts
 collect assignments x : T of names to their types. We extend the predicate · un to a typing context

, by requiring that for
 un all types in
 are unrestricted. In contrast, all typing contexts are linear, denoted as
 lin. The
operation · ◦ · allows to split a typing context into two typing contexts provided that all assignments with linear types are
on distinct names. Assignments with unrestricted types can be shared by the two parts.

· = (· ◦ ·)
1 ◦
2 =
 T un

, x : T = (
1, x : T) ◦ (
2, x : T)

1 ◦
2 =

, x : lin p = (
1, x : lin p) ◦
2

1 ◦
2 =

, x : lin p =
1 ◦ (
2, x : lin p)

The operation · + · adds a new assignment to a typing context, while ensuring that in a typing context all assignments
are on pairwise distinct names and an assignment can be added to a typing context twice only if its type is unrestricted.

x : U /∈

+ x : T =
, x : T

T un

(
, x : T)+ x : T =
, x : T

A process P is well-typed if there is some typing context
 such that the type judgement
 � P can be derived from the
typing rules in Fig. 3.

The typing Rules (T-UnitCMV+), (T-TrueCMV+), and (T-FalseCMV+) type constants. Rule (T-VarCMV+) checks the type of a
variable against its type as stored in the typing context. With Rule (T-SubCMV+) we can use subtyping in type derivations.
The Rules (T-OutCMV+) and (T-InCMV+) type output and input branches. They check that the label and polarity are as
described by the type and check the continuation of the branch against the continuation of the type. Note that the type U
of the continuation is already captured in the type environment
2 for (T-OutCMV+) and
 for (T-InCMV+). Moreover, the
type of the submitted value in output branches is checked, whereas for input branches we add a suitable assumption on
the type of the variable to the typing context. Rule (T-InactCMV+) checks that the typing context for inactive processes is
unrestricted. Rule (T-ParCMV+) splits the typing context for checking the two parts of a parallel composition. A conditional
is well-typed if its condition is boolean and if its two subterms are well-typed as specified by Rule (T-IfCMV+). To check
the subterm of restriction with Rule (T-ResCMV+), we have to add two assignments for the two endpoints of the restricted
channel such that the respective types are dual. Choices are checked with Rule (T-ChoiceCMV+). It requires that the typing
environment is unrestricted (un) if and only if the analysed choice is qualified as un; else both need to be linear (lin). Then
the typing context needs to assign an external or internal choice type to the channel endpoint of this choice, where the
qualifier in the type is lin if the choice is qualified as lin. Finally, Rule (T-ChoiceCMV+) checks all branches of the choice term
against the branches of the choice type.

The language CMV+ is composed of well-typed processes and the semantics in Fig. 2, i.e., CMV+ = 〈
PCMV+ , �−→〉

, where
PCMV+ is the well-typed fragment of Put

CMV+ .
The language CMV is the fragment of CMV+ with a standard branching construct instead of mixed choice (compare to

[7]).

Definition 2.9 (CMV). The set of untyped processes Put
CMV replaces the choice construct of Put

CMV+ by the following four
constructs
7

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
(R-LinComCMV) (νxy)(x!v.P | lin y?z.Q | R) �−→ (νxy)(P | Q {v/z} | R)

(R-UnComCMV) (νxy)(x!v.P | un y?z.Q | R) �−→ (νxy)(P | Q {v/z} | un y?z.Q | R)

(R-CaseCMV)

j ∈ I

(νxy)
(
x � l j .P | y � {li : Q i}i∈I | R

) �−→ (νxy)
(

P | Q j | R
)

and structural congruence ≡ as well as the Rules (R-IfTCMV+), (R-IfFCMV+), (R-ParCMV+), (R-ResCMV+), and (R-StructCMV+)

from Fig. 2.

Fig. 4. Reduction Rules (�−→) of CMV.

y!v.P | q y?x.P | x � l.P | x � {li : P i}i∈I

and keeps the constructs for parallel composition, restriction, conditionals, and inaction.

The output action is implemented by y!v.P and q y?x.P implements an input action. Selection x � l.P allows to select
the branch with label l from a branching x � {li : P i}i∈I provided that l ∈ {li}i∈I . Selection and branching are action prefixes.

The reduction semantics of CMV is given in Fig. 4. Instead of the four communication rules in CMV+ , we have two
communication rules—one for a linear input and one for an unrestricted input—and a rule for branching. The remaining
Rules (R-IfTCMV), (R-IfFCMV), (R-ParCMV), (R-ResCMV), and (R-StructCMV) as well as the rules of structural congruence are
inherited from CMV+ . Also the notions of free names are inherited from CMV+ . The definition of barbs has to be adapted.

Definition 2.10 (Barbs, CMV). The process P emits the barb y, denoted as P↓y , if P has an unguarded output y!v.P or
an unguarded input q y?x.P or an unguarded selection y � l.P or an unguarded branching y � {li : P i}i∈I on a free channel
endpoint y ∈ fn(P).

The set of types of CMV replaces the choice construct in the definition of types of CMV+ by the following two constructs

q ∗T .T | q#{li : T i}i∈I

and keeps the constructs for inaction, base types, and recursion.
We adapt the typing rule that allows to compare types for choices to the simpler rule

T i � T ′i
q#{li : T i}i∈I � q#

{
li : T ′i

}
i∈I

and keep the remaining rules for inaction, base types, and recursion as well as the rules for type equivalence.
The following two rules replace the rule for choice in the definition of duality.

•⊥∗ T1 � T2 U1⊥U2

q • T1.U1⊥q ∗T2.U2

#⊥ � T i ⊥U i (∀i ∈ I)

q#{li : T i}i∈I⊥q�{li : U i}i∈I

We keep the rules for polarities, views, inaction, and recursion.
The following four rules replace the subtyping rules for inputs, outputs, and choice.

U <: T T ′ <: U ′

q !T .T ′ <: q !U .U ′
T <: U T ′ <: U ′

q ?T .T ′ <: q ?U .U ′
J⊆ I T j <: U j (∀ j ∈ J)

q⊕{li : T i}i∈I <: q⊕{
l j : U j

}
j∈J

I⊆ J T i <: U i (∀i ∈ I)

q&{li : T i}i∈I <: q&
{

l j : U j
}

j∈J

We keep the subtyping rules for inaction, base types, and recursion.
The following two rules replace the rule for choice in the definition of the predicate · un.

un∗T .U un un#{li : T i}i∈I un

We keep the rules for inaction, base types, and recursion.
The typing rules of CMV are depicted in Fig. 5. The Rules (T-OutCMV+), (T-InCMV+), and (T-ChoiceCMV+) are replaced

by the depicted rules. We inherit the remaining Rules, i.e., the Rules (T-UnitCMV), (T-TrueCMV), (T-FalseCMV), (T-VarCMV),
(T-SubCMV), (T-InactCMV), (T-ParCMV), (T-IfCMV), and (T-ResCMV), from CMV+ .

Again, CMV= 〈PCMV, �−→〉, where PCMV is the well-typed fragment of Put .
CMV

8

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
(T-OutCCMV)

1 � x : q !T .U
2 + x : U =
3 ◦
4
3 � v : T
4 � P

1 ◦
2 � x!v.P

(T-InCCMV)

(
1 ◦
2)q1
1 � x : q2 ?T .U (
2 + x : U), y : T � P

1 ◦
2 � q1 x?y.P

(T-BranchCMV)

1 � x : q&{li : T i}i∈I
2 + x : T i � P i (∀i ∈ I)

1 ◦
2 � x � {li : P i}i∈I

(T-SelCMV)

1 � x : q⊕{l : T }
2 + x : T � P

1 ◦
2 � x � l.P

and the Rules (T-UnitCMV+), (T-TrueCMV+), (T-FalseCMV+), (T-VarCMV+), (T-IfCMV+), (T-SubCMV+), (T-InactCMV+),
(T-ParCMV+), and (T-ResCMV+).

Fig. 5. Typing Rules of CMV.

2.3. Encodings, quality criteria, and distributability

Let LS = 〈PS, �−→S〉 and LT = 〈PT, �−→T〉 be two (untyped or typed) process calculi, denoted as source and target lan-
guage. In the simplest case, an encoding from LS into LT is a function �·� :PS →PT that translates source terms into target
terms. If the source and target language are typed then we assume an additional encoding function on types and allow the
encoding function on terms to use information about the type of source terms. We often use S, S ′, S1, . . . to range over PS
and T , T ′, T1, . . . to range over PT . Encodings often translate single source term steps into a sequence or pomset of target
term steps. We call such a sequence or pomset an emulation of the corresponding source term step.

Within a single calculus, systems are usually compared up to some form of simulation relation that uses the observables
of the language to compare the behaviour of the systems. Comparing systems of different languages is more difficult, because
they might not share the same set of observables. In order to provide a general framework, Gorla in [17] suggests five
criteria well suited for language comparison, because they are language independent and as shown in [35] induce some
kind of simulation relation between a source term and its literal translation. They are divided into two structural and three
semantic criteria. The structural criteria include (1) compositionality and (2) name invariance. The semantic criteria include (3)
operational correspondence, (4) divergence reflection, and (5) success sensitiveness. These criteria are well suited for encodability
and separation results. An encodability result proves the existence of an encoding, where the criteria rule out trivial or
meaningless encodings. A separation result separates two languages by showing that no encoding that satisfies the criteria
exists, where the criteria are minimal assumptions on reasonable encodings.

The combination of the semantic criteria ensures that source terms and their literal translation are coupled similar (see
[35]), where success sensitiveness (i.e., a form of testing) is used instead of observables. In this paper, we consider lan-
guages that do not have the same barbs but barbs that are similar enough to allow for comparisons, because all considered
languages are based on the π -calculus. Because of that, we replace the criterion of success sensitiveness by the slightly
stronger criterion of barb sensitiveness. We claim that all separation results of this paper remain valid if we replace barb
sensitiveness with success sensitiveness. In this case the counterexamples need to be adapted to the reachability of success.

Note that a behavioural equivalence � on the target language is assumed for the definition of name invariance and
operational correspondence. Its purpose is to describe the abstract behaviour of a target process, where abstract refers to
the behaviour of the source term. Moreover, let ϕ :N →N k be a renaming policy, i.e., a mapping from a (source term) name
to a vector of (target term) names that can be used by encodings to split names and to reserve special names, such that no
two different names are translated into overlapping vectors of names and reserved names are not confused with translated
source term names.

Intuitively, an encoding is compositional if the translation of an operator is the same for all occurrences of that operator
in a term. Hence, the translation of that operator can be captured by a context that is allowed in [17] to be parametrised
on the free names of the respective source term.

Definition 2.11 (Compositionality, [17]). The encoding �·� is compositional if, for every operator op :N n ×Pm
S →PS of LS and

for every subset of names N , there exists a context CN
op

([·]1, . . . , [·]n′+m
) :N n′ × Pm

S → PT and y1, . . . , yn′ ∈N such that,
for all x1, . . . , xn ∈N and all S1, . . . , Sm ∈PS with fn(S1)∪ . . .∪ fn(Sm)= N and {y1, . . . , yn′} ⊆ ϕ (x1)∪ . . .∪ ϕ (xn), it holds
that:

�op (x1, . . . , xn, S1, . . . , Sm)�= CN
op(y1, . . . , yn′ , �S1� , . . . , �Sm�)

Name invariance ensures that encodings are independent of specific names in the source. We use projection to obtain the
respective elements of a translated name, i.e., if ϕ(a) = (a1,a2,a3) then ϕ(a).2 = a2 . Slightly abusing notation, we sometimes
use the tuples that are generated by the renaming policy as sets, i.e., we require e.g. ϕ(a) ∩ ϕ(b) = ∅ whenever a �= b. An
encoding is name invariant if it preserves substitutions modulo the relation � on the target language.
9

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
Definition 2.12 (Name Invariance, [17]). The encoding �·� is name invariant w.r.t. � if, for every S ∈PS and every substitution
σ , it holds that

�Sσ �
{
= �S�σ ′ if σ is injective

� �S�σ ′ otherwise

where σ ′ is such that ϕ(σ (a)) = σ ′(ϕ(a)) for all a ∈N .

To simplify the presentation in the workshop paper that we presented at EXPRESS/SOS’22, we omit the renaming policy
and instead assumed that the names reserved by the encoding function from CMV+ into CMV of [7] are different from all
source term names. Under this assumption the encoding of [7] satisfies the variant

For every S and every substitution σ , it holds that �Sσ �� �S�σ .

of name invariance, that we present as name invariance criterion in our workshop paper. Indeed the purpose of the renam-
ing policy is to allow to implement such an assumption. When we prove the correctness of the encoding from CMV+ into
CMV of [7], we consider both variants of name invariance.

The first semantic criterion is operational correspondence. It consists of a soundness and a completeness condition.
Completeness requires that every computation of a source term can be emulated by its translation. Soundness requires that
every computation of a target term corresponds to some computation of the corresponding source term.

Definition 2.13 (Operational Correspondence, [17]). The encoding �·� satisfies operational correspondence if it satisfies:

Completeness: For all S �=⇒S S ′, it holds �S� �=⇒T� �S ′�.
Soundness: For all �S� �=⇒T T , there exists an S ′ such that S �=⇒S S ′ and T �=⇒T� �S ′�.

The definition of operational correspondence relies on the equivalence � to get rid of junk possibly left over within com-
putations of target terms. Sometimes, we refer to the completeness criterion of operational correspondence as operational
completeness and, accordingly, for the soundness criterion as operational soundness.

The next criterion concerns the role of infinite computations in encodings.

Definition 2.14 (Divergence Reflection, [17]). The encoding �·� reflects divergence if, for every source term S , �S� �−→ω
T implies

S �−→ω
S .

The last criterion links the behaviour of source terms to the behaviour of their encodings.

Definition 2.15 (Barb Sensitiveness, [35]). The encoding �·� is barb-sensitive if, for every source term S and every barb y, S⇓y

iff �S�⇓y .

This criterion only links the behaviours of source terms and their literal translations, but not of their derivatives. To
do so, Gorla relates success sensitiveness and operational correspondence by requiring that the equivalence on the target
language � never relates two processes with different success behaviours. Similarly, we require that � respects barbs.

Definition 2.16 (Barb Respecting). � is barb respecting if, for every P and Q and every barb y with P⇓y and Q �⇓y , it holds
that P �� Q .

According to [17] a “good” equivalence � is often defined in the form of a barbed equivalence (as described e.g. in
[26]) or can be derived directly from the reduction semantics and is often a congruence, at least with respect to parallel
composition. For the separation results presented in this paper, we require only that � is a barb respecting reduction
bisimulation.

Since [7] considers an encoding between two typed languages, they use an additional criterion, called type soundness.
It requires that a source term that is well-typed w.r.t. some type environment
 is translated into a target term that is
well-typed w.r.t. the translation of
. We do not explicitly consider this criterion here, because it was already shown in [7]
that it is satisfied for the encoding �·�CMV+

CMV from CMV+ into CMV presented in [7].
Both of the papers [7] and [28] require as additional criterion that the parallel operator is translated homomorphically. As

explained in [28] this criterion was mend to ensure that encodings preserve the degree of distribution in terms. Indeed, [36]
presents an encoding of the π -calculus with mixed choice into the asynchronous π -calculus without choice that respects
all of the above criteria. Requiring that the degree of distribution is preserved is essential for the separation result in [28].
Unfortunately, as explained in [36,33] the homomorphic translation of the parallel operator is rather strict and rules out
encodings that intuitively do preserve the degree of distribution. Because of that, [36,33,39] propose an alternative criterion
10

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
for the preservation of the degree of distribution that we will use here to strengthen our separation results. The encoding
of [7] that we discuss in §5 translates the parallel operator homomorphically.

Intuitively, a distribution of a process means the extraction (or separation) of its (sequential) components and their
association to different locations. In order to formalise the identification of sequential components and following [33,39],
we assume for each process calculus a so-called labelling on the capabilities of processes. As capabilities we denote the
parts of a term that are removed in reduction steps. The capabilities of the π -calculus are the action prefixes, where the
capability of a choice is the conjunction of the prefixes of all its branches—considered as single capability. In CMV+ the
capabilities are the choices and the conditionals. Since CMV replaces the choice construct of CMV+ , the capabilities of CMV
are the outputs, inputs, selections, branching, and conditionals.

The labelling has to ensure that (1) each capability has a label, (2) no label occurs more than once in a labelled term, (3)
a label disappears only when the corresponding capability is reduced in a reduction step, and (4), once it has disappeared, it
will not appear in the execution any more. The last three conditions are called unicity, disappearence, and persistence in [5]
which defines a labelling method to establish such a labelling for processes of the π -calculus. Note that such a labelling can
be derived from the syntax tree of processes possibly augmented with some information about the history of the process,
as it is done in [5]. However, we assume that, once the labelling of a term is fixed, the labels are preserved by the rules of
structural congruence as well as by the reduction semantics of the respective calculus. Because of replication, new subterms
with fresh labels for their capabilities may arise from applications of structural congruence. Since we need the labels only
to distinguish syntactically similar components of a term, and to track them alongside reductions, we do not restrict the
domain of the labels nor the method used to obtain them as long as the resulting labelling satisfies the above properties
for all terms and all their derivatives in the respective calculus. In order not to clutter the development with the details
of labelling, we prefer to argue at the corresponding informal level. More precisely, we assume that all processes in the
following are implicitly labelled. Remember that we need these labels only to distinguish between syntactical equivalent
capabilities, e.g. to distinguish between the left and the right y in y | y.

Since all languages considered in this paper are based on the π -calculus, we can rely on the intuition that the parallel op-
erator splits locations. Accordingly, a process P is distributable into P1, . . . , Pn if and only if we have P ≡ (

ν ỹ
)
(P1 | . . . | Pn)

for P ∈ Pπ or P ≡ (
ν ỹ z̃

)
(P1 | . . . | Pn) for P ∈ PCMV or P ∈ PCMV+ . Since we require that structural congruence preserves

the labels of capabilities, P and P1, . . . , Pn contain the same capabilities and there are no two occurrences of the same
capability in P1, . . . , Pn , i.e., no label occurs twice. If P is distributable into P1, . . . , Pn then we also say that P1, . . . , Pn are
distributable within P .

Preservation of distributability means that the target term is at least as distributable as the source term.

Definition 2.17 (Preservation of Distributability, [39]). An encoding �·� : PS → PT preserves distributability if for every S ∈ PS
and for all terms S1, . . . , Sn ∈PS that are distributable within S there are some T1, . . . , Tn ∈PT that are distributable within �S� such that T i � �S i� for all 1 ≤ i ≤ n.

In essence, this requirement is a distributability-enhanced adaptation of operational completeness. It respects both the
intuition on distribution as separation on different locations—an encoded source term is at least as distributable as the
source term itself—as well as the intuition on distribution as independence of processes and their executions—implemented
by T i � �S i�.

The preservation of distributability completes our set of criteria for encodings.

Definition 2.18 (Good Encoding). We consider an encoding �·� to be good if it (1) is compositional, (2) is name invariant, (3)
satisfies operational correspondence, (4) reflects divergence, (5) is barb-sensitive, and (6) preserves distributability. Moreover
we require that the equivalence � is a barb respecting (weak) reduction bisimulation.

We inherit some of the machinery introduced in [39] to work with distributability. As explained in [39] there are some
calculi such as the join-calculus, for that the parallel operator does not sufficiently reflect distribution. Because of that, [39]
distinguishes between parallel and distributable processes or steps. Since all considered languages in this paper are based on
the π -calculus, in that the parallel operator sufficiently reflects distribution, we do not need to distinguish between parallel
and distributable processes or steps. If a single process can perform two different steps, then we call these steps alternative
to each other, where we identify steps modulo structural congruence. Since every step in the three considered language
reduces exactly one or exactly two capabilities, two steps of one process are different if they do not reduce the same set
of capabilities. Two alternative steps are in conflict, if performing one step disables the other step, i.e., if both reduce the
same capability. Otherwise they are distributable. For instance the reductions on the channels a and b are distributable in
the term a | b | a | b, but they are in conflict in a | b | a + b, because the choice is reduced in both steps. Remember that
two capabilities are the same only if they have the same label. Hence also the reductions in a | a | a | a of the respective left
output/input and right output/input on a are distributable. More precisely, two steps in the π -calculus are in conflict if they
reduce the same choice, two steps in CMV+ are in conflict if they reduce the same choice or the same conditional, and two
steps in CMV are in conflict if they reduce the same output, input, selection prefix, branching prefix, or conditional. Note
that reducing the same choice does not necessarily mean to reduce the same summand in this choice. Distributable steps
are independent, i.e., confluent.
11

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
Lemma 2.19 (Confluence of Distributable Steps). Let P ∈ {
Pπ ,PCMV+ ,PCMV

}
, P , P1, P2 ∈ P , and P �−→ P1 , P �−→ P2 be dis-

tributable. Then there is some P3 ∈P such that P1 �−→ P3 and P2 �−→ P3 , where P1 �−→ P3 reduces exactly the same capabilities in
the same way as P �−→ P2 and P2 �−→ P3 reduces exactly the same capabilities in the same way as P �−→ P1 .

Proof. By induction using structural congruence and the respective reduction rule for parallel composition. �
Accordingly, distributable steps can be applied in any order as described by the confluence lemma above. We lift the

definition of conflict and distributable steps to executions, i.e., sequences of steps.

Definition 2.20 (Distributable Executions). Let 〈P, �−→〉 be a process calculus, P ∈P , and let A and B denote two executions
of P . A and B are in conflict, if a step of A and a step of B are in conflict, else A and B are distributable.

As shown in [33], two executions of a term P are distributable iff P is distributable into two subterms such that each
performs one of these executions.

Lemma 2.21 (Distributable Executions, [33]). Let L = 〈P, �−→〉 be a process calculus, P ∈P , and A1, . . . , An a set of executions of P .
The executions A1, . . . , An are pairwise distributable within P iff P is distributable into P1, . . . , Pn ∈P such that, for all 1 ≤ i ≤ n, Ai
is an execution of P i , i.e., during Ai only capabilities of P i are reduced or removed.

Because of that, an operationally complete encoding is distributability-preserving only if it preserves the distributability
of sequences of source term steps.

Lemma 2.22 (Distributability-Preservation, [39]). An operationally complete encoding �·� : PS → PT that preserves distributability
also preserves distributability of executions, i.e., for all source terms S ∈PS and all sets of pairwise distributable executions of S, there
exists an emulation of each execution in this set such that all these emulations are pairwise distributable in �S�.

3. Separating mixed sessions and the Pi-calculus via leader election

The first expressiveness result on the π -calculus that focuses on mixed choice is the separation result by Palamidessi in
[28,29]. This result uses the problem of leader election in symmetric networks as distinguishing feature. In contrast to [28]
we have to replace the asynchronous π -calculus by CMV+ . The proofs in [28] strongly rely on the absence of choices in the
asynchronous π -calculus, whereas CMV+ does contain choices with arbitrary mixtures of inputs and outputs. Moreover, in
contrast to the π -calculus communication in CMV+ is on restricted names only. Because of that, we can reuse the main
proof strategy of [28] but have to adapt the technical details in the definitions and the proofs.

Following [28] we assume that the set of names N contains names that identify the processes of the network and
that are never used as bound names within electoral systems. For simplicity, we use natural numbers for this kind of
names. A leader is announced by unguarding an output on its id. Then a network P = (

ν x̃
)
(P1 | . . . | Pk) in Pπ or P =(

ν x̃ ỹ
)
(P1 | . . . | Pk) in PCMV+ is an electoral system if in every maximal execution exactly one leader is announced. We adapt

the definition of electoral systems of [28] to obtain electoral systems in the π -calculus and in CMV+ .

Definition 3.1 (Electoral System). A network P = (
ν x̃

)
(P1 | . . . | Pk) in Pπ or a network P = (

ν x̃ ỹ
)
(P1 | . . . | Pk) in PCMV+ is

an electoral system if for every execution E : P �=⇒ P ′ there exists an extension E ′ : P �=⇒ P ′ �=⇒ P ′′ and some n ∈ {1, . . . ,k}
(the leader) such that P ′′′↓n for all P ′′′ with P ′′ �=⇒ P ′′′ , but P ′′ �⇓m for any m ∈ {1, . . . ,k} with m �= n.

Accordingly, an electoral system in the π -calculus announces a leader by unguarding some output on n that cannot be
reduced or removed, where n is the id of the leader. In CMV+ a leader is announced by unguarding a choice on the channel
n. Since n is free this choice cannot be removed. A network is an electoral system if in every maximal execution exactly one
leader n is announced.

We adapt the definition of hypergraphs that are associated to a network of processes in the π -calculus defined in [28]
to networks in CMV+ . The hypergraph connects the nodes 1, . . . , k of the network by edges representing the free channels
that they share, where we ignore the outer restrictions of the network.

Definition 3.2 (Hypergraph). Given a network P = (
ν x̃

)
(P1 | . . . | Pk) in Pπ or a network P = (

ν x̃ ỹ
)
(P1 | . . . | Pk) in PCMV+ ,

the hypergraph associated to P is H(P)= 〈N, X, t〉 with N = {1, . . . ,k}, X = fn(P1 | . . . | Pn) \ N , and t(x) = {n | x ∈ fn(Pn)} for
each x ∈ X .

Because we ignore the outer restrictions of the network in the above definition, the hypergraphs of two structural
congruent networks may be different. However, this is not crucial for our results.
12

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
Given a hypergraph H = 〈N, X, t〉, an automorphism on H is a pair σ = 〈σN ,σX 〉 such that σN : N → N and σX : X →
X are permutations which preserve the type of arcs. For simplicity, we usually do not distinguish between σN and σX
and simply write σ . Moreover, since σ is a substitution, we allow to apply σ on terms P , denoted as Pσ . The orbit
Oσ (n) of n ∈ N generated by σ is defined as the set of nodes in which the various iterations of σ map n, i.e., Oσ (n) ={
n,σ (n), . . . ,σ h−1(n)

}
, where σ i represents the composition of σ with itself i times and σ h = id. We also adapt the notion

of a symmetric system of [28] to obtain symmetric systems in the π -calculus as well as in CMV+ .

Definition 3.3 (Symmetric System). Consider a network P = (
ν x̃

)
(P1 | . . . | Pk) in Pπ or a network P = (

ν x̃ ỹ
)
(P1 | . . . | Pk) in

PCMV+ , and let σ be an isomorphism on its associated hypergraph H(P)= 〈N, X, t〉. P is symmetric w.r.t. σ iff Pσ (i) ≈π P iσ
or Pσ (i) ≈CMV+ P iσ for each node i ∈ N . P is symmetric if it is symmetric w.r.t. all the automorphisms of H(P).

In contrast to [28] we use bisimilarity—≈π and ≈CMV+—instead of alpha conversion in the definition of symmetry. With
this weaker notion of symmetry, we compensate for the weaker criterion on distributability that we use instead of the
homomorphic translation of the parallel operator. Accordingly, we also consider networks as symmetric if they behave in a
symmetric way; they do not necessarily need to be structurally symmetric.

In the π -calculus we find symmetric electoral systems for many kinds of hypergraphs. We use such a solution of leader
election in a network with five nodes as counterexample to separate CMV+ from the π -calculus.

Example 3.4 (Leader Election in the π -Calculus). Consider the network

SLE
π = (νa,b, c,d, e, v, w, x, y, z) (S1 | S2 | S3 | S4 | S5)

where S1 = e + a.
(
x+ v.1

)
, S2 = a+ b.

(
y + w.2

)
, S3 = b+ c.

(
z+ x.3

)
, S4 = c + d.

(
v + y.4

)
, and S5 = d+ e.

(
w + z.5

)
. �

1
a v

2
b w

3
c x

4
d y

5
e z

e a

b

c

d

x

y

z

v

w

SLE
π is symmetric. Consider e.g. the permutation σ that permutes the channels as

follows: a → b → c → d → e → a, v → w → x → y → z → v , and 1 → 2 → 3 → 4 →
5 → 1. Then Sσ (i) = S iσ for all i ∈ {1, . . . ,5}. The network elects a leader in two stages.
The first stage (depicted as blue circle) uses mixed choices on the channels a, b, c, d, e;
in the second stage (depicted as a red star) we have mixed choices on the channels
v, w, x, y, z. (For interpretation of the references to colour please refer to the web ver-
sion of this article.) The picture on the right gives H

(
SLE

π

)
extended by arrow heads to

visualise the direction of interactions and the respective action prefixes. The senders in
the two stages are losing the leader election game, i.e., are not becoming the leader. In
the first stage two processes can be receivers and continue with the second stage. The
process that is neither sender nor receiver in the first stage is stuck and also loses. The receiver of the second stage then
becomes the leader by unguarding an output on its id. The channels used by SLE

π in its two stages are summarised in the
tabular:

Process ID 1 2 3 4 5
Input in First Stage a b c d e
Input in Second Stage v w x y z

Let ñ= a, b, c, d, e, v, w, x, y, z. The network SLE
π has 10 maximal executions (modulo structural congruence):

SLE
π �−→ (

νñ
)(

x+ v.1 | S3 | S4 | S5
) �−→ (

νñ
)(

x+ v.1 | z+ x.3 | S5
) �−→ 3 | (νñ

)
S5 ��−→

SLE
π �−→ (

νñ
)(

x+ v.1 | S3 | S4 | S5
) �−→ (

νñ
)(

x+ v.1 | S3 | v + y.4
) �−→ 1 | (νñ

)
S3 ��−→

SLE
π �−→ (

νñ
)(

S1 | y + w.2 | S4 | S5
) �−→ (

νñ
)(

S1 | y + w.2 | v + y.4
) �−→ 4 | (νñ

)
S1 ��−→

SLE
π �−→ (

νñ
)(

S1 | y + w.2 | S4 | S5
) �−→ (

νñ
)(

y + w.2 | S4 | w + z.5
) �−→ 2 | (νñ

)
S4 ��−→

SLE
π �−→ (

νñ
)(

S1 | S2 | z+ x.3 | S5
) �−→ (

νñ
)(

x+ v.1 | z+ x.3 | S5
) �−→ 3 | (νñ

)
S5 ��−→

SLE
π �−→ (

νñ
)(

S1 | S2 | z+ x.3 | S5
) �−→ (

νñ
)(

S2 | z+ x.3 | w + z.5
) �−→ 5 | (νñ

)
S2 ��−→

SLE
π �−→ (

νñ
)(

S1 | S2 | S3 | v + y.4
) �−→ (

νñ
)(

x+ v.1 | S3 | v + y.4
) �−→ 1 | (νñ

)
S3 ��−→

SLE
π �−→ (

νñ
)(

S1 | S2 | S3 | v + y.4
) �−→ (

νñ
)(

S1 | y + w.2 | v + y.4
) �−→ 4 | (νñ

)
S1 ��−→

SLE
π �−→ (

νñ
)(

S2 | S3 | S4 | w + z.5
) �−→ (

νñ
)(

y + w.2 | S4 | w + z.5
) �−→ 2 | (νñ

)
S4 ��−→

SLE
π �−→ (

νñ
)(

S2 | S3 | S4 | w + z.5
) �−→ (

νñ
)(

S2 | z+ x.3 | w + z.5
) �−→ 5 | (νñ

)
S2 ��−→

These executions can be obtained from the first execution in the above list by symmetry on the first two steps. In each
maximal execution exactly one leader is elected.
13

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
We show that there exists no symmetric electoral system for networks of size five in CMV+; or more generally no
symmetric electoral system for networks of odd size in CMV+ . We discuss the relevance of odd sizes of networks after
the proof of Lemma 3.6. A key ingredient to separate the π -calculus with mixed choice from the asynchronous π -calculus
in [28] is a confluence lemma. It states that in the asynchronous π -calculus a step reducing an output and an alternative
step reducing an input cannot conflict with each other and thus can be executed in any order. In the full π -calculus this
confluence lemma is not valid, because inputs and outputs can be combined within a single choice construct and can thus
be in conflict. For CMV+ we observe that steps that reduce different endpoints can also not be in conflict to each other,
because different channel endpoints cannot be combined in a single choice.

Lemma 3.5 (Confluence). Let P , Q ∈PCMV+ . Assume that A = (
ν x̃ ỹ

)
(P | Q) can make two steps A �−→ (ν x̃1 ỹ1)(P1 | Q 1)= B and

A �−→ (ν x̃2 ỹ2)(P2 | Q 2)= C such that P1 is obtained modulo ≡ from P by reducing a choice on channel endpoint a and P2 is obtained
modulo ≡ from P by reducing a choice on channel endpoint b with a �= b. Then there exist P3, Q 3 ∈PCMV+ and D = (ν x̃3 ỹ3)(P3 | Q 3)

such that B �−→ D and C �−→ D, where x̃3 = x̃1 ∪ x̃2 and ỹ3 = ỹ1 ∪ ỹ2 .

Proof. Assume the two steps A �−→ B and A �−→ C as described above. By Fig. 2, the steps A �−→ B and A �−→ C imply that
P contains at least two choices, one on channel a and one on channel b, that are modulo structural congruence combined
in parallel (possibly surrounded by restrictions). Since the choice on a (or b) is the only choice reduced in P , another choice
on the matching endpoint is reduced in Q . Regardless of whether a and b are matching endpoints or not, we obtain with
the same kind of reasoning that also Q contains at least two choices, one on the channel endpoint that matches a and one
on the channel endpoint that matches b, that are modulo structural congruence combined in parallel (possibly surrounded
by restrictions). We conclude that the two steps of A = (

ν x̃ ỹ
)
(P | Q) are distributable. By Lemma 2.19, then these two steps

can be executed in any order as required. �

A

B

C

D

The proof of this confluence lemma relies on the observation that the two steps of A to B
and C have to reduce distributable parts of A. Then these two steps are distributable, which in
turn allows us to perform them in any order. Thus the expressive power of choice in CMV+ is
limited by the fact that syntactically the choice construct is fixed on a single channel endpoint.
With this alternative confluence lemma, we can show that there is no electoral system of odd
degree in CMV+ .

Lemma 3.6 (No Electoral System). Consider a network P = (
ν x̃ ỹ

)
(P1 | . . . | Pk) in CMV+ with k > 1 being an odd number. Assume

that the associated hypergraph H(P) admits an automorphism σ �= id with only one orbit, and that P is symmetric w.r.t. σ . Then P
cannot be an electoral system.

Proof. Assume by contradiction that P is an electoral system. We will show that we can then construct a potentially
infinite execution E : P �=⇒ P 0 �=⇒ P 1 �=⇒ . . . such that, for each j, E j : P �=⇒ P j does not announce a unique leader
and P j is still symmetric w.r.t. σ j , where σ j is the original automorphism enriched with associations on the new names
possibly introduced by the communication actions. This is a contradiction, because the limit of this sequence is an infinite
computation for P which does not announce exactly one leader.

The proof is by induction on the current length, denoted by h, of the potentially infinite symmetric execution we have to
construct. Notice that the assumption of σ generating only one orbit implies that Oσ (i)= {

i,σ (i), . . . ,σ k−1(i)
}= {1, . . . ,k},

for each i ∈ {1, . . . ,k}. Since σ j is obtained from σ by adding substitutions on restricted names and since 1, . . . , k are not
used as bound names in electoral systems, the same holds for all the σ j .

Base Case (h = 0): Define E0 to be the empty execution, i.e., E0 : P �=⇒ P 0 with P 0 = P .
Induction Step (h+ 1): Given Eh : P �=⇒ P h = (ν x̃h ỹh)

(
P h

1 | . . . | P h
k

)
, we construct Eh+1 : P �=⇒ P h+1 as follows.

If P h announces a leader i, then P h↓i for some 1 ≤ i ≤ k. By symmetry, then P h⇓σ (i) , i.e., more than one leader
is announced. This is a contradiction.

Since P is an electoral system but P h does not yet announce a leader, P h has to be able to reduce, i.e., there
is some P ′ such that P h �−→ P ′ . This step was performed by one or two of the processes in the network, i.e.,
either P h

i �−→ P ′i and P ′ = (ν x̃h ỹh)
(

P h
1 | . . . | P ′i | . . . | P h

k

)
or (ν x̃h ỹh)

(
P h

i | P h
j

)
�−→ (

ν x̃h,1 ỹh,1
)(

P i,1 | P j,1
)

and P ′ =(
ν x̃h,1 ỹh,1

)(
P h

1 | . . . | P i,1 | . . . | P j,1 | . . . | P h
k

)
with i �= j.

P h
i �−→P ′i : Regardless of whether the step P h

i �−→ P ′i reduces a conditional or performs a communication within
part i of the network, symmetry ensures that the other parts of the network can perform a se-
quence of steps that leads to a state symmetric to P ′i . We choose P h+1

i = P ′i . By symmetry, P h
σh(i) �=⇒

P h+1
σh(i), . . . , P

h
k−1 �=⇒ P h+1

k−1 with P h+1
i σh ≈CMV+ P h+1

σh(i), . . . , P
h+1
i σ k−1

h ≈CMV+ P h+1
k−1 . Since the steps
σh (i) σh (i) σh (i)

14

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
of the different parts of the network are distributable, we obtain Eh+1 : P �=⇒ P h �=⇒ P h+1 , where
P h+1 = (ν x̃h ỹh)

(
P h+1

1 | . . . | P h+1
k

)
and P h+1 is still symmetric w.r.t. σh+1 = σh .

(ν x̃h ỹh)
(

P h
i | P h

j

)
�−→(

ν x̃h,1 ỹh,1
)(

P i,1 | P j,1
)
: Let us denote this sequence of one step by S1 . A step performed by

two processes of the network (in CMV+) is a communication. By Fig. 2, S1 reduces a choice on some
endpoint a in P h

i and a choice on some endpoint b in P h
j such that a and b are matching endpoints of

the same channel and thus a �= b. By symmetry,

S2 : (ν x̃h ỹh)
(

P h
σh(i) | P h

σh(j)

) �=⇒ (
ν x̃h,2 ỹh,2

)(
Pσh(i),2 | Pσh(j),2

)
...

Sk : (ν x̃h ỹh)

(
P h

σ k−1
h (i)

| P h
σ k−1

h (j)

)
�=⇒ (

ν x̃h,k ỹh,k
)(

P
σ k−1

h (i),k | P
σ k−1

h (j),k

)
,

where we apply α-conversion to ensure that the pairwise intersection of elements in x̃h,1, . . . , ̃xh,k is
always x̃h and similarly the pairwise intersection of elements in ỹh,1, . . . , ̃yh,k is always ỹh . In the se-
quences of steps S1, . . . , Sk each component of the network is used exactly twice to reduce a choice
on endpoints σm

h (a) and σ n
h (b) for some m, n ∈ {0, . . . ,k− 1} with m �= n. Since σh is an automor-

phism with only one orbit and since k is odd, σm
h (a) �= σ n

h (b) for all such cases. By repeatedly applying
Lemma 3.5, then we can perform S1, . . . , Sk in sequence, i.e., there are some P h+1

1 , . . . , P h+1
k such that

Eh+1 : P �=⇒ P h �=⇒ P h+1 = (
ν x̃h+1 ỹh+1

)(
P h+1

1 | . . . | P h+1
k

)
, where x̃h+1 is the union of x̃h,1, . . . , ̃xh,k ,

similarly ỹh+1 is the union of ỹh,1, . . . , ̃yh,k , the sequence P h �=⇒ P h+1 is obtained from S1, . . . , Sk , and
we apply scope extrusion and the Rule (R-Struct) to push restrictions to the outside. Let σh+1 be the
automorphism obtained from σh by adding permutations for the names in x̃h+1 \ x̃h and ỹh+1 \ ỹh . Then
P h+1

σh+1(i) ≈CMV+ P h+1
i σh+1 , because P h is symmetric and in P h �=⇒ P h+1 each component of the network

is used exactly twice to reduce a choice on endpoints σm
h (a) and σ n

h (b) for some m, n ∈ {0, . . . ,k− 1}
with m �= n such that P h

σh(i) �=⇒ P h+1
σh+1(i), . . . , P

h
σ k−1

h (i)
�=⇒ P h+1

σ k−1
h+1 (i)

. Thus P h+1 is still symmetric w.r.t.
σh+1 . �

In the proof we construct a potentially infinite sequence of steps such that the system constantly restores symmetry,
i.e., whenever a step destroys symmetry we can perform a sequence of steps that restores the symmetry. Therefore we
rely on the assumption of σ generating only one orbit. This implies that Oσ (i)= {

i,σ (i), . . . ,σ k−1(i)
}= {1, . . . ,k}, for each

i ∈ {1, . . . ,k}. Because of that, whenever part i performs a step that destroys symmetry or parts i and j together perform a
step that destroys symmetry, the respective other parts of the originally symmetric network can perform symmetric steps to
restore the symmetry of the network. Because of the symmetry, the constructed sequence of steps does not elect a unique
leader. Accordingly, the existence of this sequence ensures that P is not an electoral system.

In contrast to [28], the above lemma is for networks of odd degree. This is necessary to ensure that in the last case of
the proof the mentioned σm

h (a) and σ n
h (b) reduced by a component of the network are distinct such that we can apply

our confluence property of Lemma 3.5, which in turn ensures that we can always perform a sequence of steps to restore
symmetry after the step that destroys the symmetry.

By the preservation of distributability, encodings preserve the structure of networks; and by name invariance, they also
preserve the symmetry of networks. With operational correspondence and barb-sensitiveness, any good encoding of SLE

π is
again a symmetric electoral system of size five, since the combination of these two criteria allows to distinguish between
an electoral system and a system that does not elect exactly one leader in every maximal execution. Since by Lemma 3.6
this is not possible, we can separate CMV+ from the π -calculus by using SLE

π from Example 3.4 as counterexample.

Theorem 3.7 (Separate CMV+ from the π -Calculus via Leader Election). There is no good encoding from the π -calculus into CMV+ .

Proof. Assume the contrary, i.e., there is a good encoding �·� from the π -calculus into CMV+ with the renaming policy ϕ .
Then this encoding translates SLE

π in Example 3.4. By Definition 2.17,�
SLE

π

�
≡ (

ν ỹ z̃
)(

Tϕ(1) | Tϕ(2) | Tϕ(3) | Tϕ(4) | Tϕ(5)

)
such that Tϕ(i) � �S i� for all i ∈ {1, . . . ,5}. Remember that SLE

π is symmetric. Below Example 3.4 we present an ex-
ample for a permutation σ , but here we consider all automorphisms of H

(
SLE

π

)
. For all such automorphisms σ we

have Sσ (i) = S iσ for all i ∈ {1, . . . ,5}. Fix σ , i.e., let σ be an arbitrary such automorphism, and let σ ′ be such that
ϕ(σ (a)) = σ ′(ϕ(a)) for all a ∈ N . Then σ ′ is a permutation (on translated source term names). By Definition 2.12, then
Tσ ′(ϕ(i)) = Tϕ(σ (i)) � �Sσ (i)� = �S iσ � � �S i�σ ′ � Tϕ(i)σ

′ for all i ∈ {1, . . . ,5}. Since � is a barb respecting weak reduction
15

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
bisimulation (Definition 2.18), then Tσ ′(ϕ(i)) ≈CMV+ Tϕ(i)σ
′ for all i ∈ {1, . . . ,5} i.e.,

�
SLE

π

�
is symmetric. By the combination

of Definition 2.13 and Definition 2.15,
�

SLE
π

�
is an electoral system, because every maximal execution has to be emulated

with the same reachable barbs. Then
�

SLE
π

�
is a symmetric electoral system of size five. This contradicts Lemma 3.6. We

conclude that there is no good encoding from the π -calculus into CMV+ . �
4. Separating mixed sessions and the Pi-calculus via synchronisation pattern

e

d

c

ba

In [39] the technique used in [28] and its relation to synchronisation are analysed. Two syn-
chronisation patterns, the pattern M and the pattern �, are identified that describe two different
levels of synchronisation and allow to more clearly separate languages along their ability to
express synchronisation. These patterns are called M and �, because their respective represen-
tations as a Petri net (see left and right picture) have these shapes. The pattern � captures the
power of synchronisation of the π -calculus. In particular it captures what is necessary to solve
the leader election problem.

a b c

The pattern M captures a very weak form of synchronisation, not enough to solve leader election
but enough to make a fully distributed implementation of languages with this pattern difficult (see
also [38]). This pattern was originally identified in [11] when studying the relevance of synchrony
and distribution on Petri nets. As shown in [33,39], the ability to express these different amounts
of synchronisation in the π -calculus lies in its different forms of choices: to express the pattern �
the π -calculus needs mixed choice, whereas separate choice allows to express the pattern M. Again

we have to adapt the proof technique presented in [39] to CMV+ . Indeed we find the pattern M in CMV+ , but there are no
� in CMV+ .

We inherit the definition of the synchronisation pattern M from [39], where we do not distinguish between local and
non-local M since in the π -calculus there is no difference between parallel and distributable steps.

Definition 4.1 (Synchronisation Pattern M). Let 〈P, �−→〉 be a process calculus and PM ∈P such that:

1. PM can perform at least three alternative steps a: PM �−→ Pa , b: PM �−→ Pb , and c: PM �−→ Pc such that Pa , Pb , and Pc

are pairwise different.
2. The steps a and c are parallel/distributable in PM .
3. But b is in conflict with both a and c.

In this case, we denote the process PM as M.

There are occurrences of the pattern M in CMV+ as for instance the next example.

Example 4.2 (The M in CMV+). Consider the term PCMV+
M and the types T1⊥ T2 given as:

PCMV+
M = (νxy)(lin x (l!true.P1 + l?z.P2) | lin x (l!false.P3 + l?z.P4) |

lin y (l?z.P5 + l!true.P6) | lin y (l?z.P7 + l!false.P8))

T1 = un⊕{
l!bool.T1,1, l?bool.T1,2

}
T2 = un&

{
l?bool.T2,1, l!bool.T2,2

} �
The process PCMV+

M is a M in CMV+:

PCMV+
M = (νxy)(

location 1

lin x (l!true.P1 + l?z.P2)

lin y (l?z.P5 + l!true.P6)

|
|

location 2

lin x (l!false.P3 + l?z.P4)

lin y (l?z.P7 + l!false.P8)

|
)

For instance we can pick the steps a, b, and c as:

Step a: PCMV+
M �−→ (νxy) (P1 | lin x (l!false.P3 + l?z.P4) | P5{true/z} | lin y (l?z.P7 + l!false.P8))

Step b: PCMV+
M �−→ (νxy) (P1 | lin x (l!false.P3 + l?z.P4) | lin y (l?z.P5 + l!true.P6) | P7{true/z})

Step c: PCMV+
M �−→ (νxy) (lin x (l!true.P1 + l?z.P2) | P3 | lin y (l?z.P5 + l!true.P6) | P7{false/z})

Step a reduces in location 1 and step c in location 2. Since these two locations are composed in parallel, the steps a and c
are parallel/distributable. Step b reduces on channel x in location 1 and on channel y in location 2. Thereby, it is in conflict
with step a and step c. Step b disables a and c by consuming a capability the respective other step needs.
16

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
The process PCMV+
M with P1 = . . .= P8 = 0 and T1,1 = T1,2 = T2,1 = T2,2 = end is well-typed:

D =
D1 D2 D3 D4

x : T1, y : T2 � . . .
(T-ParCMV+)

� PCMV+
M

(T-ResCMV+)

D1 =
x : end, y : T2 � true : bool

(T-TrueCMV+) D1,1

x : end, y : T2 � l!true.0 : l!bool.end
(T-OutCMV+) D1,2

x : T1, y : T2 � lin x (l!true.0+ l?z.0)
(T-ChoiceCMV+)

D1,1 =
x : end, y : T2 � 0

(T-InactCMV+)

D1,2 = x : end, y : T2, z : bool � 0
(T-InactCMV+)

x : end, y : T2 � l?z.0 : l?bool.end
(T-InCMV+)

where the derivations of D2 , D3 , and D4 are similar to the derivation of D1:

D2 =
x : end, y : T2 � false : bool

(T-FalseCMV+) D1,1

x : end, y : T2 � l!false.0 : l!bool.end
(T-OutCMV+) D1,2

x : T1, y : T2 � lin x (l!false.0+ l?z.0)
(T-ChoiceCMV+)

D3 =
D3,1

x : T1, y : end � true : bool
(T-TrueCMV+) D3,2

x : T1, y : end � l!true.0 : l!bool.end
(T-OutCMV+)

x : T1, y : T2 � lin y (l?z.0+ l!true.0)
(T-ChoiceCMV+)

D3,1 = x : T1, y : end, z : bool � 0
(T-InactCMV+)

x : T1, y : end � l?z.0 : l?bool.end
(T-InCMV+)

D3,2 =
x : T1, y : end � 0

(T-InactCMV+)

D4 =
D3,1

x : T1, y : end � false : bool
(T-FalseCMV+) D3,2

x : T1, y : end � l!false.0 : l!bool.end
(T-OutCMV+)

x : T1, y : T2 � lin y (l?z.0+ l!false.0)
(T-ChoiceCMV+)

We also inherit the definition of the synchronisation pattern � from [39] without distinguishing parallel and distributable
steps.

Definition 4.3 (Synchronisation Pattern �). Let 〈P, �−→〉 be a process calculus and P� ∈P such that:

• P� can perform at least five alternative reduction steps i : P� �−→ P i for i ∈ {a,b, c,d, e} such that the P i are pairwise
different;

• the steps a, b, c, d, and e form a circle such that a is in conflict with b, b is in conflict with c, c is in conflict with d, d
is in conflict with e, and e is in conflict with a; and

• every pair of steps in {a,b, c,d, e} that is not in conflict due to the previous condition is distributable in P� .

In this case, we denote the process P� as �.

In contrast to CMV+ we do find � in the π -calculus.

Example 4.4 (The � in the π -Calculus). Consider the following � in the π -calculus:

S�
π = a+ b.ob | b+ c.oc | c + d.od | d+ e.oe | e + a.oa

The steps a, . . . , e of Definition 4.3 are the steps on the respective channels.

Step a: S�
π �−→ Sa with Sa = b+ c.oc | c + d.od | d+ e.oe | oa ,

Step b: S�
π �−→ Sb with Sb = ob | c + d.od | d+ e.oe | e + a.oa ,

Step c: S�
π �−→ Sc with Sc = a+ b.ob | oc | d+ e.oe | e + a.oa ,

Step d: S�
π �−→ Sd with Sd = a+ b.ob | b+ c.oc | od | e + a.oa

Step e: S�
π �−→ Se with Se = a+ b.ob | b+ c.oc | c + d.od | oe
17

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
The different outputs ox allow to distinguish between the different steps by their observables. �
We use the � S�

π as counterexample to show that there is no good encoding from the π -calculus into CMV+ . From
Lemma 3.6 we learned that CMV+ cannot express certain electoral systems. Accordingly, we are not surprised that CMV+
cannot express the pattern �.

Lemma 4.5. There are no � in CMV+ .

Proof. Assume the contrary, i.e., assume that there is a term P�
CMV+ in CMV+ that is a �. Then P�

CMV+ can perform at least
five alternative reduction steps a, b, c, d, e such that neighbouring steps in the sequence a, b, c, d, e, a are pairwise in conflict
and non-neighbouring steps are distributable. Since steps reducing a conditional cannot be in conflict with any other step,
none of the steps in {a,b, c,d, e} reduces a conditional. Then all steps in {a,b, c,d, e} are communication steps that reduce
an output and an input that both are part of choices (with at least one summand). Because of the conflict between a and b,
these two steps reduce the same choice but this choice is not reduced in c, because a and c are distributable.

C5

b

C4

a

C3

e C2

d

C1

c

By repeating this argument, we conclude that in the steps a, b, c, d, e five choices
C1, . . . , C5 are reduced as depicted on the right, where e.g. the step a reduces the choices
C1 and C2 . By the reduction semantics of CMV+ , the two choices C1 and C2 that are reduced
in step a need to use dual endpoints of the same channel. Without loss of generality, assume
that C1 is on channel endpoint x and C2 is on channel endpoint y. Then the choice C3 needs
to be on channel endpoint x again, because step b reduces C2 (on y) and C3 . By repeating this
argument, then C4 is on y and C5 is on x. But then step e reduces two choices C1 and C5 that
are both on channel endpoint x. Since the reduction semantics of CMV+ does not allow such a step, this is a contradiction.

We conclude that there are no � in CMV+ . �
The proof of the above lemma tells us more about why choice in CMV+ is limited. From the confluence property in

CMV+ we get the hint that the problem is the restriction of choice to a single channel endpoint. A � is a circle of steps
of odd degree, where neighbouring steps are in conflict. More precisely, the star with five points in � is the smallest cycle
of steps where neighbouring steps are in conflict and that contains non-neighbouring distributable steps. The proof shows
that the limitation of choice to a single channel endpoint and the requirement of the semantics that a channel endpoint can
interact with exactly one other channel endpoint causes the problem. This also explains why Lemma 3.6 considers electoral
systems of odd degree, because the odd degree does not allow to close the cycle as explained in the proof above. Indeed,
if we change the syntax to allow mixed choice with summands on more than one channel, we obtain the mixed-choice-
construct of the π -calculus. Similarly, we invalidate our separation result in the Theorems 3.7 and 4.8, if we change the
semantics to allow two choices to communicate even if they are on the same channel. The latter may be more surprising,
but indeed we do not need more than a single channel to solve leader election and build �, e.g. S�

π remains a star if we
choose a = b = c = d = e (though we might want to pick different names oa, . . . , oe to be able to distinguish the steps).

We use S�
π in Example 4.4 as counterexample to separate the π -calculus from CMV+ in Theorem 4.8 below. We prove

first that the conflicts in the source term S�
π have to be translated into conflicts of the corresponding emulations.

Lemma 4.6. Any good encoding �·� from the π -calculus into CMV+ has to translate the conflicts in S�
π given in Example 4.4 into

conflicts of the corresponding emulations.

Proof. By operational completeness, all five steps of S�
π have to be emulated in �S�

π �, i.e., there exist some Ta, Tb, Tc, Td,

Te ∈PCMV+ such that �S�
π � �=⇒ Tx � �Sx� for all x ∈ {a,b, c,d, e}. Because �·� preserves distributability, for each pair of steps

x and y that are parallel in S�
π , the emulations X : �S�

π � �=⇒ Tx and Y : �S�
π � �=⇒ T y such that Tx � �Sx� and T y � �S y� are

distributable. Note that X and Y refer to the upper case variants of x and y, respectively.
Consider each triple of steps x, y, z ∈ {a,b, c,d, e} in S�

π such that y is in conflict with x and z but x and z are parallel.
Since �·� as well as � respect barbs, Tx⇓ox , Tx �⇓oy , T y �⇓ox , T y⇓oy , T y �⇓oz , T z �⇓oy , T z⇓oz , and thus Tx �� T y �� T z . We conclude
that, for all Tx, T y, T z ∈ PCMV+ such that Tx � �Sx�, T y � �S y�, and T z � �Sz� and for all sequences X : �S�

π � �=⇒ Tx , Y :�S�
π � �=⇒ T y , and Z : �S�

π � �=⇒ T z , there is a conflict between a step of X and a step of Y , and there is a conflict between a
step of Y and a step of Z . �

Then we show that each good encoding of the counterexample S�
π has to distribute one of its conflicts.

Lemma 4.7. Any good encoding �·� from the π -calculus into CMV+ has to split up at least one of the conflicts in S�
π given by Exam-

ple 4.4 such that there exists a maximal execution in �S�
π � that emulates only one source term step.

The proof of Lemma 4.7 is similar to the respective proof in [33,39] and can be found for the current case in the
Appendix A. Its main idea is as follows: Because of operational completeness, the preservation of distributability, and
Lemma 4.6, the five steps of the � in S�

π has to be translated into five sequences of steps with the same requirements
18

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
on conflicts and distributability. By Lemma 4.5 the conflicts between these sequences cannot be ruled out by a single step
in each sequence. Then at least one of these sequences, say Y , uses two different steps to build the conflicts with its re-
spective neighbouring sequences X and Z . These two steps have to be distributable. Then there is a maximal execution that
rules out all three sequences X, Y , Z and thus emulates only one source term step.

Since each maximal execution of S�
π given by Example 4.4 consists of exactly two distributable steps, Lemma 4.7 violates

the requirements on a good encoding.

Theorem 4.8 (Separate CMV+ and the π -Calculus via �). There is no good and distributability preserving encoding from the π -
calculus into CMV+ .

Proof. Assume the opposite, i.e., there is a good encoding �·� from the π -calculus into CMV+ , and, thus, also of S�
π given by

Example 4.4. By Lemma 4.7 there exists a maximal execution in �S�
π � in which only one source term step is emulated. Let

us denote this step by x ∈ {a,b, c,d, e}, i.e., there is a maximal execution X : �S�
π � �=⇒ Tx �=⇒ . . . with Tx � �Sx� in that only

step x is emulated. Moreover, because �·� is operationally corresponding and respects barbs and because no other source
term step is emulated, Tx↓ox but Tx �⇓oy for any y ∈ {a,b, c,d, e} with x �= y. Since for every S ′ with S�

π �=⇒ S ′ there are at
least two i ∈ {a,b, c,d, e} such that S ′⇓oi

, the execution X violates the combination of the criteria operational soundness
and that �·� respects barbs. We conclude that there cannot be such an encoding. �
5. Encoding mixed sessions into separate choice

In [7, §7] an encoding of mixed sessions (CMV+) into the variant of this session type system CMV with only separate
choice (branching and selection) is presented. The proof of soundness of this encoding is missing in [7]. They suggest to
prove soundness modulo “a weak form of bisimulation”. As discussed below, the soundness criterion used in [7] needs to
be corrected first. Prior to this discussion, we present the encoding �·�CMV+

CMV from CMV+ into CMV of [7].

To describe the encoding function �·�CMV+
CMV we reorder choices q y

∑
h∈H Mh into their respective send and receive actions

for the same label

q y
∑
i∈I

⎛⎝∑
j∈Ji

li !v i, j .P i, j +
∑
k∈Ki

li?xi,k.P
′
i,k

⎞⎠
where i ∈ I is used to range over labels and for each label li the indices j ∈ Ji iterate over send branches and k ∈ Ki iterate
over receive branches with this label.

The paper [7] does not explicitly mention a renaming policy, but for the encoding to work properly, we need the names
c, d and u, v to be fresh. To increase readability, we omit the renaming policy and instead assume that c, d, u, v are different
from all source term names. A renaming policy can implement this freshness property. Therefore, assume a renaming policy
ϕCMV+

CMV (·) that does not split names, i.e., translates a source term name by a single target term name, but that reserves the
names c, d, u, v such that ϕCMV+

CMV (y)∩ {c,d, u, v} = ∅ for all source term names y. Then replace all names n in target terms
except c, d, u, v by ϕCMV+

CMV (n).1.
We call terms junk if they are stuck and do not emit barbs, i.e., we can ignore the junk. In particular, junk is invisible

modulo ≈CMV .
The encoding �·�CMV+

CMV of [7] is then given by the Figs. 6 and 7. It relies on the predicate NDC, i.e., a non-deterministic
choice

NDC{P i}i∈I = (νst)

(
s � {li : P i}i∈I |

∏
i∈I

t � li .0

)
introduced in [7] for CMV to non-deterministically choose one process from the set {P i}i∈I in a single reduction step. Let
1 ≤ j ≤ n. Then choosing option j we obtain

NDC{P i}i∈I �−→ P j | (νst)

⎛⎝ ∏
i∈I\{ j}

t � li .0

⎞⎠
where (νst)

(∏
i∈I\{ j} t � li .0

)
remains as junk. Then [7] extend structural congruence ≡ of CMV to ≡gc by adding the rule

(ν yz)

(∏
i∈I

y � li .0

)
≡gc 0
19

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
	

 � lin y

∑
i∈I

⎛⎝∑
j∈Ji

li !v i, j.P i, j +
∑
k∈Ki

li?xi,k.P
′
i,k

⎞⎠�
�

CMV+

CMV

=

NDC

{
y � li,!.NDC

{
y!v i, j.

�

4 � P i, j

�CMV+
CMV

}
j∈Ji

,

y � li,?.NDC

{
lin y?xi,k.

�(

2 + y : U ′

i

)
, xi,k : T ′i � P ′i,k

�CMV+

CMV

}
k∈Ki

}
i∈I

where
 =
1 ◦
2 ,
1 � y : lin⊕{
li !T i .U i, li?T ′i .U

′
i

}
i∈I ,
2 + y : U i =
3 ◦
4 , and
3 � v i, j : T i .

	

 � lin y

∑
i∈I

⎛⎝∑
j∈Ji

li !v i, j.P i, j +
∑
k∈Ki

li?xi,k.P
′
i,k

⎞⎠�
�

CMV+

CMV

=

y �
{

li,? : NDC
{

y!v i, j.
�

4 � P i, j

�CMV+
CMV

}
j∈Ji

,

li,! : NDC

{
lin y?xi,k.

�
(
2 + y : U i), xi,k : T i � P ′i,k

�CMV+

CMV

}
k∈Ki

}
i∈I

where
 =
1 ◦
2 ,
1 � y : lin&
{

li !T i .U i, li?T ′i .U
′
i

}
i∈I ,
2 + y : U ′

i =
3 ◦
4 , and
3 � v i, j : T ′i .

	

 � lin y

∑
i∈I

⎛⎝∑
j∈Ji

li !v i, j.P i, j +
∑
k∈Ki

li?xi,k.P
′
i,k

⎞⎠�
�

CMV+

CMV

=

NDC

{
(νcd)

(
y!c.d � li,!.NDC

{
d!v i, j.

�

 � P i, j

�CMV+
CMV

}
j∈Ji

)
,

(νcd)

(
y!c.d � li,?.NDC

{
lin d?xi,k.

�

, xi,k : T ′i � P ′i,k

�CMV+

CMV

}
k∈Ki

)}
i∈I

where
 un,
 � y :μt.un⊕{
li !T i .t, li?T ′i .t

}
i∈I , and
 � v i, j : T i .

	

 � lin y

∑
i∈I

⎛⎝∑
j∈Ji

li !v i, j.P i, j +
∑
k∈Ki

li?xi,k.P
′
i,k

⎞⎠�
�

CMV+

CMV

=

lin y?c.c �
{

li,? : NDC
{

c!v i, j .
�

 � P i, j

�CMV+
CMV

}
j∈Ji

,

li,! : NDC

{
lin c?xi,k.

�

, xi,k : T i � P ′i,k

�CMV+

CMV

}
k∈Ki

}
i∈I

where
 un,
 � y :μt.un&
{

li !T i .t, li?T ′i .t
}

i∈I , and
 � v i, j : T ′i .

Fig. 6. The Encoding �·�CMV+
CMV from CMV+ into CMV from [7] (Part I).

to garbage collect this kind of junk. This relation is used in [7] to prove completeness of the encoding �·�CMV+
CMV . For soundness

we need something less restrictive, because the encoding allows the translation of an unrestricted choice to perform a step
even if the original unrestricted choice in the source cannot be reduced (see [7]). As suggested we use ≈CMV (as definition
in Definition 2.3), i.e., a form of weak reduction barbed bisimilarity that we simply call bisimilarity in the following.

To prepare for the soundness proof, we show that steps reducing a non-deterministic choice always yield modulo bisim-
ilarity one of its options. Here we use bisimilarity to abstract from the junk produced by reducing non-deterministic choices
and also show that a non-deterministic choice can do nothing but reduce to one of its options.

Lemma 5.1. If NDC{P i}i∈I �−→ Q then there is some j ∈ I such that Q ≈CMV P j .
20

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
	

 � un y

∑
i∈I

⎛⎝∑
j∈Ji

li !v i, j.P i, j +
∑
k∈Ki

li?xi,k.P
′
i,k

⎞⎠�
�

CMV+

CMV

=

(νuv)

(
u!().0 | un v? .NDC

{

(νcd)

(
y!c.d � li,!.NDC

{
d!v i, j .

(
u!().0 | �
 � P i, j

�CMV+
CMV

)}
j∈Ji

)
,

(νcd)

(
y!c.d � li,?.NDC

{
lin d?xi,k.

(
u!().0 |

�

, xi,k : T ′i � P ′i,k

�CMV+

CMV

)}
k∈Ki

)}
i∈I

)
where
 un,
 � y :μt.un⊕{

li !T i .t, li?T ′i .t
}

i∈I , and
 � v i, j : T i .

	

 � un y

∑
i∈I

⎛⎝∑
j∈Ji

li !v i, j.P i, j +
∑
k∈Ki

li?xi,k.P
′
i,k

⎞⎠�
�

CMV+

CMV

=

(νuv)

(
u!().0 | un v? .lin y?c.c �

{
li,? : NDC

{
c!v i, j .

(
u!().0 | �
 � P i, j

�CMV+
CMV

)}
j∈Ji

,

li,! : NDC

{
lin c?xi,k.

(
u!().0 |

�

, xi,k : T i � P ′i,k

�CMV+

CMV

)}
k∈Ki

}
i∈I

)
where
 un,
 � y :μt.un&

{
li !T i .t, li?T ′i .t

}
i∈I , and
 � v i, j : T ′i .

�
1 ◦
2 � P1 | P2�CMV+
CMV = �
1 � P1�CMV+

CMV | �
2 � P2�CMV+
CMV

�
 � (ν yz)P�CMV+
CMV = (ν yz) �
, y : T , z : U � P�CMV+

CMV

�
1 ◦
2 � if v then P1 else P2�CMV+
CMV = if v then �
1 � P1�CMV+

CMV else �
2 � P2�CMV+
CMV

�
 � 0�CMV+
CMV = 0

where T ⊥ U and
1 � v : bool.

Fig. 7. The Encoding �·�CMV+
CMV from CMV+ into CMV from [7] (Part II).

Proof. By the definition of NDC, there is some j ∈ I such that Q = P j | J with J = (νst)
(∏

i∈I\{ j} t � li .0
)

. Since J is junk,
Q ≈CMV P j . �

The main idea of �·�CMV+
CMV is to encode the information about whether a summand is an output or an input into the label

used in branching, where a label li used with polarity ! in a choice typed as internal becomes li,! and in a choice typed as
external it becomes li,? . The dual treatment of polarities w.r.t. the type ensures that the labels of matching communication
partners are translated to the same label.

Example 5.2 (Translation). Consider for example the term S ∈PCMV+ :

S = (νxy) (lin y (l!false.S1 + l?z.S2) | lin x (l!true.0+ l?z.0) | lin y (l!false.S3 + l?z.S4))

S is well-typed but the type system forces us to assign dual types to x and y. Because of that, the choices on one channel
need to be internal and on the other external. Let us assume that we have external choices on y and that the choice on x
is internal. Moreover, we assume that both channels are marked as linear but typed as unrestricted. Then the translation1

yields �S�CMV+
CMV �=⇒ T1 with

1 Note that [7] introduces a typed encoding, thus �P�CMV+
CMV actually means �
 � P�CMV+

CMV , where
 � P is the type statement ensuring that P is well-typed.
21

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
T1 = (νxy)
(
lin y?c.c �

{
l? :

(
c!false.�S1�CMV+

CMV | J1

)
, l! :

(
lin c?z.�S2�CMV+

CMV | J2

)}
| (νst)

(
s � {l1 : (νcd) (x!c.d � l!. (d!true.0 | J3)) ,

l2 : (νcd) (x!c.d � l?. (lin d?z.0 | J4))}
| t � l1.0 | t � l2.0

)
| lin y?c.c �

{
l? :

(
c!false. �S3�CMV+

CMV | J5

)
, l! :

(
lin c?z. �S4�CMV+

CMV | J6

)})
where we already performed a few steps to hide some technical details of the encoding function �·�CMV+

CMV that are
not relevant for this explanation and where the J1, . . . , J6 remain as junk from performing these steps. We observe
that in the translation of the first lin y (l!false.S1 + l?z.S2) in the first line of T1 the output with label l is trans-
lated to the label l? and the input with label l is translated to the label l! , whereas in the translation of its dual
lin x (l!true.0+ l?z.0) in the second line of T1 we obtain l! for the output and l? for the input. To emulate the step
S �−→ S ′2 = (νxy) (S2{true/z} | lin y (l!false.S3 + l?z.S4)) of S in which true is transmitted to S2 , we start by picking the corre-
sponding alternative, namely l1 for sending, in the second and third line of T1

T1 �−→ T2 = (νxy)
(
lin y?c.c �

{
l? :

(
c!false.�S1�CMV+

CMV | J1

)
, l! :

(
lin c?z.�S2�CMV+

CMV | J2

)}
| (νcd) (x!c.d � l!. (d!true.0 | J3)) | J7

| lin y?c.c �
{

l? :
(

c!false. �S3�CMV+
CMV | J5

)
, l! :

(
lin c?z. �S4�CMV+

CMV | J6

)})
where J7 again remains as junk. Then we perform a communication on xy, where we chose the input on y in the first line:

T2 �−→ T3 = (νxy)
(
(νcd)

(
c �

{
l? :

(
c!false.�S1�CMV+

CMV | J1

)
, l! :

(
lin c?z.�S2�CMV+

CMV | J2

)}
| d � l!. (d!true.0 | J3)

) | J7

| lin y?c.c �
{

l? :
(

c!false. �S3�CMV+
CMV | J5

)
, l! :

(
lin c?z. �S4�CMV+

CMV | J6

)})
Finally, two more steps on cd resolve the branching and transmit true:

T3 �−→�−→ T4 = (νxy)
(�S2�CMV+

CMV {true/z} | J2 | J3 | J7 | J8

| lin y?c.c �
{

l? :
(

c!false. �S3�CMV+
CMV | J5

)
, l! :

(
lin c?z. �S4�CMV+

CMV | J6

)})
This completes the emulation of S �−→ S ′2 , i.e., the emulation of the single source term step S �−→ S ′2 required a sequence
of target term steps �S�CMV+

CMV �=⇒ T1 �−→ T2 �−→ T3 �−→�−→ T4 . �
The operational soundness is defined in [7] as (adapting the notation):

If �S� �−→T T then S �−→S S ′ and T �=⇒T�
�

S ′
�

. (1)

As visualised above, the encoding translates a single source term step into a sequence of target term steps. Unfortunately,
for such encodings the statement in (1) is not strong enough: with (1), we check only that the first step on a literal
translation does not introduce new behaviour. The requirement T �=⇒T� �S ′� additionally checks that the emulation started
with �S� �−→T T can be completed, but not that there are no alternative steps introducing new behaviour. Hence we prove
a correct version of soundness as defined in [17] (see Definition 2.18).

We denote the steps that reduce the first non-deterministic choice of the translation of a choice typed as internal and
steps reducing a conditional as starting-steps. The emulation of a step that reduces a conditional in the source is a single
starting-step that also reduces a conditional in the target. The emulation of a communication starts with a single starting-
step followed by some other steps to complete the emulation (that might be interleaved with steps from other emulations).
Similarly, for branching we have again a single starting-step in the beginning.

For soundness we have to show that all steps of encoded terms belong modulo bisimilarity to the emulation of a
source term step. In the proof we analyse the sequence of steps �S�CMV+

CMV �=⇒ T and identify all source term steps S �=⇒ S ′

whose emulation is started within �S�CMV+
CMV �=⇒ T and the target term steps T �=⇒≈CMV �S ′�CMV+

CMV that are necessary to
complete all started emulations modulo bisimulation. Therefore, we use an induction on the number of steps in the sequence
�S�CMV+

CMV �=⇒ T and analyse the encoding function in order to distinguish between different kinds of target term steps and
the emulations of source term steps to that they belong. Note that, as it is typical for many encodability results, the proof
of operational soundness is more elaborate than the proof of operational completeness presented in [7].

Lemma 5.3 (Soundness, �·�CMV+
CMV). The encoding �·�CMV+

CMV is operationally sound modulo ≈CMV , i.e., �S�CMV+
CMV �=⇒ T implies S �=⇒ S ′

and T �=⇒≈CMV �S ′�CMV+ .
CMV

22

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
Proof. We have to prove that for all S ∈ PCMV+ and all T ∈ PCMV such that �S�CMV+
CMV �=⇒ T there is some S ′ ∈ PCMV+

and some T ′ ∈ PCMV such that S �=⇒ S ′ , T �=⇒ T ′ , and T ′ ≈CMV �S ′�CMV+
CMV . Since �·�CMV+

CMV is a typed encoding, S is well-
typed. We further strengthen this goal by requiring that the sequence T �=⇒ T ′ contains no starting steps. This ensures
that the steps T �=⇒ T ′ can only complete already started emulations instead of starting new emulations. We start with
an induction on the number of steps in �S�CMV+

CMV �=⇒ T . For the base case, i.e., if T = �S�CMV+
CMV is reached in zero steps, we

choose S ′ = S and T ′ = T and obtain S �=⇒ S ′ , T �=⇒ T ′ , and T ′ ≈CMV �S ′�CMV+
CMV as required. For the induction step we have

�S�CMV+
CMV �=⇒ T1 �−→ T . By the induction hypothesis, there are S2, T2 such that S �=⇒ S2 , T1 �=⇒ T2 , and T2 ≈CMV �S2�CMV+

CMV ,
where T1 �=⇒ T2 does not contain starting-steps.

• If the sequence T1 �=⇒ T2 reduces in one step the same conditional or the same input and output or selection and
branching constructs as reduced in T1 �−→ T then no step in the sequence T1 �=⇒ T2 prior to the step that resembles
T1 �−→ T can reduce the same capabilities as reduced in T1 �−→ T , because they are reduced in T1 �−→ T . Then all steps
in T1 �=⇒ T2 prior to the step that reduces the same capabilities as T1 �−→ T are pairwise distributable to T1 �−→ T .
By repeatedly applying Lemma 2.19, then we can reorder the sequence such that T1 �−→ T �=⇒ T2 . Then we can choose
S ′ = S2 and T ′ = T2 such that S �=⇒ S ′ , T �=⇒ T ′ , and T ′ ≈CMV �S ′�CMV+

CMV as required.
• Else, consider the case that T1 �−→ T is not in conflict with any step in T1 �=⇒ T2 . Note that if T1 �−→ T is a part of an

emulation but not a starting-step the corresponding emulation that was started before or by reaching T1 was finished in
T1 �=⇒ T2 modulo ≈CMV to ensure T2 ≈CMV �S2�CMV+

CMV . Since T1 �−→ T is not in conflict with any step in T1 �−→ T2 , then
either T1 ≈CMV T or the step T1 �−→ T is a starting-step. Note that T1 ≈CMV T may result from a communication on the
channel endpoints u, v introduced in the Cases 5 or 6 of the encoding function, but also e.g. from a non-deterministic
choice with a single option.
– If T1 ≈CMV T then T �=⇒ T2 , i.e., we can choose S ′ = S2 and T ′ = T2 such that S �=⇒ S ′ , T �=⇒ T ′ , and T ′ ≈CMV�S ′�CMV+

CMV as required.
– Otherwise, if T1 �−→ T is a starting step we complete this emulation with a sequence T1 �−→ T �=⇒ T ′′ as described

in the completeness proof in [7], where T �=⇒ T ′′ does not contain starting steps. Since T1 �−→ T is a starting-step, no
step of the sequence T1 �−→ T �=⇒ T ′′ is in conflict with any step of T1 �=⇒ T2 . By repeatedly applying Lemma 2.19,
then there is some T ′ such that T �=⇒ T ′′ �=⇒ T ′ , where the sequence T ′′ �=⇒ T ′ performs the steps of T1 �=⇒ T2
starting in T ′′ instead of T1 . Moreover, there is some S ′ such that S �=⇒ S2 �−→ S ′ , where the step S2 �−→ S ′ is the
step that is emulated in T1 �−→ T �=⇒ T ′′ . Since T2 ≈CMV �S2�CMV+

CMV and by the construction of T ′ and S ′ , we have
T ′ ≈CMV �S ′�CMV+

CMV .
• Otherwise, there is exactly one step in the sequence T1 �=⇒ T2 that is in conflict with the step T1 �−→ T . Every such

conflict marks a decision in the emulation of one or another source term step. To conclude, we have to show that the
sequences T1 �=⇒ T2 and S �=⇒ S2 can be adapted to the alternative decisions in T1 �−→ T , i.e., that all decisions of an
encoded term lead to the emulation of a source term step. We consider the ten cases of translations in Fig. 6 and 7.
The procedure is similar for all decision points, we give a detailed proof for the first case. The other cases are similar
or simpler.

Case 1 (linear choice typed as linear and internal): The translation of a choice

	

 � lin y

∑
i∈I

⎛⎝∑
j∈Ji

li !v i, j.P i, j +
∑
k∈Ki

li?xi,k.P
′
i,k

⎞⎠�
�

CMV+

CMV

=

NDC

{
y � li,!.NDC

{
y!v i, j.

�

4 � P i, j

�CMV+
CMV

}
j∈Ji

,

y � li,?.NDC

{
lin y?xi,k.

�(

2 + y : U ′

i

)
, xi,k : T ′i � P ′i,k

�CMV+

CMV

}
k∈Ki

}
i∈I

that is typed as linear and internal starts with a non-deterministic choice that has exactly one option for
each summand of the source term choice. The first NDC construct non-deterministically picks the translation
of one of these summands. A conflict between T1 �−→ T and one step in T1 �=⇒ T2 competing for this NDC
then means that they both reduce this NDC construct but pick different source term summands. Since S is
well-typed, the source term choice can be reduced only with a communication partner that is typed as linear
external choice and encoded by the second case and there is at most one such choice on the respective other
channel endpoint.
– If there is no such choice on the other channel endpoint then the source term choice is stuck. Since S

well-typed, this can happen only for channel names that are free. Because the encoding does use source
term channels only to encode a choice that is already on this source term channel, if the source term
choice is stuck, so is its translation. In this case, the difference between T1 �−→ T and its conflicting step
23

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
in T1 �=⇒ T2 cannot be observed modulo ≈CMV , since both translations of summands emit the same barb.
Since all steps of T1 �=⇒ T2 prior to the step that is in conflict to T1 �−→ T cannot reduce this NDC, they
are pairwise distributable to T1 �−→ T . Then we can simply replace the conflicting step in T1 �−→ T2 by the
step T1 �−→ T and (by repeatedly applying Lemma 2.19) reorder the sequence, i.e., we have T1 �−→ T �=⇒ T ′ ,
where T ′ is obtained from T2 by exchanging the translations of the two summands. Then we choose S ′ = S2

and have S �=⇒ S ′ , T �=⇒ T ′ , and T ′ ≈CMV �S ′�CMV+
CMV as required.

– Otherwise, the type system ensures that for each combination of label and polarity requested by the in-
ternal choice the external choice offers a matching summand. The translation of choice typed as linear
and internal introduces primitives for four consecutive steps: the outer non-deterministic choice, a selec-
tion construct, another non-deterministic choice, and an output or input. The translation of choice typed
as linear and external introduces a branching, then a non-deterministic choice, and an output or input.
Since we reason modulo ≈CMV , the sequence T1 �=⇒ T2 might not contain all of these steps. But, since we
forbid for starting-steps in T1 �=⇒ T2 , there are no steps that rely on the emulation of this source term
communication. Then we remove the conflicting step in T1 �=⇒ T2 as well as all steps that also belong to
this emulation attempt. Instead let T1 �−→ T �=⇒ T ′′ be the steps necessary to fully emulate a step with the
summand picked in T1 �−→ T . That such a sequence of steps can be found was shown in the completeness
theorem in [7]. Since T �=⇒ T ′′ completes the already started emulation of a source term step but does not
start any other emulation, T �=⇒ T ′′ does not contain starting steps. The remaining steps of T1 �=⇒ T2 , i.e.,
the sequence after removing the conflicting step and the other steps that belong to this emulation attempt,
and T1 �−→ T �=⇒ T ′′ are distributable. By repeatedly applying Lemma 2.19, then there is some T ′ such that
T �=⇒ T ′′ �=⇒ T ′ , where the sequence T ′′ �=⇒ T ′ executes exactly the steps performed in T1 �=⇒ T2 after
removing the steps on the conflicting emulation. Then in S �=⇒ S ′ , S ′ is obtained from S2 by exchanging
the source term step whose emulation we removed by the source term step that is emulated in T �=⇒ T ′′ .
Since T2 ≈CMV �S2�CMV+

CMV and by the construction of T ′ and S ′ , then T ′ ≈CMV �S ′�CMV+
CMV .

The second primitive introduced by Case 1 of the encoding is a selection construct. This step cannot be in
conflict with any other step, because the matching branching construct in Case 2 provides exactly one branch
for each combination of label and polarity. The third primitive is again a non-deterministic choice that allows
to pick one value for transmission and matching continuation if there are several summands with the same
label and polarity. The proof for this case is similar to the non-deterministic choice above. Finally, there is an
output or input. Again this step cannot be in conflict with a step in T1 �=⇒ T2 , because it is not possible to
unguard more than one input or output for a choice that is typed as linear.

Case 2 (linear choice typed as linear and external): This case is dual to the case above, but simpler since the first non-
deterministic choice is missing.

Case 3 (linear choice typed as unrestricted and internal): The translation of a

	

 � lin y

∑
i∈I

⎛⎝∑
j∈Ji

li !v i, j.P i, j +
∑
k∈Ki

li?xi,k.P
′
i,k

⎞⎠�
�

CMV+

CMV

=

NDC

{
(νcd)

(
y!c.d � li,!.NDC

{
d!v i, j .

�

 � P i, j

�CMV+
CMV

}
j∈Ji

)
,

(νcd)

(
y!c.d � li,?.NDC

{
lin d?xi,k.

�

, xi,k : T ′i � P ′i,k

�CMV+

CMV

}
k∈Ki

)}
i∈I

linear choice that is typed as unrestricted and internal starts again with a non-deterministic choice that has
exactly one option for each summand of the source term choice. A conflict between T1 �−→ T and one step in
T1 �=⇒ T2 competing for the first NDC then means that they both reduce this NDC construct but pick different
source term summands. We proceed as with the non-deterministic choice in Case 1. Here, the translation of
a linear choice typed as unrestricted and internal introduces primitives for five consecutive steps: the outer
non-deterministic choice, an output, a selection construct, another non-deterministic choice, and an output or
input. The translation of choice typed as unrestricted and external introduces an output and matching input
in Case 6 (but not Case 4), an input, a branching, then a non-deterministic choice, and an output or input.
Accordingly, we might need to remove more steps from T1 �=⇒ T2 .

The second primitive introduced by Case 3 is an output. Since in Case 3 a choice typed as unrestricted is
translated that is matched by the type system with another choice typed as unrestricted, there can be several
outputs on this channel endpoint or several inputs on the other channel endpoint. Since we forbid for starting-
steps in T1 �=⇒ T2 , there are no steps that rely on the emulation of the source term communication. Again
we remove the conflicting step in T1 �=⇒ T2 as well as all steps that also belong to this emulation attempt.
Instead let T1 �−→ T �=⇒ T ′′ be the steps necessary to fully emulate a step with the input and output picked
in T1 �−→ T , where T �=⇒ T ′′ does not contain starting steps. That such a sequence of steps can be found
24

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
was shown in the completeness theorem in [7]. The remaining steps of T1 �=⇒ T2 , i.e., the sequence after
removing the conflicting step and the other steps that belong to this emulation attempt, and T1 �−→ T �=⇒ T ′′
are distributable. By repeatedly applying Lemma 2.19, then there is some T ′ such that T �=⇒ T ′′ �=⇒ T ′ , where
the sequence T ′′ �=⇒ T ′ executes exactly the steps performed in T1 �=⇒ T2 after removing the steps on the
conflicting emulation. Then in S �=⇒ S ′ , S ′ is obtained from S2 by exchanging the source term step whose
emulation we removed by the source term step that is emulated in T �=⇒ T ′′ . Since T2 ≈CMV �S2�CMV+

CMV and by
the construction of T ′ and S ′ , then T ′ ≈CMV �S ′�CMV+

CMV .
Next there is a selection construct matched by a branching construct in the Cases 4 or 6. The restriction

on the channel endpoints c and d in Case 3 ensures that this step cannot be in conflict with any other step.
The fourth primitive is again a non-deterministic choice that allows to pick one value for transmission and
matching continuation if there are several summands with the same label and polarity. The proof for this case
is similar to the non-deterministic choice in Case 1. Finally, there is an output or input. Again the restriction
on the channel endpoints c and d in Case 3 ensures that this step cannot be in conflict with any other step.

Case 4 (linear choice typed as unrestricted and external): This case is dual to the case above, but simpler since the
first non-deterministic choice is missing.

Case 5 (unrestricted choice typed as unrestricted and internal): In comparison to the Case 3 there is only one addi-
tional internal step on the restricted channels u, v . Because of the restriction, this step cannot be in conflict
with any other step. The proof is then as in Case 3.

Case 6 (unrestricted choice typed as unrestricted and external): Case 6 is dual to the case above, but simpler since the
first non-deterministic choice is missing.

Case 7 (parallel composition): The translation of parallel composition does not introduce any step, i.e., there are no
conflicts to be considered in this case.

Case 8 (restriction): The translation of restriction does not introduce any step, i.e., there are no conflicts to be consid-
ered in this case.

Case 9 (conditional): The translation of a conditional in CMV+ yields a conditional in CMV. Since steps reducing a
conditional in CMV+ (as well as CMV) cannot be in conflict with any other step, there are no conflicts to be
considered in this case.

Case 10 (inaction): The translation of 0 cannot perform steps, i.e., there are no conflicts to be considered in this
case. �

In Example 5.2 we have T4 ≈CMV
�

S ′2
�CMV+

CMV
, because all differences between T4 and

�
S ′2

�CMV+
CMV

are due to junk that can-

not be observed modulo ≈CMV . In fact, we have already T3 ≈CMV
�

S ′2
�CMV+

CMV , since we consider a weak form of bisimulation
here.

In the above variant of soundness T can catch up with the source term S ′ by the steps T �=⇒≈CMV �S ′�CMV+
CMV . This

allows for so-called intermediate states: target terms that are strictly in between the translation of two source terms, i.e., T

such that S �−→ S ′ , �S�CMV+
CMV �=⇒ T �=⇒≈CMV �S ′�CMV+

CMV , but neither �S�CMV+
CMV ≈CMV T nor �S ′�CMV+

CMV ≈CMV T (see [32,39]). In
�·�CMV+

CMV such intermediate states are caused by mapping the task of finding matching communication partners of a single
source term step onto several steps in the target. Consider the term T2 in the above emulation of S �−→ S ′2 . By picking the
branch with label l1 , we discarded the branch with label l2 . Because of that, the emulation starting with �S�CMV+

CMV �=⇒ T2

can no longer emulate source term steps of S that use channel x for receiving, i.e., T2 �≈CMV �S�CMV+
CMV . But, since we have not

yet decided whether we emulate a communication with the first or second choice on y, we also have T2 �≈CMV
�

S ′2
�CMV+

CMV

whenever S2 �≈CMV+ S4 . Indeed, if we assume that S1, S2, S3, S4 are pairwise not bisimilar, then T2 �≈CMV �S ′�CMV+
CMV for all

S �−→ S ′ , i.e., T2 is an intermediate state.
The existence of intermediate states prevents us from using stronger versions of soundness, i.e., with T � �S ′� instead of

the requirement T �=⇒T� �S ′� in soundness. The encoding �·�CMV+
CMV needs the steps in T �=⇒≈CMV �S ′�CMV+

CMV to complete the
emulation of source term steps started in �S�CMV+

CMV �=⇒ T . With the soundness result we can complete the proof of [7] that
�·�CMV+

CMV presented in [7, §7] is good.

Theorem 5.4 (Encoding from CMV+ into CMV). The encoding �·�CMV+
CMV from CMV+ into CMV presented in [7] is good. By this encoding

source terms in CMV+ and their literal translations in CMV are related by coupled similarity.

Proof. Compositionality follows from the encoding function in the Figs. 6 and 7. Under the assumption that c, d, u, v are
different from all source term names, we can translate source term names by themselves. This ensures name invariance.
If instead of this assumption the renaming policy ϕCMV+

CMV (·) is used, name invariance follows from the consequent use of
this renaming policy. Operational completeness was shown in [7] w.r.t. ≡gc . Since ≡gc is contained in ≈CMV , we can inherit
this completeness result. Operational soundness follows from Lemma 5.3. By the Figs. 6 and 7, all literal translations of
source terms have the same barbs as the respective source term and the encoding does not introduce free names. Barb
25

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
sensitiveness then follows from operational correspondence, since ≈CMV respects barbs. Divergence reflection follows from
operational correspondence, since every sequence of target term steps eventually emulates a source term step and since all
emulations of a single source term step are finite. Distributability preservation follows from the homomorphic translation
of the parallel operator. We conclude that the encoding �·�CMV+

CMV is good.
As shown in [35] the combination of operational correspondence, divergence reflection, and barb sensitiveness induces a

(weak reduction, barbed) coupled similarity that relates all source terms and their literal translations. �
Note that the translation of choice and in particular the non-deterministic choices distribute the decision made by a

single source term step into several smaller decisions on the target: first a label and polarity on the internal choice is chosen,
then a matching summand in the external choice, As explained in [36,33,2], splitting decisions leads to intermediate
states and prevents from a tighter connection between source and target, i.e., this encoding relates source terms and their
literal translations by coupled similarity and not bisimilarity as shown in [35]. To obtain a tighter connection such as the
bisimilarity, we would need the stronger version of soundness with T � �S ′� instead of T �=⇒T� �S ′� (see [35]).

As mentioned, a key feature of the encoding is to translate the nature of its summands, i.e., whether they are send
or receive actions, into the label used by the target term. That this is possible, i.e., that the prefixes for send and receive
in a choice of CMV+ can be translated to labels in a separate choice of CMV such that the difference is not observable
modulo the criteria in Definition 2.18, gives us the last piece of evidence that we need. CMV+ does not allow to solve
problems such as leader election (Theorem 3.7) that are standard problems for mixed choice; CMV+ cannot express the
synchronisation pattern � either that we associate with mixed choice (Theorem 4.8). Yet, CMV+ can express the pattern
M which is associated with separate choice, and is encoded by a language with only separate choice (Theorem 5.4). We
conclude that choice in CMV+ is semantically rather a separate choice.

Corollary 5.5. Concerning its expressive power the extension of CMV given by CMV+ introduces a form of separate choice rather than
mixed choice.

6. Related work and outlook

We conclude by discussing related work, summing up our results, and briefly discussing our next steps.

6.1. Related work

Encodings or the proof of their absence are the main way to compare process calculi [3,30,15,17,16,10,33,12,31,9,13].
See [34] for an overview and discussion on encodings. We used this methodology to compare different variants of choice in
session types.

The relevance of mixed choice for the expressive power of the π -calculus was extensively studied. An important en-
codability result on choices is the existence of a good encoding from the choice-free synchronous π -calculus into its
asynchronous variant [4,19], since it proves the relevance of choice. As for the separation result, [29,17,37] have shown
that there is no good encoding from the full π -calculus, i.e., the synchronous π -calculus including mixed choice, into its
asynchronous variant if an encoding should preserve the distribution of systems. Palamidessi in [28] was the first to point
out that mixed choice strictly raises the expressive power of the π -calculus. Later work studies the criteria under that
this separation result holds and alternative ways to prove this result: [27] studies the relevance of divergence reflection
for this result and considers separate choice. [17,30] discuss how to reprove this result if the rather strict criterion on the
homomorphic translation of the parallel operator is replaced by compositionality. [33,36] show that compositionality itself
is not strong enough to replace the homomorphic translation of the parallel operator by presenting an encoding and then
propose the preservation of distributability as criterion to regain the result of Palamidessi. [37] uses the more fundamen-
tal problem of breaking symmetries instead of leader election. [39] further simplifies this separation result by introducing
synchronisation patterns to distinguish the languages. [40] shows that instead of the preservation of distributability or the
homomorphic translation of the parallel operator also the preservation of causality can be used as criterion.

While there are a vast amount of theories [22], programming languages [1], and tools [43] of session types, as far as
we know, the CMV+-calculus is the only session π -calculus which extends external and internal choices to their mixtures
with full constructs, i.e. delegation, shared (or unlimited) name passing, value passing, and recursion in its process syntax,
proposes its typing system and proves type-safety. In the context of multiparty session types [21], there are several works that
extend the original form of global types where choice is fixed (from one sender to one receiver) with more flexible forms
of choices: Recent work in [24] e.g. allows the global type to specify a choice of one sender to transmit to one of several
receivers. In [23] flexible choices are discussed but their well-formedness (which ensures deadlock-freedom of local types)
needs to be checked by bisimulation. These works focus on gaining expressiveness of behaviours of a set of local types (or
a simple form of CCS-like processes which are equivalent to local types [24]) which correspond to a single multiparty session,
without delegations, interleaved sessions, restrictions nor name passing.

More recently, [14] compares the expressive power of a variant of the π -calculus (with implicit matching) and the
variant of CCS where the result of a synchronisation of two actions is itself an action subject to relabelling or restriction.
26

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
π

πs πa MA CMV CMV+

J MAu

�

M

Fig. 8. Hierarchy of Pi-like Calculi.

Because of the connection between CCS-like languages and local types, it may be interesting to compare the expressiveness
results in [14] with (variants of) multiparty session types.

6.2. Summary and outlook

We proved that CMV+ is strictly less expressive than the π -calculus in two different ways: by showing that CMV+ cannot
solve leader election in symmetric networks of odd degree and that CMV+ cannot express the synchronisation pattern �.
Then we provide the missing soundness proof for the encoding presented in [7]. From these results and the insights on the
reasons of these results, we conclude that the choice primitive added to CMV in [7] is rather a separate choice and not a
mixed choice at least with respect to its expressive power.

With these results we can extend the hierarchy of pi-like calculi obtained in [39,38] by two more languages as depicted
in Fig. 8. This hierarchy orders languages according to their ability to express certain synchronisation patterns. At the top
we have the π -calculus (π), because it can express the synchronisation pattern �. In the middle are languages that can
express M but not �: the π -calculus with separate choice (πs) [27], the asynchronous π -calculus without choice (πa) [19,4],
Mobile Ambients (MA) [6], CMV, and CMV+ . In the bottom we have the join-calculus (J) [8] and Mobile Ambients with
unique Ambient names (MAu) [38], i.e., the languages that cannot express � or M. That π , πs, πa, MA, J, and MAu can or
cannot express the respective pattern was shown in [39,38].

Linearity as enforced by the type system of CMV/CMV+ restricts the possible structures of communication protocols. In
particular, the type system ensures that it is impossible to unguard two competing inputs or outputs on the same linear
channel at the same time. Accordingly, it is not surprising that adding choice, even mixed choice, towards communica-
tion primitives under a type discipline that enforces linearity does not significantly increase the expressive power of the
respective language (though it still might increase flexibility). However, that adding mixed choice between unrestricted
communication primitives does not significantly increase the expressive power of the language, did surprise us. Unrestricted
channels allow to have several in- or outputs on these channels in parallel, because the type system only ensures the ab-
sence of certain communication mismatches as e.g. that the sort of a transmitted value is as expected by the receiver; but
not linearity (compare also to shared channels as e.g. in [20]). So, there is no obvious reason why the type system should
limit the expressive power of unrestricted channels within a mixed choice. Indeed, it turns out that the problem lies not
in the type system. In both ways to prove the separation result in §3 and §4 we completely ignore the type system and
carry out the proof on the untyped version of the language, i.e., it is already the untyped version of CMV+ that cannot
express mixed choice despite a mixed-choice-like primitive. This limitation of the language definition, i.e., in its syntax and
semantics, is not obvious and indeed it was very hard to spot the problem.

The two separation results in Section 3 and 4 reveal the reasons for this limitation. The expressive power of choice in
CMV+ is limited by the fact that syntactically the choice construct is fixed on a single channel endpoint and the requirement
of the semantics that a channel endpoint can interact with exactly one other channel endpoint. These insights will help us
to extend other variants of session types with stronger versions of mixed choice.

We expect that adding mixed choice to the non-linear parts of other session type systems will instead significantly
increase the expressive power. Accordingly, as the next step, we want to add a primitive for mixed choice between shared
channels in session types such as described e.g. in [20,45] and analyse the expressiveness of the resulting language.

CRediT authorship contribution statement

Kirstin Peters: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & edit-
ing. Nobuko Yoshida: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology,
Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review
& editing.
27

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The work is partially supported by EPSRC (EP/T006544/2, EP/Y005244/1, EP/K034413/1, EP/L00058X/1, EP/N027833/2,
EP/T014709/2, EP/V000462/1 and EP/X015955/1) and Horizon EU TaRDIS 101093006. We thank the anonymous reviewers
for their comments and suggestions.

Appendix A. Proof of Lemma 4.7

Proof. By operational completeness, all five steps of S�
π have to be emulated in �S�

π �, i.e., there exist some Ta, Tb, Tc, Td,

Te ∈PCMV+ such that X : �S�
π � �=⇒ Tx � �Sx� for all x ∈ {a,b, c,d, e}, where X is the upper case variant of x. By Lemma 4.6,

for all Ta, Tb, Tc, Td, Te ∈ PCMV+ and all x ∈ {a,b, c,d, e} such that Tx � �Sx�, there is a conflict between a step of the
following pairs of emulations: A and B , B and C , C and D , D and E , and E and A.

Since �·� preserves distributability and by Lemma 2.22, each pair of distributable steps in S�
π has to be translated into

emulations that are distributable within �S�
π �. Let X, Y , Z ∈ {A, B, C, D, E} be such that X and Z are distributable within �S�

π � but Y is in conflict with X as well as Z . By Lemma 2.21, this implies that �S�
π � is distributable into T1, T2 ∈ PCMV+

such that X is an execution of T1 and Z is an execution of T2 . Since Y is in conflict with X and Z and because all three
emulations are executions of �S�

π �, there is one step of Y that is in conflict with one step of X and there is one (possibly
the same) step of Y that is in conflict with one step of Z . Moreover, since X and Z are distributable, if a single step of Y is
in conflict with X as well as Z then this step is a communication between T1 and T2 .

Assume that for all such combinations X , Y , and Z , the conflicts between Y and X or Z are ruled out by a single step
of Y , i.e., both conflicts are ruled out by a communication step between some choice of X and some choice of Z . Then
this step reduces one endpoint in one of the executions X and Z and the respective other endpoint in the respective other
execution, i.e., X and Y compete for one endpoint and Y and Z compete for the respective other endpoint (compare to
Lemma 4.5). Without loss of generality let us assume that A and B compete for the channel endpoint x and, thus, B and C
compete for the channel endpoint y, C and D compete for x, D and E compete for y, E and A compete for x, and A and B
compete for y. This is a contradiction, because A and B cannot compete for both channel endpoints x and y.

We conclude that there is at least one triple of emulations X , Y , and Z such that the conflict of Y with X and with Z
results from two different steps in Y . Because X and Z are distributable, the reduction steps of X that lead to the conflicting
step with Y and the reduction steps of Z that lead to the conflicting step with Y are distributable. We conclude that there
is at least one emulation of y, i.e., one execution Y : �S�

π � �=⇒ T y � �S y�, starting with two distributable executions such
that one is (in its last step) in conflict with the emulation of x in X : �S�

π � �=⇒ Tx � �Sx� and the other one is in conflict
with the emulation of z in Z : �S�

π � �=⇒ T z � �Sz�. In particular this means that also the two steps of Y that are in conflict
with a step in X and a step in Z are distributable. Hence, it is impossible to ensure that these two conflicts are decided
consistently, i.e., there is a maximal execution of �S�

π � that emulates X but neither Y nor Z .
In the set {A, B, C, D, E} there are—apart from X , Y , and Z —two remaining executions. One of them, say X ′ , is in conflict

with X and the other one, say Z ′ , is in conflict with Z . Since X is emulated successfully, X ′ cannot be emulated. Moreover,
note that Y and Z ′ are distributable. Thus, also Z ′ and the partial execution of Y that leads to the conflict with Z are
distributable. Moreover, also the step of Y that already rules out Z cannot be in conflict with a step of Z ′ . Thus, although
the successful completion of Z is already ruled out by the conflict with Y , there is some step of Z left, that is in conflict
with one step in Z ′ . Hence, the conflict between Z and Z ′ cannot be ruled out by the partial execution described so far
that leads to the emulation of X but forbids to complete the emulations of X ′ , Y , and Z . Thus, it cannot be avoided that Z
wins this conflict, i.e., that also Z ′ cannot be completed. We conclude that there is a maximal execution of �S�

π � such that
only one of the five source term steps of S�

π is emulated. �
References

[1] D. Ancona, V. Bono, M. Bravetti, J. Campos, G. Castagna, P. Deniélou, S.J. Gay, N. Gesbert, E. Giachino, R. Hu, E.B. Johnsen, F. Martins, V. Mascardi,
F. Montesi, R. Neykova, N. Ng, L. Padovani, V.T. Vasconcelos, N. Yoshida, Behavioral Types in Programming Languages, Foundations and Trends in
Programming Languages, vol. 3, 2016, pp. 95–230.

[2] B. Bisping, U. Nestmann, K. Peters, Coupled similarity: the first 32 years, Acta Inform. 57 (2019) 439–463, https://doi .org /10 .1007 /s00236 -019 -00356 -4.
[3] F.S. Boer, C. Palamidessi, Embedding as a tool for language comparison: on the CSP hierarchy, in: Proc. of CONCUR, Springer, 1991, pp. 127–141.
[4] G. Boudol, Asynchrony and the π -calculus (Note), Rapport de Recherche 1702, 1992, https://hal .inria .fr /inria -00076939 /document.
[5] D. Cacciagrano, F. Corradini, C. Palamidessi, Explicit fairness in testing semantics, Log. Methods Comput. Sci. 5 (2009) 1–27, https://doi .org /10 .2168 /

LMCS -5(2 :15)2009.
[6] L. Cardelli, A.D. Gordon, Mobile ambients, Theor. Comput. Sci. 240 (2000) 177–213, https://doi .org /10 .1016 /S0304 -3975(99)00231 -5.
[7] F. Casal, A. Mordido, V.T. Vasconcelos, Mixed sessions, Theor. Comput. Sci. 897 (2022) 23–48, https://doi .org /10 .1016 /j .tcs .2021.08 .005.
[8] C. Fournet, G. Gonthier, The reflexive chemical abstract machine and the join-calculus, in: J.G. Steele (Ed.), Proc. of POPL, ACM, 1996, pp. 372–385.
[9] Y. Fu, Theory of interaction, Theor. Comput. Sci. 611 (2016) 1–49, https://doi .org /10 .1016 /j .tcs .2015 .07.043.
28

http://refhub.elsevier.com/S0890-5401(24)00029-4/bibCFA14FE519A1A160C951F28CC0891F42s1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bibCFA14FE519A1A160C951F28CC0891F42s1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bibCFA14FE519A1A160C951F28CC0891F42s1
https://doi.org/10.1007/s00236-019-00356-4
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib72A44925553B83FD0BC387F1FD2EA3FCs1
https://hal.inria.fr/inria-00076939/document
https://doi.org/10.2168/LMCS-5(2:15)2009
https://doi.org/10.2168/LMCS-5(2:15)2009
https://doi.org/10.1016/S0304-3975(99)00231-5
https://doi.org/10.1016/j.tcs.2021.08.005
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib07551952152032A37B25DB2257756CE0s1
https://doi.org/10.1016/j.tcs.2015.07.043

K. Peters and N. Yoshida Information and Computation 298 (2024) 105164
[10] Y. Fu, H. Lu, On the expressiveness of interaction, Theor. Comput. Sci. 411 (2010) 1387–1451, https://doi .org /10 .1016 /j .tcs .2009 .11.011.
[11] R. van Glabbeek, U. Goltz, J.W. Schicke, On synchronous and asynchronous interaction in distributed systems, in: Proc. of MFCS, 2008, pp. 16–35.
[12] R.J. van Glabbeek, Musings on encodings and expressiveness, in: Proc. of EXPRESS/SOS, 2012, pp. 81–98.
[13] R.J. van Glabbeek, A theory of encodings and expressiveness (extended abstract), in: Proc. of FoSSaCS, 2018, pp. 183–202.
[14] R.J. van Glabbeek, Comparing the expressiveness of the π -calculus and CCS, in: I. Sergey (Ed.), Proc. of ETAPS, Springer, 2022, pp. 548–574.
[15] D. Gorla, Comparing communication primitives via their relative expressive power, Inf. Comput. 206 (2008) 931–952, https://doi .org /10 .1016 /J .IC .2008 .

05 .001.
[16] D. Gorla, A taxonomy of process calculi for distribution and mobility, Distrib. Comput. 23 (2010) 273–299, https://doi .org /10 .1007 /S00446 -010 -0120 -6.
[17] D. Gorla, Towards a unified approach to encodability and separation results for process calculi, Inf. Comput. 208 (2010) 1031–1053, https://doi .org /10 .

1016 /j .ic .2010 .05 .002.
[18] K. Honda, Types for dyadic interaction, in: E. Best (Ed.), Proc. of CONCUR, Springer, 1993, pp. 509–523.
[19] K. Honda, M. Tokoro, An object calculus for asynchronous communication, in: M. Tokoro, O. Nierstrasz, P. Wegner (Eds.), Proc. of ECOOP, Springer, 1992,

pp. 133–147.
[20] K. Honda, V.T. Vasconcelos, M. Kubo, Language primitives and type discipline for structured communication-based programming, in: Proc. of ESOP,

Springer, 1998, pp. 122–138.
[21] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, J. ACM 63 (2016) 1–67, https://doi .org /10 .1145 /1328438 .1328472.
[22] H. Hüttel, I. Lanese, V.T. Vasconcelos, L. Caires, M. Carbone, P. Deniélou, D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H.T. Vieira, G. Zavattaro,

Foundations of session types and behavioural contracts, ACM Comput. Surv. 49 (2016) 3:1–3:36, https://doi .org /10 .1145 /2873052.
[23] S.S. Jongmans, N. Yoshida, Exploring type-level bisimilarity towards more expressive multiparty session types, in: Proc. of ESOP, Springer, 2020,

pp. 251–279.
[24] R. Majumdar, M. Mukund, F. Stutz, D. Zufferey, Generalising projection in asynchronous multiparty session types, in: S. Haddad, D. Varacca (Eds.), Proc.

of CONCUR, 2021, pp. 35:1–35:24.
[25] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, Part I and II, Inf. Comput. 100 (1992) 1–77, https://doi .org /10 .1016 /0890 -5401(92)90008 -

4.
[26] R. Milner, D. Sangiorgi, Barbed bisimulation, in: Proc. of ICALP, 1992, pp. 685–695.
[27] U. Nestmann, What is a “good” encoding of guarded choice?, Inf. Comput. 156 (2000) 287–319, https://doi .org /10 .1006 /inco .1999 .2822.
[28] C. Palamidessi, Comparing the expressive power of the synchronous and the asynchronous π -calculus, in: Proc. of POPL, 1997, pp. 256–265.
[29] C. Palamidessi, Comparing the expressive power of the synchronous and the asynchronous π -calculus, Math. Struct. Comput. Sci. 13 (2003) 685–719,

https://doi .org /10 .1017 /S0960129503004043.
[30] J. Parrow, Expressiveness of process algebras, Electron. Notes Theor. Comput. Sci. 209 (2008) 173–186, https://doi .org /10 .1016 /j .entcs .2008 .04 .011.
[31] J. Parrow, General conditions for full abstraction, Math. Struct. Comput. Sci. 26 (2014) 655–657, https://doi .org /10 .1017 /S0960129514000280.
[32] J. Parrow, P. Sjödin, Multiway synchronization verified with coupled simulation, in: W. Cleaveland (Ed.), Proc. of CONCUR, Springer Berlin Heidelberg,

1992, pp. 518–533.
[33] K. Peters, Translational Expressiveness, Ph.D. thesis, TU Berlin, 2012, http://opus .kobv.de /tuberlin /volltexte /2012 /3749/.
[34] K. Peters, Comparing process calculi using encodings, in: Proc. of EXPRESS/SOS, 2019, pp. 19–38.
[35] K. Peters, R. van Glabbeek, Analysing and comparing encodability criteria, in: S. Crafa, D. Gebler (Eds.), Proc. of EXPRESS/SOS, 2015, pp. 46–60.
[36] K. Peters, U. Nestmann, Is it a “good” encoding of mixed choice?, in: Proc. of FoSSaCS, 2012, pp. 210–224.
[37] K. Peters, U. Nestmann, Breaking Symmetries, Mathematical Structures in Computer Science, vol. 26, 2016, pp. 1054–1106.
[38] K. Peters, U. Nestmann, Distributability of mobile ambients, Inf. Comput. 275 (2020) 104608, https://doi .org /10 .1016 /j .ic .2020 .104608.
[39] K. Peters, U. Nestmann, U. Goltz, On distributability in process calculi, in: Proc. of ESOP, 2013, pp. 310–329.
[40] K. Peters, J.W. Schicke-Uffmann, U. Goltz, U. Nestmann, Synchrony versus causality in distributed systems, Math. Struct. Comput. Sci. 26 (2016)

1459–1498, https://doi .org /10 .1017 /S0960129514000644.
[41] K. Peters, N. Yoshida, On the expressiveness of mixed choice sessions, in: Proc. of EXPRESS/SOS, 2022, pp. 113–130.
[42] G.D. Plotkin, The origins of structural operational semantics, J. Log. Algebraic Program. 60 (2004) 17–140, https://doi .org /10 .1016 /j .jlap .2004 .03 .009, An

earlier version of this paper was published as technical report at Aarhus University in 1981.
[43] A.R. Simon Gay (Ed.), Behavioural Types: from Theory to Tools, River Publisher, 2017, https://www.riverpublishers .com /research _details .php ?book _id =

439.
[44] K. Takeuchi, K. Honda, M. Kubo, An interaction-based language and its typing system, in: Proc. of PARLE, 1994, pp. 398–413.
[45] N. Yoshida, V.T. Vasconcelos, Language primitives and type discipline for structured communication-based programming revisited: two systems for

higher-order session communication, in: Proc. of SecReT, 2006, pp. 73–93.
29

https://doi.org/10.1016/j.tcs.2009.11.011
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib7CE81CD6FAE001B086580F54D0949CFAs1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib877F757CA40EF8AB4B9ADBA858282083s1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bibEBF6014902EACBE6BC8068CDF8360C23s1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bibE8D53506AB4F8D1AA1A8C44B01BDFD7Fs1
https://doi.org/10.1016/J.IC.2008.05.001
https://doi.org/10.1016/J.IC.2008.05.001
https://doi.org/10.1007/S00446-010-0120-6
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1016/j.ic.2010.05.002
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib53A808992C796046F9D460F7DC8C556Fs1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib17EE6D0B61E9950B79AF418BFD85ED68s1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib17EE6D0B61E9950B79AF418BFD85ED68s1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bibE35B34652AA3811455CA294679503156s1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bibE35B34652AA3811455CA294679503156s1
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2873052
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib2E3E0C78F0AAE1E334BF3D655DB25766s1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib2E3E0C78F0AAE1E334BF3D655DB25766s1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib0B2C36892125E37D64BF968A4B33844Cs1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib0B2C36892125E37D64BF968A4B33844Cs1
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90008-4
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib9509DAC8B7EFC045383EC42AB83D000Es1
https://doi.org/10.1006/inco.1999.2822
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib5A9E1114C5445FAAABF2127B8654156Fs1
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1016/j.entcs.2008.04.011
https://doi.org/10.1017/S0960129514000280
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib87952ADA6AE860CB1034E50D5920F929s1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib87952ADA6AE860CB1034E50D5920F929s1
http://opus.kobv.de/tuberlin/volltexte/2012/3749/
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib1D3437FD4FE7B36CC6DC4545D076915Es1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bibA88AE53FB5AA8717CD5A209AD34036BDs1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib5C76BED542363236A634D6B39669D5B3s1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bibBD659D9E20E9BCCF445C285D8F03A4DAs1
https://doi.org/10.1016/j.ic.2020.104608
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib5B3022364B768C12470CF8BE3C19950Es1
https://doi.org/10.1017/S0960129514000644
http://refhub.elsevier.com/S0890-5401(24)00029-4/bibD3B9B2EDE9CF358CC825480A67CE93BBs1
https://doi.org/10.1016/j.jlap.2004.03.009
https://www.riverpublishers.com/research_details.php?book_id=439
https://www.riverpublishers.com/research_details.php?book_id=439
http://refhub.elsevier.com/S0890-5401(24)00029-4/bibA86B5774D82655EBC9497BE1C0E2D5FBs1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib0519D970DEB95B1D04022B93AAF99066s1
http://refhub.elsevier.com/S0890-5401(24)00029-4/bib0519D970DEB95B1D04022B93AAF99066s1

	Mixed choice in session types
	1 Introduction
	2 Technical preliminaries: mixed sessions and encodability criteria
	2.1 The Pi-calculus with mixed choice
	2.2 Mixed sessions
	2.3 Encodings, quality criteria, and distributability

	3 Separating mixed sessions and the Pi-calculus via leader election
	4 Separating mixed sessions and the Pi-calculus via synchronisation pattern
	5 Encoding mixed sessions into separate choice
	6 Related work and outlook
	6.1 Related work
	6.2 Summary and outlook

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Proof of Lemma 4.7
	References

