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Abstract

Analytical homogenisation provides effective models for processes in multiscale media
based on models at the microscale. For porous media, the pore geometry strongly af-
fects the resulting effective models. We provide an analytical homogenisation method
for complex porous media with non-periodic and evolving cavities. For this, we derive
a generic framework based on coordinate transformations and homogenisation of the re-
sulting replacement equations. We rigorously justify this approach by showing that the
homogenisation of the replacement problems defined in periodically perforated domains is
equivalent to the homogenisation of the original problems. A back-transformation of the
homogenisation results completes the method and leads to homogenised equations taking
into account the local microstructure.

We apply this method for the homogenisation of quasi-stationary and instationary
Stokes flow in evolving porous media. This leads to a quasi-stationary Darcy law and a
Darcy law with memory for evolving microstructure. Both translate the local microstruc-
ture into effective permeability tensors and provide an additional source term for the
pressure resulting from the local change in porosity.

In addition, a reaction—diffusion equation with coupled pore evolution is homogenised.
The resulting homogenised reactive transport system adjusts the diffusive flux by taking
into account the local microstructure and scales the growth rate for the concentration with
the changing porosity. The pore evolution and hence the effective transport properties are
coupled to the unknown concentration by local upscaled microscopic processes.
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Zusammenfassung

Analytische Homogenisierung liefert effektive Modelle fiir Prozesse in multiskalen Medien,
die auf Modellen auf der Mikroskala basieren. In porésen Medien beeinflusst die Poren-
geometrie stark die resultierenden effektiven Modelle. Wir présentieren eine analytische
Charakterisierung fiir komplexe porése Medien mit nicht-periodischer und sich verdndern-
der Porenstruktur. Dazu leiten wir eine generische Methode her, die auf Koordinatentrans-
formationen und der Homogenisierung der resultierenden Ersatzgleichungen beruht. Wir
rechtfertigen dieses Vorgehen, indem wir zeigen, dass die Homogenisierung der Ersatzprob-
leme in den periodisch perforierten Gebieten &dquivalent zur Homogenisierung der ur-
spriinglichen Probleme ist. Mittels einer Riicktransformation der Homogenisierungsergeb-
nisse vervollstdndigen wir diese Methode und erhalten homogenisierte Gleichungen, welche
lokale Mikrostrukturen beriicksichtigen.

Wir wenden diese Methode zur Homogenisierung von quasistationaren und instationaren
Stokes-Stromungen in sich verdndernden pordsen Medien an. Dies fiihrt zu einem quasi-
stationdren Darcy-Gesetz und einem Darcy-Gesetz mit Gedachtnis fiir sich verdndernde
Mikrostruktur. Beide Modelle iibersetzen die lokale Mikrostruktur in effektive Permeabi-
litatstensoren und liefern einen zusétzlichen Quellterm fiir den Druck, der aus der lokalen
Veranderung der Porositat resultiert.

Zudem wird eine Reaktions-Diffusions-Gleichung mit gekoppelter Porenentwicklung ho-
mogenisiert. Das resultierende homogenisierte reaktive Transportsystem passt den Dif-
fusionsfluss unter Beriicksichtigung der lokalen Mikrostruktur an und skaliert die Wachs-
tumsrate fiir die Konzentration mit der sich &ndernden Porositét. Die Porenevolution und
damit die effektiven Transporteigenschaften sind durch lokale, hochskalierte mikroskopis-
che Prozesse an die unbekannte Konzentration gekoppelt.
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Introduction

Motivation

Many processes in the geosciences or biology, such as groundwater flow or reactive trans-
port, take place in the fine pore spaces of large porous media. Typically, these processes
can be described by constitutive equations inside the pores on a small scale while the
resulting physical effects are observed on a much larger scale. However, these are still
strongly affected by the microscopic structure. At this point, homogenisation aims to
transfer the models and pore geometries from the microscale into effective models on the
macroscale.

From a mathematical point of view, such processes can be described by partial differen-
tial equations (PDEs), where the microscopic structure leads to oscillating coefficients or
perforated domains. The period of the oscillations or perforations depends on the size of
the microstructure and is related to the macroscopic size by means of a small parameter
€ > 0. Since this parameter is very small, the limit ¢ — 0 of the PDEs often provides a
suitable approximation of the original problem for small positive €. The advantage of this
limit lies typically in the fact that the resulting PDEs have coefficients without microscopic
oscillations and the limit processes averages the microstructure in a physically meaningful
way.

In order to apply this limit process, one has to provide some e-scaled version of the
equations. This can be achieved by employing periodicity assumptions or the concepts of
stationarity and ergodicity in a stochastic setting. However, these assumptions are too re-
strictive for many materials. In particular, if the process interacts with the heterogeneous
structure local variations of the domain can occur, which have to be taken into account.
In the case that the microstructure is prescribed by oscillating coefficients, tools like two-
scale convergence can take into account local variations by weakening the assumption of
periodicity to strong two-scale convergence while still allowing rigorous homogenisation.
If the microscopic heterogeneity is given by the domain where the PDEs are defined, the
homogenisation becomes far more complicated and there was no complete framework avail-
able that can handle this case. Such local geometries, as for instance, cavity constrictions
in a porous medium, can have a significant effect. This can easily be observed for fluid
flow in a porous medium, where local clogging along a cross section can even stop fluid
flow completely. Furthermore, in many applications, the pore space undergoes an a-priori
unknown evolution over time, which complicates the investigation. Typical examples of
such coupled systems are reactive transport problems, where chemical reactions lead to
dissolution and precipitation of the porous matrix, or transport processes in biological
tissues, where biofilm formation affects the cavities.
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Goal and main contribution of this work

This work provides an analytical method for the rigorous homogenisation of processes
in locally differently perforated porous media. In particular, this method is capable of
dealing with time-dependent microstructures. It is based on the transformation to periodic
reference structures and is stated in a purely asymptotic framework. Therefore, it allows
for pure compactness arguments, which even allow for the homogenisation of free boundary
value problems on the microscale.

We use this method to study flow in porous media with an evolving microstructure. By
homogenising the quasi-stationary and instationary Stokes equations in a locally evolving
porous medium, we derive two Darcy laws for evolving microstructure. The limit results
not only account for the locally varying microstructure through the permeability tensor,
but also incorporate a source or sink term for the pressure resulting from the local change
in porosity. Furthermore, we homogenise a reaction—diffusion equation coupled to the evo-
lution of the microstructure. This provides an effective description of a reactive transport
process that is coupled bidirectionally with the local pore structure.

From a mathematical point of view, the study of the locally different (evolving) mi-
crostructure is approached as follows: If the microscopic heterogeneity is given by some
oscillating coefficient, tools such as two-scale convergence can weaken the assumption
of strict periodicity in strong two-scale convergence, allowing local variations of the mi-
crostructure. We translate the local non-periodicity of the pore structure into this setting.
Therefore, we use a periodically perforated reference domain and assume that it can be
transformed into the locally periodically perforated domain by changing the coordinates.
Transforming the PDEs from the actual domain into this surrogate domain leads to PDEs
that includes transformation quantities. Thus, the non-periodicity of the geometry is
translated into local periodicity of functions, which can be handled by two-scale conver-
gence and allows the limit process ¢ — 0. Homogenisation in the surrogate domain leads
to a two-scale limit problem defined in a cylindrical two-scale domain. Transforming back
the equations on the reference cell for each macroscopic point provides transformation-
independent two-scale limit equations defined in a non-cylindrical two-scale domain and
subsequently to a homogenised equation. This approach can be used for time-dependent
microstructures by transforming the geometry for each point in time, and this is illustrated
in Figure 1.

homogenisation
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Figure 1.: Homogenisation by transformation on a periodic substitute domain




Introduction

To make sense of this approach, it is essential not only that we can pass to the limit
€ — 0 in the substitute domain, but also that the limit process for homogenisation com-
mutes with the e-scaled transformations and the limit transformation for the upscaled
microstructure. To formulate this commutativity property mathematically, let €. be a
family of e-scaled periodically perforated substitute domains and €2.(¢) be the family of
actual e-scaled domains with a family of coordinate transformations . (t,-): Q. — Q.(t).
Let uc: Q. - R and 4.: Q.(t) — R represent a function in the two different coordinate
systems, i.e. Ue(x) = u(¢Ye(t,x)) for all x € Q.. Then we have to make sure that the
two-scale convergences of 4. and u. are equivalent, i.e.

ue(x) uo(z,y) if and only if G () to(z,y)

and we have to identify the limits by g (z,y) = uo(z, ¥o(t, z,y)) for a family of coordinate
transformations ¥y (t, z,-): Y* — Y*(¢,x). The goal is to provide a framework, as general
as possible, in which this commutativity is fulfilled and the transformation quantities
resulting from the coordinate transformations are well-manageable in the limit process
e — 0.

The derivation of such a framework requires not only the transformation of the functions
themselves, but also of their gradients. These derivatives play a critical role in the ho-
mogenisation and require some additional correctors. This is also reflected in the two-scale
transformation approach, where the two-scale limit of the gradients and the corresponding
correctors do not follow the same transformation rules as the functions themselves, but re-
quire some additional corrections. Nevertheless, we can take this two-scale limit behaviour
into account and formulate this transformation approach as a completely transformation-
independent toolbox. We present this method by applying it to the homogenisation of a
diffusion equation in a non-periodically perforated domain.

We then use this method to homogenise the quasi-stationary and instationary Stokes
flow in an evolving perforated domain. Due to the high complexity of the Stokes equa-
tions and their homogenisation, we have to derive additional two-scale analysis results to
make the transformation approach applicable. For example, the transformation of the e-
scaled Stokes equations leads to a symmetric gradient that is multiplied by transformation
coefficients, which requires new Korn inequalities for this two-scale transformation frame-
work. Furthermore, we derive transformation results for the divergence-type two-scale
correctors which arise for the two-scale limit of the pressure. By providing solutions to all
the difficulties arising from the local non-periodic microstructure, we are able to derive a
quasi-stationary Darcy equation as the limit for the quasi-stationary Stokes flow as well
as a Darcy equation with memory for the instationary Stokes flow. In particular, these
results also hold for a locally periodic microstructure that does not evolve in time.

Moreover, we employ this transformation framework to homogenise a reaction—diffusion
equation coupled to the evolution of the microstructure. Due to this a-priori unknown
domain evolution, we have to apply a generic coordinate transformation which is coupled
to the solution of the diffusion equation. Then, the non-linear reaction—diffusion process
with free boundary becomes a highly non-linear system of equations in the transformed
substitute domain. At this point, it becomes necessary that the method relies entirely on
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asymptotic properties, which can be verified purely by compactness results and do not
require that the transformation can be written as e-scaled power series. The homogenisa-
tion result is an effective reaction transport system, which is coupled to the local upscaled
microstructure.

From an application point of view, these homogenisation results provide new insights
into the effective flux in complex porous media. They enable better predictions for pro-
cesses in locally periodic and evolving microstructures and also for reactive transport,
which affects the pore structure.

From a mathematical perspective, we provide a powerful tool that allows homogenisation
for complex microstructures. The generality and strength of the method is emphasised by
showing its ability to homogenise the Stokes equations and free boundary value problems.

Overview of the literature

Analytical homogenisation methods
We provide only a brief overview of the general theory of periodic homogenisation and
refer to [BLP78, ZK094, Hor97, Pan97, CD99, MK06, Tar09] for more details.

In order to understand the asymptotic behaviour of parametrised PDEs with some fine-
scale parameter ¢ tending to zero, several types of convergence have been introduced.
In [DG75, Gio84], De Giorgi introduced I'-convergence, which provides an abstract no-
tion of convergence for functionals, which goes beyond the application of homogenisation.
Spagnolo introduced the notion of G-convergence for the study of second order symmetric
elliptic operators in [Spa68]. He defines the convergence of the operators in terms of the
solutions of the corresponding PDEs and provides a compactness result. To overcome
the restriction to symmetric operators, Murat and Tartar defined the convergence of the
operators not only by the convergence of the solution but also by the convergence of the
associated fluxes [MT77, MT97a, MT97b]. This so-called H-convergence avoids the in-
stability that occurs for non-symmetric operators in the notion of G-convergence. Both
notions of G- and H-convergence do not require any periodicity assumptions.

The energy method of Tartar [MT77], also known as the oscillating test function method,
provides another approach to the homogenisation of partial differential equations. It uses
oscillating test functions to pass to the limit. This approach corresponds closely to the
compensated compactness results of Murat [Mur78] and Tartar [Tar79] and is presented
in detail in [CD99).

The two-scale convergence method is devoted to periodic homogenisation. It was intro-
duced by Nguetseng [Ngu89] and Allaire [All92a] and is very efficient due to its specific
application. Roughly speaking, it rigorously justifies the first terms in the two-scale asymp-
totic expansion ansatz. This avoids the technical a-posteriori convergence analysis that is
otherwise required to justify the asymptotic expansion approach. Two-scale convergence
provides not only compactness results but also a simple approach to the derivation of
the limit equations. It also has the advantage of allowing the consideration of systems of
equations as well as slow diffusion processes, i.e. coefficients which degenerate for ¢ — 0.
The periodic unfolding method of [CDG02, CDG18] uses the so-called unfolding operator
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to transform the homogenisation problem into a convergence problem in a fixed space. It
is not only a useful tool on its own, but also allows the translation of two-scale convergence
into classical convergence in Lebesgue spaces [Vis06], which provides a powerful notion of
strong two-scale convergence. Similar operators are also presented under the names of
dilation operator [ADH90] and periodic modulation [BLM96] in the context of homogeni-
sation. Furthermore, the concept of two-scale convergence is extended to a stochastic
setting in [BMW94, ZP06, HNV22].

Homogenisation in locally periodically perforated and evolving domains

The above-mentioned analytical homogenisation tools strongly distinguish between mi-
crostructure given by some oscillating coefficients or represented by perforated domains.
For instance, tools like the two-scale convergence can deal with locally periodic coefficients
but so far require strict periodicity in the case of perforated domains. Nevertheless, such
non-strictly periodic perforated domains are highly relevant for many applications. In
particular, if local reaction processes affect the pore geometry, it becomes unreasonable
to assume that the pore structure remains periodic over the whole domain. Since the
pore geometry heavily affects the effective macroscopic behaviour, these local microscopic
changes must be taken into account.

A locally periodic microstructure can be modelled in several ways. In [CP99], Chechkin
and Piatnitski described the microstructure in terms of the level sets of a smooth function
¢(z, Z) and homogenised a Poisson equation by formal asymptotic expansion, which they
subsequently justified by estimates on the residual. This description of the microstructure
is extended to time-dependent level set functions in [vNO8] and applied to the upscaling of
further problems in [RvNFK12, SK17]. In this case of time-dependent level set functions,
the level set functions were a-priori unknown and coupled to the process. However, these
later works only consider a formal upscaling via the two-scale asymptotic expansion and
without proving the convergence for ¢ — 0. In [FY20], such a convergence proof was
presented for a time-dependent microstructure, which is described by an a-priori given
level set function of the form ¢(¢, z, £).

Blanc and Wolf [BW22, Wol23, Wol22] modelled a non-periodic microstructure by a
local perturbation of periodically arranged isolated holes. For the limit ¢ — 0, the per-
turbation is localised so that it does not affect the first order but only the second order
of approximation. The limit equations are derived by two-scale asymptotic expansion and
then justified by rigorous convergence estimates afterwards. In [MP94], the locally pe-
riodic microstructure was defined by means of a characteristic function on the reference
cell which varies smoothly with respect to the macroscopic domain. The homogenisation
of an elliptic problem was done by means of two-scale convergence. However, the rigor-
ous homogenisation in all these approaches restricts the geometry to the case of isolated
obstacles.

In [Ptal3, Ptalb], mesoscopically scaled patches with different but strictly periodic
microstructures are used to model locally different microstructures. In particular, this
approach allows for connected obstacles. The homogenisation is done by extending the
concept of two-scale convergence and the periodic unfolding operator to this local struc-
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ture.

Another approach to studying processes in time-dependent locally periodic microstruc-
tures was proposed by Peter in [Pet07b]. Instead of homogenising the actual problem,
the equations are transformed into a periodically perforated substitute domain and ho-
mogenised there. This transformation translates the local periodicity of the domain into
coefficients of the PDE, which can be handled by two-scale convergence. However, it
remained open whether this approach is equivalent to the homogenisation of the actual
problem, i.e. whether the transformation and the homogenisation commute in the sense
of Figure 1. Furthermore, the question of how to back-transform the limit problem was
only partially answered since the presented back-transformation of the limit equations
yields transformation-dependent equations. Nevertheless, this approach allows the inves-
tigation of a new class of highly application-relevant problems and found applications
in the homogenisation of thermoelasticity [EM17] or (advection—)reaction—diffusion pro-
cesses [Pet07a, Pet09, Ede19, GNRP21] in the sense that the transformed equations were
homogenised. This approach is based on the suitable transformation mappings . and vy
(see also Figure 1). A first example for explicitly constructed transformations leading to
strongly two-scale convergent coefficients and allowing the homogenisation in the substi-
tute domain is given in [Pet07a]. Moreover, in [Edel9], transformations . for prescribed
normal velocity of the microscopic interfaces are constructed. The case of two connected
domains is presented in [Wiel9).

In [Wie23], the transformation approach of [Pet07b] was rigorously justified by present-
ing a framework in which Figure 1 commutes. Indeed, this framework does not require
substantially more assumptions about the transformations and domains than are already
required for the homogenisation in the transformed coordinates. In this sense this frame-
work is optimal. Moreover, in [Wie23], results are derived for the back-transformation
of the homogenised correctors, which give new transformation-independent homogenisa-
tion results. These results are presented in Chapter 2. Furthermore, this approach was
used to homogenise the quasi-stationary Stokes equations for evolving microstructure in
[WP24]. The structure of the Stokes equations differs from those equations previously
studied by this transformation approach. Therefore, several new results and extensions
were necessary, which we elaborate in Chapter 2, following [WP24]. Moreover, this trans-
formation is also able to deal with the instationary Stokes equations, which we will also
see in Chapter 3.

In [GP23, WP23]|, this transformation approach was used for the homogenisation of
two similar reaction—diffusion problems in porous media, where the evolution of the mi-
crostructure is a-priori not given but coupled to the unknown itself. The microstructure
is modelled by spheres with evolving radii. The evolution of the radii is described by or-
dinary differential equations depending on the solution of the reaction—diffusion problem.
This leads to a free boundary value problem at the microscale. We present the homogeni-
sation of this coupled problem in Chapter 4 and provide a more detailed discussion of the
differences between the approaches of [GP23] and [WP23].
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Homogenisation of Stokes flow

Based on the results of experiments, Darcy presented a fundamental principle of fluid
mechanics in porous media [Dar56]. Darcy’s law states that the rate of flow through porous
media is directly proportional to the the negative hydraulic gradient and the permeability
coeflicient, and inversely proportional to the viscosity of the fluid. It can be derived
mathematically by means of homogenising the (Navier—)Stokes equations in a perforated
domain. In particular, this mathematical approach provides a better understanding of
the effects of the microscopic geometry on the permeability coefficient. First upscaling
approaches used formal two-scale asymptotic expansion and are presented in [Kel80, Lio81,
SP80].

The main difficulty in the rigorous homogenisation of the Stokes equations lies in the
uniform a-priori estimate of the pressure. Tartar overcame this problem by constructing
a restriction operator [Tar80] and provided a rigorous proof of the homogenisation. This
operator was extended by Allaire to allow the homogenisation in the case where the solid
space of the porous medium is also connected [All89]. A modification of this restriction
operator [LA90] allowed the consideration of different boundary conditions at the pore
interfaces. Furthermore, an extension of the restriction operator from H' to WP inte-
grability enables the homogenisation of the Navier-Stokes equations [Mik91]. A different
approach for the derivation of the a-priori estimates was presented by Zhikov in [Zhi94],
who constructed a family of e-scaled operators, which are right-inverses of the divergence
operator. In particular, these operators enable a construction of a restriction operator
in the sense of [Tar80] with weaker estimates, which are still sufficient in order to show
the strong convergence of the pressure [Mik00]. This construction of these right-inverse
divergence operators used the extension operators of [ACDP92|. A different construction
for such operators, which does not require any extension result, is derived in [Wiel9].
In particular, such e-scaled right-inverse operators become useful for the homogenisation
of the compressible (Navier—)Stokes equations [Mas02] or in our case, where the domain
evolution motivates inhomogeneous Dirichlet boundary conditions leading to an inhomoge-
neous divergence condition. While these works considered Dirichlet or periodic boundary
conditions at the boundary of the macroscopic domain, the case of normal stress boundary
conditions is considered in [FMW17].

The upscaling of the instationary Stokes equation was first studied by formal two-
scale asymptotic expansion in [Lio81] and rigorous homogenisation results are proven
in [All92b] and [Mik94]. The result is a Darcy law with memory, which is an integro-
differential equation and can be approximated for large times and constant force by the
classical Darcy law [Mik94]. However, the e-scaling of the viscosity becomes crucial and,
for different scaling, the time derivative can vanish during the homogenisation leading
directly to the stationary Darcy equation [Mik91].

The above-mentioned works considered the case where the porosity remains constant for
€ — 0. For the case of isolated obstacles it is possible to scale the obstacles asymptotically
smaller than the periodicity size ¢, i.e. the obstacles are of size ¢® for a > 1 [All91b,
Al190b, All190a]. The homogenisation result depends on the exact value of o and leads for
asymptotically small obstacles to the Stokes equation itself, for critically scaled obstacles
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to the Brinkman equation and for asymptotically large obstacles to a Darcy law. The
permeability for the Darcy law differs from the strictly periodic case [All91a] and the
additional Brinkman term, which arises for the critical scaling, corresponds to the “strange
term coming from nowhere” of [CM97].

Homogenization of non-linear problems

For example, non-linearities occur in reaction processes. Strong two-scale compactness
results are therefore useful for homogenisation. The derivation of such compactness results
is fundamentally different for slow and fast processes occurring in highly heterogeneous
media. For fast processes, spatial variations typically occur only on the macroscopic
scale, giving rise to uniformly bounded gradients and making the Rellich—-Kondrachov
theorem applicable. Using an extension operator [ACDP92] or the unfolding method, this
approach is also applicable to processes defined in periodically perforated domains and
non-linear interface conditions [DN15]. For time-dependent functions, a uniform control
with respect to time becomes helpful. Since spatially oscillating coefficients do not yield
oscillations with respect to time, classical approaches such as the Aubin-Lions lemma
[Aub63, Lio69] often become applicable. For perforated domains one can try again to
use the extension to the whole domain. However, the extension operator of [ACDP92]
controls only the LP- and W'P-norm but not the W1'P’-norm and, thus, the Aubin-
Lions lemma is not directly applicable if the derivatives are only controlled in the WP ’-
norm with respect to space. Nevertheless, in [MZ11] this problem is circumvented and a
compactness result is given. A more elegant argument is given in [GNRK16b] (see also
[GNRK16a, GNRK17, Gah23]), employing the Simon-Kolmogorov compactness result
[Sim87]. In particular, this argument can be used even if the weak time derivative cannot
be uniformly controlled in any space [WP23].

In the case of highly heterogeneous media, variations occur even at the microscopic
scale. Thus, the macroscopic variable asymptotically becomes a parameter and only the
microstructure can be controlled via the gradient. In the case that the non-linearity is given
by the gradient of a A-convex potential a rigorous homogenisation result was derived in
[HIJM94]. For a more general non-linearity a convergence result was derived by additional
error estimates in [MRT14]. Under additional control of the macroscopic variation of the
coefficients a generalisation of the Simon-Kolmogorov compactness result for R” [GNR16]
was applied to the homogenisation of non-linear boundary conditions [GNRP21].

Outline of the work

This thesis is structured as follows: In Chapter 1, we recall the notion of two-scale con-
vergence and its fundamental compactness results. We also use the periodic unfolding
method to obtain some additional results on two-scale calculus.

Chapter 2 presents an analytical framework for the homogenisation in locally peri-
odically perforated domains, which is based on [Wie23, D. Wiedemann, The two-scale-
transformation method, Asymptotic Analysis 131 (2023), 59-82]. The perforated domains
under consideration are characterised by transformations onto periodically perforated do-
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mains in Section 2.1. In Section 2.2, we show that these e-scaled transformations commute
with the two-scale convergence. In Section 2.3, we employ these results to homogenise an
elliptic problem in a non-periodically perforated domain. We formulate this transforma-
tion approach for time-dependent domains in Section 2.4.

Chapter 3 is devoted to the homogenisation of Stokes flow in locally periodically perfo-
rated evolving domains employing the transformation approach of Chapter 2. Section 3.1 is
based on [WP24, D. Wiedemann and M. A. Peter, Homogenisation of the Stokes equations
for evolving microstructure, Journal of Differential Equations, 396 (2024), 172-209] and
considers the homogenisation of quasi-stationary Stokes flow leading to a Darcy law for
locally periodically evolving microstructures. In Section 3.2, we consider the homogeni-
sation of the instationary Stokes flow leading to memory effects in the resulting Darcy
equation.

Chapter 4 is based on [WP23, D. Wiedemann and M. A. Peter Homogenisation of lo-
cal colloid evolution induced by reaction and diffusion, Nonlinear Analysis 227 (2023),
113168] and deals with the homogenisation of a reaction—diffusion process with a free
boundary, which is coupled with the unknown concentration. We present the microscopic
model in Section 4.1. Then, we transform the problem by a generic transformation onto a
periodically perforated reference domain in Section 4.2. In Section 4.3, we show the exis-
tence and uniqueness of a solution as well as uniform a-priori estimates. In Section 4.4, we
pass to the homogenisation limit € — 0 in the substitute domain and transform the result-
ing limit equations back to a upscaled version of the actual and derive a transformation-
independent homogenised equation.

In Chapter 5, we draw some conclusions and provide a brief outlook on possible future
research.

Appendix A gives an existence result for time-dependent differential-algebraic equa-
tions, which we use in Section 3.2 for showing the existence and uniqueness of a solution
of the instationary Stokes equations in the substitute coordinate system and for deriving
a-priori estimates.







Chapter 1.

Two-scale convergence and periodic
unfolding

In this chapter, we recap the notion of two-scale convergence and some of its fundamental
properties. Moreover, we employ the unfolding operator 7 in order to translate two-scale
convergence into classical convergence in LP spaces. This allows us to transfer several
useful results from the LP theory to the concept of two-scale convergence. The basic
results are well-known and some extensions stem from [Wie23, D. Wiedemann, The two-
scale-transformation method, Asymptotic Analysis 131 (2023), 59-82].

1.1. Basic results on two-scale convergence and the unfolding
operator

Two-scale convergence is a functional analytical tool, which enables rigorous homogenisa-
tion for differential equations with periodic structures. The notion of two-scale convergence
was introduced in [All92a] and is based on some fundamental convergence results for os-
cillating functionals in [Ngu89]. We refer also to [LNWO02] for more detailed proofs and
generalisations.

Two-scale convergence provides information on the asymptotic behaviour of a parame-
terised sequence of functions (ue,, )men in L?(Q2) for an open set Q = R™ for n > 1, where
(em)menN 1s a sequence of strictly positive parameters which tends to zero. For the sake
of simplifying notation, we omit the indices and write ¢ = ¢, as well as u; = u.,. We
call (em)men and (ue,, )men @ sequence € and a sequence u., respectively. We use the
expression “for all € > 0” in order to refer to all elements of the sequence €. Moreover, for
a subsequence of € or u., we use the same notation without adding any subscript.

In the following, let n € N, © < R™ be open and Y = (0,1)". Moreover, let C' be a
generic constant which is independent of €.

Definition 1.1 (Distributional two-scale convergence). Let 1 < p < c0. A sequence u. in
LP(Q) is said to two-scale converge distributionally to a limit ug € LP(Q x Y') if

. X
lim f uela)p (. 7) dz = f f w0z, y)p(z, ) dy da,
e—0 g
Q QY

for any function ¢ € D(Q; CY(Y)). We write u. D ug-

11



Chapter 1. Two-scale convergence and periodic unfolding

We write ug(z)
variables.

uo(z,y), if we want to emphasize the functions’ dependency on the

Enlarging the space of test function yields the notion of weak two-scale convergence,
which we often call two-scale convergence.

Definition 1.2 (Weak two-scale convergence). Let 1 < p < 0. A sequence u. in LP(Q)
is said to two-scale converge weakly to a limit ug € LP(Q x Y') if

. X
lim f uela)p (. 7) dz = f f wol(z, y)o(z,y) dy da,
e—0 g
Q QY

for any function ¢ € LI(Q; Cx(Y')), where q is such that % + % = 1. We write u. P ug.-

For bounded sequences and p € (1, o), the distributional two-scale convergence is equiv-
alent to the weak two-scale convergence.

Lemma 1.3. Let p € (1,0) and u: a bounded sequence in LP()) and ug € LP(2 x Y).

Then, u. ug if and only if u. i U

Proof. A proof is given in [LNWO02, Proposition 1]. O

Typically, the two-scale convergence for a sequence is obtained by compactness argu-
ments from the boundedness of the sequence. Due to the boundedness of the sequence,
the distributional and weak two-scale convergence are equivalent, which causes some in-
consistent usage of the term two-scale convergence in the literature, referring sometimes
to distributional or weak two-scale convergence.

In the following lemma, we see that weak two-scale convergence implies also weak con-
vergence.

Lemma 1.4. Let 1 < p < © and let us be a sequence in LP(2), which two-scale converges
to ug. Then, ue is bounded and us converges weakly in LP(Q) to u for u(z) == § uo(x,y) dy.
Y

Proof. Lemma 1.4 can be shown by choosing the test functions constant with respect to
the y-variable. For a detailed proof see [LNWO02, Theorem 6]. O

The notion of two-scale convergence is justified by the following compactness results.

Theorem 1.5. Let 1 < p < 0. For every bounded sequence u. in LP(S) there exist a
subsequence us and a uy € LP(2 xY') such that this subsequence two-scale converges to uy,

1.€. Ug UQ -

Proof. For the case p = 2, the first proof of Theorem 1.5 was presented in [Ngu89] and a
simpler proof is presented in [All92a]. The general case 1 < p < o is shown in [LNWO02,
Theorem 7]. O

12



1.1. Basic results on two-scale convergence and the unfolding operator

Due to Lemma 1.4, it cannot be expected that Theorem 1.5 holds for p = 1. Neverthe-
less, the notion of two-scale convergence can be extended to measures [Ama98|, in order
to deal with the case p = 1 similarly as in classical LP theory.

We remember that, in uniformly convex Banach spaces, the strong convergence of a
sequence is equivalent to the weak convergence together with the convergence of the norms.
This motivates the following definition for strong two-scale convergence.

Definition 1.6 (Strong two-scale convergence). Let 1 < p < o0. A sequence u. in LP(Q)

is said to two-scale converge strongly to a limit ug € LP(Q x Y') if ue p ug and

HUEHLP(Q) - HUOHLP(QXY)-

We write ugi»uo.
In particular, the two-scale test functions strongly two-scale converge.

Lemma 1.7. Let 1 < p < o and By(§;Y) denote one of the spaces LP(Q;Cu(Y)),
L’;(Y; C(Q)), C(Q;C(Y)). Then, for every u € By(Q,Y), it holds u(-, 2) € LP(Q) and

lu(, 2)lzeoy = lulrr@xyy-

Moreover, for 1 < p < o, it holds u(-, g)—p—»u
Proof. The measurability of ¢(-, 2) and the convergence [l¢(-, 2)|zr() = ¢l Lrxy) are
shown in [LNWO02, Theorem 3].

In remains to show the weak two-scale convergence of (-, Z) in order to conclude its
strong two-scale convergence. Let 1 < p < 00, u € Bp(€Y) and ¢ € D(;CL(Y)),
then up € B1(Q;Y). Therefore, we can pass to the limit in the distributional two-scale
convergence for the positive and negative parts of up and, thus, for the whole sequence.

Then, Lemma 1.3 provides the weak two-scale convergence. O

If the two-scale limit does not depend on the y-variable, the strong two-scale convergence
can be improved to the classical convergence in LP((2).

Lemma 1.8. Let 1 < p < o0 and u. a sequence in LP(QQ) which two-scale converges
strongly to ug € LP(Q). Then, u. converges strongly to ug in LP(S).

Proof. First, we note that |[uc| Lr) = [uolzr(axy) = |uo|rr(q)- Moreover, by Lemma 1.4,
we obtain the weak convergence u. — ug in LP(£2). Since LP(Q) is uniformly convex for
1 < p < oo, this implies the strong convergence in LP(€2). O

Using the unfolding operator, we can translate the notion of two-scale convergence
into convergence in LP spaces. Thus, we can derive more subtle results on two-scale
convergence. Nevertheless, the unfolding operator can be used as a homogenisation tool
on its own [CDG18]. In order to define the unfolding operator, we introduce the following
notation.

13



Chapter 1. Two-scale convergence and periodic unfolding

n

Notation 1.9. Let Q@ ¢ R" and z = ). z;e; € R™, where e; denotes the Fuclidean unit
i=1

vectors. We define

2[$1 ei, {ahy=a—[zly, [zley=c[Z], , {z}oy ={},

c={keZ"|ek+eY cQ}, QE::int<Usk+57) . A= O\Q..
kele

Definition 1.10. Let 1 < p < oo. The unfolding operator Tz : LP(2) — LP(Q xY) is
defined by
o(lzley +ey)  forae (z,y €. xY,
Te(@) () 1= | Aoy 0 (0) € 8
o(x) for a.e. (x,y) € A x Y.

Note that we define the unfolding operator by Tz(¢)(x,y) = ¢(z) on A x Y, i.e. on the
cells that are not completely included in €2, and not by 7-(¢)(x,y) = 0 as in [CDGO08] or
[CDG18]. By this slight modification, 7: becomes isometric (cf. Theorem 1.11). Thus, we
cannot only translate between the two-scale convergence of u. and the weak convergence
of Tz(ue) in LP(Q x Y'), as shown in [CDGO08], but we can also translate between the strong
two-scale convergence and the strong convergence in LP(2 x Y).

Theorem 1.11. Let 1 < p < 00. For every ¢ € LY(Q) and v € LP(Q), it holds

JJ (z,y)dydz = J«p(aj) dz, (1.1)
QY

&
TeWD)lraxyy = I19] Le()- (1.2)

Proof. First, we split the integral over {2 into Q. and Ag, ie.
Jjﬁ (z,y) dydx—z f f zley +ey)dydr + f o(z)dy dz.
k6155k+5Y Y AexY
Since x|,y = €k on each cell ek + €Y, we obtain
J Jgo([ ley +ey)dyde = J J (ek + ey)dydx = |5Y|J (ek +ey) dy
ek+eY Y ck+eY Y

= J o(z)de.
ck+eY

14



1.1. Basic results on two-scale convergence and the unfolding operator

Combining the previous two equations yields

JJ%( :cydyda:—Z J da:+f¢( )dx:J¢(x)d$_
Qv

kele piey A Q

Since |Tz(p)[P = T(|e¢|P), (1.2) follows for p < oo by applying (1.1) to |¢[P. In order to
show (1.2) for p = o0, let |¢| = C on an open set U with positive measure. Then, for every
e > 0, there exists k € I. such that |(¢k +€Y) n U| > 0 or we have |[A; n U| > 0. Then,
|7z(¢)| = C on either (¢k +¢cY) x ((ek+€Y)nU) or (Ae nU) x Y. Reversely, we can
deduce similarly from |7:(¢)| = C on an open set U < Q x Y with positive measure, that
|o] = C on a set with positive measure. Thus, we obtain (1.2) for p = o0. O

The following result translates two-scale convergence into classical LP-convergence.

Proposition 1.12. Let 1 < p < w. Let u: be a sequence in LP(Q2) and ug € LP(2 x Y).
Then, the following statements hold:

(1.) us-L

(2.) usi»uo if and only if Te(us) — ug in LP(Q x Y).

wo if and only if T-(us) — ug in LP(Q x Y),

Proof. In order to prove (1.), we note that both convergences imply the boundedness of u.
and T:(u.), respectively. The isometry of 7 (see Theorem 1.11) transfers the boundedness
of u. to the boundedness of 7-(u.) and vice versa. Therefore, it suffices to test only with
a dense subset of smooth test function (for the two-scale convergence see Lemma 1.3),
i.e. (1.) follows if we show that

hmfuE dw—il_r)r(l)JJ (ue) :Uy’E( ( ))(:cy)dydx

~ lim j J T (ue) (2, 9) ol y) dy da (13)

e—0

for every smooth test function ¢ € D(Q; Cy(Y)). The first equality in (1.3) follows from

(1.1) and the definition of 7;. For the second equality, we show that 7 (cp(-x, ?I)) converges
strongly to ¢ in LI(Q2 x Y') for % + % = 1. Therefore, we note that for every x € Q) there

exists eo(z) > 0 small enough such that z € Q. for every 0 < & < o(z). Hence, we obtain
the pointwise convergence

T (¢ (7)) e = (D«“]a,y Ty, W)

= e[zley +ey,y) = e(z,9)

for every (z,y) € 2 x Y. Since |7}(g0(-, g)) (x,y)| is also pointwise bounded for a.e. (x,y) €
QxY and € < 1 by xvu|elr=@xy) for U = {z € R" | dist(supp(¢),z) < C} for some
C > 0, we can apply Lebesgue’s convergence theorem and obtain the strong convergence
of Te(¢(z, 2)) to ¢ in LI(Q x V) for 1 + 2 =1, which implies (1.).

15



Chapter 1. Two-scale convergence and periodic unfolding

For the proof of (2.), we note that in uniformly convex Banach spaces, as LP(2 x Y'), the
strong convergence is equivalent to the weak convergence together with the convergence
of the norms. Hence, (2.) follows from (1.) and the isometry of 7. O

For weakly differentiable functions, the unfolding operator and the weak derivative
commute in the following sense.

Lemma 1.13. Let 1 < p < o0 and p € LP(). Then, Tz(¢) € LP(Qu; WIP(Y)), with
Te(Vy) = eV Te(p) in Qe x Y
Proof. Lemma can be shown by computations as in [CDG18, Proposition 1.35]. O

Two-scale convergence is also compatible with multiplication in the sense of the following
two results. The first result extends the results of [All92a, Theorem 1.8] (for p = 2) and
[LNWO02, Theorem 11] (for p € [1,0)), where it was shown that the product of a weakly
with a strongly two-scale converging sequence converges in the distributional sense on (2.

Lemma 1.14. Let1 < p,p1,p2 < 0 such that p%"'p% = %. Let u: be a sequence in LP*($2),
which two-scale converges strongly to ug € LP1 (2 x Y') and ve a sequence in LP%(QY), which

two-scale converges weakly to vo € LP2(2 x Y'). Then, ucv. P UV -

Proof. For the case p% + p% = 1, the distributional convergence (in D(2)") of the product
was shown in [LNWO02, Theorem 11]. This argumentation can be adapted for two scale
test functions 7(-, 2) for 7 € LI(Q;Cx(Y)) with % + % = 1 instead of test functions
7 € D(). Then, for the first step, it has to be observed that ¢r € L%(Q; Cx(Y")) for
¢ e LP(Q;Cx(Y)) and 7 € LI(Q;Cx(Y)), where p% + q% = 1. Then, the proof can be
adapted by repeating the approximation argument, which is given there.

For the case that 1 < p < oo the unfolding operator 7T¢ (see Section 1.1) can be used for a
simple alternative proof as follows. Lemma 1.12 implies T;(u:) — ug in LP*(Q2 x Y') as well
as Te(ve) — v in LP2(2 x Y'). From classical LP-theory, we obtain 7z (us)Tz(ve) — ugug in
LP(Q x Y). After noting that Tc(usve) = Tz(us)Te(ve), Lemma 1.12 translates this weak

LP(Q x Y')-convergence back into ucv. P

upvQ-. ]

For the case of two strongly two-scale converging sequences, we obtain the following
analogous result.

Lemma 1.15. Let 1 < p, p1,p2 < o0 such that p%"'p% = %. Let u: be a sequence in LP*(2),

which two-scale converges strongly to uy € LP (2 x Y') and ve a sequence in LP2(Q)), which
two-scale converges strongly vo € LP2(Q x Y'). Then, usvei»uovo.
Proof. Similarly to the second proof of Lemma 1.14, Lemma 1.12 implies T:(u:) — ug

in LP1(Q x Y) as well as T-(ve) = v9. Thus, we obtain the convergence T(u-.v:) =
Te(ue)Te(ve) — wovg in LP(2 x Y), which can be translated back by Lemma 1.12 into

ugvai»ugvo. ]
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1.1. Basic results on two-scale convergence and the unfolding operator

If u. is a sequence in LP(R2) for every p € (1,00) and uy € LP(Q2) for every p € (1,00)

such that ugi»uo for every p € (1,0), we write
< Q0O
Ue————»U.
Having this notation, we can enhance Lemma 1.15.

Lemma 1.16. Let 1 < p < oo, let v. be a sequence in LP(Q) and vy € LP(2 x Y)
vo). Let ue be a bounded sequence in L' () n L®(2) and

up € LY (QxY)NL®(QxY) with u€<—oo»u0. Then, ugvsi»uovo (resp. ugve P

such that vgi»vg (resp. vs P

uovo).

Proof. First, we consider the case that fugi»vo. Similarly to the proof of Lemma 1.15,
we obtain 7z(us) — ug in LI1(Q x Y) for every ¢ € (1,00) and Tz(ve) — vg in LP(Q2 x Y').
Moreover, || Tz(ue)| = @xy) < C for some constant C'. Then, we can pass to a subsequence
such that the pointwise convergences 7 (us)(z,y) — uo(x,y) and Tc(ve)(z,y) — vo(x,y)
hold for a.e. (z,y) € @ x Y and we have a pointwise majorant h € LP() x Y) almost
everywhere, i.e. |T:(ve)(z,y)| < h(z,y) for a.e. (z,y) € Q x Y. Transferring the pointwise
convergence and the dominating function onto the product, we obtain the pointwise con-
vergence T¢(usv:)(z,y) = upvo(x,y) for a.e. (x,y) € 2 xY and |Tz(ucve)(x,y)| < Ch(z,y)
for h € LP(Q x Y'). By applying the Lebesgue dominated convergence theorem, we obtain
Te(usve) = upvp in LP(Q x Y'). Since this argumentation holds for every subsequence, the
convergence holds for the whole sequence. We translate this convergence in LP(Q2 x Y')

with Lemma 1.12 into ugvgi»ugvo.

Next, we consider the case of v, P vg. From Lemma 1.12, we obtain T:(u:) — ug
in L°(Q x Y) for all s € (1,20), and Lemma 1.11 yields the boundedness of 7z(uc) in
LY (Q xY)n L®(Q x Y). By the same argumentation as above, we get Tz(u:)¢ — ug¢ in
L1(Q x Y) for every ¢ € LI(Q2 x Y), where % + % = 1. Using T:(ve) — vp in LP(2 x Y),
we can pass to the limit

f Te (uzve) (2, ), y) dy dr = J T2 (0e) (2, 1) (T () ), y) dy
QxY 959%

R j wo 2, Yoo (&, 1) (z, y) dy da.
QxY

Then, we translate this weak convergence with Lemma 1.12 back into u.v. P ugvg.

In order to deal with non-linearities later, we note that the composition with a contin-
uous function preserves the strong two-scale convergence.

Lemma 1.17. Let 1 < p < o and || < 0. Let u. be a sequence in LP(S2) and ug € LP(§2 x
Y') such that us—p—»uo and let f € C(R) be bounded or globally Lipschitz continuous. Then,

it holds f(ug)i»f(uo).
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Proof. From Lemma 1.12, we obtain 7z(u.) — uo in LP(£2 x Y'). Thus, we can pass to a
subsequence and obtain h € LP(Q x Y') such that 7z (u:)(x,y) — uo(z,y) and |To(ue)| <
h(z,y) for a.e. (z,y) € Q x Y. The pointwise convergence can be transferred via the
continuity of f into f(7T:(ue)(x,y)) — f(uo(x,y)). For the case that f is bounded, i.e.
|f| < C < o0, one has |f(Tz(u:)(x,y))| < C for a.e. (x,y) € Q x Y and by the Lebesgue
convergence theorem, we obtain 7-(f(ue)) = f(Tz(ue)) — f(up) in LP(Q x Y). For the
case that f is globally Lipschitz continuous with Lipschitz constant Ly, we obtain

|f(Te(ue) (z, 9)) | < |F(O)] + Ly Te(ue) (@, y)| < C + Lh(x,y)

for a.e. (z,y) € @ x Y. Then C + Lyh can be used as majorant and we obtain 7-(f(u.)) =
f(Te(ue)) — f(up) in LP(Q2 x Y') by the Lebesgue convergence theorem. Since this ar-
gumentation holds for every subsequence, it holds for the whole sequence. With Lemma

1.12, we translate this convergence back into f(us)i»f(uo). O

The compactness result Theorem 1.5 can be improved for sequences of weakly differen-
tiable functions by the following two well-known compactness results.

Theorem 1.18. Let p € (1,0) and let u. be a bounded sequence in WP(Q) which con-
verges weakly to ug € WYP(Q). Then, there exist ug € WP(Q), u; € LP(Q; W;’p(Y)/R)
p

and a subsequence ucz such that u. — ug in LP(Q) and Vue Vaeuo + Vyus.

Proof. A proof of Theorem 1.18 is given in [LNWO02, Theorem 13]. O

Theorem 1.19. Let 1 < p < . Let ue be a sequence in WHP(8) such that lue]Lr) < C
and &|Vue|rpy < C. Then, there exist a subsequence u. and ug € LP(§; W#p(Y)) such

that u. P P

ug and eVu, Vyup.

Proof. By applying Theorem 1.5 to u. and eVu., we obtain the two-scale convergence for
both sequences. Then, the two-scale limits of eVu,. can be identified with the y-gradient
of the two-scale limits of u. using integration by parts. O

1.2. Two-scale convergence for periodically perforated domains
and interfaces

In the following, we consider the concept of two-scale convergence for functions defined
on periodically perforated domains. Let Y* — Y be open such that its periodic extension

Y; = int ( U ek + 5W) is a Lipschitz domain. We denote the characteristic functions
keZm
of Y* and Y#* by xy#* and Xy respectively. For an open Lipschitz domain Q2 ¢ R", we

define the corresponding perforated domain by

Qe =0 NnYy.

18
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In order to speak about the two-scale convergence for a sequence u. in LP(€).), it is useful
to extend it to functions in LP(£2). The simplest way is the extension by zero, which we
denote by ~ in the following. In Theorem 1.21, we will see that the two-scale limit for
sequences of functions that are given via this extension (or functions that are zero on
O\Q.) is zero on Y\Y*. Hence, it suffices to define the two-scale limit on Y*. For the
limit functions (or general functions defined on Y*) we use - as the extension by 0 from
Y*toY.

Later we will partially omit ~ and use the following notation for the sake of better
readability.

Notation 1.20. Let u. by a sequence in LP(€.) and ug € LP(Q2 x Y*). Then, we write

Ug ] Zf Ue uo,

b < O

and

Analogously, we adept the notations

Theorem 1.21. Let 1 < p < o and let u. be a bounded sequence in LP(Q.), i.e.
lue| .y < €. Then, there exists a subsequence u. and ug € LP(Q2 x Y™*) such that

Ue

up.

Proof. We note that the boundedness of u. implies the boundedness of u;. By applying
Theorem 1.5, we obtain a two-scale limit ug for a subsequence. By choosing test functions
¢ that are zero in Y* we obtain ug(z,y) = 0 for a.e. y € Y\Y™. O

Moreover, the compactness results Theorem 1.18 and Theorem 1.19, for weakly differ-
entiable functions, can be extended to the case of perforated domains, too. However, the
extension by zero does not necessarily preserve the weak differentiability and, thus, the
original compactness results Theorem 1.18 and Theorem 1.19 cannot be applied. Nev-
ertheless, the following two compactness results can be shown, where W#p (Y*) = {ue

WLP(Y*) | u is Y-periodic}.

Theorem 1.22. Let 1 < p < o and Y#* be connected. Let u. be a bounded sequence
in WHP(Qe), i.e. |uclwin,y < C. Then, there exist a subsequence u. and ug € LP(S),
uy € LP(Q; W#p(Y*)/R) such that for this subsequence

Ue ug, Vue—p—uxy* Vaug + Vyus.

In the case of uc|onnoq. = 0, one has ug € HL(S).

Proof. For the case p = 2, a proof is given in [All92a, Theorem 2.9]. It can be improved
to the case of arbitrary p € (1,00) by the results of [LNWO02]. O

For the case of large gradients, we obtain the following result.
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Theorem 1.23. Let 1 < p < . Let uc be a sequence in WP(€.) such that |uc| o(q.) +

IVuc|ro.y < C. Then, there exist a subsequence u. and ug € LP(; W#p(Y*)/R) such
that for this subsequence

p

Uz Xy * U, eVue m)-
Proof. For the case of p = 2, we refer to [All92a, Lemma 4.7]. It can be extended to the
case of arbitrary p € (1,00) by the results of [LNWO02]. O

In the case of a bounded sequence u. in WP(Q), the compact embedding into LP(£2)
can be used for obtaining strong convergence in LP(2), which becomes useful for non-linear
problems. In the case of a perforated domain, we often only have a-priori the boundedness
of u. in WP(€.). Since the extension by zero does not preserve regularity, it cannot
be used directly for the derivation of strong convergence. This can be solved using the
following extension operator. For the following result, we assume that the domain 2 and

the sequence ¢ are such that ) consists of e-scaled copies of Y, i.e. Q = int( |J ek +£Y)
kel
for all €.

Lemma 1.24. Let 1 < p < 0. Then, there exists a family of extension operators
E.: WHP(Q.) » WP(Q),
such that

HEE(UE)HLP(Q) CHUEHLP(QE)

<
||VEE(UE)HLP(Q) <

CVue|rr (0.,

for all ue € WHP(Q.). Moreover, if u. =0 on 0Q. n 09, then E.(u.) € Wol’p(Q).

Proof. For the general construction of such a extension operator, we refer to [ACDP92].
This extension operator can be constructed for arbitrary domains 2. However, the uniform
continuity estimates hold only locally in the case of a non-zero boundary condition at
0 n €. On the type of domain described above, which consists of entire e-scaled cells
only, this issue can be handled such that the estimates hold globally (see [H516]). O

Having this extension operator at hand, we can employ the compact Sobolev embedding
from WHP(2) into LP(QQ) for E.(u.) and a bounded sequence u. in WP(€).), in order to
pass to a subsequence such that E.(u:) — vg in LP(§2) for some vy € LP(2). Then, with

the strong two-scale convergence of xq. L-)Xy* for every p (see Lemma 1.7) and the
uniform essential boundedness of yy=, we can use Lemma 1.16 and get the strong two-

scale convergence for the product u, = XQEEE(’UE)L-)XY* vg. By the uniqueness of the
two-scale limit, vg can be identified with the two-scale limit given by Theorem 1.22.

The homogenisation of processes in perforated domains often involves functions that are
defined on the boundary of .. In particular, the inner boundary I'c := 0Q.\0Q2 becomes
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1.2. Two-scale convergence for periodically perforated domains and interfaces

interesting. We denote the interface in the reference cell by I', i.e. I' := dY*\dY. In the
following, we assume that Q is bounded and (as already for the extension operator) that
Q) consists of entire e-scaled copies of the unit cell Y. The notion of two-scale convergence
can be extended to functions defined on such interfaces as follows.

Definition 1.25. Let 1 < p < 0. A sequence of functions u. € LP(T'.) is said to two-scale
converge weakly on the surface I'c to a limit ug € LP(Q x '), if e?|luc| 1o,y < C and

liII(l)&? J ue(t, )¢ (x, g) do, = Jjuo(x, y)o(z,y)doy do
QT

E—>
Ie

for every ¢ € C(Q, C(T)). We write u. P
We say that a sequence u. two-scale converges strongly on I, if additionally

ug on I'..

1
;l_r%” H“SHLP(FE) = HUOHLP(QxF)7

and we write ugi»qm onT;.
For this notion, we obtain the following compactness result.
Theorem 1.26. Let 1 < p < oo. Then, for every sequence u. € LP(T';) with
1
e |uelr(r.y < C,
there exists ug € LP(Q) x T') and a subsequence for which
ugi»uo on I'..

Proof. For p = 2, a proof is given in [NR96|, which can be generalised to arbitrary p €
(1,00) by arguments as in [LNWO02] for the two-scale convergence in €. O

Lemma 1.14 and Lemma 1.15 can be extended to the two-scale convergence on surfaces
as follows.

Lemma 1.27. Let 1 < p,p1,ps < o0 such that % + % = 1. Let u. be a sequence in

p
LPY(T.), which two-scale converges strongly to ug € LPY(Q x T') and v. a sequence in
LP2(T), which two-scale converges strongly (resp. weakly) to vg € LP2(2 x T'). Then,

p
UeVe——> UV (T€SP. UsVe uovp) on Te.

Proof. The proof of Lemma 1.14 can be adapted by using the unfolding operator for
surfaces (see Definition 1.29 below) instead of the unfolding operator for bulk terms. [J

For functions in W1P(€).), the following e-scaled trace inequality is useful.
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Chapter 1. Two-scale convergence and periodic unfolding

Lemma 1.28. Let p € [1,0). For every 8 > 0 there exists a constant C(0) > 0 indepen-
dent of €, such that for all u. € W1P(Q,)

1
e |luellprr.y < C0)|ue| ey + 02 Vue| Lo

Proof. Lemma 1.28 can be shown by a classical argument, namely decomposing the domain
Q). into the e-scaled cells, upscaling them and applying the trace inequality there. O

The concept of the unfolding operator can be extended to functions defined on the
surface of perforated domains as follows, where we assume that A, = 0. This corresponds
to the assumption that {2 consists of entire e-scaled copies of Y. Moreover, let (). be given
as above for the two-scale convergence for perforated domains.

Definition 1.29. Let 1 < p < . The unfolding operator Tz : LP(I';) — LP(Q x I') is
defined by

T(o)(z,y) = o([x]ey + ey) for a.e. (x,y) e Q xT.

The isometry result can be transferred to the unfolding operator for surfaces as follows.

Theorem 1.30. Let 1 < p < 00. For every p € L' (T'.) and ¢ € LP(T.), it holds

JJ (z,y daydm—sjcp(x)dam,
Qr re

[ s(¢)\|Lp(QxY) = 51/p|WJHLP(Q)

Proof. Theorem 1.30 can be proven by a similar computation as in the proof of Theo-
rem 1.11. O

1.3. Time-dependent two-scale convergence

For processes over some time interval (0,7") for 7' > 0, the following version of parame-
terised two-scale convergence becomes useful.

Definition 1.31 (Weak two-scale convergence). Let 1 < p,q < o0. A sequence u. in
LP(0,T; L9(Y)) is said to two-scale converge weakly to a limit ug € LP(0,T; LY x Y)) if

lin(l)ffuetx )dxdt—fjfuotacy)cp(ta:y)dydxdt
e—

0QY

for any function ¢ € L¥ (0, T; Lq,(Q;C#(Y))), where p' and ¢' are such that % +4 =1

p/
and % + % =1. We write ue%uo.

22



1.3. Time-dependent two-scale convergence

For1 < p,q < o0, a sequence ue in LP(0,T; L9($2)) is said to two-scale converge strongly
to a limit ug € LP(0,T; LYY x Y')) if ue P4

ug and additionally

e HLP(O,T;L‘Z(Q)) — Juo HLP(O,T;Lq(Qxy))-

We write ugﬂ»uo.

If u. is a sequence in LP((0,T) x Q) for every p € (1,00) and uy € LP((0,T) x Q) for
every p € (1,00) such that usﬂ»uo for every p € (1,00), we write

< 00, < W0
Ue—————>Uy).

For this notion of parameterised two-scale convergence, we can transfer all of the above
compactness results and further results accordingly. In case of bounded sequences, we can
also reduce the space of test functions to functions that are also smooth with respect to
time.

Lemma 1.32. Let 1 < p,q < © and us be a bounded sequence in LP(0,T;L9(2)) and
ug € LP(0,T; LYQ x Y)) such that

T
lim f j uew)p(t) (v, 2) dadr
0Q

for any function ¢ € D(0,T) and ¢ € D(€;CY(Y)). Then, ue

Proof. Lemma 1.32 can be deduced by a density argument similar as in [LNW02, Propo-
sition 1]. O

O%’ﬂ

j f uo(t, 2, 1) (8)6(z, y) dy da dt,
QY

b, q

UuQ.

Lemma 1.33. Let 1 < p,q < . Let u: be a bounded sequence in WP(0,T'; L9(2)). Then,
there exists ug € WHP(0,T; LY(2 x Y')) such that for a subsequence

b, q

atu(h Ue (0) P

Ue UQ, Ote UO(O).

Proof. From the compactness result, we obtain the two scale convergence of u. and J;u..
Then, we test with 0yp(t)d(x, Z) for ¢ € D(0,T) and ¢ € LI(£2; Cx(Y')) in order to identify
the limit of d;u. with d;ug.

Afterwards, we can conclude similarly the two-scale convergence of u.(0) using test
functions ¢ € C*([0,T]) with ¢(T") = 0. O

Moreover, the unfolding operator for time-parameterised functions is defined as follows.

Definition 1.34. Let 1 < p,q < . The unfolding operator
Te: LP(0,T; L9(QY)) — LP(0, T Lq(Q x Y)) is defined by

o(t,[z]ey +ey)  forae (t,z,y) € (0,T) x Q. x Y,

T(@)(t, 2, y) = {tp( z) fora.e. (t,z,y) € (0,T) x Ac x Y.
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Chapter 1. Two-scale convergence and periodic unfolding

As for the two-scale convergence, results about the unfolding operator and its relation
to two-scale convergence can be proved in the time-parameterised setting. Moreover, the
unfolding operator for surfaces can be extended to the time-dependent setting accordingly.
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Chapter 2.
Homogenisation for locally periodic domains

Substantial parts of this chapter are based on the publication [Wie23, D. Wiedemann, The
two-scale-transformation method, Asymptotic Analysis 131 (2023), 59-82].

In this chapter, we derive a rigorous framework for the homogenisation in non-periodically
perforated and evolving non-periodically perforated domains. The non-periodicity under
consideration is on the scale € and, thus, it will persist during the limit process. We
consider the stationary case of a non-periodically perforated domain first. Afterwards, we
add the time evolution as a parameter similarly as in the theory of two-scale convergence.

In order to do the homogenisation on the non-periodically perforated domain, we pro-
ceed as follows: first, we transform the domain and the equations onto a periodically per-
forated substitute domain. There, we pass to the homogenisation limit. Afterwards, we
transform the resulting limit system back to the two-scale limit set for the non-periodically
perforated domains. The two-scale limit set of the non-periodically perforated domains
will have a non-cylindrical structure, i.e. for every macroscopic point the cell domain is
different. We justify this approach by showing that it commutes with the homogenisation
in the non-periodically perforated domain, i.e. the diagram in Figure 2.1 commutes.

homogenisation

3335 periodic 1

::;isﬂi;ﬁ sproblem ruacrop
HH
3299999999953 N ,
. . bty =1
-1 microscopic tw Yo (22,7)
e transformation back iy )
b (g .
o

homogenisation on the substitute \'

periodic substitute domain macroproblem - ’
d

reference cell Y

Figure 2.1.: Homogenisation by transformation on a periodic substitute domain

We consider this transformation approach in a qualitative and not quantitative way.
That means, we will translate the convergence statement between the actual problem and
the substitute problem, but no e-scaled estimates. Thus, we can consider a wider range
of non-periodic domains. In particular, we can deal with a-priori not given domains and
it suffices to control these domains by compactness arguments.

This chapter is organised as follows. In Section 2.1, we define locally periodic domains €2,
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Chapter 2. Homogenisation for locally periodic domains

by means of a family of locally periodic transformation mappings . : Q. — Q., which are
defined on a periodically perforated substitute domain and a two-scale limit transformation
mapping ¥o(x, ), which is given for almost every macroscopic point x € {2 and acts on the
unscaled reference cell. Then, we derive some uniform estimates on the Jacobian of .
and its determinant, which become useful for the homogenisation processes later.

In Section 2.2, we show that the two-scale convergence and the transformation mappings
commute, i.e.

e (e(2)) Pup(@, vo(e,y))  ifandonly if  ue(z)Tsug(x,y) (2.1)

for p € (1,0). Moreover, we show that (2.1) holds also with respect to the strong two-
scale convergence, which becomes useful for the transformation of oscillating coefficients.
Afterwards, we extend the transformation results for the gradients of weakly differentiable
functions. For this, we consider the two typical scalings of small (Vu. is bounded) and
large gradients (¢Vu. is bounded). In the case of large gradients, the transformation is
similar to (2.1). For small gradients, it turns out that the corrector of the gradient cannot
be transformed by (2.1) but requires an additional correction itself.

In Section 2.3, we present the homogenisation of an elliptic problem defined on a locally
periodic domain by means of the transformation. We consider the cases of slow and of
fast diffusion. After a transformation on the periodic substitute domain, we show uniform
bounds for the solutions of the transformed equations. Then, we pass to the two-scale limit
in the equations. We transform these two-scale limit equations back into transformation-
independent two-scale limit equations, which are defined in the non-cylindrical two-scale
limit set. Moreover, for the case of small gradients, we derive the homogenised equations
by separating the macro- and microscopic variables in the two-scale limit equations. We
do this for the transformed and back-transformed two-scale limit equations. For the sake
of completeness, we transform the cell problems and show that the homogenised equations
are equal, i.e. the homogenised tensors which arise from the cell problems are equal.

In Section 2.4, we extend this concept to locally evolving periodic domains, i.e. locally
periodic domains with a time parameter. Moreover, we provide additional results for the
time derivatives of the transformations, which become useful in the homogenisation of
parabolic equations.

2.1. Locally periodic domains

Let Q  R™ be an open and bounded Lipschitz domain and Y* ¢ YV = (0,1)™ be open. We

assume that the Y-periodic extension of Y*, which we denote by f/;; = int ( U k+ Y*),
kezZn

is a Lipschitz domain. Let €. = Q n 5Y#* denote the e-scaled periodically perforated

reference domains. Then, we define the locally periodic domains €2, by a transformation

of the periodic reference domains.

Definition 2.1. A sequence of open domains 2. < R™ is locally periodic with two-scale

limit set @ = |J{z} x Y*(z) <€ Q x Y, where Y*(z) < Y is open for every x € €,
€S
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2.1. Locally periodic domains

if there exists a sequence of locally periodic transformations 1. (see Definition 2.2) with
limit transformation g such that Q. = V() for every e > 0 and Y*(x) = 1po(x,Y™) for
a.e. T €S,

In order to define locally periodic transformations, we have to consider the two-scale
convergence for sequences of functions defined on €).. Therefore, we extend them by 0 to
), which we denote by ~. Moreover, for functions defined on  x Y*, we analogously
denote their extension by 0 to Q x Y by .

Definition 2.2. We say that a sequence of mappings 1. € C?(Q)" is a sequence of locally
periodic transformations with two-scale limit transformation g € L®(Q; C2(Y)™) if the
following assumptions hold:

1. assumptions on .:
a. Ye: QE — Q. < R” is bijective for every e > 0,
b. there exists c; > 0 such that det(d,v.(x)) = ¢y for all x € Q. and every e > 0,

c. there exists a constant C' such that
e e — @l + 10vel oy +ElPetatiell g, < C

for every e > 0,

2. assumptions on g:
a. Po(z,-): Y =Y is bijective with Y*(x) = tbo(x,Y*) for a.e. z € Q,
b. ¢0_1 e L®(Q; C*(Y)™), where 1/)0_1(:73, \) is the inverse of o(z, ),

c. the corresponding displacement mapping, defined by @\b/o(x, y) = Yo(z,y) —y for
(z,y) € Q x Y can be extended Y -periodically, i.e. 1y € L (; Ci(?)”),

3. asymptotic behaviour

o 5*1(1/15 — a:)&*xxp*(y)(%(l‘, y) —y)
o Oth—L s x w0y,

L 5axax¢s<—oo»>({/* 5y5y1/)0'

We have defined the limit transformation vg(z,-) on entire Y and not only on Y* in
order to ensure the measurability, when we use it as transformation. However, for the
asymptotic behaviour in Definition 2.2 and the transformation results later, it suffices to
have 1o (z, -) and ¢ (, ) defined on Y* and Y *(z), respectively. Then, we will implicitly
restrict 19 and v, D accordingly and, where necessary, we use the implicit extension by 0.

Remark 2.3. Note that we do not assume that 1. maps each e-scaled cell into the same
e-scaled cell. Moreover, the assumption that 1o (z,-) is bijective fromY ontoY can also be
weakened and it suffices to require that vo(x,-) is bijective from R™ to R™ and Y -periodic,
which generalises the transformations at the cell boundaries.
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Chapter 2. Homogenisation for locally periodic domains

Notation 2.4. Let ¢. and g be given by Definition 2.2. We denote the inverse of Ve by
Y- and recap the notion @Z)O_l(x, -) for the inverse of Yo(x,-) for a.e. x € Q. We define
the corresponding displacement mappings by

Delz) = o) — 1, v (@) = T (@) —
dol@,y) = vol(z,y) — v, Doz, y) = vy N, y) — v

We note that the displacement mappings can be identified with the displacement map-
pings of the inverse by

e (@) = vl (@) — 2 = ¥ (@) — (VTN @) =~ (U (@),

— . 1 . —_ . (2.2)
g (z,y) = (o (z,y) —y = (o (z,y) — 1/10(%7»% (z,y)) = _¢0(x7¢0 (z,9)).

The Y-periodicity of ¥ can be transferred via (2.2) to 1y '. Thus, ¥, € L®(Q; Ci(?))

Notation 2.5. Let ¥. and vg be given by Definition 2.2. We use the following notation
for the Jacobian matrizx, its determinant and its adjugate matrix

U (z) = 0;9:(), Jo(x) == det(V.(2)), Ac(z) = Adj(P.(z))
forx e KATE and

\IIO(xay) = yu}()(xvy)a JO(J:?y) = det(\IIO(xvy))7 AO(xvy) = AdJ(\I/()(III,y))
fora.e.xeQ and allyeY.

We recall that Adj(B)B = B Adj(B) = det(B)1 for B € R"*". Since det(d,v:) = ¢y
(see Definition 2.2), W, is invertible and in Lemma 2.9, we will see also det(dyt) > ¢
and, thus, ¥g is invertible and we get

A= J.0 Y Ag = Jo¥,t.

Remark 2.6. For the homogenisation of the second-order elliptic problem in this chap-
ter, we are not using the second derivative of 1. if we transform only the weak and not
the strong formulation of the equations. Therefore, it would suffice to define locally pe-
riodic domains by C'-diffeomorphisms and, correspondingly, without any assumptions on
their second derivatives. However, for the homogenisation of the Stokes equation, we will
need the second derivatives. In order to avoid repetition, we formulate the transformation
already with C?-regularity here.

The regularity can be even lowered to the case of bi-Lipschitz regular transformation,
where the derivative is given only almost everywhere.

For the homogenisation of the transformed equation, we have to deal with the quantities
V., J., A. and their inverses as coefficients in the equations. Therefore, we need their
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2.1. Locally periodic domains

uniform boundedness as well as their strong two-scale convergence. We obtain this by
rewriting these terms as polynomials in J_ ! and the entries of ., which can be controlled
by the assumptions from Definition 2.2.

Lemma 2.7. Let B € R™*"™ with det(B) # 0. Then, there exist polynomials pyet, PAdj,; »
D=1, Pagj=1s fori,je{l,...,n}, such that
ij ij

det(B) = pdet(Blla Bl?a e Bnn) = Pdet(B)7

(Adj(B))i; = pAdJ” (Bi1, Bz, ..., Bpn) = Pag;,, (B),
(B i = p=(det(B) !, Buy, Bua, ..., Bun) = Pi(det(B) ', B), (2:3)
ij
(Adj(B) 1) = .(det( )Y, Bi1,Bia, ..., Bun) = PAdji_jl(det(B)*l,B),

Moreover, for space-dependent functions B: R™ > U — R™ ™ with det(B) # 0 it holds

Oy, det(B( ZaBmlPdet( (%)) Oy Byt ()

Oz, Adj(B(z))ij = Z 0B, Padj,; (B(2)) 0, B (),

Oy (det(B(2)) ™) —det( () 20z, det(B()),
0r, (B™1)ij(2) = ~0aei(m)=1 P-1 (det(B) ™", B) det(B(x)) "0, det(B(x))
+ZaBl 1 (det(B) ™ (), B()) 0z, By (),

Oy (Adj(B) ™ 1)ij(w) = —adeuB)fl rajcm- 1 (Qe6(B) ' (@), B(x)) det(B(x) 0y, det(B(x),
+ 208, Pagiy (det(B) ! (2), B(2))n, B ()

m,l

(2.4)
forall ke {l,...,n}.

Proof. The existence of polynomials pqe; and pagj follows directly from the definition of the

determinant and the adjugate matrix. Noting that B~! = det(B)~! Adj(B), Adj(B)~! =

det(B) !B, we obtain also p 1 and p Adj=L The second part of Lemma 2.7 can be derived
ij ij

from (2.3) and the chain rule. O

Lemma 2.8. Let ¢, be locally periodic transformations in the sense of Definition 2.2.
Then, there exists C' > 0 such that

nyguc(ﬁ—a)+\|x1;;1|\c((T + el oy + 15 @ + 1Ml oan + 142  o@n, < ©
1 1

L I A o e [ A s +€H5 I o <6

EH&’xAEHC(Q>+£H(? AN iy < €
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Chapter 2. Homogenisation for locally periodic domains

Proof. The estimates of Definition 2.2 give the uniform boundedness of ¥, and €0, V.. In
order to estimate J; and A., we rewrite them as polynomials with respect to the entries of
VU, (see Lemma 2.7). Then, we can transfer the uniform boundedness and regularity of W,
onto J. and A.. From Definition 2.2, we obtain additionally the uniform boundedness of
Je from below and, thus, with the regularity of J., we obtain the regularity and uniform
boundedness for J=1. Then, we write ¥-! and AZ! as polynomials J-! and the entries
of U, (see again Lemma 2.7). Afterwards, we can transfer the regularity and uniform
boundedness onto U= ! and AZ!L.

Next, we rewrite the entries of ¢,.J. as polynomials in the entries of U, and 0, V. (see
Lemma 2.7). Since every summand in this polynomial contains exactly one elementary
factor which belongs to an entry of 0, V., we can rewrite £0,J. as polynomial with respect
to the entries of W, and €0, V.. Thus, the regularity and the uniform bounds of ¥, and
€0, V. induce those for 0, J;.

For the estimates of €0, V_ !, ed,J. !, €0, A. and €0, A, we proceed analogously. The
only difference is that we write them as polynomials in the entries of ¥, and 0, V. and,
now additionally, the entries of J_ ! and €0,J.. Again, we note that each summand of the
polynomials contains only one factor belonging to a derivative of either J=! or W.. Then,
using the previous estimates, we obtain the regularity and uniform bounds for 0, ¥ !,
e0,J7 Y, €0, A and €0, AZ 1. O

In the following, we show the strong two-scale convergence for these coefficients. For
this, we rewrite them again as polynomials with respect to quantities that we can control
by Definition 2.2.

Lemma 2.9. Let 1. be locally periodic transformations with limit transformation g in
the sense of Definition 2.2. Then, there exist constants cy,C' > 0 such that

+ 1%
| Aol

+ | Jol

Lo (Q;C(Y %)) Lr@o) S O

Jo(z,y) = cy for a.e. x€Q andeveryer*

HWOHLT(Q7C(§))

LR (Q;0(V#))

Moreover, one has

U=, NS, J—=% 5, Jol =2 Jo—l,
A= 4, AT =L A5 20,0 =50 0, 20, U =L 550,05

e e L T e e

Proof. From Definition 2.2, we obtain the regularity of ¥y and d,¥ as well as the two-
scale convergence of ¥, and €0, V.. Noting that Jy is a polynomial in the entries of ¥
(see Lemma 2.7), we can transfer the regularity onto Jy. Having the additional uniform
boundedness of ¥, and Vg, we can apply Lemma 1.16 which yields the strong two-scale con-

vergence for the polynomial and, thus, J€<—OO»J0 (similarly we obtain A€<—OO»A0).
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2.2. Two-scale transformation and two-scale convergence

Then, Proposition 1.12, gives the strong convergence 7z(J.) — Jo in LP(€ x Y), which
implies the pointwise convergence almost everywhere. Since J. = ¢y, we get ’7:;(j€) =cy
almost everywhere in ) x Y* which can be transferred via the pointwise convergence to
Jo = ¢y almost everywhere. With the y-regularity of Jy, we obtain Jy = c; for a.e. z € Q

and every y € Y. Having this bound, we can estimate further

ITe(I1) = T5 M ieaxyy = 1(Jo = Te(I)/ (o Te(TD) | pageascsny

) - 1~ -
< ¢ 1o = T oayrny = 10 = Te(Jo)| Logaxy) = 0,
7

for every p € [1,00), which implies Jg1<4OO»JO_1.

The strong two-scale convergence of W_ 1 A_! follows likewise by rewriting them as
polynomials, but now with the additional variable J!, for which we have already shown
the boundedness and the strong two-scale convergence.

Now we show the strong two-scale convergence of €0,V 1, e0,Jz, €0, J. 1, €0, A and
£0; Ag. We start with £d,J-1 and rewrite it as polynomial with respect to the entries of
U, and €0,V (for the e-scaling see also the proof of Lemma 2.8). Then, we obtain its
strong two-scale convergence from the boundedness of its entries and the strong two-scale
convergence of W, and 0, V.. Having the strong two-scale convergence of £6,J- 1, we can

likewise argue for the remaining terms. O

2.2. Two-scale transformation and two-scale convergence

We aim to translate between the two-scale convergence for a sequence u. in 2. and the
two-scale convergence of 4. := u. o 9. defined in the periodic substitute domain QE. We
recap that the two-scale convergence for a sequence in Q. is given by its extension - to
Q) by zero. We transfer this onto sequences in the non-periodically perforated domain §2..
However, Definition 2.2 does not require {2 < (2 and, thus, the extension to £ would not
suffice. Nevertheless, due to the estimate || < eC, we obtain Q. < Q) for some § > 0
and Q) = {z € R™ | dist(€,2) < 6}. Thus, we can extend functions defined on Q. by 0
on Q@ and use this macroscopic domain for the definition of its two-scale convergence.
Moreover, the support of the two-scale limit function will be contained in 2 x Y due to
li.| < eC. Thus, it is not too restrictive if we assume that Q.  Q, ie. Q¥ = Q, in
the following. Nevertheless, the following results and argumentation can be carried out
without this assumption for which we refer to [Wie23].

Having the extension -~ for a sequence in 2., we can define the two-scale limit as a
function on 2 x Y. We will see that the two-scale limit will be zero for a.e. (z,y) with
y € Y\Y*(z). Therefore, we will define the limit functions as element in LP(Q; LP(Y*(x)))
and denote their extension by 0 to 2 x Y by ~. We define the space LP(; LY(Y*(x))) by
restriction of LP(§; L4(Y")) to functions that are 0 for a.e. (x,y) € @ xY with y € Y\Y*(x),
where the norm is defined by

lulLooiLay# @)y = lw(@) | Lay*(2)) o (@)
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Chapter 2. Homogenisation for locally periodic domains

Later we will use also the space LP(€; W#p (Y*(z))), which we define by
) e WLP(Y*(z)) for ae. z €
LP(QWLP(Y*(2))) == {ue LP(Q; L (Y ux, ) € W L

In Lemma 2.16, we will see that these spaces can be identified with LP(Q; L(Y*)) and
Lr(Q, W;E’p (Y*)), respectively, and, thus they are well posed.

Analogously to the case of periodic perforation, we omit ~ in the notion of two-scale
convergence.

Notation 2.10. Let u. by a sequence in LP(Q:) and ug € LP(Q; LP(Y*(x))). Then, we
write

Ug ug if U uo.

Analogously, we adept the notion P, for pe (1,00) and =%,

2.2.1. Well-posedness of the transformation

Lemma 2.11. Let 1 < p < 0 and 4. = uez 0. Then, the following statements hold

e u. € LP(Q) if and only if 4. € LP(S).). Moreover, there exist constants ¢,C > 0,
which are independent of €, such that

it gy < Itelioany < Clitel g (2.5)

In particular, ue is a bounded sequence in LP(Q:) if and only if . is a bounded

sequence in LP ().

o u. € W'P(Q,) if and only if t. € WYP(.). Moreover, there exist constants ¢,C' > 0,
which are independent of €, such that

IVt oy < Vel Loy < Cl Vel e - (2.6)

In particular, u. is a bounded sequence in WVP(€.) if and only if 4. is a bounded
sequence in WHP(€.).

Proof. Since . and 1. ! are Lipschitz continuous, the measurability of u, is transferred to
i and vice versa. Moreover, we obtain, with the uniform boundedness of J. from below
and above

el o) = [ luc@Pde = [ L@)ic@)P de < € [ ficte)P d = Clcly,
Q. Qe Qe

el ) = [0 @) do < 5 [ @) de = ey
Qe Qe
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2.2. Two-scale transformation and two-scale convergence

Applying the chain rule to 4. yields 0,0 (z) = 0yu-(¥(x))0z¢(z) and, after rearranging,
(Vue)(Ye(x)) = U- T (2) Vi (x). Using the uniform estimates for J. from below and above
as well as the uniform estimates of U, and W21 (see Definition 2.2 and Lemma 2.8), we
obtain

Vel = [ V@) do = [ J(@)0T @) V(o) do
Q. Q.

< C’J [k x‘(QE)|Vﬂg(z)|p dz <C J |Viie(z) P dz = CHVQEHZ(QE),

Q. Q.
Vil g, = [V dr = [0 @ )T @) Fucto)l da
< c;l J H\IJ;'—HPI(QE)|VUE(JU)|7’ dz < C f |Vue(z) P dz = CHVuaHip(QE),
Qe Qe
which shows (2.6). O

In order to derive a similar result for the limit quantities, we have to discuss the mea-
surability of the transformed quantities first. Since the mapping (z,y) — ¥o(z,y) is not
bi-Lipschitz continuous with respect to «, it is a-priori not clear whether the composition
of (z,y) — u(x,vo(x,y)) is even measurable for measurable but not continuous u. There-
fore, we have to analyse the measurability for such parameterised transformations. For
the sake of clarity, in the following discussion, we call a set A < R™ measurable if it is
Lebesgue measurable and we call it Borel if it is Borel measurable. Moreover, we write
An(A) instead of |A| in order to stress the Lebesgue measurability of A.

Definition 2.12. Let E ¢ R™ be a Lebesque measurable set. A mapping ¢: E — R is said
to satisfy Lusin’s (N)-condition if for every A ¢ E with A\,(A) = 0 it holds N\j(¢(A)) = 0.

Lemma 2.13 (Lusin’s Theorem). Let A < R"™ be measurable with A\,(A) < oo and let f
be a real valued function on A. Then, for any é > 0, there is a compact set K — A with
M (A\K) < 6 such that the restriction of f to K is continuous.

Proof. See for instance [EG15, Theorem 1.14]. O

By means of Lusin’s Theorem, we can derive the following lemma, by extending the
proof of [Nau05, Theorem 1.3] from continuous to measurable functions.

Lemma 2.14. Let E < R™ be Lebesgue measurable with \,(E) < o0 and let ¢: E — R!
be a mapping. Then, the following statements hold.

(1.) Let ¢ be a measurable function defined on E, which satisfies Lusin’s (N)-condition.
Then, for every measurable set F'  E it holds that ¢(F') is measurable.

(2.) Assume that
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Chapter 2. Homogenisation for locally periodic domains

a. the set p(F) is measurable,

b. @ is injective,

c. o 1 o(E) — E is measurable in o(E) and satisfies Lusin’s (N)-condition,
d. u: p(E) — R is measurable.

Then, v o ¢: E — R is measurable.

Proof. (1.) The measurability of F' is equivalent to the existence of closed sets F; for

0
i € N and a set N with A\,(IN) = 0 such that F' = (U FZ) u N. Moreover,
i=0

from Lemma 2.13, we obtain a sequence of compact sets El for ¢ € N such that
An(E\E;) < i~ and ¢ is continuous on E;. Without loss of generality, we can

7 K3
assume that F; < Fj and E; < Ej for j > i, by considering |J Fj and |J Ej
k=1 k=1

instead of F; and E;. Consequently, one has A, (F\(E; 0 F})) < M\p(F\F;) +i ! and,
hence, there exists a null set IV such that

P~

Since ¢ is continuous on E; and (F; n E;) is compact, it holds that ¢(F; n E;) is
compact and, thus, is a Borel set. Then, the countable union | i, ¢(F; n E;) is a
Borel set as well. Moreover, since ¢ fulfils Lusin’s (N)-property, we have ¢(N) = 0
and, thus, ¢(IV) is measurable. We infer that

(E; A E)) U N.

s

=0

(FinE)) uN) = (@ B(F; 0 Ei)) u o(N)

1=0 =0

(s

o(F) = o

is measurable.
The measurabilty of u: ¢(FE) — R means that for every a € R, the set
{v € p(E) | uly) > a}

is measurable. Since ¢~ ' is measurable and satisfies Lusin’s (N)-condition, (1.)
shows that, for every a € R, the set

" ({y € p(B) | uly) > a})

1

is measurable. Now, we observe that

{ze Bl (ucp)(z) >a} =9 ({y € p(E) | uly) > a})

and hence u o ¢ is measurable.
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2.2. Two-scale transformation and two-scale convergence

In order to apply Lemma 2.14 for our purpose, we have to show that (x,y) — (x, Yo (z,v))
and (z,y) = (z,%; " (z,y)) fulfil Lusin’s (N)-condition. For instance, Lipschitz continu-
ity implies Lusin’s (N)-condition (see [Nau05]). However, (z,y) — o(z,y) and (z,y) —
(z,%0(x,y)) are not Lipschitz continuous with respect to z. In fact (z,y) — o(z,y) does
not fulfil Lusins’s (N)-condition. Nevertheless, with the following lemma, we can conclude
that (z,y) = (z,v%o(z,y)) and (z,y) = (x,v, (2,y)) fulfil Lusin’s (N)-condition even if
they are not Lipschitz continuous with respect to .

Lemma 2.15. Let m,n,l € N with [ = n. Let U < R™ be measurable, V.= R" be
closed and ¢ € L®(U; C(V)Y) be uniformly Lipschitz continuous with respect to the second
arqument, i.e. there exists L > 0 such that

|z, y1) — d(z, y2)| < Ly — y2|
for a.e. © € U and every y1,y2 € V. Then, (z,y) — (x,¢(x,y)), satisfies Lusin’s (N)-
condition on U x V.

Proof. Let A © UxV with Apyn(A). Then, for every e > 0, there exist cubes C*) « R™+7
for k € N such that

o0} e}
Ac U ok, 2 MCH)Y < e
k=1 k=1

and, in particular, 2r, < /(™) for all k € N. We identify these cubes by means of their
centres (zy,yr) € R™ x R™ and side lengths 27y, i.e.

C®) = QIr™((zk, i) = {(2,y) € R™™ | |z — 2|0 < 7y [y — Ykl < 7k}
= Qry (7x) x Q7 (yr) = {z e R™ | |z — wpfeo <7} x {y € R | |y — Yoo < 71}

From the Lipschitz estimate, it follows

|p(z,y) — d(@, yr)loo < Ly — yrloo < L,

for all (x,y) € C®) and, hence,

s(C* e ] {2} x Q. (d(z, ) U xR™

zeQT (Tk)
Moreover, we note that

l
U {.T}} X Qler (¢(x,yx)) = ﬂ{(m,z) € Q;r;(xk) x R’ | zi — ¢(@, yk)i < er}
TeQP (k) i=1
l

A (i(z,y) € QF () x R | 2 — ¢(, yi)i = — Loy}
=1
(2.7)
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Chapter 2. Homogenisation for locally periodic domains

By [LNWO02, Theorem 1], we can fix the second argument of ¢ and get the measurability
of x — ¢(x,yx) and, thus, (z,2) — z; — ¢(x,yx); is measurable for all ¢ € {1,...,1}.
Therefore, all sets on the right-hand side of (2.7) are measurable and, hence, the whole
right-hand side is measurable. This allows the application of Tonelli’s theorem, which
yields

0

S U b5 @) = X [ (@ (9o ) da
k=1

Q7 (zk) :1er7n (k)

o0 o0 o8]
= Y ergm@in = 3] £len) ACW) < L0 5o
k=1 k=1 k=1

_ ng(l-‘rm)/(n-‘rm)—l Z )\(C(k)) _ LIE(l+m)/(n+m).

By choosing ¢ arbitrarily small, we can conclude ¢(A) = 0, which shows Lusin’s (N)-
condition. O

Having Lemma 2.15 and Lemma 2.14, we can transform measurable function by means
of the two-scale limit transformation.

Lemma 2.16. Let 1 < p < 00,1 < ¢ < o0 and Go(z,y) = uo(x,Yo(z,y)) for a.e. (z,y) €
QxY*, or equivalently ug(x,y) = do(z, ¥y ' (x,y)) for a.e. (x,y) € Q. Then, the following
statements hold

e ug € LP(Q; LYY *(x))) if and only if tig € LP(Q; LY(Y*)). Moreover, there exist
constants ¢, C' > 0, such that

CHQOHLp(Q;Lq({/*)) < HUOHLP(Q;L‘Z(Y*(J?))) < CHaOHLp(Q;Lq(Y*))- (2~8)

o uy € LP(Q W;q(Y*(x))) if and only if 4. € LP(L; W;Eq(f’*)) Moreover, there exist
constants ¢, C' > 0, which are independent of €, such that

Al Vie| oo paey S IVuelr@ipay @) < ClViel o poyey-  (2:9)

Proof. Lemma 2.15 shows that (z,y) = (2,%0(x,y)) and (z,y) = (z,vg " (z,y)) fulfil
Lusin’s (N)-condition. Then, Lemma 2.14 shows that g is measurable if and only if ug is
measurable.

Using the uniform boundedness of Jy with respect to (x,y) € Q x Y* from below and
above, we obtain, for p, ¢ € [1, )

p/q
i psacrniay = | 10@) vtz = | (] Tunteiray)™ ao
Q

Q  Y*(x)
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2.2. Two-scale transformation and two-scale convergence

= [([ Bt list.prag)™a Cf.ﬂ%$yww> o

Q Y*
- CHUOHLP(Q La(V*))
and
R q p/a
J01? g pacirery = J i DL 50y Ao ( Im@wﬂd@ d
Q
—1 — q q P/a
- [( [ %' @t plray)™ d < 0 juo(a, )| dy) " da

Q  Y*(x) Y*(:r

= ClluolLopa(y+ )

By similar argumentation, the equivalence can be shown if p is 0. Thus, we obtain (2.8).
Employing additionally the boundedness of Wy and ¥,!, we obtain (2.9) by a similar
argumentation. ]

Since L®(Y*) is not separable, it is not meaningful to consider Lemma 2.16 for ¢ = o0
Instead, we get the following result, which becomes useful for the transformation of coef-
ficients.

Lemma 2.17. Let Gg(z,y) = uo(z,vo(z,y)) for a.e. (x,y) € Q x Y*, or equivalently
uo(w,y) = oz, vy (2,y)) for a.e. (x,y) € Q. Then, tg € L®(Q x Y*) if and only if
ug € L*(Q) and it holds

Jol ey = lollze oy (2.10)

Proof. The measurability can be transferred as in Lemma 2.16. Since Jy is essentially
bounded from below and above, one has for every A < Q x Y* that |1o(A)| > 0 if and
only if |A| > 0, which shows (2.10). O
2.2.2. Equivalence of two-scale convergence

Now, we aim to show

Ug Uug if and only if g P g (2.11)
for 4.(z) = u((x)) and uo(z,y) = tuo(z,vo(z,y)) in Theorem 2.20. Moreover, we will
show the same result for strong two-scale convergence in Theorem 2.21. Afterwards, we
consider the transformation of small and large gradients in Theorem 2.23 and Theorem
2.24, respectively, which requires some additional correctors in the case of small gradients.

Since . is bounded if and only if u. is bounded, it suffices to work with smooth two-
scale test functions. By transforming the integral, we can shift the transformations from
ue and ., respectively, onto the test functions. Thus, we need to show compatibility of
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Chapter 2. Homogenisation for locally periodic domains

transformations and two-scale convergence only for the test functions. We introduce the
following notation.

Notation 2.18. Let ¢ be a function which is defined on Q) x Y, then

%(@) 7

€

e (1) = ¢ (wg(m, puay) = ol Yol ).

b @)= (@) ) = el )

€
where vo(z,+) and ¥y (x,-) denote their restrictions to Y* and Y*(x), respectively.
Lemma 2.19. Let ¢ € D(Q;Cx(Y)). Then, g0€7¢8<—oo»gp¢o.

Note that ¢, .. is only defined on Q. and Py, only on € x Y*, hence the two-scale
Poo-

convergence has to be understood in the sense ¢ y.

Proof. Due to Proposition 1.12, it suffices to show that 7z(p. . ) converges strongly to oy,
in LP(Q2 xY') for every p € (1,00). We show this convergence by the pointwise convergence
and the Lebesgue convergence theorem. Let (z,y) € Q x Y. We choose £¢(x) small enough
such that, for all 0 < € < go(x), = is contained in e-scaled cells that is entirely in Q.,
ie. [z].y + €Y < Q. (see Notation 1.9 for the definition of €.).

For y € Y\Y*, we get [2].y + ey € Q. n (N\Q:) and, thus,

Te(Pew)(@,y) = 0 =y (2, y).

w) which can be

For y € Y*, we obtain To(@ey.)(z,y) = ¢ <¢5([$]57Y + ey),
rewritten using 1. (z) = x + 1\@ (z) and the Y-periodicity of ¢,
Ye([z]ey + f-:y))

3

TG @) = (wgqx]a,y o),

[2]ey + ey + Pe([z]y + sy))
&

=y ([x]e,y +ey +de([aley +ey),

~

Te(¥e) (2, )

— o | [2)ey + ey + Te(@o) (@, ),y + .

In order to pass to the limit € — 0, we note that the strong two-scale convergence of %;ﬁ;
to z\ﬁ/o, which is given by Definition 2.2, implies the strong convergence of 57;(1\@) to %
in LP(Q2 x Y). Hence, we can pass to a subsequence such that %7}(1\/);)(33, y) — %(:c, Y)

and 7}(@7}2)(3}, y) — 0 for a.e. (z,y) € Q x Y. Moreover, [z].y converges to z and ey to 0.
Since ¢ € D(2; C4(Y')), we can carry these pointwise convergences over to the pointwise
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2.2. Two-scale transformation and two-scale convergence

convergence

Te(9:) (2, y)
&

o | [#ley + ey + Te(@0) (@ ).y + = @l + Dol ) = 9(z, Yol v)

for a.e. (z,y) € Q x Y*.

Since |¢c@xy) < C we have | Te(@erp. (z,y)| < C for ae. (z,y) € Q x Y and can apply
Lebesgue’s convergence theorem, which yields the strong convergence of Tz (e ) t0 @y
in LP(Q2 x Y'). Because this argumentation holds for every subsequence, it holds for the
whole sequence. O

Now, we use the strong two-scale convergence of the transformed test functions in order
to show the weak two-scale convergence for the transformed sequence of some arbitrary
two-scale converging sequence. We thus obtain the equivalence of the weak two-scale
convergence of sequences defined on (). and the corresponding sequences defined on Q..

Theorem 2.20. Let p € (1,00). Let u. be a sequence in LP(Q2:) and G = u. 0 1.. Then,

o if and only if e b g (2.12)

Ue
for ug € LP(S%; LP(Y*(x))) and G € LP(Q x Y*) and it holds

] uo(xz,vo(x,y))  for a.e. (x,y) € x Y,
wo(z,y) = 0w, 05 (5,9)) for ace. () € Q.

g
o
—~
K
<
~

|

(2.13)

Proof. First, we assume that 4. P o and show u, P ug. The two-scale convergence
of 4. implies the boundedness of | .| Lo() (see Lemma 2.11) and also the boundedness
of [|te] o) = [ue]r(.)- Since the limit dg 1 is also in LP(Q x Y), it is sufficient to
show the distributional two-scale convergence, i.e.

e—0

. ~ z =
lim | uz(z)p (x, g> dz = Jjuo,%l(w, y)p(z,y)dyde (2.14)
Q QY

for every smooth function ¢ € D(Q; CZ(Y')). For this, we transform the integrand of the
left-hand side by ).

|t (2.2) do = [uetae (5.7) do = | L@ic@)pnp. (o) do
Q Q. O,

—_~—

= | Je(2)ie(2) e,y (2) dz.
Q

Having @ . <—oo»% from Lemma 2.19 and j€<—oo»jo from Lemma 2.9, we can pass
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Chapter 2. Homogenisation for locally periodic domains

to the limit € — 0 and get

ly [ T2 (0)Fe () e = [ [ FoCo il )5 .0) dy do
QY

Q

Then, we transform the Y-integral back with g (z, )

Jf%wyw@ywm@yNMM—thwyme)@ﬂmmwﬂwh
QY*

J‘jlm,%<xw>wyde—fj%w (v, ), y) dy da.
)

QY*(z

Combining these equations shows (2.14).

Now, we assume that u. P ug and show . P tp. Again the two-scale convergence
of u. implies the boundedness of u. and Lemma 2.11 transfers the boundedness onto ..
By Theorem 1.21, we can pass to a subsequence such that . P o for g € LP(Q x f/*)
By applying the previous argumentation on this subsequence, we can identify @y = gy, -
Since this argumentation holds for every subsequence, it holds for the whole sequence. [

The next theorem shows that also the strong two-scale convergence is compatible with
the transformation. This becomes highly important in the homogenisation of problems
where the microstructure arises not only from the domain but also from oscillating coeffi-
cients.

Theorem 2.21. Let p e (1,00). Let ue be a sequence in LP(QE) and . = u. o). Then,
b . . ~ D .
Ug— U if and only if Ue—>>Ug
for ug € LP(S; LP(Y*(x))) and tig € LP(Q x Y*). Moreover,

ﬂ0($’y) = UO(xa¢0($’y)) fO’f’ a.e. (I‘,y) €2 x }A/*v
ug(z,y) = tio(z,9y z,y)) for ae. (z,y)€ Q.

Proof. Assume that ugi»uo. Because of Theorem 2.20, it is sufficient to show that
lin(1) |t ] Lr () = ldollr(axy)- By transforming via 1. and o, respectively, we obtain
E—>

|imm=j@xwm=f£%wﬂm@wwm

(2.15)
JJE O% Y (@, )| Te () (2, y) P dy da
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2.2. Two-scale transformation and two-scale convergence

and

a0l ey = f f|uo sl dyde = | [ @@l dyde. (15
QY

After subtracting (2.16) from (2.15), we obtain with the triangle inequality

el 0 = [0l )

< f jT Loyt (o) (1T (@) @, )P — [0z, y)P) dyda

+ ‘JJ 7E(JE_1 o N (x,y) — %:i;(iﬁ,y)ﬁ%(fv,yﬂpdydx‘.
QY

(2.17)

Now, we show that both integrals on the right-hand side of (2.17) converge to zero. For

the first integral, we note that uei»uo gives the strong convergence T-(uz) — ug in
LP(Q) x Y), which implies the _the strong convergence |Te(@2) [P — |uplP in L'(2 x Y). Since

J. = ¢z, we obtain |[T2(Jc o he V)| e @xY) < c¢;'. Then, with the Hélder inequality, we
can deduce

| f JT Toye e, o) (IT- ) @, )P — (@, y)I”) dy de|

(2.18)
< [ [P - s v aydr o

In order to estimate the second integral on the right-hand side of (2.17), we approximate
[uo|P, with respect to the L(£2 x Y)-norm, by a sequence (¢n,)nen of functions in D(Q xY).
Thus, we can estimate

| f j (T0 o) — Iy L (o) (e, )P dy
- f J (T o0 w) = Ty ) (1ol )P = onlar ) dyda| (g1

+\” S oY) @) — Ty 0) ) eney) dy dal.

/—\_/

Since |To(Jt o9z )HL%(QXy) cJ as well as H 0 1HL’f @xy) < cjl, which follows from

41



Chapter 2. Homogenisation for locally periodic domains

Jo = cj, we can estimate the first summand on the right-hand side of (2.19) by

JJ‘ 7; 01/15 N(z,y) - j;_/(w y)>(|u0(a: y) [P —@nxy)‘dydx

(2.20)
<cj! J“Iuwo(x,y)lp - wn(x,y)‘ dy dz.
QY

Then, choosing n large enough, this term becomes arbitrarily small.

Now, for fixed n, we show that the second summand on the right-hand side of (2.19)

becomes arbitrarily small. We use that J_ 1——— <0

J_1 < X JO Then, Theorem 2.20 implies Jto wa

JO (see Lemma 2.9) and, therefore,

7/1_1 for all ¢ € (1, 0) and,
accordingly, we obtain TZ(J= ' o ¢5 h— Jo_ifl in LI(Q x Y), for all ¢ € (1,00). Having
)

on € D(AXY) c LY(Q x Y), we can pass to the limit ¢ — 0 for fixed n, i.e.

UJ 7? o ) ay) - Jj-/( w))son(fv,y)dyd:c — 0. (2.21)

Thus, the left hand side of (2.19) converges to zero and together with (2.17) and (2.18),

we can conclude liH(l) Hf75|\Lp(Q) = H’a\(;HLp(QXY). Hence @Ei»ﬂo.
E—>
The other direction, i.e. ugi»uo if ﬁei»&o, follows by the same argumentation. [J

Theorem 2.21 provides also the strong two-scale convergence of the set €. to Q in the
sense of the characteristic functions.

Corollary 2.22. Let Q). be locally periodic domains with two-scale limit set Q in the sense
of Definition 2.1. Then,

< Q0 . < o0
XQ. X0, (i.e. xa.(T)——>xo(®,y) = Xy*@) () )-
Proof. Since xq is y-periodic, i.e. x¢ (7) = xyx(x/e) for z € Q, Lemma 1.7 provides the
€ £ #
strong two-scale convergence Xa. &”XY*' Then, Theorem 2.21 gives

=% s y))

X0. (%) = xg (Vo (@)= X3« (@, 05 (2,)) = Xv*@) (¥) = xa(z,1).

In the next step, we show the transformation results for gradients.

Theorem 2.23. Let p € (1,00). Let u. be a sequence in LP(QS) and 1. = u. 0 v.. Then,

Ly Voo + Vyur  if and only if Ly Vil + Vi
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2.2. Two-scale transformation and two-scale convergence

for ug € WHP(Q), 49 € WIP(Q), uy € LP(Q;W#”(Y*(QC))) and 1 € LP(Q;W#”(Y*)).
Moreover, it holds

to(x) = up(x) for a.e. x€Q,
1 (x,y) = ui(x, Yoz, y)) + %(m,y) - Vuo(x) for a.e. (x,y) € Q x v*, (2.22)
ui (2, y) = (x5 (,9) + ¥y (2,y) - Vaiio(z) for a.e. (z,y) € Q.

Proof. First, assume that Vﬁany*Vwﬂo + Vyi1. In order to show the two-scale

convergence V'LLEL-)X{,*VQCUO +Vyu1, we express these terms by Xy, Vi, Vi, Vyiy.
For this, we use the following identities, which arise from the chain rule

Opuc(z) = 5x(ﬂ€(¢;1($))) = (axﬂs)(@be_l(x))ax(ws_l)(l‘)a
0o (P ) (@) = (0xt0) (0o (@) = W (9 (),

which yields

Vue(z) = U7 T (07 (@) (Vi) (v (2)).- (2.23)

With Theorem 2.20, we can transfer the two-scale convergence of Vi, to

(Vi) (1 (1)) xg (5 (2,9)) Vit (@) + (Vi) (2, 85 (2, )

and with Theorem 2.21, we can transfer the strong two-scale convergence of W= ' (see
Lemma 2.9) to

< ¢
—

VT (v (@) W (2, (2,9)).

Having additionally the uniform essential bound of W- ' (see Lemma 2.8), we can pass
with Lemma 1.16 to the limit € — 0 for the product

Vue () = U2 T (0 (2))(Viie) (1 ()
Lo T (@ (1) (X (g (2,9)) Vatio (@) + (Vi) (. 6 (2, ))
= Wy ' (2,05 (2, 9) Xy (@) (¥) Vo (@) + U5 (2,4 (2, ) (Vyan) (2,45 (2, 9)).
(2.24)

After employing the chain rule, the coefficient W5 ' (x, ¢ (, y)) in front of the y-derivative
of 41 will disappear as in (2.23). However, in the first summand on the right-hand side
this substitution does not cancel ¥y T(;v,wo_ L(x,y)), since we have no y-derivative and,
thus, no chain rule to apply. Instead, we will separate \IIaT(x, wal(:c,y))vyﬁo(a:) into a
part which is constant in y and a part which can be written as a y-gradient, i.e.

Uy T,y (2.9)) = (Vo) @t (2,9)) = V(g Nay) = 1+ Ve ().
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Chapter 2. Homogenisation for locally periodic domains

Then, we obtain

\IIET(_r’ ¢61(xa y))XY*(x)(y)vmﬂO(l‘) + qjaT(xv %_l(xa y))(vyﬁl)('rv szo_l(xa y))
= (1 + Vythg  (2.9)Xy () (¥) Vatio(a) + Vy (i (2, 45" (2, 9)))

2 (2.25)
= Xy# () (¥) Vato(z) + Vytiy (@, 9) Vato(2) + Vy (i (2, 5 ' (2,9)))
= Xy*(a) () Valo(x) + Vy (V5 ' (2,9) - Vatio(2) + da(a, 45 (1))
Combining (2.24) with (2.25) yields
Vusi»xy*(m)vxuo + Vyuq (2.26)

for ug(z) = do(x) and ui(z,y) = 1 (z, 95 (2, y)) + 95 (@, y) - Vado(x).
For the other direction, we assume that VUELXY*V;BUO + Vyui. From the chain
rule, we obtain

Ozl () = Op(ue (Ve (2))) = (Oxuc) (e (2))0pthe ().
Then, by the same argumentation as above, we can pass to the limit
Viie(z) = \IleT(x) (Vue)(ve(z))
Lo (2, 9) (v ey (Yo (@) Voo ) + (V) (%0 (a1, 9).

The limit can be rewritten as

(2.27)

U] (2, ) (xy+ () (0@, ) Vatio () + (Vyun) (2, 9o (x, 1))

= (1 + Vydo(2, ) Xy« (1) Voo (@) + ¥ (Vyur) (z, vo(z, )

= Xy () Voo (@) + Vo (@, y) Vauo(z) + V(i (z, to(z,)))

= Xg+ (1) Vauo(x) + Vy (Yo(z,y) - Vouo(w) + u1(z,v0(z,3))). (2.28)

Combining (2.27) with (2.28) yields
Vite—L X Vel + Vit

for ’lAj,()(.’L') = Uo and ﬁl(x,y) = %(xay) : VIEUO(x) + Vy(ul(x,wo(%@/))' O

We remember that ¢y (z,y) = —%(m,wo_l(a:,y)) (see (2.2)) and, hence, we see that
the two transformation rules between @; and w; in (2.22) are consistent with each other

al(wio_l(wv y)) = Ul(%%(%wo_l(%y))) + %(iﬁﬂﬁal(ﬂﬁay)) : Vmuo(x)
— wa(@y) — %y (@) Vo).
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2.2. Two-scale transformation and two-scale convergence

In the next step we consider the transformation of the gradients in the case of large
gradients.

Theorem 2.24. Let p € (1,0). Let u: be a sequence in Wl’p(QE) and e = us0v.. Then,

p Vyug if and only if 5Vﬂ5Lvyﬂ0 (2.29)

eVue

for ug € LP(; W;p(Y*(m))) and ug € LP(Q; Wi#p(f/*)) and

to(x,y) = uo(x, Yo(x,y))  for ae. (x,y) € QxY*,

2.30
uo(x,y) = ﬂo(:p’zpal(x,y)) for a.e. (I‘,y) €Q. ( )

Proof. We assume that eV, P Vyio. In order to show EVuE(w)L»Vyuo(m, Yoz, y)),
we rewrite it as in (2.23)
eVue(z) = V7T (v (2))(Vae) (v (). (2.31)

With Theorem 2.20, we can use the two-scale convergence of eV, to show

e(Viie) (2} (2)) LV g (2, vy (2, )

and with Theorem 2.21, we can use the strong two-scale convergence of - ! to show
S < - _
V(9 (@) 05 (2,95 (2, 9)).

Since W ' is uniformly essentially bounded, we can pass with Lemma 1.16 to the limit
e — 0 for the product in (2.31)

eV (x) = 27 (07 (@) (Vi) (05 (@)
L3 T (05 () (Vo) (2, 05 (2, )) = Vi, 657 (2, 1),

which gives
p
eVu—=Vyuo(z,y)

for up(x,y) = ﬂo(%@f’o_l(l‘»y))-

For the other direction, we assume that eVu, b

Vyug. Then, we obtain similarly

eViie () = e (@) (Vi) (1 (1) LB (2, y) (Vo) (ol ) = V(o (o (2, 1)),

which gives

ViV iy
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Chapter 2. Homogenisation for locally periodic domains

for up(x,y) = uo(x, Yo(z,y)). =

2.3. Homogenisation of an elliptic differential equation in locally
periodic domains

Now, we employ the results of the previous section in order to homogenise an elliptical
differential equation on a locally periodic domain. We consider the case of a fast diffusion
(i.e. e%-scaling of the diffusion coefficient) and the case of a slow diffusion (i.e. e2-scaling
of the diffusion coefficient). Let €. be a locally periodic domain with two-scale limit set
Q < Q x Y in the sense of Definition 2.1. For the case of the scaling £°, we additionally
assume, in the following, that Y#’Z is connected and Lipschitz and that €2 is Lipschitz. Let
a: be a bounded sequence in L*(£2.)™*"™ and b. be a bounded sequence in L®(€).), which
are uniformly elliptic and strongly two-scale converge to ag € L*(Q)"*"™ and by € L*(Q),

respectively, i.e. there exist constants a, C' > 0 such that, for all ( € R™ and a.e. x € {2,

< 0
laclien < €, ¢Tac(@)C = al¢l?, a:——a,

belrrony <C bel@) >a,  b——Tonby.

Let f. be sequence in L?(€).) and fy € L?(Q), such that fslufo, and let [ € {0,2}. We
look for a solution u. of the problem

Microscopic elliptic problem

— div(elac () Vue () + be(x)ue(z)
elac(z)Vu.(z) - n(z)

fe(x)  in Qg

(2.32)
0 on 02,

where n denotes the outer normal of 2.. The weak formulation of (2.32) is given by:

Weak form of the microscopic elliptic problem

Find u. € H'(£.) such that

Jslaa(:v)VuE(x) V() + be(z)us(x)p(z) do = Jfa(x)go(x) dz (2.33)
Qe Qe

for all p € H'(£2.).

We perform the homogenisation in two different ways. In the first approach, we trans-
form the problem to the periodic reference domain, pass to the limit there and then
transform the limit results back. In the second approach, we use the results of the previ-
ous section to derive two-scale compactness results for locally periodic domains. Having
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2.3. Homogenisation of an elliptic differential equation in locally periodic domains

these, we can perform the homogenisation directly on the locally periodic domain without
transformation.

As the previous theoretical discussion already showed, these two homogenisation ap-
proaches will lead to the same homogenisation result. Nevertheless, for the sake of clarity,
we present both approaches.

Indeed, the second approach requires no transformation and is therefore shorter. How-
ever, for more complicated problems, such as the Stokes problem or parabolic problems,
which we will see later, the derivation of the a-priori estimates becomes more complicated
and the homogenisation of the interface terms would require additional discussion if we
are not working mainly in the transformed setting.

2.3.1. Homogenisation by substitution to a periodic substitute domain

Since 2. is locally periodic in the sense of Definition 2.1, we obtain a sequence 1. of trans-
formation mappings with V.(z) = 0;¢:(x), Je == det(V.(x)) and A (z) = Adj(¥Y.(x)).
We define the transformed data

fe(x) = fe(¢e()), () = ac(Ye(z)), 66(37) = be(Ye(z))
for a.e. z € QE. Moreover, we note that
VT (@)a(z) = 02T (@)a(@)] n((x))

for a.e. z € 005, where 7 denotes the outer normal of . and n the outer normal of €.
By changing the coordinates for the unknown, i.e.

e () = ue(Ye(z))

for z € Q., we obtain the following strong formulation for the unknown 4. after changing
the coordinates in (2.32).

Microscopic elliptic problem in the reference coordinates

—J7Nz) div(e' Ac (2)ae (2) U T (2) Viie(z)) + be(2)tic(z) = fo(z)  in Q,
la (2) U T (2)Vie(z) - |97 T (z)n(z)| 1o Ta(z) = 0 on 0€)..

In order to obtain the weak formulation of (2.34), we multiply the first equation of
(2.34) by J. and the second by J.|¥Z " (x)n(x)||, which yields

Ja($)fa($) in Q,
0 on 0€)..

— div(e! A (z)ae (2) ¥ T (2) Vit (2)) + Jo(2)be (@)t (z)
el Ao (2)ae ()07 T (2)Vie(z) - nx)

(2.35)

Now, we obtain the corresponding weak formulation by standard procedure.
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Chapter 2. Homogenisation for locally periodic domains

Weak form of the microscopic elliptic problem in the reference coordi-
nates

Find 4. € H'().) such that

J e A (2)ic(2) VT (2) Vie(z) - Vip(a) + Je(@)be(2) e (2)p () da
Qe

for all ¢ € H().).

\. J

The weak formulation can also be derived by directly transforming the weak formulation
(2.33), which provides the following equivalence.

Lemma 2.25. Let u. € H'(.) and 4. € Hl(Qg) with @ = uz o Y.. Then, u. solves
(2.33) if and only if . solves (2.36).

Proof. Lemma 2.25 follows from transforming (2.33) into (2.36) and the fact that H!(€.)

can be identified with H'({.) via the coordinate transformation .. O

Existence and uniqueness of a solution and a-priori estimates

In order to apply the compactness results, we have to derive some a-priori estimates first.
Therefore, we will often use A, = J.¥_ !, in the following, which yields

| 4@ ¥ @ ile) - Viola) do = [ J@)a-(0)¥:T @)V ile) - 0T (@)p(o) da
Q. Qe
Theorem 2.26. There exists a unique solution ti. € H'(Q.) of (2.36). Moreover,

] L2,y + €721 V] 2oy < C. (2.37)

Proof. We show the existence and uniqueness of a solution using the theorem of Lax—
Milgram. Therefore, we show the coercivity and continuity of the left-hand side of (2.36).
The coercivity of a. and b, and their uniform essential boundedness are pointwise prop-
erties and, hence, they are preserved under the transformation, i.e.

”deHLW(QE) <C, CTds(l')C = aHCHQ, HB&?”L‘TJ(QE) <C, i’s(x) =

for a.e. z € Q. all ¢ € R”. Thus, we obtain

Ac(@)ac(@) U7 T (@)C - ¢ = e () Jo(@) 0T (2)¢ -/ T (@) 7 T ()¢
> aly/Je(2) ¥ T (2)¢ ]
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2.3. Homogenisation of an elliptic differential equation in locally periodic domains

for a.e. x € QE and every ¢ € R™. With the uniform boundedness of J. = c; from below
and the uniform essential boundedness of ¥/, we can conclude

|<|2=|(f< >—1W< w75<> T@)CP < W)™ (@) PV e (2) 8 T (@)
G Ol Je(2) ¥ T ()¢

for a.e. z € QE and every ¢ € R™. Combining the previous two equations shows
Ac(2)ae(2) T (2)C - ¢ = /¢ (2.38)

for some ¢ > 0. Then, we obtain with the uniform boundedness of J. and ISE from below
that

JslAg(x)dE(a;)\IlsT(x)Vu(x) Vu(z) + Jo(@)be (z)u(x)u(z) de
Qe (2.39)
= leHquiz(Qs) + OéCJHUHiQ(QE)
for every u e H 1(Q.). Now, we use the essential uniform boundedness of the coefficients
ae, b, A., UZ- " and J. (see Lemma 2.8), apply the Holder inequality and transfer the

uniform boundedness of |fellz2(q.y via Lemma 2.11 on HfgﬂLg(QE), so that we obtain the
continuity of the left- and the right-hand side of (2.36), i.e

JelAg(x)&a(x)\IJET(x)Vu(x) - Vou(z) + Jo(2)be (@) u(z)v(z) dz

Qe

< 5ZCHVUHL2(QE)HVUHH(QE) + CHUHL2(Q€)HUHL2(QE)7
| @@t do < Ol g ol (2.40)
Qe

for all u,v e H 1((26). Then, the Lax—Milgram theorem provides the existence and unique-
ness of a solution .. By choosing u and v equal to 4. in (2.39) and (2.40) and combining
these estimates via (2.36), we obtain with the Young inequality

1 A A
eIV 2, g, + acslie g cufeup el 2oy
2 @CJ
S5 2% Hf€HL2(9 ) HUEHLz Q)
which provides the uniform a-priori estimate (2.37). O

Limit problem in the transformed coordinates
By passing to the limit € — 0 in (2.36), we derive the two-scale limit problems for [ € {0, 2}
and the homogenised problem for [ = 0. For the case [ = 0, the two-scale limit problem
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Chapter 2. Homogenisation for locally periodic domains

Weak form of the two-scale limit problem in the reference coordinates

(for 1 =0)

Find (i, @) € H'(Q) x L*(Q; H}(Y*)/R) such that
f f Aol )ito(w, y) U5 T (,9) (Vatio (5)+ Vi (1,9)) - (Vapo(@) + Vyor (2, ) dy da
Q yx

" f j Jo(e,y)bo(z, y) dy o x)po(x) dz = j J Jo(,y) fol,y) dy po(x) da
(2.41)

for every (o, 1) € HY(Q) x L2(Q; H;,IQ;(Y*)/R)

By separating the x and y variables in (2.41), we get the homogenised equation:

Weak form of the homogenised problem in the reference coordinates (for

)

Find 49 € H'(2), such that

fa* (£)V a0 (2) Vipla) + b* ()i () p() dae = jf* (o) de,  (242)
Q Q

for every ¢ € H((), where a*, b* and f* are given by

02 (x) = J Aol y)io(, )0 T (2 9)(e; + Vyls(a,y) - e dy (2.43)
vy

b () = f Jolz, y)bo(e, ) dy (2.44)
Vo

@) = | Jo(z,y)folz,y) dy (2.45)
Yy

for a.e. x € Q and every 4,5 € {1,...,n}, where éj € LOO(Q;H#(?*)) is the unique
solution of

Aoz, y)ao(z,y) o (2, 9)(Vy(i(2,y) + ¢5) - Veo(y) dz =0 (2.46)

Y

for all p € H;L(}A/*) and a.e. x € Q).

.

For the case | = 2, we get the following two-scale limit problem:
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2.3. Homogenisation of an elliptic differential equation in locally periodic domains

Weak form of the two-scale limit problem in the reference coordinates
(for [ = 2)

Find g € L*(Q; H}, (Y'*)) such that

~[J1AdmdﬁédwﬂﬁmaT@%wV@ﬁdwdﬁ'Vywdwdﬂdydx

Q yx

+ | [ Bl mdinte,pyiote oo, ) dyda 247
Qy=

=ff%@wﬁ@wm@wﬂwh

Q yx

for every ¢g € L?(€; H#()A/*))

\. J

By means of Theorem 2.21 and Theorem 2.20, respectively, we can infer the strong
two-scale convergence of the coefficients of (2.36) and the weak two-scale convergence of
the right-hand side, namely

be (1)L b (2, y) = bo(, Yo(z,)),
Fo@) =2 folw,y) = folw, ol v)).

Moreover, Lemma 2.17 transfers the essential boundedness of ag and by to ap and 50,
respectively.

Then, the derivation of the two-scale limit problems (2.41) and (2.47) becomes a well
known two-scale homogenisation task. We start with the case [ = 0.

Theorem 2.27. Let | = 0 and assume that ?#* is connected. Then, for the sequence of
solutions G. of (2.36) it holds

~

Ue

N .2 N N
Xy U0, VUE—"‘X{/* Vit + Vyin

where (g, 1) € HY(Q) x L?(€; H#(?*)/R) is the unique solution of the two-scale limit
problem (2.41).

Proof. From Lemma 2.9, we obtain the strong two-scale convergence of A., W_ T, J.
(with respect to every LP for p € (1,00) and with Lemma 2.8 their uniform essential
boundedness. Together with the strong two-scale convergence of a. and b, their uniform
essential boundedness and the two-scale convergence of fg, we can deduce from Lemma 1.16
the strong two-scale convergence of A.a.V_ T and JEBE as well as the weak two-scale
convergence of J; fs.
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Chapter 2. Homogenisation for locally periodic domains

Having the a-priori estimates (2.37) for «., the uniform essential estimates for the
coefficients and the two-scale convergences for the coefficients and the right-hand side,
we can pass to the limit ¢ — 0 by classical two-scale argumentation. With the a-
priori estimates (2.37) and the compactness result Theorem 1.18, we obtain (g, 1) €

HY(Q) x LQ(Q;H#(?*)/R) such that for a subsequence . one has ﬁgiuxf,*ﬂ,g and

Vi, 2 Xy Valo + Vyty. Then, we test (2.36) with g + @1(+,2) for ¢o € HY(Q)
and @1 € L?(Q;Cx(Y*)). After passing to the limit, we obtain (2.41) for test func-
tions o € H'(Q) and ¢ € L?(Q;Cx(Y*)) and by a density argument for test functions
(o, 1) € HY() x LQ(Q;H#(}A/*)/R). Since the argumentation holds for every subse-
quence, we obtain the convergence for the whole sequence by showing the uniqueness of a
solution of (2.41).

The existence of a solution of (2.41) is already ensured by the homogenisation process,
while the uniqueness follows from the theorem of Lax—Milgram. We use the solution space
H'(Q) x LZ(Q;H;E(}A/*)/]R) and focus on showing the coercivity of the left-hand side.
Analogously to the derivation of the coercivity estimate (2.39) for the e-scaled problem,
we obtain the uniform coercivity of AgaoV T, which yields

j j Aoz, y)io(z, 1) ¥ (2, 9) (Varo(z) + Vyor (z,1)) - (Varo(x) + Vypr (1)) dy dz
Q y*

n j j Jola, y)bo(, y) dy fio(z)po() dz

Q yx
>c“|vxsoo<x>+vy«>1<x,y>||2dydx+aq J f lo(@)?

> lVapolaoy + 1Ty 0120 g5y 4 + s ¥ [ Vaipo] 20y,

for every (o, 1) € HY(Q) x LQ(Q;H#(Y*)/]R), where we refer to [CDG18, Lemma 5.4]
for the last inequality. This shows the coercivity of the left-hand side of (2.41). The
continuity of the left- and the right-hand side follow easily. Afterwards, the theorem of
Lax—Milgram provides the uniqueness of the solution of (2.41). O

Theorem 2.28. Let (tg,uy1) be the solution of the two-scale limit problem (2.41). Then
Qg solves the homogenised problem (2.42) and it holds

n
iy =) 8y tind;.
7j=1

Proof. Theorem 2.28 follows by classical separation of the x and y variables. O
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2.3. Homogenisation of an elliptic differential equation in locally periodic domains

Now, we consider the case [ = 2.

Theorem 2.29. Let | = 2. Then, for the sequence of solutions t. of (2.36) it holds

.2
Ue

N .2 N
g, eVi.——=V g

where g € L?(£); H;E(Y*)) is the unique solution of the two-scale limit problem (2.47).

Proof. Using the same argumentation as in the proof of Theorem 2.27, we obtain the
strong and weak two-scale convergence, for the coefficients and data, respectively. Then,
the derivation of (2.47) becomes a classical two-scale homogenisation task. O

Back-transformation

For the case [ = 0, the back-transformation of the two-scale limit problem (2.41) results
in:

Weak form of the two-scale limit equations (for [ = 0)

Find (ug,u1) € H'(Q) x Lz(Q;H;E(Y*(x))/R) such that

J J ap(zx,y) (Vmuo(a:) + Vyu1(:v,y)) . (Vmgoo(:v) + Vyo1 (x,y)) dydx
Q Y*(x)

+J J bo(x,y) dy uo(x)po(x) da:ZJ f fo(z,y) dy ¢o(z) dx

Q Y*(x) QY*(x)

(2.48)

for every (o, p1) € HY(Q) x L(€; H%E(Y*(x))/]R)

By separating the z and y variables in (2.48), we obtain the following homogenised
equation. Later we show also how this homogenised equation can be derived by some
algebraic manipulations of the cell problems and the effective tensors, which are based on
the transformation rules for the gradients (2.22).
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Weak form of the homogenised equations (for [ = 0)

Find ug € H' (), such that

fa* (2)V 0 (2) Vaip() + b () () o) dae = ff*(acw(x) dr,  (249)

Q Q

for every o € H(), where the effective coefficients and data are given by

ajj(z) = f ao(,y)(ej + Vy(j(z,y)) - e dy (2.50)
Y*(x)
f bo(z,y)d (2.51)
Y *(x)
J fo(z,y)d (2.52)
Y#(x)

for a.e. x € Q and every i, j € {1,...,n}, where (; € L*({; H#(Y* (2))) is the unique
solution of

f a0, 1) (Vi () + €3) - Vyply) = 0 (2.53)
v

all p e H#(Y*(a:)) and a.e. z € ().

The strong form of (2.49) is given by:

Homogenised limit problem (for [ = 0)

div,(a*Vzug) + b*ug = f*, (2.54)

where a*, b* and f* are given by (2.50)—(2.52)

For the case | = 2, the back-transformation of the two-scale limit problem (2.47) leads
to:
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2.3. Homogenisation of an elliptic differential equation in locally periodic domains

Weak form of the two-scale limit equations (for [ = 2)

Find ug € L?(€; H#(Y*(x))) such that

f J ao(z,y)Vyuo(z,y) - Vypo(r,y) dy dx
QY*(x)

+ f J bo(z, y)uo(x, y)wo(z,y)dydz = J J fo(z,y)eo(z,y) dy dx
QY*(x) Q Y*(x)

(2.55)

for every ¢g e L(€; H#(Y* (2))).

By means of the preliminary work on two-scale transformation, we can also transfer the
convergence results and, thus, identify the above equations as the limit equations.

Theorem 2.30. Let | = 0 and assume that f/#* is connected. Then, for the sequence of
solutions u. € H*(Q) of (2.33) it holds

2 2
Ue =X (5 U0, Vue—=>xyx Vg + Vyuy (2.56)

where (ug,u1) € H () x L2(%; H#(Y*(x))/R) is the unique solution of the two-scale limit
problem (2.48).

Proof. From the relation i, = u. 01, the two-scale convergence of 4. (see Theorem 2.27)
and the transformation rules from Theorem 2.23, we obtain the two-scale convergence

(2.56), where ug = g and w1 (z,y) = @1z, ¥y (x,9)) + ¥y (2,y) - Vaido(z) and (do, 01) is
the solution of (2.41). From Lemma 2.31 below, it follows that (ug,u1) solves (2.48). O

Lemma 2.31. Let ig = ug € H' (), 41 € L*(; H;E(Y*)/R), up € L*(Q; Hy (Y*(2))/R)
with

i (x,y) = w(w, do(z,9)) + do(x,y) - Vauo() (2.57)
for a.e. (z,y) € Qx Y*. Then, (i, 01) solves (2.41) if and only if (ug,u1) solves (2.48).
Proof. Let (g, 1) be the solution of (2.41). We test (2.41) with (o, $1) € HY(Q) x

L2(Q; HY,(Y*)/R) for ¢o € HY(Q) and ¢1(z,y) = ¢1(z,v0(z,1)) + do(z,y) - Vapo(z)
for ¢1 € LQ(Q;H;}#(Y*(JJ))/R). We note that g - Vyug € L%Q;H#(Y*)/R) since g is
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Y-periodic. Then, we transform the integral in (2.41) via 9, 1 which yields

f f o, 0y M, ) 5 T (M) (Vo) + (Vi) (2, 057 (2, 9)))

QY*(x)
Wy (95 (2,9) (Vapo (@) + (Vyi) (@, 95 (2, y)) dy de

+ f J bo(, 6 (2, )) dy o) polz) dz = f j fol, by M, y)) dy do(x)o(z) de.
Q Y#(z) QY*(x)
(2.58)

With the definitions of dg, by, fo and computations as in (2.25) applied for the unknowns
(Tig, 1) and analogously for the test functions (¢, ¢1), we can simplify (2.58) to (2.48)
for up and uy given by (2.57). Hence, (ug, u1) solves (2.48).

The other implication can be shown similarly. O

Now, we separate the macro- and microscopic variables in (2.48) in order to derive the
homogenised equation (2.49). Moreover, we show that the homogenised equations (2.42),
(2.49) coincide.

Theorem 2.32. Let (ug,u1) be the solution of the two-scale limit problem (2.48). Then
ug solves the homogenised problem (2.49) and it holds

n
uy = 2 axquCj.
j=1

Moreover, we have the following relation between the solutions of the cell problems (2.46)
and (2.53)

~

Gi@,y) = G, o(a,y)) + dolz.y) - €5 = (@, volz,y)) + (o), (z, y) (2.59)

for every j € {1,...,n}. The coefficients of (2.42), which are given in (2.43), (2.44),
(2.45) and the coefficients of (2.49), which are given in (2.50), (2.51), (2.52) are equal,
1.e.

a* =a*, b =0b*,  f*=f" (2.60)

Proof. The first part of Theorem 2.32 follows by a standard separation of the z and y
variables.

The relation (2.59) between éj and (; follows analogously to Lemma 2.31, by replacing
ug = ﬁo by Tj, UL by Cj and ﬁl by Cj-
To show the equality a* = a*, we rewrite the right-hand sides of (2.43) and (2.50) using
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the cell problems (2.46) and (2.53), respectively

ag(x) = f Ao(z, y)ao(z, y) ¥y T (z,y)(e; + Vyli(x,v)) - (e + VyCilz,y) dy,  (2.61)
YV
ajj(z) = J ao(z,y)(ej + Vy(j(z,y)) - (ei + Vyi(z,y)) dy. (2.62)

Y#(z)

Using computations as in Lemma 2.31 and with (2.59) we get

U (2, y)(ej + Vyi(z,9) = (e + (V) (@, v0(z,y)). (2.63)

for j € {1,...,n}. Then, the right-hand sides of (2.61) can be transformed into the right-
hand side of (2.62). This provides the identity a* = a*.

The identities b* = b* and f* = f* follow directly from the transformation of the
integrals. O

Now, we consider the case [ = 2.

Theorem 2.33. Let | = 2. Then, for the sequence of solutions us of (2.36) it holds

2 uQ, eVusluVyuo (2.64)

Ue

where ug € L%($; H#(Y*(a:))) is the unique solution of the two-scale limit problem (2.55).

Proof. Theorem 2.33 can be shown analogously to Theorem 2.30 using Lemma 2.34 below.

O]
Lemma 2.34. Let dg € L*(Q; HL(Y*)) and ug € L*(; H},(Y*(x))) with
ao(z,y) = uo(z, Yo(z,y)) (2.65)
for a.e. (z,y) € Q x Y*. Then, g solves (2.47) if and only if ug solves (2.55).
Proof. Lemma 2.34 follows directly from transforming the integrals. O

2.3.2. Direct homogenisation in the locally periodic domain

For simple problems as for instance (2.32), the limit process ¢ — 0 can be done also in
the non-periodic domain directly. Therefore, we use the following compactness results
for functions defined on the locally periodic domains €2, which follow from the two-scale
transformation results Theorem 2.20, Theorem 2.23 and Theorem 2.24.

Theorem 2.35. Let 1 < p < o and let Q. be locally periodic domains in the sense of
Definition 2.1. Then, for every bounded sequence u. in LP(Q).), there exists a subsequence
ue and ug € LP(Q2; LP(Y*(x))) such that

b

Uge uQ-.
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Chapter 2. Homogenisation for locally periodic domains

Moreover,

e if Q. (or Y#*) is connected and u. is a bounded sequence in W1P(Q.), then, there
exists a subsequence u. and ug € WP(Q), uy € LP(€; W#p(Y* (x))/R) such that

U, Vu.(z) P

Ue Xy #(2) () Vauo(z) + Vyur (2, y).
Additionally, if u. is zero on 0X), then ug € Wol’p(Q).

e if uc is a sequence in WP (Q.) such that ||uc| pr(q,) +€l| Vel Lro.) < C. Then, there
exists a subsequence us and ug € LP(€; W;p(Y*(x))) such that

UuQ, eVue P Vyuo.

Ue

Proof. Let 1. = u. o .. Then, Lemma 2.11 transforms the boundedness of u. into the
boundedness of i.. Then, we apply the compactness result Theorem 1.21, which gives a

subsequence u. and tig € LP(Q; LP(Y*)) such that . P

convergence back onto u. via Theorem 2.20 leads u, P

The compactness results for weakly differentiable functions can be derived analogously,
by employing the compactness results Theorem 1.22 and Theorem 1.23, respectively, and
subsequently employing the transformation results of Theorem 2.23 and Theorem 2.24,
respectively. O

ig. Transforming this two-scale

UuQ.

Having these compactness results, the homogenisation can be done as follows: using the
theorem of Lax—Milgram it can easily be shown that (2.32) has a unique solution, and by
energy estimates, we obtain

el 226,y + €' Ve |20,y < C.

Then, we can apply the compactness result Theorem 2.35 and can pass to the homogenisa-
tion limit and obtain the two-scale limit equation (2.48) for [ = 0 with the corresponding
homogenised limit equation (2.49) and the two-scale limit equation (2.55) for | = 2.

Indeed, this approach is by far faster, however, it benefits heavily from the simple
structure of the problem (2.32). If the equations involve boundary terms or algebraic
constraints, as for instance the Stokes equation, the derivation of uniform a-priori estimates
and the passage to the homogenisation limit becomes far more complicated in the locally
periodic domain. Hence, we will work mainly with the transformed equations in the
following.

2.4. Locally evolving periodic domains

Now, we consider locally periodic domains, which are evolving on a time interval (0,7).
Let 2 < R™ be an open Lipschitz domain and Y = (0,1)" with an open subset Y* c Y.
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2.4. Locally evolving periodic domains

We denote the Y-periodic extension of Y* by Y; = int ( U k+ W) and assume that it
kezm™
is a Lipschitz domain.

Let Q. = QmEY#* be the e-scaled periodic reference domains. Then, we define the locally
evolving periodic domains €2, by a transformation of the periodic reference domains.

Definition 2.36. A sequence of measurable sets QT = ) {t} x {Q:(t)} = (0,T) x R®
for open sets Q.(t) = R™ is locally evolving periodic withtet(?(l))yoT—)scale limit set

Q) ={(z,y) eQxY |yeY*(t,x)} forte(0,T),

Of = {(t,z,y) € (0,T) x QA x Y |y e Y*(t, 1)},
where Y*(t,x) €'Y is open for every (t,x) € (0,T) x Q, if there exists a sequence of locally

evolving periodic transformations 1. (see Definition 2.87) with a limit transformation 1y
such that Q(t) = :(t,Qc) and Y*(t,x) = ¢o(t,x,Y™) for a.e. (t,z) € (0,T) x Q.

In the time-dependent case, we denote the periodically perforated reference domain
without * | since the transformed domains are already indicated by ().

Definition 2.37. We say that a sequence of mappings . € L®(0,T;C?*(Q)") is a se-
quence of locally evolving periodic transformations with two-scale limit transformation
Yo € L*((0,T) x Q;C2(Y)") if the following assumptions hold:
1. assumptions on .
a. V¥:(t,+): Q — Q is bijective for a.e. t € (0,T) and every e > 0,
b. Pt e L®(0,T; C?(Q)"), where 1_1(t,-) is the inverse of ¥ 1(t,-),
c. Qe(t) =(t,Q:(t)) for a.e. t € (0,T),

d. there exists ¢y > 0 such that det(0,¢:(t,z)) = cy for a.e. t € (0,T) and all
x € Q and every e > 0,

e. there exists a constant C' such that

Eiluwe - xHC(STE) + HaaﬂpeHC((TE) + 5‘|awaz¢a|‘0(§) <C
for every e > 0.

2. assumptions on y:

a. Po(t,x,-): Y — Y is bijective, with Y*(t,z) = ¢o(t,x,Y™) for a.e. (t,x) €
(0,7) x Q,

b. wo_l e L®((0,T) x Q;C2(Y)"), where wo_l(t,:n, -) is the inverse of Yo(t,x,-),
c. the corresponding displacement mapping, defined by @\Z)/o(t, x,y) = Yo(t,x,y) —y

~

for (t,x,y) € (0,T)xQ2xY can be extended Y -periodically, i.e. 1pg € L™ ((0,T) x
Q0 CL(Y*(2))"),
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3. asymptotic behaviour:

< 00, < o0
o xa.& e — x)———>xy* (o — y)

< 00, < O
® X Oze————>Xy=*0yto,

< 00, << O
d 5Xanxax¢57—’_>XY*ayayw0-

Similarly to the limit transformation for the stationary case, we define 1. on all of €
and (¢, x,-) on all of Y in order to ensure the measurability when we use it as transfor-
mation. However, for the asymptotic behaviour in Definition 2.2 and the transformation
results later, it suffices to consider v(t,-) and ¥ 1(t,-) on Q. and Q. (t), respectively, and
Yo(t,x,-) and ¢5'(t,x,-) on Y* and Y*(t,z), respectively. Then, we will implicitly re-
strict 1. (t,-), w7 1(t,+), Yo and ¥y ! accordingly, and where necessary we use the implicit
extension - by 0.

We define the displacement mappings and the Jacobi matrix with its determinant and
adjugate matrix as in the stationary case.

Notation 2.38. Let ¢. and g be given by Definition 2.37. We denote the corresponding
displacement mappings by

Jelt, 1) = ety ) — vt a) = g ) —
%(taway) = ¢0(tax7y) -V, ,(Z()_/l(tl‘ay) = w()_l(tax7y) - Y.

Analogously to (2.2), we obtain

Yt x) = et YT (E 7)),

N (2.66)
¢al(t7x7y) = —%(tv%@bal(tﬂ?»y))

—~—

The Y-periodicity of Q\b/g can be transferred via (2.2) on ¢y ', Thus, ¢5* € L%((0,T) x
Q; Ci(Y))

Notation 2.39. Let ¢, and vy be given by Definition 2.2. Then, we use the following
notation for the Jacobian matriz, its determinant and its adjugate matrizc

Ue(t,x) = Oae(t ),  Je(t, ) = det(Ve(t,2)), A(t, x) = Adj(Vc(t, 7))
for a.e. t € (0,T) and every x € Q. and
‘Ifo(t,l',y) = ay¢0(ta$ay)a Jo(t,l‘,y) = det(\I’O(t,x,y)), AO(tax,y) = Ad_](\Ifo(t,l’,y))

for a.e. (t,x) € (0,T) x Q and all y € Y*.
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Lemma 2.40. Let . be locally evolving periodic transformations with limit transforma-
tion gy in the sense of Definition 2.37. Then, there exists a constant C > 0 such that

1)l @y + H‘I’;l(t)ﬂc(gj) + [ Je® o) + HJs_l(t)Hc(Qj) <C,
Ol + 1A Ol <)
[0V ()] cmn) + 5|\8x‘1’;1(t)|\cmi) + €] e Je(t) | omn) + EHaxJ;l(t)HC(sTE) <C, '
10 Aoy + £l AT Ol ey < €

for a.e. t € (0,T). These estimates hold for every t € [0,T] if, additionally, Assump-
tion 2.41 is fulfilled.

Proof. Analogously to the proof of Lemma 2.8, we obtain the bounds for a.e. t € (0,7).
From Assumption 2.41, it follows that 0upe, 0,01be, 0.0.0:1p. are in L*((0,T) x Q)™,
L0, T) x Q™™ and L*((0,T) x Q)™*™*" respectively. Thus, ¥, 0z1)s, 0,0, are

continuous with respect to time, which is transferred to ¥., W_ 1, J., J-1 A, A-! and

their derivatives with respect to space (0, V., 0,V !, 0pJe, 0,1, 02 Ae, 0, AZY). Then,
the continuity extends the estimate to every ¢ € [0, T7. O

The following assumption becomes useful when we work with instationary processes,
i.e. if time is not only a parameter but the time derivative is involved in the differential
equation itself as for instance in parabolic partial differential equations.

Assumption 2.41. Let . be locally evolving periodic transformations in the sense of
Definition 2.37. We assume that . and g are weakly differentiable with respect to the
time variable, i.e.

Orpe € L((0,T) x Q)" 0pfrtpc € LZ((0,T) x )™,

axaxatwi € LOO((OaT) X Qg)nxnxn,

Opbo € L*((0,T) x Q x Y*)*, 8,01hg € LP((0,T) x Q x Y*)xn,
0,0, 010 € L7((0,T) € x Y*)r0=n,

Moreover, we assume that
e =Ty, Qalthe——T0ydtbe,  €0adalithe——0, 0,010,

In order to transfer the uniform bounds and time- and space derivatives from . onto
Je, Uo and A, we rewrite them again as polynomials with respect to time.

Lemma 2.42. Let U c R", (0,T7) c R, B: (0,T) x U — R™*"™ with det(B) # 0. Then,
we obtain the same polynomials as in (2.7) in Lemma 2.7. Moreover, (2.4) holds also for
Oz, replaced by 0;.

Proof. Lemma 2.42 can be shown in the same way as Lemma 2.7. O
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Lemma 2.43. Let ¢, be locally evolving periodic domains in the sense of Definition 2.37
and assume that Assumption 2.41 holds. Then, there exists a constant C, which is inde-
pendent of €, such that

100V ]| e (0.7 x20) + 10692 12 0.1y %20y < Cs
100 Je ]l Lm0,y x 0. ) + 1062 Lo 0.1y x 000y < C, (2.68)
|0 Ac]| L 0.1y %0 + 100 AT | Lo 0,1y x ) < C

for all e > 0.

Proof. Arguing as in the proof of Lemma 2.8, we can rewrite all the terms of (2.68) as
polynomials. However, compared to Lemma 2.8, the time derivative of 1. is even bounded
without the factor €, and thus we obtain (2.68). O

Lemma 2.44. Let 1. be locally evolving periodic transformations with limit transforma-
tion Yo in the sense of Definition 2.37. Then, there exist constants cy, C such that

1%0ll = o,y x o7y + 10 oo myencmy + 10l L= oy x oy < C
HAOHLTJ( 0 T)XQ7C(W)) + ||A61HL’/\J((O7T)XQ;C(W)) § C,

Jo(t,x,y) = cy for a.e. (t,x) € (0,T) x Q and every y € Y*.

Moreover, it holds

< 00, < ©

T, < 00, < . \I/;1<OO’<OO ‘1’617 7 T,
oL < 00, < ng A < 00, < Ao, A < 00, < 0 AEI»
0, 0.~ =% 5wy, 0,0t =2 =E 0wt 20, . =2 =% 6,
0, J 1 =2 =0 0 15 0, A== 00,40, 0, AT =2 =05 A1,
Proof. Lemma 2.44 can be shown by the same argumentation as Lemma 2.9. O

For 1 < p <o, 1< q < o0, we define LP(0,T; LY(Qc(t))) and LP(0,T; Wh4(Q(t)))
via restriction from € to .(t), analogously to the definition of LP(; L4(Y*(x))) and
Lr(Q; Wl’p (Y*(x))). In particular, due to the following lemma these spaces are well-posed.

Lemma 2.45. Let 1 < p < o0, 1 < g < 0 and uc:(t,x) = u:(t, (¢, z)) for a.e. (t,x) €
(0,T) x Q). Then, the followmg statements hold

e u:. € LP(0,T;LY0N(t))) if and only if 4. € LP(0,T; LY(Q:)). Moreover, there exist
constants ¢, C' > 0, which are independent of €, such that
clielLrorina.)) < luellro,rra@a ) < Cllte]Lro,1;9(020))- (2.69)

In particular, ue is a bounded sequence in LP(0,T; L1(Q(t))) if and only if G is a
bounded sequence in LP(0,T; L1(S.)).
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o u. € LP(0,T; Wh4(Q.(t))) if and only if 4. € LP(0,T; W14(Q.)). Moreover, there
exist constants ¢, C > 0, which are independent of €, such that

| Vi | zoo,rLa(00)) < Vel zeorra@e ) < ClVie| o o0.1;000.))- (2.70)

In particular, u. is a bounded sequence in LP(0,T; Wh4(Q.(t))) if and only if 4. is
a bounded sequence in LP(0,T; WH4(Q.)).

Proof. Lemma 2.15 shows that (t,x) = (t,1:(t,x)) and (¢, z) — (¢t,9= (¢, z)) fulfil Lusin’s
(N)-condition. Then, Lemma 2.14 shows that . is measurable if and only if u. is mea-
surable. By similar computations as in the proof of Lemma 2.11, we obtain (2.69). Anal-
ogously, we obtain the measurability of the gradients and (2.70). O

Lemma 2.46. Let i (t,z) = u.(t, (¢, 7)) for a.e. (t,z) € (0,T)xQe. Then, u. € L°(QL)
if and only if t. € L*((0,T) x Q) and it holds

el = 0,7y x02.) = luel Lo (ary- (2.711)

Proof. The measurability can be shown as in Lemma 2.45. Since J; is essentially bounded
from below and above it holds for every A < (0,7) x Q. that |1).(A)| > 0 if and only if
|A| > 0, which shows (2.71). O

For 1 < p € w0, 1 < ¢,r < o0, we define the spaces LP(0,T; L1(Q; L"(Y*(¢t,x))))
and LP(0,T"; LI(€; W#T(Y*(t, x)))) via restriction from Y to Y*(¢, x), analogously to the
definition of LP(Q; L1(Y*(x))) and LP(€; W;’p(Y* (2))). In particular, due to the following
lemma, these spaces are well-posed.

Lemma 2.47. Let 1 < p < o0, 1 < ¢,7 < o and Go(t,z,y) = uo(t,z,vo(t, x,y))
for a.e. (t,z,y) € (0,T) x Q x Y*, or equivalently uo(t,z,y) = ﬁo(t,x,wo_l(t,x,y)) for
a.e (t,x,y) € QT. Then, the following statements hold:

e uy e LP(0,T; LI L™ (Y*(t,x)))) if and only if 4o € LP(0, T; LY(Q2; L™ (Y*))). More-

over, there exist constants ¢, C > 0, such that

clao] oo mira@inryey) < |uoll oo, riLa(@unr (st S Clioleo,riLe(@sLr ey
(2.72)

o ug € LP(0,T; LU W' (Y*(t,2)))) if and only if d. € LP(0,T; LU W, (V).
Moreover, there exist constants ¢, C' > 0, which are independent of €, such that

| Vel oo, mspasnr vy < Vel oo rpainr (v ,2))) (2.73)

< C|Viie| poo,1;na ;07 (v #))-

Proof. Lemma 2.47 can be proven by similar computations as in Lemma 2.16. O
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Lemma 2.48. Let uo(t,z,y) = uo(t,z,¢vo(t,x,y)) for a.e. (t,x,y) € (0,T) x Q x Y*.
Then, ug € L*(QT) if and only if 49 € L*((0,T) x Q x Y*), and one has

lol = 0,1y xaxy*) = [uo]L»(or)- (2.74)

Proof. The measurability can be transferred between ug and 4 as in Lemma (2.45). Since
Jo is essentially bounded from below and above it holds for every A < (0,7) x Q x Y'*
that |¢z(A)| > 0 if and only if |A| > 0, which shows (2.74). O

Now, we state the transformation of weak and strong two-scale convergence for functions
as well as for their gradients. These are parameterised versions of the stationary case and
can be shown by the same argumentations. Therefore, we only state the results for the
sake of completeness without repeating the proofs from the time-independent case.

Theorem 2.49. Let p,q € (1,0). Let u. be a sequence in LP(0,T;L()) and
Ue(t, ) = ue(t, e (t, z)) for a.e. (t,x) € (0,T) x Q.. Then,

b, q . Pq
Uo

UQ if and only if e

Ue
for ug € LP(0,T; LY(Q; LY(Y™))) and up € LP(0,T; L1(Q; L4(Y*(t,x)))), and one has
zlo(t,x,y) = Uo(t,$,¢0(t,l’,y)) fO’I" a.e. (tvx,y) € (OaT) x ) x Y*a
uo(t,z,y) = do(t, x4y (t.,y))  for ace (t,z,y)e Q.

Theorem 2.50. Let p,q € (1,00). Let u. be a sequence in LP(0,T;LI(:)) and
Ue(t, ) = ue(t,0:(t, 2)) for a.e. (t,x) € (0,T) x Q.. Then,

uaﬂ»uo if and only if ﬁe%do

for ug € LP(0,T; LY(Q; LY(Y™))) and ug € LP(0,T; L1(QY; LY(Y*(t,x)))), and one has

ﬁo(t,l‘,y) uO(t7$7¢0(t7xay)) fO?" a.e. (t7$>y)€ (OvT) x {1 x Y*a
uO(t7:C>y) :’Ilo(t,.ib,wo_l(t,.%,y)) fO?" a.ce. (t,ZC,y)E QT-
Corollary 2.51. Let QST be locally evolving periodic domains with two-scale limit set or

in the sense of Definition 2.36. Then,

< 00, < 0 _ <00, <
Xor———>Xor  (ie. Xor(t,z)———Xor(t, 2, Y) = Xy*(1,0)(Y) )-

Theorem 2.52. Let p,q € (1,0). Let ue be a sequence in LP(0,T; LI(S2)) and u.(t,xz) =
ue(t, Ve (t, z)) for a.e. (t,x) € (0,T) x Q.. Then,

p,q b, q

Vue Xor Vzug + Vyuy if and only if Vi, Xy* Vzlo + Vi

for ug € LP(0, T;WH(Q)), g € LP(0, T; W9(Q)), wi € LP(0,T; LU W (Y*(t,2))))
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and iy € LP(0,T; LY(Q; WA (Y*))). Moreover,

Uo(t, x) = uo(t, ) for a.e. (t,z) € (0,T) x Q,

ﬂl(t7ﬂ:7y) = ul(tvxuw()(t7x7y)) + %(t7$7y) : vfuo(t7x)
for a.e. (t,z,y) e (0,T) x Q2 x Y™

—

U1(t,l',y) = ’ELl(t,!L‘, w()_l(tv'wvy)) + ¢o_1(75733,y) ' Vzﬂo(t,x)
for a.e. (t,z,y) e QT.

Theorem 2.53. Let p,q € (1,0). Let u. be a sequence in LP(0,T;LI(Q(t))) and
Ue(t, ) = ue(t, Ve (t, 2)) for a.e. (t,x) € (0,T) x Q.. Then,

b, q b, q

eVue

Vyug if and only if eVile

Y, i
for ug € LP(0,T; LI(Q; W#q(Y*(t, x)))) and Gy € LP(0,T; LI(L; W#q(Y*))), and it holds

UO(t,$,¢0(t,$,y)) fOT a.e. (tvxvy) € (OaT) x £ x Y*7
up(t, z,y) = do(t, z, 95 (¢, z,y))  for ace. (t,x,y) € Q.

>
o
B
<
g

Il

65






Chapter 3.

Stokes flow in porous media with evolving
microstructure

In this chapter, we consider the homogenisation of Stokes flow in a porous medium for
given evolving microstructure. First, we consider the case of the quasi-stationary Stokes
equations (3.1) and afterwards the case of the instationary Stokes equations (3.87). At the
pore interfaces I'c(t), we assume inhomogeneous Dirichlet boundary values vr_ for the fluid
velocity. In particular, this models a no-slip boundary condition for the moving interface
if we choose vr, equal to the velocity of the interface. Moreover, we will not restrict to
the case that the volume of the total pore space remains constant. Therefore, the fluid’s
incompressibility condition requires enabling fluid in- and out-flow. We model this by a
normal stress boundary condition at the outer boundary of the porous medium.

In order to pass to the homogenisation limit, we transform the Stokes equations to a
periodic substitute domain. There, we pass to the homogenisation limit. Afterwards,
we transform the limit equations back. In the case of quasi-stationary Stokes flow, this
leads to a Darcy law for evolving microstructure and in the case of the instationary Stokes
equation, we derive a Darcy law with memory for evolving microstructure. Compared with
the classical Darcy law, which can be derived by homogenisation of the Stokes flow for
fixed microstructure, these resulting Darcy laws take the local cell geometry into account
and, thus, yield a time- and space-dependent permeability. Moreover, the moving domain
causes an inhomogeneous divergence condition for the resulting effective fluid velocity, via
the inhomogeneous Dirichlet boundary conditions. This becomes a source or sink term for
the pressure via the Darcy law.

This chapter is organised as follows: In Section 3.1, we consider the homogenisation of
the quasi-stationary Stokes equations in an evolving porous domain. First, we present a
strong and weak formulation of the problem in Section 3.1.1. Due to the quasi-stationarity,
it can be formulated pointwisely with respect to time and, thus, becomes a homogenisation
task in a locally periodic domain. Moreover, we formulate the assumptions on the domain
and the data there. Afterwards, we transform the equations onto a periodic substitute
domain in Section 3.1.2. In Section 3.1.3, we show the existence and uniqueness of the
solution of the e-scaled Stokes problem. By a subtle e-scaling of the involved spaces,
the existence result provides directly uniform a-priori estimates, which are sufficient for
the compactness result. However, the transformation of the symmetric gradient in the
Stokes equations causes some transformation coefficient in the symmetric gradient, which
requires the derivation of an e-scaled Korn-type inequality for two-scale transformations.
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In Section 3.1.4, we pass to the limit € — 0 by means of two-scale compactness arguments
which are based on the previously shown a-priori estimates. This results in a two-pressure
Stokes equations in the cylindrical two-scale substitute set. We separate the micro- and
macroscopic variable in the two-pressure Stokes equation in Section 3.1.5. Due to the
transformation quantities, we obtain two different cell problems. After identifying these
cell problems up to a perturbation of the microscopic pressure, we obtain a Darcy law
formulated with respect to the transformed coordinates. In Section 3.1.6, we transform
the two-pressure Stokes equations back onto the non-cylindrical two-scale limit set. For
this, we extend the transformation results for the two-scale gradients of Chapter 2 to the
divergence operator and employ the identification of the two different cell problems in the
transformed setting. Afterwards, we separate the micro- and macroscopic variable and,
finally, obtain a Darcy law for evolving microstructure.

In Section 3.2, we consider the homogenisation for the instationary Stokes flow. The
basic procedure follows the stationary case. We formulate the microscopic equations in
Section 3.2.1. Then, we transform them onto the periodically perforated substitute do-
main in Section 3.2.2. In Section 3.2.3, we show the existence of a solution for the mi-
croscopic problem and derive uniform a-priori estimates. By a previous substitution, we
obtain a time-independent divergence constraint, which allows us to to apply an exis-
tence result on generic time-dependent differential-algebraic equations, which we derive
in Appendix A. This substitution requires an extension of the Korn-type inequality for
the two-scale transformation method, where the gradient is multiplied on both sides by
transformation dependent matrices. Given these a-priori estimates, we identify the limit
problem in Section 3.2.4. Compared to the quasi-stationary case, we have to modify the
compactness argumentation for the pressure, which leads to only weak convergence. Af-
terwards, we transform the resulting limit equations back in Section 3.2.5 and, finally,
derive a Darcy law with memory for evolving microstructure.

3.1. Homogenisation of quasi-stationary Stokes flow

This section is heavily based on the publication [WP24, D. Wiedemann and M. A. Peter,
Homogenisation of the Stokes equations for evolving microstructure, Journal of Differen-
tial Equations, 396 (2024), 172-209]. Some preliminary work on the homogenisation of
the quasi-stationary Stokes equation is presented in [Wiel9, D. Wiedemann, Homogeniza-
tion of Stokes flow with evolving microstructure, Master’s thesis, Technical University of
Munich (2019)]. In the following points, the approach and results of [Wiel9] differ substan-
tially from those of [WP24] and the ones presented here: In [Wiel9], the Stokes equations
are considered without symmetrising part for the gradient. Therefore, it does not require
the Korn-type inequality for two-sale transformations, which is derived in [WP24]. In
[Wiel9], the family of operators div;l, which is used for the a priori estimates are derived
directly, while we argue here as in [WP24] and deduce the operators from the restriction
operators of [Tar80, All89]. The explicit construction of [Wiel9] provides additional un-
derstanding due to its physical motivation but is very technical. In [Wiel9], only the weak
two-scale convergence for the pressure is derived compared to the strong convergence here.
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3.1. Homogenisation of quasi-stationary Stokes flow

Moreover, we pass to the homogenisation limit ¢ — 0 in a different way than in [Wiel9].
In particular, we do not require any more that ¢. can be expressed as an e-scaled version
of 1y but rely only on the asymptotic behaviour of 1. similarly to Chapter 2. Moreover,
[Wiel9] concludes with the two-pressure Stokes equations in the substitute coordinates,
while [WP24] presents also a back-transformation to transformation-independent two-scale
limit equations on the actual two-scale limit domain as well as a Darcy law without trans-
formation quantities.

3.1.1. The microscopic equations

Let Q < R™ be an an open bounded set, representing the domain of the porous medium,
and let (0,7) for T" > 0 be the time interval. Let (¢)neny be a monotone positive se-
quence, which converges to 0 and scales the microstructure. We write ¢ = g, in the
following. We assume that € consists of whole e-scaled copies of the unit cell Y = (0,1)",

ie. Q =int ( J ek + 57) for some sets I. < Z™. We assume that for every € and every
kel:

t € [0, T, there exists an open set Q. (t) < 2, which represents the pore space. The comple-

mentary solid space is given by Q5(t) = int(Q2\Q.(t)). We denote the interface of the pore

and the solid phase at time ¢ € [0, 7] by I'c(t) := 0Q.(t) n 02 (t) and the remaining bound-

ary of the pore space at the boundary of the porous medium by Z.(t) := Q. (¢)\'(t).

Having the domains defined for every ¢ € [0,7], we can define the evolving domain and

its boundary by
of = |J {#x0(t), GI= |J @ x1o(r), HI = (] {8} xE).
]

te[0,T7] te[0,T] te[0,T

In this domain, we consider the quasi-stationary Stokes equation for the unknown fluid
velocity v. and pressure p.:

Quasi-stationary Stokes equations in an evolving perforated domain

—div (pe? (Ve + (Vo)) + Vpe = f- in T,
div(v:) =0 in 9T,

Ve = Ur, on GT,

(=*u(Vve + (Vve) ') + pel)n=ppen  on HY,

(3.1)

where p > 0 is the fluid’s viscosity, f. the source term, vr_ the fluid velocity at the
interface, py . the normal stress and n the outer normal of Q.(t).

\. J

The scaling of the viscosity by the factor €2 causes the velocity to have a non-trivial
limit. From a physical point of view, it balances the friction of the fluid at the interface,
which arises from the no-slip boundary condition (see also [Hor97, Chapter 3]).

Since the unknowns of (3.1) do not contain any time derivative, the time becomes
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Chapter 3. Stokes flow in porous media with evolving microstructure

a parameter and we can consider the equations as stationary problem for every point
t € [0, T] separately. Therefore, we fix a point ¢ € [0, T'] in the following and omit indicating
this parameter t at the unknown function and data as well as at the transformations .
later. We only state the parameter ¢ at the domains €2.(¢) and its boundaries I'c(¢) and
Z:(t) in order to distinguish them from the periodically perforated substitute domain,
which we denote by €., I'c and =, respectively.

In order to derive the weak formulation, we assume that the Dirichlet boundary values
vr, and the normal stress pp . can be extended to Q.(t). Then, we subtract these extensions
from the fluid velocity v. and the pressure p, i.e.

We = Vg — Ur,, Qe = Pe — Dbe-

which gives

—div(pe2e(w.)) + Ve = fo + div(ue®2e(vr.)) — Vppe  in Qc(t),
div(w.) = —div(v in Q.(t),
) = —divior.) 0.
we =0 on I'(t),
(—62u26(w5) +q:1)n = e2p2e(vr,)n on =.(t),

where e(w.) denotes the symmetric gradient, i.e.
e(v) = (Vv + (Vo) 1)/2.

We multiply the first equation of (3.2) by a test function ¢ € Hlls(t)(Qg(t))", where
H%E(t)(Qs(t)) = {v e H'(Q(t)) | vr.py = 0}. Then, we integrate over Q.(t) and sub-
sequently integrate the left-hand side by parts. By employing the two boundary condi-
tions, we obtain the first equation of (3.3). Moreover, we multiply the second equation by
n e L?*(Q.(t)) and integrate over .(¢). In total, we obtain the following weak form:
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3.1. Homogenisation of quasi-stationary Stokes flow

Weak form of the quasi-stationary Stokes equations in an evolving per-
forated domain

Find (we,¢.) € H%E(t)(ﬂg(t))n x L?(9(t)) such that

j e2u2e(ws (z)) : Vipla) da - J 4c(2) div(p(2)) da

Q(t) Qc(t)
— | (@)= Vel - pl@)do = | Suzeter)@): Ve@)de g
Q:(t) Q:(t)
f div(we(z))n(x) dz = — f div(vr, (z))n(z)dx
Q:(t) Qc(t)

for every (p,n) € H%S(t)(ﬂs(t))” x L2(Q:(1)).

We make the following assumptions on the data and the domain.
Assumption 3.1. We assume that

e Q.(t) is a sequence of locally periodic domains in the sense of Definition 2.1, with
two-scale limit domain

Qt) = {(z,y) e QA xY |y e Y*(t, x)}

and interfaces I'(t, z) = oY *(t,x)\oQY for (t,x) € [0,T] x Q2. We denote the periodic
substitute domain by Q¢, the pore space of the reference cell by Y* 'Y = (0,1)" and
the solid space by Y* = int(Y\Y™). For the periodic substitute domain, we assume

that
-0<|Y* <1,
— Y :=int (kgn ek 4+ eY*) and int(R™\Y) are open sets with C*-boundary, which

are locally located on one side of their boundary. Moreover, Y is connected,
— Y™ is an open connected set with a locally Lipschitz boundary.

For a detailed discussion of the assumptions on the periodic substitute domain, see

[A118Y].

Furthermore, we assume that there exists a constant ¢ > 0 such that
|(ek +eY) n Q. (t)] = "¢
for every ke I. and € > 0.

o f. is a sequence in L?(Q(t))" and f € L*(Q)" such that

2
Je——Xxo[-
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Chapter 3. Stokes flow in porous media with evolving microstructure

e up, is a sequence in HY(Q:(t))" and vr € L?(Q; HX(Y*(t,z))") such that

z";‘il’l)l"s

2
ur, V'UFE —‘-‘vyvp.

o py. is a sequence in H(Q:(t)) and (pyo,po1) € HY(Q) x L2(Q; HL(Y*(t,2))), such
that

2
Vbe——>X0(t) Valbo + VyPp1-

3.1.2. Transformation to a periodic substitute domain

We transform the Stokes equations (3.1) as well as the weak formulation (3.3) onto the
reference domain 2.. We denote the transformed data by

PN

fe = feote, {}FE = ur, © e, ﬁb,s = Pe 0 Ve, (3.4)

where 1.: Q. — Q(t) are the locally periodic transformations in the sense of Defini-
tion 2.2. We define the boundaries T'c and Z. by T'. = ¥-1(T'-(t)) and Z. = ¥ 1(Z.(2)),
respectively, and recap the notation W, := 0,1, J. := det(V¥.) and A, := Adj(V.). Then,
we obtain for

U = vz 07, Pe = D= © e,

the transformed strong formulation:

Quasi-stationary Stokes equations in an evolving perforated domain in

the reference coordinates

—J7 div (ue? Ac2e. (6:)) + 2 TV = fe in Q.,
J! div(Agﬁf) = ? in Q., (35)
e = Or, on I',

(—?p2ec(v.) + pel) W7 Ta| 0T T = Py O TA|TOS TR on E.,

where e. denotes the transformed symmetric gradient, i.e.
es(p) = (V. TV + (¥, TVg)")/2

and 7 denotes the outer normal of €.

Moreover, we obtain the transformed weak formulation for
We = We © P, Ge = q= © Ve,

where we use the function space Hp,_(Q)" := {v e H' ()" | v|r, = 0} as solution space.
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3.1. Homogenisation of quasi-stationary Stokes flow

Weak form of the quasi-stationary Stokes equations in an evolving per-

forated domain in the reference coordinates

Find (we, ¢.) € H%E(Qg)” x L2(£2.) such that

f €2 A ()22 (i0.) () - Vipl(ar) dar — j 4o (&) div(As () p()) de

Qe Qe
= J(Ja(fv)fa(x) — Al(2) Vs (@) - p(z) dz — JSQMAa(x)Qea(@rs)(fC) : Vp(x) dx
Qe Qe
| divia@os@nte) do =~ [ div(Ac@yn. (@)n(o) ds
Qe Qe
(3.6)
for every (p,n) € H%E(Qa)" x L2(€2.).
Remark 3.2. The Piola identity says that
div(Adj(dz¢)) =0 (3.7)

for every p € C?(U;R)™ on an open set U = R™. In Lipschitz domains, (3.7) can be shown
for o € WH®(U;R)"™ by a density argument. Together with the Leibniz rule, it allows the
simplification of the divergence terms, i.e. div(Ag0.) = div(Ag) - 0. + A : V. = A. : V..

For the transformed data, we can transfer the a-priori estimates and convergence as-
sumption onto the reference domain by means of the results of Chapter 2.

Lemma 3.3. Let f., pp. and vr, be given by Assumption 3.1 and let fg,ﬁbig,ﬁps be given
by (3.4). Then, it holds

-1

s 2 2 . N 2 N . 2 R A
fe—xy=f, € ‘or, vr, Viopr,——V,ir, Vppe——=xv*VaDpo+ VyDp1
for
f(x) = f(x)a ﬁr(‘ray) :Ur(x,¢0(x7y))a
Pr.o(x) = ppolx), Po1(2,y) = po1(x,Yo(z,y)) + Vappol(x) - Yoz, y).

In particular, there exists a constant C such that

| fellragany + IBvelzzon) + Vel 2oy + & Hord e + [Vér. | 12¢.) < C.

Proof. The two-scale convergence can be transferred from f., e lor_, Vor, and Vpy . to
the transformed quantities by means of Theorem 2.20, Theorem 2.24 and Theorem 2.23,
respectively. Afterwards, the two-scale convergence implies the uniform boundedness. [
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Chapter 3. Stokes flow in porous media with evolving microstructure

3.1.3. Existence, uniqueness and a-priori estimates

In this section, we show the following existence and uniqueness result for the solution of
the Stokes equations (3.6). It provides also the a-priori estimates which we will use for
the two-scale compactness arguments later.

Theorem 3.4. For everye > 0, there ezists a unique solution (W, §-) € Hllg ()" x L%()
of (3.6). Moreover, there exists a constant C such that

|20y + el Vel 20y + Gl z2(0.) < C (3.8)
for every e > 0.

We prove Theorem 3.4 by means of the following generic existence and uniqueness result
for saddle point problems. By using a subtle scaling of the involved norms, it provides
also the uniform a-priori estimates (3.8). For Banach spaces V,W and a € L(V,W'), we
write a(v,w) = a(v)(w) for ve V and we W.

Proposition 3.5. Let V,Q be Hilbert spaces, a € L(V,V'), be L(V,Q"), fe V', ge @,
with constants o, B > 0 such that

a(v,v) = a|v|y forallveV,

¢ b(q,v)
in sup —————
geor(op venvioy lallolvlv ~

Then, there exists a unique solution (v,p) € V x Q such that

a(v,w) + b(w,p) = f(w),
b(v,q) = g(q)

for every (w,q) €V x Q. This solution (v,p) € V x Q is bounded by

1 2llal vy
lollv < 11w + == ol
(3.9)
9] MWH MH lo
p Q 0452 g Q *
If, moreover, a(-,-) is symmetric, the estimates are improved to
1/2
1 2||a Hz: V,V7)
lolv < Iflv + ——555— gl
“ b (3.10)
el {0 la ul; v |
Iplo < Talg £y + 5" gl
Proof. Proposition 3.5 is shown, for example, in [BBF13, Theorem 4.2.3]. O
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3.1. Homogenisation of quasi-stationary Stokes flow

As (3.10) already suggests, it is crucial for the e-independent a-priori estimate that we
obtain an e-independent coercivity constant for a and an e-independent inf-sup constant
for b. For the uniform estimate of the coercivity constant of a, we derive a Korn-type
inequality for e.(¢) = U-TVp + (U-TVyp)" . In order to derive a uniform estimate
for the inf-sup constant of b, we employ a family of continuous linear operators div_?! :
L?(9.) — H%E (Qe), which are right-inverse to the divergence.

Right-inverse divergence operator

By means of the following restriction operator, we can trace the construction of the
operator div_': L2(Q.) — H'(Q.)" back to the construction of div~': L?(Q) — H'(Q)",
which is defined e-independently. This restriction operator was originally presented in
[Tar80] and extended to the case of connected solid domains in [All89, Theorem 2.3].

Lemma 3.6. There exists a family of linear and continuous operators
R.: H'(Q)" — Hf ()"
such that
e uE H%E (Qe) implies Re(u) = u in §,

o div(R.(u)) = div(u) + ] ﬁxskﬁy* S div(u) dez,
kel. ek+eYs

o there exists a constant C such that
|Reul 2.y + el VRl 120,y < C(ull 2y + €l Vul L2 ()
for every u e HY(Q).

Proof. In [All89], this restriction operator was explicitly constructed as an operator from
HE(Q)™ to H}(Q:)™. Indeed, the construction is done locally and, thus, the same con-
struction provides also an operator R.: H'(Q) — H%E (Q)™, which does not incorporate
the zero values at 0f2. O

Lemma 3.7. Let U < R"™ be a bounded domain. Then, there exists a linear and continuous
operator div—': L*(U) — HY(U)™ such that divodiv! = idz2 -

Proof. See for instance [Galll, Exercise I11.3.1]. O

By combining the previous two results, we obtain the following right-inverse e-scaled
divergence operator.

Lemma 3.8. There exists a family of linear continuous operators

div;l: LZ(QE) — H%E(Qa)",
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such that
div(div. ' (f)) = f,
[ diV?(f)HL?(QE) +elV dngl(f)Hm(Qg) < Cllfllz2c00
for every f € L*(Q.) and a constant C which is independent of €.

Proof. Lemma 3.7 provides a linear continuous operator div™': L?(Q) — H'(Q)" such
that divodiv ! = id r2(e) - With this operator and the restriction operator R. of Lemma
3.6, we define for f € L?(€2)

div2 1 (f) == Re(div (),

where J?denotes the extension of f by 0 to Q\.
Then, the explicit formula for divoR. from Lemma 3.6 leads to

div(divIL(f)) = div(&(div‘l(f))) =

= div(div! | Y* Z Xek+eY * J div(div_(f(z))) dz
ke[ ek+eYs
* Xek+ey* f dCE -
|8Y
kele ek+eYs

Moreover, with the continuity estimates for the restriction operator and for div™!, we
obtain for € > 0

| dive ' ()] 2.y + €IV dive (N 20
< C(Jaiv (Dlray + eIV div " (Pl )
<C(+e)|div! (f)HHl(Q) <C(1+ 5)Hﬂ|L2(Q) < O fllzz .

O
Korn-type inequality for two-scale transformation
The aim of this section is the derivation of the following Korn-type inequality.
Proposition 3.9. There exists a constant o such that
[0 Vo + (07 TV0) 20,y = @l Vol2aq,) (3.11)

Jor all v e H}, (Q:)" and every e > 0.

The proof of Proposition 3.9 is a consequence of the following lemmas which break down
all the arising difficulties. The first difficulty arises already from the multiplication of the
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3.1. Homogenisation of quasi-stationary Stokes flow

gradient by a fixed space-dependent matrix. For n = 3, this was solved in [Nef02] first.
In [Pom03], the regularity assumptions on the matrix were reduced, which leads to the
following result.

Lemma 3.10. Let 1 < p < oo and U be an open and bounded domain in R™ forﬁ =2

with Lipschitz boundary oU. Let S be an open subset of 02 with |S| > 0. Let Ae C(U)"*"
with det(A(x)) = ¢ > 0. Then, there exists a constant a > 0 such that

J|A(x)Vu(ac) + (A(z)Vu(z)) TP dx > aJ|Vu(x)|p dz (3.12)
U U

for every u € Wé’p(U)” = {ve WhP(U)" | v|s = 0}.
Proof. See [Pom03, Corollary 4.1]. O

For the special case that A arises as gradient of an C!-diffeomorphism, (3.12) can be
shown by transforming the integral with this diffeomorphism and applying the standard
Korn inequality afterwards.

The constant « in (3.12), depends on the matrix A. However, in (3.11), we have to
deal with a family of matrices instead of one fixed matrix. By the following continuity
argument of [WP24], we can uniformly choose « for a compact set of matrices. A similar
result was provided independently in [MR20].

Lemma 3.11. Let 1 < p < o0 and U be an open, bounded domain in R™ for n = 2 with
Lipschitz boundary oU. Let S be an open subset of U with |S| > 0. Let A < C(U)™*"
with det(A(x)) = ¢ > 0 for every A€ A. Then, there exists a constant o > 0 such that

HAVU + (AVU)T|‘Z£37(U) = O‘HVU(:U) ”ip(u)

for every u € Wé’p(U)” and every A € A.

Proof. We define the family of mappings {\,: A >R |v € Wé’p(U)”\{O}}, by

_ AVY+ (AVO) T Loy

Ao(A):
) ol

Using the triangle inequality and the Holder inequality, we obtain for A, B € A

AV + (AVO) | 1oy — 1BV + (BVO) || o)
< |AVo — BVv + (AVo — BV) || 1oy < 2| AVY — BV 1oy
< 2[A = Ble@) Vol ew)-

Thus,

Ao(A) = Au(B)] < 2|4~ Bl
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for every A, B € A and v € Wiy”(U)", which shows that the family {), | v € WP (U)"\{0}}
is equicontinuous. Due to the equicontinuity, the pointwise infimum of this family is
continuous as well, i.e. A: A — R defined by

AV + (AV) T
MA) = imf A= e AUV o
veW g (U)"\{0} veW L (U)m\{0} Vo[ Lo

is continuous. Therefore, A attains its minimum over the compact set A at a point Ag € A.
Due to Lemma 3.10, A(4) > 0 for all A € A and, in particular, A(4p) > 0. Hence, there
exists a constant « = A\(Ag) > 0 such that

|AVY + (AV) T ooy

inf =ANA) = A4y =a>0
VEW P (U {0} IV Loy
for all A € A, which proves Lemma 3.11. O

In order to show (3.11), we not only have to deal with a family of coefficients U= but
also a family of domains 2.. Since every cell ek + Y™ contains a subset of the boundary
I'., on which v € H%E(Qg)” is zero, we can upscale these cells and apply Lemma 3.11 for
every cell. In order to formulate the compactness of the matrices across the upscaling
process, we quantify the compactness using Holder continuity.

Lemma 3.12. Let 1 < p < w. Then, for every ¢,C > 0 and X € (0,1], there exists an
e-independent constant o > 0 such that

ava‘|Z[),P(QE) < [AsVo + (AaVU)THZZ,p(QE)

forallve Hllg(Qe)" and every A. € COMNQ)™ ™ with

|4cl o) < €
MA(z1) — Ac()| < Clzy — 2o for all 1,29 € Q,
det(A.(x)) = ¢ for all x € Q..

Proof. Since

[A4eV0 + (AV0) Ty = 25 14V + (AV0) T, pysy,
kele

Vol = 20 VOl chseys):
kel.

it suffices to show the estimate for every cell ek + €Y ™ separately. Thus, after scaling and
shifting ek + Y™ to Y™, it suffices to show

A VVI2 iy < JAk T + (AekV0) I 0 (3.13)
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for all v e WI}’p(Y*)” and k € I, where A, y(x) = A.(ck + ex). This scaling yields

|Az g (1) — Ac ()| = |Ac(ek + ex1) — Ac(ek + ex2)| < e 2C|(ek + exy) — (ek + ex2) |

= C|J}1 —33‘2|/\

for all 1,22 € Y* and det(A. x(z)) = det(A.(ck + ex)) > c. Thus, one has A, € A for
every € > 0 and k € I, where

Al < C,det(A) = ¢
A e OO (Fr)nxn | CY*) =™ ’ v
A A Oy o e 2 for ll ey a3 7

The uniform Holder continuity implies the equicontinuity of A, and since the functions
in A are also pointwise bounded the theorem of Arzela—Ascoli shows that A is relatively
compact in C%*(Y*)"*"_ Finally, Lemma 3.11 applied on the closure of A provides o > 0
for (3.13) and, hence, proves Lemma 3.12. Note that the determinant is a continuous
function and, therefore, it holds det(A) > ¢ also for every A in the closure of A. O

Having done this preliminary work, it suffices to show that W= T fulfills the assumptions
of Lemma 3.12, in order to prove Proposition 3.9.

Proof of Proposition 3.9. From Lemma 2.8, we obtain constants ¢, C' > 0 such that

w; Tuc o <C.
det(\Ifs_T(az)) ) =ec for all = € O,
el U T (1) — (:132)| < eC|o, ¥ THC(QS |21 — 22| < Clay —x2|  for all 1,29 € Q..

Then, we can apply Lemma 3.12, which provides the constant c. O

Before we can finally show the existence and uniqueness of the solution for the Stokes
equations, we recap the following e-scaled Poincaré inequality.

Lemma 3.13. There exists a constant C' > 0 such that
vl z2(0.) < €C|VV| 20, (3.14)

Jor all ve H} (9.).

Proof. Lemma 3.13 can be proven by decomposing {2, in e-scaled reference cells Y™ and
applying the Poincaré inequality there, see for instance [Hor97, Chapter 3, Lemma 1.6]. [J

Having done all the preliminary work, we can finally show the existence and uniqueness
of the solution for the e-scaled transformed Stokes equations.

Proof of Theorem 8.4. Let V. = Hlls () and Q. = L?(€.), with the scalar products and
norms defined by

HUH%/E = (’U,’U)Vs = 82(VU7VU)L2(QE)7 HQH%/E = (Q7Q)Qs = (qvq)L2(Q5)
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for v e V; and g € Q.. Due to the Poincaré inequality (3.14), ||- |v. actually defines a norm
on V; and (-, )y, is a scalar product. We define a. in £(V;,V!) and b. in £(Q., V!) b

as(v,w) = pe? (Ac2e(v), Vw)LQ(QE) for v, w € Vg, (3.15)
be(q,v) = (¢, div(Av)) r2(0,) for g e Q:,ve Ve, (3.16)

We define the right-hand sides h. € V! and g. € Q. by

he(w) = J(Ja(a:)fa(a:) — Al (@) Ve (2)) - w(x) dz — a-(dr,, w) for w e Vg,
Qe
gs(Q) = _bs(Qa@FE) for qE Q5~

Thus, we have embedded the weak formulation of the Stokes equations (3.6) into the
generic framework of Proposition 3.5.

Now, we show the uniform coercivity of a. and the uniform inf-sup estimate for b. as
well as the continuity estimates for a, be, he, g-.

e Coercivity of a.: Let v € V.. First, we rewrite a.(v,v), by shifting the factor ¥_!
from A, = J.UZ! to the second argument of the scalar product of a.. Then, we use
the fact that for matrices A, B € R"*™, one has

(A+ A" B)=(A+A"):B=tr((A+A")'B) =tr((A+ A")BT)
=str(A+ AN (B+B")=3(A+ A", B+ B"),
which gives
ac(v,v) = pe?(J (U7 TVu + (U7 TV0) 1), U2 V) 120,
= 2pe? (J (V. TVu+ (U, TV0) ), (U TV + 0TV T, ()
= 31|V T (B TV + (U2 TV0) 1) [0

With the boundedness of J. = c¢; from below and the Korn-type inequality given in
Proposition 3.9, we can estimate further and obtain « > 0 such that

a:(v,v) = Lpee | (¥ TV + (T, TVo)T) H%Z(Qs)

P
(3.17)
> 2a| Ve, = alvly,

for every v € V..

e Continuity of a.: With the Cauchy—Schwarz inequality, the triangle inequality and
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3.1. Homogenisation of quasi-stationary Stokes flow

the uniform essential boundedness of A, and U-! (see Lemma 2.8), we can estimate

lac(v,w)] < pe? | AU TV + (U TV0) ) |20 Vw20,
010 TV + (U7 "V0) 20, Vw2,
20|10 TV 20| V| 120,

20V 2o IVl 2. < Cllofv]wlv.

<
<
. (3.18)
<

for every v, w € V..

Inf-sup estimate of b.: From Lemma 3.8, we obtain, for every g € @), a function
v € Vz such that

div(vo) = ¢,
lvoll 2.y + €lVvol L2,y < Clalr2a.)-

Then, together with the estimates for the coefficients from Lemma 2.8 and the
Poincaré inequality (3.14), we obtain a constant § > 0 such that

el V(AT 00) | 2oy < CIVAT e ol 2. + CIAZ (o) Vool 226
<

Clvolr2(a.y +€CVuollzz.) < B el 20,

By choosing v = AZlvg € VL, we get

sup blg,v)  _ < (¢, div(Acv)) 120, - (q,div(vo)) r2(q.)
vevavor ldllelolve — wevaoy  laleelvlve 7 Jallo. A= tvollv
, (3.19)
HQHL2(QE)

Y

" a2 B gl 2y
which provides an e-independent inf-sup constant .

Continuity estimate of b.: Using the Piola identity (3.7), the Hélder inequality and
the estimates for A. from Lemma 2.8, we obtain

b= (v, @) = (¢, div(Aev)) 120,y = (¢, div(Ae) - v + Ac 2 VU)) 200,y = (¢, Ae 1 V) 12(q,)
< Clal 2 IVl 20 < e ' Cllallg.lvlv.
(3.20)

for every q € Q- and every v € V..

Continuity estimate of h.: In order to estimate h., we use the Holder inequality and
the continuity estimate of a.. Then, we employ the boundedness of the transforma-
tion coefficients (see Lemma 2.8), the boundedness of the data f., Vp, . and or_ (see
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Chapter 3. Stokes flow in porous media with evolving microstructure

Lemma 3.3) and the e-scaled Poincaré inequality (3.14). Accordingly, we obtain

|[fe(w)| = J(Ja(l‘)fa(fﬂ) — Al (2) Vs (@) - w(z) dz — ac(or., w)
Qe

(el @y fel 2oy + 1AL L @) IV Bb el 20 [0l 220y + Clor v Juwllv.

<
<Olwl 2o, + eClwlv. < Clwly.
(3.21)

for every w € V.. Note that in the derivation of (3.21) the term a.(or_, w) is of order
€. Therefore, it will also vanish during the homogenisation process later.

e Continuity estimate of g.: We use the continuity estimate for b, (3.21) and the
boundedness of or_ (see Lemma 3.3) in order to estimate g.. The estimate of b,
(3.21) provides a factor e !, which is canceled by the estimate for or_, i.e.

19:(@)] = [be(q, 0r.)| < e Clalq. lor. v = Clalo.IVir. 2. < Clalo.  (3.22)

for every q € Q-.

Now, we employ Proposition 3.5, which gives a unique solution (we,§:) € Vz x Q. =
H} (Q:)™ x L*(2) of the weak formulation of the Stokes equations (3.6).
Moreover, from (3.18), (3.21) and (3.22), we obtain

laclcvvny + 1felve + gellr < © (3.23)

and together with the uniform coercivity estimate (3.17) and the uniform inf-sup estimate
(3.19) all terms of the right-hand side of (3.9) are e-independently bounded and, thus, we
obtain

ellVide| 2.y + el L2y = lellve + [dellq. < C-

With the Poincaré inequality (3.14), we can estimate ||[i:|12(q,) < C afterwards, which
finally shows the desired a-priori estimate (3.8). O

Remark 3.14. We note that the estimates (3.9) and (3.10) do not depend on ||b] z(v,q1)-
This becomes crucial in our derivation of the a-priori estimates for the solution of the
Stokes equations, since we can not bound |b|zv. qr) e-uniformly.

3.1.4. ldentification of the two-scale limit problem

Now, we pass to the homogenisation limit ¢ — 0 and derive the following two-pressure
Stokes equation as two-scale limit equation in the cylindrical substitute two-scale domain
for unknowns o, p, p1, where w0y is the two-scale limit of w. and ?., and p = ¢+ pp o where
G is the limit of some extension of ¢. on €.
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3.1. Homogenisation of quasi-stationary Stokes flow

Strong form of the quasi-stationary two-pressure Stokes equations for
evolving microstructure

Jy tdivy (pAy N TV i) + U5 TVep + Uy Vypr = f in QxY*
Jyt divy (Agig) = 0 in QxY*
Wy =0 on Q x T,
Y — Wo, P1 Y — periodic,
div, ( J Aoio dy) - J f div(Agor) dy in Q,
Y* QY
D = Db on 0f).

(3.24)

The transposed velocity gradient vanishes in (3.24). This, is a consequence of the
microscopic incompressibility condition for wy and the boundary values of wy.

Compactness results

Before we can identify the limit equations, we have to derive compactness results for
the velocity and pressure. We start with the strong convergence of the pressure. For this,
we follow the argumentation of [Tar80], which was extended in [All89], [LA90], [Mik91]
and [FMW17], and adapt it to our setting, where we have to deal with the coefficients
as well as different function spaces, due to the different boundary condition at the outer
boundary 02 n 0).. We extend §. on €2 by

. Ge () if z € Q.,
Q:(#) =1 f 4(2)ds ifzeck+eY*forkel. (3.25)
ek+eY *

Lemma 3.15. Let G- € L*(Q.) be given by the solution of (3.6) and let Qa be its extension
defined in (3.25). Then, there exists ¢ € L*(Q) and a subsequence Q. that converges
strongly to ¢ in L*(9).

Proof. We define F. € (H'(Q)")' by
Py = | () div(Rep(@) do
Qe
By testing (3.6) with A_!R.p(x), we can rewrite this functional by

J(js(t) div(Rep) dz :(52MA62€€(w6)a V(AgleD))Lz(QE) - (\Il;rfs — Ve, RS‘P)LQ(QE)
Q
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+ (e?pAc2e.(or,), V(AglRa‘P))LQ(QE)‘

Using the uniform boundedness of eV, (see (3.8)), the coefficients (see Lemma 2.8) and
the data (see Lemma 3.3), we obtain, after applying the Holder inequality and the Leibniz
rule,

[Fey oy i@ < Ce| V(AL Rep) |20y + Cl Rl 20, + € CIV(AL Re) | 120
< Ce(1+¢)|[VAZ Rep + V(R0) Al | 120,y + Cl Rl 1200y

Ce| VA L2 (o) IRl 120y + CelVRp| 120 | AL | 12 (0.) + ClRe@ 1200
ClReplr2(0.) +eC VR0 12(q.)

Cllel 2y + eClIVel L2

INCIN N

(3.26)
for every ¢ € H'(Q)". Thus, F. is uniformly bounded in (H'()")', i.e. | Fz| 1oy < C.
If div(y) = 0, one has div(R.p) = 0 and, thus, we obtain
Fey oy m(@) = f{ia(ﬂﬂ) div(Rep(z))dz =0
Qe

for every ¢ € H'(Q)" with div(p) = 0, which yields F. € ker(div)*.

Since div is surjective and, in particular, has a closed range (see Lemma 3.7), we can
apply the closed-range theorem, which provides Q. € L?(Q2) such that

j Qe (w) div(p(x)) dz = (Fe, 93y (e = f (@) div(Rep(x)) dz  (3.27)
Q Qe

for all p € H'()". Furthermore, we can bound ||Q.|| 2(¢) uniformly using the right-inverse
of the divergence (see Lemma 3.7) and (3.26)

|QclZ2() = JQE(@’) div(div"(Qe))(z) dz = [(Fz, div 1 (Qe)) oy a1 (@)
Q

< C(Jdiv ' (Q)lizq@ + eIV div ' (Qa)l2e) < ClQel ey (3:29)

In order to identify Q. with ¢. on €, we note that R.(p) = ¢ for every ¢ € H%E(QE)”,
where @ is the extension by 0 of ¢ and, thus, the right-hand side of (3.27) can be simplified
and we obtain

f@a div(@) dz = f Q. div(y) dz = qu div(y) dz.
Q Qe

Qe

Then, Lemma 3.7, provides ¢ € H%E (Q.)" with div(p) = Q- — ¢, and by testing the
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3.1. Homogenisation of quasi-stationary Stokes flow

previous equation with this ¢, we obtain Qa = . in Q.. This identifies Qa with the
explicit formula (3.25) in Q..

In order to show the strong convergence of QE, we note that the boundedness of Qa
in L?(Q) allows us to pass to a subsequence QE, which converges weakly to a function
G € L*(). Since weak convergence is preserved under linear continuous operations, we
obtain for the same subsequence that ¢, = divfl(QE) converges weakly to ¢ = div_1(g)
in H'(Q), where div™! is given by Lemma 3.7. Moreover, we obtain from (3.27) and (3.26)

(Qe, div(ee — ) 2] < C(lee — lra) + el Vige — ©)llr2(0))- (3.29)

Now, we show that the right-hand side of (3.29) tends to zero. From the weak convergence
¢- — ¢, we deduce the boundedness of (. in H'(£2) and, thus, with the factor ¢ the second
term on the right-hand side of (3.29) tends to zero. Moreover, the compact embedding
of H(Q) into L?(f2) implies the strong convergence of . to ¢ in L?(f).) (after passing
to a further subsequence and identifying the strong limit in L?(Q) with the weak limit
in H'(£2)). With this strong convergence, the first term on the right-hand side of (3.29)
tends to zero, too. Hence,

(Qaa Qa —q) = (Qaa div(epe — (P))LQ(QE) — 0.
Employing additionally the weak convergence of Q. to §, we obtain in total
HQE - Q‘|%2(QE) = (Qay Qa - Q)LQ(QE) - (q, Qa - Q)LQ(QE) -0,

which shows the strong convergence of QE to §.
The identification of Q). in Q\§2. with the explicit formula (3.25) can be shown as in
[A1189]. O

Lemma 3.16. Let w0, € H%s (Qe)™ be the first part of the solution of (3.6) and o be its

extension by 0 to 2. Then, there exists Wy € L%Q;H#(Y)") and a subsequence W, such
that, for this subsequence,

Doy, VD2V, (3.30)
Furthermore, wq satisfies
o =0 in Qx Y, (3.31)
Jdivx ( f Aoz, y)o(x,y) dy) no(z)de = J J divy(Ao(z,y)or(z,y))dyde, (3.32)
Q Y Oy
| [ ot yyiote. p)m e v dyaz =0 (3.33)
Qy*

for allng € L*(Q) and all gy € L*(Q; L(Y'*)) for LE(Y*) == {ve L2(Y*) | { f(y)dy = 0}.
Y
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Chapter 3. Stokes flow in porous media with evolving microstructure

Proof. Given the a-priori estimate (3.8), the two-scale compactness result of Theorem 1.19
provides g € L?(£); H#(Y*)") and a subsequence such that (3.30) holds. Moreover, from
the compactness theorem for perforated domains (Theorem 1.21), we obtain (3.31).

e Macroscopic divergence condition (3.32): We test the divergence equation of (3.6)
with 79 € D(2) and pass twice to the limit £ — 0 but once we integrate by parts
beforehand. For the limit processes, we use the strong two-scale convergence of A,
eV A, e Y, and Vir, (see Lemma 2.9), which yields

[ aive ([ Ao gyin(e. ) dy) (o) da

Q Y
N _J f Ao(z,y)o(z,y) dy - Vano(x) dz
QY*
= —lim | Ac(2)i(2) - Voro(a) da
Q.
= lim | div(A:(2)de(z))no(z) dz
Qe
- _ ;li% div(Ae(z)or, (z))no(z) dz
Q.
= —lim | ediv(Ae(x)) - & or.(2) + A=(2) : Vir. (z))no(x) do
Q.
— _J J divy (Ao(z,y)) - Oor(z,y) + Ao(z,y) : Vyir(z,y) dy no(z) dz.
QY*
= —J J div, (Ag(:lc,y)ﬁr6 (x, y)) dy no(z) d.
QY*

The boundary integral of the first integration by parts vanishes on ¢Y*ndY since Ay
and wg are Y-periodic and on I' since wy is zero on I'. During the second integration
by parts, the boundary integral vanishes on I'; since w0, is zero there and on 6. n 0€2
since 7 is zero on 052. Afterwards, due to the density of D(Q) in L?(f), we obtain
the macroscopic divergence condition (3.32).

e Microscopic divergence condition (3.33): We choose m1 € D(€;C¥(Y)) in (3.33).
Then, we integrate by parts, apply the two-scale convergence and again integrate by
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parts

[ [ i, aote pyinte e ayas
QY*

= —f f Ao(z, y)wo(z,y) - Vym(z,y)dyde
QY*

= —gii]% A (z)we () - (evxm (x, g) +Vym (:c, g) > dz
Qe

(3.34)

— lim | &div(Ac(2)de(t, 2))m (m %) da.

e—0

Qe

In (3.34), the boundary integrals vanish during the integration by parts by the same
argumentation as above.

With the boundedness of A. (see Lemma 2.8) and of Vir. (see Lemma 3.3) as well
as with div(A.) = 0, we can estimate

I div(Acde)| 200y = | div(Acir) | 22(a.)) = I1div(Ae) - or. + Az 2 Vor | z2q.)
= | A : Vir, | r2a.y) = CIVir. |2 VAL |12,y < C

Thus, the right-hand side of (3.34) is zero, and we obtain (3.33). By a density
argument, it holds for arbitrary n; € L2(2; L?(Y'™*)).

Identification of the limit of the momentum equation

Using these compactness results, namely Lemma 3.25 for §. and Lemma 3.16 for .,
we can pass to the limit ¢ — 0 in (3.6). This results in the following weak form for the
two-pressure Stokes equations (3.24), where we use the function space Hll #(Y*) ={ve
HY(Y™*) | v|r = 0 and v is Y-periodic}
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Weak form of the two-pressure Stokes equation in the reference coordi-
nates

Find (uo, q,41) € L*($; H%#(Y*)”) x HE(Q) x L2(Q; L3(Y'™*)) such that

j f HAo(, )W T () Vytio(a,y) : Vel y) dy da
QY*

+ [ [ Af @) Ved0) - ole) — (o) divy (Ao )l ) dyda
QY*

- j f (ol 9) F () — A (2,9) (Vappo(@) + Vyboa(@,9)) - (e, y) dy da,
QY*

Jaive ([ Aol gyt ) dy) iz do

Q Y*

_J f diVy (AO(-'L', y)’lA)I‘(x, y)) dy 770(-7;) da,

QY*

f J divy (Ao(z, y)wo(z, y))m(z,y)dydz =0

QY*
(3.35)

for all (p, o, m) € LA Hb, (Y*)") x HY(Q) x L2(Q; LX(Y™)).

. J

We can equivalently choose n; € L*(€; L3(Y*)), since divy (Ao(z, y)ir(z,y)) € LE(Y*),
which can be shown by means of the Theorem of Gaufl

fdlvy Aoz, y)wo(z,y))dy = f Aoz, y)wo(x,y) - ndoy
oY *

— [Aotayyiote ) ivdoy+ [ Antwyyinle.g) o, = o
oY ¥ oY

where the integral over I' vanishes since g is zero on I' and the integral over 0Y* n 0Y
vanishes due to the Y-periodicity of Ay and .

Theorem 3.17. Let (W, §:) be the solution of (3.6) and § be the extension of ¢ as defined
n (3.25). Then,

UA)ELUA)07 (336)
Vi —2V b, (3.37)
Q. > 4§ in L*(Q), (3.38)
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3.1. Homogenisation of quasi-stationary Stokes flow

where (1o, §) € L?(%; H%#(Y*)") x HY(Q) are the first two components of the solution of
(3.35).

Proof of Theorem 8.17. By means of Lemma 3.15, we can pass to a subsequence w. and

obtain g € L?(€; H%#(Y*)”) such that the convergences w. 2 wo and eV, — Vg
hold and g fulfils the two divergence conditions in A(3.35). By passing to a further subse-
quence, Lemma 3.16 provides ¢ € L?(£2) such that Q. — ¢ in L?(€2).

It remains to show the first equation of (3.35). Let ¢ € C®(Q; H%#(Y*)") such that
div,(¢) = 0. Testing the first equation of (3.6) with AZ!(z)p(x,2) gives

j 2 Ac(2)2e0(:) () : V(AT (2)p(x, 2)) da — f e (&) div(p(z, £)) da
Q. Qe

— (@) fla) = AT@P@) - A @), ) da (3.39)

In order to pass to the limit € — 0 in (3.39), we note that Lemma 1.16 implies the strong
two-scale convergence for the product, i.e.

eV(AT (2)p(e, ) = VAT (@)p(2, £) + eVap(z, D)AT T (2) + Vyp(z, D) AT (2)

2V AT @), y) + 0+ V(@ ) Al (2, ) = Vo (A5 (@, v)e(z, v).

For the second integral in (3.39), we use that divy(y) = 0, which gives

f G () div (o (2, 2)) do = f Ge(w) dive (¢ (2, 2)) + G=(2)e™" divy (p(2, 2)) dz
Qe Qe

~ [ d@ div, (p(e.2)) do > | [ dto)divae(o. ) dy e,

Qe QY#*

For the last integral in (3.39), we note that Vip, and V(A 1p(-, 1)) are bounded in
L?(€).). Together with the boundedness of the transformation coefficients from Lemma 2.8,
one factor € remains and, thus, the term vanishes in the limit, i.e.

| [2nac@ (e @9, @) + (07 @) Vor.@)) : VA el ) ds
Qe

< O Ael e 127 T (@) [V L2 2 IV (AT 0 210y < 2C 0.
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Having done these computations, we can pass to the limit € — 0 in (3.39), which gives

jijw T (2, 9) Vyiio(m,9)) + (U2 (2,9) Vyio(z, 9)T)
QY*

: Vy(Ag (2, y)p(x,y)) dy da —J J x) divy(e(z,y)) dy dz
Qy=*

=fj%wmﬂm~£wmwwmw+wmmwmu%%wwmm@m
o (3.40)

for any ¢ € C®(Q; H%#(Y*)”) with divy(¢) = 0. By a density argument, (3.40) holds for
every ¢ € L?(Q; H%#(Y*)”) with div,(¢) = 0.

In the next step, we identify ¢ with an element in H&(Q) Therefore, let ¢; € H%# (Y*)m
with divy(p;) = 0 and X vi(y)dy = e; fori e {1,...,n} (for instance ¢; can be constructed

by the Stokes operator Slmllar to the proof of [All92a, Lemma 2.10]). Now, we test (3.40)
by ¢p; for ¢ € C*(£) and obtain

| ~i@anp@) e = [ Gilo)pt) e =0
Q

Q

for

Gi(r) = J (Jolz,9)f (2) = Ag (2.y)(Vabyo(@) + Vybu(2,))) - A5 (@, y)eiy) dy da
Y*

- J pAo(z,y) (U2 (2, y)Vyio(z,y)) + (V2 (2,9)Vydo(z,y)) )
y*
: Vy(Ay (@, y)pi(, y)) dy da.

Since G; € L?(Q) for all i € {1,...,n}, we obtain § € H} ().

In order to increase the set of test functions to non solenoidal functions, we reconstruct
some microscopic pressure. The Bogovskii-operator, applied on the domain Y*, provides
the surjectivity of div,: L%(Q; H} (Y*)) LQ(Q;H%#(Y*)) — L2(Q; L3(Y*)). Thus, we
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can apply the closed-range theorem, which gives ¢; € L*(Q; L3(Y*)) such that

f J i y)(Wg T (2, y) Vol y) + (Vg (2,9) Vytbol 1)) T) :
QY*

y (A (2, 9)p(2,y)) dy dz
vawq o(z,y)dydz — JJ G1(z,y) divy(p(z,y)) dy dx
QY

QY* %
- J J (Jol, ) F(@) — AT (2, 9) (Vaboo(®) + Vb1 (3,))) - A (2, 9) 0l ) dy da
o (3.41)

for all ¢ € L?(Q; H%#(Y*)) By testing (3.41) with Ao, we can remove the factor Ay" in
front of the test functions, i.e. we obtain

j j v Ao (@, y) (W5 (2, ) Vi (e, ) + (U5 (2,9) Vyio(z,9)T) : Vyo(, y) dy da
QY*

+j f AJ (2, 9)Vai() - ole, y) dy dz — J J 1 (2, ) divy (Ao (2, y) (. ) dy de

QY Qy*
~ [ [ (ol )f@) = AT(w,0)(Tatola) + Vs (,) - (. 9) dy o
QY
(3.42)
for all p € L2(£; H%#(Y*)")
It remains to show, for a.e. x € €, that
f Aol y) (W T (@, )V yivo@,9)) T : Vyplay) dyda = 0 (3.43)

for all ¢ € H%#(Y*)”, which simplifies (3.42) to the first equation of (3.35). In order to
simplify the computations, we transform the left-hand side of (3.43) by v, which gives

J Aol ) (05 (,9)V,io(e,9)) | : V@l y) dyda
(3.44)

- f (Vywo(, )" : Vyp(e,y) dy da
Y*(t,x)

for wo(z,y) = wo(x, ¥y (,v)) and ¢(z,y) = G(x,%, ' (,y)), where one has for a.e. v € Q,
t

wo(x,),p(x,) € Hll(m)#(Y*( ,x))"™. Moreover, we test the microscopic incompressibility
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condition (3.35) with 0y (z,vo(z,y)) for g1 € L2(Q; L2(Y*(t,x))), which gives

0= [ | div, (oCe. oG, (. (e, ) dy da

QYH*

_ J f divy (wo(, y))m (2, ) dy dz

QY*(t,x)

(3.45)

and, thus, divy(wg) = 0. Next, we approximate wg by smooth functions. For this, we
note that the solenoidal smooth functions {u € Io“%t x)#(Y*(x))” | divy(u) = 0} are dense

in the solenoidal H!-functions {u € H%(t I)#(Y*(az))” | divyu = 0} with respect to the
H'-norm (see [Galll, Chapter II1.4]). Thus, we can choose a sequence (u,(z,-))neN in
C%Et’m)#(Y*(a:))” with div,(un(z,-)) = 0, which converges to wy with respect to the H1l-
norm. Then, we obtain, after integration by parts,

J (Vywo(z,9)) " : Vyp(z,y)dy = lim | Vy(un(,9)) " : Vyp(a,y)dy
Y*(t,z) Y*(t,x) (3 46)
= - lim divy (Vy (un(@,9)) ") - (@, y) dy = 0,
Y*(t,x)

where the last equality of (3.46) follows from

(divy (Vyun(z,y)) ' )i = Z Oy, (Vun(z,y)) Z y; Oy; (Un) (2, )
i—1 j=1

<.

Oy, Z y; (Un) j = 0y, divy(un(z,y)) = 0.

Combining (3.44) with (3.46) shows (3.43) and, thus, (3.42) can be simplified to the first
equation of (3.35).

Finally, from Lemma 3.19, we obtain the uniqueness of the solution (wy, ¢, 1) of (3.35)
and, since the argumentation holds for every arbitrary subsequence, it holds for the whole
sequence. ]

We remember that we have subtracted the Dirichlet boundary values from o, i.e. w, =
Uz — Or,. Since or, is of order ¢, the two-scale convergence of 0. and w. are equivalent and
their two-scale limits coincide.

Corollary 3.18. Let 9. = W, + 0r, for w. given as the solution of (3.6). Then,

bo—tstdy,  EVi——V, b,

where wq is given in Theorem 3.17.
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Proof. The two-scale convergence of 0, and eV, follows directly from the uniform esti-
mates |Or, |r2(q.) +€[|Vor,|r2(q.) < €C, which is given in Lemma 3.3, and the two-scale
convergence of w. and eV, from Theorem 3.17. ]

Lemma 3.19. The two-pressure Stokes problem (3.35) has a unique solution
(o, G, 1) € L*(Q; Hy, (Y*)") x Hg(Q) x L*(; L§(Y™)).

Proof. The existence of a solution is already secured by the homogenisation process
and it remains to show only the uniqueness. We rewrite (3.35) in the setting of the
generic saddle-point formulation of Proposition 3.5. Therefore, we define the linear op-
erators ag € L(L?(Q; Hf, (Q)™), L*(; HE, (2)")') and by € L(L*(Q; H, (2)™), (Hg () x
LA L3(Y™)))') by

ao(v, w) = f J pAo(z, y) 05 (2, y)Vyo(z,y) : Vyw(z,y) dyde,
QY*

bo(w. (o)) = | | AT (@) Vapof@) - o) dy (3.47)
QY*

_ f f p1(z,y) divy(Ao(z, y)v(z,y)) dy dz.
Qy*

Now, we verify the assumptions of Proposition 3.5.

e Coercivity of ag: We use the boundedness of Jy from below and the boundedness of
¥ from above, in order to estimate ag from below as we did in (2.38). Then, we
apply the Poincaré inequality of H% #(Y*) and obtain the coercivity of ag, i.e. we
obtain ¢ > 0 such that

ao(v,v) = NCJH\I/EJFHZ-%(QX;/*)HvaHzLQ(Qxy*) = CHUHQH(Q;H%#(;/*))’ (3.48)

for all v e L2(Q; H%#(Y*)")
o Continuity of ag: With the Holder inequality, we obtain the continuity of ag, namely,
we obtain a constant C' such that

ao(v,w) < W JoWg 2 sy IVyoll 2oy | Vyw] 2 gaxys) (3.49)

<
< Clwlpzsmp, oren Wle2esmt, 0r0))

for any v, w € L*($; H%#(Y*)”)

e Inf-sup estimate for by: From Lemma 3.20, we get a uniform positive inf-sup con-
stant for by.

e Continuity of byp: Let (v, (po,p1)) € LQ(Q;H%#(Y*)") x (HE(Q) x L2(; L3(Y'™))).
Using the Leibniz rule, the Piola identity (3.7) (divy(Ap) = 0) and the Poincaré
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inequalities for H(Q2) and Hi »#(Y™), we can infer

bo(v, (po, p1)) = (AoVapo, V) L2(axy*) — (P1,divy(Aov)) L2(xy*)
= (AoVzpo,v) p2(axy+) — (p1,divy(Ao) - v + Ao 1 Vyv) r2(axy+)
< C|Vpolz@yllvl Legaxy#y + Clpil Leaxy =) I Vyvl L2 (axy#
< C(HPOHH(%(Q) + HP1HL2(QxY*))HUHL2(Q;HI£#(Y*))'

Having these estimates, and using the linearity and continuity of the right-hand sides of
(3.35), we obtain a unique solution (w0, ¢, §1) € L?(£; H%#(Y*)”) x HE(Q) x L2(Q; LE(Y'™))
of (3.35) from Proposition 3.5. O

Lemma 3.20. Let by be given by (3.47). Then, there exists a constant B € R such that

o o, (60, 61)|

ver2(est, (v oy [0l z@im, v (@0, @10) |y @)« L2 iz v+

>3 (3.50)

for any (¢o, ¢1) € Hy(Q) x L*(Q; L(Y™)).

Proof. Let (¢o, 1) € HE(Q) x L2(Q; L3(Y'*)). First, we apply the Bogovskii-operator from
[Bog79] and [Bog80] for the domain Y* on ¢1, which gives u € L?(£; Hll# (Y*)™) such that

divy(u) = ¢1, Il 2 (vey) < Clénlrerzarsy) (3.51)

for a constant C' which depends only on Y* and not on ¢;.

Now, we define the functions vq,...,v, € H%#(Y*)” as the solutions of the following
Stokes problems:

Find (v, pi) € H%#(Y*)” x L(Y*) such that

(Vi, Vo) r2y+y — (i, div(e)) p2(vs) = (€i, ) r2(v#)s
(div(vi),n)L2(y+) =0

for any (p,n) € H%#(Y*)” x LE(Q).
Choosing ¢ = v; shows

. . (Vvl, Vvl)LZ(y*) s (Vvl, VUn)Lz(y*)
A= | Su@dy - §ody | = ; -
Y* Y*

(V’Un, VUl)Lz(y*) s (va V’Un)LQ(y*)
Since A is the permeability tensor from the usual Darcy law, it is symmetric and positive

definite (see for instance [SP80, Chapter 7, Proposition 2.2]). Therefore, the following
boundary-value problem is well-posed:
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3.1. Homogenisation of quasi-stationary Stokes flow

Find a solution w € H}(€) such that

(AVw, Vo) 2y = (Vo, Vo) 2(q) + ( J u(-,y) dy, W)
Y *

L2(Q)

for all p € H} (). The Theorem of Lax—Milgram provides a unique solutions w € Hg(Q),
which can be estimated by

w1y < C(leol iy + lul 2@ vey) < Clldolmy + lullLz@xy*))-

Then, we define v(z,y) == Ay (z,y) (i, vi(y) 0z, w(x) — u(z,y)) and estimate with the
essential boundedness of Ay' and (3.51)
[0l 20, ) < C(lwlma oy + HUHL2(Q;H%#(Y*)))
< Clollma ) + 191l L2 L200%))-

From the construction of v, we obtain

(Aov, Vo) L2(axy*) = (AVw - IU(',Q) dy7V¢O>L2( = (Vo, Vo) r2(q):

Y *

divy (Agv) = 2 divy (vi(y)) 0z, w(x) — divy(u(z,y)) = —¢1(x).
i=1

Q)

Using this explicitly constructed v, we can deduce (3.50). O

3.1.5. Separation of the microscopic and macroscopic variables

Now, we separate the micro-and macroscopic variables in the two-pressure Stokes equations
(3.35). The result is the following Darcy law for evolving microstructure, for the unknowns

() = f Jolx,y)io(z,y)dy, D=+ bro, (3.52)
Y*

where (o, ¢) are the solution of (3.35).
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Strong form of the quasi-stationary Darcy law for evolving microstruc-
ture in the reference coordinates

() = ~R(@)(f(@) - Vaple) in Q,

I
div, (ib(z)) = L Ao(z,y)or(@,y) doy  in O, (3.53)
p(x) = ppo(r) on 0f)

The permeability tensor K € L®(£2)"*™ is given by

A~

Kij(z) = f Jo(z,9)j(z,y) - ei dy = J Ao(z, )Ty T (2, y) V(i (2,y) : VyGi(z,y) dy,

Y* Y#
(3.54)
where (C}, 7;), for i € {1,...,n}, are the solutions of the cell problems
—Jy Vdivy (AgW, TVE) + W, TV = ¢ in Y*,
Joldiv(46) =0 in Y*,
o div( OCA) (3.55)
Ci =0 on Y*,

Yy Cc(y); 7i(y) Y-periodic.

\. J

By taking the divergence on both sides in the first equation of (3.53) and combining it
with the second equation, we can eliminate w and obtain an elliptic Dirichlet boundary
value problem for p. Afterwards w can be computed explicitly.

In order to derive this Darcy law, we rewrite 1wy by means of two cell problems. After
identifying these cell problems, we obtain the first equation of the Darcy law. The reason
why we have to deal with a second cell problem is the factor ¥y T in the coefficient
Ayg = Jo¥y T which appears in front of the gradient of the macroscopic pressure ¢ in the
two-pressure Stokes formulation (3.35). The same coefficient Ag = Jo¥ T appears also
in the macroscopic divergence condition of the two-pressure Stokes equation, where we
have to remove V¥ T in order to derive the macroscopic divergence condition of (3.53).
These two tasks are closely related to the transformation rules for gradients, which we
have shown in the previous chapter in Theorem 2.23. We shift the y-dependency of the
coefficient W T in front of the macroscopic pressure into the microscopic pressure. Then,
we identify the two cell problems. In order to remove it from the macroscopic divergence
condition, we employ additionally the microscopic incompressibility condition.

Identification of the two cell problems
The solution (o, ¢, §1) of (3.35) can be expressed by means of the solution of the following
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3.1. Homogenisation of quasi-stationary Stokes flow

two cell problems via

i (2, 9) 02, (4 + Do) (),
' (3.56)
7%; (.%', y)axl (q + ﬁb,O)(x)a

-

uA}O(x7y) = é('ray)fl(x) -

(2

qu(JZ,y) J’_ﬁb,l(x?y) = (xay)fz(w) -

Tl =~
1= 117

I
_
=l T~

-

1

K3 (2

where ((,#;) € L®(Q; H%#(Y*)") x L®(; LE(Y*)) solves the weak form of (3.55), i.e

J Ao, )05 T (2, ) Vi (2, y) : Viply) dy — J Fa,y) div(Ao(, ) o(y)) dy
vy

_ f Jo(z.y)es - o) dy, (3:57)

Y *
diVy(Ao(JU, y)él(x7 y)) =0
for all p € H%#(Y*)” and a.e. x € ().
The second cell problem is given by:

Find (', #]) € L°(Q; HL, (Y*)") x L®(€; L§(Y'™)) such that

JAo z,y) Vo (2,y)V{(x,y) : Ve(y) dy — fﬁé(fﬂ,y) div(Ao(z,y)e(y)) dy
Yy

- j Aol y)e; - o(y) dy, (3.58)

Yy
divy(AJ (2,y)C(z,y)) =0

for all p € H%#(Y*)” and a.e. x € ().

In order to identify these two cell problems, we note that

Ag€ = JoWUy € = Jo& + Jo(Wy T — 1)¢

3.59
= Jo& + JoTy (1 — U = Joé + Ag Vy((y — vo) - €) (3:59)

for all £ € R™. From integration by parts, we obtain

on roy)ei - ply) dy = fJo@: ve: - o(y) dy+on (2,9) ¥, ((y — o) - &) - o) dy

Y %
= f Jo(z,y)e; - ¢(y) dy — J((y — o) - e;) divy (Ao(z,y)(y)) dy
Y Y #

(3.60)
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for every ¢ € H} #(Y*)”. The boundary integral over Y * that arises in the integration
by parts in (3.60) vanishes on I' since ¢ is zero on I" and vanishes on dY™* n Y since Ay,
p and y — g are Y-periodic.

By inserting (3.60) into (3.58), we can identify the solution ({!,7!) of (3.58) with the
solution ((;, ;) of (3.57) via

> Yy) = Ai/(xay)v (361)
Ti(x,y) = mi(z,y) + (Yo(z,y) —y) e

Thus, we can simplify (3.56) to

n

—_

ol y) = G, ) (fi(x) — 00, (d + Poo) (@),
=1
qi(w,y) + ppa(z,y) = ; D #ile, y)(filx) — 8, (G + Pro) (@) (3.62)
=1

1 A
2 Wol@y) =) (a+ Poo) (),
which requires only the solution of the cell problem (3.57).

Lemma 3.21. Let w be given by (3.52), then

;; JJO 2, y9)Ci(@,y) dy (fi(z) — 0, (4 + Pro) (@)

_ ;K(m)(f(x) — V(4 + o) (@),

where C; is the first part of the solution of (3.56).

Proof. Lemma 3.21 follows from inserting (3.62) into (3.52). O

Macroscopic divergence condition

Lemma 3.22. Let u € L*(Q; Hy, (Y*)") with

divy (Ao(z, y)u(z,y))dy =0 (3.63)
for a.e. x € Q. Then,
| Aoty ay = [ e yyute ) ay (3.64)
Y y

for a.e. x € Q. In particular, for the solution Wy € LQ(Q;H%#(Y*)”) of (3.35) and w
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given by (3.52), it holds

diva (w(z)) = dive ( J Jo(z, y)do(z, y) dy) = div, ( f Ao(z, y)o(z, y) dy)
v v (3.65)
= | div, (Ao(erp)or () dy
Y*
for a.e. x € Q.
Proof. For £ € R", we note that
Agé = JoWgte = Jo& + (1 — Vo) JoWg e = Jo& + 0y (y — o) Aok
Vy((y — o)1) - Ao (3.66)

= Jo& + :
Vy((y = vo)n) - Aog
We set ¢ = u for u e L2($; H%#(Y*)") with divy(Ao(z,y)u(z,y)) = 0. Then, we integrate

the second summand on the right-hand side of (3.66) over Y*, subsequently, integrate by
parts and use the microscopic incompressibility condition (3.63). This shows

[ 94— vt - Aot )
Y

(3.67)
=~ | = ol 990 - divy (Ao e ) dy = 0
Yy *
for every i € {1,...,n}, where the boundary integral of the integration by parts vanishes

on I' since Wy is zero and vanishes on dY n Y™ since y — g, Ag and u are Y-periodic.
Therefore, the second summand on the right hand side of (3.66) has mean value zero and
vanishes after integrating over Y*, which yields (3.64).

Since the solution wg of (3.35) satisfies the microscopic incompressibility condition, we
can rewrite the macroscopic incompressibility condition of (3.35) into (3.65). O

The weak form of the Darcy law for evolving microstructure
By combining Lemma 3.21 and Lemma 3.22, we obtain the following weak form of the
Darcy law (3.53):
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Weak form of the quasi-stationary Darcy law

Find ¢ € H}(Q) such that

Jﬁ)(m)Vg@(m) dz =
Q

Ao(x,y)or(z,y)doy dz,
(3.68)
(@)(f(z) = Va(q + boo)(x))

w(z) =

T QO
N> e S

for every ¢ € H}(Q).

Corollary 3.23. Let G € H} () be given by the solution of (3.35). Then, § solves (3.68).

Proof. Corollary 3.23 follows directly from Lemma 3.21 and Lemma 3.22. O

3.1.6. Back-transformation — a Darcy law for evolving microstructure

Having derived the convergence for the solution (1, ¢) of the transformed Stokes equation,
we can use the results of Chapter 2 in order to transfer the convergence to the solution
(we, gc) of the Stokes equation (3.3) in the non-periodic (time-dependent) domain. The
resulting two-pressure Stokes equation is defined on the non-cylindrical two-scale limit set

Qt) = {(z,y) e A xY |y e Y*(t,2)}

with interfaces G(t) := {(z,y) e QA x Y |y e I'(t, x)}

Two-pressure Stokes equation

div, (uVyv0) + Vap + Vyp1 = f in Q(1),
div,(vg) = 0 in Q(1),
vo =0 on G(t),
Y = V0, q1 Y -periodic, (3.69)
div, ( J Vo dy) = —J J divy(vr)dy in €,
Y*(t,x) Q Y*(t,z)
P = Poo on €.

The corresponding weak formulation is given by:
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Weak form of the two-pressure Stokes equation

Find (uo, ¢, q1) € L*(Q; Hy, (Y*)") x Hg () x L*(Q; L§(Y™))

NV ywo(z,y) : Vyeo(zr,y) dy de
QY*(t,x)

f f Vaa(®) - o(z,y) — a1(z, y) divy (p(z, y)) dy da
QY*(t,x)

- j f (F(@) — (Vapoo(a) + Vappa (2,9) - ol ) dy da,

{O%

div, f o) dy) () de == | [ divy(or (o) dy ()
Y* () QY*(t,x)

f j divy (wo(z, ))m (. ) dy dz = 0
QY*(t,x)
(3.70)

for all (p,n9,m) € LQ(Q;H%#(Y*(t,m))”) X H&(Q) x L2(Q; L2(Y*(t, x))).

In order to derive the strong convergence for the pressure ¢. to q, we have to extend
q- on Q. If we extended ¢. by means of QE, i.e. by transforming QE back, the extension
would be transformation-dependent due to the average in every cell. Instead, we define
the extension directly on Q.(t) by

q=() if z € Q.(1),
Qe(x) = f o q(n) ifze(ch+eY)\Qu(t) for ke L, (3.71)
(ek+eY)NQ: ()

which is transformation-independent. Then, we obtain the following limit result.

Theorem 3.24. Let (w.,q.) € Hll ® (Q:(1))™ x L2(Q:(t)) be the solution of (3.3) and Q-
be defined via (3.71). Then,

wé‘i\_\wch (372)
EVwe—2V g, (3.73)
Q- —q in L*(Q), (3.74)

where (wo,q) € L*(Q; H}

T, x)#(Y*(t,x))”) x HY(Y) are the first two components of the
solution of (3.70).

Proof. With Theorem 2.20 and Theorem 2.24, we can translate the two-scale convergence
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of wy and eVwy, which is given in Theorem 3.17, into

we ()2 (2, 05 @), eV (2) Vi (2, 7 (@,y). (3.75)

In order to show the strong convergence of ()., we decompose Q). additively

~ 1
Qe = G- + Xo\0u(t) — e (3.76)
Me
where ¢. is the extension of ¢. by zero on {2 and
(z) =" f q=(2) dz for x € ek + &Y with k € I,
(ek+eY)NQ:(t)
me(x) == "|(ek +€Y) n Q ()] for z € ek + €Y with k € I..

The strong convergence of QE to ¢ implies the strong two-scale convergence of QE to ¢
and, with Lemma 1.16, we can infer

~ ~

2 2 A
de = XQ. Qe—»Xv*q

and, afterwards, we transfer this convergence with Lemma 2.21 into

2
Ge—" Xy *(t,0)4- (3.77)

for ¢ = §. Then, we translate (3.77) into the strong convergence of T¢(qz) to Xy#(1,2)q in
L?(Q2xY). By applying the Holder inequality on the Y-integral, we can deduce the strong
convergence for the average over the cells, i.e.

T = | T@) ) dy = | xyea@)dy a = IV (t.2)lg
Y Y
in L?(Q), which can be translated back into the two-scale convergence
g

9
ge—>|Y*(t,z)|q.

Moreover, we transfer the strong two-scale convergence of xq_(;) similarly via the unfolding
operator and the Holder inequality into

Y Y

for every p € [1,0). Since m.(z) is uniformly bounded from below, i.e. m.(x) > ¢ > 0, it
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holds also mZ1 — |Y*(¢,2)|~! in LP() for every p € [1,0), which implies

=Ty () (3.78)

Finally, we insert the strong two-scale convergence (3.77), (3.78) as well as the strong
two-scale convergence of xq\q, (1) into (3.76) and obtain

1 2

Qe =G + XQ\QE(t)Eq;—»XY*(t@)q + XY\Y*(t7$)|Y*(t7 x)|_1|Y*(t7 :1:)|q =dq.
€

Since the two-scale limit function ¢ is independent of y, this implies the strong convergence
in L2(€2).

Now, it remains to identify o (x, vy (x,y)) and ¢ = ¢ with the first two arguments of
the solution of (3.70). By arguing as in (3.60), we can rewrite Aj V.4 into JyV§ plus an
additional term which can be included in the microscopic pressure. Then, one can easily
transform the first equation of (3.35) into the first equation of (3.70).

The microscopic incompressibility condition (3.35) was already derived in (3.45).

In order to transform the macroscopic divergence condition of (3.35), we rewrite its
left-hand side using (3.64) and obtain

div, ( f Jo(z, y)wo(z,y) dy) = J div, (AO(:U, y)Or, (m,y)) dy.
Y* Y

Subsequently, we transform the Y* integrals which gives the macroscopic divergence con-
dition of (3.70). O

A Darcy law for evolving microstructure
Now, we separate the micro- and macroscopic variable in the two-pressure Stokes equa-
tions, which yields the following Darcy law for the unknowns

w(z) = f wo(z,y) dy, pi=q+ Do, (3.79)
Y*

where (wy, q) are the first two components of the solution of (3.70).
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Quasi-stationary Darcy law for evolving microstructure

w(z) = %K(w)(f(w) ~Vp(r) inQ,
div,(w(x)) = Jr(t )'UF(_’L" Y) doy in €, (3.80)
p(r) = pb,O(ﬂU) on 0f2.

The permeability tensor K € L*(Q)"*™ is given by

Ko@) = | Gaw-ady= [ Vo) Valmnds @51
Y*(t,z) Y*(t,x)
where ((;, m;), for i € {1,...,n}, are the solution of the cell problems
— divy(VyCi) + Vym =e; in Y*(t,x),
div(¢;) =0 in Y*(t,x), (3.82)
G=0 on I'(¢, z),

y — ((y),mi(y) Y-periodic.

The permeability, the effective fluid velocity and the pressure in (3.80) coincide with
the one in the transformed Darcy equation (3.53), i.e.

K=K, w=w  q=g
and the solutions of the cell problems (3.82) can be identified with the solution of (3.55)
by

C’L(xvy) = gi(wial(may))7 Tri(l‘ay) = ﬁl($a¢al(x7y))

The weak form of the cell problems is given by:

Find (¢, m) € LOO(Q;H%#(Y*)") x L®(Q; LA(Y*(t,x))) such that, for all i € {1,...,n}
and a.e. x € (),

j Vei(z,y) : Veply) dy — f i, ) div(p(y)) dy = f e - p(y) dy,
Y#{(t,2) y# Y#(t,2) (3.83)

divy (Gi(x, y)) =0

for all p € Hll( )#(Y*(t,az))".

t,x

The weak form of this Darcy law is given by:
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Weak form for the quasi-stationary Darcy law for evolving microstruc-
ture

Find ¢ € H}(Q) such that

| w@vets

Q

JAO z,y)vr(z,y) doy dz,
r (3.84)
K(z)(f(x) = Va(q + poo) (@)

w(z) =

’:I*—‘S%

for every ¢ € HE(Q).

\.

Theorem 3.25. Let (wo, q:) be the solution of (3.3) and Q. be given (3.71). Then

@; — W mn LQ(Q),
Q: > q in L*(9),
where (w,q) € L?(Q)" x HL(Q) are given as the solution of (3.84).

Proof. After separating the micro- and macroscopic variable in (3.70), we obtain (3.84) for

w= §{ wydy. From Theorem 3.24, we obtain the strong convergence of Q. — ¢ and the
Y*(t,x)
weak two-scale convergence of w. to wg, which yields the weak convergence w. — w. [

The case of no-slip boundary conditions
In the case of no-slip boundary conditions, i.e.

st(tax) = Ur, (t,:r;,y) = (atws)(t7¢;1(taw)),

the right-hand side of the macroscopic divergence condition can be expressed by means
of the time-derivative of the porosity. In order to derive this result, we restore the
time dependency in the transformations, i.e. ¥.(x) = ¥-(t,x) and Yo(z,y) = Yo(t, z,y),
JO(t7 €L, y) = JO(ta €, y) and Ao(il?, y) = AO(t7 €L, y)

Lemma 3.26. Let vr_(x) = vr_(t,x) = (¢, e (t, x)). Then,
[ amtr o= [ avotrin e a=aoen @)
Y*(tz) y#
for ©(t,z) = |Y*(t,z)|.
Proof. The Jacobi formula says that almost everywhere
et (A(1)) = tr(adi(A())AA(D) = det(AB)A (1) - 34T (1)

for every A € WhH®(0, T)*"
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With the Leibniz rule, the Jacobi formula applied to d,1y and the Piola identity (3.7),
we infer

divy(Ag(t,x,y)@two(t,x,y)) = Ao(t,l',y) : vaﬂb()(t:way) + diVy(AO(t,%Z/))atl/JO(t, l‘,y)
= atJO(taxvy) + 06t¢0(t,l’,y) = ﬁtJO(tax7y)'

Hence, we obtain

J divy,(Ao(t, z,y)or (t,x,y)) dy = f O Jo(t,z,y)dy = 04 f Jo(t,xz,y) dy = ,0(t, x).

Consequently, we can simplify the Darcy equation:

Quasi-stationary Darcy law for no-slip boundary condition

w(t,x) = K(t,z)(f(t,z) — Vp(t,x)) in (0,T) x Q,
div(w(t,x)) = —0,0(t, ) in (0,7) x €, (3.86)
p(t, ) = poo(t, z) on (0,T) x 09.

\. J

In (3.86), we can observe that the change of the local porosity yields some inhomogeneous
divergence condition. Together with the first equation of (3.86), the local change of the
porosity becomes a source and sink term for the pressure.

3.2. Homogenisation of instationary Stokes flow

3.2.1. The microscopic equations

Now, we consider the homogenisation for the instationary Stokes flow. For sake of com-
pleteness, we recap the geometric setting, which we have also used for the quasi-stationary
Stokes flow. Let 0 < R"™ be an an open set, representing the domain of the porous medium,
and let (0,7") for T > 0 be the time interval. Let (5, )nen be a decreasing positive sequence
which converges to 0, and scales the microstructure. We write € = ¢, in the following. We
assume that € is such that it consists of entire e-scaled copies of the unit cell Y = (0, 1)",

ie. Q =int ( U k+ z—:?) for some I, < Z". Now, we assume that for every € and every
ckel,
t € [0,T7, there exists an open set Q.(t) c €, which represents the pore space, and com-

plementary solid space Q2(t) = int(2\Q:(¢)). We denote the interface of the pore and the
solid phase at time t by I'c(t) == 0Q<(t) n Q5 (t) and the remaining boundary of the pore
space by Zc(t) = 0Q.(t)\I'c(t). Then, we define the evolving domain with its boundary
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3.2. Homogenisation of instationary Stokes flow

= | 8 x9.0), = | =<1 = | ==

te[0,T7] te[0,T7] te[0,T7]

The instationary Stokes equation for the unknown fluid velocity v. and pressure p. is given
by:

Instationary Stokes equations in an evolving perforated domain

Opve — div (52u2e(va)) + Vp: = [ in QZ,
div(v:) = 0 in 97,
Ve = vr, on GT, (3.87)
(—€2u2e(va) —i—pa]l) n=pyen on HsT,
v:(0) = v® in 2.(0),

where e(p) denotes the symmetric gradient

e(p) = (Vo + (Vo)) /2.

p > 0 is the fluid’s viscosity, f. the source term, v the fluid’s initial velocity, vr,
the fluid velocity at the interface, py . the normal stress and n the outer normal of
Qe ().

In order to derive the weak formulation, we assume that the the Dirichlet boundary
values vr, and the normal stress py . can be extended into .(t). Then, we subtract these
extensions from the fluid velocity v. and the pressure p., i.e. we set

in in
We = Ve — Ur,, wgt = vt —or,(0), Qe = De — Dbye;
which gives

Orwe — div (ueQQe(wg)) + Vg = fe — Vpp e — Opor, + div (52u26(v1~5)) in QT

div(we) = —div(vr,) in 9T,
we =0 on GT, (3.88)
(—62,u2e(w5) +qI)n = e2p2e(vr,)n on HI,
we(0) = w" in 2.(0)
for w® = v — vp_(0). We multiply the first equation of (3.88) by a test function

¢ € H}f ()(Q (t))"™, integrate over {2.(t) and subsequently integrate the left-hand side
by parts By employing the two boundary conditions we obtain the first equation of
(3.89). Moreover, we multiply the second equation by n € L?(€2.(t)) and integrate over
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Chapter 3. Stokes flow in porous media with evolving microstructure

Q.(t). Then, we obtain the weak form:

Weak form of the instationary Stokes equations in an evolving perforated
domain

Find (w.,q.) € L?(0,T; H;E(
such that, for a.e. t € (0,7,

o (Q=(D)") x L2(Q:(1)) with dw. € L2(0, T; L*(2:(1)")

J Orwe(t, x) - () dw + J e*u2e(w:)(z) : Vep(z) de — J ge () div(p(z)) dz
Q1) Q1) Q.(1)

B J (f-(2) = Vppe()) - (a) da

Q:(t)
— J dvor, (t, ) - p(z) dz — e2p2e(vr, () : V(x) dx
Q:(t)
| divtw@nnas =~ [ divior. @) do
Qe (1) Q:(t)

(3.89)

for every (p,n) € Hlls(t)(ﬂs(t))” x L2(Q(t)) and w.(0) = w™.

\. J

The weak differentiability of w. with respect to time has to be understood in the sense
that the extension of w. by zero is in H'(0,T; L?(Q)") and the time derivative is zero
outside of Q.(t) i.e. dyw. € L?(0,T; L?(Q-(t))"). Thus, the initial condition is also well-
posed.

We make the following assumptions on the data and the domain.

Assumption 3.27. We assume that:

e O.(t) is a sequence of locally evolving periodic domains over a time interval [0,T]
in the sense of Definition 2.36, with two-scale limit domains

Ot) ={(z,y) e Q xY |ye Y*(t,x)}

Q" = {(z,y,) € [0,T] x @ x Y | (z,9) € Q(1)},
fort € [0,T]. We denote the periodic substitute domain by Q. and the reference cell
by Y*.

Moreover, we assume that the sequence of locally evolving periodic transformation
has improved time regularity, namely, . € CH1([0,T]; C*(2)") and there exists a
constant C such that

o (tr) — Orpe(t2) | crgany < Cltr —tal, (3.90)
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3.2. Homogenisation of instationary Stokes flow

for 1€ {0,1,2}. Furthermore, 1. and its derivatives satisfy Assumption 2.41.
For the periodic substitute domain, we assume that
- 0<|Y* <1,
— Y =int (kgn ek +eY*) and int(R™\Y;) are open sets with C*'-boundary, which
are locally located on one side of their boundary and Y; s connected,
— Y™ is an open connected set with a locally Lipschitz boundary.
For a detailed discussion of the assumptions on the periodic substitute domain see
[AlI89)].
e f. is a sequence in L*(Q1)" and f e L2((0,T) x Q)", such that

2,2

Je XQTf-
e v'" is a sequence in H'(Q.(0))" with div(v™) = 0 and there exists
vt e L2(Q; HY(Y*(0,2))")) with div(v®) = 0 such that

[V 1 0.0y < C,s
in 2

£

v v,
e vr,_ is a sequence in H(0,T; H*(Q)") and there exists vr € H(0,T; L*(£); H#(Y)"))
such that

vr.(0) = v on T-(0), vr(0) = v (0, ) on OY*(t,x) for a.e. x € Q,

2,2
E_IUFE ’ ur, ergl‘-‘vyvr, 0tvp€lu0,

_ 2
e~ lor,(0) vr(0), Vor,(0) Vyur(0),
10:Vor_ | L20,myx0) + IVVUr, | L2¢0,m)x0) < C.

o py. is a sequence in L?(0,T; HY(Q:(t))) and (pp.0,po1) € L2(0,T; HY(2)) x L2((0, T) x
Q;H;#(Y*(t,:n))), such that

2,2

Ve, Xor Vapbo + Vypp1-

The Lipschitz regularity with respect to time of d;1). can be transferred to the Jacobians.
Lemma 3.28. Let 1. satisfy Assumption 3.27. Then, there exists a constant C such that
[We(t1) = We(to)l|ogny + 192 (1) = W (t2) | L) < Cltr — 1o,

<
| Je(t1) = Je(t2) ] oy + [ (1) — T (t2)| 1o < Clta — tal,
[A<(t1) = Ac(t2)| 170, + A (81) = ASH(t2)] e () < Cltr — 1o,
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Chapter 3. Stokes flow in porous media with evolving microstructure

c10rdz 1) = 0o () < Clt — tl

Jore(t1) = 0¥t oy + 100" (1) = W= (82 oy < Clts — tal,
(000) ) + 1310 — T2 g < o~
Jo1A<(t) = uAc(t2) |y + 10:AZ " (1) = QAT (t2)| oy < Cltr — o

<
<

for every ti,te € [0,T] and all € > 0. Moreover, the estimate of Lemma 2.43 holds also
pointwise in time for every t € [0,T].

Proof. The Lipschitz estimates for W, U1, J., J=1 A, AZ! follow from the uniform esti-
mates of the time derivatives, which are prov1ded by Lemma 2.43. The Lipschitz estimate
for W, = 0:0,1¢ is given in Assumption 3.27. By means of Lemma 2.42, the entries of
0t A. and 0y J. are polynomials in the entries of ¥, and ¢; V.. Then, we obtain the Lipschitz
estimate for 6;A. and 0;J. from the uniform boundedness and Lipschitz regularity of W,
and 8,5\1/8
The uniform Lipschitz estimate for J. can be transferred to Jg since J. = c¢j. Then,
Lemma 2.42 shows that ¢;J-! and the entries of &;¥-! and §;AZ! are polynomlals in the
entries of ¥., & ¥, and J_ !, for which we have already shown the uniform boundedness
and Lipschitz estimate.
O

Remark 3.29. While it is natural to state the assumptions on the right-hand sides he and
Dve n Eulerian coordinates, it can be natural, depending on the application, to state the
assumptions on vr_ in some fized reference coordinates, i.e. set the assumptions for or._.
From an analytical point of view, we will also work with the properties of vr_. Therefore,
we note that the assumptions on vr, in Assumption 3.27 can be replaced by the following
assumptions on Ur_, where vr_(t,x) = vr (t,V(t,z)), Or(t,z,y) = vr (¢, z, Y (t, z,y)).
We assume that or, € H*(0,T; HY(Q:)") and there exists or € H(0,T; L*($; H#(Y*)”))
such that

2,2
571@1“5’4‘*@1“, V@Fgl‘*vyﬁr,
: 2,2 . ) 2 R
e tor.(0) or(0), Vir, (0)—=—V,,r(0)
2,2
Oyor,. — 0

In particular, this implies that there exists a constant C' > 0 such that

e or. | r20.1yx00) + IVOr 2oy x0.) + 100r.] L2(0,m) < 0.
e Mo, (0) |20,y + I Vor. (0) r2(o.

Y

)<C’
)§C’.

Moreover, we assume that there exists a constant C > 0 such that

10:Vor. || 220,y x0.) < C-
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3.2. Homogenisation of instationary Stokes flow

Remark 3.30. In the case of no-slip boundary conditions, i.e. Or. = 0pbe, the two-scale
convergence of e 'or. and Vir, is given by Assumption 2.41. However, the two-scale
convergence of vr_(0) and the uniform estimate of 0;Vir, lead to a higher time reqularity

for Oppe and 0.

3.2.2. Transformation to a periodic substitute domain

We transform the Stokes equations (3.87) as well as the weak formulation (3.89) onto the
reference domain 2., where we denote the transformed data by

fo(t, @) == fo(t, be(t, x)), or. (t,x) = vr.(t, - (t,z))

) ﬁb,E(t7x) = ﬁa(ﬁ%(@@)
0 (8 ) = ol (et x)) @ (@) = wlE Ye(t, @),

(3.91)
where 1), are the locally periodic transformations in the sense of Definition 2.37. We define
the boundaries I'. and Z. by I'c = ¢ 1(¢,T(¢)) and Z. = ¥ 1(t,Z.(t)), respectively, and
recap the notation U, := 0,1, J; := det(¥.) and A, := Adj(¥.). Then, we obtain for

Oe(t, x) = ve(t, Y (t, 1)), Pe(t, ) = pe(t, Ye(t, x))

the transformed strong formulation:

Instationary Stokes equations in an evolving perforated domain in the
reference coordinates

b — Vi U 0ppe — T div (2 pAs2e-(0:.)) + T 'Vpe = £ in (0,T) x Q,

JoNdiv(A) =0 in (0,T) x €,

0. =op, on (0,T) x T,

(—p2e(0:) + pel) O i s i =P[O TR ST on (0,T) x Ee,
0.(0) = o™ in Q,,

(3.92)

where ec(ve) = (U7 Vi, + (U7 "Vd:)")/2, denotes the transformed symmetric
gradient and 7 the outer normal of €.

For

We(t, x) = we(t,Ye(t, ), 4=(t, ) = q=(t, Y (t, x)) (3‘93)

we obtain the transformed weak formulation, where we drop the ¢t- and xz-dependency of
the functions for the sake of better readability, which we continue in the following when
useful.
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Chapter 3. Stokes flow in porous media with evolving microstructure

Weak form of the instationary Stokes equations in an evolving perforated
domain in the reference coordinates

Find (i, ¢:) € L*(0,T; Hf_(Q:)") x L*((0,T) x Q) with dw. € L*(0,T; L*(Q:)")
such that, for a.e. t € (0,7,

JJgath cpdz — J (Vie) T Acoppe - o dx + f e2uA2e.(,) : Vo da

Qe Qe Qe
— j e div(Azp) dz = J (J: fe— Alpye — J0s0r, + (Vir,) ' A-0n.) - pdz
Q. Qe
- JEQMA5265(@FE) -Vedx
Q.

J div(Auid, ) de = — fdiV(As@rg)n e,
Q. Qe
(3.94)

for every (p,n) € H%S(QE)" x L2(Q) and . (0) = W™,

For the transformed data, we obtain the following estimates and convergence results.

Lemma 3.31. Assume that v, f., py. and vr. satisfy Assumption 3.27 and let Wi , fg,
Db, Ur. be given by (3.91). Then,

faLXY*fA ; vﬁb,ELXY*vxﬁb,O + Vb1 wf.;ni“w%n,

Xa.€ or. %2 Xy*ur, Xq.Vor,— Xy * Vyir, XQ. Otr, 0
where

f(t,z) = f(t,2), or(t, z,y) = vr(t,z,vo(t, z,y), WP (z,y) = wi(z,10(0,t,z))

ﬁb,O(ta .Z') = pb,O(ta .Z'), ﬁb,l(u €T, y) = pb,l(t) €, ¢0(t7 z, y)) + v:vﬁb,()(t: .77) . w()(ta &€, Z/)

for a.e. (t,z,y) € (0,T) x Q x Y*. In particular, there exists a constant C' > 0 such that

e Mo r2o.myx0.) + IVOr] r20m) %00 + 10600220 m)x00) < C,
1 fell 2o,y x00) + 102 L2y + 1Bbell2co,myx 0y + I VDbeln2(0,m)x0.y < C-

Moreover, there exists a constant C' > 0
| 11160,y + (VO (0) | £2(00) + 10V or, | 2207y x00.) < C-

Proof. By means of the results of Chapter 2, we can transfer the two-scale convergences
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3.2. Homogenisation of instationary Stokes flow

and uniform bounds from f;, Vpy , e tup,, Vour,, which are given in Assumption 3.27, to
fes Vibpe, e tor,, Vir,,

The two-scale convergence of 0,0r, can be deduced with the identity &;or_(¢,z) =
owur, (t, e (t, x)) + Vf}lIE (t, )Wt (t, x)dpbe(t, x) and the two-scale convergences of vr, and

&WJELO as well as the boundedness of Vip, and W . Similarly, the uniform bounds
of |0, Vor, | L2((0,T)x9.) can be deduced by applying the chain rule and estimating the re-
sulting summands.

In order to transform the initial values wi®, we note that, for a sequence of locally
evolving periodic transformations in the sense of Definition 2.37, Assumption 2.41 gives
the continuity of the transformations with respect to time. Then, for every point in time
the transformations are locally periodic transformations in the sense of Definition 2.2.

O

3.2.3. Existence, uniqueness and a-priori estimates

In this section, we show the following existence and uniqueness result for the solution of
the Stokes equations (3.6). It provides also the a-priori estimates, which we will use later
for the two-scale compactness arguments.

Theorem 3.32. For every € > 0, there exists a unique solution
(e, G) € L2(0, T3 HE_(Q)™) x L2((0,T) x Q) with . € L*((0,T) x Q) of (3.94).
Moreover, there exists a constant C' such that

|10 20,7y x2) + €IVl 20,1y x02) + 1dell 20,7y %020y < C (3.95)
for every e > 0.

We prove Theorem 3.32 by means of the following generic existence and uniqueness
result for time-dependent differential equations with algebraic constraints. Employing a
subtle scaling of the involved norms, it will provide directly the a-priori estimates (3.95).

For Banach spaces V,W and a € L(V,W'), we write a(v,w) := a(v)(w) for v € V and
weW.

Theorem 3.33. Let V, H be separable Hilbert spaces such that V is densely embedded
into H with continuity constant Cy_m, i.e. |v|g < Cyom|v|v for allv eV, and let Q
be a Banach space. Assume that a € C1([0,T]; L(H,H')), b € COL([0,T]; L(V,V")) and
ce L(V,Q) satisfy Assumption 3.34 (1.), Assumption 3.34 (2.) and Assumption 3.34 (3.),
respectively. Then, for every g € H(0,T;Q"), f1 € L?>(0,T; H'), fo € H'(0,T;V"') and
v € V with cv'™ = g(0), there exists a unique solution (v,q) € (H(0,T; H)nL?(0,T;V))x
L?(0,T;Q) such that, for a.e. t € (0,T),

a(t)ow(t) + b(t)u(t) + c*p(t) = fi(t) + fo(t)  in V',

cv(t) = g(t) in Q' (3.96)
v(0) = v™.
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Chapter 3. Stokes flow in porous media with evolving microstructure

Moreover, there exists a constant C' such that

Ol 200,16y + VL 0,18y + [Vllz200,m3v) + 21 2200,7:0) < €,

where C depends only on T, Cy 1, Ca, Cy, Cp1, Ch2, Cys, Chay v, B, 7, La, Lyt, Lys, [v™]v,
HQHHl(O,T;Q’); HfIHLQ(O,T;H’)’ HfZHHl(O,T;V’): which are given in Assumption 3.34, but does
not depend on |c|v,q)-

Proof. A proof of Theorem 3.33 is given in Appendix A. O

Assumption 3.34. (1.) Let a € CY([0,T]; L(H, H')) be Lipschitz continuous, uniformly
coercive and symmetric, i.e. there exist constants Lg, a, Cy such that

Ha(tl) — a(tg)HL(Hﬂ/ <L |t1 — t2| fO’I" all tl,tz € [O,T], (397)
a(t)(v,v) = a|v|%4 for allt € [0,T] and all v e H, (3.98)
a(t)(v,w) = a(t)(w,v) for allt € [0,T] and all v,we H, (3.99)

We write Ca = HQHC([O,T];E(H,H’))'
(2.) Let be COL([0,T); L(V,V")). Assume that b can be decomposed into

b=0b" +0>+ 0%+ 0! (3.100)

for

with Lipschitz constants Ly, Ly, Ly, Lys, Lya, i.e.

161 (t1) = 0" (t2)lcevivry < Linlts — tal,
16%(t1) — b (t2) | cov,mry < Lzlts — tal,
16°(t1) — 0% (t2) | vy < Loslts — tal,
16%(t1) — b*(t2) | oo,y < Lyslts — tol.

Moreover, we assume that b' is symmetric and uniformly coercive, i.e. there exists
a constant 8 > 0 such that

bl (t) (v, v) = BllvlY,
b (t) (v, w) = b (t)(w, v)

for every t € [0,T] and all v,we V.
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3.2. Homogenisation of instationary Stokes flow

We write Gy := bl co.r:cvvnys Cn = [0 loqorncovivys Cre = [0%eorcv.mm)
Cys = |Vlleqornc vy and Cy = b oo, e, mr)) -

(3.) Let ce L(Q,V") fulfil a uniform inf-sup condition, i.e. there exists v > 0, such that

¢ c(v,p)
in sup ————— =
pe\{0} ve\{oy IPlQlv]v

Now, we use this generic existence results in order to show the existence, uniqueness

and a-priori estimates for the transformed instationary Stokes equation.

Proof of Theorem 3.32. To apply Theorem 3.33 for (3.94), we need a time-independent
algebraic constraint, which we obtain by substituting

ue = A, i . = A tue = J N WLu,

in (3.94) and using test functions A-'¢. For the substitution in the time-derivative term,
we note that

Jo0(AZ ) - A = J.0i A e - AT o + JLA o - AT
= AT ue - e + JLAT O - AT
and for the spatial derivatives, we use the Leibniz rule
V(A p) = V(A ) + VAT

Then, we obtain the following weak form, which is equivalent to (3.94):
Find u. € L*(0,T; H_(Q)") with dyue in L*(0,T; L*(Q)") and ¢. € L*(0,T; L*(2))
such that, for a.e. t € (0,7,

ac (t)(0ruc (t), ) + be () (ue(t), @) + ce(ge(t), cz) = [1e()(®) + f2(D) (), (3.101)

ac(t)(u, v) =(J(OAT (W)u, AZH(O)V) 20 = (Pe(t)u, AZH (1)) 20y,

(e*n2el(w), AT(OVVAL (1)) o0
D2 (1) (u,v) = (2 p2eL (u) (1), AL () V(AT (0)) 1oy
=(u (T TOVAT ()u + (B <t>V<A;1<t>>u)T>,AI (OVOAZT (1) 1o

+ (AT OV A(t) 0w (t), AZM0) (@)
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b () (u,v) = (e2u (V. T(OVA ()u + (‘IJET(t)V(A?(t))u)T)aAaT(t)V(A§1)(t)v)L2(QS)
+ (at(Ae_l)(t)uv \Pé(t)v)LQ(QE) + ((V(Aa_l)(t)u)TAs(t)atws(t)v Ae_lv)Lz(QE),
ce(p,v) =(div(v),p) L2(0.),

fre)(w) =(f-(t), Ce(®)p)a. = (VBre(t), w)r2(0.) — (J(£) ., A (B)u) 2(q.)

+ ((Vor, (1) T Ac(t)are (1), A7 (B)u) 120,
foe(t)(v) = = (2 pAc(t)2ec (0r. ) (1), AT (H) V) L2(q,),
9=(1)(p) == — (div(A=(t)0r. (1), P) L2(.) = —(A(t) = Vir. (1), p)r2(0.)
for

er(u)(t,r) = (\Il;T(t,a:)Vu(x)A;T(t,x) + (\IJ;T(t,x)Vu(x)A;T(t, x))T)/2

We set V. = H%E(QE)", H. = L*(Q.)" and Q. = L*(€).) with the scalar products and
norms defined by

[0l = (v, 0)v. (v, )y, = *(Vv, V) 12 for v, w € VL,
Jwl?, = (w,w)n. (v, w)v, = (v, w)2(q.) for v,w € He,
lal}, = (2. 9)q. (0,0)q. = (¢, P)r20) for p,q € Q..
Due to the Poincaré inequality (3.14), || - ||y, actually defines a norm on V. and (-, ")y, is

a scalar product. Now, we show that these bilinear forms and right-hand sides fulfil the
assumptions of Theorem 3.33. Moreover, we show that all constants which appear in the
estimate of Theorem 3.33 can be chosen e-independently.

e embedding constant: From Lemma 3.13, we obtain a constant C such that
[0l = vl 2. < eClVolL2q.) = Clvlv.
and, thus, the embedding constant of V. into H. is independent of .

e bilinear form a:

— continuity of a.(t): Using the Holder inequality and the boundedness of W, and
AZ1 given by Lemma 2.40, we obtain a constant C,, such that

Jac(t) (u, 0)| = |(Pe(tyu, AZH(H)0) 20|
< WO 2@l AT O ooy [ul w0 . < Callul m o] .
for all t € [0,T] and all u,v € H,.

— Lipschitz regularity with respect to time: Using again the uniform bounds of
the coefficients from Lemma 2.40 and their uniform Lipschitz estimates with
respect to time, which are provided by Lemma 3.28, we obtain a constant
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3.2. Homogenisation of instationary Stokes flow

L, > 0 such that

[(as(t1) — a=(t2))(u, v)|
= (Ve (tr)u, AZ (t1)v) 1200, ) — (Pe(ta)u, AT (£2)0) 20|
< (We(tr) — Welt2)u, A (81)0) p2ia) |+ [(Pe(t2)u, AZ () — AN (82)v) 1200
<P (tr) = e to)] Lo ) |4 (E0) | ey [0l 11 0] .
+ [ We(t2) | Lo ) 1AZ 1 (1) — AZH(t2) |y el a0l
<Lalty — tof|u] . [v] A. -
(3.102)
for every t1,t2 € [0,T] and all u,v € H,.

— coercivity of a.(t): Employing the essential boundedness of the coefficient given
by Lemma 2.40, we obtain a constant « such that

[, = 1928 Ac(8) S (#) AT (o] 3o

< TR0 A or o 1T 2O AT D)0 g
< LI 00 (0)0l3a,) = LA (Bv, AT (1)0)a,

= La.(H)(v,0)

every t € [0,7] and all u,v € H..
— symmetry of ac(t):
a:(t)(u, v) = (J() AT ()u, A7  (B)v)e. = a:(t)(v,u)
for every t € [0,T] and all u,v € H,.

e bilinear form b.(t): We note that b(t) € L(V.,V)), b2(t) € L(V, HL), b3(t) €
L(H, V), b(t) € L(H., H.), for every t € [0,T]. Hence, by the embedding of
V. into H., we obtain b.(t) = Y1_, b2(t) € L(Vz, V).

— continuity of b.;(t): Lemma 2.40 provides uniform essential bounds for the
coefficients U T, A-T and eVAZ!. Moreover, having the e-scaling in the norm

| - |v., we observe that every gradient, no matter if it belongs to a coefficient
or to u or v, requires one factor € for the e-uniform estimates.

We separate the symmetric gradients and write b (¢) and b2(t) as two sums each.
Then, we observe that each summand contains two gradient terms, which get
exactly balanced with the €2 term. Thus, we obtain with the Hélder inequality
constants Cp1, Ch2 > 0 such that

626 (u, )] <2002 T(0) gy [Vt gy | 42T () o)
14T (0@ IVel 2 1A T @) m(a
<Cye|Vul ()£l Vol 2oy < Conlulv. ol
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for every t € [0,7] and all u,v € V; and
1b2(2) (u,v)| < Coee|Vul 2 V] 200y < Corllulv. [0 o

for every ¢ € [0,7] and all w € V. and v € H..

In order to estimate b2(t) and b2(t), we use the same argument. However, the
second summand of b2 (¢) and the last summand b2 (¢) have one gradient term but
no explicit e-factor. Nevertheless, we can estimate these terms uniformly with
respect to € since the essential bound for e ~19;1), generates the missing e-factor.
Moreover, for the second summand of b2(t), we note that 0, A-! is uniformly
essentially bounded (see Lemma 2.40). Hence, these bilinear forms can be
estimated with the Holder inequality and we obtain constants Cys, Cpa > 0
such that

2(t) (u, )| < Coslull 20 VolLzga.) < Cosllullm Jvlv.
for every ¢t € [0,7] and all w € V. and v € H, and
12(8) (u, )| < Coallull 2o [0 2202y < Coalulla. vl

for every t € [0,7] and all u,v € H,.

Lipschitz regularity of b.: Using the Lipschitz estimates and the uniform bounds
for the coefficients, we can follow the argumentation of (3.102) in order to derive
the following Lipschitz regularities. The same argumentation that we have used
for the derivation of the uniform bounds for b, ;(t) shows that these Lipschitz
constants are independent of . Thus, we obtain constants Ly, Ly2, Lys, Lys > 0
such that

|(b2(t1) = b2(t2))(u, v)] < Lty — tollulvzfvlv.  for all u,v e V2,
|(B2(t1) = b2(t2))(u, 0)| < Liglts = tofJullve v, for allue Vi, v e He,
|(2(t1) = b2(t2))(u, 0)| < Lyslts = tof Julm. o]y, forallue He,ve Ve,
|(62(t1) = b2(t2)) (u, 0)| < Lyalts — tollulm ol for all u,v e He

for all t1,t2 € [0,T7].

coercivity of bl: First, we rewrite b (t). Then, we use the essential boundedness
of J-1(t) < cjl, which provides

e (w) D202y = 122 () I (O)el(w) ()] 12 < €512 (Bl (w) ()] 1200

Afterwards, we employ the Korn-inequality of Lemma 3.35 from below, which
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provides a constant 5 > 0 such that
b; (t)(u,v) z%(52u2e’s(v)(t), AET(t)VvAgT(t) + (Az(t)VvAgT(t))T)LQ(QE)
=2 (el (0) (1), T (DL (0) (1) ) = IV Te D)D) 120

>epes el (w) (1) 2o = 421V Ra,y = Sl0l?,

for every t € [0,7] and all v € V.
— symmetry of bl: The symmetry follows by rewriting b. as we did for showing
the coercivity of bl.
e bilinear form c.:

— continuity: From the Holder inequality, we obtain

ce(v,9) = (p,div(v)) 2(0,) < ClPlL20) I VVelz2(ny < & 'Clplg. velv.
(3.103)

for every p € P. and v € V.. We note that c. is not uniformly bounded with
respect to €. However, c. is not incorporated in the estimates of the solution
that is provided by Theorem 3.33.

— inf-sup estimate: with the operator div_ ' : L?(€.) — H%a (Q)™ from Lemma 3.8,
we obtain v > 0 such that

. .1
nf sup |ce(v,p)| > |Cs(d1V(dlf’g_lp,v))|
pe\ 0} vevfoy [Pl llvllve ~ pea\fo}  |po. | divZ! pllv.

2
o P17, s Ipl5.
= 1 = ) =7
peQ:\(0} [pllo.elV div: ' (0)l 2.y — re\0} [PloytPllQ.

e estimates on the data (right-hand sides):

— boundedness of fi.: Employing the Holder inequality, the estimates on the
coeflicients, which are given by Lemma 2.40 and the bounds on the data from
Lemma 3.31, we can estimate the first two summands of f; -(¢) by

|(J=(0) (), AT (B)w) 120 |
(AL (1) Ve (t), A (D) 20|

for some K. € L?(0,T), which is e-independently bounded in L2(0, T), i.e. there
exists a constant C such that |K:|r2(07) < C. The remaining summands of
f1.(t) can be uniformly estimated with respect to time. For this, we use the
Holder inequality and the boundedness of the coefficients and the data o,
and Jr,

Clf®ul 20y < Ke(®)lul .,
CIVDoe ()] 2o ul L2y < Ke(®)]ul a2

NN

|(Je(®)drtr. (t), A () 20| < Cldetr. (O] 2o luln. < Clullm.
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(Vor, (£) T Ac()re (t), A2 (B ) 20
< COVir, (Dl 20 1069 (@) [ Lo oo lull 7. < eCllul . -

After integrating over (0,7"), we obtain

2o, <

These calculations show that the summands of fi ., which belong to or_ and
Vir, are of order €. Therefore, they will also vanish in the homogenisation
process.

— boundedness of fz.: By similar estimates as used for fi ., we obtain

|2 (H)(w)] < eCllullv.

for every t € [0,T]. Since fo. is of order ¢, it will also vanish during the
homogenisation process later.

Moreover, using the Leibniz rule, the Holder inequality and the boundedness of
the coefficients as well as the bounds of their derivatives (see Lemma 2.8 and
Lemma 2.43), we can estimate the time derivative of fa . by

|0cfo.c(8)(u)] < €| (B Ac(t)ec (0r.) (1), V) r2(a,)]
+e%ul(Ae(t) (20 (1) Var, (1) + (207 (1) Vir. (1) '), V) 2o, |
+ 2 pul(Ae(t)e=(Qrir, ) (1), V) 20, |
< eC(IVor. (1) 2.y + [0:Vor. (1) 2.y elullv.

After integrating over (0,7) an applying the boundedness of Vor, and 6, Vir_,
we get,

o152y < (€C + Cla:Vor, | 20, x0.)) < C.

— boundedness of g.: With the Holder inequality and the uniform bound of A.(t),
Vir,(t) and 6;Vir,, we get

19 220,702y =I14c = Vor, |l 20,1y x0.)
< ClADll=(0,1)x) VO] o0,y x0.) < C
1019e [ L20,7,0) =10:(Ae  Vir,)| L2(0.1)x0.)
SO0t Acll o 0,1y x 2y | VOT | Lo (0,752 (022 )

+ ClAe| L= 0.1y x 2 19: Vi, [ L2 (0,1 x00) < C-

Having shown all the assumptions of Theorem 3.33 with constants independent of €, we
obtain a unique solution (u.,q§.) € L?(0,T;V.) x L*(0,T;Q.) with d;u. € L*(0,T; H.) of
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3.2. Homogenisation of instationary Stokes flow

(3.101) and a constant C' independent of € such that

HUEHL"L(O,T;HE) + EHVUEHLQ(O,T;VE) + HQEHLQ(O,T;QE) <C. (3.104)

Since the weak form (3.101) is equivalent to the weak form (3.94), we obtain a unique
solution (we,q:) € L*(0,T; Hf_(Q)") x L*(0,T; L*(2)) with dyue € L*(0,T; L*(:)").
Moreover, we can transfer the uniform estimate (3.104) onto (., ¢-) via

e = A e, Qpbe = A ue + AT e, eVibe = VA e + eV AT

using the uniform essential boundedness of 6;AZ1, eVAZL, AZT. ]
Korn-type inequality

We have used the following Korn-type inequality in order to show the coercivity of bl
in the proof of Theorem 3.32.

Proposition 3.35. There exists a constant 8 such that
0= T (OVAZ (@) + (V2 (VeAZ (1) o, = BIV0Za0 (3.105)
forallve H%E(QE)” and every € > 0.

Compared to the Korn-type inequality from Proposition 3.9, which we have used for
the quasi-stationary case, the gradient is now multiplied not only from one but from both
sides by matrices. Nevertheless, it can be shown by a similar argumentation and we point
out the main differences. Again, we reduce it to a Korn-type inequality for a fixed domain
and fixed space-dependent coefficient.

Lemma 3.36. Let 1 < p < o0 and U be an open, bounded domain in R™ for n = 2 with

Lipschitz boundary 6U. Let S be an open subset of 0 with |S| > 0. Let A, B € C(U)™*"
with det(A(zx)),det(B(x)) = ¢ > 0. Then, there exists a constant o > 0 such that

J|A($)Vu(x)B(:c) + (A(2)Vu(z)B(z))T|Pdz > a J |Vu(x)|P de (3.106)
U U
for every u € Wé’p(U)”.

In order to prove Lemma 3.36, we reduce it to the following generic Korn-type inequality,
which was shown in [Pom03]. Therefore, we need the following definition.

Definition 3.37. Let m,n,r € N. A mapping A : R™*"™ — R" with r = m is called elliptic
if AmET) # 0 for all ne R™, ¢ € R™ withn # 0 and € # 0.

Lemma 3.38. Let 1 < p < o0 and U < R™ (n = 2) be a connected, open, bounded
Lipschitz domain with V < 0U. Let m,r € N with r = m and let A(z) : R™*" - R" be a
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amily of linear elliptic mappings whose coefficients a are continuous on U. en, there
ily of li Ilipti ngs wh ents ay! t U. Then, th
exists a constant ¢ > 0 such that

(L |A(z)Vou(z)P dx) . + (L lv(z) [P d%) v > clv|wre

for all ve Wip(U)™.

Proof. See [Pom03, Theorem 2.4]. O

Extending the argumentation of [Pom03, Corollary 4.1], we can prove Lemma 3.36.

Proof of Lemma 3.36. Due to Lemma 3.38 it suffcies to show that
F > AFB + (AFB)T e R¥" = R"
is elliptic, i.e.
AENB+ (A(n¢")B)"T #0 (3.107)

for all n,£ € R"\{0}. Let n,& € R™\{0} and assume that (3.107) does not hold, then
A(n€T)B is skew-symmetric, which implies that rank(A(n&")B) = 0 or rank A(néT)B = 2.
Since det(A),det(B) # 0, we obtain rank(A(n¢")B) = rank(né ") = 1, which is a contra-
diction. Thus, F'+— AFB + (AFB) is elliptic. O

Proof of Proposition 3.35. Proposition 3.35 can be traced back to Lemma 3.36 by the
same arguments that we used in order to trace back Proposition 3.9 to Lemma 3.10. [

3.2.4. ldentification of the two-scale limit problem

Now, we derive the following instationary two-pressure Stokes equations as the two-scale
limit problem of (3.92).
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3.2. Homogenisation of instationary Stokes flow

Instationary two-pressure Stokes equations in the reference coordinates

Oribo — Vywo \IJ 5,:1/10 - JO dlvy (,U,AO\I’ Vy’wo)

+US IV + Uy TV = f in (0,T) x Q x Y*,
Jyt divy (Agig) = 0 in (0,7) x 2 xY*,
wo =0 on (0,7) x Q x T,
o(0) = o™ in QxY*
Y — Wo, 41 Y -periodic,

div, ( f Agido dy) - fdiv(Aoﬁp)dy in (0,T) x ©,

D =Dbo on (0,T) x 082,
(3.108)

The weak formulation of this instationary two-pressure Stokes equation is given by:

Weak form of the instationary two-pressure Stokes equations in the ref-
erence coordinates

Find (do,q,¢1) € L*((0,T) x Qi Hi,(Y*)") x L*(0,T; Hy(2)) x L*((0,T) x
Q; L2(Y'*)) with dpdg € L2((0,T) x Q; L2(Y*)") such that, for a.e. t € (0,7),

J J Jodyibg - ¢ dy dz + J (Vi) " Agdeto - ¢ dy dz +J J AW Vi : Vypdy da

QY* Y * QY*
| [ 4592000 - drdiv, (o) dyde = [ [ (of = AT (Tutio + Fyn)) - o dy
QY* QY*
J div, < f Agig dy>n0 de = —J J div, (Agir) dy o dz,
Q Y * QY*

J J divy (Apwo)n dydz =0
QY*

(3.109)

for all (p,n0,m1) € L2(Q;H%#(Y*)") x HH(Q) x L%(Q; L2(Y*)) and w(0) = 0l

For the identification of the limit problem, we can partially follow the argumentation
for the stationary case. However, we cannot derive a strong L2-compactness result for
the pressure §. or some extension since we have no additional time regularity for the
pressure, which would be needed for compactness arguments. Nevertheless, we can show
the weak two-scale convergence of §. and that its limit is constant with respect to y, which
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Chapter 3. Stokes flow in porous media with evolving microstructure

is sufficient for the identification of the limit equations.

Theorem 3.39. Let (W, §:) be the solution of (3.92). Then,
— 929
W ——" iy, (3.110)
eV, — Vo, (3.111)
€at7i)e ’ atﬁ)(), (3112)
L 2,2 .
e Xy#*q (3.113)

where (o, §) € L*((0,T) x Q,H%#(Y*)”) x L*(0,T; HE(Q)) are the first two components
of the solution of (3.109).

Proof. Due to the a-priori estimates (3.95), we can apply two-scale compactness results
and obtain wy such that (3.110)—(3.112) and . (0) 2

Moreover, from w,(0) = wmluwm it follows that o (0) 2
By arguing as in Lemma 3.16 for the quasi-stationary case, it can be shown that wg
fulfils the microscopic incompressibility and the macroscopic compressibility condition of
(3.109), as well as that wg is zero on I'.
Due to the a-priori estimate (3.95) for the pressure g, we obtain ¢ € L%((0,T) x Q x Y'*)

wp(0) hold for a subsequence.

win,

such that ¢ q for a further subsequence. In order to show that ¢ is independent
of y, ie. ¢ = xy=q for ¢ € L*((0,T) x Q), we test (3.94) by ep(t)A; ' (t,z)p(x, 2) for
0 e C° (% H%#(Y*)”) with div,(¢) = 0 and ¢ € C([0,T]) and integrate over (0,7"). Due
to the factor ¢ in the test function, all terms in (3.94) besides the pressure term are of
order € at least (for the second summand on the left-hand side, we note that the factor
O41be is of order & which compensates Vg, which is of order e~!). Therefore, these terms
vanish in the limit € — 0 and we obtain

0—11mjf (t, ) div (e (z, £)) ¢(t) dz dt

N “@“f (1) (edive (¢ (2, 2)) +divy (¢ (2, 7)) dedt
:f” (t 2, 9)6(t) divy (p(z,)) dy da dt,

[e=]

Yp

which shows that ¢ is constant on Y*, i.e. 4(¢,z,y) = xy=(y)q(t, x).

Now, we can identify the limit equation as in the quasi-stationary case, which we only
sketch here. First, we test (3.94) by ¢(t)AZ (¢, 2)p(x, £) for ¢ € COO(Q;H%#(Y*)”) with
divy(¢) =0, ¢ € C([0,T]) and integrate over (0, 7). Then, we pass to the limit € — 0 and
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3.2. Homogenisation of instationary Stokes flow

increase the set of test function by a density argument. Then, we show that ¢ is weakly

differentiable with respect to space, i.e. § € L?(0,T; H}(2)). Afterwards, we reconstruct

the microscopic pressure ¢; such that the limit equation holds for arbitrary test functions

which are not divergence-free. Finally, we show that § Ao¥y TV@J : Vody = 0, which
Y *

gives (3.109).

The uniqueness of the solution of the limit problem can be shown by means of The-
orem 3.33 after a substitution of the solution and the test function as in the e-scaled
problem. The inf-sup estimate for the algebraic divergence constraints can be shown as
in Lemma 3.20.

Due the uniqueness of the solution of the limit equation, the convergence holds for the
whole sequence. O

Back-transformation of the instationary two-pressure Stokes equations
After a back-transformation of (3.109), we obtain the following instationary two-pressure
Stokes equations

Weak form of the instationary two-pressure Stokes equations

Find wy € L*(0,7) x QHL, 1, (Y*(t,2))") with oo € L*((0,T) x
Q: LA(Y*(t,2))") and q € L2(0.T: HY(), q1 € L2(0.T) x Q: LA(Y*(t,2))) such
that, for a.e. t € (0,7),

f J Otwo-cpdydw—l-J J uVywg : Vypdyde

QY*(t,x) QY*(t,x)
+J J Vg o —qudivy(p )ddeU:J J (f = Vapbo — Vypy1) - pdyda,
QY*(t,x) QY*(t,x)
div, ( J wo dy nodx = f J div,, vp) dy ng dz,
Q Y*(t,x) QY*(t,x)

divy(wo)m dydz =0

QY*(t,z)
(3.114)

for all (¢, 70,m) € L*(Q; Hyyy 0, (Y*(t,2))") x Hg(Q) x L*(Q; L*(Y* (¢, 2))) and
wp(0) = wi.

The time derivative d;wq has to be understood in the sense of the extension by zero as
already in the e-scaled case, i.e. wo € H'(0,T; L?(Q x Y)). The strong form of (3.114) is
given by:
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Instationary two-pressure Stokes equations

oywo — divy (UVywo) + Vap + Vyp1 = f in Q7
div, (wp) = 0 in Q7
vo =0 on G7,
v (0) = o™ on Q(0),
Y — W, P1 Y -periodic,
div, < f wo dy) = J f div(vr)dy  in (0,7T) x Q,
Y Q Y*(t,2)
P = Dbo on (0,T) x 09,
(3.115)
Theorem 3.40. Let (we,q:) be the solution of (3.89). Then, it holds
—~ 2 -
Wa—=, (3.116)
eVie—2V ywo, (3.117)
ey, (3.118)
2
G-—=Xy*q (3.119)

where (wo, q) € L*((0,T) x §; H%(t o)
ponents of the solution of (3.114).

(Y*(t,2))") x L?(0,T; H} (2)) are the first two com-
Proof. The back-transformation can be done analogously to the quasi-stationary case. [

3.2.5. A Darcy law with memory for evolving microstructure

Now, we separate the micro- and macroscopic variables in (3.108) and, thus, derive effec-
tive equations, namely a Darcy law with memory for evolving microstructure. In order
to shorten the writing, we consider in the following only the case of no-slip boundary
condition, i.e. or_ = dy1)-, which yields

J divy (Ao(t, z,y) 0o (t, x,y)) dy = 0,0O(t, x) (3.120)
y o

for ©(t,x) = |Y*(t,x)|. The general case can be done as in the quasi-stationary case.
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3.2. Homogenisation of instationary Stokes flow

As in the quasi-stationary case, we aim to express the macroscopic quantities

W(t,l‘) = J Jo(t,:c,y)wo(t,x,y) dy = J wo(t,x,y) dy? b= (j +ﬁb,0 =dq +Pb,0-
Y * Y *
(3.121)

In order to express w explicitly by means of cell problems, we have to use two different
types of cell problems. The first cell problems take into account the source terms of
the momentum equation of the instationary two-pressure Stokes equation, namely, the
macroscopic pressure and the force term. The solutions (g:i(s,x;t,y),fri(s,m;t,y)) of the
cell problems depend on the parameters s € (0,7') and = € €, which model the initial time
and the macroscopic position, respectively, and on the variables t € (s,T) and y € Y*,
which represent the time and microscopic position.

Cell problems for the permeability coefficient in the reference coordi-
nates

0iCi — V(T U5 0o — Jytdivy, (Ag 5 TV ,G) + U5 TV = 0 in (s,T) x Y*,
Jodivy (AoG;) = 0 in (s,T) x Y*,
G=0 on (s,T) x T,

y— (, T Y-periodic,

Glt=3s)=¢ in V¥,
(3.122)

for parameters (s, z) € (0,7 x Q.

The second cell problem is (3.123) it has a solution (™(¢, z, y), #"(t, z, y) and takes into
account the initial condition of the instationary two-pressure Stokes equation.

Cell problems for the initial values in the reference coordinates

o™ — (V™) Ty dro — Jy ! divy (pdoWy V¢ + 0 TVAT =0 in (0,7) x Y,
Jo diVy(Aoéin) =0 in (O7T) x Y*,
("=0 on(0,T)xT,

y fin, #m Y-periodic,
(Mt =0)=a" inY*
(3.123)

for parameter € Q.
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Chapter 3. Stokes flow in porous media with evolving microstructure

Using these cell problems, we can separate the micro- and macroscopic variable in (3.108)
and obtain the following Darcy law with memory for evolving microstructure.

Darcy law with memory for evolving microstructure

t
1
o(t, ) = o' —i——Jstt ) f —Vp)(s,z)ds in (0,T) x £,
o (3.124)
div(v(t,z)) = —1O in (0,7) x 9,
p(t,z) = ppo(t, x) on (0,T) x o,
where the permeability coefficient K is given by
sz(ta S, 1’) = f Jo(t, z, y)&l('& x;t, y) " €5 dy7 (3125)
Y*
for 4,5 € {1,...,n} and the contribution v of the initial values by

ot 2) = j Jolt, 2, 9)0" (¢, 2, y) dy.
Y*

Since the initial values in (3.122) are not compatible with the boundary condition, we
cannot expect that the cell problems have solutions with 0;(;(s, z, -, -) € L?((s, T); L*(Y *)")
and 7;(s, x,-,+) € L3((s,T); L3(Y*)). Thus, we cannot use the same solution concept as we
have used for the instationary two-pressure Stokes equation in (3.109). Instead, we look
for a solution of (3.122) with less regular time-derivative and only distributional pressures.
After a substitution of {; by @; = Ao(; in (3.122) and multiplication of the first equation by
\Ifg , we obtain a time independent divergence condition as already in the e-scaled Stokes
equation. Then, the Leibniz rule can be employed to fit (3.122) in the setting of [Zim21,
Chapter 7.1], which provides a well-posed weak formulation with a unique solution.

Then, one can rewrite

t
o(t.,9) = | 3 Gsvait, ) (i) = 2upls. o) ds, (3.126)
0 =1

which leads to (3.124)—(3.125).

Back-transformation of the cell problems
We transform the cell problems back to the moving cell domains, i.e.

é‘i(S?m;t’y) = Ci(S,I;t,wo(t,.’IT,y)), 7%(87x;t7y) = Wi(S,.’L’;t,iﬁo(t,CC,fU))
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3.2. Homogenisation of instationary Stokes flow

solve
Cell problems for the permeability coefficient
0rG — divy (V) + Vm =0 forte (s,T),y € Y*(t,x),
divy () =0 for t e (s, T),y e Y*(t,x),
¢Gi=0 for t € (s,T),y € T (t, ), (3.127)
y— (,m  Y-periodic,
Q(t=8) = €; in Y*.

Then, the permeability tensor can be equivalently written by

Kji(t,s,a:) = f Q(S,CC;t,y) 1€y dy.
v

The transformation of the cell problems for the initial values shows that

Ci(sam;tvy) = Ci(Sax;tva(t7x7y))> fr(s,m,t,y) = Wi(S,SE;t,IZJO(t,LL‘,y))

solve
Cell problems for the initial values
0,¢™ — div, (uV,¢™) + VA =0 for t € (0,T),y € Y*(t,z),
div, (¢™) =0 for t € (0,T),y € Y*(t,z),
¢G=0 for t € (0,T),y € oI'(t, x), (3.128)

y— (,m Y — periodic,
mE=0)=ol  inY*

which gives

ot 7) = f ¢t 2, ) dy.
Y#(t,x)

Further discussion of the Darcy law with memory

In the instationary two-pressure Stokes equation, the force term and the macroscopic
pressure contribute as source terms in the momentum equation. Due to the memory
structure of the resulting Darcy law, i.e. the integration over the time interval (0,t), these
source terms become initial values in the cell problems. Correspondingly, the cell problems
do not model the fluid velocity but its acceleration. One should be aware of this if one
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Chapter 3. Stokes flow in porous media with evolving microstructure

wants to formulate the equations with unites, since the Stokes equations structure of the
cell equations could be misleading otherwise.

In the case of a stationary domain the cell problems can be integrated with respect to
time, which translates the initial condition into a source term for the momentum equation.
This integration changes the units accordingly and one has to define the permeability
tensor K by means of the time derivative of the solution of these new cell problems
instead of by the solution itself in the definition. The resulting equations are presented for
instance in [Hor97, Chapter 3.2]. This approach can not be used directly for the case of a
time-dependent domain since the integration and differentiation of differential equations
with time-dependent coefficients leads to additional terms.
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Chapter 4.

Reaction—diffusion problem with coupled
evolving microstructure

This chapter is based on [WP23, D. Wiedemann and M. A. Peter Homogenisation of
local colloid evolution induced by reaction and diffusion, Nonlinear Analysis 227 (2023),
113168] and is devoted to the homogenisation of a reaction—diffusion process with coupled
microstructure evolution. In contrast to the previous chapter, we do not consider an
a-priori given evolution of the microstructure. Instead, the evolution of the domain is
coupled to the solution of the reaction—diffusion equation, leading to a free boundary
problem. Nevertheless, we can apply the transformation approach of Chapter 2. The
microscopic domain is given by e-scaled periodically distributed spherical obstacles with
evolving radii. Concentration-dependent reactions model a precipitation and dissolution
process at the interface of the obstacles and couple the domain evolution with the unknown
of a reaction—diffusion equation.

To account for the unknown evolving microstructure, we transform the equations by a
generic coordinate transformation. This results in a highly non-linear system including
a partial differential equation for the unknown concentration 4. and ordinary differential
equations for the radii 7., which describe the spherical obstacles. We show the existence
of a solution by means of Schauder’s fixed-point theorem and the uniqueness by energy
estimates. Due to the non-linear structure of the problem, strong compactness results
become necessary for the homogenisation. For the unknown 4. and its spatial gradient
Vi, we obtain uniform a-priori bounds by energy estimates. However, we do not obtain a
uniform bound for the time-derivative d;u. and, therefore, cannot apply the Aubin—Lions
lemma. Instead, we use a Steklov average in order to provide additional control over
U with respect to time. Then, we can use Simon—Kolmogorov’s compactness argument
to infer strong convergence for the unknown .. With the strong convergence of ., we
deduce strong convergence for the radii by comparing the ordinary differential equations
for the radii with the limit equation. Having the strong convergence of the radii, we can
can show the convergence of the transformation mappings in the sense of Chapter 4.

Having all necessary two-scale compactness results, we can pass to the homogenisation
limit in the transformed coordinates. By separating the micro- and macroscopic variables,
we arrive at a homogenised reactive transport problem. We also translate the equations
back to the locally upscaled microstructure, which leads to a transformation-independent
homogenisation result. This limit reactive transport system consists of a reaction—diffusion
equation and an ordinary differential equation at each macroscopic point modelling the
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

local upscaled microstructure evolution. On the one hand the growth rate for the concen-
tration of the reaction—diffusion equation is scaled by the evolution of the local upscaled
porosity and the local effective diffusivity is adapted to the local microstructure using cell
problems. On the other hand, the ordinary differential equations that describe the evo-
lution of the microstructure and the porosity depend on the local microstructure. Thus,
the resulting reactive transport system couples the micro- and macroscopic processes.

This chapter is based on the results of [WP23] but differs from it in the microscopic
existence result. In [WP23], Banach’s fixed-point theorem was used for the existence result,
which also provides the uniqueness of the solution. However, the contraction property
requires delicate estimates, so we present a different more elegant argument here. In
particular, the contraction property was shown for small and e-dependent time intervals.
Thus, the existence proof for the whole time interval required the concatenation of solutions
for small intervals and additional estimates to ensure that the solution does not blow up
in finite time.

The homogenisation of a similar problem was also considered in [GP23] using also the
transformation approach. There, the existence of a solution for the microscopic problem
was shown by Rothe’s method and similar a-priori estimates were derived. In order to
prove strong compactness results, uniform estimates for the shifts of the radii with respect
to space and time were shown. This leads to the strong convergence of the radii and the
strong two-scale convergence of the corresponding transformation coefficient, which were
used to infer the strong convergence of the unknown for the reaction—diffusion equation.

This chapter is structured as follows: in Section 4.1, we present the microsopic evolving
domain and derive a coupling with the reaction—diffusion process based on the law of con-
servation of mass. In Section 4.2, we construct a generic parameterisable transformation
to the upscaled reference cell. Using this transformation, we transform the e-scaled perfo-
rated domain to a periodically perforated domain. For this system, we show the existence
and uniqueness of a solution by means of a fixed-point argument in Section 4.3. From
the existence proof, we extract uniform a-priori estimates on the solution of the reaction—
diffusion problem and its spatial derivative. In Section 4.4, we pass to the limit ¢ — 0
in the system of equations. Then, we separate the micro- and macroscopic variables and
transform the equations back leading to a transformation-independent reactive transport
system.

4.1. The microscopic model in the evolving domain
Microscopic geometry

Let T > 0, Q < R™ for n € N be a domain such that ) consists of entire e-scaled cells
Y = (0,1)", ie. Q = int( |J ek + €Y) for all € > 0, where I. < Z" and ¢ is a positive
kel
monotone sequence £ = (&,)nen Which converges to 0.
The pore structure is assumed to be given by removing one spherical obstacle in each

e-scaled cell ek +¢Y for k € I.. The obstacles are centred in the e-scaled cell and have radii
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4.1. The microscopic model in the evolving domain

of order ¢, which depend on the time. Thus, the e-scaled perforated domain is defined by

Q(t) = Qe | Br (b +m) (4.1)
kele
where m := (0.5,...,0.5)" is the center of the reference cell and r. (t) is the e 1-scaled

radius of the solid obstacle located in the cell ek + €Y at time ¢ € [0,T]. In order to avoid
topological changes, the radii can only grow or shrink between given bounds, i.e.

Tmin < Ta,k(t) < Tmax forall ke I, te [0, T]

and 0 < Tmin < Tmax < 0.5. Thus, the interface of the pore space with the obstacle in each
cell k € I, is given for each point in time t € [0,T] by

Lo w(t) = 0eB,_ y(k + m) = 0B.,_, 1)(e(k +m)).

We denote the union of these interfaces for a point in time ¢ € [0, 7] by I'c(¢), i.e.

Fa(t) = 6Q£(t)\89 = U Ps,k(t)’
kel.

Then, the in time non-cylindrical pore space and its interface are given by

or .= {t} xQ(t),  HI = [ @3 xTe(t), HEY = | {8} xTek(). (4.2)
te[0,7] te[0,17] te[0,T7]

@ 0 0 ofc 0o 0o 0j0o 000000 ©000000000000 0
T EEEREIEEEEEEXXXX ] °© 0000000000000
@ 0 000 0 c 00000000 '..............
Q@000 00 000000000 e 0o 0000000000000
Q000000 0 ¢ 0000000 e o0 0000000000O0C0OC
Q00000 oo 000000 e 0 0000000000000
Q0000000000 o0f0 o0 0000000000000
C Y X X X IR Y S Y} e e cc 00000000000
C Y X X K K IR S ) e e o0 00000000000
'Y X I X X KR EEEEREERID @00 000000000000
0000000000 o ofc oo @0focccc00000000
- P M eelst . leclone

Figure 4.1.: Microscopic domain €2.(¢) in white for two different values of t.

Evolution equations

The evolution of the obstacles is motivated by concentration-dependent reaction kinet-
ics at their interface. It models the dissolution and precipitation of the solid obstacle.
The reaction rate eg(ue,r. ) depends on the concentration w. and the radius r.j and
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corresponds to the flux j. x(¢,2) in normal direction through I'; (%), i.e.
Je(t, ) - n(t, z) = eglus(t, z), e k(1)) for t € [0,T], k€ I, x € T 1 (t), (4.3)

where n denotes the outer normal of Q. (). This flux leads to a growth or shrinkage of the
solid obstacle. Under the assumption that the solid has a constant density cs and remains
spherical, the conservation of mass implies

%|B€r€7k(t)(5(k +m))|cs = J Je(t,x) - n(t,x) doy. (4.4)

Fa,k(t)

From elementary calculus, we obtain

d
i Beren(E(k +m))[ = 0Va(erei(t) = Sn-1(eren(t))ediren(t),

where V,,(r) denotes the volume of the n-ball with radius r and S,,—1(r) denotes the surface
volume of the (n — 1)-sphere with radius 7. Combining the last three equations leads to
the following ordinary differential equation for the radii

B n(t) = ~ ][ o(ue(t, 2), rop(t, 7)) dos. (4.5)

Cs
Fe,k(t)

The loss or gain of mass in the solid region is accompanied by the opposed loss or gain of
dissolved solute concentration in the pore region. This process is modeled by setting the
flux j.(¢, ) at the moving interface I'; ;(t) equal to the sum of the diffusive and advective
flow. The diffusive flux is modeled by Fick’s law, i.e. je p(t, ) = —DVu.(t,x). The advec-
tive flux is induced by the moving interface and is given by je a(t,x) = —ovr_, (¢, z)u(t, v),
where vr_, denotes the velocity of the interface. This advective flux can be understood
in the following sense: When the carrier medium becomes solid and contains a higher
concentration than the density c; of the solid medium, then any excess dissolved concen-
tration is pushed into the pore space. Thus, the total flux at the interface is I'; ;(t) for
t € [0,T] and k € I is given by

Je(t,z) = jep(t,®) + jea(t, x) = —DVuc(t,x) —vr_, (t, v)u(t, ).

Together with the identification of the normal flux with the reaction rate in (4.3), we
obtain the following boundary condition

(=DVue(t,z) —vr, , (t,v)ult,x)) - n(t,r) = je(t,z) - n(t,r) = g(ue(t, z), re (t, 7). (4.6)
Using the fact that vr_, (t,x) = —edyre x(t)n(t, x), we can simplify

—Upe’k(t, x)ue(t,x) - n(t,x) = edpre (t)n(t, z)us(t, x) - n(t, x) = Opre k(H)uc(t, z).
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4.1. The microscopic model in the evolving domain

In the pore space Q.(t), we model the transport with a reaction—diffusion equation
and assume a homogeneous Neumann boundary condition at the outer boundary of2.
We complete the system with the boundary condition (4.6) at the interfaces I'c (t), the
ordinary differential equation (4.5) for the radii and initial values u® and r* for the
concentration and the radii, respectively. This leads to the following system with unknowns
ue and 1.y, for k€ 1.

Microscopic reaction—diffusion equation with coupled domain evolution

Orue(t, ) — div(DVuc(t, x)) = f(t, x) in T,
—DVuc(t,z) - n(t,x) + edre i (t) = eg(ue(t, x), e x(t,x)) on HE ok € I,
—DVu(t,x)-n(t,z) =0 n (0,7T) x 09,
u:(0, ) = ul™(x) in Q,
Orre(t) = cl ][ 9(us(t,2), rep(t,2)) dos for te (0,T) ke L.,
Dei(t)
7. 1(0) = Ti:l,lk for k € I,

(4.7)

where n(t,z) denotes the outer normal of Q.(t) at x € 0Q.(t) and D > 0 the
diffusion coefficient. Moreover, the domain Q.(t) and, thus, QI as well as the
interfaces I'; 4 (t) in (4.7) are coupled with r. via (4.1)-(4.2).

We note that r. is a vector-valued function, i.e. 7o = (rcg)rer. : [0,T] — Rl For the
sake of simplifying the notation and for stating the convergence results on r., we abuse its
notation. Namely, we identify r. with the piecewise constant function r. : [0,7] x @ —
["min, Tmax], 7= (t, @) = re i (t) for € e(k+Y') with k € I.. Similarly, we write for the initial
values r"(z) = ri" for z € e(k +Y) with k € I.. We switch between these interpretations
wherever it is more convenient.

Assumption 4.1. We assume that:

e feC([0,T] xQ) is uniformly Lipschitz continuous with respect to x, i.e. there exists
Ly > 0 such that

|f(t,21) — f(t,22)] < Lygl|z1 — 22| (4.8)
for all x1,x9 € Q and all t € [0,T].

e g:RxR — R is bounded and uniformly Lipschitz, i.e. there exist constants Cy, Ly >
0 such that

lglems) < Cg < w0,
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lg(u1,m1) — g(u1,71)| < Lg(Jur — ua| + [r1 — r2])
for all ui,us, 71,79 € R. Moreover, we assume that
gu,m) =0 forr < rpp and g(u,m) <0 forr = rpe (4.9)

holds for all u € R.

° rien c [’I"min,""max]us‘, i.e. 7“}5“ can be identified with a sequence of pie_cewise constant
functions on Q with values in [Tmin, Tmaz). Moreover, there exists ri* € L?(2) such
that i — rit in L2(Q).

in
€

L2(Q) for Y% = Y\B_in(m).
To (z) "o

is a sequence in L*(Q:(0)) such that ui:n(ﬂj)l)')XYﬂf (y)uo(z) for some ug €
rot (@)

® U

The assumption (4.9) ensures that the solution of the ordinary differential equation from
(4.7) stays between the bounds ryiy and rmax, i.e. 7z x(t) S [min, "max] for every t € [0, T
and every k € I..

4.2. Transformation to a periodic reference domain

In order to transform 2.(¢) to a periodic reference domain 2., we use some generic dif-
feomorphism t(r;-) : Y + Y which is defined on the reference cell Y = [0,1]" and
is parameterised by r € [Fmin, "max|- It maps the reference cell with obstacle of radius
R € [Tmin, "max] onto the cell with obstacle radius r and it satisfies the following proper-

ties:
P(r;):Y »Y is bijective,
¥(r; Br(m)) = By (m), (4.10)
V(ry) =y for € Y\Br,..+s(m),

for all 7 € [Tmin, Tmax| and a safety constant 0 < § < max{rmin/2, (0.5 — rmax)/2}, which
is necessary in order to achieve a smooth transition between the deformed region and the
region where 1 (r; ) is the identity. The last condition ensures that v, is the identity close
to the boundary Y and allows us to glue transformations v (r; -) next to each other when we
use it in order to define the e-scaled transformations .. Moreover, we assume that i (r; -) is
also smooth with respect to the parameter r, i.e. ((1;y) — ¥(r;9)) € C®([Fmin, "max] X Y )™
and satisfies the following uniform bounds

|0r (5 )| + 10y (5 y) | + 1000y (r; y)| + [0r0rOyab(r; y)|
det (0,9 (r;y))

for all (r,y) € [Tmin, "max] ¥ Y.
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4.2. Transformation to a periodic reference domain

Employing the radial symmetry, we can construct the generic cell transformation 1 (r; )
by means of a mapping ®(r;-) : [0,00) — [0, ), via

m+®(r;)(Jly —ml)pi=g  fory#m,
P(r;)(y) = { vl (4.12)
m for y =m,
where (4.10) can be reduced to
®(r;-) : [0,00) — [0,00) is bijective,
®(r; [0, R]) = [0, 7], (4.13)

O(r;y) =y for y = rmax + 0,

for all 7 € [rmin, "max]- Furthermore, the assumptions on the regularity for ¢ can be
reduced to the regularity of

((r,y) = ¥(r;9)) € CF([Fmins Tmax] % [0, 0)),
(I)(T;y) =Y for y < rmin — 0,7 € [TminaTmax]a

where the latter condition yields ¢ (r;y) = y for y € B, _, _s(m) and, thus, ensures the
regularity of ¢(r;-) at m and also the uniform bounds in a neighbourhood of m.

Moreover, outside this neighbourhood of m the uniform bounds (4.11) can be deduced
from

R0+ 10,5 + 22,80 105000 <O

0y®(r;y) = ¢ '
for all (r,9) € ["min, Tmax] X Y and some ¢ > 0 after a change to the spherical coordinates.
Note that the translation of (4.13) into (4.14) leads to an a-priori y-dependent constant
on the right-hand side. However, since we consider ®(r;-) only in a bounded region with
positive distance to the origin m, we can omit this y-dependence.

Indeed the precise choice of ® is not important for the arguments later and it can
be constructed in several ways. Nevertheless, for sake of completeness, we present one
construction. For this, we construct the following family of continuous and piecewise
affine functions ®(r;-) : R — R first:

Y for y < rmin — 25,

Pmin — 20 + c1(r)(y — (rmin — 25)) for Fmin — 20 <y < R — 9,
6)(7";3/):=<r+(y—R) for R—6 <y < R+9, (4.15)

Pmax + 20 + co(r)(y — (Tmax + 25)) for R+ 46 < Y < Tmax + 20,

Y for rmax + 20 < Y,
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for r € [rmin, "max] and d:=10 /3 with slopes

et (7") _ r— 5~_ (rmin - 2(5) _ (T - rmin)
R — (5 — (Tmin — 25) (R — Tmin)
ex(r) = Tmax + 2§ —(r+ (5~) _ (Pmax —T)
Tmax +20 —(R+9)  (Tmax — R

An illustration of ®(r;-) is given in Figure 4.2.

(b(rv )
T
25 515 25
— A —
s
0 Tmin R Tmax 0.5

Figure 4.2.: ®(r;-)
We note that

oy %, (y) € {1, e1(r), e2(r)},
g _ < 1,61(7”)762(7“) < (Tmax - 7:min) +4
(rmax - Tmin) +90 1)

for all r, R € [Tmin, max] and a.e. y € R, which bounds the derivatives from below and
above. Moreover, we observe that, for every fixed y € R, 7+ ®(r;9) € C°([Fmin, Tmax]; R)
and the derivatives are uniformly bounded with respect to y, i.e. for every [ € N, there
exists a constant C} such that

0LO(r;y)| < C

for all 7 € ["min, "max| and all y € R.

However, ® is only Lipschitz continuous with respect to y while r — 6y<f>(r; y) is not
even continuous. By means of a convolution with a standard mollifier with respect to
the second argument of 513, the function becomes smooth, while other desired properties
remain preserved. Namely, we define

O(r;y) = J‘i’(rs z)n(y — z) dz,
R
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where

n(x) = (Igexp (1—\_7;}5|2) dy)il oxp (1_\;}5‘2) for || < 6,

x| = 0.
First, we note that
R+6
®(r; R) := in)(r; z)n(R—xz)dr = J (r+(x—-R)nR—-=x)dx=r,
R R-§
y+o
O(r;y) = an(r—x)dxzy for y < rmin — 30 = Tmin — 0,
y—6
y+5
O(ryy) = an(r—x)dxzy for i = Tmax + 30 = Fmax — 0,
y—0
which shows the equalities in (4.13) as well as the equality thereafter. Moreover, the
essential bound of 0,®, > m from below, is preserved during the convolution
since :
- 5
0y®(r;y) = | 0y@(r;z)n(y — ) dw = =n(y — ) dz
R (rmax - 7”min) +40

]

(rmax - Tmin) + S

=

Hence, ® is strictly monotonically increasing and, in particular, bijective. It remains
to show the regularity and the uniform bounds for the derivatives. For this, we deduce
iteratively

okl (rig) = [ty - o) do
R

for all k,1 € N. Since o¥®(r;y) and %77 are bounded in [Tmin, "max| X R for every k, 1 € N, we
obtain the first estimate of (4.14) and can iteratively infer the continuity of the derivatives
leading to the regularity ¥ € C®([rmin, Tmax] X Y )™.

The cell displacement mapping
Having the cell transformation v, we define the corresponding displacement mapping by

~

Y(rsy) = P(r;y) — v,
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which is zero in Y\B,, . +s(m) due to (4.10). Hence, the Y-periodic extension of ) is
smooth. We identify the displacement mapping v with its Y-periodic extension in the
following. Moreover, the uniform upper bound on the derivative of ¢ from (4.11) can be
transferred onto 1, i.e.

Y

[G0s9)] + 1803 9)| + 10,0005 y)| + 100 (73 9)| + 10,0403 ) (416
Y

|
10,0, 0y (13 9)| + |00y (5 y)| + 10-0, 0y (13 y)| + |0,0,8,0,0 (73 )|

<C
<C
for every (7,v) € ["min, "max] x R™.

Further properties of the transformation
For a time-dependent radius 7 : [0, T] = [Fmin, "max] and y € dBr(m), we note that

m y—m

y— y—m
=0 ®(r(t); R
[y =] 2O By

oe(r(t),y) = 0 (r(t); |y — m) Ty—m|

= 0r(t)7(y),

= dr(t)

where 7(y) denotes the outer normal of Y\Bg(m) at y € dBr(m).

Moreover, by transforming the surface integral
S = | 1doy= | JAd@up)lLds,

and using the radial symmetry of ¥ (r;-), we obtain

T pn—l r\"—
Adi@ui = g = = (7)) (1.17)

for y € 0Bg(m).

e-scaling of the transformation
For a fixed reference radius R € [Tmin, "max|, we define the periodic reference domain by

Q. = O\e U Bgr(k +m)
kel

with interfaces

T. ) = 0eBp(k +m) = dB.p(c(k +m)), To= | Ten
k

el

Let Q.(t) be given by radii r.(t), then we map Q. onto Q.(t) by scaling and shifting the
mapping (r;-) for every e-scaled cell. Since t(r;-) is the identity near the boundary of
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Y, we can glue these mappings smoothly together. Hence, we define
%(t, x) = [x]é,Y + 5¢(T£(tv :U), {x}E,Y)’ (4'18)

n
where [z].y = X €| % |e; and {z}.y = e7'(z — [#].,y) for the Euclidian unit vectors ;.

i=1
The resulting displacement 1\/1;(15, x) = 1 (t, x) —x can be also expressed by the displace-
ment ¢ (r;y) = ¥ (r;y) — y of the generic cell transformation

Ye(t,z) —x = [x]e,Y +e(re(t, ), {x}s,Y) -z
= [2]ey + e0(re(t, @), {2}ey) + e{z}ey — (4.19)
= e (re(t,2), {z}ey) = el(re(t, x), z/e).

Since @E = 0 in a neighbourhood of dY’, no jumps arise at ek + dY’, for k € I, although
re and {z}.y are not continuous there. Hence, 1. and 1), are smooth with respect to x.

Uniform a-priori estimates for 1.

In the following, we derive estimates for . and its derivatives, which are independent of
the radii r. as long as the radii stay between certain bounds. These bounds are ensured by
the ordinary differential equations that define r.. Thus, we can derive uniform estimates
on the a-priori unknown coefficients, which arise due to the coordinate transformation of
(4.7). Moreover, we show that these coefficients depend Lipschitz regularly on the radii,
which becomes useful for proving the uniqueness of the solution of the system.

Lemma 4.2. Let 7. € COY([0, T]; [7min, Tmaz]) ! with |0ere kel 0,1y < Cycst for every
ke I.. Let . be given by (4.18). Then, 1. € CO1([0,T]; C*()) and v<(t,-) is bijective
from Q onto Q with .(t,Q.) = Q(t). Moreover, there exist constants C,cy, which are
independent of r. such that

e e = 2leo <y + 10%elcqqorxay + El0a0atellcgorxamy <
Je t,l’) = cy,
giluaﬂ/}aHLm(O,T;C(ﬁ)) + Hataww5||[,/ (0,T;C(Q)) + EHata’vaxweHLFL,(&T;C(Q)) <C.

Proof. In order to derive the estimates, we employ the identity ;ﬁ;(t, x) = P (t,x) —x and
the identification ¥ (r;y) = ¥(r;y) — y given in (4.19). Then, we can compute with the
chain rule and the uniform bounds on ) and its derivatives

HwEHC([QT]xﬁ) < 5H¢HC’([TH,in,rmax]xY) <eC,

Haﬂ/Js HL“"(U,T;C(@) < CH&,‘Qp|

)
102%ell oo 11x0) < 19 %lc(frmin rmas]xy) < C,

C([Tminyrmax] X Y) H atra HLT((O,T) XQ) < C7

1000232 e (0. i@y < ClrOyD cirmmmmad <) 1007 L2 01y x2) < €
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10202 | oo, xa) < €7 1040yl (frmin rmanlxy) < €71C,
101020502 Lo (0 0 @)) < Clry Oyl o(rmimrmad x¥) 107 | L (0.1 <) < €71 C.
These estimates can be transferred to . via
O = 0z, Outhe = e — 1, Qidutbe = Qa0
Oodste = 000, iPadothe = nOadrthc
The estimate for J. follows from (4.11) via the pointwise estimate
Je(t,x) = det(00(t, x)) = det(é’x;b;(t, z)+1)= det(é’yi\/;(r(t,a:),x/e) +1)
= det(2,0(r(t, 2), 2/2)) > ¢
for every (t,z) € [0,T] x Q. O

We recap the notions for the Jacobian matrix of 1), its determinant and adjugate matrix
from Chapter 2
U (t,z) == 0x9(t, ), Je(t,x) = det(duve(t, x)),

. 1 (4.20)
Ac(t, ) = Adj(P(t, ) = Je(tvx)qje (t,z).

Lemma 4.3. Let 7. € COY([0, T]; [7min, Tmaz]) /! with |0sre kel Lo o,ry < Cyest for every
k € I.. Let 1. be given by (4.18) and V., J. and A. by (4.20). Then, there exists a
constant C, which is independent of € and r. such that
1Te®lle@n) + H‘I’;l(t)Hc(Qj) + [ @ o) + |‘ng(t)‘|c(ﬁs) <C,
14:) oy + AT O oy + IVI7 O lon, < €

for every t € [0,T] and
[00%e(B)] o0y + 1097 (D] =02,

100 T (D)l 260y + 106 ()| e
|0:Ac ()| Ly + 10:AZ ) 2 02y

9

C
c,
c

NN N

for a.e. t € (0,T).
Moreover, AgD\I/;T is uniformly coercive, i.e. there exists a constant ., which does not
depend on € or re, such that

Ac(t,2) DT (t,2)€ - € = al¢f
for all (t,xz) € [0,T] x Q. and all £ € R™.

Proof. Arguing as in the proof of Lemma 2.8 and Lemma 2.43, we can infer the uniform
a-priori estimate from the uniform estimates given in Lemma 4.2. The uniform coercivity
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4.2. Transformation to a periodic reference domain

of A.DVZ " can be deduced from these uniform bounds as in (2.38). O

In order to obtain the uniqueness of the solution of the microscopic problem, the fol-
lowing Lipschitz estimates become useful.

Lemma 4.4. Letr.; € CO1([0,T7; [rmm,rm,w])'[s' with |0yre i k| L 0,7) < C'gcs_1 for every
ke I. forie {1,2} and 1. ; be given by (4.18) for ro = r.;. Let W.;,J. i, Az be defined
accordingly. Then, there exist constants C' which are independent of re; such that for
a.e. t€(0,7)

H‘I’e,l - ‘Ijs,2|

Hax‘l]s,l - ax‘ljaﬁ |C([0,t]><§) + HaxJE,l - axJEQ”C([O,t]xﬁ) < 5_ICHT5,1 — T2
HAs,l - Aa,2|

c(oax@) T IJen = Jealeqonxm < Clren = rezloqon=().

(oL ()

o(o.xq) T H‘I’;% - ‘I’;5| o([o0,]xq) S Cllrex = releqon= @),

and

60(”5,57"5,1 — 5,57“572
C(Hatre,l - at7"5,2|

|10tbe 1 — Orthe 2|l 1 (%L2(0,t)) Lo(@;L2(0,8)) + Ire,1 — TE,QHL‘"/-((O,t)xQ))v

<
<

|0t T — Otde 2| Le(i02(0,0)) Le@sr2(0.0) + a1 — re2l Lo (0, 9)) -

This implies in particular

Cllreq - r6,2|‘LI‘((O,t)xQ)7

<
< EC(”atrs,l - a257‘z-:,2|

|Ac101%e1 — Ac 2010 2

[Aci DV ] — Ao 2DV 5 | 1o (aur2(0.))
)

|L""(Q;L2(O,t) L*(Q;L2(0,t))

+ |lreq — 7"5,2|\Lﬁ((o,t)x9))-
Proof. Similarly to the proof of Lemma 4.2, we use ¢c(t,z) = 7?[);(75,3:) + x and @\D; =
e(rs(t,z), z/e). Then, we can estimate

H\Ila,l - \1[572

|C([0,t]x§) = |02te,1 — aacwalﬂc([o,t]xﬁ) = |0y (re,, /) — Oyt (re,2, '/E)Hc([o,t]xﬁ)
<10:0, 8o

< CHTE,l — T2

A\

]x?)HTE,l — Te2|C([0,t]; L7 (Q))

Tmin,"max

C([0,t]; L7 () -

The estimate for ||.J; 1 — JE:QHC([O T]x9) follows from the fact that J; ; are polynomials in the
entries of W, ;, and that W, ; as well as 7. ; are uniformly bounded. Since J. ; is uniformly
bounded from below, we can transfer this estimate to

HJ;11 - ‘];21HC([O,T]><§) < Clren = rezl oo, @)-
—1

Similarly, due to the polynomial structure of W_;

and A;Z-l with respect to the entries of

v, ; and Js_il, we obtain the estimate

1Ac1 — Ac |

corx® T 11 = Yoaleqomxm < Clrea = reloqor;s))-
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

The estimate of the spatial derivatives can be inferred similarly, by

”ax\Ija,l - axqja,2|

c(ox@) = 1020281 = 002z 1]l o0, <00
= ey dy(ren,-/e) — 040y (re 2, ‘/5)Hc([0,t]x§)

< 5710”arayaywHC([rmm,rmx]xV)Hrﬁvl — Te2

(0.2 (@)

-1
< g CHTE,l - 7’572| C([O,t] Xﬁ)

Due to the polynomial structure of J. and the uniform boundedness of the entries of W,
and £0,¥., we can transfer this estimate to

Haacja,l - 0$J‘572HC([071€]X§) < 5710“%,1 —Te2 |C([0,t]><§)’

T}lg estimate on the time-derivatives follows with the uniform essential boundedness of
O0r0rpe and Osre by

10he 1 — Ot 2l (s2(0)) = el 0r(re, /€)Ores — O (e, -/€)Orre 2 Lo(L2(0,t))
< el6P(ren,+/) — B (re 2, +/8) | e (0w |Ore 1

+ el (2, /) | Lo 00y BT — Bure

L= (;L2(0,t))

| (:02(0,0))

< €]0:0 0 e 0.0y kv et — T2l (0.0 <) 10eret | Lo (022 (0.0)

+ 5HarJHL‘"’-((O,t)><Y)Hatrs,l — Ogre 2|

< 60(“7"571 — Te2

L (:L2(0,t))

L (0,yx ) + 101 — Oere 2| Lo (s 12(0,4))) -

An easy extension of this argument shows the estimate for ||0:V.1 — 04 We 2| 1 (0;1.2(0,0))-
Then, we use the polynomial structure of J. in order to deduce

Hath,l - at<]5,2|

re@:200) < C(10ren — dreall e ir200,0) + I7e1 — Te2ll L7 (0.4 x0.))

from the previous Lipschitz estimates.

Finally, the last two Lipschitz estimates of Lemma 4.4 follow from the triangle inequality,
the previous Lipschitz estimates and the essential boundedness of the involved terms. [

Lemma 4.5. Let 7. € COY([0, T]; [7min, Tmaz]) /! with |0ere kel 0,1y < Cycst for every
ke I.. Let 1. be given by (4.1§), f by Assumption 4.1 and fs(t,a:) = f(t,ve(t,x)) for
a.e. (t,x) € (0,T) x Q. Then, f- € L*((0,T) x Q) and, in particular,

| fell 2oy x0) < C

for a constant C' which does not depend on € and r..

Proof. Due to Lemma 4.2, J; is uniformly bounded from below. Then, the uniform esti-
mate on f. can be deduced by computations as in Lemma 2.11. O
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4.2. Transformation to a periodic reference domain

Further properties of the coordinate transformation
The e-scaling of (4.17),yields

n—1
R (1.21

for x € I'c. Furthermore, we note the identity
JUT Tt 2)n -0 = |Jo(t, 2)8C T (t, x)a| for (t,z) € (0,T) x 0Q.,

which holds for general coordinate transformations and can be derived by means of the
theorem of Gaufl and the integral transformation for bulk and surface integrals. Since
J: > 0, we obtain in particular

Ut x)h - o= |UCT (¢, )7 for (t,x) € (0,T) x 09. (4.22)

Strong form in reference coordinates
With the transformation 1. from (4.18), we transform the data and the unknown u. by

fs(tvx) = f(t,¢e(t, 7)), ﬁ;n(o) i= ue (Y (0, 7)), e (t, ) == ue(t, e (t, x)).
We define

I'.j = 0eBr(k +m) for k € I, T, := U |
kel

Then, transforming (4.7) onto the periodic reference domain leads to:

Microscopic reaction—diffusion equation with coupled domain evolution

in the reference coordinates

Opite — Oy tic U Optpe — J-H div(A. DY T Viie) = f. in (0,7) x Q.,
—DU_ Vi - | a4 edrop = eg(tie, o) on (0,T) x Ty, ke I,
—DV_ Vi, - | (¢t z)n| T Th =0 on (0,T) x 69,
e (t = 0) = 4l in Q,
1
Opre k(t) = o ][ g(ts(t,2),re k(t, 2))do,  forte (0,7),k € I,
SFs,k(t)
re(0) = 1% for k e I,
(4.23)

where n denotes now the outer normal vector of €2..
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

Weak form in reference coordinates

In order to derive the weak formulation, we multiply the first equation of (4.23) by J.p
for ¢ € H'(Q.). Then, we obtain with the Leibniz rule and the fact that div,(A:0::) =
01 Je (cf. also the proof of Lemma 3.26) that

Jo0ptie — Je0,0:Y o) = 0,(Jetie) — Oy Jetie — JoUT Ophe - Ve
= 0y(Jtie) — div(Aopbe)ie — J-U 0pp. - Vi (4.24)
= 0y(Jotie) — div(ALdpbetie ).

After this substitution, we integrate over ()., which yields

J 0r(Jte)pdar — diV(AED\I/;TVﬂE + Aot )pdr = J Jefacp dzx.
Q. Qe

We integrate the divergence term by parts, which leads to

- J div(A.DV_ Vi, + A-0pbtic)p dx

Qe
- J(AED\I/;TVQE + A0t - Vpda — f (A-DVZ Vi + Acdpbetic)p - nuda.
Qe 00Q¢

We rewrite this boundary integral using the fact that d;p. = 0 on Q2 and dp). = —edyren
on I';, (4.22), (4.21) and as well as the boundary conditions from (4.23),

— J A.DY_ Vi, - i+ A0t - pindoy,

00

— > | ADVC Vi - o — @oyretie Jo VT - fdoy, — f A.DYC Vi, - pndo,
kEIEFs,k 20

= > | ADV TV, - o — J|UZ T | re pip do
ke[sFE .

-y f e T 0= Tl g (e, re)p dog
kEIEng

n—1 R
7) J eg(le, re ) dog.
Fe,k

I
|
]
N
=] PN

Moreover, we use (4.21) in order to transform the boundary integral of the right-hand side
of the ordinary differential equation of (4.23). Then, we obtain the following weak form:
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4.3. Existence, uniqueness and a-priori estimates

Weak form for the transformed microscopic reactive transport problem

Find (de, ) € L20,T; HY(2)) x COL([0, T]; [Fmins "max]) ! with
0(Jo0.) € L2(0,T; HY(Q.)') such that, for a.e. t € (0,7,

<at(‘]€a€)(t)? 90>H1(QE)’,H1(QE) + J AE(t? :L‘)D\I/E_T(t, l‘)Vﬁg(t, 1‘) ) VSO(:I") dz
Qe

+J&w@@%w@%@®WM@Mx=fk@@ﬁ@@ﬂ@m

Q. Qe
T n—1 ~
=X ()T [ gttt st don (4.25)
kel .

1
Opre (1) = — ][ eg(te(t, z),re k(t)) dog for all k € I,
Fs,k

for every ¢ € H'(€2.) and J., U., A. depending on 7. as described above.

\. J

We note that r. € C%([0,T]; [ruin, rmax])uf| yields J. € C%1([0,T]; C*(€.)) and with

Ou(Jete)(t) ey m .y .y =0t (t), Je() o).y, m.)
+ e (t), OrJe () 0D 0oy 1Y (90)

we obtain o;1. € L2(0,T; H'(£2.)) and, thus, the initial condition 7.(0) = 4" is well-posed.

4.3. Existence, uniqueness and a-priori estimates

We show the existence of a solution of (4.25) with a fixed-point argument and the unique-
ness by means of energy estimates. From the existence result, we can directly deduce
uniform a-priori estimates for 4., Vi and 0 (Jet.).

Theorem 4.6. For everye > 0, there exists a unique solution (1., r.) € L*(0,T; H'(Q.)) x
CPY([0, T; [7min, 7”ma$])|1EI with 0(J-0.) € L2(0,T; HY(2.)") of (4.25). Moreover, there
exists a constant C' such that

e Ortic|| 20,11 e yy + 100 (Jetie) | 20 im0y

’

<C
-0 (4.26)

)
e | o 0,722 (000)) + [ ell 2o, m (00 ))

Proof. We reformulate (4.25) as fixed-point problem in L?(S; H?(Q.)) for B e (%, 1) with
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

fixed-point operator

£ : L20,T; HP () — L*(0,T; H*(Q.)),
u > L(u) = Lo(L1(u),u),

where £; is the solution operator of the ordinary differential equations in (4.25), i.e.

L(u) : LQ(S; HB(QE)) — R,

u > Ly(u) = re,

where r. is the solution of

1
Oire = ~ ][ g(u,re ) doy for all k € I,
st (4.27)

re(0) = 7",
and
Rs = {TE € COJ([QT]; [rminarmax])Hs' | |T5,k(t1) - Ta,k(t2)| < Cgcs_17 ke I€?t1>t2 € [O’T]}’

where we endow R, with the W12(0, T)|15|—norm. The operator Lo is the solution operator
of the reaction—diffusion equation (4.25) for given right-hand side and transformation
quantities, i.e.

Loy : R. x L*(0,T; H?(Q.)) — L*(0,T; H*(Q.)),

(re,u) — LQ(rE,u) = U,
where 4. € L?(0,T; H*(.)) with o;(J.4.) € L?>(0,T; H'(Q.)") solves
@e(Ja) (1), oy m(a.) + (A() (DY T (1) Vie(t) + 5t¢s(t)ﬁe(t))7V¢)Lz(QE)

= (F0F-0). V) @y — 3 (52)" elgult). (). @)izr. (4.28)
kel.

for almost every ¢ € (0,7) and every ¢ € H* ().

In Lemma 4.7 and Lemma 4.12, we will show that the operators £1 and Lo are well-
posed and with Lemma 4.8 and Lemma 4.13, we can infer their continuity. Thus, £ is
well-posed and continuous. Moreover, Lemma 4.12 provides a constant C. such that

|Ovtic )l 20, m 0.y + el Lo 0,722 (020)) + el L2071 (000)) < Ce (4.29)

for all (r,u) € R. x L*(0,T; H?(€.)), where @, = Lo(r,u). We fix this constant C.
and denote the set of all functions u. € L?(0,T; H®(€).)) that satisfy (4.29) by K. c
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4.3. Existence, uniqueness and a-priori estimates

L%(0,T; H?(2)). From (4.29) and the construction of £, we obtain

1O L(w)| 200,151 00y + 1£(w) | Lo 0,1 02(00)) + 1£(w) | 200,111 (00)) < Ce-

for all uw € L?(0,T; H?(Q.)) and, in particular, £ maps K. into K.. It can be easily
observed that K. is convex. Moreover, the lemma of Aubin—Lions shows that K. is
compact in L%(0,T; H?(€.)). Thus, Schauder’s fixed-point theorem provides a fixed-point
of £ in K, and by the construction of £ and L£;, we can infer that (u.,L;(%.)) solves
(4.25).

The uniqueness of the solution will be shown in Lemma 4.14. ]

In the following lemmas, we show that the operators £; and Lo are well-posed and
satisfy some Lipschitz type estimate.

Lemma 4.7. Let £y be defined as in the proof of Theorem 4.6. Then, Ly is well-posed.

Proof. Since (t,r) — é § g(u(t,z),r)do, is globally Lipschitz continuous with respect
Fs,k

to r and measurable with respect to t for u € L%(0,T; H?(€2.)), Carathéodory’s existence
theorem gives a unique solution 7. € WHL(0,T) of the ordinary differential equation
(4.27) for every k € I.. Moreover, Assumption (4.9) ensures that 7. j € [Fmin, "'max] and
the boundedness of g implies that

1 C
sl = | £ gtutt.).ra(0) dos| < 2
° Fs,k: °
for a.e. t € (0,T). Hence, r. € R, and L; is well-posed. O

Lemma 4.8. Let L1 be defined as in the proof of Theorem 4.6. Then, there exists a
constant Ce such that, for every t € [0,T]

lre1 = reallLoqoy <) + 10ire 1 — 0re ol o200 < Cellur — w2l p2¢oyxr.y  (4:30)

where re; = L1(u;) for arbitrary uy,ug € L2(S; H3(Q.)) and i € {1,2}. In particular Ly is
continuous.

Proof. Let t € (0,T) and u; € L?(0,t; H?(Q.)) for i € {1,2} and du = uj; — ug. Let re
be the solution of (4.27) for data u; and we write dre = 7z 1% — re2k-
Multiplying (4.27) with ér. ;, and integrating over (0,t) yields

t

1

5167 O = [ 2udrea(r)6ren(r) ar
0

= fcls ][ (9(u1(7', T), 71, k(7)) — g(ul(T,z),rs’Lk(T))) dop0re i (7) dr.
0 T

e,k
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Then, we obtain with the Lipschitz estimate for g, the Holder and Young inequalities

t

1

shors@P <ec( | f putra)ldo, + 5roarn)l)ores(r) dr
0T

Ce (6wl 2001 (r. )y + 1072kl 2200, 107 e £2(0,0)

<
< Ce(10ul 2oy ) + [197em

|%2(0,t))

Then, the Lemma of Gronwall leads to

|07 k]

(00 < CelldulFa (o xr. - (4.31)

In order to estimate the time-derivative, we multiply (4.27) with 6;07. j, integrate over
(0,t), proceed as above and use (4.31), which gives

t
1
forsrealeon = | o f (90ur(r o) reas(r) = glalrya), reaa(r) dosdidrea(r) de
0 ek

C6(H5U’HL2((O¢)><FE,;€) + H57“e,k |L2(0,T))H5t57"s,k L2(0,t)

NN

Celldull 20,6 xr. ) 10607 k| 20,0 -

(4.32)

By noting that

2 2 2 2
Héra“m((o,t)m) = r]?ef}f H57"a,chL2(o,t) < I]?;}f CEH(;UHL?((O,t)xFE,k) S C€H5“HL2((0,t)xr€)’

2 2 2
10e8re 7 (@ p2(0,y) = max 007 k[ Tao,) < max Ceulzaopxr. ) < CeloulLe(oxr.):
1> IS5

we obtain the desired result. O

In order to show that Lo is well-posed, we use the theory of monotone operators from
[Sho97].

Definition 4.9. Let V be a Banach space. A function A : 'V — V' is monotone if
(A(u) — A(v),u —v)yry =0 for all u,ve V.

Definition 4.10. Let W be a separable Hilbert space. A family of operators {B(t) €
LW; W'Y |t e[0,T]} with B(-)(u,v) € L*(0,T) for all u,v € W is called regular if for
each pair u,v € W the function B(-)(u,v) is absolutely continuous on [0,T] and there
exists K € L'(0,T) such that

|0 (B(t)(u,v))] < K@)|u|w|v|w for all u,v € W and a.e. t € (0,T). (4.33)

Proposition 4.11. Let V,W be separable Hilbert spaces such that V can be embedded
continuously and densely in W. Let A(t) € L(V,V') and B(t) € LW, W') for every
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4.3. Existence, uniqueness and a-priori estimates

t € [0,T] and assume that A(-)(u,v) € L*(0,T) for all u,v eV and B(-)(u,v) € L*(0,T)
for all u,v € W. Moreover, we assume that {B(t) € LW, W') | t € [0,T]} is a regular
family of self-adjoint operators with B(0) monotone and we assume that there are constants
A, ¢ > 0 such that

2A(t) (v,v) + AB(t)(v,v) + B'(t)(v,v) = c|v|v

for allveV and a.e. t € (0,T). Then, for given u™ € W and f € L*(0,T; V') there exists
ue L?(0,T;V) such that

&i(Bu)(t) + A(t)u(t) = f(t) in L*(0,T;V") (4.34)
with (Bu)(0) = B(0)u™™.

We note that B'(t) € L(W, W) is defined by B'(t)u := é¢(B(t)(u)) for ue V.
Proof. See [Sho97, Chapter I11.3, Proposition 3.2]. O

Lemma 4.12. Let Lo be defined as in the proof of Theorem 4.6. Then, Lo is well-posed
and there exists a constant C' such that

, (4.35)
(4.36)

ellOvtie ]| L2001 yy + 1 0u(Jetie) [ 20,711 () < C

e L= 0,1y x00) + [ Viie| z2¢0,myx00) < C
for every (re,u) € RoxL?(0,T; H?(Q.)) where 4. = Lo(re,u). In particular, 0y(Jo0z), dsil. €
L2(0,T; H'(9.)) and 4. € L*(0,T; H*(£.)).

Proof. First, we show the existence of a solution of (4.28) by means of Proposition 4.11.
Then, we show the uniqueness of the solution and the uniform a-priori estimates by energy
estimates. We choose V = H'(Q.), W = L?(Q.) and define

A(t)(u,v) == (A() (DT (t)Vu — e (t)u, V) r2ea.) for u,v eV,
B(t)(u,v) = (J(t)u,v) 2(q.) for u,v e W,

and

Fw) =(Jefe, @) L20m)x00) — D (5 (Tiék)n_lg(%ra,k)#?)

2
e L2((0T)xT. 1)

for u e L2(0,T; H? ().

Now, we have to verify the assumptions of Proposition 4.11. We transfer the essential
boundedness of r. and 0. to the uniform a-priori estimates on . and its derivatives via
Lemma 4.2. These estimates can be transferred further to the coefficients via Lemma 4.3.
Then, we can analyse the operators A and B as well as the right-hand side f.
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

o A(-)(v,w)e L*(0,T) for all u,v e V: From the Holder inequality, we get

A)(u,v) = (A-() (DY T (H)Vu — dpbe (D, Vo) 2o

(14 DY T (O r () [Vl 2oy + A< e oy 10e | e ) [ 200 ) IV 0 200

<
< Clulv ol

for all u,v eV and every t € (0,7).

B(-)(v,w) e L*(0,T) for all u,v € W: from the Holder inequality, we get
B#)(,0) = (Ja (B, 0) paqeny = IO ooy lul 2y ol 2y < Cllulw ol

for all u,v € V and every ¢ € (0,7).

B(t) is a regular family of self-adjoint operators and B(0) is monotone: using the
uniform essential boundedness of ¢;J., we obtain with the Holder inequality

|0:(B (1) (u, v))| = [(9Je(t)u, v) 20| < Cllul2. 0] 2.

for all u,v € W and a.e. t € (0,7), which shows that B is a family of regular
operators. From the structure of B(t) it is clear that it is self-adjoint for every
t €10,T] and that B(0) is monotone.

coercivity: the uniform coercivity of A.DW¥Z " and J. is given by Lemma 4.3 and
Lemma 4.2, respectively. Together with the essential bounds of the coefficients, we
obtain constants Cq, Cy > 0 such that

< (A()DY; () Vu, Vu) 120,
crllull 2oy < (Je(B)u, u) 20,y = B(t) (u, u),
(Ac(t)0re(t)u, V) r2(0.) < €Cllul 20 [Vulr2(a,) < Cl”“”%%ﬂs) + a/QHVuH%g(QE),
—B'(t)(u,u) = —(0J:-(t)u, w) 120,y < Calul2(q.)

a|Vu| 20,

(4.37)
for a.e. t € (0,7"). Combining these estimates, yields

2A(t)(v,v) + AB(t)(v,v) + B'(t)v(v) a| Vol 2.y + (Aey — 201 — CQ)H’UH%Q(QE)

for A = (Oé +2C7 + CQ)/CJ.

right-hand side f: from Lemma 4.5, we obtain f. € L2((0,7) x ) and with the
embedding of H?(€).) into L?(T. ), the essential boundedness of J; and g, we can
infer f e L?(0,T; H'(2.)"). Moreover, e-independent estimates for f are presented
below.
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With all requirements of Proposition 4.11 shown, we obtain a solution 4. € L2(0,T; H(€.))
with 0,(J-te) € L2(0, T; H(2.)") of (4.28) such that (J.4:)(0) = J.(0)al".
Since J. € C%1([0,T]; C*(€.)), we obtain ¢y, € L?(0,T; H'(2.)") with

J (0e(Jetie)(t), o(t)) (. )y, mi (o) dt
0 (4.38)

= f@tﬂs(t)a Je(O) o)) i oy, 11 (00) At + (e, Ot Je0) L2((0.1) x020)
0

for every ¢ € L*(0,T; H'(£2)). Thus, we can embed . in C([0,T]; L*(£2)) and with
J. € C([0,T]; C(£)), we can transfer the initial condition to @.(0) = 4"

In the following, we derive the uniform a-priori estimates (4.35)—(4.36) and show the
uniqueness of the solution. Therefore, we test (4.28) with the solution itself and integrate

over (0,t) for t € (0,7"), which gives

t
J<at(Jgﬂ5)(T), a&*(T)>H1(Q€)/7H1(QS) dr + (AED\I/;TVQS, vaE)LQ((O,t)XQE)
0

A N 2 N 4.39
+ (AcOitpetic, Viie) 120, x0.) = (Jefe, Vi) L2(0,0)x00) (4.39)

- 3 (G egturen), i)

kel.

L2((0,t)xTe i)
With computations as in (4.38), we can rewrite the first term of the left-hand side of (4.39)
by

t

f (O Tet12) (7). () mrrceny. sy A7

0
= %\|J51/2(t)ﬂe(t)\|L2(Qg - %HJEUQ(O)@HHH(QE) + 5 ((0eJ2) i, i) £2((0,4) x20)

where the last term can be estimated with the uniform essential bound for ¢;J. by

|((0sJe) e, ) 20,0 x2) | = 10 Tell Lm0y xe) [ Bel T2 0.y werey S Clltiel 20,0100

The first summand of the right-hand side of (4.39) can be estimated with the uniform
essential bound of J. and the Holder and Young inequalities by

(Jofos Vi) 20.yx0) < C (17200 w0y + Nt 720, x00))- (4.40)

For the second term of the right-hand side of (4.39), we use additionally the boundedness of
g, the Holder and Young inequalities as well as the uniform trace inequality of Lemma 1.28
for I'.. Then, we obtain for every é > 0 a constant Cy, which is in particular independent
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

of €, such that

- ()

kel.

eg(u,r- 1), 0
gt rek) €>L2((0,t)><1“67k)

< O] Lo (Rx [ramin s rmax]) 122 (0,) x ) e | 20,6 x T2
< €091 (Rx i) | 22 (0.0 x 1) F €1l 720,y xT0)
< ClglT 0 @ ramrmend) T Coliel 220 x0.) + IV 87201 x00)
After estimating the second and third term on the left-hand side of (4.39) similarly to

(4.37), we can combine it with the previous estimates. Then, after collecting all the
constants and choosing ¢ small enough, we obtain

|22 @)t ()] 2oy < C (el 20.iyxay + 11320y 000)
+ [ T20) 8 |20y + 1917 (Rox o))

Lemma 4.5 shows that | fEH%Q (0.7)x ) 1 uniformly bounded and a similar argumentation
yields the uniform boundedness of HJ;/ 2(0)@;““ r2(Q.)- Then, by applying the Lemma of
Gronwall, we obtain the uniform a-priori estimate (4.36).

For fS =0, g =0 and 4" = 0 the Lemma of Gronwall yields 7. = 0. Together with the
linearity of the equation, this yields the uniqueness of the solution of (4.28).

By testing (4.28) with ¢ € L?((0,T; H'(2.)) and employing the estimate (4.36), we
obtain with similar estimates the uniform boundedness of |0y(Jete)|z2(0,7;m1(0.))- After-
wards, we use (4.38) and (4.36) in order to estimate

J@tus >H1 Y HL(Q)

< Hat(Jaua)HLQ(OTHl o= elrz oo + el z2qo.nx 0o l10Te I el 2o x0.)
< e 'Clelrzomm@y) + Clelizonxay <& Clelrzo.nxa):

1

where the factor e arises, since [VJ ! L (0.1)x0.) < €71C. Thus, we obtain (4.35). [

Lemma 4.13. Let Lo be defined as in the proof of Theorem 4.6. Then, there exists a
constant C. such that
(de,y = ﬂ5-2,2)(75)‘@,2(95) + V(e — ﬁs@)“%?((o,t)xgg)
SCe (e, — e Ta(o ) + lur = u2lZagonxr.) (4.41)
+ Hrs,l - )7

for every t € (0,T) and (re;,u;) € Re x L*(0,T; HP(Q.)) where Uei = Lo(re,u;) for
i€ {1,2}. In particular, Ly is continuous.

(0,)x) + |71 —
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4.3. Existence, uniqueness and a-priori estimates

Proof. Let r-; € Re and u; € L*(0,T; HY(Q2:)) for i € {1,2}. Then, we denote the corre-
sponding transformation quantities by ¢, ;, ¥.;, J.; and A, ; for i € {1,2} and fw—(t, x) =
f(t, e i(t,z)). Now, define . ; := Lo(r:1,u;). Moreover, we write 0r: = re1 — re2,
ou = uy — ug, 0¥ = Y1 — P2 and similarly for the differences of the coefficients and
the products of those terms.

In order to estimate du., we test (4.28) with di., integrate over (0,t) for ¢t € (0,7) and
subtract the resulting equations by each other, which yields

J@ﬁ(«feﬁa)(ﬂv Sie(T)) i (. mi (e A7 + (8(A DV Vi), Vi) 1200 x0.)
(4.42)

+ (0(A0pt1e), VCSUE)L?((Ot 0.y = (6(Jefe), 81ic) r2((0.4yx00)
_ Z Talk g(U1,T5,1,k) ( Rk)

kel

-1
g(UQa T5,2,k)7 90) LQ((O,t)XFE,k)’

Using

t

J<at5(<]5ﬂ5)(7'), 6a€(7)>H1(QE)’,H1(QE) dr
0
=|\J51,/12(t)5ﬂs(t)|\L2(Q + 5(01Je 100, 0lic) 204y x) + 3 (000 1The 2, 6Tie) 12((0.0) x 2.

+ J<atfés,2 (7'), 0J: (7')5@5 (T)>H1(QE)’7H1(QE) dr,
(4.43)

we can rewrite (4.42) by

L+ Iy = |1 (o Ge(8) 7200,y + (A1 DY Vi, Vo) 201y
(6,5J5 1571,6, (5u€) L2((0,)x Q) — (6,55J6ﬂ572, 5ﬂ6)L2((0,t)xQS)

- J@tﬁsz(ﬂ? §J(T)60(T)) i1 0y, 11 (0.) AT — (8(ADW . T Viie 9, Vi) r2((0.0)x0.)

- (5(Asatwsﬁ€)a v(Sﬂf.‘)L?((O,t)ng) + (5(Jefs)> 5ﬁs)L2((0,t)ng)

- Z € (%T?Vk)nilg(u27re2k) 5“6)L2( Ot XFE k) 2 I

kel
(4.44)

1
g(ur,re1 k) —

In the next step, we estimate I; and I from below and I3, ..., Iy from above. For this,
we use the uniform estimates for the coefficients of Lemma 4.3 and the uniform Lipschitz
estimates of Lemma 4.4.
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

e [, I5: With the uniform coercivity of J. 1 and AEJD\I/;I, we obtain

1/2 ~ ~
I = [T )80 (8) 220, = 022, ),
Iy = (Ae1 DV | Ve, Viic)72((0,1yx0.) = ¢ ViicT2((0.9x0.)-

e I3: With the Holder inequality and the essential boundedness of d;J 1, we obtain
Iy = (041 00ic, 60e) 20,0 x2.) S ClOTe]|F2((0.0) %00

e I;: With the Lipschitz estimate from Lemma 4.4, the boundedness of .2 and the
Holder and Young inequalities, we obtain a constant C. > such that

[4 - —(6,5(5J5ﬁ€72,(5125)L2((07t)x96)

1046 e | on (s 2 0.4 1 8e 20 2 (0,8, 12 (020)) |6 [ 120 4 12 (20

(10:07< | e 0 12(0,0)) + 107l 22 (0,60 2)) [10Tie | L2 (0.4, 12(50. )

NN N
QO

= (100077 .02 (0,09) + 1070 0.0y x2) + 10872002200 y)) -

e I5: First, we use the boundedness of [0yt 2[| 720 1; 11 (.)y in order to estimate

t
I5 = J<at'&€,2 (T)’ 5J€(7’)5@5(7)>H1(QE)’,H1(95) dr
0

< 0vtic 2l 1200 4,111 (0 | 0Te0ie ]| 20 1,111 (0. )) < € CIOTe6e | r2(0 41100, ))-

Afterwards, we obtain with the Holder and Young inequalities for every A > 0 a
constant C'y such that

|‘5J€5a6||L2(0,t;H1(QE)) :H‘Sjs(meHL2(0,t;L2(QE)) + HV((SJEC%L&)HLQ(O,t;LQ(Qs))
<(CAl6 T F o0y <00y + ClOTel Z2 0.0y 000y
+ Cl6V I 0.0y 000y + MV Z2 0.0y x000))

and, then, the Lipschitz estimate from Lemma 4.4 yields

Is < CECAH(ST'sH%’/J((O,t)xQ) + CEH(MEH%%(O,t)xm) + /\Héva€”%2((07t)x95)'

e Is: By similar arguments as above and the boundedness of |V 2| r2((0,)x0.)s We
can infer

Is = —(8(A DY ")Vl 5, Vi) 1206y x )
< [6(AeDY. )12 0,0y x) [V e 2
<

| 22(0,6)x ) 10Vt [ L2 (0.6 x 20

Cal0re 72 0.4y x 0y + MOVae|T2((0 1y xr.)-
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4.3. Existence, uniqueness and a-priori estimates

e [7: We note that §(A:0ict:) = 0(Ac0i)e )1 + (A01tPc)10Ue. Then, we obtain by

similar arguments as above

I7 = (Cl6(A0etb) | e (0.0 x 20y + ClIOGe] L2((0,0)x2)) IV Olicl| 20,6y x 2.
< CeON (107 T oo (0 4y x 2y + 1060720 00 12(0,89) + 10817 2((0,09x2.))
+ /\|‘5Vﬁ€”%2((0,t)x§25)'

e Jg: With the Holder inequality, we can estimate

Is < 00T fo) | L2((0.0yx ) 108 | L2 ((0.6)x20)

<
< (107: 22 (0.0 x 0 1 F (o e ) L2 g0y xa) + e 2l e (0.0 x0) 10 F2l 22 (0.0 x02))

HMEHLZ((o,t)xQE)‘

From Lemma 4.5, we get | f(+,¥=,1) | 22((0,0)x2.) < C and with the Lipschitz continuity
of f and the boundedness of r., we obtain

16 £l 220, x00) < ILOYe 20,0y x0.) < €Cl6el12((0.)x000) < ECIOT<] e (0,6 x92)-
Thus, we get

Iy < Clo7e]|7 e 0.0 x) + ClOel 720100 )

e Iy: We employ the Lipschitz estimate on g, the uniform boundedness of r. and g,
the Holder and Young inequalities as well as the trace inequality to deduce

n—1 n—1
Iy = — Z ((Tsék) g(ul’re,l,k) _ (Ts}%,k) g(ug,re,gk),éﬂg)

kel.

L2((0,t)xT%)

Ce (167 L (0.6 x2) + 10w 20,6y x ) )10 | L2((0,6)x 1)
Ce([187e 20 (0.0yx00) + 10ullZ 200,012y + 1888e | Z2(0 4y wT0)

INCININ

Ce([187e 20 (0.0yx00) + 16ullZ2(0.0) 1))
+ Ce(Call6te]| 720,100y + MVOtelF2 (0.0 x600) -

After combining the estimates of I3, ..., Iy with (4.44), choosing ¢ small enough so that
the gradient terms on the right-hand side can be absorbed by the gradient term on the
left-hand side, we collect all constants and get (4.41).

The continuity of Lo can be inferred from (4.41) with the lemma of Gronwall. O

Lemma 4.14. The system (4.25) has at most one solution.

Proof. Let (i i, 7<) € L>(0,T; HY(2)) x COL([0, TT; [min, "max]) <! for i € {1,2} be two
solutions of (4.25). Following the proof of Theorem 4.6, these solution . ; solve also the
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

fixedpoint problem . ; = Lo(7c 4, Ue i), Te,i = L1(te ;) for £1 and Lo defined as in the proof
of Theorem 4.6. We define 0. = U, 1 — Uc2 and 0r: = 721 — e 2.

Then, the Lipschitz estimate from Lemma 4.13, yields a constant C. such that for
a.e. t e (0,7)

168 (D720 + 1 V0| T2((0 1y x0)
< Ce(100eT2(0.tyx 0y + 108 Ta0 tyxrey + 107200 x2) + 1007 Loquzz o) -

With Lemma 4.8, we can estimate dr. and §;r. in terms of d4.. Then, we apply the trace
inequality for I'. and obtain for every A > 0 a constant C; ) such that

168 ()] 200y + IVl z2((0,6y x20) <CE(H5”EL5H%2((0¢)XQ€) + H5ﬂ€|‘%2((0,t)xfs))

SCe 08 L2 0,0y c0) + A VOTe] 720, x00,)-

After choosing A small, we can absorb the gradient term from the right-hand side with
the gradient term from the left-hand side. Then, the Lemma of Gronwall yields

[6ae(1)122(0.) + | Viiel 22 (0.0 x.) = O-
for a.e. t € (0,T) and, thus, the solution is unique. O

The a-priori estimates (4.26) do not control the time-derivative ¢yt uniformly with
respect to e, which would be necessary in order to apply the Aubin—Lions lemma. Never-
theless, we can control some time shifts of @, uniformly with respect to €.

Lemma 4.15. Let 4. be the solution of (4.25). Then,
T—h
Ge(t + h) — G ()22 dt — 0 uniformly with respect to € 4.45
12(9.)
0

for h — 0, i.e. there exists a continuous monotonically increasing function w : [0,T) with
w(0) = 0 such that

T—h
| ete 1) = 2Oy <l (1.16)
0

for every h > 0 and every € > 0.

Proof. For a time-dependent function ¢, we define §,p(t) = @(t + h) — p(t) for h > 0.
First, we note that

(5h(J€ﬁ5) = J0ptlle + (Shjgﬁs(' + h) (4.47)

After multiplication with 0., we can estimate with the uniform coercivity of J. and the
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4.3. Existence, uniqueness and a-priori estimates

triangle inequality

callOniic| 220 r—nyxa.y < (JeOniie, Onue) 2 ((0,7-h)x2) (4.48)
< |(0n(Jetie), Snue) 20,0 nyxao)l + [(OnJetic(- + ), dnue) L2(0,1—nyxa) -

Since %‘|6hJ5HLT((O7T)XQE) < 10 Jell e 0,1y x ) < C, We can estimate the last term on the
right-hand side of (4.48) by

| (8 Jtic (- + ), Onue) p2((0,0—nyx )| < ChI=( + 1) 120, 1-ny o) Intie |20, r—-nyx 02
< Chdnue| 2 (0,7—nyx00)
< 200 e 2((0 1y x02.) < hC.

(4.49)

Hence, this term converges uniformly to zero and it suffices to show the uniform conver-
gence for the first term on the right-hand side of (4.48). For this, we use the following
Steklov average argument. We rewrite the first term on the left-hand side of (4.25) for
p e HY(0,T; H(Q)) by

T

f@t(Jsﬂs) ) ey im0y At = —(Jetie, 40) L2((0,1)x 20)
0

H(J(T)ae(T); (1)) 12(02.) — (J=(0)2e(0), £(0) L2, -
Now, we assume that o € H'(—h,T; H(Q.)) with o(—h) = p(T) = 0, test (4.25) with
0_pp for §_po(t) == p(t —h) — @(t) and use
(Jetie, O16—np) L2((0.1)x ) =(On(Jetic), Oep) L2((0,7—h)x0.) + ((Jetie) (- + R), 0ep) L2((=h,0)x20)

— (Jelie, OtP) L2((T—h T)x 00 )-

Then, we get

(6n(Jetic), Or) L2((0,7—h)x0)
=((Jete) (- + 1), Orp) p2((—h0)x.) T (Jele, 000) L2((T—h,T)xQ0)
+ (Je(0)a(0), 0(0)) r2(0.) + (Je(T) e (T); (T — h)) 2(02.)
+ (A DV Ve, Vo_n0) r2((0.1)x0) + (A0betic, VO_n0) r2((0.1)x0)

~ e pyn—1 ~
— (Jefe, 57h90)57h90)L2((0,T)><QE) + Z (5 ( Rk) g(te, e 1), 5*htp)L2((0,T)><FE7k)
kele

M;.
1

8
1=

(4.50)
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

Now, we choose

for t € [—h,T], where we implicitly extend u. by 0 outside [0, T]. Then, we obtain

h=a.(t + h) for —h <t<0,
Orp(t) = S Wt (ae(t + h) — 0.(t)) for0<t<T—h, (4.51)
—h~Lta(t) forT—h<t<T.

for a.e. t € (0,T"). Consequently, the left-hand side of (4.50) is the term that we want to
estimate, i.e.
(0n(Jetie), 06p) r2((0.7—hyx ) = B (On(Jetic), Oniic) 120, 7—h)x0.)- (4.52)

Now, we estimate the terms M; for i € {1,...,8} for this choice of ¢:

o My,...,My: Since 4. € L*(0,T; H (Q)) n HY(0,T; H'(€.)"), we obtain that . €
C([0,T]; L?*(92.)), and thus the uniform bound |t ] 2207 12(02.)) < C holds pointwise,
ie. ||lte| co,r;2(00)) < C- Using additionally the uniform bound ||Je | 10,7y x0.) <
C, we obtain

My = =h= ((Jetie) (- + h), (- + 7)) p2(—noyxa.) S B THC < C,
My = —h™ (Jetie, i) 27— nrye) < h7HhC < C,

(7:0)ac(0), 1 JHh

0

M ie(7) dr ) pra IO S C
T
e (7) dT) hlhC < C.

My = (JE(T)QE(T)’ h! J L2(Q)

T—h

o Ms,...,M7: We show the estimate for M5. The estimates for Mg and M7 follow
analogously. First, we decompose M35 into

Ms =h~* <A5(t)D\If§T(t)Vﬁs(t)v Jt
t—h

O~

t+h

T
+h J (4-()) DW= T (Vi (1), J de(r)dr) | e =5 My + M,
t
0
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4.4. Derivation of the limit equations

Then, we change the order of the integration and estimate with the Holder inequality

h
a=h" 1J
0

<Cht

t) DY (1) Viie(t), Vi (t — h + 7)) r2(q.) dt dT

JT
0
h
f IV 200y [ Vael: — b+ ) 20y A7
0

= CHVUEHLZ((O,T)XQE)'

The same argumentation provides also a uniform bound for Ms .

o Mg: We split Mg in two sums like for Ms. We show the estimate for the first
summand and the second summand can be estimated analogously. We change again
the order of integration and use the essential boundedness of g and the e-scaled trace
inequality Lemma 1.28 for I'.

5 (= (=42) ™ tactrreatonn [ aryar) e

< n! ﬁ ( (=5)" ™ gae(0), e (1)) et — B 7) dT) at
00

kel L3(T. 1)

EZ h~ ICJJ J |ic(t — h + 7,2)| doy dr dt

kel 0 Twy

h T
< 6h_1CJJJ |ie(t —h + 7,2)| dT doy dt
00

€

< Cllie] o)<y + €0l Vite | 110,y <0y < C.

Combining the estimates of My, ..., Mg, with (4.50) and (4.52) shows that

(6n(Jetic), Ontie) 2((0,7—nyx ) < hC.

Together with (4.48) and (4.49), this yields the desired result. O

4.4. Derivation of the limit equations

Strong compactness for .
In order to derive some strong compactness result for 4., we use the following Simon—
Kolmogorow compactness result.
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

Lemma 4.16. Let F' < LP(0,T; B). F is relatively compact in LP(0,T; B) for 1 < p < o
if and only if:

to
D {S f)yde| fe F} is relatively comapct in B for all 0 < t; <ty <T,
t1

e |f(-+h)— f‘|Lp(07T_h;B) — 0 uniformly as h — 0 for f € F.

Proof. See [Sim87, Theorem 1]. O

The following lemma translates Lemma 4.16 in the framework of our a-priori estimates
and provides the strong two-scale for a subsequence of ..

Proposition 4.17. Let v. be a bounded sequence in L*(0,T; H'(Q.)) such that
T—h
f [ve(t + h) — vg(t)H%z(Qe) dt — 0 uniformly with respect to € (4.53)
0
for h — 0.
Then, there exists vg € L?((0,T) x Q) and a subsequence such that
E.v. — vg in L?((0,T) x Q),
where E. denotes the extension operator from Lemma 1.24.
Proof. Let E.v. be the extension of v.. Then,

|(Eeve)(- +h) — Eﬁ?vEHL2((0,T—h)XQ) = |Ee(v=(- + h) — U€)HL2((O,T—h)><Q)
< Clve(- + h) = vellp2(0,7—nyx.) = 0

converges uniformly to zero for h — 0 with respect to €. Moreover, we can estimate with
the Holder inequality, for every 0 <t; <to < T,

[ Ewal, = [([ Botoa) o f (

m@)
Q

to 2
VE v (t, x) dt) dz

t1

< J H1H%2(0,T)HEa”e(x)HQm(o,T) dt + J H1H%2(0,T)HVEEU8(37) ||2L2(0,T) dt
Q Q

< C|Beve| a0 (0. < C

which shows that S:f E.v.(t)dt is bounded in H'(Q) and, therefore, relatively compact
in L2(Q). Hence, we have verified both assumptions of Lemma 4.16 and it provides the
desired result. O
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4.4. Derivation of the limit equations

Strong convergence of .

In order to formulate the convergence for the radii 7. € C([0, T]; [rmin, rmax])us‘, we recap
the embedding in L®((0,T") x 2) where we identify r. with the piecewise constant function
e 1 [0, T] X Q@ = [Tmin, Tmax], 7(t, x) == ro i (t) for x € e(k +Y) with k € I.. Similarly, we
can consider d¢r¢ as element in L*((0,T) x ). This embedding allows the formulation of
the convergence results in LP-spaces.

Lemma 4.18. Let 4. be a bounded sequence in L*(0,T; H'(2.)) and Gy € L*((0,T) x Q)
such that

2,2

llg——— g on T,

and let ™™ € [Fpin, rm(w]'[a' such that r® — i in L2(Q) for some r® € L®(Q) with
Tmin < 70 < Tmaz almost everywhere. Assume that r. satisfies

1
Brron(t) = — f cglie(t,a),rop(t)) do  forall ke L,

Cs
o (4.54)
re(0) = Tisn
for a.e. t € (0,T). Then,
Te =T in L(0,T; LP(Q)),
Oire = 0o in LP((0,T) x Q),

for every p € [1,0), where rg € L*((0,T) x Q) with ¢, € L*((0,T) x Q) is the unique
solution of

orro(t, x) = =g(ao(t,z),ro(t, ),

. 4.55
ro(0,2) = rg'(z) 59

for a.e. (t,x) € (0,T) x Q.

Proof. Carathéodory’s existence theorem provides a unique solution ro € WH1(0, T'; L2(€).))
of (4.54). Due to the boundedness of g, one has rg, dirg € L*((0,T) x €.) and with as-
sumption (4.9), we can infer that ro attains only values in [ruyin, "max]. In order to show
the convergence of 7. — 7o, we multiply (4.54) with r. , — ro, integrate over = € ek + ¢V
and (0,t) for t € (0,7) and sum over k € I, which gives

t

J J@ﬂ"g (ryz)(re —ro)(r,z)dedr
0Q

= ft 2 J Ore ko (7) (1 k(1) — ro(7, 7)) dw dT

0 kel ek+eY
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

> eg(ii=(7,y), re (7)) doy (re u(7) — ro(7, ) da dt
ShRES.

ke]‘fekJrsY o,
¢
- ffcl][g (T= (i) (7, 2, y), Te(re) (1, ) doy (re — o) (7, x) dz dt. (4.56)
0O T

Note that T-(rz)(t,z,y) = Te(re)(t,z) since r. is constant on every cell. Similarly, we
multiply (4.55) with 7. — o, integrate over z € ek + €Y and (0,t) and sum over k € I,
which gives

t

ff&tro (t,z)(re —ro)(r,x)dedr = th(ig (Uo(7, ), ro(T, x)) doy(re — ro) (7, z) de dr.
0Q 0Q
(4.57)

Subtracting (4.57) from (4.56) leads to

t

ff@ -~ r0) (7 2)(re — 7o) (7, ) A dr

0

Q
1] ][ (Te(ie) (7,2, 9), o) (7,0)) = g(io(r. ) ro(7. 2)) dor e = 7o) (7,2) da i
0Q

We rewrite the left-hand side and estimate the right-hand side with the Cauchy—Schwarz
inequality, the Lipschitz continuity of g and the Young inequality. Thus, we obtain

3lre(®) = 10720y — 3l=(0) = 70(0) 720y

Cs

¢
1
< ”][Lg —0)(ry 2, y)| + | Te(re) (7, 2) — ro(r, 7)) do,
0 r
|re(T,x) — ro(r,z)|da dt

< O(H’E(af‘?) B ﬂ0“%/2((0,T)><Q><1") + HTE - TOHLZ((O,T)XQ))‘

With the Lemma of Gronwall, we can estimate further
I7e = roll = o.rz2(0.9) < CUITe(@e) = ol T2g0,) xxry + 172 = 161 72()) = 0, (4.58)

where the convergence of the first summand of the right-hand side is given by the two-
scale convergence of 4. on I'. and the strong convergence of the initial values is given the
Assumption 4.1.

Given the boundedness of r. and rg, one gets the convergence of r. — 7 with the Holder
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4.4. Derivation of the limit equations

inequality with respect to the L®(0,7T; LP(§2))-norm for every p € [1, 00).

The strong convergence ;7. — 0y in L2((0,T) x Q) can be shown like the strong
convergence of 7. — 19 by multiplying the differential equation of (4.25) and (4.55) with
Ot(re ) — 10). Afterwards, the uniform essential boundedness of d;r. and dyrp lead to the
strong convergence 0,1 — 0;ro in LP((0,T") x ) for every p € [1, o). O

Strong convergence of .
From the strong convergence of r., we can infer the strong two-scale convergence of ).
and its derivatives. We define the limit transformation mapping vy by

T/’o(@%ﬂ) = ¢(7“0(t735)7y) (459)

and the corresponding displacement mapping by

~ ~

wO(twrvy) = ¢0(t7 ‘T’y) —Yy= w(TO(t7x))y) (460)

for a.e. x € Q and every (¢,y) € [0,T] x Y. We recap the notation for the Jacobian matrix,
its determinant and its adjugate matrix, namely,

l110(7571'734) = ay¢0(taxay)a Jo(t,$,y) = det(ay¢0(t7x7y))7

Ao(t,z,y) = Adj(To(t,z,y)). (4.61)

Lemma 4.19. Let r. € C([0,T]; [Fmin: Tmaz))/ ' © L®((0,T) x Q) and 7o € L*((0,T) x Q)
such that r. — ro in L2((0,T) x Q). Let 1. by given by (4.18) and o by (4.59), then,

< 00, < O
B — S

6_1(w5(t,x) - l’) 7/10(15,55&) - Y,
a’yd}Oa

duthe < 00, < 0
e 0y 0p =550, 0, 0.
If additionally r- € COY([0, T]; [Fmins Tmaz]) | with |0tre kll ooy < C for every k € Ic
and oyrg € LP((0,T) x Q) such that 6;r. — Rg in L*((0,T) x Q), then
< 0, < ©

6‘716751#5 (t, ‘T)—>_>at¢0 (tu z, y)

< 0, < W
O Orthe—————0y01tho

e 10,0, 00— =210, 0, 00
Proof. With (4.19), we can rewrite
e (We(t, ) — 2) = e N (b, ) = (et x), x/e),
Qupe(t, ) = e (t, @) + 1 = 0y (re(t, o), x/e) + 1,
€000 (t, ) = 0,0, (t, ) = 0,0, 0(re(t, ), /e)
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

and similarly we rewrite with (4.60)

D(ro(t,x),y) = dolro(t,z),y) = Yot z,y) -y,
Qb (ro(t,x),y) + 1 = 0y0(ro(t, ), y) + 1 = dydo(ro(t,x),y) + 1,
D,y (ro(t, ), y) = 8@yt (ro(t, =), y).

Thus, it suffices to show

By V(e (t, ), /2) =—2=5550, To(rolt, ), y)

for multi indices « € {0, 1,2}" with |a| < 2. Using the unfolding operator, we can translate
the two-scale convergence in classical LP-convergence, namely into the strong convergence

Te(Oya (1<, -/€)) = dyuo(ro, ) (4.62)

in LP((0,T) x Q2 x Y') for every p € (1,0). We rewrite the left-hand side of (4.62) by

~

Te(@yath(re, /)t 2, y) = 0y V(re(t, [2)ey +ey), ([2loy +ey)/e)) = 0y (re(t,2), y).
(4.63)

Due to the strong convergence of r., we can pass to a subsequence 7. such that, for
a.e. (t,x) e QX x Y, r.(t,x) = ro(t,z). This pointwise convergence, can be transferred via
the continuity of 0y, and (4.63) to the pointwise convergence

Te(@ya(re, -/0)(t, 2, y) = o Po(ro(t, z), y) (4.64)

for a.e. (t,z,y) € (0,T) x Q x Y. Together with the bound for |7}(6ya1;(7"5, Je))(t, x,y)| <

HayaJHC([rmin,rmax]xY)v we can apply Lebesgue’s dominated convergence theorem and get
(4.62), for this subsequence. Since this argument is valid for every arbitrary subsequence,
we obtain the convergence for the whole sequence.

The convergence for the time-derivatives can be shown analogously. Namely, we rewrite

e Lot ) = e 10 (t,2) = 0 (re(t, 2), /) dpre(t, ),
Qo0 (t, ) = 0,00 (t, ) = 0,0, (r=(t, ), /) dpr=(t, ),
020,00 (L, ) = 0p0uOthe(t, ) = 0,0y 0r 0 (re(t, x), 2/€)dyre(t, x)

and, similarly, the limit functions

6/@2(7’0(1&,3}'), y)ﬁtTO(t l‘) = 5t¢0(7“0(t l‘), y) = ¢0(t7$7y) - Y,
Ayt (ro(t ), y)arro(t, ©) = dydo(ro(t, x),y) = 3o (ro(t, ), ),
0y 0y (ro(t, x), y)dro(t, x) = d,0,80(ro(t, x), y).

Then, we can translate the convergence into classical LP-convergence with the unfolding
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4.4. Derivation of the limit equations

operator and argue via the pointwise convergence as above. O

Having the above compactness and two-scale convergence results, we can pass to the
two-scale limit in (4.25), which yields the following two-scale limit problem:

Weak form of the two-scale limit problem of the reactive transport

Find (dg,@1) € L*(0,T; H' () x L*((0,T) x ; Hy, (Y*)/R) and ro € L*((0,T) x Q)
with d;rg € L®((0,T) x Q) and 0;(O(ro)tg) € L*(0,T; H'(Q)") such that for a.e. t €
(0,7)

(0(O(r0)iin) () Py arien + j f Aot z,y) DU T (t,2,y)
QY*

(Vato(t, z) + Vy (t, 2, 9)) - (Vapo () + Vypi(z,y)) dy de

- f (O(rot 2)(t 2) — csdn(O(rolt, 7)) po(a) da,
J (4.65)

for all (0o, 1) € L2(0,T; H'(Q)) x L*((0,T) x Q; Hi(Y*)/R).

Since rg € L*((0,T) xQ), we get O(rg) € L¥((0,T) xQ), and with ug € L2((0,T) x Q) we
obtain O(rg)ug € L2((0,T) x Q) < L2(0,T; H'(2)"). Since ¢;(0(ro)uo) € L?(0,T; H(Q)"),
we can infer O(rg)ug € C([0,T]; HY(Q)') and, thus, the initial condition (©(r)iig)(0) =
O(ri)al of (4.65) makes sense in H(Q2)'.

Theorem 4.20. Let (i.,r.) € L*(0,T; HY()) x COL[0, T]; [Fmins Tmas]) <! be the so-
lution of (4.25). Then, for every subsequence (tc,r.) there exists a further subsequence
(lie,m2) such that

2,2

lie———>1ly, (4.66)
2,2

Vi, ’ Xy Vgt + Vi, (4.67)

Te — 10 in L°(0,T; LP(Q2)), (4.68)

Orre — Oy in LP((0,T) x Q) (4.69)

for every p € [1,00), where (1g,d1,m0) € L*(0,T; H(Q)) x L?((0,T) x Q;H;#(Y*)/R) X
L*((0,T) x Q) is a solution of (4.65).

Proof. Having the uniform a-priori estimates (4.26), we obtain g, @iy € L2(0,T; H'(2)) x
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L2((0,T) x & H#(Y*)/R) such that for a subsequence

2,2 2,2
QE;\'\XY*’&Ov v'115’4““)(3/* Vato + V. (4.70)

With (4.45), we can additionally control the time shift of . , and we can apply Proposition
4.17, which provides a function vg € L?(0,T; L?(f2)) such that

E.ti. — vo in L*((0,T) x Q) (4.71)

after passing to a further subsequence. By multiplying E.1i. with xq. and passing to the
limit ¢ — 0, we can identify vy = 4o and, thus, the first convergence in (4.70) is in fact
strong for this subsequence.

In the next step, we transfer the strong two-scale convergence with the unfolding op-
erator 7 on the trace of .. The strong convergence (4.71) implies the strong two-scale
convergence of E.i., and hence

T(E-G.) — ug in L2((0,T) x Q x Y). (4.72)

Using the identity T:(VE.i.) = e 'V, T:(E:4.), the isometry of 7; and the uniform
boundedness of V1., we obtain

IVy Te(Ectie) | 20,y x0xy) = €l Te(VE:te) | 20,1y x0xy) = €IV Eete| L2(0,1yx0)
< €| Ve p2(0,1yx0) < €C — 0,

Since 4 is independent of y, we can deduce with (4.72) and the trace operator for T’

172(e) — @0l 2(0,r)xx1)
< O||7e(de) — doll 2o,y xaxy#*) + CVy(Te(de) — do) |20,y xaxy*)  (4.73)
< CO|Te(Eetic) — tiollz2¢0,m)xaxvy + CIVy Te(Eetie) | L2 0.1y xox vy = 05

which is equivalent to the strong two-scale convergence t.———— g on I';.

Having the strong convergence of ., we can infer with Lemma 4.18 the strong conver-
gence of r. and afterwards with Lemma 4.19 the strong two-scale convergence of 1. and
its derivatives. The convergence of 1. can be transferred by Lemma 2.44 to the strong
two-scale convergence of the coefficients

< 00, < WO g—T <90, <0 < oo, < O < oo, < O
&€

T, T, Uy, A Ao, Je Jo.

(4.74)

Now, we have all necessary convergences for the individual terms in order to pass to
the limit £ — 0 in (4.25). For this, we test (4.25) with @o(t,z) + ep1(t,z,2) for ¢o €
C*([0,T];C*(Q)) and ¢1 € CP([0,T]; C*(Q CE(Y))) with ¢o(T) = ¢1(T) = 0 and
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4.4. Derivation of the limit equations

integrate the time-derivative term by parts, which leads to

JJE(O, )i (x) (4,00(0,;8) +ep1 (O, T, f)) dx

o]
®

Je(t, x)hc(t, x) (ﬁtgoo(t,x) + 01 (t,a:, %)) dzdt

o]
®

Ac(t,2) DU (¢, 2)Vie(t, 2) (Vapo(t, ) + eVapr (2, L) + Vypr (2, L)) dodt

e}
®

+

_l’_
Oy Oy O—4

e}
™

Ac(t, 2)0p)e(t, ) e (t, x) (ngpo(t, x) +eVypr (t,:c, %) + Vyo1 (t, T, %)) dz dt

J.(t, x) f-(t, z) (po(t,z) +ep1 (t,x,2)) dedt

I
O3

2
™

T
- Mﬂil Ue(t,z),re k(1)) (V t,r) + t,z,%)) do,dt
S [ (#F2) eotiatn) rs) (Tasott.n) vop1 (0.2) do

Lor,
(4.75)

For all terms besides the boundary term, we can pass to the limit by standard arguments.
We note that the fourth summand vanishes since it is of order ¢ and, therefore, we do not
need the strong convergence of d;r. for the identification of the limit equations.

In order to pass to the limit in the boundary term, we rewrite it with the unfolding
operator and use (4.73)

2 f J (r&;x))”_l eg(tc, e 1) (polt, ) +ep1 (t,2,2)) do, dt

jgjnj (Ta(t,$)>n1g('];(ﬂe)(t’x’y),’];(ra)(t,x)) (4.76)

R
(Te(po)(t 2, y) + €Tz (o1 (5, 2)) (8,2, y)) doy dzdt

- TJJ <TO(;3:$))TL1gmo(tw)?TO(tvw))Sﬁo(t,fL’) doy dz dt.
oQr
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

With the identity Sp,—1(r) = 0,V,(r) and the ordinary differential equation for ro, we get

IT| (fggg%2>7z_l’g(ao(t,x),ro(t,x)) Sn—1(ro(t, z))csOrro(t, x)

= cs0, Vi(ro(t, ))dro(t, )
= ¢s0t(Va(ro(t, ©))),

which allows us to rewrite the right-hand side of (4.76), leading to

5

keIEO .,

-1
) eg(iic, 72 1) (wolt, ) + ey (t,2,%)) doydt

— chSat w(ro(t, x))eo(t, z) dz dt.
0Q

Then, we obtain for the limit e — 0 in (4.75)

T
JJJQ (0,2, y) dy 4 ()0 (0, z) JJJJO (t,z,y) dy to(t, x)0rpo(t, x) da dt

QY*

=]

Yr

+ JJ J Ap(t, x, y)D‘IlgT(t, z,y)(Vato(t, ) + Vyui (t, z,y))

4.77
0QYP (4.77)

- (Vapo(t,z) + Vypi(t,z,y)) dy de dt

JJO (t,z,y)f(t,x) dy polt, z) — cs0 Vi (ro(t, x))eo(t, x) dz dt.
Qyr

O%’ﬂ

With the identity § Jo(t,z,y) dy = O(t,z) =1 — V,,(ro(t, z)), integration by parts of the
Y *

time-derivative term in (4.77) and the fundamental lemma of the calculus of variations,
we get (4.65). Finally, by a density argument, (4.65) holds for all (g, ¢1) € H*(Qe) x
L2(Q; Hy(Y*)). O

The homogenised limit equations

In order to derive the homogenised limit system, we separate the micro- and macroscopic
variables in (4.65). Then, we parameterise the reference cell by means of the radius, i.e. we
employ the identity ¥ (¢, z,y) = ¥(r(t,x);y). For this, we define the Jacobian matrix of
1, its determinant and its adjugate matrix by

U(ryy) = 0y¥(r;y),  Je(ryy) i=det(¥(r;y),  A(ry) = Adj(¥(r;y))  (4.78)
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4.4. Derivation of the limit equations

for every (r,9) € ["min, "max] X Y.

Then, we obtain the following homogenised limit system:

Effective coupled reactive transport system in the reference coordinates

0¢(0(ro)ug) — div(D*(ro)Vug) = O f + ¢s0:0(ro)

6tT0 = ég(um TO)’

O(ro) = 1 = Vi(ro), (4.79)
(©(ro)uo)(0) = O(rgug,
ro(0) = ¢,

where the homogenised coefficient D* : [rpin, Tmax] — R™*™ is given by

Dj;(r) = f A(r;y)D‘I’fT(ﬂZ/)(ej + Vyfj(r; y)) - eidy (4.80)
v

where fi(r; ) E H;#(Y"‘)7 for [Tmin, Tmax], 18 the unique solution of

— divy (A(r;y) DU " (r1y) (e + Vy (i (r39)) = 0 in Y*,
(A(r; ) DY T (r;y)(ej + V,(i(r ) n =0 onT,
y = fj(r; y) Y -periodic.

In order to formulate the limit problem in terms of the natural upscaled domains, we

transform the cell problems from Y* onto Y,* := Y\B,(m) via ¢(r;-). Moreover, we define
the interface for an upscaled cell with obstacle radius r by I', := 0B,(m).

Following the arguments of Chapter 2, we transforming the solutions of the cell problems
via
U(ry) - e in Y,
P y) e in Y*.
This leads to transformation-independent cell problems and a transformation-independent

formula for the effective diffusion coefficient D*. The complete transformation-independent
homogenised limit problem is given as follows.
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Chapter 4. Reaction—diffusion problem with coupled evolving microstructure

Effective coupled reactive transport system

0t(©(ro)ug) — div(D*(ro)Vug) = O f + ¢s0:0(ro)

at’l'() = ég(u077‘0)7

©(ro) = 1 — Vy(ro), (4.81)
(©(ro)uo)(0) = O(rg"ug',
r0(0) = g,

where the homogenised coefficient D* : [ruyin, "max] — R™*™ is given by

Djj(r) = f J D(ej + Vy(j(r;y)) - eidy, (4.82)
YEYE

where (;(r;) € thl';}%E(Y;"*)7 for [rmin, Tmax], is the unique solution of

—divy (D(ej + V(i (r;y))) = 0 in Y},
(ej + Vy(i(r;y))) -n =0 on Ty,
y > G(r;y) Y -periodic.

The weak form of (4.79) and (4.81) is given by:

Weak form of the effective coupled reactive transport system

Find ug € L2(0,T; H'(R2)) and ro € L*(0,T x Q) with d;ro € L*(0,T x Q) and
(©(ro)ug) € L*(0,T; H(Q)") such that, for a.e. t € (0,T)

~_~

(0u(O(rouo)(t), ) m(y;H1(Q) +

D*(ro(t))Vuo(t), Ve(t)) L2(q)
O(ro(t)f () +¢50O(ro(t)), v (1)) L2

~9(uo(t), ro(1)), (4.83)

Orro(t) =
O(ro) =1 — Vi(ro),
(©(r0)uo)(0) = O(rg)u™,

79(0) = 7

—~

&=

for all (o, 1) € L*(0,T; H'(Q)) x L*((0,T) x Q; Hy(Y*)). The initial condition
(©(ro)uo)(0) = O(rM)ue™ holds in H(Q)".

Theorem 4.21. Let (U, U1,70) be the solution of (4.65). Then, (ug,m0), for oy = ug,
solves (4.83), where the effective diffusivity D* is given by (4.80) or equivalently by (4.82).

Proof. Following Chapter 2, we can separate the micro- and macroscopic variables in
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(4.65). Then, we use the identity (¢, z,y) = ¥(ro(t,z),y) in order to parameterise the
cell problems and the effective coefficient. Finally, we transform the cell problems and the
formula of the effective coefficients from the fixed reference domain Y* to the domain Y*
by arguments as in Chapter 2. O

Remark 4.22. After a substitution of r in terms of © one can reparameterise D* and
g such that this limit system can be formulated in terms of the local porosity and ug only
without the internal variable ry.

Remark 4.23. In the two-scale limit system (4.65) and the homogenised system (4.83),
the initial values for Oug hold only in H' ()" and not in L?(Y). The reason for this is
that ©(ro)ug cannot be embedded a-priori into C([0,T]; L3()).

With the following additional assumptions, we get ©(ro)ug € C([0,T]; L*(R)) and can
improve the space for the initial condition. Moreover, it allows us to reformulate the
witial condition in terms of ug only. If we assume that the initial value 7"6“ has higher
regularity, namely r(i)“ € HY(Q), the ordinary differential equation for ro becomes an equa-
tion in H*(Q). This improves the reqularity of vy to C([0,T]; HY(2) n L®(Q)) and due
to the polynomial structure of © and the uniform boundedness of o from below, we o0b-
tain O(rg),O(ro)~t € L®(0,T; HY(Q) n L*®(Q)). Moreover, under the additional assump-
tion that the initial values . are uniformly essentially bounded, i.e. ||ic|rn(q.) < C,
it can be shown that i is also uniformly essentially bounded, i.e. |ic|rn(0mx0.) <
C (see also [WP23, Theorem 5]). Therefore, the two-scale limit of U. is essentially
bounded and we can restrict the weak forms (4.65) and (4.83) to solutions ug that are in
L®((0,T) x Q). Having these additional regularities, we obtain ©(ro)ug € L*(0,T; H*(Q))
and with 0;(O(ro)ug) € L*(0,T; HY(Q)), we get (O(ro)ug) € C([0,T]; L*(Y)) and con-
sequently, ug = O(ro)1O(ro)ug € C([0,T); L3()). Thus, we can formulate the initial
condition in the space L*(2) and in terms of ug or equivalently in terms of O(rg)ug.

Remark 4.24. In Theorem 4.20, the convergence of u. and 7. is formulated only for a
subsequence. If the solution of (4.65) and (4.83) is unique, the convergence holds for the
whole sequence.

The argument that we have used to show the uniqueness in the e-scaled problem, cannot
be used for the limit system since it requires to controlling VJ. in L*((0,T) x ). This
would correspond to control VO or Vrg in L*((0,T) x Q). If the solutions have a higher
reqularity, the uniqueness can be shown by similar arguments as in the e-scaled problem.
Otherwise arguments as in [Ott96] may be useful.
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Chapter 5.
Conclusion and outlook

We discussed the homogenisation of several processes in non-periodically perforated do-
mains, which may evolve in time. For this, we transformed the corresponding differen-
tial equations onto a periodically perforated substitute domain. This translates the non-
periodicity of the domain into a non-periodicity of additional coefficients in the equations.
The resulting substitute problems in the periodic domain can be homogenised by means
of two-scale convergence, which can handle the non-periodic coefficients arising from the
transformation of non-periodic domains. We derived a generic framework for which the
homogenisation of the substitute problem is equivalent to the homogenisation of the ac-
tual problem. For this, we employed a family of e-scaled coordinate transformations 1.
and a family of cell transformations ¥g. We showed that the coordinate transformations
commute with the two-scale convergence in the sense

ue()—Zssug(z,y) i and only if  ue (e () —2suo (x, Yo (@, 1),

which justified the homogenisation of the transformed problem. In particular, we for-
mulated the assumptions on . by purely asymptotic statements and did not employ
any structural assumptions, which leads to a very general setting and allows for purely
compactness argument based proofs. Moreover, we provided an additional transforma-
tion result for the correctors, which arise in the homogenisation. This enables the back-
transformation of the homogenisation result leading to transformation-independent ho-
mogenisation results in physically meaningful domains. We transferred this appproach
also to the case of time-dependent microstructure by parameterising the transformations
1. and 1y over a time-interval.

We applied this transformation method to homogenise the quasi-stationary and the
instationary Stokes equations in a porous medium with locally evolving cavities. For the
quasi-stationary case, this led to a quasi-stationary Darcy law, i.e.

v = K(f - Vp)a
div(v) = —0,0

with a time- and space-dependent permeability K = K(t¢,x) and an inhomogeneous diver-
gence condition. The permeability tensor can capture locally different microstructure and
the divergence condition incorporates the local change of the porosity leading to an addi-
tional source or sink term for the pressure. For the instationary case, the homogenisation
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led to a Darcy law with memory

t
v=0v"+ JKin(t, s)(f — Vp)(s)ds
0

div(v) = —0,0,

with a permeability tensor Ki,(t,s) = Kin(s,t,x).

Moreover, we homogenised a reaction—diffusion equation in a perforated domain with
free boundary. The evolution of the domain is coupled with the concentration and, thus,
a-priori unknown. The result is a system for coupled reactive transport

0t(Ou) — div(A(©)Vu) = Of — ¢;0:0,
00 = g(u, ©).

It couples the evolution of the local porosity © = ©O(t,z) to the unknown concentration
by means of a family of ordinary differential equations. Moreover, it adjusts the effective
concentration flux via cell problems depending on the local microstructure and rescales
the local change in concentration by taking into account the evolution of the porosity.

Outlook
This work can be continued in a number of ways. For instance, the Stokes flow can
be coupled with the reactive transport. At the microscopic level this leads to a system
consisting of an advection—reaction—diffusion equation, the Stokes equations providing a
model for the fluid velocity and a model for the evolution of the pore domain. The
coupling of the domain evolution with the unknown concentration can be extended as
well. In particular, connected solid domains might be studied. This is not only interesting
for the case where the solid domain change due to dissolution or precipitation processes
but also for fluid—solid interactions where the solid domains changes due to deformation.
From a more theoretical point of view the following extension is very worth following.
Here, the transformation approach is derived for the case where the microstructure is
aligned along an e-scaled grid with only a small distortion, which vanishes in the limit.
Thus, the upscaled geometry inside the cells is locally different while the shape of the
periodicity cell is macroscopically constant. This setting can only handle microscopic
geometry changes which do not affect the cell position. In deformable porous media
several processes can affect the cell alignment and, thus, change the macroscopic shape
of the porous media. In order to consider the homogenisation for such problems, the
framework presented in this work has to be extended. A new notion of local two-scale
convergence could be helpful, which can capture locally different sizes and shapes of the
reference cell. This would correspond to an extension of the asymptotic behaviour of the
transformations 1. taking into account also macroscopic domain evolution. The large
number of further research directions shows the potential of the presented transformation
method and its importance on the applications in the field of homogenisation.

176



Appendix A.

Time dependent—differential
algebraic-equations

This appendix provides a proof of Theorem 3.33 by means of Rothe’s method.

Proposition A.1. Let the assumptions of Theorem 3.33 hold. Let N € N be large enough,
k=T/N andt; = mk forme{0,1,...,N}. We define

1

tm1
= altm)s b= b(bm)s  from = kJ RO At fom = foltm)s gm = g(t)

form e {1,...,N}. Then, there exists a unique solution v; € V for i € {0,...,N} and
pi €Q forie{l,...,N} such that

vy = v inV,
U, — Upn—
G, (mkml> + b + P = fim + fom i V7, (A.1)
CUm = Gm in Q'

for allme {1,...,N}.
Moreover, there exists a constant C, which is independent of N, such that

N N N
max Nvmla +k Y lomlf + D, #lvm —vealir + ) Elpmlp < C. (A.2)
me{0,...N} 1 1 1

Moreover, the constant C depends only on T, Cy_ g, Cqy, Cy, Cp1, Cy2, Cys, Cypa, o, 8,7, Lq,
Ly, Lys, [v™] v, l9] 50,7500 Hf1\|%2(07T;H,), | f2ll 10,7507y, which are given in Assumption
8.34, but not on |c|zv,qr-

Before we prove Proposition A.1 we note that the assumptions on b imply the following
Garding’s inequality.

Lemma A.2. Assume that b is given as in Theorem 3.33 and [ as in Assumption 3.34(2.).
Then, there exists ¢, > 0 such that

LB1ol — evlolly < b(t)(v,0) (A.3)
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forallveV.

Proof. We use the decomposition of b, the coercivity of b' and the Young inequality and
obtain

b(t)(v,v) = b (1) (v,v) + b*(t)(v,v) + b°(t) (v, v) + b'() (v, 0)
= v} = Cellolvlvla — Cislolv vl — Cpalvlm|v]a
C? Cc?
> [0l = FIol} = = IollE — 1ol = =5 IolE — Coallol T

C? C?
> Bl - (ﬁ + Gy cb4) ol

~
=:¢p

for every ¢t € [0,7] and every ve V. O

Proof of Proposition A.1. We show the existence and uniqueness of a solution (vy,, pm) €
V x P for m € {1,...,N}. First, we choose vy = v'™. Then, we rewrite (A.1) into the
following saddle point problem:

1 1 : U
5AmUm + bmUm + € pm = EAmUm—1 + Jim + Jfom In V7,

A4
CUm = J1,m in Q. (A-4)

From the coercivity estimate (3.98) for a,, and Garding’s inequality (A.3), we obtain for
N big enough (% = ¢)

Fam(@: 9) +bin(e,0) = Elold + 5lelf — el = 5ol (A.5)

for every m € {1,...,N} and every ¢ € V. This provides the coercivity of %am + b
in V. Moreover, we have the inf-sup condition for ¢ and the embedding V < H yields
%vm + fim + fo,m € V'. Hence, Proposition 3.5 provides iteratively the existence and
uniqueness of a solution (U, pm) €V x @ for me {1,...,N}.

In order to derive the a priori estimates, we decompose v,, along the V-orthogonal
decomposition V = 1} G—)VOL for Vp := ker(c), i.e. let vy, = 2y, + Wy, for all me {1,..., N}
with z,, € Vo and w,, € Voi.

In the lemmas below, we estimate z,, and w,,, separately. Combining the estimate (A.17)
for wy, and the estimate (A.20) for z,, yields

N
kD lomlf < C. (A.6)
m=1

Using additionally the embedding of V' in H, we obtain also the pointwise estimate for vy,

from (A.16) and (A.18)

lvm o < lzmlla + lwmlla < llzml o + Cvomlwn|v < C. (A7)
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Similarly, we estimate the discrete time derivative with (A.15) and (A.36)

[\

D= 1=

—

%H”m - Uv—luil < %Hzm - Zv—1H12LI + [lwm — wv—lH%{

1

P M=

IN
DO

%Hzm — zo-1lf + Ovonfwm — woi |3 < C.

Finally, we obtain the estimate for the pressure from Lemma A.10. 0

Proof of Theorem 3.33. Let v{Y and (v),pY) for m € {1,..., N} be the discrete Rothe
approximation given by Proposition A.1, where we stress the N-dependence since we pass
to the limit N — oo. Then, we define the piecewise constant function v"¥ : [0,T] — V and
the piecewise affine function o : [0,T] — V by

N (t) = vy fort =0,
o forte (tm1,tm],

m
N
oM (t) = Yo ort =0
U7]7\17 + %(UTJX — ’U%—l) for t € (tmflatm]‘

Moreover, we define the piecewise constant function g by

Ny V. fort =0,
g, for t € (tpm—1,tm]-

In the same way, we define the piecewise constant operators a” : [0,T] — L(H, H') and
bN . [0,T] — L(V, V'), which we identify with their corresponding Nemytskii operators,
ie. a e L(L*0,T;H); L*>(0,T;H)),b"N € L(L*(0,T;V); L?>(0,T;V')). Moreover, we de-
note the piecewise constant extensions of the right-hand sides f1, f2 and g, by f{¥, f&V, g".
Then, we can reformulate the discretised equation (A.1) into

aVouN +0VTN + g = FN + fY in L2(0,T5 V),

A8
vV =gV in L*(0,T;Q"). (4.8)

From the a-priori estimates of Proposition A.1, compactness arguments and standard
Rothe method arguments, we obtain v € H'(0,T; H)) n L?(0,T;V) and ¢ € L?*(0,T; H)),
such that for a subsequence oV converges weakly to v in L2(0,7;V), d;v" converges
weakly to dyv in L2(0,T; H) and ¢V converges weakly to ¢ in L?(0,T; H).

In order to pass to the limit N — o0 in (A.8), we identify a and b with their corresponding
Nemytskii operators. Then, we obtain

T
J O (#)5™ (£) = bt (t), (B v dt =
0
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T

= J<(5N(t) = b() TN (2), (1)) + (@ (1) — v (1), b (1)) dt — O,

0

where the first term on the right-hand side tends to zero due to the uniform Lipschitz
continuity of b and the boundedness of 7. The second term tends to zero since b*y €
L?(0,T;V"). With the same argumentation, we can also pass to the limit N — oo for
the fist term in the left-hand side of (A.8). Moreover, with standard Rothe method
arguments, we can pass to the limit in the other terms and can show that the initial
values are fulfilled. Thus, (v,p) solves (3.96), which provides the existence of a solution
of (3.96). The a-priori estimates are transferred via the limit process from the discrete
Rothe approximation onto v and p. The uniqueness of the solution follows from Lemma
A.11, which is shown below. O

In order to estimate the Rothe solutions in Proposition A.1, we have to control the
right-hand sides by the following lemmas.

Lemma A.3. Let g,, be defined as in Proposition A.1 for g€ H'(0,T;Q’). Then,

2
Hgm - gm—IHQI < HatgH%Q(O,T;Q’) (AQ)
1

T =
Y=

and ||gm|q < HQHC([O,T];Q') < CHQHHl(O,T;Q’) for every m € {1,...,N} and a constant C
which is independent of m and N.

Proof. With the Holder inequality, we obtain

tm

N[ =

|2 (D] dt)
(A.10)

tm tm l
lon = guile =1 | adtlg < [ lo0lgar < ( |
m—1 m—1

tm—1

for m € {1,... N}. Squaring both sides in (A.10), multiplying with % and summing over
m e {l,..., N} yields

N N

1 9 m

= 2 lgm = gmilly < Y j 1rg()13y At = 121912200 700
m=1 m=1 m—1

which shows (A.9).
The estimate on g, can be infered from the continuous embedding of C'([0,7]; Q') in
HY(0,T;Q"). O

Lemma A.4. Let fo,, be defined as in Proposition A.1 for fo € HY(0,T;V'). Then,

| =

N
2 Hf2,m - f27m,1‘|%/, < Hatsz%Q(O,T;V’) (All)

m=1
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and || fomlv < |l f2mleqoron < CHfZHHl(O,T;V’) for everym € {1,..., N} and a constant
C which is independent of m and N.

Proof. Lemma A.4 can be shown in the same way as Lemma A.3. O

Lemma A.5. Let f1, be defined as in Proposition A.1 for f € L>(0,T; H'). Then,

N
B il < 1A Bz (A.12)
m=1

Proof. We obtain the desired result with the Holder inequality via

N N N N -
b3 Wl = 3 2 [ awa, < 2 ([ 1nol,a)
=7 2 f At o=t = [ 17O

w4t = |1l Z20, 780

O]

First, we estimate w,,, which is the part of v,, that is orthogonal to Vj, using the
algebraic condition. Therefore, we have to exchange the vector spaces in the inf-sup
condition, which can be done by considering only VOT.

Lemma A.6. Let U W be Banach spaces, ¢ € L(V,Q"). Then, the following statements
are equivalent:

e There exists a constant v > 0 such that

: p lwal (A.13)
7€Q\{0} vevr\ (o} V]IV ]l @

e The operator ¢ : ker(c)* — Q' is an isomorphism and

le()lgr = ||y for all v € ker(c)™ . (A.14)
Proof. See for instance [Bra07, Lemma 4.2]. O
Lemma A.7. Let wy,, for m € {0,...,N} be given as in the proof of Proposition A.1.
Then,
— w 1 2 1
m
Z < 109120101 (A.15)
m=1 v 7
1
Jwml < ,THQmHQf <Cloliporgy  for everyme{o,..., N},

(A.16)
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k Z meHV 2“9“0 ([0,77;Q") CHQH?—P(O,T;Q’)’ (A.17)

Proof. We observe, that (wp, — wp,_1) € V5~ by construction. Hence Lemma A.6 yields

YNwm = wm—1lv < |le(wm — wmfl)HQ’

and, moreover, it holds ¢(wy, — wpy—1) = ¢(Vy — Vm—1). Then, we can estimate

72me - wm,1\|%/ < [e(ws, - wmfl)HZQ' = |lc(vm — Umfl)HQQ' = [gm — gmfluéh
After multiplying with %, summing over m € {1,..., N}, we obtain with Lemma A.3
— W1 |? L, o g 1!
m m—
< S22 Z o < ?HatgHLQ(O,T;Q’)y

which shows (A.15).
Similarly, we obtain

P wnl? < le(wn)ldy = le@n)ldy = lgal? < 19120

and after multiplication with &k, and summing over m € {1,..., N}, Lemma A.3 yields

v’k Z lwml? <k 2 lgmZ20.m:0r) < Tlolqorary < Clolinora)
Thus, we obtain (A.17). O

In the next step, we estimate z,,, i.e. the V-orthogonal projection of v,, to Vj using the
parabolic equation of the saddle point problem. Compared to the estimate for w,,, this
estimate does not provide a uniform control of the discrete time derivative and we have
to estimate the discrete time derivative afterwards.

Lemma A.8. Let z,, forme {0,...,N} be given by the proof of Proposition A.1. Then,
there exists a constant Cyz, which depends only on T,Cy_,p,Ca, Cy, ., B,7, La, |0y,

Il 70,50y I filleo,msmrys |2l mrgo vy, such that

HzmH]Qq <Cyz for allme {1,...,N}, (A.18)
Z Hzm Zm— IHH CZ7 (Alg)
kZ lzm? < Cz. (A.20)
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Proof. We multiply (A.1) by k and rewrite it employing vy, = 2z + Wy,

A (Zm — Zm—1) + kb zm + k¢ pry = —am (Wi — Wim—1) — kbywy, + kfim + kfo,m.
(A.21)

Now, we multiply (A.21) by 2z,, and define nganH = am(p, p). Using the symmetry of
am, we can rewrite the resulting first term of the left-hand side of (A.21) by

am(2m = Zm—1,22m) =|2m = 2m—1lm.m + l2ml i = lem—1 15, 1r-

We estimate the second term of the resulting left-hand side of (A.21) from below by
(A.3), the third term on the left-hand side of (A.21) vanishes since z,, € V. Moreover,
we estimate the terms on the right-hand side with the continuity estimates and the Young
inequality and obtain in total

l2m = 2170t + 2l tr = 121,11+ FBl2m 3 — 2|zl
< 2Cak|wn = Won 1] 1|2l 1+ 26C W v | 2m v
+ 2k frm| |l zm |5+ 2K fomllve | 2m v (A.22)
< Catllwm — w1 |3 + $k|2mlFr + 25k w3 + k] zml

+ L frnlF + 5Elzald + 2K foml3r + FhlznlF-
The coercivity estimate of a provides
Izl < & l2mlion (A.23)

and, thus, we can estimate (A.22) further and obtain after rearranging

g
Sklzml?
2 (A.24)

< Cagllwm = wam—rlfy + 250 klwml{ + Kl frmlF + 2] foml 3

2 1
(1= 22588) 2 7o 11 + 2 = 2l = 2 [, +

In the next step, we want to sum (A.24) over m such that the first term on the left-
hand side of (A.24) for m — 1 cancels with the third term on the left-hand side of (A.24).
Therefore, we multiply (A.24) with A\(k)™~™ > 0, where we fix A later, for M € {1,..., N},
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and obtain
M
DTAEM T = 22 2+ D A T 2 = 2met P
m=1
M M 3
= AR Tzl Y /\(k)N_mgkl\Zmsz
m=1 m=1

<

P M=

A (G fom — w1y + 250l + KL fr 3y + 281 ol ).
1
(A.25)

The first and third summands on the left hand side of (A.25) can be estimated by

M
Z ARV = 225k |z — Z ARz I

M
A(k — 29 |2 1y — AEM =D 2 2
mZ:1 5 m, Z 1, (A.26)
<(1 =222k |23 — AR 1HZoHl,H
M—1
2 AR 2 2 2, = A )
m=1
Moreover, the Lipschitz continuity and the coercivity of a yields
HzmngHl,H = am+1(Zm, 2m) = am(Zm> Zm) + (@ms1 — @m) (2m> Zm)
Hzm\lm # + Laklzmlty < zmlm,m + Z2kam (zm, 2m) (A.27)
= | ke 2
Thus, by choosing
A(k) > (1 + Laf)(1 — 2tlpy=1 (A.28)
we obtain for k small enough
(1= 225K) |z [ 1 = AR) 21,1
> (1= 225 [z o, — AR) ML+ S B) |z = 0
and we can estimate (A.26) further
M
A(R)Mm(1 - 2251 |
2 AWML = 2 o2, 429

> (1= 22508 |z g — A(k)M 1\|zo\|1,H.
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Now, we choose A(k) := 1 + pk such that (A.28) holds for k small enough, namely, we
choose u = % + %226’%1 Then, for k£ < max{l,m}, we obtain with

Lemma A.12 from below

(1 + %k)(l . QCZZX+1I€)_ 1+ Lak)(l + 22cb+1k)

(

La+2(2¢p+1) Lgo2c,+171.2
1 =et= =T | 4 2apZ o
1+

/N

[0}

/N

(La+2(26b+1) + %22C€X+1)k < 1 +/~/Lk

o
For m € {0,..., M}, we can estimate A~ from below by 1 < AM~™ and from above by

AM=—m _ e(M—m) In(\) _ (M m)ln(l-‘r,uk) (M m)pk < eNuk _

el (A.30)
Combining (A.25),(A.29) and (A.30) gives

M
2 1
(1 = 28 ) g By g = a0l + D) (Rom = 2moals + 5Kzl

m=1
y (A.31)
™ 3% (Cotltum = wnealfs + 2okl + K frnlfy + 2K fam ).

Estimating HZOH%H by
l20% 1 < Calzolf < CvnCalzol} < CvouCallvolir = CyouCalv™3:  (A.32)

and the right hand-side of (A.31) with Lemma A.4, Lemma A.5 and Lemma A.7 yields

(-2 ear i+ 3 (o~ 2l + 210l

m=1
(CumnCull™} + O 5l 0uslro nan + S Mooy
11 o oty + 2TV ko1 )
With the coercivity of a, we can estimate for k < 2(#{#1)
Slandldr < glamlirm < A=2220) 2a R - (A.34)
Then, (A.33)—(A.34) yield (A.18)—(A.20). 0

Now, we estimate the discrete time derivative of z,.

Lemma A.9. Let z,, forme {0,..., N}, be given by the proof of Proposition A.1. Then,
there exists a constant C, which depends only on T, Cy_p,Cq, Cy, Cp1, Cp2, Cpz, Cra, a, 3,
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Vs Las Ly, Ly, [v™ v, 9]z 0,500y Hfl“%z(o,T;H/); |.f2ll 20,7y such that
(A.35)

loml¥ < C,
(A.36)

%Hzm - Zm—lu%q <C.

1

P M=

Proof. We use the decomposition vy, — V-1 = Wy, — Wyy—1 + (2m — 2m—1) and multiply
(A.1) with 2y, — z»—1. Then, we obtain with z,, — z;,—1 € W
(A.37)

am(zm — Zm—1,”m — mel) + bm(vma Zm — szl)
- %am(w — Wm—1y”Rm — mel) + fl,m(zm - mel) + f2,m(z - mel)-

I ==

With the coercivity of a, the estimates for f; and fs and the Young inequality, we obtain

%Hzm - meIH%I + bm(vm, Zm — Zm—l)
< LCuwm — w1 |1 2m — Zm—t1 | + | Frmll ] 2m — 21|
(A.38)

+ f2,m(zm - mel)

02
< 2w — Wil + & lom — 2me|y
+ %HfLmH%{’ + gi]gHZm - szlH%{ + f2,m(Z — mel)-

In order to estimate b,,, we decompose by, = b, + b2, + b3, + b, analogously to (3.100)
— Zm—
) (A.39)

bm(vma Zm — mel) :byln(vma Zm — mel) + bgn(vma Zm
+ bfn(vm, Zm — Zm—1) + bfn(vm, Zm — Zm—1)

We note that the estimates and the pointwise properties of b', b2, b3, b* from Assumption
3.34 hold for the decomposition of b, as well. Thus, bl is coercive, continuous and

symmetric and, hence, it defines a scalar product on V' and a norm via
2 .l
HuHm,V T bm(”a u)

for u € V. Using the Cauchy-Schwarz and the Young inequalities, we obtain for any

u,seV
b (11, 8) = [l v 8,y < Flulzy + Slsliy

and we can conclude
Bl = 9) = V) = D) > s = By = 3ol

slul?y = 5lsly-

2
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Employing (A.40), we can estimate

b}n(Um, Zm — mel) = bqln(vmyvm - Umfl) - br}n(vmawm - wmfl)

(A.41)

= %va”%m/ - %va—l\lfn,v - b%n(vm, Wi — Wipn—1)-

Using the continuity of b?n and bfn and the Young inequality, we can estimate the second
and the fourth summands on the right-hand side of (A.39) by

—b%n(vm, Zm — 2m-1) < Cp|vm|v|2m — 2m-1llm
< 2Chklonl; + §lom — mo )
—b (U 2m = 2m—1) < Cp2|[vm||mlzm — 2m—1 ]
< 2ChklvmlE + gillzm — 2m-1 -
Combining (A.38), (A.39), (A.41) and (A.42) yields
2 2 2
sillzm = zm-1lE + 3lvmlmy = glvm—1lmy
CZ
<l wm — w15+ 2 ol + 2CRkEvm + 2Ck|vm|F (A.43)
+ b71n(7}ma W — wm—l) + f2,m(zm - Zm—l) - b?n(vmv Zm — Zm—1)~
With the continuity estimate for b! and the Young inequality, we obtain
bin(vn% Wi — Win—1) < Cyt|[vm |v [ wm — wm-1]v
(A.44)

CQ
< Lkflvm|F + Hwm — wn—1]{-

After inserting (A.44) in (A.43), we obtain with the continuous embedding of V' into H

silzm = zm—1lf + glomlm v = lvm—1l7y
<

2
(2035 +1) Hlewm — wma [ + 2| fuml3

Cot L 2.2 2072 12 2 (A.45)
+ {4 + 50 + 20uCvon ) Klumlv

+ f2,m(zm - Zm—l) - bi@(vma Zm — Zm—l)-

Now, we multiply (A.45) by A(k)M~™ > 0, where A(k) is determined later, for M €
{1,...,N} and sum over m € {1,..., M}. Thus, we obtain

M M
D AN Sz =z alE A+ 3 D AR (omlny = lom- 1 ly)
m=1

m=1

2
AR (2] + 1) Hlwm = w1+ 2 fum )
1

N\
e

187



Appendix A. Time dependent—differential algebraic-equations

+ Z Ak (( S+ AR+ 20 CVHH) k|”m|%/>

M
+ Z )‘(k)Mimme(zm - Zm—l) - 2 A(k)MimbizCUmv Zm — Zm—l)
m= m=1
=0+ 1o+ Is+ Iy (A46)

We rewrite, the second term on the left-hand side of (A.46)

mv)

M
52 AN (w2
miM

1

M-
1 —(m+1) 2

—5 2, Ak Noml iy
2 mZ::O h (A.47)

1

_2

=1
M—
:§HUMHMV - l>\(k3) 1HUOHLV

+22>\

From the Lipschitz continuity and the coercivity of bl , we obtain

= MK v lga,v) -

HUmHEn—H,V = bl,m+1(Uma Um) = b}n(vmavm) + (b71n - bl,mfl)(vmvvm)

%kb}n(vm,vm) (A.48)

Sk -

Now, we choose
ME) = 1+ 4k (A.49)

such that we can estimate the last term on the right-hand side of (A.47) with (A.48) from
below

_ _ L
[omly = AE) " om 1y = Tomliy = AR A+ B om[5, = 0. (A.50)

Moreover, we have

—m)1n Lil Lyt Lyt
M- = (M-m () ¢ (M (1+78) <MLL (AB)
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Using (A.50), (A.51), the coercivity and continuity of by, we can estimate (A.47) further

M
M- M—
5 2 AR (Jomln v = lvmetlmv) = gloarlRry = 5AR)M ool y
m=1 (A52)
1 TLb 1 TLbl

1
> B3louly — 360 7 Cyllwoly = Bzlondlliy — 3¢ 7 Calo™ 7.

Now, we estimate the terms I, I, I3, I of the right-hand side of (A.46). Using (A.51),
Lemma A.7 and Lemma A.5, we can estimate I; by

L1
T—=b- 202
n<e 7 (25034 +1) H1aglaoro + 2B rm) (A.53)

and with (A.51), Lemma A.7 and Lemma A.8, we obtain

Lyt /e
_[2 < €T B ( bl Cb2 + C CV*)H) (CZ + HgHC OT Q')) (A54)

Furthermore, we obtain
M-1
Iy =fonr(zar) + ), ARM HFUE) = 1) fom(zm)
m=1

M-—1
+ > AEM D (fy i (2m) = famr1(zm)) + AE)M T f21(20)
m=1 (A.55)
e NS
< foulvilzulv +€ 5 D7 k= famlvllzmlv
m=1

Ti M-1 Tﬂ
e 0 Y I fom = fom—ilvilzmlv + € P | fanlvlzolv.

Then, applying the Young inequality, the estimate |zp/[|y < |var|y, Lemma A.4 and
Lemma A.8 give

M—-1 2
I <3| foullir + laarlf + ), ’f S ol + Kllzm
m=1
L1
1 2T ——

M opler
+ Y e Bl fam = famelir + Elzml} + 1 + [ 20]3
m=1
%Hf?“c o,1:v)y + ﬁHUMHV T BT HfQHC [o,7;v) + Cz
L pl L bl
2T —3— 6 1 P C 2T /8
+e ilocfoll T2y + Cz + e | falleornvy + lz0lF
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L
L? 274~
SE+T4 +3¢ P)lfaleqorvy + Slonml} + 207
L1
or=bL
te 5 1‘|5tf2“L2 0,13V") + o™ 3. (A.56)

In the next step, we estimate

Iy =— b37M(UM, ZM) + )\(k)M_lbgyl(’Ul, Z())
M-—1
= > AEM D (N (KBS, (v, 2m) — B3t (Vs 1, 2m) (A.57)

m=1

=J1 + Jo + Js.

Using the continuity of b3,, the Lipschitz continuity of b, the Young inequality, the esti-
mate |zyllv < |var|v, Lemma A.7 and Lemma A.8 gives

N < Cyslom|mlzmlv < Cg(lwmm + |zulo)? + Blzul3

< 40 CV*)H HQHC [0,7;@) T C sCz + 8HUMHV

L o L1 L (A.58)
Jo < T Cbs\l’vlﬂHHZoHv Chi(|z1lm + wilm)? + 3wl
L
2T —2— :
< B CLC, + e 5 ChCY L |aleqo e + 3lv™ %

In order to estimate J3, we estimate first

_()‘(k)b?n(vma Zm) - b37m+1 (Um-i-l, Zm))

=- ()‘(k)b%z(vma Zm) — bgn(ku Zm)) — (bgn(vm — Um+1, Zm))
- (b?n — b3 m+1)(vm+17 Zm)
L
<F Caklvm|lalzmlv + Lysk|vm |l o|2m|lv (A.59)

+ Coa ([ 2m — 2mallm + lwm — winga | #) ] 2m[v
\2[;%0 Crklom[V + 5kl zml + Lis 2CVHHkHUm+1HV + 5klzm¥
+ Ellzm = zmalf + HCVSlwm — wma + 2CEE|zmF-
Having this, we can estimate Js with Lemma A.7 and Lemma A.8

L M-1
" Z <2§§C CYuk(lzmy + lwmli) + (1 + 3 CR)kl zml5

+ ng QCV—>Hk(Hzm+1HV + meHHV) C\Z/—>H\|wm - wm+1|\%/)

M—-1
+ Z A(k)M™ (mtl) ik l2m — Zmi1|[H

m=1
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L1
Tib L2
e’ (/T%lcfsC%H(Cz + Llgl2 o)) + 1+ 2C3)Cz

bs QCV—)H(CZ + 52 Hgﬂc( 0,T7; Q’)) + %Ca—»HV%HatgH%%O,T;Q’))
M
+ D AEM T &z 1 — 2l (A.60)
m=2

Estimating the left-hand side of (A.46) by (A.52) and the right-hand side by (A.53),
(A.54), (A.56), (A.57), (A.58), and (A.60), we obtain after collecting all the constants and
using 1 < A(k)

Tloaely + 30 AEM ™ ez — 2 [T < C,

m=1

where C depends on T CVHH» Ca, Cb, Cbl CbQ, Cb37 Cb4v a, ﬁ, Y, La, Lbl, Lb37 Hvinﬂv,
l9lleqom@ny 10l 220,701 HleLz (0,1 H')? |0t f2| L2 (0,7;v7)- This shows (A.35)-(A.36). O

Lemma A.10. Let p,, be given as in Proposition A.1. Then,

M
> klpmlp < C (A.61)

m=1

for a constant C, which depends only on T,Cy_ g, Cq, Cp, Cp1, Ch2, Cys, Cpa, v, 8,7, Lq,
Lys, Liss 1971, gl om@y 11120 1 fzlmomam:

Proof. Using (A.1), we can estimate

HC*pmHV’ = H - %am (Um - 'Umfl) + bmvm + fl,m + f2,mHV’ (A 62)
< CoCvs t|vm — vm-1li + Collvmlv + Cvoull fomllmr + | fomlv.
From the inf-sup estimate of ¢, we obtain v|pm|o < |¢*pmlly7, which yields
MNomle < CaCvonglvm = vm-1lu + Colvmlv + Cvonl fomlur + | f2mlvr.
After multiplication by k£ and summing over m € {0,..., N}, we obtain
gl Z klpmlp < Z kCoCv ot ([om — vm-1lm) + Cokllom|v
1
"= o (A.63)
+ . Ovosnkl frmlmr + k| fomlv-
m=1

Then, we obtain (A.61) with the estimates from Lemma A.5, Lemma A.4, Lemma A.7
and Lemma A.9. O
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Appendix A. Time dependent—differential algebraic-equations

Lemma A.11. The solution of Theorem 3.33 is unique.

Proof. Due to the linearity of (3.96), we can assume that fi, f2,g,v'™ = 0 and it suffices
to show that every solution v, p of (3.96) is already 0. We decompose v = w + z as above
and obtain similarly as in Lemma A.7 that w = 0. Then, we multiply (3.96) by z(¢) and
get

a(t)(0:2(t), 2(t)) + b(t)(2(t), 2(t)) = —a(t)(Qrw(t), 2(t)) — b(t) (w(t), 2(t)) = 0.

Since a € COL([0,T]; L(H, H')), we get t — a(t)(v,w) € C¥([0,T]) = Wt*(0,T) for
every fixed v,w € H and it holds |0ia(t)(v,w)| < Lg|v|g|v|w for a.e. t € (0,T) and all
v,w € H. Hence, a is family of regular operators in the sense of [Sho97, Chapter I11.3].
Then, o' (t) € L(H, H') can be defined by a'(t)v := d¢(a(t)(v,-) and we obtain from [Sho97,
Chapter III. Proposition 3.2]

r(a(t)(2(t), (1)) = 2a(t)(Gr2(t), 2(1)) + a'(t)(2(1), 2(1))
almost everywhere, which leads to
30(a(t)(2(), 2(1))) + (1) (2(t), 2(1) = 3a'(t)(=(2), 2(t)).-

Integrating over (0,t) yields

Due to the zero initial values, the coercivity of a, the Garding’s inequality for b(t) and the
estimate for a/(t) with the Lipschitz constant of a, we obtain

ozl + 38121 ey < (@ + 3La) 2172 0,00:m)

Then, the Lemma of Gronwall shows that z = 0 and, therefore v = 0. Then, we obtain
with the inf-sup estimate

p®le < I p@lv = | = a®)dpo(t) = b(t)v(@) v = 0,

which shows p = 0. 0

Lemma A.12. Let b > a > 0. Then,
(1—az) ' < +bz) (A.64)

b—a
for all x € [0, =2
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Proof. We note that 0 < z < b;—ba yield (a — b)z + abz? < 0 and
1-(1+bx)(1—azx)<0.

Moreover, we have 1 —ax > 1 — ab;—b“ = % > 0 and, therefore,

1—(1+bx)(1—ax)
1—ax

<0

(1—az)t =1 +bx) =

which provides the desired result.
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Notation

Notation

1 identity matrix

det(A) determinant

Adj(A) adjugate matrix

tr(A) trace

Yyt orthogonal complement

|z| Euclidean norm in R™ or Forbenius norm in R"*"
|| oo maximum norm

dist(A, B) distance

B, (z) ball with radius r around x

int(A) interior

A closure

0A boundary

e; Euclidean unit vector in R"

supp(f) support of a function

C generic constant

C- generic constant depending on &

c generic constant used for bounds from below
c(Q) continuous functions

e (Q) Holder continuous functions

che(Q) Lipschitz continuous functions

Ck(Q) k-times continuously differentiable functions
C5r(2) infinitely differentiable functions with compact support
D(Q) the set C°(€2) with a suitable topology (see [Alt16])
Cu(Y) Y-periodic continuous functions

CE(Y) Y -periodic infinitely differentiable functions
LP(Q) Lebesgue space

LP(Q,B)  Lebesgue-Bochner space

WkP(Q) Sobolev space

HE(Q) = Wk2(Q)

W, P(Q) functions with zero trace on o€

Wll’p (Q) functions with zero trace on T’

W;p (Y)  Y-periodic functions

LV, W) space of linear and continuous operators

14 dual space

x-y Fuclidean inner product in R"

A:B Euclidean inner product in R™*"

(z,y) inner product

(a',x)x» x dual pairing

f average integral ( = ﬁg)

U U

c* adjoint operator
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Notation

Notation for derivatives:
Let UcR"and u: U > R, v: U > R"and A: U - R, x €U and 4,5, ke {1,...,n}:
Opu(z) € RY*™ pu(x)y i= 0p,u(x),
Vu(z) = (Qyu(z))" € R",
Lo(z) € R™" 0pv(x)ji 1= 0g,v5(x),
Vo(z) = (0v(x)) | € R™™,
cA(x) € RN 0 A(2) jhi = 0, Aji(),
VA(z) = (3, Ax)) " e RN Y A(2)51, = 00 A(2) ki,
div(v(z Z 0z, 0; = tr(0;v),

=1

)

D

div(A(z) € R",  div(A(2)); = div((Ay)y (@) = 3 0, Ay
i=1

Au(z) = div(Vu)

Av(z) = div(Vu(x)) e R", (Av(x)); = Avi(x)

In particular, these notations for the derivatives lead to the following Leibniz rules

Oz (uv) = v0pu + udyv,

0z (uA) = Adyu + udz A,
0e(Av) = v' 9, A + Adyv,
div(uww) = udiv(v) + Vu - v,
div(ud) = udiv(A) + A" : Vu,
div(Av) = div(4) -v + A : Vo.
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