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Abstract

Analytical homogenisation provides effective models for processes in multiscale media
based on models at the microscale. For porous media, the pore geometry strongly af-
fects the resulting effective models. We provide an analytical homogenisation method
for complex porous media with non-periodic and evolving cavities. For this, we derive
a generic framework based on coordinate transformations and homogenisation of the re-
sulting replacement equations. We rigorously justify this approach by showing that the
homogenisation of the replacement problems defined in periodically perforated domains is
equivalent to the homogenisation of the original problems. A back-transformation of the
homogenisation results completes the method and leads to homogenised equations taking
into account the local microstructure.
We apply this method for the homogenisation of quasi-stationary and instationary

Stokes flow in evolving porous media. This leads to a quasi-stationary Darcy law and a
Darcy law with memory for evolving microstructure. Both translate the local microstruc-
ture into effective permeability tensors and provide an additional source term for the
pressure resulting from the local change in porosity.
In addition, a reaction–diffusion equation with coupled pore evolution is homogenised.

The resulting homogenised reactive transport system adjusts the diffusive flux by taking
into account the local microstructure and scales the growth rate for the concentration with
the changing porosity. The pore evolution and hence the effective transport properties are
coupled to the unknown concentration by local upscaled microscopic processes.
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Zusammenfassung

Analytische Homogenisierung liefert effektive Modelle für Prozesse in multiskalen Medien,
die auf Modellen auf der Mikroskala basieren. In porösen Medien beeinflusst die Poren-
geometrie stark die resultierenden effektiven Modelle. Wir präsentieren eine analytische
Charakterisierung für komplexe poröse Medien mit nicht-periodischer und sich verändern-
der Porenstruktur. Dazu leiten wir eine generische Methode her, die auf Koordinatentrans-
formationen und der Homogenisierung der resultierenden Ersatzgleichungen beruht. Wir
rechtfertigen dieses Vorgehen, indem wir zeigen, dass die Homogenisierung der Ersatzprob-
leme in den periodisch perforierten Gebieten äquivalent zur Homogenisierung der ur-
sprünglichen Probleme ist. Mittels einer Rücktransformation der Homogenisierungsergeb-
nisse vervollständigen wir diese Methode und erhalten homogenisierte Gleichungen, welche
lokale Mikrostrukturen berücksichtigen.
Wir wenden diese Methode zur Homogenisierung von quasistationären und instationären

Stokes-Strömungen in sich verändernden porösen Medien an. Dies führt zu einem quasi-
stationären Darcy-Gesetz und einem Darcy-Gesetz mit Gedächtnis für sich verändernde
Mikrostruktur. Beide Modelle übersetzen die lokale Mikrostruktur in effektive Permeabi-
litätstensoren und liefern einen zusätzlichen Quellterm für den Druck, der aus der lokalen
Veränderung der Porosität resultiert.
Zudem wird eine Reaktions-Diffusions-Gleichung mit gekoppelter Porenentwicklung ho-

mogenisiert. Das resultierende homogenisierte reaktive Transportsystem passt den Dif-
fusionsfluss unter Berücksichtigung der lokalen Mikrostruktur an und skaliert die Wachs-
tumsrate für die Konzentration mit der sich ändernden Porosität. Die Porenevolution und
damit die effektiven Transporteigenschaften sind durch lokale, hochskalierte mikroskopis-
che Prozesse an die unbekannte Konzentration gekoppelt.
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Introduction

Motivation

Many processes in the geosciences or biology, such as groundwater flow or reactive trans-
port, take place in the fine pore spaces of large porous media. Typically, these processes
can be described by constitutive equations inside the pores on a small scale while the
resulting physical effects are observed on a much larger scale. However, these are still
strongly affected by the microscopic structure. At this point, homogenisation aims to
transfer the models and pore geometries from the microscale into effective models on the
macroscale.

From a mathematical point of view, such processes can be described by partial differen-
tial equations (PDEs), where the microscopic structure leads to oscillating coefficients or
perforated domains. The period of the oscillations or perforations depends on the size of
the microstructure and is related to the macroscopic size by means of a small parameter
ε ¡ 0. Since this parameter is very small, the limit ε Ñ 0 of the PDEs often provides a
suitable approximation of the original problem for small positive ε. The advantage of this
limit lies typically in the fact that the resulting PDEs have coefficients without microscopic
oscillations and the limit processes averages the microstructure in a physically meaningful
way.

In order to apply this limit process, one has to provide some ε-scaled version of the
equations. This can be achieved by employing periodicity assumptions or the concepts of
stationarity and ergodicity in a stochastic setting. However, these assumptions are too re-
strictive for many materials. In particular, if the process interacts with the heterogeneous
structure local variations of the domain can occur, which have to be taken into account.
In the case that the microstructure is prescribed by oscillating coefficients, tools like two-
scale convergence can take into account local variations by weakening the assumption of
periodicity to strong two-scale convergence while still allowing rigorous homogenisation.
If the microscopic heterogeneity is given by the domain where the PDEs are defined, the
homogenisation becomes far more complicated and there was no complete framework avail-
able that can handle this case. Such local geometries, as for instance, cavity constrictions
in a porous medium, can have a significant effect. This can easily be observed for fluid
flow in a porous medium, where local clogging along a cross section can even stop fluid
flow completely. Furthermore, in many applications, the pore space undergoes an a-priori
unknown evolution over time, which complicates the investigation. Typical examples of
such coupled systems are reactive transport problems, where chemical reactions lead to
dissolution and precipitation of the porous matrix, or transport processes in biological
tissues, where biofilm formation affects the cavities.
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Introduction

Goal and main contribution of this work

This work provides an analytical method for the rigorous homogenisation of processes
in locally differently perforated porous media. In particular, this method is capable of
dealing with time-dependent microstructures. It is based on the transformation to periodic
reference structures and is stated in a purely asymptotic framework. Therefore, it allows
for pure compactness arguments, which even allow for the homogenisation of free boundary
value problems on the microscale.
We use this method to study flow in porous media with an evolving microstructure. By

homogenising the quasi-stationary and instationary Stokes equations in a locally evolving
porous medium, we derive two Darcy laws for evolving microstructure. The limit results
not only account for the locally varying microstructure through the permeability tensor,
but also incorporate a source or sink term for the pressure resulting from the local change
in porosity. Furthermore, we homogenise a reaction–diffusion equation coupled to the evo-
lution of the microstructure. This provides an effective description of a reactive transport
process that is coupled bidirectionally with the local pore structure.
From a mathematical point of view, the study of the locally different (evolving) mi-

crostructure is approached as follows: If the microscopic heterogeneity is given by some
oscillating coefficient, tools such as two-scale convergence can weaken the assumption
of strict periodicity in strong two-scale convergence, allowing local variations of the mi-
crostructure. We translate the local non-periodicity of the pore structure into this setting.
Therefore, we use a periodically perforated reference domain and assume that it can be
transformed into the locally periodically perforated domain by changing the coordinates.
Transforming the PDEs from the actual domain into this surrogate domain leads to PDEs
that includes transformation quantities. Thus, the non-periodicity of the geometry is
translated into local periodicity of functions, which can be handled by two-scale conver-
gence and allows the limit process εÑ 0. Homogenisation in the surrogate domain leads
to a two-scale limit problem defined in a cylindrical two-scale domain. Transforming back
the equations on the reference cell for each macroscopic point provides transformation-
independent two-scale limit equations defined in a non-cylindrical two-scale domain and
subsequently to a homogenised equation. This approach can be used for time-dependent
microstructures by transforming the geometry for each point in time, and this is illustrated
in Figure 1.

non-periodic
microproblem

macroproblem

periodic
substitute

microproblem

substitute
macroproblem

homogenisation

homogenisation on the

periodic substitute domain

microscopic
transformation

two-scale
back-transformation

x2

x1

ψ−1
ε

ψ−1
0 (x1, ·)

ψ−1
0 (x2, ·)

Y ∗

reference cell Y

Figure 1.: Homogenisation by transformation on a periodic substitute domain
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Introduction

To make sense of this approach, it is essential not only that we can pass to the limit
ε Ñ 0 in the substitute domain, but also that the limit process for homogenisation com-
mutes with the ε-scaled transformations and the limit transformation for the upscaled
microstructure. To formulate this commutativity property mathematically, let Ωε be a
family of ε-scaled periodically perforated substitute domains and Ωεptq be the family of
actual ε-scaled domains with a family of coordinate transformations ψεpt, �q : Ωε Ñ Ωεptq.
Let uε : Ωε Ñ R and ûε : Ωεptq Ñ R represent a function in the two different coordinate
systems, i.e. ûεpxq � uεpψεpt, xqq for all x P Ωε. Then we have to make sure that the
two-scale convergences of ûε and uε are equivalent, i.e.

uεpxqÝÝáÝÝÝáu0px, yq if and only if ûεpxqÝÝáÝÝÝáû0px, yq

and we have to identify the limits by û0px, yq � u0px, ψ0pt, x, yqq for a family of coordinate
transformations ψ0pt, x, �q : Y

� Ñ Y �pt, xq. The goal is to provide a framework, as general
as possible, in which this commutativity is fulfilled and the transformation quantities
resulting from the coordinate transformations are well-manageable in the limit process
εÑ 0.

The derivation of such a framework requires not only the transformation of the functions
themselves, but also of their gradients. These derivatives play a critical role in the ho-
mogenisation and require some additional correctors. This is also reflected in the two-scale
transformation approach, where the two-scale limit of the gradients and the corresponding
correctors do not follow the same transformation rules as the functions themselves, but re-
quire some additional corrections. Nevertheless, we can take this two-scale limit behaviour
into account and formulate this transformation approach as a completely transformation-
independent toolbox. We present this method by applying it to the homogenisation of a
diffusion equation in a non-periodically perforated domain.

We then use this method to homogenise the quasi-stationary and instationary Stokes
flow in an evolving perforated domain. Due to the high complexity of the Stokes equa-
tions and their homogenisation, we have to derive additional two-scale analysis results to
make the transformation approach applicable. For example, the transformation of the ε-
scaled Stokes equations leads to a symmetric gradient that is multiplied by transformation
coefficients, which requires new Korn inequalities for this two-scale transformation frame-
work. Furthermore, we derive transformation results for the divergence-type two-scale
correctors which arise for the two-scale limit of the pressure. By providing solutions to all
the difficulties arising from the local non-periodic microstructure, we are able to derive a
quasi-stationary Darcy equation as the limit for the quasi-stationary Stokes flow as well
as a Darcy equation with memory for the instationary Stokes flow. In particular, these
results also hold for a locally periodic microstructure that does not evolve in time.

Moreover, we employ this transformation framework to homogenise a reaction–diffusion
equation coupled to the evolution of the microstructure. Due to this a-priori unknown
domain evolution, we have to apply a generic coordinate transformation which is coupled
to the solution of the diffusion equation. Then, the non-linear reaction–diffusion process
with free boundary becomes a highly non-linear system of equations in the transformed
substitute domain. At this point, it becomes necessary that the method relies entirely on

3



Introduction

asymptotic properties, which can be verified purely by compactness results and do not
require that the transformation can be written as ε-scaled power series. The homogenisa-
tion result is an effective reaction transport system, which is coupled to the local upscaled
microstructure.

From an application point of view, these homogenisation results provide new insights
into the effective flux in complex porous media. They enable better predictions for pro-
cesses in locally periodic and evolving microstructures and also for reactive transport,
which affects the pore structure.

From a mathematical perspective, we provide a powerful tool that allows homogenisation
for complex microstructures. The generality and strength of the method is emphasised by
showing its ability to homogenise the Stokes equations and free boundary value problems.

Overview of the literature

Analytical homogenisation methods
We provide only a brief overview of the general theory of periodic homogenisation and
refer to [BLP78, ZKO94, Hor97, Pan97, CD99, MK06, Tar09] for more details.

In order to understand the asymptotic behaviour of parametrised PDEs with some fine-
scale parameter ε tending to zero, several types of convergence have been introduced.
In [DG75, Gio84], De Giorgi introduced Γ-convergence, which provides an abstract no-
tion of convergence for functionals, which goes beyond the application of homogenisation.
Spagnolo introduced the notion of G-convergence for the study of second order symmetric
elliptic operators in [Spa68]. He defines the convergence of the operators in terms of the
solutions of the corresponding PDEs and provides a compactness result. To overcome
the restriction to symmetric operators, Murat and Tartar defined the convergence of the
operators not only by the convergence of the solution but also by the convergence of the
associated fluxes [MT77, MT97a, MT97b]. This so-called H-convergence avoids the in-
stability that occurs for non-symmetric operators in the notion of G-convergence. Both
notions of G- and H-convergence do not require any periodicity assumptions.

The energy method of Tartar [MT77], also known as the oscillating test function method,
provides another approach to the homogenisation of partial differential equations. It uses
oscillating test functions to pass to the limit. This approach corresponds closely to the
compensated compactness results of Murat [Mur78] and Tartar [Tar79] and is presented
in detail in [CD99].

The two-scale convergence method is devoted to periodic homogenisation. It was intro-
duced by Nguetseng [Ngu89] and Allaire [All92a] and is very efficient due to its specific
application. Roughly speaking, it rigorously justifies the first terms in the two-scale asymp-
totic expansion ansatz. This avoids the technical a-posteriori convergence analysis that is
otherwise required to justify the asymptotic expansion approach. Two-scale convergence
provides not only compactness results but also a simple approach to the derivation of
the limit equations. It also has the advantage of allowing the consideration of systems of
equations as well as slow diffusion processes, i.e. coefficients which degenerate for ε Ñ 0.
The periodic unfolding method of [CDG02, CDG18] uses the so-called unfolding operator
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Introduction

to transform the homogenisation problem into a convergence problem in a fixed space. It
is not only a useful tool on its own, but also allows the translation of two-scale convergence
into classical convergence in Lebesgue spaces [Vis06], which provides a powerful notion of
strong two-scale convergence. Similar operators are also presented under the names of
dilation operator [ADH90] and periodic modulation [BLM96] in the context of homogeni-
sation. Furthermore, the concept of two-scale convergence is extended to a stochastic
setting in [BMW94, ZP06, HNV22].

Homogenisation in locally periodically perforated and evolving domains
The above-mentioned analytical homogenisation tools strongly distinguish between mi-
crostructure given by some oscillating coefficients or represented by perforated domains.
For instance, tools like the two-scale convergence can deal with locally periodic coefficients
but so far require strict periodicity in the case of perforated domains. Nevertheless, such
non-strictly periodic perforated domains are highly relevant for many applications. In
particular, if local reaction processes affect the pore geometry, it becomes unreasonable
to assume that the pore structure remains periodic over the whole domain. Since the
pore geometry heavily affects the effective macroscopic behaviour, these local microscopic
changes must be taken into account.

A locally periodic microstructure can be modelled in several ways. In [CP99], Chechkin
and Piatnitski described the microstructure in terms of the level sets of a smooth function
ϕpx, xε q and homogenised a Poisson equation by formal asymptotic expansion, which they
subsequently justified by estimates on the residual. This description of the microstructure
is extended to time-dependent level set functions in [vN08] and applied to the upscaling of
further problems in [RvNFK12, SK17]. In this case of time-dependent level set functions,
the level set functions were a-priori unknown and coupled to the process. However, these
later works only consider a formal upscaling via the two-scale asymptotic expansion and
without proving the convergence for ε Ñ 0. In [FY20], such a convergence proof was
presented for a time-dependent microstructure, which is described by an a-priori given
level set function of the form ϕpt, x, xε q.

Blanc and Wolf [BW22, Wol23, Wol22] modelled a non-periodic microstructure by a
local perturbation of periodically arranged isolated holes. For the limit ε Ñ 0, the per-
turbation is localised so that it does not affect the first order but only the second order
of approximation. The limit equations are derived by two-scale asymptotic expansion and
then justified by rigorous convergence estimates afterwards. In [MP94], the locally pe-
riodic microstructure was defined by means of a characteristic function on the reference
cell which varies smoothly with respect to the macroscopic domain. The homogenisation
of an elliptic problem was done by means of two-scale convergence. However, the rigor-
ous homogenisation in all these approaches restricts the geometry to the case of isolated
obstacles.

In [Pta13, Pta15], mesoscopically scaled patches with different but strictly periodic
microstructures are used to model locally different microstructures. In particular, this
approach allows for connected obstacles. The homogenisation is done by extending the
concept of two-scale convergence and the periodic unfolding operator to this local struc-

5



Introduction

ture.

Another approach to studying processes in time-dependent locally periodic microstruc-
tures was proposed by Peter in [Pet07b]. Instead of homogenising the actual problem,
the equations are transformed into a periodically perforated substitute domain and ho-
mogenised there. This transformation translates the local periodicity of the domain into
coefficients of the PDE, which can be handled by two-scale convergence. However, it
remained open whether this approach is equivalent to the homogenisation of the actual
problem, i.e. whether the transformation and the homogenisation commute in the sense
of Figure 1. Furthermore, the question of how to back-transform the limit problem was
only partially answered since the presented back-transformation of the limit equations
yields transformation-dependent equations. Nevertheless, this approach allows the inves-
tigation of a new class of highly application-relevant problems and found applications
in the homogenisation of thermoelasticity [EM17] or (advection–)reaction–diffusion pro-
cesses [Pet07a, Pet09, Ede19, GNRP21] in the sense that the transformed equations were
homogenised. This approach is based on the suitable transformation mappings ψε and ψ0

(see also Figure 1). A first example for explicitly constructed transformations leading to
strongly two-scale convergent coefficients and allowing the homogenisation in the substi-
tute domain is given in [Pet07a]. Moreover, in [Ede19], transformations ψε for prescribed
normal velocity of the microscopic interfaces are constructed. The case of two connected
domains is presented in [Wie19].

In [Wie23], the transformation approach of [Pet07b] was rigorously justified by present-
ing a framework in which Figure 1 commutes. Indeed, this framework does not require
substantially more assumptions about the transformations and domains than are already
required for the homogenisation in the transformed coordinates. In this sense this frame-
work is optimal. Moreover, in [Wie23], results are derived for the back-transformation
of the homogenised correctors, which give new transformation-independent homogenisa-
tion results. These results are presented in Chapter 2. Furthermore, this approach was
used to homogenise the quasi-stationary Stokes equations for evolving microstructure in
[WP24]. The structure of the Stokes equations differs from those equations previously
studied by this transformation approach. Therefore, several new results and extensions
were necessary, which we elaborate in Chapter 2, following [WP24]. Moreover, this trans-
formation is also able to deal with the instationary Stokes equations, which we will also
see in Chapter 3.

In [GP23, WP23], this transformation approach was used for the homogenisation of
two similar reaction–diffusion problems in porous media, where the evolution of the mi-
crostructure is a-priori not given but coupled to the unknown itself. The microstructure
is modelled by spheres with evolving radii. The evolution of the radii is described by or-
dinary differential equations depending on the solution of the reaction–diffusion problem.
This leads to a free boundary value problem at the microscale. We present the homogeni-
sation of this coupled problem in Chapter 4 and provide a more detailed discussion of the
differences between the approaches of [GP23] and [WP23].

6
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Homogenisation of Stokes flow
Based on the results of experiments, Darcy presented a fundamental principle of fluid
mechanics in porous media [Dar56]. Darcy’s law states that the rate of flow through porous
media is directly proportional to the the negative hydraulic gradient and the permeability
coefficient, and inversely proportional to the viscosity of the fluid. It can be derived
mathematically by means of homogenising the (Navier–)Stokes equations in a perforated
domain. In particular, this mathematical approach provides a better understanding of
the effects of the microscopic geometry on the permeability coefficient. First upscaling
approaches used formal two-scale asymptotic expansion and are presented in [Kel80, Lio81,
SP80].

The main difficulty in the rigorous homogenisation of the Stokes equations lies in the
uniform a-priori estimate of the pressure. Tartar overcame this problem by constructing
a restriction operator [Tar80] and provided a rigorous proof of the homogenisation. This
operator was extended by Allaire to allow the homogenisation in the case where the solid
space of the porous medium is also connected [All89]. A modification of this restriction
operator [LA90] allowed the consideration of different boundary conditions at the pore
interfaces. Furthermore, an extension of the restriction operator from H1 to W 1,p inte-
grability enables the homogenisation of the Navier–Stokes equations [Mik91]. A different
approach for the derivation of the a-priori estimates was presented by Zhikov in [Zhi94],
who constructed a family of ε-scaled operators, which are right-inverses of the divergence
operator. In particular, these operators enable a construction of a restriction operator
in the sense of [Tar80] with weaker estimates, which are still sufficient in order to show
the strong convergence of the pressure [Mik00]. This construction of these right-inverse
divergence operators used the extension operators of [ACDP92]. A different construction
for such operators, which does not require any extension result, is derived in [Wie19].
In particular, such ε-scaled right-inverse operators become useful for the homogenisation
of the compressible (Navier–)Stokes equations [Mas02] or in our case, where the domain
evolution motivates inhomogeneous Dirichlet boundary conditions leading to an inhomoge-
neous divergence condition. While these works considered Dirichlet or periodic boundary
conditions at the boundary of the macroscopic domain, the case of normal stress boundary
conditions is considered in [FMW17].

The upscaling of the instationary Stokes equation was first studied by formal two-
scale asymptotic expansion in [Lio81] and rigorous homogenisation results are proven
in [All92b] and [Mik94]. The result is a Darcy law with memory, which is an integro-
differential equation and can be approximated for large times and constant force by the
classical Darcy law [Mik94]. However, the ε-scaling of the viscosity becomes crucial and,
for different scaling, the time derivative can vanish during the homogenisation leading
directly to the stationary Darcy equation [Mik91].

The above-mentioned works considered the case where the porosity remains constant for
εÑ 0. For the case of isolated obstacles it is possible to scale the obstacles asymptotically
smaller than the periodicity size ε, i.e. the obstacles are of size εα for α ¡ 1 [All91b,
All90b, All90a]. The homogenisation result depends on the exact value of α and leads for
asymptotically small obstacles to the Stokes equation itself, for critically scaled obstacles
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to the Brinkman equation and for asymptotically large obstacles to a Darcy law. The
permeability for the Darcy law differs from the strictly periodic case [All91a] and the
additional Brinkman term, which arises for the critical scaling, corresponds to the “strange
term coming from nowhere” of [CM97].

Homogenization of non-linear problems
For example, non-linearities occur in reaction processes. Strong two-scale compactness
results are therefore useful for homogenisation. The derivation of such compactness results
is fundamentally different for slow and fast processes occurring in highly heterogeneous
media. For fast processes, spatial variations typically occur only on the macroscopic
scale, giving rise to uniformly bounded gradients and making the Rellich–Kondrachov
theorem applicable. Using an extension operator [ACDP92] or the unfolding method, this
approach is also applicable to processes defined in periodically perforated domains and
non-linear interface conditions [DN15]. For time-dependent functions, a uniform control
with respect to time becomes helpful. Since spatially oscillating coefficients do not yield
oscillations with respect to time, classical approaches such as the Aubin–Lions lemma
[Aub63, Lio69] often become applicable. For perforated domains one can try again to
use the extension to the whole domain. However, the extension operator of [ACDP92]
controls only the Lp- and W 1,p-norm but not the W 1,p 1-norm and, thus, the Aubin–
Lions lemma is not directly applicable if the derivatives are only controlled in the W 1,p 1-
norm with respect to space. Nevertheless, in [MZ11] this problem is circumvented and a
compactness result is given. A more elegant argument is given in [GNRK16b] (see also
[GNRK16a, GNRK17, Gah23]), employing the Simon–Kolmogorov compactness result
[Sim87]. In particular, this argument can be used even if the weak time derivative cannot
be uniformly controlled in any space [WP23].

In the case of highly heterogeneous media, variations occur even at the microscopic
scale. Thus, the macroscopic variable asymptotically becomes a parameter and only the
microstructure can be controlled via the gradient. In the case that the non-linearity is given
by the gradient of a λ-convex potential a rigorous homogenisation result was derived in
[HJM94]. For a more general non-linearity a convergence result was derived by additional
error estimates in [MRT14]. Under additional control of the macroscopic variation of the
coefficients a generalisation of the Simon–Kolmogorov compactness result for Rn [GNR16]
was applied to the homogenisation of non-linear boundary conditions [GNRP21].

Outline of the work

This thesis is structured as follows: In Chapter 1, we recall the notion of two-scale con-
vergence and its fundamental compactness results. We also use the periodic unfolding
method to obtain some additional results on two-scale calculus.

Chapter 2 presents an analytical framework for the homogenisation in locally peri-
odically perforated domains, which is based on [Wie23, D. Wiedemann, The two-scale-
transformation method, Asymptotic Analysis 131 (2023), 59–82]. The perforated domains
under consideration are characterised by transformations onto periodically perforated do-
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mains in Section 2.1. In Section 2.2, we show that these ε-scaled transformations commute
with the two-scale convergence. In Section 2.3, we employ these results to homogenise an
elliptic problem in a non-periodically perforated domain. We formulate this transforma-
tion approach for time-dependent domains in Section 2.4.
Chapter 3 is devoted to the homogenisation of Stokes flow in locally periodically perfo-

rated evolving domains employing the transformation approach of Chapter 2. Section 3.1 is
based on [WP24, D. Wiedemann and M. A. Peter, Homogenisation of the Stokes equations
for evolving microstructure, Journal of Differential Equations, 396 (2024), 172–209] and
considers the homogenisation of quasi-stationary Stokes flow leading to a Darcy law for
locally periodically evolving microstructures. In Section 3.2, we consider the homogeni-
sation of the instationary Stokes flow leading to memory effects in the resulting Darcy
equation.
Chapter 4 is based on [WP23, D. Wiedemann and M. A. Peter Homogenisation of lo-

cal colloid evolution induced by reaction and diffusion, Nonlinear Analysis 227 (2023),
113168] and deals with the homogenisation of a reaction–diffusion process with a free
boundary, which is coupled with the unknown concentration. We present the microscopic
model in Section 4.1. Then, we transform the problem by a generic transformation onto a
periodically perforated reference domain in Section 4.2. In Section 4.3, we show the exis-
tence and uniqueness of a solution as well as uniform a-priori estimates. In Section 4.4, we
pass to the homogenisation limit εÑ 0 in the substitute domain and transform the result-
ing limit equations back to a upscaled version of the actual and derive a transformation-
independent homogenised equation.
In Chapter 5, we draw some conclusions and provide a brief outlook on possible future

research.
Appendix A gives an existence result for time-dependent differential–algebraic equa-

tions, which we use in Section 3.2 for showing the existence and uniqueness of a solution
of the instationary Stokes equations in the substitute coordinate system and for deriving
a-priori estimates.
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Chapter 1.

Two-scale convergence and periodic
unfolding

In this chapter, we recap the notion of two-scale convergence and some of its fundamental
properties. Moreover, we employ the unfolding operator Tε in order to translate two-scale
convergence into classical convergence in Lp spaces. This allows us to transfer several
useful results from the Lp theory to the concept of two-scale convergence. The basic
results are well-known and some extensions stem from [Wie23, D. Wiedemann, The two-
scale-transformation method, Asymptotic Analysis 131 (2023), 59–82].

1.1. Basic results on two-scale convergence and the unfolding
operator

Two-scale convergence is a functional analytical tool, which enables rigorous homogenisa-
tion for differential equations with periodic structures. The notion of two-scale convergence
was introduced in [All92a] and is based on some fundamental convergence results for os-
cillating functionals in [Ngu89]. We refer also to [LNW02] for more detailed proofs and
generalisations.
Two-scale convergence provides information on the asymptotic behaviour of a parame-

terised sequence of functions puεmqmPN in L2pΩq for an open set Ω � Rn for n ¥ 1, where
pεmqmPN is a sequence of strictly positive parameters which tends to zero. For the sake
of simplifying notation, we omit the indices and write ε � εn as well as uε � uεn . We
call pεmqmPN and puεmqmPN a sequence ε and a sequence uε, respectively. We use the
expression “for all ε ¡ 0” in order to refer to all elements of the sequence ε. Moreover, for
a subsequence of ε or uε, we use the same notation without adding any subscript.
In the following, let n P N, Ω � Rn be open and Y � p0, 1qn. Moreover, let C be a

generic constant which is independent of ε.

Definition 1.1 (Distributional two-scale convergence). Let 1 ¤ p   8. A sequence uε in
LppΩq is said to two-scale converge distributionally to a limit u0 P L

ppΩ� Y q if

lim
εÑ0

»
Ω

uεpxqφ
�
x,
x

ε

	
dx �

»
Ω

»
Y

u0px, yqφpx, yqdy dx,

for any function φ P DpΩ;C8
# pY qq. We write uε

D
ÝÝáÝÝÝáu0.

11



Chapter 1. Two-scale convergence and periodic unfolding

We write uεpxq
D
ÝÝáÝÝÝáu0px, yq, if we want to emphasize the functions’ dependency on the

variables.

Enlarging the space of test function yields the notion of weak two-scale convergence,
which we often call two-scale convergence.

Definition 1.2 (Weak two-scale convergence). Let 1 ¤ p   8. A sequence uε in LppΩq
is said to two-scale converge weakly to a limit u0 P L

ppΩ� Y q if

lim
εÑ0

»
Ω

uεpxqφ
�
x,
x

ε

	
dx �

»
Ω

»
Y

u0px, yqφpx, yqdy dx,

for any function φ P LqpΩ;C#pY qq, where q is such that 1
p �

1
q � 1. We write uε

p
ÝÝáÝÝÝáu0.

For bounded sequences and p P p1,8q, the distributional two-scale convergence is equiv-
alent to the weak two-scale convergence.

Lemma 1.3. Let p P p1,8q and uε a bounded sequence in LppΩq and u0 P L
ppΩ � Y q.

Then, uε
D
ÝÝáÝÝÝáu0 if and only if uε

p
ÝÝáÝÝÝáu0.

Proof. A proof is given in [LNW02, Proposition 1].

Typically, the two-scale convergence for a sequence is obtained by compactness argu-
ments from the boundedness of the sequence. Due to the boundedness of the sequence,
the distributional and weak two-scale convergence are equivalent, which causes some in-
consistent usage of the term two-scale convergence in the literature, referring sometimes
to distributional or weak two-scale convergence.

In the following lemma, we see that weak two-scale convergence implies also weak con-
vergence.

Lemma 1.4. Let 1 ¤ p   8 and let uε be a sequence in LppΩq, which two-scale converges
to u0. Then, uε is bounded and uε converges weakly in LppΩq to u for upxq :�

³
Y

u0px, yqdy.

Proof. Lemma 1.4 can be shown by choosing the test functions constant with respect to
the y-variable. For a detailed proof see [LNW02, Theorem 6].

The notion of two-scale convergence is justified by the following compactness results.

Theorem 1.5. Let 1   p   8. For every bounded sequence uε in LppΩq there exist a
subsequence uε and a u0 P L

ppΩ�Y q such that this subsequence two-scale converges to u0,

i.e. uε
p

ÝÝáÝÝÝáu0.

Proof. For the case p � 2, the first proof of Theorem 1.5 was presented in [Ngu89] and a
simpler proof is presented in [All92a]. The general case 1   p   8 is shown in [LNW02,
Theorem 7].
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1.1. Basic results on two-scale convergence and the unfolding operator

Due to Lemma 1.4, it cannot be expected that Theorem 1.5 holds for p � 1. Neverthe-
less, the notion of two-scale convergence can be extended to measures [Ama98], in order
to deal with the case p � 1 similarly as in classical Lp theory.

We remember that, in uniformly convex Banach spaces, the strong convergence of a
sequence is equivalent to the weak convergence together with the convergence of the norms.
This motivates the following definition for strong two-scale convergence.

Definition 1.6 (Strong two-scale convergence). Let 1   p   8. A sequence uε in LppΩq

is said to two-scale converge strongly to a limit u0 P L
ppΩ� Y q if uε

p
ÝÝáÝÝÝáu0 and

}uε}LppΩq Ñ }u0}LppΩ�Y q.

We write uε
p

ÝÝÑÝÝÝÑu0.

In particular, the two-scale test functions strongly two-scale converge.

Lemma 1.7. Let 1 ¤ p   8 and BppΩ;Y q denote one of the spaces LppΩ;C#pY qq,
Lp#pY ;CpΩqq, CpΩ;C#pY qq. Then, for every u P BppΩ, Y q, it holds up�,

�
εq P L

ppΩq and

}u
�
�, �ε

�
}LppΩq Ñ }u}LppΩ�Y q.

Moreover, for 1   p   8, it holds up�, �εq
p

ÝÝÑÝÝÝÑu.

Proof. The measurability of φp�, �εq and the convergence }φp�, �εq}LppΩq Ñ }φ}LppΩ�Y q are
shown in [LNW02, Theorem 3].
In remains to show the weak two-scale convergence of φp�, �εq in order to conclude its

strong two-scale convergence. Let 1 ¤ p   8, u P BppΩ;Y q and φ P DpΩ;C8
# pY qq,

then uφ P B1pΩ;Y q. Therefore, we can pass to the limit in the distributional two-scale
convergence for the positive and negative parts of uφ and, thus, for the whole sequence.
Then, Lemma 1.3 provides the weak two-scale convergence.

If the two-scale limit does not depend on the y-variable, the strong two-scale convergence
can be improved to the classical convergence in LppΩq.

Lemma 1.8. Let 1   p   8 and uε a sequence in LppΩq which two-scale converges
strongly to u0 P L

ppΩq. Then, uε converges strongly to u0 in LppΩq.

Proof. First, we note that }uε}LppΩq Ñ }u0}LppΩ�Y q � }u0}LppΩq. Moreover, by Lemma 1.4,
we obtain the weak convergence uε á u0 in LppΩq. Since LppΩq is uniformly convex for
1   p   8, this implies the strong convergence in LppΩq.

Using the unfolding operator, we can translate the notion of two-scale convergence
into convergence in Lp spaces. Thus, we can derive more subtle results on two-scale
convergence. Nevertheless, the unfolding operator can be used as a homogenisation tool
on its own [CDG18]. In order to define the unfolding operator, we introduce the following
notation.
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Chapter 1. Two-scale convergence and periodic unfolding

Notation 1.9. Let Ω � Rn and x �
n°
i�1

xiei P Rn, where ei denotes the Euclidean unit

vectors. We define

rxsY :�
ņ

i�1

txiuei , txuY :� x� rxsY , rxsε,Y :� ε
�
x
ε

�
Y
, txuε,Y :�

 
x
ε

(
Y

Iε :� tk P Zn | εk � εY � Ωu , Ω̃ε :� int
� ¤
kPIε

εk � εY
	
, Λε � ΩzΩ̃ε.

Definition 1.10. Let 1 ¤ p ¤ 8. The unfolding operator Tε : LppΩq Ñ LppΩ � Y q is
defined by

Tεpφqpx, yq :�

#
φprxsε,Y � εyq for a.e. px, yq P Ω̃ε � Y,

φpxq for a.e. px, yq P Λε � Y.

Note that we define the unfolding operator by Tεpφqpx, yq � φpxq on Λε�Y , i.e. on the
cells that are not completely included in Ω, and not by Tεpφqpx, yq � 0 as in [CDG08] or
[CDG18]. By this slight modification, Tε becomes isometric (cf. Theorem 1.11). Thus, we
cannot only translate between the two-scale convergence of uε and the weak convergence
of Tεpuεq in LppΩ�Y q, as shown in [CDG08], but we can also translate between the strong
two-scale convergence and the strong convergence in LppΩ� Y q.

Theorem 1.11. Let 1 ¤ p ¤ 8. For every φ P L1pΩq and ψ P LppΩq, it holds»
Ω

»
Y

Tεpφqpx, yq dy dx �
»
Ω

φpxqdx, (1.1)

}Tεpψq}LppΩ�Y q � }ψ}LppΩq. (1.2)

Proof. First, we split the integral over Ω into Ω̃ε and Λε, i.e.»
Ω

»
Y

Tεpφqpx, yqdy dx �
¸
kPIε

»
εk�εY

»
Y

φprxsε,Y � εyqdy dx�

»
Λε�Y

φpxq dy dx.

Since rxsε,Y � εk on each cell εk � εY , we obtain»
εk�εY

»
Y

φprxsε,Y � εyq dy dx �

»
εk�εY

»
Y

φpεk � εyq dy dx � |εY |

»
Y

φpεk � εyqdy

�

»
εk�εY

φpxq dx.
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1.1. Basic results on two-scale convergence and the unfolding operator

Combining the previous two equations yields»
Ω

»
Y

Tεpφqpx, yqdy dx �
¸
kPIε

»
εk�εY

φpxq dx�

»
Λε

φpxqdx �

»
Ω

φpxq dx.

Since |Tεpφq|p � Tεp|φ|pq, (1.2) follows for p   8 by applying (1.1) to |φ|p. In order to
show (1.2) for p � 8, let |φ| ¥ C on an open set U with positive measure. Then, for every
ε ¡ 0, there exists k P Iε such that |pεk � εY q X U | ¡ 0 or we have |Λε X U | ¡ 0. Then,
|Tεpφq| ¥ C on either pεk � εY q � ppεk � εY q X Uq or pΛε X Uq � Y . Reversely, we can
deduce similarly from |Tεpφq| ¥ C on an open set U � Ω� Y with positive measure, that
|φ| ¥ C on a set with positive measure. Thus, we obtain (1.2) for p � 8.

The following result translates two-scale convergence into classical Lp-convergence.

Proposition 1.12. Let 1   p   8. Let uε be a sequence in LppΩq and u0 P L
ppΩ � Y q.

Then, the following statements hold:

(1.) uε
p

ÝÝáÝÝÝáu0 if and only if Tεpuεq á u0 in LppΩ� Y q,

(2.) uε
p

ÝÝÑÝÝÝÑu0 if and only if Tεpuεq Ñ u0 in LppΩ� Y q.

Proof. In order to prove (1.), we note that both convergences imply the boundedness of uε
and Tεpuεq, respectively. The isometry of Tε (see Theorem 1.11) transfers the boundedness
of uε to the boundedness of Tεpuεq and vice versa. Therefore, it suffices to test only with
a dense subset of smooth test function (for the two-scale convergence see Lemma 1.3),
i.e. (1.) follows if we show that

lim
εÑ0

»
Ω

uεpxqφ
�
x,
x

ε

	
dx � lim

εÑ0

»
Ω

»
Y

Tεpuεqpx, yqTε
�
φ
�
�,
�

ε

		
px, yq dy dx

� lim
εÑ0

»
Ω

»
Y

Tεpuεqpx, yqφpx, yq dy dx (1.3)

for every smooth test function φ P DpΩ;C8
# pY qq. The first equality in (1.3) follows from

(1.1) and the definition of Tε. For the second equality, we show that Tε
�
φ
�
�x,

�x
ε

��
converges

strongly to φ in LqpΩ � Y q for 1
p �

1
q � 1. Therefore, we note that for every x P Ω there

exists ε0pxq ¡ 0 small enough such that x P Ω̃ε for every 0   ε   ε0pxq. Hence, we obtain
the pointwise convergence

Tε
�
φ
�
�x,

�x
ε

		
px, yq � φ

�
rxsε,Y � εy,

rxsε,Y � εy

ε



� φprxsε,Y � εy, yq Ñ

εÑ0
φpx, yq

for every px, yq P Ω�Y . Since |Tε
�
φ
�
�, �ε

��
px, yq| is also pointwise bounded for a.e. px, yq P

Ω � Y and ε   1 by χU}φ}L8pΩ�Y q for U � tx P Rn | distpsupppφq, xq ¤ Cu for some
C ¡ 0, we can apply Lebesgue’s convergence theorem and obtain the strong convergence
of Tεpφp�x, �xε qq to φ in LqpΩ� Y q for 1

p �
1
q � 1, which implies (1.).
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For the proof of (2.), we note that in uniformly convex Banach spaces, as LppΩ�Y q, the
strong convergence is equivalent to the weak convergence together with the convergence
of the norms. Hence, (2.) follows from (1.) and the isometry of Tε.

For weakly differentiable functions, the unfolding operator and the weak derivative
commute in the following sense.

Lemma 1.13. Let 1 ¤ p ¤ 8 and φ P LppΩq. Then, Tεpφq P LppΩ̃ε;W 1,ppY qq, with

Tεp∇φq � ε∇yTεpφq in Ω̃ε � Y

Proof. Lemma can be shown by computations as in [CDG18, Proposition 1.35].

Two-scale convergence is also compatible with multiplication in the sense of the following
two results. The first result extends the results of [All92a, Theorem 1.8] (for p � 2) and
[LNW02, Theorem 11] (for p P r1,8q), where it was shown that the product of a weakly
with a strongly two-scale converging sequence converges in the distributional sense on Ω.

Lemma 1.14. Let 1 ¤ p, p1, p2   8 such that 1
p1
� 1
p2
� 1

p . Let uε be a sequence in Lp1pΩq,
which two-scale converges strongly to u0 P L

p1pΩ�Y q and vε a sequence in Lp2pΩq, which

two-scale converges weakly to v0 P L
p2pΩ� Y q. Then, uεvε

p
ÝÝáÝÝÝáu0v0.

Proof. For the case 1
p1
� 1

p2
� 1, the distributional convergence (in DpΩq1) of the product

was shown in [LNW02, Theorem 11]. This argumentation can be adapted for two scale
test functions τp�, �εq for τ P LqpΩ;C#pY qq with 1

p �
1
q � 1 instead of test functions

τ P DpΩq. Then, for the first step, it has to be observed that ϕτ P Lq2pΩ;C#pY qq for
ϕ P Lp1pΩ;C#pY qq and τ P LqpΩ;C#pY qq, where

1
p2
� 1

q2
� 1. Then, the proof can be

adapted by repeating the approximation argument, which is given there.

For the case that 1   p   8 the unfolding operator Tε (see Section 1.1) can be used for a
simple alternative proof as follows. Lemma 1.12 implies Tεpuεq Ñ u0 in Lp1pΩ�Y q as well
as Tεpvεq á v0 in Lp2pΩ�Y q. From classical Lp-theory, we obtain TεpuεqTεpvεq á u0v0 in
LppΩ � Y q. After noting that Tεpuεvεq � TεpuεqTεpvεq, Lemma 1.12 translates this weak

LppΩ� Y q-convergence back into uεvε
p

ÝÝáÝÝÝáu0v0.

For the case of two strongly two-scale converging sequences, we obtain the following
analogous result.

Lemma 1.15. Let 1   p, p1, p2   8 such that 1
p1
� 1
p2
� 1

p . Let uε be a sequence in Lp1pΩq,
which two-scale converges strongly to u0 P L

p1pΩ�Y q and vε a sequence in Lp2pΩq, which

two-scale converges strongly v0 P L
p2pΩ� Y q. Then, uεvε

p
ÝÝÑÝÝÝÑu0v0.

Proof. Similarly to the second proof of Lemma 1.14, Lemma 1.12 implies Tεpuεq Ñ u0
in Lp1pΩ � Y q as well as Tεpvεq Ñ v0. Thus, we obtain the convergence Tεpuεvεq �
TεpuεqTεpvεq Ñ u0v0 in LppΩ � Y q, which can be translated back by Lemma 1.12 into

uεvε
p

ÝÝÑÝÝÝÑu0v0.
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1.1. Basic results on two-scale convergence and the unfolding operator

If uε is a sequence in LppΩq for every p P p1,8q and u0 P L
ppΩq for every p P p1,8q

such that uε
p

ÝÝÑÝÝÝÑu0 for every p P p1,8q, we write

uε
  8
ÝÝÝÝÑÝÝÝÝÝÑu0.

Having this notation, we can enhance Lemma 1.15.

Lemma 1.16. Let 1   p   8, let vε be a sequence in LppΩq and v0 P LppΩ � Y q

such that vε
p

ÝÝÑÝÝÝÑv0 (resp. vε
p

ÝÝáÝÝÝáv0). Let uε be a bounded sequence in L1pΩqXL8pΩq and

u0 P L
1pΩ�Y qXL8pΩ�Y q with uε

  8
ÝÝÝÝÑÝÝÝÝÝÑu0. Then, uεvε

p
ÝÝÑÝÝÝÑu0v0 (resp. uεvε

p
ÝÝáÝÝÝáu0v0).

Proof. First, we consider the case that vε
p

ÝÝÑÝÝÝÑv0. Similarly to the proof of Lemma 1.15,
we obtain Tεpuεq Ñ u0 in LqpΩ � Y q for every q P p1,8q and Tεpvεq Ñ v0 in LppΩ � Y q.
Moreover, }Tεpuεq}L8pΩ�Y q ¤ C for some constant C. Then, we can pass to a subsequence
such that the pointwise convergences Tεpuεqpx, yq Ñ u0px, yq and Tεpvεqpx, yq Ñ v0px, yq
hold for a.e. px, yq P Ω � Y and we have a pointwise majorant h P LppΩ � Y q almost
everywhere, i.e. |Tεpvεqpx, yq| ¤ hpx, yq for a.e. px, yq P Ω� Y . Transferring the pointwise
convergence and the dominating function onto the product, we obtain the pointwise con-
vergence Tεpuεvεqpx, yq Ñ u0v0px, yq for a.e. px, yq P Ω�Y and |Tεpuεvεqpx, yq| ¤ Chpx, yq
for h P LppΩ� Y q. By applying the Lebesgue dominated convergence theorem, we obtain
Tεpuεvεq Ñ u0v0 in LppΩ�Y q. Since this argumentation holds for every subsequence, the
convergence holds for the whole sequence. We translate this convergence in LppΩ � Y q

with Lemma 1.12 into uεvε
p

ÝÝÑÝÝÝÑu0v0.

Next, we consider the case of vε
p

ÝÝáÝÝÝáv0. From Lemma 1.12, we obtain Tεpuεq Ñ u0
in LspΩ � Y q for all s P p1,8q, and Lemma 1.11 yields the boundedness of Tεpuεq in
L1pΩ� Y q X L8pΩ� Y q. By the same argumentation as above, we get TεpuεqϕÑ u0ϕ in
LqpΩ � Y q for every ϕ P LqpΩ � Y q, where 1

p �
1
q � 1. Using Tεpvεq á v0 in LppΩ � Y q,

we can pass to the limit»
Ω�Y

Tεpuεvεqpx, yqϕpx, yqdy dx �
»

Ω�Y

Tεpvεqpx, yqpTεpuεqϕqpx, yq dy dx

Ñ

»
Ω�Y

u0px, yqv0px, yqϕpx, yq dy dx.

Then, we translate this weak convergence with Lemma 1.12 back into uεvε
p

ÝÝáÝÝÝáu0v0.

In order to deal with non-linearities later, we note that the composition with a contin-
uous function preserves the strong two-scale convergence.

Lemma 1.17. Let 1   p   8 and |Ω|   0. Let uε be a sequence in LppΩq and u0 P L
ppΩ�

Y q such that uε
p

ÝÝÑÝÝÝÑu0 and let f P CpRq be bounded or globally Lipschitz continuous. Then,

it holds fpuεq
p

ÝÝÑÝÝÝÑfpu0q.
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Proof. From Lemma 1.12, we obtain Tεpuεq Ñ u0 in LppΩ � Y q. Thus, we can pass to a
subsequence and obtain h P LppΩ � Y q such that Tεpuεqpx, yq Ñ u0px, yq and |Tεpuεq| ¤
hpx, yq for a.e. px, yq P Ω � Y . The pointwise convergence can be transferred via the
continuity of f into fpTεpuεqpx, yqq Ñ fpu0px, yqq. For the case that f is bounded, i.e.
|f | ¤ C   8, one has |fpTεpuεqpx, yqq| ¤ C for a.e. px, yq P Ω � Y and by the Lebesgue
convergence theorem, we obtain Tεpfpuεqq � fpTεpuεqq Ñ fpu0q in LppΩ � Y q. For the
case that f is globally Lipschitz continuous with Lipschitz constant Lf , we obtain

|fpTεpuεqpx, yqq| ¤ |fp0q| � Lf |Tεpuεqpx, yq| ¤ C � Lfhpx, yq

for a.e. px, yq P Ω�Y . Then C�Lfh can be used as majorant and we obtain Tεpfpuεqq �
fpTεpuεqq Ñ fpu0q in LppΩ � Y q by the Lebesgue convergence theorem. Since this ar-
gumentation holds for every subsequence, it holds for the whole sequence. With Lemma

1.12, we translate this convergence back into fpuεq
p

ÝÝÑÝÝÝÑfpu0q.

The compactness result Theorem 1.5 can be improved for sequences of weakly differen-
tiable functions by the following two well-known compactness results.

Theorem 1.18. Let p P p1,8q and let uε be a bounded sequence in W 1,ppΩq which con-
verges weakly to u0 P W

1,ppΩq. Then, there exist u0 P W
1,ppΩq, u1 P L

ppΩ;W 1,p
# pY q{Rq

and a subsequence uε such that uε Ñ u0 in LppΩq and ∇uε
p

ÝÝáÝÝÝá∇xu0 �∇yu1.

Proof. A proof of Theorem 1.18 is given in [LNW02, Theorem 13].

Theorem 1.19. Let 1   p   8. Let uε be a sequence in W 1,ppΩq such that }uε}LppΩq ¤ C

and ε}∇uε}LppΩq¤ C. Then, there exist a subsequence uε and u0 P L
ppΩ;W 1,p

# pY qq such

that uε
p

ÝÝáÝÝÝáu0 and ε∇uε
p

ÝÝáÝÝÝá∇yu0.

Proof. By applying Theorem 1.5 to uε and ε∇uε, we obtain the two-scale convergence for
both sequences. Then, the two-scale limits of ε∇uε can be identified with the y-gradient
of the two-scale limits of uε using integration by parts.

1.2. Two-scale convergence for periodically perforated domains
and interfaces

In the following, we consider the concept of two-scale convergence for functions defined
on periodically perforated domains. Let Y � � Y be open such that its periodic extension
Y �
# :� int

� �
kPZn

εk � εY �
�
is a Lipschitz domain. We denote the characteristic functions

of Y � and Y �
# by χY � and χY �

#
, respectively. For an open Lipschitz domain Ω � Rn, we

define the corresponding perforated domain by

Ωε :� ΩX Y �
#.
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1.2. Two-scale convergence for periodically perforated domains and interfaces

In order to speak about the two-scale convergence for a sequence uε in L
ppΩεq, it is useful

to extend it to functions in LppΩq. The simplest way is the extension by zero, which we
denote by �̃ in the following. In Theorem 1.21, we will see that the two-scale limit for
sequences of functions that are given via this extension (or functions that are zero on
ΩzΩε) is zero on Y zY �. Hence, it suffices to define the two-scale limit on Y �. For the
limit functions (or general functions defined on Y �) we use �̃ as the extension by 0 from
Y � to Y .

Later we will partially omit �̃ and use the following notation for the sake of better
readability.

Notation 1.20. Let uε by a sequence in LppΩεq and u0 P L
ppΩ� Y �q. Then, we write

uε
p

ÝÝáÝÝÝáu0 if ũε
p

ÝÝáÝÝÝáũ0,

Analogously, we adept the notations
p

ÝÝÑÝÝÝÑ and
  8
ÝÝÝÝÑÝÝÝÝÝÑ.

Theorem 1.21. Let 1   p   8 and let uε be a bounded sequence in LppΩεq, i.e.
}uε}LppΩεq ¤ C. Then, there exists a subsequence uε and u0 P LppΩ � Y �q such that

ũε
p

ÝÝáÝÝÝáũ0.

Proof. We note that the boundedness of uε implies the boundedness of ũε. By applying
Theorem 1.5, we obtain a two-scale limit u0 for a subsequence. By choosing test functions
φ that are zero in Y � we obtain u0px, yq � 0 for a.e. y P Y zY �.

Moreover, the compactness results Theorem 1.18 and Theorem 1.19, for weakly differ-
entiable functions, can be extended to the case of perforated domains, too. However, the
extension by zero does not necessarily preserve the weak differentiability and, thus, the
original compactness results Theorem 1.18 and Theorem 1.19 cannot be applied. Nev-
ertheless, the following two compactness results can be shown, where W 1,p

# pY �q :� tu P

W 1,ppY �q | u is Y -periodicu.

Theorem 1.22. Let 1   p   8 and Y �
# be connected. Let uε be a bounded sequence

in W 1,ppΩεq, i.e. }uε}W 1,ppΩεq ¤ C. Then, there exist a subsequence uε and u0 P L
ppΩq,

u1 P L
ppΩ;W 1,p

# pY �q{Rq such that for this subsequence

ũε
p

ÝÝáÝÝÝáũ0, ∇̃uε
p

ÝÝáÝÝÝáχY �∇xu0 � ∇̃yu1.

In the case of uε|BΩXBΩε � 0, one has u0 P H
1
0 pΩq.

Proof. For the case p � 2, a proof is given in [All92a, Theorem 2.9]. It can be improved
to the case of arbitrary p P p1,8q by the results of [LNW02].

For the case of large gradients, we obtain the following result.
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Chapter 1. Two-scale convergence and periodic unfolding

Theorem 1.23. Let 1   p   8. Let uε be a sequence in W 1,ppΩεq such that }uε}LppΩεq �

}∇uε}LppΩεq ¤ C. Then, there exist a subsequence uε and u0 P L
ppΩ;W 1,p

# pY �q{Rq such
that for this subsequence

ũε
p

ÝÝáÝÝÝáχY �u0, ε∇̃uε
p

ÝÝáÝÝÝá∇̃yu0.

Proof. For the case of p � 2, we refer to [All92a, Lemma 4.7]. It can be extended to the
case of arbitrary p P p1,8q by the results of [LNW02].

In the case of a bounded sequence uε in W 1,ppΩq, the compact embedding into LppΩq
can be used for obtaining strong convergence in LppΩq, which becomes useful for non-linear
problems. In the case of a perforated domain, we often only have a-priori the boundedness
of uε in W 1,ppΩεq. Since the extension by zero does not preserve regularity, it cannot
be used directly for the derivation of strong convergence. This can be solved using the
following extension operator. For the following result, we assume that the domain Ω and
the sequence ε are such that Ω consists of ε-scaled copies of Y , i.e. Ω � intp

�
kPIε

εk � εY q

for all ε.

Lemma 1.24. Let 1 ¤ p   8. Then, there exists a family of extension operators

Eε :W
1,ppΩεq ÑW 1,ppΩq,

such that

}Eεpuεq}LppΩq ¤ C}uε}LppΩεq

}∇Eεpuεq}LppΩq ¤ C}∇uε}LppΩεq,

for all uε PW
1,ppΩεq. Moreover, if uε � 0 on BΩε X BΩ, then Eεpuεq PW

1,p
0 pΩq.

Proof. For the general construction of such a extension operator, we refer to [ACDP92].
This extension operator can be constructed for arbitrary domains Ω. However, the uniform
continuity estimates hold only locally in the case of a non-zero boundary condition at
BΩε X BΩ. On the type of domain described above, which consists of entire ε-scaled cells
only, this issue can be handled such that the estimates hold globally (see [Hö16]).

Having this extension operator at hand, we can employ the compact Sobolev embedding
from W 1,ppΩq into LppΩq for Eεpuεq and a bounded sequence uε in W

1,ppΩεq, in order to
pass to a subsequence such that Eεpuεq Ñ v0 in LppΩq for some v0 P L

ppΩq. Then, with

the strong two-scale convergence of χΩε

p
ÝÝÑÝÝÝÑχY � for every p (see Lemma 1.7) and the

uniform essential boundedness of χY � , we can use Lemma 1.16 and get the strong two-

scale convergence for the product ũε � χΩεEεpvεq
p

ÝÝÑÝÝÝÑχY �v0. By the uniqueness of the
two-scale limit, v0 can be identified with the two-scale limit given by Theorem 1.22.

The homogenisation of processes in perforated domains often involves functions that are
defined on the boundary of Ωε. In particular, the inner boundary Γε :� BΩεzBΩ becomes
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1.2. Two-scale convergence for periodically perforated domains and interfaces

interesting. We denote the interface in the reference cell by Γ, i.e. Γ :� BY �zBY . In the
following, we assume that Ω is bounded and (as already for the extension operator) that
Ω consists of entire ε-scaled copies of the unit cell Y . The notion of two-scale convergence
can be extended to functions defined on such interfaces as follows.

Definition 1.25. Let 1   p   8. A sequence of functions uε P L
ppΓεq is said to two-scale

converge weakly on the surface Γε to a limit u0 P L
ppΩ� Γq, if ε

1
p }uε}LppΓεq ¤ C and

lim
εÑ0

ε

»
Γε

uεpt, xqϕ
�
x,
x

ε

	
dσx �

»
Ω

»
Γ

u0px, yqϕpx, yq dσy dx

for every ϕ P CpΩ, C#pΓqq. We write uε
p

ÝÝáÝÝÝáu0 on Γε.

We say that a sequence uε two-scale converges strongly on Γε, if additionally

lim
εÑ0

ε
1
p }uε}LppΓεq � }u0}LppΩ�Γq,

and we write uε
p

ÝÝÑÝÝÝÑu0 on Γε.

For this notion, we obtain the following compactness result.

Theorem 1.26. Let 1   p   8. Then, for every sequence uε P L
ppΓεq with

ε
1
p }uε}LppΓεq ¤ C,

there exists u0 P L
ppΩ� Γq and a subsequence for which

uε
p

ÝÝÑÝÝÝÑu0 on Γε.

Proof. For p � 2, a proof is given in [NR96], which can be generalised to arbitrary p P
p1,8q by arguments as in [LNW02] for the two-scale convergence in Ω.

Lemma 1.14 and Lemma 1.15 can be extended to the two-scale convergence on surfaces
as follows.

Lemma 1.27. Let 1   p, p1, p2   8 such that 1
p1
� 1

p2
� 1

p . Let uε be a sequence in
Lp1pΓεq, which two-scale converges strongly to u0 P Lp1pΩ � Γq and vε a sequence in
Lp2pΓεq, which two-scale converges strongly (resp. weakly) to v0 P Lp2pΩ � Γq. Then,

uεvε
p

ÝÝÑÝÝÝÑu0v0 (resp. uεvε
p

ÝÝáÝÝÝáu0v0) on Γε.

Proof. The proof of Lemma 1.14 can be adapted by using the unfolding operator for
surfaces (see Definition 1.29 below) instead of the unfolding operator for bulk terms.

For functions in W 1,ppΩεq, the following ε-scaled trace inequality is useful.
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Chapter 1. Two-scale convergence and periodic unfolding

Lemma 1.28. Let p P r1,8q. For every θ ¡ 0 there exists a constant Cpθq ¡ 0 indepen-
dent of ε, such that for all uε PW

1,ppΩεq

ε
1
p }uε}LppΓεq ¤ Cpθq}uε}LppΩεq � θε}∇uε}LppΩεq.

Proof. Lemma 1.28 can be shown by a classical argument, namely decomposing the domain
Ωε into the ε-scaled cells, upscaling them and applying the trace inequality there.

The concept of the unfolding operator can be extended to functions defined on the
surface of perforated domains as follows, where we assume that Λε � 0. This corresponds
to the assumption that Ω consists of entire ε-scaled copies of Y . Moreover, let Ωε be given
as above for the two-scale convergence for perforated domains.

Definition 1.29. Let 1 ¤ p ¤ 8. The unfolding operator Tε : LppΓεq Ñ LppΩ � Γq is
defined by

Tεpφqpx, yq :� φprxsε,Y � εyq for a.e. px, yq P Ω� Γ.

The isometry result can be transferred to the unfolding operator for surfaces as follows.

Theorem 1.30. Let 1 ¤ p ¤ 8. For every φ P L1pΓεq and ψ P LppΓεq, it holds»
Ω

»
Γ

Tεpφqpx, yq dσy dx � ε

»
Γε

φpxq dσx,

}Tεpψq}LppΩ�Y q � ε1{p}ψ}LppΩq.

Proof. Theorem 1.30 can be proven by a similar computation as in the proof of Theo-
rem 1.11.

1.3. Time-dependent two-scale convergence

For processes over some time interval p0, T q for T ¡ 0, the following version of parame-
terised two-scale convergence becomes useful.

Definition 1.31 (Weak two-scale convergence). Let 1 ¤ p, q   8. A sequence uε in
Lpp0, T ;LqpΩqq is said to two-scale converge weakly to a limit u0 P L

pp0, T ;LqpΩ� Y qq if

lim
εÑ0

T»
0

»
Ω

uεpt, xqϕ
�
t, x,

x

ε

	
dx dt �

T»
0

»
Ω

»
Y

u0pt, x, yqφpt, x, yq dy dx dt,

for any function φ P Lp
1
p0, T ;Lq

1
pΩ;C#pY qqq, where p

1 and q1 are such that 1
p �

1
p1 � 1

and 1
q �

1
q1 � 1. We write uε

p, q
ÝÝÝÝáÝÝÝÝÝáu0.
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1.3. Time-dependent two-scale convergence

For 1   p, q   8, a sequence uε in L
pp0, T ;LqpΩqq is said to two-scale converge strongly

to a limit u0 P L
pp0, T ;LqpΩ� Y qq if uε

p, q
ÝÝÝÝáÝÝÝÝÝáu0 and additionally

}uε}Lpp0,T ;LqpΩqq Ñ }u0}Lpp0,T ;LqpΩ�Y qq.

We write uε
p, q

ÝÝÝÝÑÝÝÝÝÝÑu0.

If uε is a sequence in Lppp0, T q � Ωq for every p P p1,8q and u0 P L
ppp0, T q � Ωq for

every p P p1,8q such that uε
p, p

ÝÝÝÝÑÝÝÝÝÝÑu0 for every p P p1,8q, we write

uε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑu0.

For this notion of parameterised two-scale convergence, we can transfer all of the above
compactness results and further results accordingly. In case of bounded sequences, we can
also reduce the space of test functions to functions that are also smooth with respect to
time.

Lemma 1.32. Let 1   p, q   8 and uε be a bounded sequence in Lpp0, T ;LqpΩqq and
u0 P L

pp0, T ;LqpΩ� Y qq such that

lim
εÑ0

T»
0

»
Ω

uεpxqφptqϕ
�
x,
x

ε

	
dx dt �

T»
0

»
Ω

»
Y

u0pt, x, yqφptqϕpx, yqdy dx dt,

for any function φ P Dp0, T q and ϕ P DpΩ;C8
# pY qq. Then, uε

p, q
ÝÝÝÝáÝÝÝÝÝáu0.

Proof. Lemma 1.32 can be deduced by a density argument similar as in [LNW02, Propo-
sition 1].

Lemma 1.33. Let 1   p, q   8. Let uε be a bounded sequence in W pp0, T ;LqpΩqq. Then,
there exists u0 PW

1,pp0, T ;LqpΩ� Y qq such that for a subsequence

uε
p, q

ÝÝÝÝáÝÝÝÝÝáu0, Btuε
p, q

ÝÝÝÝáÝÝÝÝÝáBtu0, uεp0q
p

ÝÝáÝÝÝáu0p0q.

Proof. From the compactness result, we obtain the two scale convergence of uε and Btuε.
Then, we test with Btφptqϕpx,

x
ε q for φ P Dp0, T q and ϕ P L

qpΩ;C#pY qq in order to identify
the limit of Btuε with Btu0.
Afterwards, we can conclude similarly the two-scale convergence of uεp0q using test

functions φ P C8pr0, T sq with φpT q � 0.

Moreover, the unfolding operator for time-parameterised functions is defined as follows.

Definition 1.34. Let 1 ¤ p, q ¤ 8. The unfolding operator
Tε : Lpp0, T ;LqpΩqq Ñ Lpp0, T ;LqpΩ� Y qq is defined by

Tεpφqpt, x, yq :�

#
φpt, rxsε,Y � εyq for a.e. pt, x, yq P p0, T q � Ω̃ε � Y,

φpt, xq for a.e. pt, x, yq P p0, T q � Λε � Y.

23



Chapter 1. Two-scale convergence and periodic unfolding

As for the two-scale convergence, results about the unfolding operator and its relation
to two-scale convergence can be proved in the time-parameterised setting. Moreover, the
unfolding operator for surfaces can be extended to the time-dependent setting accordingly.
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Chapter 2.

Homogenisation for locally periodic domains

Substantial parts of this chapter are based on the publication [Wie23, D. Wiedemann, The
two-scale-transformation method, Asymptotic Analysis 131 (2023), 59–82].

In this chapter, we derive a rigorous framework for the homogenisation in non-periodically
perforated and evolving non-periodically perforated domains. The non-periodicity under
consideration is on the scale ε and, thus, it will persist during the limit process. We
consider the stationary case of a non-periodically perforated domain first. Afterwards, we
add the time evolution as a parameter similarly as in the theory of two-scale convergence.

In order to do the homogenisation on the non-periodically perforated domain, we pro-
ceed as follows: first, we transform the domain and the equations onto a periodically per-
forated substitute domain. There, we pass to the homogenisation limit. Afterwards, we
transform the resulting limit system back to the two-scale limit set for the non-periodically
perforated domains. The two-scale limit set of the non-periodically perforated domains
will have a non-cylindrical structure, i.e. for every macroscopic point the cell domain is
different. We justify this approach by showing that it commutes with the homogenisation
in the non-periodically perforated domain, i.e. the diagram in Figure 2.1 commutes.

non-periodic
microproblem

macroproblem

periodic
substitute

microproblem

substitute
macroproblem

homogenisation

homogenisation on the

periodic substitute domain

microscopic
transformation

two-scale
back-transformation

x2

x1

ψ−1
ε

ψ−1
0 (x1, ·)

ψ−1
0 (x2, ·)

Y ∗

reference cell Y

Figure 2.1.: Homogenisation by transformation on a periodic substitute domain

We consider this transformation approach in a qualitative and not quantitative way.
That means, we will translate the convergence statement between the actual problem and
the substitute problem, but no ε-scaled estimates. Thus, we can consider a wider range
of non-periodic domains. In particular, we can deal with a-priori not given domains and
it suffices to control these domains by compactness arguments.

This chapter is organised as follows. In Section 2.1, we define locally periodic domains Ωε
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Chapter 2. Homogenisation for locally periodic domains

by means of a family of locally periodic transformation mappings ψε : Ω̂ε Ñ Ωε, which are
defined on a periodically perforated substitute domain and a two-scale limit transformation
mapping ψ0px, �q, which is given for almost every macroscopic point x P Ω and acts on the
unscaled reference cell. Then, we derive some uniform estimates on the Jacobian of ψε
and its determinant, which become useful for the homogenisation processes later.
In Section 2.2, we show that the two-scale convergence and the transformation mappings

commute, i.e.

uεpψεpxqq
p

ÝÝáÝÝÝáu0px, ψ0px, yqq if and only if uεpxq
p

ÝÝáÝÝÝáu0px, yq (2.1)

for p P p1,8q. Moreover, we show that (2.1) holds also with respect to the strong two-
scale convergence, which becomes useful for the transformation of oscillating coefficients.
Afterwards, we extend the transformation results for the gradients of weakly differentiable
functions. For this, we consider the two typical scalings of small (∇uε is bounded) and
large gradients (ε∇uε is bounded). In the case of large gradients, the transformation is
similar to (2.1). For small gradients, it turns out that the corrector of the gradient cannot
be transformed by (2.1) but requires an additional correction itself.
In Section 2.3, we present the homogenisation of an elliptic problem defined on a locally

periodic domain by means of the transformation. We consider the cases of slow and of
fast diffusion. After a transformation on the periodic substitute domain, we show uniform
bounds for the solutions of the transformed equations. Then, we pass to the two-scale limit
in the equations. We transform these two-scale limit equations back into transformation-
independent two-scale limit equations, which are defined in the non-cylindrical two-scale
limit set. Moreover, for the case of small gradients, we derive the homogenised equations
by separating the macro- and microscopic variables in the two-scale limit equations. We
do this for the transformed and back-transformed two-scale limit equations. For the sake
of completeness, we transform the cell problems and show that the homogenised equations
are equal, i.e. the homogenised tensors which arise from the cell problems are equal.
In Section 2.4, we extend this concept to locally evolving periodic domains, i.e. locally

periodic domains with a time parameter. Moreover, we provide additional results for the
time derivatives of the transformations, which become useful in the homogenisation of
parabolic equations.

2.1. Locally periodic domains

Let Ω � Rn be an open and bounded Lipschitz domain and Ŷ � � Y � p0, 1qn be open. We

assume that the Y -periodic extension of Ŷ �, which we denote by Ŷ �
# :� int

� �
kPZn

k� Ŷ �
	
,

is a Lipschitz domain. Let Ω̂ε :� Ω X εŶ �
# denote the ε-scaled periodically perforated

reference domains. Then, we define the locally periodic domains Ωε by a transformation
of the periodic reference domains.

Definition 2.1. A sequence of open domains Ωε � Rn is locally periodic with two-scale
limit set Q �

�
xPΩ

txu � Y �pxq � Ω � Y , where Y �pxq � Y is open for every x P Ω,
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2.1. Locally periodic domains

if there exists a sequence of locally periodic transformations ψε (see Definition 2.2) with
limit transformation ψ0 such that Ωε � ψεpΩ̂εq for every ε ¡ 0 and Y �pxq � ψ0px, Ŷ

�q for
a.e. x P Ω.

In order to define locally periodic transformations, we have to consider the two-scale
convergence for sequences of functions defined on Ω̂ε. Therefore, we extend them by 0 to
Ω, which we denote by �̃ . Moreover, for functions defined on Ω � Y �, we analogously
denote their extension by 0 to Ω� Y by �̃ .

Definition 2.2. We say that a sequence of mappings ψε P C
2pΩ̂εq

n is a sequence of locally
periodic transformations with two-scale limit transformation ψ0 P L

8pΩ;C2pY qnq if the
following assumptions hold:

1. assumptions on ψε:

a. ψε : Ω̂ε Ñ Ωε � Rn is bijective for every ε ¡ 0,

b. there exists cJ ¡ 0 such that detpBxψεpxqq ¥ cJ for all x P Ω̂ε and every ε ¡ 0,

c. there exists a constant C such that

ε�1}ψε � x}
CpΩ̂εq

� }Bxψε}CpΩ̂εq
� ε}BxBxψε}CpΩ̂εq

¤ C

for every ε ¡ 0,

2. assumptions on ψ0:

a. ψ0px, �q : Y Ñ Y is bijective with Y �pxq � ψ0px, Ŷ
�q for a.e. x P Ω,

b. ψ�1
0 P L8pΩ;C2pY qnq, where ψ�1

0 px, �q is the inverse of ψ0px, �q,

c. the corresponding displacement mapping, defined by |ψ0px, yq :� ψ0px, yq� y for

px, yq P Ω� Y can be extended Y -periodically, i.e. |ψ0 P L
8pΩ;C2

#pY q
nq,

3. asymptotic behaviour

� ε�1pψε � xq
  8
ÝÝÝÝÑÝÝÝÝÝÑχŶ �pyqpψ0px, yq � yq

� Bxψε
  8
ÝÝÝÝÑÝÝÝÝÝÑχŶ �Byψ0,

� εBxBxψε
  8
ÝÝÝÝÑÝÝÝÝÝÑχŶ �ByByψ0.

We have defined the limit transformation ψ0px, �q on entire Y and not only on Ŷ � in
order to ensure the measurability, when we use it as transformation. However, for the
asymptotic behaviour in Definition 2.2 and the transformation results later, it suffices to
have ψ0px, �q and ψ

�1
0 px, �q defined on Ŷ � and Y �pxq, respectively. Then, we will implicitly

restrict ψ0 and ψ�1
0 accordingly and, where necessary, we use the implicit extension by 0.

Remark 2.3. Note that we do not assume that ψε maps each ε-scaled cell into the same
ε-scaled cell. Moreover, the assumption that ψ0px, �q is bijective from Y onto Y can also be
weakened and it suffices to require that ψ0px, �q is bijective from Rn to Rn and Y -periodic,
which generalises the transformations at the cell boundaries.
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Chapter 2. Homogenisation for locally periodic domains

Notation 2.4. Let ψε and ψ0 be given by Definition 2.2. We denote the inverse of ψε by
ψ�1
ε and recap the notion ψ�1

0 px, �q for the inverse of ψ0px, �q for a.e. x P Ω. We define
the corresponding displacement mappings by

|ψεpxq :� ψεpxq � x, }ψ�1
ε pxq :� ψ�1

ε pxq � x|ψ0px, yq :� ψ0px, yq � y, }ψ�1
0 px, yq :� ψ�1

0 px, yq � y.

We note that the displacement mappings can be identified with the displacement map-
pings of the inverse by

}ψ�1
ε pxq � ψ�1

ε pxq � x � ψ�1
ε pxq � ψεpψ

�1
ε pxqq � �|ψεpψ�1

ε pxqq,}ψ�1
0 px, yq � ψ�1

0 px, yq � y � ψ�1
0 px, yq � ψ0px, ψ

�1
0 px, yqq � �|ψ0px, ψ

�1
0 px, yqq.

(2.2)

The Y -periodicity of |ψ0 can be transferred via (2.2) to }ψ�1
0 . Thus, }ψ�1

0 P L8pΩ;C2
#pY qq.

Notation 2.5. Let ψε and ψ0 be given by Definition 2.2. We use the following notation
for the Jacobian matrix, its determinant and its adjugate matrix

Ψεpxq :� Bxψεpxq, Jεpxq :� detpΨεpxqq, Aεpxq :� AdjpΨεpxqq

for x P Ω̂ε and

Ψ0px, yq :� Byψ0px, yq, J0px, yq :� detpΨ0px, yqq, A0px, yq :� AdjpΨ0px, yqq

for a.e. x P Ω and all y P Y .

We recall that AdjpBqB � BAdjpBq � detpBq1 for B P Rn�n. Since detpBxψεq ¥ cJ
(see Definition 2.2), Ψε is invertible and in Lemma 2.9, we will see also detpByψ0q ¥ cJ
and, thus, Ψ0 is invertible and we get

Aε � JεΨ
�1
ε , A0 � J0Ψ

�1
0 .

Remark 2.6. For the homogenisation of the second-order elliptic problem in this chap-
ter, we are not using the second derivative of ψε if we transform only the weak and not
the strong formulation of the equations. Therefore, it would suffice to define locally pe-
riodic domains by C1-diffeomorphisms and, correspondingly, without any assumptions on
their second derivatives. However, for the homogenisation of the Stokes equation, we will
need the second derivatives. In order to avoid repetition, we formulate the transformation
already with C2-regularity here.

The regularity can be even lowered to the case of bi-Lipschitz regular transformation,
where the derivative is given only almost everywhere.

For the homogenisation of the transformed equation, we have to deal with the quantities
Ψε, Jε, Aε and their inverses as coefficients in the equations. Therefore, we need their
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2.1. Locally periodic domains

uniform boundedness as well as their strong two-scale convergence. We obtain this by
rewriting these terms as polynomials in J�1

ε and the entries of Ψε, which can be controlled
by the assumptions from Definition 2.2.

Lemma 2.7. Let B P Rn�n with detpBq � 0. Then, there exist polynomials pdet, pAdjij ,
p��1

ij
, pAdj�1

ij
, for i, j P t1, . . . , nu, such that

detpBq � pdetpB11, B12, . . . , Bnnq �: PdetpBq,

pAdjpBqqij � pAdjij pB11, B12, . . . , Bnnq �: PAdjij pBq,

pB�1qij � p��1
ij
pdetpBq�1, B11, B12, . . . , Bnnq �: P��1

ij
pdetpBq�1, Bq,

pAdjpBq�1qij � pA�1
ij
pdetpBq�1, B11, B12, . . . , Bnnq �: PAdj�1

ij
pdetpBq�1, Bq,

(2.3)

Moreover, for space-dependent functions B : Rn � U Ñ Rn�n with detpBq � 0 it holds

Bxk detpBpxqq �
¸
m,l

BBml
PdetpBpxqqBxkBmlpxq

Bxk AdjpBpxqqij �
¸
m,l

BBml
PAdjij pBpxqqBxkBmlpxq,

BxkpdetpBpxqq
�1q � �detpBpxqq�2Bxk detpBpxqq,

BxkpB
�1qijpxq � �BdetpBq�1P��1

ij
pdetpBq�1, BqdetpBpxqq�2Bxk detpBpxqq

�
¸
m,l

BBml
P��1

ij
pdetpBq�1pxq, BpxqqBxkBmlpxq,

BxkpAdjpBq
�1qijpxq � �BdetpBq�1PAdjpBq�1

ij
pdetpBq�1pxq, Bpxqq detpBpxqq�2Bxk detpBpxqq,

�
¸
m,l

BBml
PAdjpBq�1

ij
pdetpBq�1pxq, BpxqqBxkBmlpxq

(2.4)

for all k P t1, . . . , nu.

Proof. The existence of polynomials pdet and pAdj follows directly from the definition of the
determinant and the adjugate matrix. Noting that B�1 � detpBq�1AdjpBq, AdjpBq�1 �
detpBq�1B, we obtain also p��1

ij
and pAdj�1

ij
. The second part of Lemma 2.7 can be derived

from (2.3) and the chain rule.

Lemma 2.8. Let ψε be locally periodic transformations in the sense of Definition 2.2.
Then, there exists C ¡ 0 such that

}Ψε}CpΩ̂εq
� }Ψ�1

ε }
CpΩ̂εq

� }Jε}CpΩ̂εq
� }J�1

ε }
CpΩ̂εq

� }Aε}CpΩ̂εq
� }A�1

ε }
CpΩ̂εq

¤ C,

ε}BxΨε}CpΩ̂εq
� ε}BxΨ

�1
ε }

CpΩ̂εq
� ε}BxJε}CpΩ̂εq

� ε}BxJ
�1
ε }

CpΩ̂εq
¤ C,

ε}BxAε}CpΩ̂εq
� ε}BxA

�1
ε }

CpΩ̂εq
¤ C.
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Chapter 2. Homogenisation for locally periodic domains

Proof. The estimates of Definition 2.2 give the uniform boundedness of Ψε and εBxΨε. In
order to estimate Jε and Aε, we rewrite them as polynomials with respect to the entries of
Ψε (see Lemma 2.7). Then, we can transfer the uniform boundedness and regularity of Ψε

onto Jε and Aε. From Definition 2.2, we obtain additionally the uniform boundedness of
Jε from below and, thus, with the regularity of Jε, we obtain the regularity and uniform
boundedness for J�1

ε . Then, we write Ψ�1
ε and A�1

ε as polynomials J�1
ε and the entries

of Ψε (see again Lemma 2.7). Afterwards, we can transfer the regularity and uniform
boundedness onto Ψ�1

ε and A�1
ε .

Next, we rewrite the entries of BxJε as polynomials in the entries of Ψε and BxΨε (see
Lemma 2.7). Since every summand in this polynomial contains exactly one elementary
factor which belongs to an entry of BxΨε, we can rewrite εBxJε as polynomial with respect
to the entries of Ψε and εBxΨε. Thus, the regularity and the uniform bounds of Ψε and
εBxΨε induce those for εBxJε.

For the estimates of εBxΨ
�1
ε , εBxJ

�1
ε , εBxAε and εBxA

�1
ε , we proceed analogously. The

only difference is that we write them as polynomials in the entries of Ψε and εBxΨε and,
now additionally, the entries of J�1

ε and εBxJε. Again, we note that each summand of the
polynomials contains only one factor belonging to a derivative of either J�1

ε or Ψε. Then,
using the previous estimates, we obtain the regularity and uniform bounds for εBxΨ

�1
ε ,

εBxJ
�1
ε , εBxAε and εBxA

�1
ε .

In the following, we show the strong two-scale convergence for these coefficients. For
this, we rewrite them again as polynomials with respect to quantities that we can control
by Definition 2.2.

Lemma 2.9. Let ψε be locally periodic transformations with limit transformation ψ0 in
the sense of Definition 2.2. Then, there exist constants cJ , C ¡ 0 such that

}Ψ0}L8pΩ;CpŶ �qq
� }Ψ�1

0 }
L8pΩ;CpŶ �qq

� }J0}L8pΩ;CpŶ �qq
¤ C,

}A0}L8pΩ;CpŶ �qq
� }A�1

0 }
L8pΩ;CpŶ �qq

¤ C,

J0px, yq ¥ cJ for a.e. x P Ω and every y P Y �.

Moreover, one has

Ψε
  8
ÝÝÝÝÑÝÝÝÝÝÑΨ0, Ψ�1

ε
  8
ÝÝÝÝÑÝÝÝÝÝÑΨ�1

0 , Jε
  8
ÝÝÝÝÑÝÝÝÝÝÑJ0, J�1

ε
  8
ÝÝÝÝÑÝÝÝÝÝÑJ�1

0 ,

Aε
  8
ÝÝÝÝÑÝÝÝÝÝÑA0, A�1

ε
  8
ÝÝÝÝÑÝÝÝÝÝÑA�1

0 , εBxΨε
  8
ÝÝÝÝÑÝÝÝÝÝÑByΨ0, εBxΨ

�1
ε

  8
ÝÝÝÝÑÝÝÝÝÝÑByΨ

�1
0 ,

εBxJε
  8
ÝÝÝÝÑÝÝÝÝÝÑByJ0, εBxJ

�1
ε

  8
ÝÝÝÝÑÝÝÝÝÝÑByJ

�1
0 , εBxAε

  8
ÝÝÝÝÑÝÝÝÝÝÑByA0, εBxA

�1
ε

  8
ÝÝÝÝÑÝÝÝÝÝÑByA

�1
0 .

Proof. From Definition 2.2, we obtain the regularity of Ψ0 and ByΨ0 as well as the two-
scale convergence of Ψε and εBxΨε. Noting that J0 is a polynomial in the entries of Ψ0

(see Lemma 2.7), we can transfer the regularity onto J0. Having the additional uniform
boundedness of Ψε and Ψ0, we can apply Lemma 1.16 which yields the strong two-scale con-

vergence for the polynomial and, thus, Jε
  8
ÝÝÝÝÑÝÝÝÝÝÑJ0 (similarly we obtain Aε

  8
ÝÝÝÝÑÝÝÝÝÝÑA0).
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Then, Proposition 1.12, gives the strong convergence TεpJ̃εq Ñ J̃0 in LppΩ � Y q, which
implies the pointwise convergence almost everywhere. Since Jε ¥ cJ , we get TεpJ̃εq ¥ cJ
almost everywhere in Ω� Y �, which can be transferred via the pointwise convergence to
J0 ¥ cJ almost everywhere. With the y-regularity of J0, we obtain J0 ¥ cJ for a.e. x P Ω
and every y P Y . Having this bound, we can estimate further

}TεpJ̃�1
ε q � J̃�1

0 }LppΩ�Y q � }pJ0 � TεpJ̃εqq{pJ0TεpJ̃εqq}LppΩ�Ŷ �q

¤ c�2
J }J0 � TεpJ̃εq}LppΩ�Ŷ �q �

1

c2J
}J̃0 � TεpJ̃εq}LppΩ�Y q Ñ 0,

for every p P r1,8q, which implies J�1
ε

  8
ÝÝÝÝÑÝÝÝÝÝÑJ�1

0 .

The strong two-scale convergence of Ψ�1
ε , A�1

ε follows likewise by rewriting them as
polynomials, but now with the additional variable J�1

ε , for which we have already shown
the boundedness and the strong two-scale convergence.

Now we show the strong two-scale convergence of εBxΨ
�1
ε , εBxJε, εBxJ

�1
ε , εBxAε and

εBxA0. We start with εBxJ
�1
ε and rewrite it as polynomial with respect to the entries of

Ψε and εBxΨε (for the ε-scaling see also the proof of Lemma 2.8). Then, we obtain its
strong two-scale convergence from the boundedness of its entries and the strong two-scale
convergence of Ψε and εBxΨε. Having the strong two-scale convergence of εBxJ

�1
ε , we can

likewise argue for the remaining terms.

2.2. Two-scale transformation and two-scale convergence

We aim to translate between the two-scale convergence for a sequence uε in Ωε and the
two-scale convergence of ûε :� uε � ψε defined in the periodic substitute domain Ω̂ε. We
recap that the two-scale convergence for a sequence in Ω̂ε is given by its extension �̃ to
Ω by zero. We transfer this onto sequences in the non-periodically perforated domain Ωε.
However, Definition 2.2 does not require Ωε � Ω and, thus, the extension to Ω would not
suffice. Nevertheless, due to the estimate ||ψε| ¤ εC, we obtain Ωε � Ωpδq for some δ ¥ 0
and Ωpδq � tx P Rn | distpΩ, xq ¤ δu. Thus, we can extend functions defined on Ωε by 0
on Ωpdq and use this macroscopic domain for the definition of its two-scale convergence.
Moreover, the support of the two-scale limit function will be contained in Ω � Y due to
||ψε| ¤ εC. Thus, it is not too restrictive if we assume that Ωε � Ω, i.e. Ωpδq � Ω, in
the following. Nevertheless, the following results and argumentation can be carried out
without this assumption for which we refer to [Wie23].

Having the extension �̃ for a sequence in Ωε, we can define the two-scale limit as a
function on Ω � Y . We will see that the two-scale limit will be zero for a.e. px, yq with
y P Y zY �pxq. Therefore, we will define the limit functions as element in LppΩ;LppY �pxqqq
and denote their extension by 0 to Ω�Y by �̃ . We define the space LppΩ;LqpY �pxqqq by
restriction of LppΩ;LqpY qq to functions that are 0 for a.e. px, yq P Ω�Y with y P Y zY �pxq,
where the norm is defined by

}u}LppΩ;LqpY �pxqqq :� }}upxq}LqpY �pxqq}LppΩq
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Chapter 2. Homogenisation for locally periodic domains

Later we will use also the space LppΩ;W 1,p
# pY �pxqqq, which we define by

LppΩ;W 1,p
# pY �pxqqq :�

"
u P LppΩ;LppY �pxqqq

���� upx, �q PW 1,p
# pY �pxqq for a.e. x P Ω,

Byu P L
ppΩ;LppY �pxqqq

*
.

In Lemma 2.16, we will see that these spaces can be identified with LppΩ;LqpŶ �qq and
LppΩ;W 1,p

# pŶ �qq, respectively, and, thus they are well posed.
Analogously to the case of periodic perforation, we omit �̃ in the notion of two-scale

convergence.

Notation 2.10. Let uε by a sequence in LppΩεq and u0 P L
ppΩ;LppY �pxqqq. Then, we

write

uε
p

ÝÝáÝÝÝáu0 if ũε
p

ÝÝáÝÝÝáũ0.

Analogously, we adept the notion
p

ÝÝÑÝÝÝÑ for p P p1,8q and
  8
ÝÝÝÝÑÝÝÝÝÝÑ.

2.2.1. Well-posedness of the transformation

Lemma 2.11. Let 1 ¤ p ¤ 8 and ûε � uε � ψε. Then, the following statements hold

� uε P L
ppΩεq if and only if ûε P L

ppΩ̂εq. Moreover, there exist constants c, C ¡ 0,
which are independent of ε, such that

c}ûε}LppΩ̂εq
¤ }uε}LppΩεq ¤ C}ûε}LppΩ̂εq

. (2.5)

In particular, uε is a bounded sequence in LppΩεq if and only if ûε is a bounded
sequence in LppΩ̂εq.

� uε PW
1,ppΩεq if and only if ûε PW

1,ppΩ̂εq. Moreover, there exist constants c, C ¡ 0,
which are independent of ε, such that

c}∇ûε}LppΩ̂εq
¤ }∇uε}LppΩεq ¤ C}∇ûε}LppΩ̂εq

. (2.6)

In particular, uε is a bounded sequence in W 1,ppΩεq if and only if ûε is a bounded
sequence in W 1,ppΩ̂εq.

Proof. Since ψε and ψ
�1
ε are Lipschitz continuous, the measurability of uε is transferred to

ûε and vice versa. Moreover, we obtain, with the uniform boundedness of Jε from below
and above

}uε}
p
LppΩεq

�

»
Ωε

|uεpxq|
p dx �

»
Ω̂ε

Jεpxq|ûεpxq|
p dx ¤ C

»
Ω̂ε

|ûεpxq|
p dx � C}ûε}

p

LppΩ̂εq
,

}ûε}
p

LppΩ̂εq
�

»
Ωε

J�1
ε pψ�1

ε pxqq|uεpxq|
p dx ¤ c�1

J

»
Ωε

|uεpxq|
p dx � c�1

J }uε}
p
LppΩεq

.
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Applying the chain rule to ûε yields Bxûεpxq � BxuεpψpxqqBxψpxq and, after rearranging,
p∇uεqpψεpxqq � Ψ�J

ε pxq∇ûεpxq. Using the uniform estimates for Jε from below and above
as well as the uniform estimates of Ψε and Ψ�1

ε (see Definition 2.2 and Lemma 2.8), we
obtain

}∇uε}pLppΩεq
�

»
Ωε

|∇uεpxq|p dx �
»
Ω̂ε

Jεpxq|Ψ
�J
ε pxq∇ûεpxq|p dx

¤ C

»
Ω̂ε

}Ψ�J
ε }p

L8pΩ̂εq
|∇ûεpxq|p dx ¤ C

»
Ω̂ε

|∇ûεpxq|p dx � C}∇ûε}pLppΩ̂εq
,

}∇ûε}pLppΩ̂εq
�

»
Ω̂ε

|∇ûεpxq|p dx �
»
Ωε

J�1
ε pψ�1

ε pxqq|ΨJ
ε pψ

�1
ε pxqq∇uεpxq|p dx

¤ c�1
J

»
Ωε

}ΨJ
ε }

p

L8pΩ̂εq
|∇uεpxq|p dx ¤ C

»
Ωε

|∇uεpxq|p dx � C}∇uε}pLppΩεq
,

which shows (2.6).

In order to derive a similar result for the limit quantities, we have to discuss the mea-
surability of the transformed quantities first. Since the mapping px, yq ÞÑ ψ0px, yq is not
bi-Lipschitz continuous with respect to x, it is a-priori not clear whether the composition
of px, yq ÞÑ upx, ψ0px, yqq is even measurable for measurable but not continuous u. There-
fore, we have to analyse the measurability for such parameterised transformations. For
the sake of clarity, in the following discussion, we call a set A � Rn measurable if it is
Lebesgue measurable and we call it Borel if it is Borel measurable. Moreover, we write
λnpAq instead of |A| in order to stress the Lebesgue measurability of A.

Definition 2.12. Let E � Rn be a Lebesgue measurable set. A mapping φ : E Ñ Rl is said
to satisfy Lusin’s (N)-condition if for every A � E with λnpAq � 0 it holds λlpϕpAqq � 0.

Lemma 2.13 (Lusin’s Theorem). Let A � Rn be measurable with λnpAq   8 and let f
be a real valued function on A. Then, for any δ ¡ 0, there is a compact set K � A with
λnpAzKq   δ such that the restriction of f to K is continuous.

Proof. See for instance [EG15, Theorem 1.14].

By means of Lusin’s Theorem, we can derive the following lemma, by extending the
proof of [Nau05, Theorem 1.3] from continuous to measurable functions.

Lemma 2.14. Let E � Rn be Lebesgue measurable with λnpEq   8 and let φ : E Ñ Rl
be a mapping. Then, the following statements hold.

(1.) Let φ be a measurable function defined on E, which satisfies Lusin’s (N)-condition.
Then, for every measurable set F � E it holds that φpF q is measurable.

(2.) Assume that
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a. the set φpEq is measurable,

b. φ is injective,

c. φ�1 : φpEq Ñ E is measurable in φpEq and satisfies Lusin’s (N)-condition,

d. u : φpEq Ñ R is measurable.

Then, u � φ : E Ñ R is measurable.

Proof. (1.) The measurability of F is equivalent to the existence of closed sets Fi for

i P N and a set N with λnpNq � 0 such that F �
� 8�
i�0

Fi

	
Y N . Moreover,

from Lemma 2.13, we obtain a sequence of compact sets Ei for i P N such that
λmpEzEiq   i�1 and φ is continuous on Ei. Without loss of generality, we can

assume that Fi � Fj and Ei � Ej for j ¥ i, by considering
i�

k�1

Fk and
i�

k�1

Ek

instead of Fi and Ei. Consequently, one has λnpF zpEiXFiqq ¤ λnpF zFiq� i
�1 and,

hence, there exists a null set Ñ such that

F �
� 8¤
i�0

pEi X Fiq
	
Y Ñ .

Since ϕ is continuous on Ei and pFi X Eiq is compact, it holds that ϕpFi X Eiq is
compact and, thus, is a Borel set. Then, the countable union

�8
i�1 ϕpFi X Eiq is a

Borel set as well. Moreover, since ϕ fulfils Lusin’s (N)-property, we have ϕpÑq � 0
and, thus, ϕpÑq is measurable. We infer that

ϕpF q � ϕ
�� 8¤

i�0

pFi X Eiq
	
Y Ñ

	
�

� 8¤
i�0

ϕpFi X Eiq
	
Y ϕpÑq

is measurable.

(2.) The measurabilty of u : φpEq Ñ R means that for every a P R, the set

ty P φpEq | upyq ¡ au

is measurable. Since φ�1 is measurable and satisfies Lusin’s (N)-condition, (1.)
shows that, for every a P R, the set

φ�1pty P φpEq | upyq ¡ auq

is measurable. Now, we observe that

tx P E | pu � φqpxq ¡ au � φ�1pty P φpEq | upyq ¡ auq

and hence u � φ is measurable.
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In order to apply Lemma 2.14 for our purpose, we have to show that px, yq ÞÑ px, ψ0px, yqq
and px, yq ÞÑ px, ψ�1

0 px, yqq fulfil Lusin’s (N)-condition. For instance, Lipschitz continu-
ity implies Lusin’s (N)-condition (see [Nau05]). However, px, yq ÞÑ ψ0px, yq and px, yq ÞÑ
px, ψ0px, yqq are not Lipschitz continuous with respect to x. In fact px, yq ÞÑ ψ0px, yq does
not fulfil Lusins’s (N)-condition. Nevertheless, with the following lemma, we can conclude
that px, yq ÞÑ px, ψ0px, yqq and px, yq ÞÑ px, ψ�1

0 px, yqq fulfil Lusin’s (N)-condition even if
they are not Lipschitz continuous with respect to x.

Lemma 2.15. Let m,n, l P N with l ¥ n. Let U � Rm be measurable, V � Rn be
closed and ϕ P L8pU ;CpV qlq be uniformly Lipschitz continuous with respect to the second
argument, i.e. there exists L ¡ 0 such that

|ϕpx, y1q � ϕpx, y2q| ¤ L|y1 � y2|

for a.e. x P U and every y1, y2 P V . Then, px, yq ÞÑ px, ϕpx, yqq, satisfies Lusin’s (N)-
condition on U � V .

Proof. Let A � U�V with λm�npAq. Then, for every ε ¡ 0, there exist cubes Cpkq � Rm�n

for k P N such that

A �
8¤
k�1

Cpkq,
8̧

k�1

λpCpkqq ¤ ε

and, in particular, 2rk ¤ ε1{pn�mq for all k P N. We identify these cubes by means of their
centres pxk, ykq P Rm � Rn and side lengths 2rk, i.e.

Cpkq � Qm�n
rk

ppxk, ykqq :� tpx, yq P Rm�n | |x� xk|8   rk, |y � yk|8   rku

� Qmrkpxkq �Qnrkpykq :� tx P Rm | |x� xk|8   rku � ty P Rn | |y � yk|8   rku.

From the Lipschitz estimate, it follows

|ϕpx, yq � ϕpx, ykq|8 ¤ L|y � yk|8   Lrk

for all px, yq P Cpkq and, hence,

ϕpCpkqq �
¤

xPQm
rk
pxkq

txu �QlLrkpϕpx, ykqq � U � Rm.

Moreover, we note that

¤
xPQm

rk
pxkq

txu �QlLrkpϕpx, ykqq �
l£

i�1

tpx, zq P Qmrkpxkq � Rl | zi � ϕpx, ykqi ¤ Lrku

X
l£

i�1

tpx, yq P Qmrkpxkq � Rl | zi � ϕpx, ykqi ¥ �Lrku.

(2.7)
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By [LNW02, Theorem 1], we can fix the second argument of ϕ and get the measurability
of x ÞÑ ϕpx, ykq and, thus, px, zq ÞÑ zi � ϕpx, ykqi is measurable for all i P t1, . . . , lu.
Therefore, all sets on the right-hand side of (2.7) are measurable and, hence, the whole
right-hand side is measurable. This allows the application of Tonelli’s theorem, which
yields

8̧

k�1

λm�n

� ¤
xPQm

rk
pxkq

txu �QlLrkpϕpx, ykqq
	
�

8̧

k�1

»
xPQm

rk
pxkq

λl
�
QlLrkpϕpx, ykqq

�
dx

�
8̧

k�1

p2rkq
mp2Lrkq

l �
8̧

k�1

Llp2rkq
l�nλ

�
Cpkq

�
¤ Llεpl�nq{pn�mq

8̧

k�1

λ
�
Cpkq

�
� Llεpl�mq{pn�mq�1

8̧

k�1

λ
�
Cpkq

�
� Llεpl�mq{pn�mq.

By choosing ε arbitrarily small, we can conclude ϕpAq � 0, which shows Lusin’s (N)-
condition.

Having Lemma 2.15 and Lemma 2.14, we can transform measurable function by means
of the two-scale limit transformation.

Lemma 2.16. Let 1 ¤ p ¤ 8, 1 ¤ q   8 and û0px, yq � u0px, ψ0px, yqq for a.e. px, yq P
Ω� Ŷ �, or equivalently u0px, yq � û0px, ψ

�1
0 px, yqq for a.e. px, yq P Q. Then, the following

statements hold

� u0 P LppΩ;LqpY �pxqqq if and only if û0 P LppΩ;LqpŶ �qq. Moreover, there exist
constants c, C ¡ 0, such that

c}û0}LppΩ;LqpŶ �qq ¤ }u0}LppΩ;LqpY �pxqqq ¤ C}û0}LppΩ;LqpŶ �qq. (2.8)

� u0 P L
ppΩ;W 1,q

# pY �pxqqq if and only if ûε P L
ppΩ;W 1,q

# pŶ �qq. Moreover, there exist
constants c, C ¡ 0, which are independent of ε, such that

c}∇ûε}LppΩ;LqpŶ �qq ¤ }∇uε}LppΩ;LqpY �pxqqq ¤ C}∇ûε}LppΩ;LqpŶ �qq. (2.9)

Proof. Lemma 2.15 shows that px, yq ÞÑ px, ψ0px, yqq and px, yq ÞÑ px, ψ�1
0 px, yqq fulfil

Lusin’s (N)-condition. Then, Lemma 2.14 shows that û0 is measurable if and only if u0 is
measurable.

Using the uniform boundedness of J0 with respect to px, yq P Ω � Ŷ � from below and
above, we obtain, for p, q P r1,8q

}u0}
p
LppΩ;LqpY �pxqqq �

»
Ω

}u0pxq}
p
LqpY �pxqq dx �

»
Ω

� »
Y �pxq

|u0px, yq|
q dy

	p{q
dx
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2.2. Two-scale transformation and two-scale convergence

�

»
Ω

� »
Y �

J0px, yq|û0px, yq|
q dy

	p{q
dx ¤ C

»
Ω

� »
Y �

|û0px, yq|
q dy

	p{q
dx

� C}û0}
p

LppΩ;LqpŶ �qq

and

}û0}
p

LppΩ;LqpŶ �qq
�

»
Ω

}û0pxq}
p

LqpŶ �q
dx �

»
Ω

� »
Ŷ �

|û0px, yq|
q dy

	p{q
dx

�

»
Ω

� »
Y �pxq

J�1
0 px, ψ�1

0 px, yqq|u0px, yq|
q dy

	p{q
dx ¤ C

»
Ω

� »
Y �pxq

|u0px, yq|
q dy

	p{q
dx

� C}u0}
p
LppΩ;LqpY �pxqqq.

By similar argumentation, the equivalence can be shown if p is 8. Thus, we obtain (2.8).
Employing additionally the boundedness of Ψ0 and Ψ�1

0 , we obtain (2.9) by a similar
argumentation.

Since L8pŶ �q is not separable, it is not meaningful to consider Lemma 2.16 for q � 8.
Instead, we get the following result, which becomes useful for the transformation of coef-
ficients.

Lemma 2.17. Let û0px, yq � u0px, ψ0px, yqq for a.e. px, yq P Ω � Ŷ �, or equivalently
u0px, yq � û0px, ψ

�1
0 px, yqq for a.e. px, yq P Q. Then, û0 P L8pΩ � Y �q if and only if

u0 P L
8pQq and it holds

}û0}L8pΩ�Ŷ �q � }u0}L8pQq. (2.10)

Proof. The measurability can be transferred as in Lemma 2.16. Since J0 is essentially
bounded from below and above, one has for every A � Ω � Ŷ � that |ψ0pAq| ¡ 0 if and
only if |A| ¡ 0, which shows (2.10).

2.2.2. Equivalence of two-scale convergence

Now, we aim to show

uε
p

ÝÝáÝÝÝáu0 if and only if ûε
p

ÝÝáÝÝÝáû0 (2.11)

for ûεpxq � uεpψεpxqq and û0px, yq � û0px, ψ0px, yqq in Theorem 2.20. Moreover, we will
show the same result for strong two-scale convergence in Theorem 2.21. Afterwards, we
consider the transformation of small and large gradients in Theorem 2.23 and Theorem
2.24, respectively, which requires some additional correctors in the case of small gradients.

Since ûε is bounded if and only if uε is bounded, it suffices to work with smooth two-
scale test functions. By transforming the integral, we can shift the transformations from
uε and ûε, respectively, onto the test functions. Thus, we need to show compatibility of
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Chapter 2. Homogenisation for locally periodic domains

transformations and two-scale convergence only for the test functions. We introduce the
following notation.

Notation 2.18. Let φ be a function which is defined on Ω� Y , then

φε,ψεpxq :� φ

�
ψεpxq,

ψεpxq

ε



, φψ0px, yq :� φpx, ψ0px, yqq,

φε,ψ�1
ε
pxq :� φ

�
ψ�1
ε pxq,

ψ�1
ε pxq

ε



, φψ�1

0
px, yq :� φpx, ψ�1

0 px, yqq,

where ψ0px, �q and ψ
�1
0 px, �q denote their restrictions to Ŷ � and Y �pxq, respectively.

Lemma 2.19. Let φ P DpΩ;C#pY qq. Then, φε,ψε

  8
ÝÝÝÝÑÝÝÝÝÝÑφψ0.

Note that φε,ψε is only defined on Ω̂ε and φψ0 only on Ω � Y �, hence the two-scale

convergence has to be understood in the sense φ̃ε,ψε

  8
ÝÝÝÝÑÝÝÝÝÝÑφ̃ψ0 .

Proof. Due to Proposition 1.12, it suffices to show that Tεpφ̃ε,ψεq converges strongly to φ̃ψ0

in LppΩ�Y q for every p P p1,8q. We show this convergence by the pointwise convergence
and the Lebesgue convergence theorem. Let px, yq P Ω�Y . We choose ε0pxq small enough
such that, for all 0   ε   ε0pxq, x is contained in ε-scaled cells that is entirely in Ω̃ε,
i.e. rxsε,Y � εY � Ω̃ε (see Notation 1.9 for the definition of Ω̃ε).

For y P Y zŶ �, we get rxsε,Y � εy P Ω̃ε X pΩzΩεq and, thus,

Tεpφ̃ε,ψεqpx, yq � 0 � φ̃ψ0px, yq.

For y P Y �, we obtain Tεpφ̃ε,ψεqpx, yq � φ
�
ψεprxsε,Y � εyq,

ψεprxsε,Y �εyq
ε

	
, which can be

rewritten using ψεpxq � x�|ψεpxq and the Y -periodicity of φ,

Tεpφ̃ε,ψεqpx, yq � φ

�
ψεprxsε,Y � εyq,

ψεprxsε,Y � εyq

ε



� φ

�
rxsε,Y � εy �|ψεprxsε,Y � εyq,

rxsε,Y � εy �|ψεprxsε,Y � εyq

ε

�

� φ

��rxsε,Y � εy � Tεp|̃ψεqpx, yq, y � Tεp|̃ψεqpx, yq
ε

�.
In order to pass to the limit εÑ 0, we note that the strong two-scale convergence of 1

ε
|ψε

to |ψ0, which is given by Definition 2.2, implies the strong convergence of 1
εTεp|̃ψεq to |̃ψ0

in LppΩ � Y q. Hence, we can pass to a subsequence such that 1
εTεp|̃ψεqpx, yq Ñ |̃ψ0px, yq

and Tεp|̃ψεqpx, yq Ñ 0 for a.e. px, yq P Ω� Y . Moreover, rxsε,Y converges to x and εy to 0.
Since φ P DpΩ;C#pY qq, we can carry these pointwise convergences over to the pointwise
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2.2. Two-scale transformation and two-scale convergence

convergence

φ

��rxsε,Y � εy � Tεp|̃ψεqpx, yq, y � Tεp|̃ψεqpx, yq
ε

�Ñ φpx, y �|ψ0px, yqq � φpx, ψ0px, yqq

for a.e. px, yq P Ω� Ŷ �.
Since }φ}CpΩ�Y q ¤ C we have |Tεpφ̃ε,ψεpx, yq| ¤ C for a.e. px, yq P Ω� Y and can apply

Lebesgue’s convergence theorem, which yields the strong convergence of Tεpφ̃ε,ψεq to φ̃ψ0

in LppΩ � Y q. Because this argumentation holds for every subsequence, it holds for the
whole sequence.

Now, we use the strong two-scale convergence of the transformed test functions in order
to show the weak two-scale convergence for the transformed sequence of some arbitrary
two-scale converging sequence. We thus obtain the equivalence of the weak two-scale
convergence of sequences defined on Ωε and the corresponding sequences defined on Ω̂ε.

Theorem 2.20. Let p P p1,8q. Let uε be a sequence in LppΩ̂εq and ûε � uε � ψε. Then,

uε
p

ÝÝáÝÝÝáu0 if and only if ûε
p

ÝÝáÝÝÝáû0 (2.12)

for u0 P L
ppΩ;LppY �pxqqq and û0 P L

ppΩ� Ŷ �q and it holds

û0px, yq � u0px, ψ0px, yqq for a.e. px, yq P Ω� Ŷ �,

u0px, yq � û0px, ψ
�1
0 px, yqq for a.e. px, yq P Q.

(2.13)

Proof. First, we assume that ûε
p

ÝÝáÝÝÝáû0 and show uε
p

ÝÝáÝÝÝáu0. The two-scale convergence
of ûε implies the boundedness of }ûε}LppΩ̂εq

(see Lemma 2.11) and also the boundedness

of }ũε}LppΩq � }uε}LppΩεq. Since the limit ˜̂u0,ψ�1
0

is also in LppΩ � Y q, it is sufficient to

show the distributional two-scale convergence, i.e.

lim
εÑ0

»
Ω

ũεpxqφ
�
x,
x

ε

	
dx �

»
Ω

»
Y

˜̂u0,ψ�1
0
px, yqφpx, yq dy dx (2.14)

for every smooth function φ P DpΩ;C8
# pY qq. For this, we transform the integrand of the

left-hand side by ψε»
Ω

ũεpxqφ
�
x,
x

ε

	
dx �

»
Ωε

uεpxqφ
�
x,
x

ε

	
dx �

»
Ω̂ε

Jεpxqûεpxqφε,ψεpxq dx

�

»
Ω

J̃εpxq ˜̂uεpxqφ̃ε,ψεpxqdx.

Having φ̃ε,ψε

  8
ÝÝÝÝÑÝÝÝÝÝÑφ̃ψ0 from Lemma 2.19 and J̃ε

  8
ÝÝÝÝÑÝÝÝÝÝÑJ̃0 from Lemma 2.9, we can pass
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to the limit εÑ 0 and get

lim
εÑ0

»
Ω

J̃εpxq ˜̂uεpxqφ̃ε,ψεpxq dx �

»
Ω

»
Y

J̃0px, yq˜̂u0px, yqφ̃ψ0px, yq dy dx.

Then, we transform the Y -integral back with ψ0px, �q»
Ω

»
Y

J̃0px, yq˜̂u0px, yqφ̃ψ0px, yq dy dx �

»
Ω

»
Y �

J0px, yqû0px, yqφpx, ψ0px, yqq dy dx

�

»
Ω

»
Y �pxq

û0px, ψ
�1
0 px, yqqφpx, yqdy dx �

»
Ω

»
Y

˜̂u0,ψ�1
0
px, yqφpx, yqdy dx.

Combining these equations shows (2.14).

Now, we assume that uε
p

ÝÝáÝÝÝáu0 and show ûε
p

ÝÝáÝÝÝáû0. Again the two-scale convergence
of uε implies the boundedness of uε and Lemma 2.11 transfers the boundedness onto ûε.

By Theorem 1.21, we can pass to a subsequence such that ûε
p

ÝÝáÝÝÝáû0 for û0 P L
ppΩ� Ŷ �q.

By applying the previous argumentation on this subsequence, we can identify û0 � u0,ψ0 .
Since this argumentation holds for every subsequence, it holds for the whole sequence.

The next theorem shows that also the strong two-scale convergence is compatible with
the transformation. This becomes highly important in the homogenisation of problems
where the microstructure arises not only from the domain but also from oscillating coeffi-
cients.

Theorem 2.21. Let p P p1,8q. Let uε be a sequence in LppΩ̂εq and ûε � uε � ψε. Then,

uε
p

ÝÝÑÝÝÝÑu0 if and only if ûε
p

ÝÝÑÝÝÝÑû0

for u0 P L
ppΩ;LppY �pxqqq and û0 P L

ppΩ� Ŷ �q. Moreover,

û0px, yq � u0px, ψ0px, yqq for a.e. px, yq P Ω� Ŷ �,

u0px, yq � û0px, ψ
�1
0 px, yqq for a.e. px, yq P Q.

Proof. Assume that uε
p

ÝÝÑÝÝÝÑu0. Because of Theorem 2.20, it is sufficient to show that
lim
εÑ0

} ˜̂uε}LppΩq � }˜̂u0}LppΩ�Y q. By transforming via ψε and ψ0, respectively, we obtain

} ˜̂uε}pLppΩq �

»
Ω

| ˜̂uεpxq|p dx � »
Ω

˜J�1
ε � ψ�1

ε pxq|ũεpxq|
p dx

�

»
Ω

»
Y

Tεp ˜J�1
ε � ψ�1

ε qpx, yq|Tεpũεqpx, yq|p dy dx
(2.15)
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and

}˜̂u0}pLppΩ�Y q �

»
Ω

»
Y

|˜̂u0px, yq|p dy dx � »
Ω

»
Y

J̃�1

0,ψ�1
0

px, yq|ũ0px, yq|
p dy dx. (2.16)

After subtracting (2.16) from (2.15), we obtain with the triangle inequality���} ˜̂uε}pLppΩq � }˜̂u0}pLppΩ�Y q

���
¤
��� »
Ω

»
Y

Tεp ˜J�1
ε � ψ�1

ε qpx, yq
�
|Tεpũεqpx, yq|p � |ũ0px, yq|

p
	
dy dx

���
�
��� »
Ω

»
Y

�
Tεp ˜J�1

ε � ψ�1
ε qpx, yq � J̃�1

0,ψ�1
0

px, yq
	
|ũ0px, yq|

p dy dx
���.

(2.17)

Now, we show that both integrals on the right-hand side of (2.17) converge to zero. For

the first integral, we note that uε
p

ÝÝÑÝÝÝÑu0 gives the strong convergence Tεpũεq Ñ ũ0 in
LppΩ � Y q, which implies the strong convergence |Tεpũεq|p Ñ |ũ0|

p in L1pΩ � Y q. Since

Jε ¥ cJ , we obtain }Tεp ˜J�1
ε � ψ�1

ε q}L8pΩ�Y q ¤ c�1
J . Then, with the Hölder inequality, we

can deduce ��� »
Ω

»
Y

Tεp ˜J�1
ε � ψ�1

ε qpx, yq
�
|Tεpũεqpx, yq|p � |ũ0px, yq|

p
	
dy dx

���
¤ c�1

J

»
Ω

»
Y

���|Tεpũεqpx, yq|p � |ũ0px, yq|
p
���dy dxÑ 0.

(2.18)

In order to estimate the second integral on the right-hand side of (2.17), we approximate
|ũ0|

p, with respect to the L1pΩ�Y q-norm, by a sequence pφnqnPN of functions in DpΩ�Y q.
Thus, we can estimate��� »

Ω

»
Y

�
Tεp ˜J�1

ε � ψ�1
ε qpx, yq � J̃�1

0,ψ�1
0

px, yq
	
|ũ0px, yq|

p dy dx
���

�
��� »
Ω

»
Y

�
Tεp ˜J�1

ε � ψ�1
ε qpx, yq � J̃�1

0,ψ�1
0

px, yq
	�
|ũ0px, yq|

p � φnpx, yq
	
dy dx

���
�
��� »
Ω

»
Y

�
Tεp ˜J�1

ε � ψ�1
ε qpx, yq � J̃�1

0,ψ�1
0

px, yq
	
φnpx, yqdy dx

���.
(2.19)

Since }Tεp ˜J�1
ε � ψ�1

ε q}L8pΩ�Y q ¤ c�1
J as well as }J̃�1

0,ψ�1
0

}L8pΩ�Y q ¤ c�1
J , which follows from
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J0 ¥ cJ , we can estimate the first summand on the right-hand side of (2.19) by»
Ω

»
Y

����Tεp ˜J�1
ε � ψ�1

ε qpx, yq � J̃�1

0,ψ�1
0

px, yq
	�
|ũ0px, yq|

p � φnpx, yq
	���dy dx

¤ c�1
J

»
Ω

»
Y

���|ũ0px, yq|p � φnpx, yq
���dy dx. (2.20)

Then, choosing n large enough, this term becomes arbitrarily small.

Now, for fixed n, we show that the second summand on the right-hand side of (2.19)

becomes arbitrarily small. We use that J�1
ε

  8
ÝÝÝÝÑÝÝÝÝÝÑJ�1

0 (see Lemma 2.9) and, therefore,

J�1
ε

  8
ÝÝÝÝáÝÝÝÝÝáJ�1

0 . Then, Theorem 2.20 implies ˜J�1
ε � ψ�1

ε
q

ÝÝáÝÝÝáJ̃�1

0,ψ�1
0

for all q P p1,8q and,

accordingly, we obtain Tεp ˜J�1
ε � ψ�1

ε q á J̃�1

0,ψ�1
0

in LqpΩ � Y q, for all q P p1,8q. Having

φn P DpΩ� Y q � Lq
1
pΩ� Y q, we can pass to the limit εÑ 0 for fixed n, i.e.��� »

Ω

»
Y

�
Tεp ˜J�1

ε � ψ�1
ε qpx, yq � J̃�1

0,ψ�1
0

px, yq
	
φnpx, yq dy dx

���Ñ 0. (2.21)

Thus, the left hand side of (2.19) converges to zero and together with (2.17) and (2.18),

we can conclude lim
εÑ0

} ˜̂uε}LppΩq � }˜̂u0}LppΩ�Y q. Hence ûε
p

ÝÝÑÝÝÝÑû0.

The other direction, i.e. uε
p

ÝÝÑÝÝÝÑu0 if ûε
p

ÝÝÑÝÝÝÑû0, follows by the same argumentation.

Theorem 2.21 provides also the strong two-scale convergence of the set Ωε to Q in the
sense of the characteristic functions.

Corollary 2.22. Let Ωε be locally periodic domains with two-scale limit set Q in the sense
of Definition 2.1. Then,

χΩε

  8
ÝÝÝÝÑÝÝÝÝÝÑχQ, pi.e. χΩεpxq

  8
ÝÝÝÝÑÝÝÝÝÝÑχQpx, yq � χY �pxqpyq q.

Proof. Since χΩ̂ε
is y-periodic, i.e. χΩ̂ε

pxq � χŶ �
#
px{εq for x P Ω, Lemma 1.7 provides the

strong two-scale convergence χΩ̂ε

  8
ÝÝÝÝÑÝÝÝÝÝÑχŶ � . Then, Theorem 2.21 gives

χΩεpxq � χΩ̂ε
pψ�1

ε pxqq
  8
ÝÝÝÝÑÝÝÝÝÝÑχŶ �px, ψ

�1
0 px, yqq � χY �pxqpyq � χQpx, yq.

In the next step, we show the transformation results for gradients.

Theorem 2.23. Let p P p1,8q. Let uε be a sequence in LppΩ̂εq and ûε � uε � ψε. Then,

∇uε
p

ÝÝáÝÝÝáχŶ �∇xu0 �∇yu1 if and only if ∇ûε
p

ÝÝáÝÝÝáχŶ �∇xû0 �∇yû1
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2.2. Two-scale transformation and two-scale convergence

for u0 P W 1,ppΩq, û0 P W 1,ppΩq, u1 P LppΩ;W 1,p
# pY �pxqqq and û1 P LppΩ;W 1,p

# pŶ �qq.
Moreover, it holds

û0pxq � u0pxq for a.e. x P Ω,

û1px, yq � u1px, ψ0px, yqq �|ψ0px, yq �∇xu0pxq for a.e. px, yq P Ω� Ŷ �,

u1px, yq � û1px, ψ
�1
0 px, yqq � }ψ�1

0 px, yq �∇xû0pxq for a.e. px, yq P Q.

(2.22)

Proof. First, assume that ∇ûε
p

ÝÝáÝÝÝáχŶ �∇xû0 � ∇yû1. In order to show the two-scale

convergence ∇uε
p

ÝÝÑÝÝÝÑχŶ �∇xu0�∇yu1, we express these terms by χŶ � , ∇ûε, ∇xû0, ∇yû1.
For this, we use the following identities, which arise from the chain rule

Bxuεpxq � Bxpûεpψ
�1
ε pxqqq � pBxûεqpψ

�1
ε pxqqBxpψ

�1
ε qpxq,

Bxpψ
�1
ε qpxq � pBxψεq

�1pψ�1
ε pxqq � Ψ�1

ε pψ�1
ε pxqq,

which yields

∇uεpxq � Ψ�J
ε pψ�1

ε pxqqp∇ûεqpψ�1
ε pxqq. (2.23)

With Theorem 2.20, we can transfer the two-scale convergence of ∇ûε to

p∇ûεqpψ�1
ε pxqq

p
ÝÝáÝÝÝáχŶ �pψ

�1
0 px, yqq∇xû0pxq � p∇yû1qpx, ψ

�1
0 px, yqq

and with Theorem 2.21, we can transfer the strong two-scale convergence of Ψ�J
ε (see

Lemma 2.9) to

Ψ�J
ε pψ�1

ε pxqq
  8
ÝÝÝÝÑÝÝÝÝÝÑΨ�J

0 px, ψ�1
0 px, yqq.

Having additionally the uniform essential bound of Ψ�J
ε (see Lemma 2.8), we can pass

with Lemma 1.16 to the limit εÑ 0 for the product

∇uεpxq � Ψ�J
ε pψ�1

ε pxqqp∇ûεqpψ�1
ε pxqq

p
ÝÝÑÝÝÝÑΨ�J

0 px, ψ�1
0 px, yqq

�
χŶ �pψ

�1
0 px, yqq∇xû0pxq � p∇yû1qpx, ψ

�1
0 px, yqq

�
� Ψ�J

0 px, ψ�1
0 px, yqqχY �pxqpyq∇xû0pxq �Ψ�J

0 px, ψ�1
0 px, yqqp∇yû1qpx, ψ

�1
0 px, yqq.

(2.24)

After employing the chain rule, the coefficient Ψ�J
0 px, ψ�1

0 px, yqq in front of the y-derivative
of û1 will disappear as in (2.23). However, in the first summand on the right-hand side
this substitution does not cancel Ψ�J

0 px, ψ�1
0 px, yqq, since we have no y-derivative and,

thus, no chain rule to apply. Instead, we will separate Ψ�J
0 px, ψ�1

0 px, yqq∇yû0pxq into a
part which is constant in y and a part which can be written as a y-gradient, i.e.

Ψ�J
0 px, ψ�1

0 px, yqq � p∇ψ0q
�1px, ψ�1

0 px, yqq � ∇pψ�1
0 qpx, yq � 1�∇}ψ�1

0 px, yq.
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Chapter 2. Homogenisation for locally periodic domains

Then, we obtain

Ψ�J
0 px, ψ�1

0 px, yqqχY �pxqpyq∇xû0pxq �Ψ�J
0 px, ψ�1

0 px, yqqp∇yû1qpx, ψ
�1
0 px, yqq

� p1�∇y
}ψ�1
0 px, yqqχY �pxqpyq∇xû0pxq �∇ypû1px, ψ

�1
0 px, yqqq

� χY �pxqpyq∇xû0pxq �∇y
}ψ�1
0 px, yq∇xû0pxq �∇ypû1px, ψ

�1
0 px, yqqq

� χY �pxqpyq∇xû0pxq �∇y

�}ψ�1
0 px, yq �∇xû0pxq � û1px, ψ

�1
0 px, yqq

�
.

(2.25)

Combining (2.24) with (2.25) yields

∇uε
p

ÝÝÑÝÝÝÑχY �pxq∇xu0 �∇yu1 (2.26)

for u0pxq � û0pxq and u1px, yq � û1px, ψ
�1
0 px, yqq � }ψ�1

0 px, yq �∇xû0pxq.

For the other direction, we assume that ∇uε
p

ÝÝáÝÝÝáχŶ �∇xu0 � ∇yu1. From the chain
rule, we obtain

Bxûεpxq � Bxpuεpψεpxqqq � pBxuεqpψεpxqqBxψεpxq.

Then, by the same argumentation as above, we can pass to the limit

∇ûεpxq � ΨJ
ε pxqp∇uεqpψεpxqq

p
ÝÝÑÝÝÝÑΨJ

0 px, yq
�
χY �pxqpψ0px, yqq∇xu0pxq � p∇yu1qpx, ψ0px, yqq

�
.

(2.27)

The limit can be rewritten as

ΨJ
0 px, yq

�
χY �pxqpψ0px, yqq∇xu0pxq � p∇yu1qpx, ψ0px, yqq

�
� p1�∇y

|ψ0px, yqqχŶ �pyq∇xu0pxq �ΨJ
0 p∇yu1qpx, ψ0px, yqq

� χŶ �pyq∇xu0pxq �∇y
|ψ0px, yq∇xu0pxq �∇ypu1px, ψ0px, yqqq

� χŶ �pyq∇xu0pxq �∇y

�|ψ0px, yq �∇xu0pxq � u1px, ψ0px, yqq
�
. (2.28)

Combining (2.27) with (2.28) yields

∇ûε
p

ÝÝÑÝÝÝÑχŶ �∇xû0 �∇yû1

for û0pxq � u0 and û1px, yq � |ψ0px, yq �∇xu0pxq �∇ypu1px, ψ0px, yqq.

We remember that }ψ�1
0 px, yq � �|ψ0px, ψ

�1
0 px, yqq (see (2.2)) and, hence, we see that

the two transformation rules between û1 and u1 in (2.22) are consistent with each other

û1px, ψ
�1
0 px, yqq � u1px, ψ0px, ψ

�1
0 px, yqqq �|ψ0px, ψ

�1
0 px, yqq �∇xu0pxq

� u1px, yq �
}ψ�1
0 px, yq �∇xû0pxq.
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2.2. Two-scale transformation and two-scale convergence

In the next step we consider the transformation of the gradients in the case of large
gradients.

Theorem 2.24. Let p P p1,8q. Let uε be a sequence in W 1,ppΩ̂εq and ûε � uε �ψε. Then,

ε∇uε
p

ÝÝáÝÝÝá∇yu0 if and only if ε∇ûε
p

ÝÝáÝÝÝá∇yû0 (2.29)

for u0 P L
ppΩ;W 1,p

# pY �pxqqq and û0 P L
ppΩ;W 1,p

# pŶ �qq and

û0px, yq � u0px, ψ0px, yqq for a.e. px, yq P Ω� Ŷ �,

u0px, yq � û0px, ψ
�1
0 px, yqq for a.e. px, yq P Q.

(2.30)

Proof. We assume that ε∇ûε
p

ÝÝáÝÝÝá∇yû0. In order to show ε∇uεpxq
p

ÝÝÑÝÝÝÑ∇yu0px, ψ0px, yqq,
we rewrite it as in (2.23)

ε∇uεpxq � εΨ�J
ε pψ�1

ε pxqqp∇ûεqpψ�1
ε pxqq. (2.31)

With Theorem 2.20, we can use the two-scale convergence of ε∇ûε to show

εp∇ûεqpψ�1
ε pxqq

p
ÝÝáÝÝÝá∇yû0px, ψ

�1
0 px, yqq

and with Theorem 2.21, we can use the strong two-scale convergence of Ψ�J
ε to show

Ψ�J
ε pψ�1

ε pxqq
  8
ÝÝÝÝÑÝÝÝÝÝÑΨ�J

0 px, ψ�1
0 px, yqq.

Since Ψ�J
ε is uniformly essentially bounded, we can pass with Lemma 1.16 to the limit

εÑ 0 for the product in (2.31)

ε∇uεpxq � εΨ�J
ε pψ�1

ε pxqqp∇ûεqpψ�1
ε pxqq

p
ÝÝáÝÝÝáΨ�J

0 px, ψ�1
0 px, yqqp∇yû0qpx, ψ

�1
0 px, yqq � ∇ypû0px, ψ

�1
0 px, yqqq,

which gives

ε∇uε
p

ÝÝáÝÝÝá∇yu0px, yq

for u0px, yq � û0px, ψ
�1
0 px, yqq.

For the other direction, we assume that ε∇uε
p

ÝÝáÝÝÝá∇yu0. Then, we obtain similarly

ε∇ûεpxq � εΨJ
ε pxqp∇uεqpψεpxqq

p
ÝÝáÝÝÝáΨJ

0 px, yqp∇yu0qpψ0px, yqq � ∇ypu0pψ0px, yqqq,

which gives

ε∇ûε
p

ÝÝáÝÝÝá∇yû0
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Chapter 2. Homogenisation for locally periodic domains

for û0px, yq � u0px, ψ0px, yqq.

2.3. Homogenisation of an elliptic differential equation in locally
periodic domains

Now, we employ the results of the previous section in order to homogenise an elliptical
differential equation on a locally periodic domain. We consider the case of a fast diffusion
(i.e. ε0-scaling of the diffusion coefficient) and the case of a slow diffusion (i.e. ε2-scaling
of the diffusion coefficient). Let Ωε be a locally periodic domain with two-scale limit set
Q � Ω � Y in the sense of Definition 2.1. For the case of the scaling ε0, we additionally
assume, in the following, that Y �

# is connected and Lipschitz and that Ω is Lipschitz. Let

aε be a bounded sequence in L8pΩεq
n�n and bε be a bounded sequence in L8pΩεq, which

are uniformly elliptic and strongly two-scale converge to a0 P L
8pQqn�n and b0 P L

8pQq,
respectively, i.e. there exist constants α,C ¡ 0 such that, for all ζ P Rn and a.e. x P Ωε,

}aε}L8pΩεq ¤ C, ζJaεpxqζ ¥ α}ζ}2, aε
  8
ÝÝÝÝÑÝÝÝÝÝÑa0,

}bε}L8pΩεq ¤ C, bεpxq ¡ α, bε
  8
ÝÝÝÝÑÝÝÝÝÝÑb0.

Let fε be sequence in L2pΩεq and f0 P L
2pQq, such that fε

2
ÝÝáÝÝÝáf0, and let l P t0, 2u. We

look for a solution uε of the problem

Microscopic elliptic problem

�divpεlaεpxq∇uεpxqq � bεpxquεpxq � fεpxq in Ωε,

εlaεpxq∇uεpxq � npxq � 0 on BΩε,
(2.32)

where n denotes the outer normal of Ωε. The weak formulation of (2.32) is given by:

Weak form of the microscopic elliptic problem

Find uε P H
1pΩεq such that»

Ωε

εlaεpxq∇uεpxq �∇φpxq � bεpxquεpxqφpxqdx �

»
Ωε

fεpxqφpxqdx (2.33)

for all φ P H1pΩεq.

We perform the homogenisation in two different ways. In the first approach, we trans-
form the problem to the periodic reference domain, pass to the limit there and then
transform the limit results back. In the second approach, we use the results of the previ-
ous section to derive two-scale compactness results for locally periodic domains. Having
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2.3. Homogenisation of an elliptic differential equation in locally periodic domains

these, we can perform the homogenisation directly on the locally periodic domain without
transformation.
As the previous theoretical discussion already showed, these two homogenisation ap-

proaches will lead to the same homogenisation result. Nevertheless, for the sake of clarity,
we present both approaches.
Indeed, the second approach requires no transformation and is therefore shorter. How-

ever, for more complicated problems, such as the Stokes problem or parabolic problems,
which we will see later, the derivation of the a-priori estimates becomes more complicated
and the homogenisation of the interface terms would require additional discussion if we
are not working mainly in the transformed setting.

2.3.1. Homogenisation by substitution to a periodic substitute domain

Since Ωε is locally periodic in the sense of Definition 2.1, we obtain a sequence ψε of trans-
formation mappings with Ψεpxq :� Bxψεpxq, Jε :� detpΨεpxqq and Aεpxq :� AdjpΨεpxqq.
We define the transformed data

f̂εpxq :� fεpψεpxqq, âεpxq :� aεpψεpxqq, b̂εpxq :� bεpψεpxqq

for a.e. x P Ω̂ε. Moreover, we note that

Ψ�J
ε pxqn̂pxq � }Ψ�J

ε pxqn̂pxq} npψpxqq

for a.e. x P BΩ̂ε, where n̂ denotes the outer normal of Ω̂ε and n the outer normal of Ωε.
By changing the coordinates for the unknown, i.e.

ûεpxq � uεpψεpxqq

for x P Ω̂ε, we obtain the following strong formulation for the unknown ûε after changing
the coordinates in (2.32).

Microscopic elliptic problem in the reference coordinates

�J�1
ε pxq divpεlAεpxqâεpxqΨ

�J
ε pxq∇ûεpxqq � b̂εpxqûεpxq � f̂εpxq in Ωε,

εlaεpxqΨ
�J
ε pxq∇ûεpxq � }Ψ�J

ε pxqn̂pxq}�1Ψ�J
ε n̂pxq � 0 on BΩε.

(2.34)

In order to obtain the weak formulation of (2.34), we multiply the first equation of
(2.34) by Jε and the second by Jε}Ψ

�J
ε pxqn̂pxq}, which yields

�divpεlAεpxqâεpxqΨ
�J
ε pxq∇ûεpxqq � Jεpxqbεpxqûεpxq � Jεpxqf̂εpxq in Ωε,

εlAεpxqâεpxqΨ
�J
ε pxq∇ûεpxq � n̂pxq � 0 on BΩε.

(2.35)

Now, we obtain the corresponding weak formulation by standard procedure.
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Chapter 2. Homogenisation for locally periodic domains

Weak form of the microscopic elliptic problem in the reference coordi-
nates

Find ûε P H
1pΩ̂εq such that»

Ωε

εlAεpxqâεpxqΨ
�J
ε pxq∇ûεpxq �∇φpxq � Jεpxqb̂εpxqûεpxqφpxqdx

�

»
Ωε

Jεpxqf̂εpxqφpxqdx

(2.36)

for all φ P H1pΩ̂εq.

The weak formulation can also be derived by directly transforming the weak formulation
(2.33), which provides the following equivalence.

Lemma 2.25. Let uε P H
1pΩεq and ûε P H

1pΩ̂εq with ûε � uε � ψε. Then, uε solves
(2.33) if and only if ûε solves (2.36).

Proof. Lemma 2.25 follows from transforming (2.33) into (2.36) and the fact that H1pΩεq
can be identified with H1pΩ̂εq via the coordinate transformation ψε.

Existence and uniqueness of a solution and a-priori estimates

In order to apply the compactness results, we have to derive some a-priori estimates first.
Therefore, we will often use Aε � JεΨ

�1
ε , in the following, which yields»

Ω̂ε

AεpxqâεpxqΨ
�J
ε pxq∇ûεpxq �∇φpxqdx �

»
Ω̂ε

JεpxqâεpxqΨ
�J
ε pxq∇ûεpxq �Ψ�J

ε pxqφpxqdx.

Theorem 2.26. There exists a unique solution ûε P H
1pΩ̂εq of (2.36). Moreover,

}ûε}L2pΩ̂εq
� εl{2}∇ûε}L2pΩ̂εq

¤ C. (2.37)

Proof. We show the existence and uniqueness of a solution using the theorem of Lax–
Milgram. Therefore, we show the coercivity and continuity of the left-hand side of (2.36).
The coercivity of aε and bε and their uniform essential boundedness are pointwise prop-
erties and, hence, they are preserved under the transformation, i.e.

}âε}L8pΩ̂εq
¤ C, ζJâεpxqζ ¥ α}ζ}2, }b̂ε}L8pΩ̂εq

¤ C, b̂εpxq ¥ α

for a.e. x P Ω̂ε all ζ P Rn. Thus, we obtain

AεpxqâεpxqΨ
�J
ε pxqζ � ζ � âεpxq

a
JεpxqΨ

�J
ε pxqζ �

a
JεpxqΨ

�J
ε pxqζ

¥ α|
a
JεpxqΨ

�J
ε pxqζ|2
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2.3. Homogenisation of an elliptic differential equation in locally periodic domains

for a.e. x P Ω̂ε and every ζ P Rn. With the uniform boundedness of Jε ¥ cJ from below
and the uniform essential boundedness of ΨJ

ε , we can conclude

|ζ|2 � |p
a
Jεpxq

�1ΨJ
ε pxqq

a
JεpxqΨ

�J
ε pxqζ|2 ¤ |

a
Jεpxq

�1ΨJ
ε pxq|

2|
a
JεpxqΨ

�J
ε pxqζ|2

¤ c�1
J C|

a
JεpxqΨ

�J
ε pxqζ|2

for a.e. x P Ω̂ε and every ζ P Rn. Combining the previous two equations shows

AεpxqâεpxqΨ
�J
ε pxqζ � ζ ¥ c|ζ|2 (2.38)

for some c ¡ 0. Then, we obtain with the uniform boundedness of Jε and b̂ε from below
that »

Ωε

εlAεpxqâεpxqΨ
�J
ε pxq∇upxq �∇upxq � Jεpxqb̂εpxqupxqupxq dx

¥ εlc}∇u}2
L2pΩ̂εq

� αcJ}u}
2
L2pΩ̂εq

(2.39)

for every u P H1pΩ̂εq. Now, we use the essential uniform boundedness of the coefficients
âε, b̂ε, Aε, Ψ

�J
ε and Jε (see Lemma 2.8), apply the Hölder inequality and transfer the

uniform boundedness of }fε}L2pΩεq via Lemma 2.11 on }f̂ε}L2pΩ̂εq
, so that we obtain the

continuity of the left- and the right-hand side of (2.36), i.e.»
Ω̂ε

εlAεpxqâεpxqΨ
�J
ε pxq∇upxq �∇vpxq � Jεpxqb̂εpxqupxqvpxq dx

¤ εlC}∇u}L2pΩ̂εq
}∇v}L2pΩ̂εq

� C}u}L2pΩ̂εq
}v}L2pΩ̂εq

,»
Ω̂ε

Jεpxqf̂εpxqupxq dx ¤ C}f̂ε}L2pΩ̂εq
}u}L2pΩ̂εq

. (2.40)

for all u, v P H1pΩ̂εq. Then, the Lax–Milgram theorem provides the existence and unique-
ness of a solution ûε. By choosing u and v equal to ûε in (2.39) and (2.40) and combining
these estimates via (2.36), we obtain with the Young inequality

εlc}∇ûε}2L2pΩ̂εq
� αcJ}ûε}

2
L2pΩ̂εq

¤ C}f̂ε}L2pΩ̂εq
}ûε}L2pΩ̂εq

¤
1

2αcJ
C2}f̂ε}

2
L2pΩ̂εq

�
αcJ
2
}ûε}

2
L2pΩ̂εq

,

which provides the uniform a-priori estimate (2.37).

Limit problem in the transformed coordinates

By passing to the limit εÑ 0 in (2.36), we derive the two-scale limit problems for l P t0, 2u
and the homogenised problem for l � 0. For the case l � 0, the two-scale limit problem
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Chapter 2. Homogenisation for locally periodic domains

is: Weak form of the two-scale limit problem in the reference coordinates
(for l � 0)

Find pû0, û1q P H
1pΩq � L2pΩ;H1

#pŶ
�q{Rq such that»

Ω

»
Ŷ �

A0px, yqâ0px, yqΨ
�J
0 px, yq

�
∇xû0pxq�∇yû1px, yq

�
�
�
∇xφ0pxq �∇yφ1px, yq

�
dy dx

�

»
Ω

»
Ŷ �

J0px, yqb̂0px, yq dy û0pxqφ0pxq dx �

»
Ω

»
Ŷ �

J0px, yqf̂0px, yq dy φ0pxq dx

(2.41)

for every pφ0, φ1q P H
1pΩq � L2pΩ;H1

#pŶ
�q{Rq.

By separating the x and y variables in (2.41), we get the homogenised equation:

Weak form of the homogenised problem in the reference coordinates (for
l � 0)

Find û0 P H
1pΩq, such that»

Ω

â�pxq∇xû0pxq∇φpxq � b̂�pxqû0pxqφpxq dx �

»
Ω

f̂�pxqφpxqdx, (2.42)

for every φ P H1pΩq, where â�, b̂� and f̂� are given by

â�ijpxq :�

»
Ŷ �

A0px, yqâ0px, yqΨ
�J
0 px, yqpej �∇y ζ̂jpx, yqq � ei dy (2.43)

b̂�pxq :�

»
Ŷ �

J0px, yqb̂0px, yq dy (2.44)

f̂�pxq :�

»
Ŷ �

J0px, yqf̂0px, yq dy (2.45)

for a.e. x P Ω and every i, j P t1, . . . , nu, where ζ̂j P L
8pΩ;H1

#pŶ
�qq is the unique

solution of»
Ŷ �

A0px, yqâ0px, yqΨ
�J
0 px, yqp∇y ζ̂jpx, yq � ejq �∇φpyqdx � 0 (2.46)

for all φ P H1
#pŶ

�q and a.e. x P Ω.

For the case l � 2, we get the following two-scale limit problem:

50



2.3. Homogenisation of an elliptic differential equation in locally periodic domains

Weak form of the two-scale limit problem in the reference coordinates
(for l � 2)

Find û0 P L
2pΩ;H1

#pŶ
�qq such that»

Ω

»
Ŷ �

A0px, yqâ0px, yqΨ
�J
0 px, yq∇yû0px, yq �∇yφ0px, yqdy dx

�

»
Ω

»
Ŷ �

J0px, yqb̂0px, yqû0px, yqφ0px, yqdy dx

�

»
Ω

»
Ŷ �

J0px, yqf̂0px, yqφ0px, yq dy dx

(2.47)

for every φ0 P L
2pΩ;H1

#pŶ
�qq.

By means of Theorem 2.21 and Theorem 2.20, respectively, we can infer the strong
two-scale convergence of the coefficients of (2.36) and the weak two-scale convergence of
the right-hand side, namely

âεpxq
  8
ÝÝÝÝÑÝÝÝÝÝÑâ0px, yq :� a0px, ψ0px, yqq,

b̂εpxq
  8
ÝÝÝÝÑÝÝÝÝÝÑb̂0px, yq :� b0px, ψ0px, yqq,

f̂εpxq
2

ÝÝáÝÝÝáf̂0px, yq :� f0px, ψ0px, yqq.

Moreover, Lemma 2.17 transfers the essential boundedness of a0 and b0 to â0 and b̂0,
respectively.

Then, the derivation of the two-scale limit problems (2.41) and (2.47) becomes a well
known two-scale homogenisation task. We start with the case l � 0.

Theorem 2.27. Let l � 0 and assume that Ŷ �
# is connected. Then, for the sequence of

solutions ûε of (2.36) it holds

ûε
2

ÝÝáÝÝÝáχŶ � û0, ∇ûε
2

ÝÝáÝÝÝáχŶ �∇xû0 �∇yû1

where pû0, û1q P H
1pΩq � L2pΩ;H1

#pŶ
�q{Rq is the unique solution of the two-scale limit

problem (2.41).

Proof. From Lemma 2.9, we obtain the strong two-scale convergence of Aε, Ψ�J
ε , Jε

(with respect to every Lp for p P p1,8q and with Lemma 2.8 their uniform essential
boundedness. Together with the strong two-scale convergence of âε and b̂ε, their uniform
essential boundedness and the two-scale convergence of f̂ε, we can deduce from Lemma 1.16
the strong two-scale convergence of AεâεΨ

�J
ε and Jεb̂ε as well as the weak two-scale

convergence of Jεf̂ε.
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Having the a-priori estimates (2.37) for ûε, the uniform essential estimates for the
coefficients and the two-scale convergences for the coefficients and the right-hand side,
we can pass to the limit ε Ñ 0 by classical two-scale argumentation. With the a-
priori estimates (2.37) and the compactness result Theorem 1.18, we obtain pû0, û1q P

H1pΩq � L2pΩ;H1
#pŶ

�q{Rq such that for a subsequence ûε one has ûε
2

ÝÝáÝÝÝáχŶ � û0 and

∇ûε
2

ÝÝáÝÝÝáχŶ �∇xû0 �∇yû1. Then, we test (2.36) with φ0 � φ1p�,
�
εq for φ0 P H1pΩq

and φ1 P L2pΩ;C#pŶ
�qq. After passing to the limit, we obtain (2.41) for test func-

tions φ0 P H
1pΩq and φ1 P L

2pΩ;C#pŶ
�qq and by a density argument for test functions

pφ0, φ1q P H1pΩq � L2pΩ;H1
#pŶ

�q{Rq. Since the argumentation holds for every subse-
quence, we obtain the convergence for the whole sequence by showing the uniqueness of a
solution of (2.41).
The existence of a solution of (2.41) is already ensured by the homogenisation process,

while the uniqueness follows from the theorem of Lax–Milgram. We use the solution space
H1pΩq � L2pΩ;H1

#pŶ
�q{Rq and focus on showing the coercivity of the left-hand side.

Analogously to the derivation of the coercivity estimate (2.39) for the ε-scaled problem,
we obtain the uniform coercivity of A0â0Ψ

�J
0 , which yields»

Ω

»
Ŷ �

A0px, yqâ0px, yqΨ
�J
0 px, yq

�
∇xφ0pxq �∇yφ1px, yq

�
�
�
∇xφ0pxq �∇yφ1px, yq

�
dy dx

�

»
Ω

»
Ŷ �

J0px, yqb̂0px, yqdy û0pxqφ0pxq dx

¥ c

»
Ω

»
Ŷ �

}∇xφ0pxq �∇yφ1px, yq}
2 dy dx� αcJ

»
Ω

»
Ŷ �

}φ0pxq}
2

¥ c}∇xφ0}
2
L2pΩq � c}∇yφ1}

2
L2pΩ�Ŷ �q

dx� αcJ |Ŷ
�|}∇xφ0}L2pΩq,

for every pφ0, φ1q P H
1pΩq � L2pΩ;H1

#pŶ
�q{Rq, where we refer to [CDG18, Lemma 5.4]

for the last inequality. This shows the coercivity of the left-hand side of (2.41). The
continuity of the left- and the right-hand side follow easily. Afterwards, the theorem of
Lax–Milgram provides the uniqueness of the solution of (2.41).

Theorem 2.28. Let pû0, û1q be the solution of the two-scale limit problem (2.41). Then
û0 solves the homogenised problem (2.42) and it holds

û1 �
ņ

j�1

Bxj û0ζ̂j .

Proof. Theorem 2.28 follows by classical separation of the x and y variables.
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Now, we consider the case l � 2.

Theorem 2.29. Let l � 2. Then, for the sequence of solutions ûε of (2.36) it holds

ûε
2

ÝÝáÝÝÝáû0, ε∇ûε
2

ÝÝáÝÝÝá∇yû0

where û0 P L
2pΩ;H1

#pŶ
�qq is the unique solution of the two-scale limit problem (2.47).

Proof. Using the same argumentation as in the proof of Theorem 2.27, we obtain the
strong and weak two-scale convergence, for the coefficients and data, respectively. Then,
the derivation of (2.47) becomes a classical two-scale homogenisation task.

Back-transformation

For the case l � 0, the back-transformation of the two-scale limit problem (2.41) results
in:

Weak form of the two-scale limit equations (for l � 0)

Find pu0, u1q P H
1pΩq � L2pΩ;H1

#pY
�pxqq{Rq such that»

Ω

»
Y �pxq

a0px, yq
�
∇xu0pxq �∇yu1px, yq

�
�
�
∇xφ0pxq �∇yφ1px, yq

�
dy dx

�

»
Ω

»
Y �pxq

b0px, yq dy u0pxqφ0pxq dx �

»
Ω

»
Y �pxq

f0px, yq dy φ0pxq dx

(2.48)

for every pφ0, φ1q P H
1pΩq � L2pΩ;H1

#pY
�pxqq{Rq.

By separating the x and y variables in (2.48), we obtain the following homogenised
equation. Later we show also how this homogenised equation can be derived by some
algebraic manipulations of the cell problems and the effective tensors, which are based on
the transformation rules for the gradients (2.22).
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Weak form of the homogenised equations (for l � 0)

Find u0 P H
1pΩq, such that»

Ω

a�pxq∇xu0pxq∇xφpxq � b�pxqu0pxqφpxq dx �

»
Ω

f�pxqφpxq dx, (2.49)

for every φ P H1pΩq, where the effective coefficients and data are given by

a�ijpxq :�

»
Y �pxq

a0px, yqpej �∇yζjpx, yqq � ei dy (2.50)

b�pxq :�

»
Y �pxq

b0px, yqdy (2.51)

f�pxq :�

»
Y �pxq

f0px, yq dy (2.52)

for a.e. x P Ω and every i, j P t1, . . . , nu, where ζj P L
8pΩ;H1

#pY
�pxqqq is the unique

solution of »
Ŷ �

a0px, yqp∇yζjpx, yq � ejq �∇yφpyq � 0 (2.53)

all φ P H1
#pY

�pxqq and a.e. x P Ω.

The strong form of (2.49) is given by:

Homogenised limit problem (for l � 0)

divxpa
�∇xu0q � b�u0 � f�, (2.54)

where a�, b� and f� are given by (2.50)–(2.52)

For the case l � 2, the back-transformation of the two-scale limit problem (2.47) leads
to:
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Weak form of the two-scale limit equations (for l � 2)

Find u0 P L
2pΩ;H1

#pY
�pxqqq such that»

Ω

»
Y �pxq

a0px, yq∇yu0px, yq �∇yφ0px, yqdy dx

�

»
Ω

»
Y �pxq

b0px, yqu0px, yqφ0px, yqdy dx �

»
Ω

»
Y �pxq

f0px, yqφ0px, yq dy dx

(2.55)

for every φ0 P L
2pΩ;H1

#pY
�pxqqq.

By means of the preliminary work on two-scale transformation, we can also transfer the
convergence results and, thus, identify the above equations as the limit equations.

Theorem 2.30. Let l � 0 and assume that Ŷ �
# is connected. Then, for the sequence of

solutions uε P H
1pΩεq of (2.33) it holds

uε
2

ÝÝáÝÝÝáχŶ �u0, ∇uε
2

ÝÝáÝÝÝáχŶ �∇xu0 �∇yu1 (2.56)

where pu0, u1q P H
1pΩq�L2pΩ;H1

#pY
�pxqq{Rq is the unique solution of the two-scale limit

problem (2.48).

Proof. From the relation ûε � uε �ψε, the two-scale convergence of ûε (see Theorem 2.27)
and the transformation rules from Theorem 2.23, we obtain the two-scale convergence

(2.56), where u0 � û0 and u1px, yq � û1px, ψ
�1
0 px, yqq� }ψ�1

0 px, yq �∇xû0pxq and pû0, û1q is
the solution of (2.41). From Lemma 2.31 below, it follows that pu0, u1q solves (2.48).

Lemma 2.31. Let û0 � u0 P H
1pΩq, û1 P L

2pΩ;H1
#pŶ

�q{Rq, u1 P L2pΩ;H1
#pY

�pxqq{Rq
with

û1px, yq � u1px, ψ0px, yqq �|ψ0px, yq �∇xu0pxq (2.57)

for a.e. px, yq P Ω� Ŷ �. Then, pû0, û1q solves (2.41) if and only if pu0, u1q solves (2.48).

Proof. Let pû0, û1q be the solution of (2.41). We test (2.41) with pφ0, φ̂1q P H1pΩq �

L2pΩ;H1
#pŶ

�q{Rq for φ0 P H1pΩq and φ̂1px, yq � φ1px, ψ0px, yqq � |ψ0px, yq � ∇xφ0pxq

for φ1 P L
2pΩ;H1

#pY
�pxqq{Rq. We note that |ψ0 � ∇xu0 P L

2pΩ;H1
#pŶ

�q{Rq since |ψ0 is
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Y -periodic. Then, we transform the integral in (2.41) via ψ�1
0 , which yields»

Ω

»
Y �pxq

â0px, ψ
�1
0 px, yqqΨ�J

0 px, ψ�1
0 px, yqq

�
∇xû0pxq � p∇yû1qpx, ψ

�1
0 px, yqq

�
�Ψ�J

0 px, ψ�1
0 px, yqq

�
∇xφ0pxq � p∇yφ̂1qpx, ψ

�1
0 px, yqq

�
dy dx

�

»
Ω

»
Y �pxq

b̂0px, ψ
�1
0 px, yqq dy û0pxqφ0pxq dx �

»
Ω

»
Y �pxq

f̂0px, ψ
�1
0 px, yqq dy û0pxqφ0pxqdx.

(2.58)

With the definitions of â0, b̂0, f̂0 and computations as in (2.25) applied for the unknowns
pû0, û1q and analogously for the test functions pφ0, φ̂1q, we can simplify (2.58) to (2.48)
for u0 and u1 given by (2.57). Hence, pu0, u1q solves (2.48).

The other implication can be shown similarly.

Now, we separate the macro- and microscopic variables in (2.48) in order to derive the
homogenised equation (2.49). Moreover, we show that the homogenised equations (2.42),
(2.49) coincide.

Theorem 2.32. Let pu0, u1q be the solution of the two-scale limit problem (2.48). Then
u0 solves the homogenised problem (2.49) and it holds

u1 �
ņ

j�1

Bxju0ζj .

Moreover, we have the following relation between the solutions of the cell problems (2.46)
and (2.53)

ζ̂jpx, yq � ζjpx, ψ0px, yqq �|ψ0px, yq � ej � ζjpx, ψ0px, yqq � p|ψ0qjpx, yq (2.59)

for every j P t1, . . . , nu. The coefficients of (2.42), which are given in (2.43), (2.44),
(2.45) and the coefficients of (2.49), which are given in (2.50), (2.51), (2.52) are equal,
i.e.

â� � a�, b̂� � b�, f̂� � f�. (2.60)

Proof. The first part of Theorem 2.32 follows by a standard separation of the x and y
variables.

The relation (2.59) between ζ̂j and ζj follows analogously to Lemma 2.31, by replacing

u0 � û0 by xj , u1 by ζj and û1 by ζ̂j .

To show the equality â� � a�, we rewrite the right-hand sides of (2.43) and (2.50) using
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the cell problems (2.46) and (2.53), respectively

â�ijpxq �

»
Ŷ �

A0px, yqâ0px, yqΨ
�J
0 px, yqpej �∇y ζ̂jpx, yqq � pei �∇y ζ̂ipx, yqq dy, (2.61)

a�ijpxq �

»
Y �pxq

a0px, yqpej �∇yζjpx, yqq � pei �∇yζipx, yqq dy. (2.62)

Using computations as in Lemma 2.31 and with (2.59) we get

Ψ�J
0 px, yqpej �∇y ζ̂jpx, yqq � pej � p∇yζjqpx, ψ0px, yqq. (2.63)

for j P t1, . . . , nu. Then, the right-hand sides of (2.61) can be transformed into the right-
hand side of (2.62). This provides the identity â� � a�.

The identities b̂� � b� and f̂� � f� follow directly from the transformation of the
integrals.

Now, we consider the case l � 2.

Theorem 2.33. Let l � 2. Then, for the sequence of solutions uε of (2.36) it holds

uε
2

ÝÝáÝÝÝáu0, ε∇uε
2

ÝÝáÝÝÝá∇yu0 (2.64)

where u0 P L
2pΩ;H1

#pY
�pxqqq is the unique solution of the two-scale limit problem (2.55).

Proof. Theorem 2.33 can be shown analogously to Theorem 2.30 using Lemma 2.34 below.

Lemma 2.34. Let û0 P L
2pΩ;H1

#pŶ
�qq and u0 P L

2pΩ;H1
#pY

�pxqqq with

û0px, yq � u0px, ψ0px, yqq (2.65)

for a.e. px, yq P Ω� Ŷ �. Then, û0 solves (2.47) if and only if u0 solves (2.55).

Proof. Lemma 2.34 follows directly from transforming the integrals.

2.3.2. Direct homogenisation in the locally periodic domain

For simple problems as for instance (2.32), the limit process ε Ñ 0 can be done also in
the non-periodic domain directly. Therefore, we use the following compactness results
for functions defined on the locally periodic domains Ωε, which follow from the two-scale
transformation results Theorem 2.20, Theorem 2.23 and Theorem 2.24.

Theorem 2.35. Let 1   p   8 and let Ωε be locally periodic domains in the sense of
Definition 2.1. Then, for every bounded sequence uε in L

ppΩεq, there exists a subsequence
uε and u0 P L

ppΩ;LppY �pxqqq such that

uε
p

ÝÝáÝÝÝáu0.
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Moreover,

� if Ωε (or Ŷ �
#) is connected and uε is a bounded sequence in W 1,ppΩεq, then, there

exists a subsequence uε and u0 PW
1,ppΩq, u1 P L

ppΩ;W 1,p
# pY �pxqq{Rq such that

uε
p

ÝÝáÝÝÝáu0, ∇uεpxq
p

ÝÝáÝÝÝáχY �pxqpyq∇xu0pxq �∇yu1px, yq.

Additionally, if uε is zero on BΩ, then u0 PW
1,p
0 pΩq.

� if uε is a sequence in W 1,ppΩεq such that }uε}LppΩεq�ε}∇uε}LppΩεq ¤ C. Then, there

exists a subsequence uε and u0 P L
ppΩ;W 1,p

# pY �pxqqq such that

uε
p

ÝÝáÝÝÝáu0, ε∇uε
p

ÝÝáÝÝÝá∇yu0.

Proof. Let ûε � uε � ψε. Then, Lemma 2.11 transforms the boundedness of uε into the
boundedness of ûε. Then, we apply the compactness result Theorem 1.21, which gives a

subsequence uε and û0 P L
ppΩ;LppŶ �qq such that ûε

p
ÝÝáÝÝÝáû0. Transforming this two-scale

convergence back onto uε via Theorem 2.20 leads uε
p

ÝÝáÝÝÝáu0.

The compactness results for weakly differentiable functions can be derived analogously,
by employing the compactness results Theorem 1.22 and Theorem 1.23, respectively, and
subsequently employing the transformation results of Theorem 2.23 and Theorem 2.24,
respectively.

Having these compactness results, the homogenisation can be done as follows: using the
theorem of Lax–Milgram it can easily be shown that (2.32) has a unique solution, and by
energy estimates, we obtain

}uε}L2pΩεq � εl}∇uε}L2pΩεq ¤ C.

Then, we can apply the compactness result Theorem 2.35 and can pass to the homogenisa-
tion limit and obtain the two-scale limit equation (2.48) for l � 0 with the corresponding
homogenised limit equation (2.49) and the two-scale limit equation (2.55) for l � 2.

Indeed, this approach is by far faster, however, it benefits heavily from the simple
structure of the problem (2.32). If the equations involve boundary terms or algebraic
constraints, as for instance the Stokes equation, the derivation of uniform a-priori estimates
and the passage to the homogenisation limit becomes far more complicated in the locally
periodic domain. Hence, we will work mainly with the transformed equations in the
following.

2.4. Locally evolving periodic domains

Now, we consider locally periodic domains, which are evolving on a time interval p0, T q.
Let Ω � Rn be an open Lipschitz domain and Y � p0, 1qn with an open subset Y � � Y .
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We denote the Y -periodic extension of Y � by Y �
# :� int

� �
kPZn

k� Y �
	
and assume that it

is a Lipschitz domain.

Let Ωε :� ΩXεY �
# be the ε-scaled periodic reference domains. Then, we define the locally

evolving periodic domains Ωε by a transformation of the periodic reference domains.

Definition 2.36. A sequence of measurable sets QT
ε �

�
tPp0,T q

ttu � tΩεptqu � p0, T q � Rn

for open sets Ωεptq � Rn is locally evolving periodic with two-scale limit set

Qptq � tpx, yq P Ω� Y | y P Y �pt, xqu for t P p0, T q,

QT � tpt, x, yq P p0, T q � Ω� Y | y P Y �pt, xqu,

where Y �pt, xq � Y is open for every pt, xq P p0, T q�Ω, if there exists a sequence of locally
evolving periodic transformations ψε (see Definition 2.37) with a limit transformation ψ0

such that Ωεptq � ψεpt,Ωεq and Y
�pt, xq � ψ0pt, x, Y

�q for a.e. pt, xq P p0, T q � Ω.

In the time-dependent case, we denote the periodically perforated reference domain
without �̂ , since the transformed domains are already indicated by ptq.

Definition 2.37. We say that a sequence of mappings ψε P L8p0, T ;C2pΩqnq is a se-
quence of locally evolving periodic transformations with two-scale limit transformation
ψ0 P L

8pp0, T q � Ω;C2pY qnq if the following assumptions hold:

1. assumptions on ψε

a. ψεpt, �q : ΩÑ Ω is bijective for a.e. t P p0, T q and every ε ¡ 0,

b. ψ�1
ε P L8p0, T ;C2pΩqnq, where ψ�1

ε pt, �q is the inverse of ψ�1
ε pt, �q,

c. Ωεptq � ψpt,Ωεptqq for a.e. t P p0, T q,

d. there exists cJ ¡ 0 such that detpBxψεpt, xqq ¥ cJ for a.e. t P p0, T q and all
x P Ω and every ε ¡ 0,

e. there exists a constant C such that

ε�1}ψε � x}CpΩεq
� }Bxψε}CpΩεq

� ε}BxBxψε}CpΩεq
¤ C

for every ε ¡ 0.

2. assumptions on ψ0:

a. ψ0pt, x, �q : Y Ñ Y is bijective, with Y �pt, xq � ψ0pt, x, Y
�q for a.e. pt, xq P

p0, T q � Ω,

b. ψ�1
0 P L8pp0, T q � Ω;C2pY qnq, where ψ�1

0 pt, x, �q is the inverse of ψ0pt, x, �q,

c. the corresponding displacement mapping, defined by |ψ0pt, x, yq :� ψ0pt, x, yq� y

for pt, x, yq P p0, T q�Ω�Y can be extended Y -periodically, i.e. |ψ0 P L
8pp0, T q�

Ω;C2
#pY

�pxqqnq,
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3. asymptotic behaviour:

� χΩεε
�1pψε � xq

  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑχY �pψ0 � yq

� χΩεBxψε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑχY �Byψ0,

� εχΩεBxBxψε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑχY �ByByψ0.

Similarly to the limit transformation for the stationary case, we define ψε on all of Ω
and ψ0pt, x, �q on all of Y in order to ensure the measurability when we use it as transfor-
mation. However, for the asymptotic behaviour in Definition 2.2 and the transformation
results later, it suffices to consider ψεpt, �q and ψ

�1
ε pt, �q on Ωε and Ωεptq, respectively, and

ψ0pt, x, �q and ψ�1
0 pt, x, �q on Y � and Y �pt, xq, respectively. Then, we will implicitly re-

strict ψεpt, �q, ψ
�1
ε pt, �q, ψ0 and ψ�1

0 , accordingly, and where necessary we use the implicit
extension �̃ by 0.

We define the displacement mappings and the Jacobi matrix with its determinant and
adjugate matrix as in the stationary case.

Notation 2.38. Let ψε and ψ0 be given by Definition 2.37. We denote the corresponding
displacement mappings by

|ψεpt, xq :� ψεpt, xq � x, }ψ�1
ε pt, xq :� ψ�1

ε pt, xq � x|ψ0pt, x, yq :� ψ0pt, x, yq � y, }ψ�1
0 pt, x, yq :� ψ�1

0 pt, x, yq � y.

Analogously to (2.2), we obtain

}ψ�1
ε pt, xq � �|ψεpt, ψ�1

ε pt, xqq,}ψ�1
0 pt, x, yq � �|ψ0pt, x, ψ

�1
0 pt, x, yqq

(2.66)

The Y -periodicity of |ψ0 can be transferred via (2.2) on }ψ�1
0 . Thus, }ψ�1

0 P L8pp0, T q �
Ω;C2

#pY qq.

Notation 2.39. Let ψε and ψ0 be given by Definition 2.2. Then, we use the following
notation for the Jacobian matrix, its determinant and its adjugate matrix

Ψεpt, xq :� Bxψεpt, xq, Jεpt, xq :� detpΨεpt, xqq, Aεpt, xq :� AdjpΨεpt, xqq

for a.e. t P p0, T q and every x P Ωε and

Ψ0pt, x, yq :� Byψ0pt, x, yq, J0pt, x, yq :� detpΨ0pt, x, yqq, A0pt, x, yq :� AdjpΨ0pt, x, yqq

for a.e. pt, xq P p0, T q � Ω and all y P Y �.
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Lemma 2.40. Let ψε be locally evolving periodic transformations with limit transforma-
tion ψ0 in the sense of Definition 2.37. Then, there exists a constant C ¡ 0 such that

}Ψεptq}CpΩεq
� }Ψ�1

ε ptq}CpΩεq
� }Jεptq}CpΩεq

� }J�1
ε ptq}CpΩεq

¤ C,

}Aεptq}CpΩεq
� }A�1

ε ptq}CpΩεq
¤ C,

ε}BxΨεptq}CpΩεq
� ε}BxΨ

�1
ε ptq}CpΩεq

� ε}BxJεptq}CpΩεq
� ε}BxJ

�1
ε ptq}CpΩεq

¤ C,

ε}BxAεptq}CpΩεq
� ε}BxA

�1
ε ptq}CpΩεq

¤ C

(2.67)

for a.e. t P p0, T q. These estimates hold for every t P r0, T s if, additionally, Assump-
tion 2.41 is fulfilled.

Proof. Analogously to the proof of Lemma 2.8, we obtain the bounds for a.e. t P p0, T q.
From Assumption 2.41, it follows that Btψε, BxBtψε, BxBxBtψε are in L8pp0, T q � Ωqn,
L8pp0, T q � Ωqn�n and L8pp0, T q � Ωqn�n�n, respectively. Thus, ψε, Bxψε, BxBxψε are
continuous with respect to time, which is transferred to Ψε, Ψ

�1
ε , Jε, J

�1
ε , Aε, A

�1
ε and

their derivatives with respect to space (BxΨε, BxΨ
�1
ε , BxJε, BxJ

�1
ε , BxAε, BxA

�1
ε ). Then,

the continuity extends the estimate to every t P r0, T s.

The following assumption becomes useful when we work with instationary processes,
i.e. if time is not only a parameter but the time derivative is involved in the differential
equation itself as for instance in parabolic partial differential equations.

Assumption 2.41. Let ψε be locally evolving periodic transformations in the sense of
Definition 2.37. We assume that ψε and ψ0 are weakly differentiable with respect to the
time variable, i.e.

Btψε P L
8pp0, T q � Ωεq

n, BxBtψε P L
8pp0, T q � Ωεq

n�n,

BxBxBtψε P L
8pp0, T q � Ωεq

n�n�n,

Btψ0 P L
8pp0, T q � Ω� Y �qn, ByBtψ0 P L

8pp0, T q � Ω� Y �qn�n,

ByByBtψ0 P L
8pp0, T q � Ω� Y �qn�n�n.

Moreover, we assume that

ε�1Btψε
  8
ÝÝÝÝÑÝÝÝÝÝÑBtψ0, BxBtψε

  8
ÝÝÝÝÑÝÝÝÝÝÑByBtψ0, εBxBxBtψε

  8
ÝÝÝÝÑÝÝÝÝÝÑByByBtψ0.

In order to transfer the uniform bounds and time- and space derivatives from ψε onto
Jε, Ψε and Aε, we rewrite them again as polynomials with respect to time.

Lemma 2.42. Let U � Rn, p0, T q � R, B : p0, T q � U Ñ Rn�n with detpBq � 0. Then,
we obtain the same polynomials as in (2.7) in Lemma 2.7. Moreover, (2.4) holds also for
Bxk replaced by Bt.

Proof. Lemma 2.42 can be shown in the same way as Lemma 2.7.
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Lemma 2.43. Let ψε be locally evolving periodic domains in the sense of Definition 2.37
and assume that Assumption 2.41 holds. Then, there exists a constant C, which is inde-
pendent of ε, such that

}BtΨε}L8pp0,T q�Ωεq � }BtΨ
�1
ε }L8pp0,T q�Ωεq ¤ C,

}BtJε}L8pp0,T q�Ωεq � }BtJ
�1
ε }L8pp0,T q�Ωεq ¤ C,

}BtAε}L8pp0,T q�Ωεq � }BtA
�1
ε }L8pp0,T q�Ωεq ¤ C

(2.68)

for all ε ¡ 0.

Proof. Arguing as in the proof of Lemma 2.8, we can rewrite all the terms of (2.68) as
polynomials. However, compared to Lemma 2.8, the time derivative of ψε is even bounded
without the factor ε, and thus we obtain (2.68).

Lemma 2.44. Let ψε be locally evolving periodic transformations with limit transforma-
tion ψ0 in the sense of Definition 2.37. Then, there exist constants cJ , C such that

}Ψ0}L8pp0,T q�Ω;CpY �qq � }Ψ�1
0 }L8pp0,T q�Ω;CpY �qq � }J0}L8pp0,T q�Ω;CpY �qq ¤ C,

}A0}L8pp0,T q�Ω;CpY �qq � }A�1
0 }L8pp0,T q�Ω;CpY �qq ¤ C,

J0pt, x, yq ¥ cJ for a.e. pt, xq P p0, T q � Ω and every y P Y �.

Moreover, it holds

Ψε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑΨ0, Ψ�1

ε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑΨ�1

0 , Jε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑJ0,

J�1
ε

  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑJ�1

0 Aε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑA0, A�1

ε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑA�1

0 ,

εBxΨε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑByΨ0, εBxΨ

�1
ε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑByΨ

�1
0 , εBxJε

  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑByJ0,

εBxJ
�1
ε

  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑByJ

�1
0 , εBxAε

  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑByA0, εBxA

�1
ε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑByA

�1
0 .

Proof. Lemma 2.44 can be shown by the same argumentation as Lemma 2.9.

For 1 ¤ p ¤ 8, 1 ¤ q   8, we define Lpp0, T ;LqpΩεptqqq and Lpp0, T ;W 1,qpΩεptqqq
via restriction from Ω to Ωεptq, analogously to the definition of LppΩ;LqpY �pxqqq and
LppΩ;W 1,p

# pY �pxqqq. In particular, due to the following lemma these spaces are well-posed.

Lemma 2.45. Let 1 ¤ p ¤ 8, 1 ¤ q   8 and ûεpt, xq � uεpt, ψεpt, xqq for a.e. pt, xq P
p0, T q � Ωεq. Then, the following statements hold

� uε P L
pp0, T ;LqpΩεptqqq if and only if ûε P L

pp0, T ;LqpΩεqq. Moreover, there exist
constants c, C ¡ 0, which are independent of ε, such that

c}ûε}Lpp0,T ;LqpΩεqq ¤ }uε}Lpp0,T ;LqpΩεptqqq ¤ C}ûε}Lpp0,T ;LqpΩεqq. (2.69)

In particular, uε is a bounded sequence in Lpp0, T ;LqpΩεptqqq if and only if ûε is a
bounded sequence in Lpp0, T ;LqpΩεqq.
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� uε P L
pp0, T ;W 1,qpΩεptqqq if and only if ûε P L

pp0, T ;W 1,qpΩεqq. Moreover, there
exist constants c, C ¡ 0, which are independent of ε, such that

c}∇ûε}Lpp0,T ;LqpΩεqq ¤ }∇uε}Lpp0,T ;LqpΩεptqqq ¤ C}∇ûε}Lpp0,T ;LqpΩεqq. (2.70)

In particular, uε is a bounded sequence in Lpp0, T ;W 1,qpΩεptqqq if and only if ûε is
a bounded sequence in Lpp0, T ;W 1,qpΩεqq.

Proof. Lemma 2.15 shows that pt, xq ÞÑ pt, ψεpt, xqq and pt, xq ÞÑ pt, ψ�1
ε pt, xqq fulfil Lusin’s

(N)-condition. Then, Lemma 2.14 shows that ûε is measurable if and only if uε is mea-
surable. By similar computations as in the proof of Lemma 2.11, we obtain (2.69). Anal-
ogously, we obtain the measurability of the gradients and (2.70).

Lemma 2.46. Let ûεpt, xq � uεpt, ψεpt, xqq for a.e. pt, xq P p0, T q�Ωε. Then, uε P L
8pQT

ε q
if and only if ûε P L

8pp0, T q � Ωεq and it holds

}ûε}L8pp0,T q�Ωεq � }uε}L8pQT
ε q
. (2.71)

Proof. The measurability can be shown as in Lemma 2.45. Since Jε is essentially bounded
from below and above it holds for every A � p0, T q � Ωε that |ψεpAq| ¡ 0 if and only if
|A| ¡ 0, which shows (2.71).

For 1 ¤ p ¤ 8, 1 ¤ q, r   8, we define the spaces Lpp0, T ;LqpΩ;LrpY �pt, xqqqq
and Lpp0, T ;LqpΩ;W 1,r

# pY �pt, xqqqq via restriction from Y to Y �pt, xq, analogously to the

definition of LppΩ;LqpY �pxqqq and LppΩ;W 1,p
# pY �pxqqq. In particular, due to the following

lemma, these spaces are well-posed.

Lemma 2.47. Let 1 ¤ p ¤ 8, 1 ¤ q, r   8 and û0pt, x, yq � u0pt, x, ψ0pt, x, yqq
for a.e. pt, x, yq P p0, T q � Ω � Y �, or equivalently u0pt, x, yq � û0pt, x, ψ

�1
0 pt, x, yqq for

a.e pt, x, yq P QT . Then, the following statements hold:

� u0 P L
pp0, T ;LqpΩ;LrpY �pt, xqqqq if and only if û0 P L

pp0, T ;LqpΩ;LrpY �qqq. More-
over, there exist constants c, C ¡ 0, such that

c}û0}Lpp0,T ;LqpΩ;LrpY �qqq ¤ }u0}Lpp0,T ;LqpΩ;LrpY �pt,xqqqq ¤ C}û0}Lpp0,T ;LqpΩ;LrpY �qqq.

(2.72)

� u0 P L
pp0, T ;LqpΩ;W 1,r

# pY �pt, xqqqq if and only if ûε P L
pp0, T ;LqpΩ;W 1,r

# pY �qqq.
Moreover, there exist constants c, C ¡ 0, which are independent of ε, such that

c}∇ûε}Lpp0,T ;LqpΩ;LrpY �qqq ¤ }∇uε}Lpp0,T ;LqpΩ;LrpY �pt,xqqqq

¤ C}∇ûε}Lpp0,T ;LqpΩ;LrpY �qqq.
(2.73)

Proof. Lemma 2.47 can be proven by similar computations as in Lemma 2.16.
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Lemma 2.48. Let û0pt, x, yq � u0pt, x, ψ0pt, x, yqq for a.e. pt, x, yq P p0, T q � Ω � Y �.
Then, u0 P L

8pQT q if and only if û0 P L
8pp0, T q � Ω� Y �q, and one has

}û0}L8pp0,T q�Ω�Y �q � }u0}L8pQT q. (2.74)

Proof. The measurability can be transferred between u0 and û0 as in Lemma (2.45). Since
J0 is essentially bounded from below and above it holds for every A � p0, T q � Ω � Y �

that |ψεpAq| ¡ 0 if and only if |A| ¡ 0, which shows (2.74).

Now, we state the transformation of weak and strong two-scale convergence for functions
as well as for their gradients. These are parameterised versions of the stationary case and
can be shown by the same argumentations. Therefore, we only state the results for the
sake of completeness without repeating the proofs from the time-independent case.

Theorem 2.49. Let p, q P p1,8q. Let uε be a sequence in Lpp0, T ;LqpΩεqq and
ûεpt, xq � uεpt, ψεpt, xqq for a.e. pt, xq P p0, T q � Ωε. Then,

uε
p, q

ÝÝÝÝáÝÝÝÝÝáu0 if and only if ûε
p, q

ÝÝÝÝáÝÝÝÝÝáû0

for u0 P L
pp0, T ;LqpΩ;LqpY �qqq and û0 P L

pp0, T ;LqpΩ;LqpY �pt, xqqqq, and one has

û0pt, x, yq � u0pt, x, ψ0pt, x, yqq for a.e. pt, x, yq P p0, T q � Ω� Y �,

u0pt, x, yq � û0pt, x, ψ
�1
0 pt, x, yqq for a.e. pt, x, yq P QT .

Theorem 2.50. Let p, q P p1,8q. Let uε be a sequence in Lpp0, T ;LqpΩεqq and
ûεpt, xq � uεpt, ψεpt, xqq for a.e. pt, xq P p0, T q � Ωε. Then,

uε
p, q

ÝÝÝÝÑÝÝÝÝÝÑu0 if and only if ûε
p, q

ÝÝÝÝÑÝÝÝÝÝÑû0

for u0 P L
pp0, T ;LqpΩ;LqpY �qqq and û0 P L

pp0, T ;LqpΩ;LqpY �pt, xqqqq, and one has

û0pt, x, yq � u0pt, x, ψ0pt, x, yqq for a.e. pt, x, yq P p0, T q � Ω� Y �,

u0pt, x, yq � û0pt, x, ψ
�1
0 pt, x, yqq for a.e. pt, x, yq P QT .

Corollary 2.51. Let QT
ε be locally evolving periodic domains with two-scale limit set QT

in the sense of Definition 2.36. Then,

χQT
ε

  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑχQT pi.e. χQT

ε
pt, xq

  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑχQT pt, x, yq � χY �pt,xqpyq q.

Theorem 2.52. Let p, q P p1,8q. Let uε be a sequence in Lpp0, T ;LqpΩεqq and ûεpt, xq �
uεpt, ψεpt, xqq for a.e. pt, xq P p0, T q � Ωε. Then,

∇uε
p, q

ÝÝÝÝáÝÝÝÝÝáχQT∇xu0 �∇yu1 if and only if ∇ûε
p, q
ÝÝáÝÝÝáχY �∇xû0 �∇yû1

for u0 P L
pp0, T ;W 1,qpΩqq, û0 P L

pp0, T ;W 1,qpΩqq, u1 P L
pp0, T ;LqpΩ;W 1,q

# pY �pt, xqqqq
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and û1 P L
pp0, T ;LqpΩ;W 1,q

# pY �qqq. Moreover,

û0pt, xq � u0pt, xq for a.e. pt, xq P p0, T q � Ω,

û1pt, x, yq � u1pt, x, ψ0pt, x, yqq �|ψ0pt, x, yq �∇xu0pt, xq

for a.e. pt, x, yq P p0, T q � Ω� Y �,

u1pt, x, yq � û1pt, x, ψ
�1
0 pt, x, yqq � }ψ�1

0 pt, x, yq �∇xû0pt, xq

for a.e. pt, x, yq P QT .

Theorem 2.53. Let p, q P p1,8q. Let uε be a sequence in Lpp0, T ;LqpΩεptqqq and
ûεpt, xq � uεpt, ψεpt, xqq for a.e. pt, xq P p0, T q � Ωε. Then,

ε∇uε
p, q

ÝÝÝÝáÝÝÝÝÝá∇yu0 if and only if ε∇ûε
p, q
ÝÝáÝÝÝá∇yû0

for u0 P L
pp0, T ;LqpΩ;W 1,q

# pY �pt, xqqqq and û0 P L
pp0, T ;LqpΩ;W 1,q

# pY �qqq, and it holds

û0pt, x, yq � u0pt, x, ψ0pt, x, yqq for a.e. pt, x, yq P p0, T q � Ω� Y �,

u0pt, x, yq � û0pt, x, ψ
�1
0 pt, x, yqq for a.e. pt, x, yq P QT .
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Chapter 3.

Stokes flow in porous media with evolving
microstructure

In this chapter, we consider the homogenisation of Stokes flow in a porous medium for
given evolving microstructure. First, we consider the case of the quasi-stationary Stokes
equations (3.1) and afterwards the case of the instationary Stokes equations (3.87). At the
pore interfaces Γεptq, we assume inhomogeneous Dirichlet boundary values vΓε for the fluid
velocity. In particular, this models a no-slip boundary condition for the moving interface
if we choose vΓε equal to the velocity of the interface. Moreover, we will not restrict to
the case that the volume of the total pore space remains constant. Therefore, the fluid’s
incompressibility condition requires enabling fluid in- and out-flow. We model this by a
normal stress boundary condition at the outer boundary of the porous medium.

In order to pass to the homogenisation limit, we transform the Stokes equations to a
periodic substitute domain. There, we pass to the homogenisation limit. Afterwards,
we transform the limit equations back. In the case of quasi-stationary Stokes flow, this
leads to a Darcy law for evolving microstructure and in the case of the instationary Stokes
equation, we derive a Darcy law with memory for evolving microstructure. Compared with
the classical Darcy law, which can be derived by homogenisation of the Stokes flow for
fixed microstructure, these resulting Darcy laws take the local cell geometry into account
and, thus, yield a time- and space-dependent permeability. Moreover, the moving domain
causes an inhomogeneous divergence condition for the resulting effective fluid velocity, via
the inhomogeneous Dirichlet boundary conditions. This becomes a source or sink term for
the pressure via the Darcy law.

This chapter is organised as follows: In Section 3.1, we consider the homogenisation of
the quasi-stationary Stokes equations in an evolving porous domain. First, we present a
strong and weak formulation of the problem in Section 3.1.1. Due to the quasi-stationarity,
it can be formulated pointwisely with respect to time and, thus, becomes a homogenisation
task in a locally periodic domain. Moreover, we formulate the assumptions on the domain
and the data there. Afterwards, we transform the equations onto a periodic substitute
domain in Section 3.1.2. In Section 3.1.3, we show the existence and uniqueness of the
solution of the ε-scaled Stokes problem. By a subtle ε-scaling of the involved spaces,
the existence result provides directly uniform a-priori estimates, which are sufficient for
the compactness result. However, the transformation of the symmetric gradient in the
Stokes equations causes some transformation coefficient in the symmetric gradient, which
requires the derivation of an ε-scaled Korn-type inequality for two-scale transformations.
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In Section 3.1.4, we pass to the limit εÑ 0 by means of two-scale compactness arguments
which are based on the previously shown a-priori estimates. This results in a two-pressure
Stokes equations in the cylindrical two-scale substitute set. We separate the micro- and
macroscopic variable in the two-pressure Stokes equation in Section 3.1.5. Due to the
transformation quantities, we obtain two different cell problems. After identifying these
cell problems up to a perturbation of the microscopic pressure, we obtain a Darcy law
formulated with respect to the transformed coordinates. In Section 3.1.6, we transform
the two-pressure Stokes equations back onto the non-cylindrical two-scale limit set. For
this, we extend the transformation results for the two-scale gradients of Chapter 2 to the
divergence operator and employ the identification of the two different cell problems in the
transformed setting. Afterwards, we separate the micro- and macroscopic variable and,
finally, obtain a Darcy law for evolving microstructure.

In Section 3.2, we consider the homogenisation for the instationary Stokes flow. The
basic procedure follows the stationary case. We formulate the microscopic equations in
Section 3.2.1. Then, we transform them onto the periodically perforated substitute do-
main in Section 3.2.2. In Section 3.2.3, we show the existence of a solution for the mi-
croscopic problem and derive uniform a-priori estimates. By a previous substitution, we
obtain a time-independent divergence constraint, which allows us to to apply an exis-
tence result on generic time-dependent differential-algebraic equations, which we derive
in Appendix A. This substitution requires an extension of the Korn-type inequality for
the two-scale transformation method, where the gradient is multiplied on both sides by
transformation dependent matrices. Given these a-priori estimates, we identify the limit
problem in Section 3.2.4. Compared to the quasi-stationary case, we have to modify the
compactness argumentation for the pressure, which leads to only weak convergence. Af-
terwards, we transform the resulting limit equations back in Section 3.2.5 and, finally,
derive a Darcy law with memory for evolving microstructure.

3.1. Homogenisation of quasi-stationary Stokes flow

This section is heavily based on the publication [WP24, D. Wiedemann and M. A. Peter,
Homogenisation of the Stokes equations for evolving microstructure, Journal of Differen-
tial Equations, 396 (2024), 172–209]. Some preliminary work on the homogenisation of
the quasi-stationary Stokes equation is presented in [Wie19, D. Wiedemann, Homogeniza-
tion of Stokes flow with evolving microstructure, Master’s thesis, Technical University of
Munich (2019)]. In the following points, the approach and results of [Wie19] differ substan-
tially from those of [WP24] and the ones presented here: In [Wie19], the Stokes equations
are considered without symmetrising part for the gradient. Therefore, it does not require
the Korn-type inequality for two-sale transformations, which is derived in [WP24]. In
[Wie19], the family of operators div�1

ε , which is used for the a priori estimates are derived
directly, while we argue here as in [WP24] and deduce the operators from the restriction
operators of [Tar80, All89]. The explicit construction of [Wie19] provides additional un-
derstanding due to its physical motivation but is very technical. In [Wie19], only the weak
two-scale convergence for the pressure is derived compared to the strong convergence here.
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Moreover, we pass to the homogenisation limit ε Ñ 0 in a different way than in [Wie19].
In particular, we do not require any more that ψε can be expressed as an ε-scaled version
of ψ0 but rely only on the asymptotic behaviour of ψε similarly to Chapter 2. Moreover,
[Wie19] concludes with the two-pressure Stokes equations in the substitute coordinates,
while [WP24] presents also a back-transformation to transformation-independent two-scale
limit equations on the actual two-scale limit domain as well as a Darcy law without trans-
formation quantities.

3.1.1. The microscopic equations

Let Ω � Rn be an an open bounded set, representing the domain of the porous medium,
and let p0, T q for T ¡ 0 be the time interval. Let pεnqnPN be a monotone positive se-
quence, which converges to 0 and scales the microstructure. We write ε � εn in the
following. We assume that Ω consists of whole ε-scaled copies of the unit cell Y � p0, 1qn,
i.e. Ω � int

� �
kPIε

εk � εY
�
for some sets Iε � Zn. We assume that for every ε and every

t P r0, T s, there exists an open set Ωεptq � Ω, which represents the pore space. The comple-
mentary solid space is given by Ωs

εptq � intpΩzΩεptqq. We denote the interface of the pore
and the solid phase at time t P r0, T s by Γεptq :� BΩεptqXBΩ

s
εptq and the remaining bound-

ary of the pore space at the boundary of the porous medium by Ξεptq :� BΩεptqzΓεptq.
Having the domains defined for every t P r0, T s, we can define the evolving domain and
its boundary by

QT
ε :�

¤
tPr0,T s

ttu � Ωεptq, GTε :�
¤

tPr0,T s

ttu � Γεptq, HT
ε :�

¤
tPr0,T s

ttu � Ξεptq.

In this domain, we consider the quasi-stationary Stokes equation for the unknown fluid
velocity vε and pressure pε:

Quasi-stationary Stokes equations in an evolving perforated domain

�div
�
µε2

�
∇vε � p∇vεqJ

��
�∇pε � fε in QT

ε ,

divpvεq � 0 in QT
ε ,

vε � vΓε on GTε ,�
�ε2µ

�
∇vε � p∇vεqJ

�
� pε1

�
n � pb,εn on HT

ε ,

(3.1)

where µ ¡ 0 is the fluid’s viscosity, fε the source term, vΓε the fluid velocity at the
interface, pb,ε the normal stress and n the outer normal of Ωεptq.

The scaling of the viscosity by the factor ε2 causes the velocity to have a non-trivial
limit. From a physical point of view, it balances the friction of the fluid at the interface,
which arises from the no-slip boundary condition (see also [Hor97, Chapter 3]).

Since the unknowns of (3.1) do not contain any time derivative, the time becomes
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a parameter and we can consider the equations as stationary problem for every point
t P r0, T s separately. Therefore, we fix a point t P r0, T s in the following and omit indicating
this parameter t at the unknown function and data as well as at the transformations ψε
later. We only state the parameter t at the domains Ωεptq and its boundaries Γεptq and
Ξεptq in order to distinguish them from the periodically perforated substitute domain,
which we denote by Ωε, Γε and Ξε, respectively.

In order to derive the weak formulation, we assume that the Dirichlet boundary values
vΓε and the normal stress pb,ε can be extended to Ωεptq. Then, we subtract these extensions
from the fluid velocity vε and the pressure pε, i.e.

wε � vε � vΓε , qε � pε � pb,ε.

which gives

�divpµε22epwεqq �∇qε � fε � divpµε22epvΓεqq �∇pb,ε in Ωεptq,

divpwεq � �divpvΓεq in Ωεptq,

wε � 0 on Γεptq,�
�ε2µ2epwεq � qε1

�
n � ε2µ2epvΓεqn on Ξεptq,

(3.2)

where epwεq denotes the symmetric gradient, i.e.

epvq :� p∇v � p∇vqJq{2.

We multiply the first equation of (3.2) by a test function φ P H1
Γεptq

pΩεptqq
n, where

H1
Γεptq

pΩεptqq :� tv P H1pΩεptqq | vΓεptq � 0u. Then, we integrate over Ωεptq and sub-
sequently integrate the left-hand side by parts. By employing the two boundary condi-
tions, we obtain the first equation of (3.3). Moreover, we multiply the second equation by
η P L2pΩεptqq and integrate over Ωεptq. In total, we obtain the following weak form:
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3.1. Homogenisation of quasi-stationary Stokes flow

Weak form of the quasi-stationary Stokes equations in an evolving per-
forated domain

Find pwε, qεq P H
1
Γεptq

pΩεptqq
n � L2pΩεptqq such that»

Ωεptq

ε2µ2epwεpxqq : ∇φpxqdx�
»

Ωεptq

qεpxqdivpφpxqq dx

�

»
Ωεptq

pfεpxq �∇pb,εpxqq � φpxq dx�
»

Ωεptq

ε2µ2epvΓεqpxq : ∇φpxq dx

»
Ωεptq

divpwεpxqqηpxq dx � �

»
Ωεptq

divpvΓεpxqqηpxqdx

(3.3)

for every pφ, ηq P H1
Γεptq

pΩεptqq
n � L2pΩεptqq.

We make the following assumptions on the data and the domain.

Assumption 3.1. We assume that

� Ωεptq is a sequence of locally periodic domains in the sense of Definition 2.1, with
two-scale limit domain

Qptq � tpx, yq P Ω� Y | y P Y �pt, xqu

and interfaces Γpt, xq :� BY �pt, xqzBΩ for pt, xq P r0, T s �Ω. We denote the periodic
substitute domain by Ωε, the pore space of the reference cell by Y � � Y � p0, 1qn and
the solid space by Y s � intpY zY �q. For the periodic substitute domain, we assume
that

– 0   |Y �|   1,

– Y �
# :� int

� �
kPZn

εk � εY �
�
and intpRnzY �

#q are open sets with C1-boundary, which

are locally located on one side of their boundary. Moreover, Y �
# is connected,

– Y � is an open connected set with a locally Lipschitz boundary.

For a detailed discussion of the assumptions on the periodic substitute domain, see
[All89].

Furthermore, we assume that there exists a constant c ¡ 0 such that

|pεk � εY q X Ωεptq| ¥ εnc

for every k P Iε and ε ¡ 0.

� fε is a sequence in L2pΩεptqq
n and f P L2pΩqn such that

fε
2

ÝÝáÝÝÝáχQptqf.
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� vΓε is a sequence in H1pΩεptqq
n and vΓ P L

2pΩ;H1pY �pt, xqqnq such that

ε�1vΓε

2
ÝÝáÝÝÝávΓ, ∇vΓε

2
ÝÝáÝÝÝá∇yvΓ.

� pb,ε is a sequence in H1pΩεptqq and ppb,0, pb,1q P H
1pΩq � L2pΩ;H1pY �pt, xqqq, such

that

∇pb,ε
2

ÝÝáÝÝÝáχQptq∇xpb,0 �∇ypb,1.

3.1.2. Transformation to a periodic substitute domain

We transform the Stokes equations (3.1) as well as the weak formulation (3.3) onto the
reference domain Ωε. We denote the transformed data by

f̂ε � fε � ψε, v̂Γε � vΓε � ψε, p̂b,ε � p̂ε � ψε, (3.4)

where ψε : Ωε Ñ Ωεptq are the locally periodic transformations in the sense of Defini-
tion 2.2. We define the boundaries Γε and Ξε by Γε � ψ�1

ε pΓεptqq and Ξε � ψ�1
ε pΞεptqq,

respectively, and recap the notation Ψε :� Bxψε, Jε :� detpΨεq and Aε :� AdjpΨεq. Then,
we obtain for

v̂ε � vε � ψε, p̂ε � pε � ψε,

the transformed strong formulation:

Quasi-stationary Stokes equations in an evolving perforated domain in
the reference coordinates

�J�1
ε div

�
µε2Aε2eεpv̂εq

�
�Ψ�J

ε ∇p̂ε � f̂ε in Ωε,

J�1
ε divpAεv̂εq � 0 in Ωε,

v̂ε � v̂Γε on Γε,�
�ε2µ2eεpv̂εq � p̂ε1

�
}Ψ�J

ε n̂}�1Ψ�J
ε n̂ � p̂b,ε}Ψ

�J
ε n̂}�1Ψ�J

ε n̂ on Ξε,

(3.5)

where eε denotes the transformed symmetric gradient, i.e.

eεpφq :�
�
Ψ�J
ε ∇φ� pΨ�J

ε ∇φqJ
�
{2

and n̂ denotes the outer normal of Ωε.

Moreover, we obtain the transformed weak formulation for

ŵε � wε � ψε, q̂ε � qε � ψε,

where we use the function space H1
Γε
pΩεq

n :� tv P H1pΩεq
n | v|Γε � 0u as solution space.
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3.1. Homogenisation of quasi-stationary Stokes flow

Weak form of the quasi-stationary Stokes equations in an evolving per-
forated domain in the reference coordinates

Find pŵε, q̂εq P H
1
Γε
pΩεq

n � L2pΩεq such that»
Ωε

ε2µAεpxq2eεpŵεqpxq : ∇φpxqdx�
»
Ωε

q̂εpxqdivpAεpxqφpxqq dx

�

»
Ωε

pJεpxqf̂εpxq �AJ
ε pxq∇p̂b,εpxqq � φpxqdx�

»
Ωε

ε2µAεpxq2eεpv̂Γεqpxq : ∇φpxqdx»
Ωε

divpAεpxqŵεpxqqηpxqdx � �

»
Ωε

divpAεpxqv̂Γεpxqqηpxq dx

(3.6)

for every pφ, ηq P H1
Γε
pΩεq

n � L2pΩεq.

Remark 3.2. The Piola identity says that

divpAdjpBxφqq � 0 (3.7)

for every φ P C2pU ;Rqn on an open set U � Rn. In Lipschitz domains, (3.7) can be shown
for φ P W 1,8pU ;Rqn by a density argument. Together with the Leibniz rule, it allows the
simplification of the divergence terms, i.e. divpAεv̂εq � divpAεq � v̂ε�Aε : ∇v̂ε � Aε : ∇v̂ε.

For the transformed data, we can transfer the a-priori estimates and convergence as-
sumption onto the reference domain by means of the results of Chapter 2.

Lemma 3.3. Let fε, pb,ε and vΓε be given by Assumption 3.1 and let f̂ε, p̂b,ε, v̂Γε be given
by (3.4). Then, it holds

f̂ε
2

ÝÝáÝÝÝáχY � f̂ , ε�1v̂Γε

2
ÝÝáÝÝÝávΓ, ∇v̂Γε

2
ÝÝáÝÝÝá∇yv̂Γ, ∇p̂b,ε

2
ÝÝáÝÝÝáχY �∇xp̂b,0 �∇yp̂b,1

for

f̂pxq � fpxq, v̂Γpx, yq � vΓpx, ψ0px, yqq,

p̂b,0pxq � pb,0pxq, p̂b,1px, yq � pb,1px, ψ0px, yqq �∇xp̂b,0pxq �|ψ0px, yq.

In particular, there exists a constant C such that

}f̂ε}L2pΩεq � }p̂b,ε}L2pΩεq � }∇p̂b,ε}L2pΩεq � ε�1}v̂Γε}L2pΩεq � }∇v̂Γε}L2pΩεq ¤ C.

Proof. The two-scale convergence can be transferred from fε, ε
�1vΓε , ∇vΓε and ∇pb,ε to

the transformed quantities by means of Theorem 2.20, Theorem 2.24 and Theorem 2.23,
respectively. Afterwards, the two-scale convergence implies the uniform boundedness.
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Chapter 3. Stokes flow in porous media with evolving microstructure

3.1.3. Existence, uniqueness and a-priori estimates

In this section, we show the following existence and uniqueness result for the solution of
the Stokes equations (3.6). It provides also the a-priori estimates which we will use for
the two-scale compactness arguments later.

Theorem 3.4. For every ε ¡ 0, there exists a unique solution pŵε, q̂εq P H
1
Γε
pΩεq

n�L2pΩεq
of (3.6). Moreover, there exists a constant C such that

}ŵε}L2pΩεq � ε}∇ŵε}L2pΩεq � }q̂ε}L2pΩεq ¤ C (3.8)

for every ε ¡ 0.

We prove Theorem 3.4 by means of the following generic existence and uniqueness result
for saddle point problems. By using a subtle scaling of the involved norms, it provides
also the uniform a-priori estimates (3.8). For Banach spaces V,W and a P LpV,W 1q, we
write apv, wq � apvqpwq for v P V and w PW .

Proposition 3.5. Let V,Q be Hilbert spaces, a P LpV, V 1q, b P LpV,Q1q, f P V 1, g P Q1,
with constants α, β ¡ 0 such that

apv, vq ¥ α}v}V for all v P V,

inf
qPQzt0u

sup
vPV zt0u

bpq, vq

}q}Q}v}V
¥ β.

Then, there exists a unique solution pv, pq P V �Q such that

apv, wq � bpw, pq � fpwq,

bpv, qq � gpqq

for every pw, qq P V �Q. This solution pv, pq P V �Q is bounded by

}v}V ¤
1

α
}f}V 1 �

2}a}LpV,V 1q

αβ
}g}Q1 ,

}p}Q ¤
2}a}LpV,V 1q

αβ
}f}V 1 �

2}a}LpV,V 1q

αβ2
}g}Q1 .

(3.9)

If, moreover, ap�, �q is symmetric, the estimates are improved to

}v}V ¤
1

α
}f}V 1 �

2}a}
1{2
LpV,V 1q

α1{2β
}g}Q1 ,

}p}Q ¤
2}a}

1{2
LpV,V 1q

α1{2β
}f}V 1 �

}a}LpV,V 1q

β2
}g}Q1 .

(3.10)

Proof. Proposition 3.5 is shown, for example, in [BBF13, Theorem 4.2.3].
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3.1. Homogenisation of quasi-stationary Stokes flow

As (3.10) already suggests, it is crucial for the ε-independent a-priori estimate that we
obtain an ε-independent coercivity constant for a and an ε-independent inf–sup constant
for b. For the uniform estimate of the coercivity constant of a, we derive a Korn-type
inequality for eεpφq � Ψ�J

ε ∇φ � pΨ�J
ε ∇φqJ . In order to derive a uniform estimate

for the inf–sup constant of b, we employ a family of continuous linear operators div�1
ε :

L2pΩεq Ñ H1
Γε
pΩεq, which are right-inverse to the divergence.

Right-inverse divergence operator

By means of the following restriction operator, we can trace the construction of the
operator div�1

ε : L2pΩεq Ñ H1pΩεq
n back to the construction of div�1 : L2pΩq Ñ H1pΩqn,

which is defined ε-independently. This restriction operator was originally presented in
[Tar80] and extended to the case of connected solid domains in [All89, Theorem 2.3].

Lemma 3.6. There exists a family of linear and continuous operators

Rε : H
1pΩqn Ñ H1

Γε
pΩεq

n

such that

� u P H1
Γε
pΩεq implies Rεpuq � u in Ωε,

� divpRεpuqq � divpuq �
°
kPIε

1
|εY �|χεk�εY �

³
εk�εY s

divpuq dx,

� there exists a constant C such that

}Rεu}L2pΩεq � ε}∇Rεu}L2pΩεq ¤ C
�
}u}L2pΩq � ε}∇u}L2pΩq

�
for every u P H1pΩq.

Proof. In [All89], this restriction operator was explicitly constructed as an operator from
H1

0 pΩq
n to H1

0 pΩεq
n. Indeed, the construction is done locally and, thus, the same con-

struction provides also an operator Rε : H
1pΩq Ñ H1

Γε
pΩεq

n, which does not incorporate
the zero values at BΩ.

Lemma 3.7. Let U � Rn be a bounded domain. Then, there exists a linear and continuous
operator div�1 : L2pUq Ñ H1pUqn such that div �div�1 � idL2pUq.

Proof. See for instance [Gal11, Exercise III.3.1].

By combining the previous two results, we obtain the following right-inverse ε-scaled
divergence operator.

Lemma 3.8. There exists a family of linear continuous operators

div�1
ε : L2pΩεq Ñ H1

Γε
pΩεq

n,
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such that

divpdiv�1
ε pfqq � f,

}div�1
ε pfq}L2pΩεq � ε}∇ div�1

ε pfq}L2pΩεq ¤ C}f}L2pΩεq

for every f P L2pΩεq and a constant C which is independent of ε.

Proof. Lemma 3.7 provides a linear continuous operator div�1 : L2pΩq Ñ H1pΩqn such
that div �div�1 � idL2pΩq . With this operator and the restriction operator Rε of Lemma
3.6, we define for f P L2pΩεq

div�1
ε pfq :� Rεpdiv

�1pf̃qq,

where f̃ denotes the extension of f by 0 to ΩzΩε.
Then, the explicit formula for div �Rε from Lemma 3.6 leads to

divpdiv�1
ε pfqq � divpRεpdiv

�1pf̃qqq �

� divpdiv�1pf̃qq �
1

|εY �|

¸
kPIε

χεk�εY �

»
εk�εY s

divpdiv�1pf̃pxqqq dx

� f̃ �
1

|εY �|

¸
kPIε

χεk�εY �

»
εk�εY s

f̃pxqdx � f.

Moreover, with the continuity estimates for the restriction operator and for div�1, we
obtain for ε ¡ 0

}div�1
ε pfq}L2pΩεq � ε}∇ div�1

ε pfq}L2pΩεq

¤ C
�
}div�1pf̃q}L2pΩq � ε}∇ div�1pf̃q}L2pΩq

	
¤ Cp1� εq} div�1pf̃q}H1pΩq ¤ Cp1� εq}f̃}L2pΩq ¤ C}f}L2pΩεq.

Korn-type inequality for two-scale transformation

The aim of this section is the derivation of the following Korn-type inequality.

Proposition 3.9. There exists a constant α such that

}Ψ�J
ε ∇v � pΨ�J

ε ∇vqJ}2L2pΩεq
¥ α}∇v}2L2pΩεq

(3.11)

for all v P H1
Γε
pΩεq

n and every ε ¡ 0.

The proof of Proposition 3.9 is a consequence of the following lemmas which break down
all the arising difficulties. The first difficulty arises already from the multiplication of the
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3.1. Homogenisation of quasi-stationary Stokes flow

gradient by a fixed space-dependent matrix. For n � 3, this was solved in [Nef02] first.
In [Pom03], the regularity assumptions on the matrix were reduced, which leads to the
following result.

Lemma 3.10. Let 1   p   8 and U be an open and bounded domain in Rn for n ¥ 2
with Lipschitz boundary BU . Let S be an open subset of BΩ with |S| ¡ 0. Let A P CpUqn�n

with detpApxqq ¥ c ¡ 0. Then, there exists a constant α ¡ 0 such that»
U

|Apxq∇upxq � pApxq∇upxqqJ|p dx ¥ α

»
U

|∇upxq|p dx (3.12)

for every u PW 1,p
S pUqn :� tv PW 1,ppUqn | v|S � 0u.

Proof. See [Pom03, Corollary 4.1].

For the special case that A arises as gradient of an C1-diffeomorphism, (3.12) can be
shown by transforming the integral with this diffeomorphism and applying the standard
Korn inequality afterwards.
The constant α in (3.12), depends on the matrix A. However, in (3.11), we have to

deal with a family of matrices instead of one fixed matrix. By the following continuity
argument of [WP24], we can uniformly choose α for a compact set of matrices. A similar
result was provided independently in [MR20].

Lemma 3.11. Let 1   p   8 and U be an open, bounded domain in Rn for n ¥ 2 with
Lipschitz boundary BU . Let S be an open subset of BU with |S| ¡ 0. Let A � CpUqn�n

with detpApxqq ¥ c ¡ 0 for every A P A. Then, there exists a constant α ¡ 0 such that

}A∇u� pA∇uqJ}pLppUq ¥ α}∇upxq}pLppuq

for every u PW 1,p
S pUqn and every A P A.

Proof. We define the family of mappings tλv : AÑ R | v PW 1,p
S pUqnzt0uu, by

λvpAq :�
}A∇v � pA∇vqJ}LppUq

}∇v}LppUq
.

Using the triangle inequality and the Hölder inequality, we obtain for A,B P A��}A∇v � pA∇vqJ}LppUq � }B∇v � pB∇vqJ}LppUq

��
¤ }A∇v �B∇v � pA∇v �B∇vqJ}LppUq ¤ 2}A∇v �B∇v}LppUq

¤ 2}A�B}CpUq}∇v}LppUq.

Thus,

|λvpAq � λvpBq| ¤ 2}A�B}CpUq
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for every A,B P A and v PW 1,p
V pUqn, which shows that the family tλv | v PW

1,p
S pUqnzt0uu

is equicontinuous. Due to the equicontinuity, the pointwise infimum of this family is
continuous as well, i.e. λ : AÑ R defined by

λpAq :� inf
vPW 1,p

S pUqnzt0u
λvpAq � inf

vPW 1,p
S pUqnzt0u

}A∇v � pA∇vqJ}LppUq

}∇v}LppUq
,

is continuous. Therefore, λ attains its minimum over the compact set A at a point A0 P A.
Due to Lemma 3.10, λpAq ¡ 0 for all A P A and, in particular, λpA0q ¡ 0. Hence, there
exists a constant α � λpA0q ¡ 0 such that

inf
vPW 1,p

S pUqnzt0u

}A∇v � pA∇vqJ}LppUq

}∇v}LppUq
� λpAq ¥ λpA0q � α ¡ 0

for all A P A, which proves Lemma 3.11.

In order to show (3.11), we not only have to deal with a family of coefficients Ψ�J
ε but

also a family of domains Ωε. Since every cell εk � εY � contains a subset of the boundary
Γε, on which v P H1

Γε
pΩεq

n is zero, we can upscale these cells and apply Lemma 3.11 for
every cell. In order to formulate the compactness of the matrices across the upscaling
process, we quantify the compactness using Hölder continuity.

Lemma 3.12. Let 1   p   8. Then, for every c, C ¡ 0 and λ P p0, 1s, there exists an
ε-independent constant α ¡ 0 such that

α}∇v}pLppΩεq
¤ }Aε∇v � pAε∇vqJ}pLppΩεq

for all v P H1
Γε
pΩεq

n and every Aε P C
0,λpΩεq

n�n with

}Aε}CpΩεq
¤ C,

ελ|Aεpx1q �Aεpx2q| ¤ C|x1 � x2|
λ for all x1, x2 P Ωε,

detpAεpxqq ¥ c for all x P Ωε.

Proof. Since

}Aε∇v � pAε∇vqJ}pLppΩεq
�

¸
kPIε

}Aε∇v � pAε∇vqJ}pLppεk�εY �q,

}∇v}pLppΩεq
�

¸
kPIε

}∇v}pLppεk�εY �q,

it suffices to show the estimate for every cell εk� εY � separately. Thus, after scaling and
shifting εk � εY � to Y �, it suffices to show

α}∇v}pLppY �q ¤ }Aε,k∇v � pAε,k∇vqJ}pLppY �q (3.13)
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for all v PW 1,p
Γ pY �qn and k P Iε, where Aε,kpxq � Aεpεk � εxq. This scaling yields

|Aε,kpx1q �Aε,kpx2q| � |Aεpεk � εx1q �Aεpεk � εx2q| ¤ ε�λC|pεk � εx1q � pεk � εx2q|
λ

� C|x1 � x2|
λ

for all x1, x2 P Y � and detpAε,kpxqq � detpAεpεk � εxqq ¥ c. Thus, one has Aε,k P A for
every ε ¡ 0 and k P Iε, where

A :�

"
A P C0,λpY �qn�n

���� }A}CpY �q ¤ C,detpAq ¥ c,

|Apx1q �Apx2q| ¤ C|x1 � x2|
λ for all x1, x2 P Y �

*
.

The uniform Hölder continuity implies the equicontinuity of A, and since the functions
in A are also pointwise bounded the theorem of Arzelà–Ascoli shows that A is relatively
compact in C0,λpY �qn�n. Finally, Lemma 3.11 applied on the closure of A provides α ¡ 0
for (3.13) and, hence, proves Lemma 3.12. Note that the determinant is a continuous
function and, therefore, it holds detpAq ¥ c also for every A in the closure of A.

Having done this preliminary work, it suffices to show that Ψ�J
ε fulfills the assumptions

of Lemma 3.12, in order to prove Proposition 3.9.

Proof of Proposition 3.9. From Lemma 2.8, we obtain constants c, C ¡ 0 such that

}Ψ�J
ε }CpΩεq

¤ C,

detpΨ�J
ε pxqq � J�1

ε pxq ¥ c for all x P Ωε,

ε|Ψ�J
ε px1q �Ψ�J

ε px2q| ¤ εC}BxΨ
�J
ε }CpΩεq

|x1 � x2| ¤ C|x1 � x2| for all x1, x2 P Ωε.

Then, we can apply Lemma 3.12, which provides the constant α.

Before we can finally show the existence and uniqueness of the solution for the Stokes
equations, we recap the following ε-scaled Poincaré inequality.

Lemma 3.13. There exists a constant C ¡ 0 such that

}v}L2pΩεq ¤ εC}∇v}L2pΩεq (3.14)

for all v P H1
Γε
pΩεq.

Proof. Lemma 3.13 can be proven by decomposing Ωε in ε-scaled reference cells εY � and
applying the Poincaré inequality there, see for instance [Hor97, Chapter 3, Lemma 1.6].

Having done all the preliminary work, we can finally show the existence and uniqueness
of the solution for the ε-scaled transformed Stokes equations.

Proof of Theorem 3.4. Let Vε � H1
Γε
pΩεq and Qε � L2pΩεq, with the scalar products and

norms defined by

}v}2Vε :� pv, vqVε :� ε2p∇v,∇vqL2pΩεq, }q}2Vε :� pq, qqQε
:� pq, qqL2pΩεq
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for v P Vε and q P Qε. Due to the Poincaré inequality (3.14), } � }Vε actually defines a norm
on Vε and p�, �qVε is a scalar product. We define aε in LpVε, V 1

ε q and bε in LpQε, V 1
ε q by

aεpv, wq � µε2
�
Aε2eεpvq,∇w

�
L2pΩεq

for v, w P Vε, (3.15)

bεpq, vq � pq,divpAεvqqL2pΩεq for q P Qε, v P Vε. (3.16)

We define the right-hand sides hε P V
1
ε and gε P Q

1
ε by

hεpwq �

»
Ωε

pJεpxqf̂εpxq �AJ
ε pxq∇p̂b,εpxqq � wpxq dx� aεpv̂Γε , wq for w P Vε,

gεpqq � �bεpq, v̂Γεq for q P Qε.

Thus, we have embedded the weak formulation of the Stokes equations (3.6) into the
generic framework of Proposition 3.5.

Now, we show the uniform coercivity of aε and the uniform inf–sup estimate for bε as
well as the continuity estimates for aε, bε, hε, gε.

� Coercivity of aε: Let v P Vε. First, we rewrite aεpv, vq, by shifting the factor Ψ�1
ε

from Aε � JεΨ
�1
ε to the second argument of the scalar product of aε. Then, we use

the fact that for matrices A,B P Rn�n, one has

pA�AJ, Bq � pA�AJq : B � trppA�AJqJBq � trppA�AJqBJq

� 1
2 trppA�AJqJpB �BJqq � 1

2pA�AJ, B �BJq,

which gives

aεpv, vq � µε2pJε
�
Ψ�J
ε ∇v � pΨ�J

ε ∇vqJ
�
,Ψ�J

ε ∇vqL2pΩεq

� 1
2µε

2
�
Jε
�
Ψ�J
ε ∇v � pΨ�J

ε ∇vqJ
�
,
�
Ψ�J
ε ∇v �Ψ�J

ε ∇vqJ
�
L2pΩεq

� 1
2µε

2}
a
Jε
�
Ψ�J
ε ∇v � pΨ�J

ε ∇vqJ
�
}2L2pΩεq

.

With the boundedness of Jε ¥ cJ from below and the Korn-type inequality given in
Proposition 3.9, we can estimate further and obtain α ¡ 0 such that

aεpv, vq ¥
1
2µε

2cJ}
�
Ψ�J
ε ∇v � pΨ�J

ε ∇vqJ
�
}2L2pΩεq

¥ ε2α}∇v}2L2pΩεq
� α}v}2Vε

(3.17)

for every v P Vε.

� Continuity of aε: With the Cauchy–Schwarz inequality, the triangle inequality and
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3.1. Homogenisation of quasi-stationary Stokes flow

the uniform essential boundedness of Aε and Ψ�1
ε (see Lemma 2.8), we can estimate

|aεpv, wq| ¤ µε2}AεpΨ
�J
ε ∇v � pΨ�J

ε ∇vqJq}L2pΩεq}∇w}L2pΩεq

¤ ε2C}Ψ�J
ε ∇v � pΨ�J

ε ∇vqJ}L2pΩεq}∇w}L2pΩεq

¤ ε2C}Ψ�J
ε ∇v}L2pΩεq}∇w}L2pΩεq

¤ ε2C}∇v}L2pΩεq}∇w}L2pΩεq ¤ C}v}Vε}w}Vε

(3.18)

for every v, w P Vε.

� Inf–sup estimate of bε: From Lemma 3.8, we obtain, for every q P Qε, a function
v0 P Vε such that

divpv0q � q,

}v0}L2pΩεq � ε}∇v0}L2pΩεq ¤ C}q}L2pΩεq.

Then, together with the estimates for the coefficients from Lemma 2.8 and the
Poincaré inequality (3.14), we obtain a constant β ¡ 0 such that

ε}∇pA�1
ε v0q}L2pΩεq ¤ εC}∇A�1

ε }L8pΩεq}v0}L2pΩεq � εC}A�1
ε }L8pΩεq}∇v0}L2pΩεq

¤ C}v0}L2pΩεq � εC}∇v0}L2pΩεq ¤ β�1}q}L2pΩεq

By choosing v � A�1
ε v0 P Vε, we get

sup
vPVεzt0u

bpq, vq

}q}Qε}v}Vε
� sup

vPVεzt0u

pq,divpAεvqqL2pΩεq

}q}Qε}v}Vε
¥
pq,divpv0qqL2pΩεq

}q}Qε}A
�1
ε v0}Vε

¥
}q}2L2pΩεq

}q}L2pΩεqβ
�1}q}L2pΩεq

¥ β,

(3.19)

which provides an ε-independent inf–sup constant β.

� Continuity estimate of bε: Using the Piola identity (3.7), the Hölder inequality and
the estimates for Aε from Lemma 2.8, we obtain

|bεpv, qq| � pq,divpAεvqqL2pΩεq � pq,divpAεq � v �Aε : ∇vqqL2pΩεq � pq, Aε : ∇vqL2pΩεq

¤ C}q}L2pΩεq}∇v}L2pΩεq ¤ ε�1C}q}Qε}v}Vε
(3.20)

for every q P Qε and every v P Vε.

� Continuity estimate of hε: In order to estimate hε, we use the Hölder inequality and
the continuity estimate of aε. Then, we employ the boundedness of the transforma-
tion coefficients (see Lemma 2.8), the boundedness of the data f̂ε, ∇p̂b,ε and v̂Γε (see
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Lemma 3.3) and the ε-scaled Poincaré inequality (3.14). Accordingly, we obtain

|fεpwq| �

»
Ωε

pJεpxqf̂εpxq �AJ
ε pxq∇p̂b,εpxqq � wpxq dx� aεpv̂Γε , wq

¤p}Jε}L8pΩεq}f̂ε}L2pΩεq � }AJ
ε }L8pΩεq}∇p̂b,ε}L2pΩεqq}w}L2pΩεq � C}v̂Γε}Vε}w}Vε

¤C}w}L2pΩεq � εC}w}Vε ¤ C}w}Vε
(3.21)

for every w P Vε. Note that in the derivation of (3.21) the term aεpv̂Γε , wq is of order
ε. Therefore, it will also vanish during the homogenisation process later.

� Continuity estimate of gε: We use the continuity estimate for bε (3.21) and the
boundedness of v̂Γε (see Lemma 3.3) in order to estimate gε. The estimate of bε
(3.21) provides a factor ε�1, which is canceled by the estimate for v̂Γε , i.e.

|gεpqq| � |bεpq, v̂Γεq| ¤ ε�1C}q}Qε}v̂Γε}Vε � C}q}Qε}∇v̂Γε}L2pΩεq ¤ C}q}Qε (3.22)

for every q P Qε.

Now, we employ Proposition 3.5, which gives a unique solution pŵε, q̂εq P Vε � Qε �
H1

Γε
pΩεq

n � L2pΩεq of the weak formulation of the Stokes equations (3.6).

Moreover, from (3.18), (3.21) and (3.22), we obtain

}aε}LpV,V 1q � }fε}V 1 � }gε}Q1 ¤ C (3.23)

and together with the uniform coercivity estimate (3.17) and the uniform inf–sup estimate
(3.19) all terms of the right-hand side of (3.9) are ε-independently bounded and, thus, we
obtain

ε}∇ŵε}L2pΩεq � }q̂ε}L2pΩεq � }ŵε}Vε � }q̂ε}Qε ¤ C.

With the Poincaré inequality (3.14), we can estimate }ŵε}L2pΩεq ¤ C afterwards, which
finally shows the desired a-priori estimate (3.8).

Remark 3.14. We note that the estimates (3.9) and (3.10) do not depend on }b}LpV,Q1q.
This becomes crucial in our derivation of the a-priori estimates for the solution of the
Stokes equations, since we can not bound }b}LpVε,Q1εq ε-uniformly.

3.1.4. Identification of the two-scale limit problem

Now, we pass to the homogenisation limit ε Ñ 0 and derive the following two-pressure
Stokes equation as two-scale limit equation in the cylindrical substitute two-scale domain
for unknowns ŵ0, p̂, p̂1, where ŵ0 is the two-scale limit of ŵε and v̂ε, and p̂ � q̂� p̂b,0 where
q̂ is the limit of some extension of q̂ε on Ω.
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3.1. Homogenisation of quasi-stationary Stokes flow

Strong form of the quasi-stationary two-pressure Stokes equations for
evolving microstructure

J�1
0 divypµA

�1
0 Ψ�J

0 ∇yŵ0q �Ψ�J
0 ∇xp̂�Ψ�J

0 ∇yp̂1 � f in Ω� Y �,

J�1
0 divypA0ŵ0q � 0 in Ω� Y �,

ŵ0 � 0 on Ω� Γ,

y ÞÑ ŵ0, p̂1 Y � periodic,

divx

� »
Y �

A0ŵ0 dy
	
�

»
Ω

»
Y

divpA0v̂Γq dy in Ω,

p̂ � p̂b,0 on BΩ.

(3.24)

The transposed velocity gradient vanishes in (3.24). This, is a consequence of the
microscopic incompressibility condition for ŵ0 and the boundary values of ŵ0.

Compactness results

Before we can identify the limit equations, we have to derive compactness results for
the velocity and pressure. We start with the strong convergence of the pressure. For this,
we follow the argumentation of [Tar80], which was extended in [All89], [LA90], [Mik91]
and [FMW17], and adapt it to our setting, where we have to deal with the coefficients
as well as different function spaces, due to the different boundary condition at the outer
boundary BΩX BΩε. We extend q̂ε on Ω by

Q̂εpxq :�

$&%q̂εpxq if x P Ωε,�
εk�εY �

q̂εpzq dz if x P εk � εY s for k P Iε.
(3.25)

Lemma 3.15. Let q̂ε P L
2pΩεq be given by the solution of (3.6) and let Q̂ε be its extension

defined in (3.25). Then, there exists q̂ P L2pΩq and a subsequence Q̂ε that converges
strongly to q̂ in L2pΩq.

Proof. We define Fε P pH
1pΩqnq1 by

xFε, φyH1pΩq1,H1pΩq :�

»
Ωε

q̂εpxqdivpRεφpxqq dx.

By testing (3.6) with A�1
ε Rεφpxq, we can rewrite this functional by»

Ω

q̂εptqdivpRεφqdx �pε
2µAε2eεpŵεq,∇pA�1

ε RεφqqL2pΩεq � pΨJ
ε f̂ε �∇p̂b,ε, RεφqL2pΩεq
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� pε2µAε2eεpv̂Γεq,∇pA�1
ε RεφqqL2pΩεq.

Using the uniform boundedness of ε∇ŵε (see (3.8)), the coefficients (see Lemma 2.8) and
the data (see Lemma 3.3), we obtain, after applying the Hölder inequality and the Leibniz
rule,

|xFε, φyH1pΩq1,H1pΩq| ¤ Cε}∇pA�1
ε Rεφq}L2pΩεq � C}Rεφ}L2pΩεq � ε2C}∇pA�1

ε Rεφq}L2pΩεq

¤ Cεp1� εq}∇A�1
ε Rεφ�∇pRεφqAJ

ε }L2pΩεq � C}Rεφ}L2pΩεq

¤ Cε}∇A�1
ε }L8pΩεq}Rεφ}L2pΩεq � Cε}∇Rεφ}L2pΩεq}A

J
ε }L8pΩεq � C}Rεφ}L2pΩεq

¤ C}Rεφ}L2pΩεq � εC}∇Rεφ}L2pΩεq

¤ C}φ}L2pΩq � εC}∇φ}L2pΩq

(3.26)

for every φ P H1pΩqn. Thus, Fε is uniformly bounded in pH1pΩqnq1, i.e. }Fε}H1pΩq1 ¤ C.

If divpφq � 0, one has divpRεφq � 0 and, thus, we obtain

xFε, φyH1pΩq1,H1pΩq �

»
Ωε

q̂εpxqdivpRεφpxqq dx � 0

for every φ P H1pΩqn with divpφq � 0, which yields Fε P kerpdivqK.

Since div is surjective and, in particular, has a closed range (see Lemma 3.7), we can
apply the closed-range theorem, which provides Q̂ε P L

2pΩq such that»
Ω

Q̂εpxq divpφpxqq dx � xFε, φyH1pΩq1,H1pΩq �

»
Ωε

q̂εpxq divpRεφpxqq dx (3.27)

for all φ P H1pΩqn. Furthermore, we can bound }Q̂ε}L2pΩq uniformly using the right-inverse
of the divergence (see Lemma 3.7) and (3.26)

}Q̂ε}
2
L2pΩq �

»
Ω

Q̂εpxq divpdiv
�1pQ̂εqqpxq dx � |xFε, div

�1pQ̂εqyH1pΩq1,H1pΩq|

¤ C
�
} div�1pQ̂εq}L2pΩq � ε}∇ div�1pQ̂εq}L2pΩ

	
¤ C}Q̂ε}L2pΩq. (3.28)

In order to identify Q̂ε with q̂ε on Ωε, we note that Rεpφ̃q � φ for every φ P H1
Γε
pΩεq

n,
where φ̃ is the extension by 0 of φ and, thus, the right-hand side of (3.27) can be simplified
and we obtain »

Ω

Q̂ε divpφ̃q dx �

»
Ωε

Q̂ε divpφq dx �

»
Ωε

q̂ε divpφq dx.

Then, Lemma 3.7, provides φ P H1
Γε
pΩεq

n with divpφq � Q̂ε � q̂ε, and by testing the
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previous equation with this φ, we obtain Q̂ε � q̂ε in Ωε. This identifies Q̂ε with the
explicit formula (3.25) in Ωε.
In order to show the strong convergence of Q̂ε, we note that the boundedness of Q̂ε

in L2pΩq allows us to pass to a subsequence Q̂ε, which converges weakly to a function
q̂ P L2pΩq. Since weak convergence is preserved under linear continuous operations, we
obtain for the same subsequence that φε :� div�1pQ̂εq converges weakly to φ � div�1pq̂q
in H1pΩq, where div�1 is given by Lemma 3.7. Moreover, we obtain from (3.27) and (3.26)

|pQ̂ε,divpφε � φqqL2pΩq| ¤ C
�
}φε � φ}L2pΩq � ε}∇pφε � φq}L2pΩq

�
. (3.29)

Now, we show that the right-hand side of (3.29) tends to zero. From the weak convergence
φε á φ, we deduce the boundedness of φε in H

1pΩq and, thus, with the factor ε the second
term on the right-hand side of (3.29) tends to zero. Moreover, the compact embedding
of H1pΩq into L2pΩq implies the strong convergence of φε to φ in L2pΩεq (after passing
to a further subsequence and identifying the strong limit in L2pΩq with the weak limit
in H1pΩqq. With this strong convergence, the first term on the right-hand side of (3.29)
tends to zero, too. Hence,

pQ̂ε, Q̂ε � q̂q � pQ̂ε,divpφε � φqqL2pΩεq Ñ 0.

Employing additionally the weak convergence of Q̂ε to q̂, we obtain in total

}Q̂ε � q̂}2L2pΩεq
� pQ̂ε, Q̂ε � q̂qL2pΩεq � pq̂, Q̂ε � q̂qL2pΩεq Ñ 0,

which shows the strong convergence of Q̂ε to q̂.
The identification of Q̂ε in ΩzΩε with the explicit formula (3.25) can be shown as in

[All89].

Lemma 3.16. Let ŵε P H
1
Γε
pΩεq

n be the first part of the solution of (3.6) and ˜̂w0 be its

extension by 0 to Ω. Then, there exists ŵ0 P L
2pΩ;H1

#pY q
nq and a subsequence ˜̂wε such

that, for this subsequence,

˜̂wε 2
ÝÝáÝÝÝáŵ0, ε∇̃ŵε

2
ÝÝáÝÝÝá∇yŵ0, (3.30)

Furthermore, ŵ0 satisfies

ŵ0 � 0 in Ω� Y s, (3.31)»
Ω

divx

� »
Y �

A0px, yqŵ0px, yqdy
	
η0pxqdx �

»
Ω

»
Y �

divypA0px, yqv̂Γpx, yqq dy dx, (3.32)

»
Ω

»
Y �

divypA0px, yqŵ0px, yqqη1px, yqdy dx � 0 (3.33)

for all η0 P L
2pΩq and all η1 P L

2pΩ;L2
0pY

�qq for L2
0pY

�q :�
 
v P L2pY �q |

³
Y �

fpyqdy � 0
(
.
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Proof. Given the a-priori estimate (3.8), the two-scale compactness result of Theorem 1.19
provides ŵ0 P L

2pΩ;H1
#pY

�qnq and a subsequence such that (3.30) holds. Moreover, from
the compactness theorem for perforated domains (Theorem 1.21), we obtain (3.31).

� Macroscopic divergence condition (3.32): We test the divergence equation of (3.6)
with η0 P DpΩq and pass twice to the limit ε Ñ 0 but once we integrate by parts
beforehand. For the limit processes, we use the strong two-scale convergence of Aε,
ε∇Aε, ε�1v̂Γε and ∇v̂Γε (see Lemma 2.9), which yields»

Ω

divx

� »
Y �

A0px, yqŵ0px, yq dy
	
η0pxq dx

� �

»
Ω

»
Y �

A0px, yqŵ0px, yq dy �∇xη0pxq dx

� � lim
εÑ0

»
Ωε

Aεpxqŵεpxq �∇xη0pxq dx

� lim
εÑ0

»
Ωε

divpAεpxqŵεpxqqη0pxq dx

� � lim
εÑ0

»
Ωε

divpAεpxqv̂Γεpxqqη0pxq dx

� � lim
εÑ0

»
Ωε

εdivpAεpxqq � ε
�1v̂Γεpxq �Aεpxq : ∇v̂Γεpxqqη0pxq dx

� �

»
Ω

»
Y �

divypA0px, yqq � v̂Γpx, yq �A0px, yq : ∇yv̂Γpx, yq dy η0pxq dx.

� �

»
Ω

»
Y �

divy
�
A0px, yqv̂Γεpx, yq

�
dy η0pxqdx.

The boundary integral of the first integration by parts vanishes on BY �XBY since A0

and ŵ0 are Y -periodic and on Γ since ŵ0 is zero on Γ. During the second integration
by parts, the boundary integral vanishes on Γε since ŵε is zero there and on BΩεXBΩ
since η0 is zero on BΩ. Afterwards, due to the density of DpΩq in L2pΩq, we obtain
the macroscopic divergence condition (3.32).

� Microscopic divergence condition (3.33): We choose η1 P DpΩ;C8
# pY qq in (3.33).

Then, we integrate by parts, apply the two-scale convergence and again integrate by
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parts»
Ω

»
Y �

divypA0px, yqŵ0px, yqqη1px, yq dy dx

� �

»
Ω

»
Y �

A0px, yqŵ0px, yq �∇yη1px, yqdy dx

� � lim
εÑ0

»
Ωε

Aεpxqŵεpxq �

�
ε∇xη1

�
x,
x

ε

	
�∇yη1

�
x,
x

ε

	

dx

� lim
εÑ0

»
Ωε

εdivpAεpxqŵεpt, xqqη1

�
x,
x

ε

	
dx.

(3.34)

In (3.34), the boundary integrals vanish during the integration by parts by the same
argumentation as above.

With the boundedness of Aε (see Lemma 2.8) and of ∇v̂Γε (see Lemma 3.3) as well
as with divpAεq � 0, we can estimate

} divpAεŵεq}L2pΩεq � }divpAεv̂Γεq}L2pΩεqq � }divpAεq � v̂Γε �Aε : ∇v̂Γε}L2pΩεqq

� }Aε : ∇v̂Γε}L2pΩεqq � C}∇v̂Γε}L2pΩεqq}∇A
J
ε }L8pΩεqq ¤ C

Thus, the right-hand side of (3.34) is zero, and we obtain (3.33). By a density
argument, it holds for arbitrary η1 P L

2pΩ;L2pY �qq.

Identification of the limit of the momentum equation

Using these compactness results, namely Lemma 3.25 for q̂ε and Lemma 3.16 for ŵε,
we can pass to the limit ε Ñ 0 in (3.6). This results in the following weak form for the
two-pressure Stokes equations (3.24), where we use the function space H1

Γ#pY
�q :� tv P

H1pY �q | v|Γ � 0 and v is Y -periodicu

87



Chapter 3. Stokes flow in porous media with evolving microstructure

Weak form of the two-pressure Stokes equation in the reference coordi-
nates

Find pu0, q̂, q̂1q P L
2pΩ;H1

Γ#pY
�qnq �H1

0 pΩq � L2pΩ;L2
0pY

�qq such that»
Ω

»
Y �

µA0px, yqΨ
�J
0 px, yq∇yŵ0px, yq : ∇yφpx, yq dy dx

�

»
Ω

»
Y �

AJ
0 px, yq∇xq̂pxq � φpx, yq � q̂1px, yqdivypA0px, yqφpx, yqq dy dx

�

»
Ω

»
Y �

pJ0px, yqf̂pxq �AJ
0 px, yqp∇xp̂b,0pxq �∇yp̂b,1px, yqq � φpx, yqdy dx,»

Ω

divx

� »
Y �

A0px, yqŵ0px, yq dy
	
η0pxq dx

� �

»
Ω

»
Y �

divy
�
A0px, yqv̂Γpx, yq

�
dy η0pxqdx,»

Ω

»
Y �

divypA0px, yqŵ0px, yqqη1px, yqdy dx � 0

(3.35)

for all pφ, η0, η1q P L
2pΩ;H1

Γ#pY
�qnq �H1

0 pΩq � L2pΩ;L2pY �qq.

We can equivalently choose η1 P L
2pΩ;L2

0pY
�qq, since divy

�
A0px, yqv̂Γpx, yq

�
P L2

0pY
�q,

which can be shown by means of the Theorem of Gauß»
Y �

divypA0px, yqŵ0px, yqq dy �

»
BY �

A0px, yqŵ0px, yq � n̂ dσy

�

»
Γ

A0px, yqŵ0px, yq � n̂ dσy �

»
BY �XBY

A0px, yqŵ0px, yq � n̂ dσy � 0,

where the integral over Γ vanishes since ŵ0 is zero on Γ and the integral over BY � X BY
vanishes due to the Y -periodicity of A0 and ŵ0.

Theorem 3.17. Let pŵε, q̂εq be the solution of (3.6) and q̂ be the extension of q̂ε as defined
in (3.25). Then,

ŵε
2

ÝÝáÝÝÝáŵ0, (3.36)

ε∇ŵε
2

ÝÝáÝÝÝá∇yŵ0, (3.37)

Q̂ε Ñ q̂ in L2pΩq, (3.38)
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where pŵ0, q̂q P L
2pΩ;H1

Γ#pY
�qnq �H1

0 pΩq are the first two components of the solution of
(3.35).

Proof of Theorem 3.17. By means of Lemma 3.15, we can pass to a subsequence ŵε and

obtain ŵ0 P L
2pΩ;H1

Γ#pY
�qnq such that the convergences ŵε

2
ÝÝáÝÝÝáŵ0 and ε∇ŵε Ñ ∇yŵ0

hold and ŵ0 fulfils the two divergence conditions in (3.35). By passing to a further subse-
quence, Lemma 3.16 provides q̂ P L2pΩq such that Q̂ε Ñ q̂ in L2pΩq.

It remains to show the first equation of (3.35). Let φ P C8pΩ;H1
Γ#pY

�qnq such that

divypφq � 0. Testing the first equation of (3.6) with A�1
ε pxqφpx, xε q gives»

Ωε

ε2µAεpxq2eεpŵεqpxq : ∇pA�1
ε pxqφpx, xε qq dx�

»
Ωε

q̂εpxq divpφpx,
x
ε qq dx

�

»
Ωε

pJεpxqf̂εpxq �AJ
ε pxqp̂b,εpxqq �A

�1
ε pxqφpx, xε q dx

�

»
Ωε

ε2µAεpxq2eεpv̂Γεqpxq : ∇pA�1
ε pxqφpx, xε qq dx.

(3.39)

In order to pass to the limit εÑ 0 in (3.39), we note that Lemma 1.16 implies the strong
two-scale convergence for the product, i.e.

ε∇pA�1
ε pxqφpx, xε qq � ε∇A�1

ε pxqφpx, xε q � ε∇xφpx,
x
ε qA

�J
ε pxq �∇yφpx,

x
ε qA

�J
ε pxq

2
ÝÝÑÝÝÝÑ∇yA

�1
0 pxqφpx, yq � 0�∇yφpx, yqA

J
0 px, yq � ∇ypA

�1
0 px, yqφpx, yqq.

For the second integral in (3.39), we use that divypφq � 0, which gives»
Ωε

q̂εpxq div
�
φ
�
x, xε

��
dx �

»
Ωε

q̂εpxq divx
�
φ
�
x, xε

��
� q̂εpxqε

�1 divy
�
φ
�
x, xε

��
dx

�

»
Ωε

q̂εpxq divx
�
φ
�
x, xε

��
dxÑ

»
Ω

»
Y �

q̂pxq divxpφpx, yqq dy dx.

For the last integral in (3.39), we note that ∇v̂Γε and ε∇pA�1
ε φp�, �εqq are bounded in

L2pΩεq. Together with the boundedness of the transformation coefficients from Lemma 2.8,
one factor ε remains and, thus, the term vanishes in the limit, i.e.��� »

Ωε

ε2µAεpxq
�
Ψ�J
ε pxq∇v̂Γεpxq � pΨ�J

ε pxq∇v̂Γεpxqq
J
�
: ∇pA�1

ε pxqφpx, xε qq dx
���

¤ εC}Aε}L8pΩεq}Ψ
�J
ε }L8pΩεq}∇v̂Γε}L2pΩεqε}∇pA

�1
ε φp�, �εqq}L2pΩεq ¤ εC Ñ 0.
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Having done these computations, we can pass to the limit εÑ 0 in (3.39), which gives»
Ω

»
Y �

µA0px, yqpΨ
�J
ε px, yq∇yŵ0px, yqq � pΨ�J

ε px, yq∇yŵ0px, yqq
Jq

: ∇ypA
�1
0 px, yqφpx, yqq dy dx�

»
Ω

»
Y �

q̂pxq divxpφpx, yqq dy dx

�

»
Ω

»
Y �

�
J0px, yqf̂pxq �AJ

0 px, yqp∇xp̂b,0pxq �∇yp̂b,1px, yqq
�
�A�1

0 px, yqφpx, yq dy dx

(3.40)

for any φ P C8pΩ;H1
Γ#pY

�qnq with divypφq � 0. By a density argument, (3.40) holds for

every φ P L2pΩ;H1
Γ#pY

�qnq with divypφq � 0.

In the next step, we identify q̂ with an element in H1
0 pΩq. Therefore, let φi P H

1
Γ#pY

�qn

with divypφiq � 0 and
³
Y �

φipyqdy � ei for i P t1, . . . , nu (for instance φi can be constructed

by the Stokes operator similar to the proof of [All92a, Lemma 2.10]). Now, we test (3.40)
by φφi for φ P C

8pΩq and obtain»
Ω

�q̂pxqBxiφpxq dx �

»
Ω

Gipxqφpxq dx � 0

for

Gipxq �

»
Y �

�
J0px, yqf̂pxq �AJ

0 px, yqp∇xp̂b,0pxq �∇yp̂b,1px, yqq
�
�A�1

0 px, yqφipyq dy dx

�

»
Y �

µA0px, yqpΨ
�J
ε px, yq∇yŵ0px, yqq � pΨ�J

ε px, yq∇yŵ0px, yqq
Jq

: ∇ypA
�1
0 px, yqφipx, yqq dy dx.

Since Gi P L
2pΩq for all i P t1, . . . , nu, we obtain q̂ P H1

0 pΩq.

In order to increase the set of test functions to non solenoidal functions, we reconstruct
some microscopic pressure. The Bogovskǐi-operator, applied on the domain Y �, provides
the surjectivity of divy : L

2pΩ;H1
0 pY

�qq � L2pΩ;H1
Γ#pY

�qq Ñ L2pΩ;L2
0pY

�qq. Thus, we
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3.1. Homogenisation of quasi-stationary Stokes flow

can apply the closed-range theorem, which gives q̂1 P L
2pΩ;L2

0pY
�qq such that»

Ω

»
Y �

µA0px, yqpΨ
�J
0 px, yq∇yŵ0px, yq � pΨ�J

0 px, yq∇yŵ0px, yqq
Jq :

∇ypA
�1
0 px, yqφpx, yqq dy dx

�

»
Ω

»
Y �

∇xq̂pxq � φpx, yq dy dx�

»
Ω

»
Y �

q̂1px, yqdivypφpx, yqq dy dx

�

»
Ω

»
Y �

�
J0px, yqf̂pxq �AJ

0 px, yqp∇xp̂b,0pxq �∇yp̂b,1px, yqq
�
�A�1

0 px, yqφpx, yq dy dx

(3.41)

for all φ P L2pΩ;H1
Γ#pY

�qq. By testing (3.41) with A0φ, we can remove the factor A�1
0 in

front of the test functions, i.e. we obtain»
Ω

»
Y �

νA0px, yqpΨ
�J
0 px, yq∇yŵ0px, yq � pΨ�J

0 px, yq∇yŵ0px, yqq
Jq : ∇yφpx, yqdy dx

�

»
Ω

»
Y �

AJ
0 px, yq∇xq̂pxq � φpx, yq dy dx�

»
Ω

»
Y �

q̂1px, yqdivypA0px, yqφpx, yqq dy dx

�

»
Ω

»
Y �

�
J0px, yqf̂pxq �AJ

0 px, yqp∇xp̂b,0pxq �∇yp̂b,1px, yqq
�
� φpx, yqdy dx

(3.42)

for all φ P L2pΩ;H1
Γ#pY

�qnq.

It remains to show, for a.e. x P Ω, that»
Y �

A0px, yqpΨ
�J
0 px, yq∇yŵ0px, yqq

J : ∇yφ̂px, yqdy dx � 0 (3.43)

for all φ̂ P H1
Γ#pY

�qn, which simplifies (3.42) to the first equation of (3.35). In order to
simplify the computations, we transform the left-hand side of (3.43) by ψ0, which gives»

Y �

A0px, yqpΨ
�J
0 px, yq∇yŵ0px, yqq

J : ∇yφ̂px, yq dy dx

�

»
Y �pt,xq

p∇yw0px, yqq
J : ∇yφpx, yq dy dx

(3.44)

for w0px, yq � ŵ0px, ψ
�1
0 px, yqq and φpx, yq � φ̂px, ψ�1

0 px, yqq, where one has for a.e. x P Ω,
w0px, �q,φpx, �q P H

1
Γpt,xq#pY

�pt, xqqn. Moreover, we test the microscopic incompressibility
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condition (3.35) with η1px, ψ0px, yqq for η1 P L
2pΩ;L2pY �pt, xqqq, which gives

0 �

»
Ω

»
Y �

divypA0px, yqŵ0px, yqqη1px, ψ0px, yqq dy dx

�

»
Ω

»
Y �pt,xq

divypw0px, yqqη1px, yqdy dx
(3.45)

and, thus, divypw0q � 0. Next, we approximate w0 by smooth functions. For this, we
note that the solenoidal smooth functions tu P C8

Γpt,xq#pY
�pxqqn | divypuq � 0u are dense

in the solenoidal H1-functions tu P H1
Γpt,xq#pY

�pxqqn | divy u � 0u with respect to the

H1-norm (see [Gal11, Chapter III.4]). Thus, we can choose a sequence punpx, �qqnPN in
C8
Γpt,xq#pY

�pxqqn with divypunpx, �qq � 0, which converges to w0 with respect to the H1-
norm. Then, we obtain, after integration by parts,»

Y �pt,xq

p∇yw0px, yqq
J : ∇yφpx, yqdy � lim

nÑ8

»
Y �pt,xq

∇ypunpx, yqq
J : ∇yφpx, yq dy

� � lim
nÑ8

»
Y �pt,xq

divyp∇ypunpx, yqq
Jq � φpx, yqdy � 0,

(3.46)

where the last equality of (3.46) follows from

pdivyp∇yunpx, yqq
Jqi �

ņ

j�1

Byj pp∇unpx, yqqJqji �
ņ

j�1

ByjByipunqjpx, yq

� Byi

ņ

j�1

Byj punqjpx, yq � Byi divypunpx, yqq � 0.

Combining (3.44) with (3.46) shows (3.43) and, thus, (3.42) can be simplified to the first
equation of (3.35).

Finally, from Lemma 3.19, we obtain the uniqueness of the solution pŵ0, q̂, q̂1q of (3.35)
and, since the argumentation holds for every arbitrary subsequence, it holds for the whole
sequence.

We remember that we have subtracted the Dirichlet boundary values from v̂ε, i.e. ŵε �
v̂ε� v̂Γε . Since v̂Γε is of order ε, the two-scale convergence of v̂ε and ŵε are equivalent and
their two-scale limits coincide.

Corollary 3.18. Let v̂ε � ŵε � v̂Γε for ŵε given as the solution of (3.6). Then,

v̂ε
2

ÝÝáÝÝÝáŵ0, ε∇v̂ε
2

ÝÝáÝÝÝá∇yŵ0,

where ŵ0 is given in Theorem 3.17.
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3.1. Homogenisation of quasi-stationary Stokes flow

Proof. The two-scale convergence of v̂ε and ε∇v̂ε follows directly from the uniform esti-
mates }v̂Γε}L2pΩεq � ε}∇v̂Γε}L2pΩεq ¤ εC, which is given in Lemma 3.3, and the two-scale
convergence of ŵε and ε∇ŵε from Theorem 3.17.

Lemma 3.19. The two-pressure Stokes problem (3.35) has a unique solution
pŵ0, q̂, q̂1q P L

2pΩ;H1
Γ#pY

�qnq �H1
0 pΩq � L2pΩ;L2

0pY
�qq.

Proof. The existence of a solution is already secured by the homogenisation process
and it remains to show only the uniqueness. We rewrite (3.35) in the setting of the
generic saddle-point formulation of Proposition 3.5. Therefore, we define the linear op-
erators a0 P LpL2pΩ;H1

Γ#pΩq
nq, L2pΩ;H1

Γ#pΩq
nq1q and b0 P L

�
L2pΩ;H1

Γ#pΩq
nq,

�
H1

0 pΩq �

L2pΩ;L2
0pY

�qq
�1�

by

a0pv, wq �

»
Ω

»
Y �

µA0px, yqΨ
�J
0 px, yq∇yvpx, yq : ∇ywpx, yqdy dx,

b0pv, pp0, p1qq �

»
Ω

»
Y �

AJ
0 px, yq∇xp0pxq � vpx, yq dy dx

�

»
Ω

»
Y �

p1px, yqdivypA0px, yqvpx, yqq dy dx.

(3.47)

Now, we verify the assumptions of Proposition 3.5.

� Coercivity of a0: We use the boundedness of J0 from below and the boundedness of
ΨJ

0 from above, in order to estimate a0 from below as we did in (2.38). Then, we
apply the Poincaré inequality of H1

Γ#pY
�q and obtain the coercivity of a0, i.e. we

obtain c ¡ 0 such that

a0pv, vq ¥ µcJ}Ψ
J
0 }

�2
L8pΩ�Y �q}∇yv}

2
L2pΩ�Y �q ¥ c}v}2L2pΩ;H1

Γ#pY
�qq, (3.48)

for all v P L2pΩ;H1
Γ#pY

�qnq.

� Continuity of a0: With the Hölder inequality, we obtain the continuity of a0, namely,
we obtain a constant C such that

a0pv, wq ¤ }
a
J0Ψ

�J
0 }2L8pΩ�Y �q}∇yv}L2pΩ�Y �q}∇yw}L2pΩ�Y �q (3.49)

¤ C}w}L2pΩ;H1
Γ#pY

�qq}v}L2pΩ;H1
Γ#pY

�qq

for any v, w P L2pΩ;H1
Γ#pY

�qnq.

� Inf–sup estimate for b0: From Lemma 3.20, we get a uniform positive inf–sup con-
stant for b0.

� Continuity of b0: Let pv, pp0, p1qq P L
2pΩ;H1

Γ#pY
�qnq � pH1

0 pΩq � L2pΩ;L2
0pY

�qqq.
Using the Leibniz rule, the Piola identity (3.7) (divypA0q � 0) and the Poincaré
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inequalities for H1
0 pΩq and H

1
Γ#pY

�q, we can infer

b0pv, pp0, p1qq � pA0∇xp0, vqL2pΩ�Y �q � pp1, divypA0vqqL2pΩ�Y �q

� pA0∇xp0, vqL2pΩ�Y �q � pp1,divypA0q � v �A0 : ∇yvqL2pΩ�Y �q

¤ C}∇p0}L2pΩq}v}L2pΩ�Y �q � C}p1}L2pΩ�Y �q}∇yv}L2pΩ�Y �q

¤ C
�
}p0}H1

0 pΩq
� }p1}L2pΩ�Y �q

�
}v}L2pΩ;H1

Γ#pY
�qq.

Having these estimates, and using the linearity and continuity of the right-hand sides of
(3.35), we obtain a unique solution pŵ, q̂, q̂1q P L

2pΩ;H1
Γ#pY

�qnq�H1
0 pΩq�L

2pΩ;L2
0pY

�qq
of (3.35) from Proposition 3.5.

Lemma 3.20. Let b0 be given by (3.47). Then, there exists a constant β P R such that

sup
vPL2pΩ;H1

Γ#pY
�qnqzt0u

|b0pv, pϕ0, ϕ1qq|

}v}L2pΩ;H1
Γ#pY

�qq}pϕ0, ϕ1q}H1
0 pΩq�L

2pΩ;L2
0pY

�qq

¥ β (3.50)

for any pϕ0, ϕ1q P H
1
0 pΩq � L2pΩ;L2

0pY
�qq.

Proof. Let pϕ0, ϕ1q P H
1
0 pΩq�L

2pΩ;L2
0pY

�qq. First, we apply the Bogovskǐi-operator from
[Bog79] and [Bog80] for the domain Y � on ϕ1, which gives u P L2pΩ;H1

Γ#pY
�qnq such that

divypuq � ϕ1, }u}L2pΩ;H1
0 pY

�qq ¤ C}ϕ1}L2pΩ;L2
0pY

�qq (3.51)

for a constant C which depends only on Y � and not on ϕ1.

Now, we define the functions v1, . . . , vn P H1
Γ#pY

�qn as the solutions of the following
Stokes problems:

Find pvi, piq P H
1
Γ#pY

�qn � L2
0pY

�q such that

p∇vi,∇φqL2pY �q � ppi, divpφqqL2pY �q � pei, φqL2pY �q,

pdivpviq, ηqL2pY �q � 0

for any pφ, ηq P H1
Γ#pY

�qn � L2
0pΩq.

Choosing φ � vj shows

A :�

�����
...

...³
Y �

v1pyqdy � � �
³
Y �

vnpyq dy

...
...

�����

���p∇v1,∇v1qL2pY �q � � � p∇v1,∇vnqL2pY �q
...

...
p∇vn,∇v1qL2pY �q � � � p∇vn,∇vnqL2pY �q

��.
Since A is the permeability tensor from the usual Darcy law, it is symmetric and positive
definite (see for instance [SP80, Chapter 7, Proposition 2.2]). Therefore, the following
boundary-value problem is well-posed:
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Find a solution w P H1
0 pΩq such that

pA∇w,∇φqL2pΩq � p∇ϕ0,∇φqL2pΩq �
� »
Y �

up�, yq dy,∇φ
	
L2pΩq

for all φ P H1
0 pΩq. The Theorem of Lax–Milgram provides a unique solutions w P H1

0 pΩq,
which can be estimated by

}w}H1pΩq ¤ C
�
}ϕ0}H1pΩq � }u}L2pΩ;L1pY �qq

�
¤ C

�
}ϕ0}H1pΩq � }u}L2pΩ�Y �q

�
.

Then, we define vpx, yq :� A�1
0 px, yq p

°n
i�1 vipyq Bxiwpxq � upx, yqq and estimate with the

essential boundedness of A�1
0 and (3.51)

}v}L2pΩ;H1
Γ#pY

�qq ¤ C
�
}w}H1

0 pΩq
� }u}L2pΩ;H1

Γ#pY
�qq

�
¤ C

�
}ϕ0}H1

0 pΩq
� }ϕ1}L2pΩ;L2

0pY
�qq

�
.

From the construction of v, we obtain

pA0v,∇ϕ0qL2pΩ�Y �q �
�
A∇w �

»
Y �

up�, yq dy,∇ϕ0
	
L2pΩq

� p∇ϕ0,∇ϕ0qL2pΩq,

divypA0vq �
ņ

i�1

divypvipyqqBxiwpxq � divypupx, yqq � �ϕ1pxq.

Using this explicitly constructed v, we can deduce (3.50).

3.1.5. Separation of the microscopic and macroscopic variables

Now, we separate the micro-and macroscopic variables in the two-pressure Stokes equations
(3.35). The result is the following Darcy law for evolving microstructure, for the unknowns

ŵpxq :�

»
Y �

J0px, yqŵ0px, yqdy, p̂ :� q̂ � p̂b,0, (3.52)

where pŵ0, q̂q are the solution of (3.35).
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Strong form of the quasi-stationary Darcy law for evolving microstruc-
ture in the reference coordinates

ŵpxq �
1

µ
K̂pxqpfpxq �∇xp̂pxqq in Ω,

divxpŵpxqq �

»
Γ
A0px, yqv̂Γpx, yq dσy in Ω,

p̂pxq � p̂b,0pxq on BΩ

(3.53)

The permeability tensor K̂ P L8pΩqn�n is given by

K̂ijpxq �

»
Y �

J0px, yqζ̂jpx, yq � ei dy �

»
Y �

A0px, yqΨ
�J
0 px, yq∇y ζ̂jpx, yq : ∇y ζ̂ipx, yq dy,

(3.54)

where pζ̂i, π̂iq, for i P t1, . . . , nu, are the solutions of the cell problems

�J�1
0 divypA0Ψ

�J
0 ∇ζ̂iq �Ψ�J

0 ∇π̂i � ei in Y �,

J�1
0 divpAJ

0 ζ̂iq � 0 in Y �,

ζ̂i � 0 on Y �,

y ÞÑ ζ̂pyq, π̂ipyq Y -periodic.

(3.55)

By taking the divergence on both sides in the first equation of (3.53) and combining it
with the second equation, we can eliminate ŵ and obtain an elliptic Dirichlet boundary
value problem for p̂. Afterwards ŵ can be computed explicitly.

In order to derive this Darcy law, we rewrite ŵ0 by means of two cell problems. After
identifying these cell problems, we obtain the first equation of the Darcy law. The reason
why we have to deal with a second cell problem is the factor Ψ�J

0 in the coefficient
A0 � J0Ψ

�J
0 , which appears in front of the gradient of the macroscopic pressure q̂ in the

two-pressure Stokes formulation (3.35). The same coefficient A0 � J0Ψ
�J
0 appears also

in the macroscopic divergence condition of the two-pressure Stokes equation, where we
have to remove Ψ�J

0 in order to derive the macroscopic divergence condition of (3.53).
These two tasks are closely related to the transformation rules for gradients, which we
have shown in the previous chapter in Theorem 2.23. We shift the y-dependency of the
coefficient Ψ�J

0 in front of the macroscopic pressure into the microscopic pressure. Then,
we identify the two cell problems. In order to remove it from the macroscopic divergence
condition, we employ additionally the microscopic incompressibility condition.

Identification of the two cell problems
The solution pŵ0, q̂, q̂1q of (3.35) can be expressed by means of the solution of the following
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two cell problems via

ŵ0px, yq �
1

µ

ņ

i�1

ζ̂ipx, yqfipxq �
1

µ

ņ

i�1

ζ̂ 1ipx, yqBxipq̂ � p̂b,0qpxq,

q̂1px, yq � p̂b,1px, yq �
1

µ

ņ

i�1

π̂ipx, yqfipxq �
1

µ

ņ

i�1

π̂1ipx, yqBxipq̂ � p̂b,0qpxq,

(3.56)

where pζ̂, π̂iq P L
8pΩ;H1

Γ#pY
�qnq � L8pΩ;L2

0pY
�qq solves the weak form of (3.55), i.e.»

Y �

A0px, yqΨ
�J
0 px, yq∇ζ̂ipx, yq : ∇φpyqdy �

»
Y �

π̂ipx, yqdivpA0px, yqφpyqq dy

�

»
Y �

J0px, yqei � φpyqdy,

divypA0px, yqζ̂ipx, yqq � 0

(3.57)

for all φ P H1
Γ#pY

�qn and a.e. x P Ω.

The second cell problem is given by:

Find pζ̂ 1, π̂1iq P L
8pΩ;H1

Γ#pY
�qnq � L8pΩ;L2

0pY
�qq such that»

Y �

A0px, yqΨ
�J
0 px, yq∇ζ̂ 1ipx, yq : ∇φpyqdy �

»
Y �

π̂1ipx, yqdivpA0px, yqφpyqq dy

�

»
Y �

A0px, yqei � φpyq dy,

divypA
J
0 px, yqζ̂

1
ipx, yqq � 0

(3.58)

for all φ P H1
Γ#pY

�qn and a.e. x P Ω.

In order to identify these two cell problems, we note that

AJ
0 ξ � J0Ψ

�J
0 ξ � J0ξ � J0pΨ

�J
0 � 1qξ

� J0ξ � J0Ψ
�J
0 p1�ΨJ

0 qξ � J0ξ �AJ
0 ∇yppy � ψ0q � ξq

(3.59)

for all ξ P Rn. From integration by parts, we obtain»
Y �

AJ
0 px, yqei � φpyq dy �

»
Y �

J0px, yqei � φpyq dy �

»
Y �

AJ
0 px, yq∇yppy � ψ0q � eiq � φpyq dy

�

»
Y �

J0px, yqei � φpyqdy �

»
Y �

ppy � ψ0q � eiqdivypA0px, yqφpyqq dy

(3.60)
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for every φ P H1
Γ#pY

�qn. The boundary integral over BY � that arises in the integration
by parts in (3.60) vanishes on Γ since φ is zero on Γ and vanishes on BY � X BY since A0,
φ and y � ψ0 are Y -periodic.

By inserting (3.60) into (3.58), we can identify the solution pζ̂ 1i, π̂
1
iq of (3.58) with the

solution pζ̂i, π̂iq of (3.57) via

ζ̂ipx, yq � ζ̂ipx, yq,

π̂ipx, yq � π̂1ipx, yq � pψ0px, yq � yq � ei.
(3.61)

Thus, we can simplify (3.56) to

ŵ0px, yq �
1

µ

ņ

i�1

ζ̂ipx, yqpfipxq � Bxipq̂ � p̂b,0qpxqq,

q̂1px, yq � p̂b,1px, yq �
1

µ

ņ

i�1

π̂ipx, yqpfipxq � Bxipq̂ � p̂b,0qpxqq

�
1

µ
pψ0px, yq � yq � pq̂ � p̂b,0qpxq,

(3.62)

which requires only the solution of the cell problem (3.57).

Lemma 3.21. Let ŵ be given by (3.52), then

ŵpxq �
1

µ

ņ

i�1

»
Y �

J0px, yqζ̂ipx, yqdy pfipxq � Bxipq̂ � p̂b,0qpxqq

�
1

µ
K̂pxqpfpxq �∇xpq̂ � p̂b,0qpxqq,

where ζ̂i is the first part of the solution of (3.56).

Proof. Lemma 3.21 follows from inserting (3.62) into (3.52).

Macroscopic divergence condition

Lemma 3.22. Let u P L2pΩ;H1
Γ#pY

�qnq with

divypA0px, yqupx, yqq dy � 0 (3.63)

for a.e. x P Ω. Then, »
Y �

A0px, yqupx, yq dy �

»
Y �

J0px, yqupx, yq dy (3.64)

for a.e. x P Ω. In particular, for the solution ŵ0 P L2pΩ;H1
Γ#pY

�qnq of (3.35) and ŵ
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given by (3.52), it holds

divxpŵpxqq � divx

� »
Y �

J0px, yqŵ0px, yqdy
	
� divx

� »
Y �

A0px, yqŵ0px, yq dy
	

�

»
Y �

divy
�
A0px, yqv̂Γpx, yq

�
dy

(3.65)

for a.e. x P Ω.

Proof. For ξ P Rn, we note that

A0ξ � J0Ψ
�1
0 ξ � J0ξ � p1�Ψ0qJ0Ψ

�1
0 ξ � J0ξ � Bypy � ψ0qA0ξ

� J0ξ �

��� ∇yppy � ψ0q1q �A0ξ
...

∇yppy � ψ0qnq �A0ξ

��. (3.66)

We set ξ � u for u P L2pΩ;H1
Γ#pY

�qnq with divypA0px, yqupx, yqq � 0. Then, we integrate
the second summand on the right-hand side of (3.66) over Y �, subsequently, integrate by
parts and use the microscopic incompressibility condition (3.63). This shows»

Y �

∇ypyi � ψ0px, yqiq �A0px, yqupx, yq dy

� �

»
Y �

pyi � ψ0px, yqiq � divypA0px, yqupx, yqq dy � 0

(3.67)

for every i P t1, . . . , nu, where the boundary integral of the integration by parts vanishes
on Γ since ŵ0 is zero and vanishes on BY X BY � since y � ψ0, A0 and u are Y -periodic.
Therefore, the second summand on the right hand side of (3.66) has mean value zero and
vanishes after integrating over Y �, which yields (3.64).

Since the solution ŵ0 of (3.35) satisfies the microscopic incompressibility condition, we
can rewrite the macroscopic incompressibility condition of (3.35) into (3.65).

The weak form of the Darcy law for evolving microstructure
By combining Lemma 3.21 and Lemma 3.22, we obtain the following weak form of the
Darcy law (3.53):
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Weak form of the quasi-stationary Darcy law

Find q̂ P H1
0 pΩq such that»

Ω

ŵpxq∇φpxqdx �
»
Ω

»
Γ

A0px, yqv̂Γpx, yq dσy dx,

ŵpxq �
1

µ
K̂pxqpfpxq �∇xpq̂ � p̂b,0qpxqq

(3.68)

for every φ P H1
0 pΩq.

Corollary 3.23. Let q̂ P H1
0 pΩq be given by the solution of (3.35). Then, q̂ solves (3.68).

Proof. Corollary 3.23 follows directly from Lemma 3.21 and Lemma 3.22.

3.1.6. Back-transformation – a Darcy law for evolving microstructure

Having derived the convergence for the solution pŵ0, q̂q of the transformed Stokes equation,
we can use the results of Chapter 2 in order to transfer the convergence to the solution
pwε, qεq of the Stokes equation (3.3) in the non-periodic (time-dependent) domain. The
resulting two-pressure Stokes equation is defined on the non-cylindrical two-scale limit set

Qptq :� tpx, yq P Ω� Y | y P Y �pt, xqu

with interfaces Gptq :� tpx, yq P Ω� Y | y P Γpt, xqu

Two-pressure Stokes equation

divypµ∇yv0q �∇xp�∇yp1 � f in Qptq,

divypv0q � 0 in Qptq,

v0 � 0 on Gptq,

y ÞÑ v0, q1 Y -periodic,

divx

� »
Y �pt,xq

v0 dy
	
� �

»
Ω

»
Y �pt,xq

divypvΓqdy in Ω,

p � pb,0 on BΩ.

(3.69)

The corresponding weak formulation is given by:
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Weak form of the two-pressure Stokes equation

Find pu0, q, q1q P L
2pΩ;H1

Γ#pY
�qnq �H1

0 pΩq � L2pΩ;L2
0pY

�qq»
Ω

»
Y �pt,xq

µ∇yw0px, yq : ∇yφpx, yqdy dx

�

»
Ω

»
Y �pt,xq

∇xqpxq � φpx, yq � q1px, yqdivypφpx, yqq dy dx

�

»
Ω

»
Y �pt,xq

pfpxq � p∇xpb,0pxq �∇xpb,1px, yqqq � φpx, yqdy dx,

»
Ω

divx

� »
Y �pxq

w0px, yq dy
	
η0pxq dx � �

»
Ω

»
Y �pt,xq

divypvΓpx, yqq dy η0pxq dx,

»
Ω

»
Y �pt,xq

divypw0px, yqqη1px, yqdy dx � 0

(3.70)

for all pφ, η0, η1q P L
2pΩ;H1

Γ#pY
�pt, xqqnq �H1

0 pΩq � L2pΩ;L2pY �pt, xqqq.

In order to derive the strong convergence for the pressure qε to q, we have to extend
qε on Ω. If we extended qε by means of Q̂ε, i.e. by transforming Q̂ε back, the extension
would be transformation-dependent due to the average in every cell. Instead, we define
the extension directly on Ωεptq by

Qεpxq :�

$&%qεpxq if x P Ωεptq,�
pεk�εY qXΩεptq

qεpxq if x P pεk � εY qzΩεptq for k P Iε,
(3.71)

which is transformation-independent. Then, we obtain the following limit result.

Theorem 3.24. Let pwε, qεq P H
1
Γεptq

pΩεptqq
n�L2pΩεptqq be the solution of (3.3) and Qε

be defined via (3.71). Then,

wε
2

ÝÝáÝÝÝáw0, (3.72)

ε∇wε
2

ÝÝáÝÝÝá∇yw0, (3.73)

Qε Ñ q in L2pΩq, (3.74)

where pw0, qq P L2pΩ;H1
Γpt,xq#pY

�pt, xqqnq � H1
0 pΩq are the first two components of the

solution of (3.70).

Proof. With Theorem 2.20 and Theorem 2.24, we can translate the two-scale convergence
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of ŵ0 and ε∇ŵ0, which is given in Theorem 3.17, into

wεpxq
2

ÝÝáÝÝÝáŵ0px, ψ
�1
0 px, yqq, ε∇wεpxq

2
ÝÝáÝÝÝá∇yŵ0px, ψ

�1
0 px, yqq. (3.75)

In order to show the strong convergence of Qε, we decompose Qε additively

Qε � q̃ε � χΩzΩεptq
1

mε
q1ε, (3.76)

where q̃ε is the extension of qε by zero on Ω and

q1εpxq :� ε�n
»

pεk�εY qXΩεptq

qεpzqdz for x P εk � εY with k P Iε,

mεpxq :� ε�n|pεk � εY q X Ωεptq| for x P εk � εY with k P Iε.

The strong convergence of Q̂ε to q̂ implies the strong two-scale convergence of Q̂ε to q̂
and, with Lemma 1.16, we can infer

˜̂qε � χΩεQ̂ε
2

ÝÝÑÝÝÝÑχY � q̂

and, afterwards, we transfer this convergence with Lemma 2.21 into

q̃ε
2

ÝÝÑÝÝÝÑχY �pt,xqq. (3.77)

for q � q̂. Then, we translate (3.77) into the strong convergence of Tεpq̃εq to χY �pt,xqq in
L2pΩ�Y q. By applying the Hölder inequality on the Y -integral, we can deduce the strong
convergence for the average over the cells, i.e.

Tεpq1εq �
»
Y

Tεpq̃εqpx, yq dy Ñ
»
Y

χY �pt,xqpyqdy q � |Y �pt, xq|q

in L2pΩq, which can be translated back into the two-scale convergence

q1ε
2

ÝÝÑÝÝÝÑ|Y �pt, xq|q.

Moreover, we transfer the strong two-scale convergence of χΩεptq similarly via the unfolding
operator and the Hölder inequality into

mε �

»
Y

Tε
�
χΩεptq

�
px, yq dy Ñ

»
Y

χY �pt,xqpyq dy � |Y �pt, xq| in LppΩq

for every p P r1,8q. Since mεpxq is uniformly bounded from below, i.e. mεpxq ¥ c ¡ 0, it

102



3.1. Homogenisation of quasi-stationary Stokes flow

holds also m�1
ε Ñ |Y �pt, xq|�1 in LppΩq for every p P r1,8q, which implies

m�1
ε

  8
ÝÝÝÝÑÝÝÝÝÝÑ|Y �pt, xq|�1 (3.78)

Finally, we insert the strong two-scale convergence (3.77), (3.78) as well as the strong
two-scale convergence of χΩzΩεptq into (3.76) and obtain

Qε � q̃ε � χΩzΩεptq
1

mε
q1ε

2
ÝÝÑÝÝÝÑχY �pt,xqq � χY zY �pt,xq|Y

�pt, xq|�1|Y �pt, xq|q � q.

Since the two-scale limit function q is independent of y, this implies the strong convergence
in L2pΩq.

Now, it remains to identify ŵ0px, ψ
�1
0 px, yqq and q � q̂ with the first two arguments of

the solution of (3.70). By arguing as in (3.60), we can rewrite AJ
0 ∇xq̂ into J0∇xq̂ plus an

additional term which can be included in the microscopic pressure. Then, one can easily
transform the first equation of (3.35) into the first equation of (3.70).

The microscopic incompressibility condition (3.35) was already derived in (3.45).

In order to transform the macroscopic divergence condition of (3.35), we rewrite its
left-hand side using (3.64) and obtain

divx

� »
Y �

J0px, yqŵ0px, yqdy
	
�

»
Y �

divy
�
A0px, yqv̂Γεpx, yq

�
dy.

Subsequently, we transform the Y � integrals which gives the macroscopic divergence con-
dition of (3.70).

A Darcy law for evolving microstructure
Now, we separate the micro- and macroscopic variable in the two-pressure Stokes equa-
tions, which yields the following Darcy law for the unknowns

wpxq :�

»
Y �

w0px, yqdy, p :� q � pb,0, (3.79)

where pw0, qq are the first two components of the solution of (3.70).
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Quasi-stationary Darcy law for evolving microstructure

wpxq �
1

µ
Kpxqpfpxq �∇xppxqq in Ω,

divxpwpxqq �

»
Γpt,xq

vΓpx, yq dσy in Ω,

ppxq � pb,0pxq on BΩ.

(3.80)

The permeability tensor K P L8pΩqn�n is given by

Kijpxq �

»
Y �pt,xq

ζjpx, yq � ei dy �

»
Y �pt,xq

∇ζjpx, yq : ∇ζipx, yq dy, (3.81)

where pζi, πiq, for i P t1, . . . , nu, are the solution of the cell problems

�divyp∇yζiq �∇yπi � ei in Y �pt, xq,

divpζiq � 0 in Y �pt, xq,

ζi � 0 on Γpt, xq,

y ÞÑ ζpyq, πipyq Y -periodic.

(3.82)

The permeability, the effective fluid velocity and the pressure in (3.80) coincide with
the one in the transformed Darcy equation (3.53), i.e.

K � K̂, w � ŵ, q � q̂

and the solutions of the cell problems (3.82) can be identified with the solution of (3.55)
by

ζipx, yq � ζ̂ipx, ψ
�1
0 px, yqq, πipx, yq � π̂ipx, ψ

�1
0 px, yqq.

The weak form of the cell problems is given by:

Find pζi, πiq P L
8pΩ;H1

Γ#pY
�qnq � L8pΩ;L2

0pY
�pt, xqqq such that, for all i P t1, . . . , nu

and a.e. x P Ω,»
Y �pt,xq

∇ζipx, yq : ∇φpyqdy �
»
Y �

πipx, yq divpφpyqq dy �

»
Y �pt,xq

ei � φpyq dy,

divypζipx, yqq � 0

(3.83)

for all φ P H1
Γpt,xq#pY

�pt, xqqn.

The weak form of this Darcy law is given by:
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3.1. Homogenisation of quasi-stationary Stokes flow

Weak form for the quasi-stationary Darcy law for evolving microstruc-
ture

Find q P H1
0 pΩq such that»

Ω

wpxq∇φpxqdx �
»
Ω

»
Γ

A0px, yqvΓpx, yq dσy dx,

wpxq �
1

µ
Kpxqpfpxq �∇xpq � pb,0qpxqq

(3.84)

for every φ P H1
0 pΩq.

Theorem 3.25. Let pw0, qεq be the solution of (3.3) and Qε be given (3.71). Then

w̃ε á w in L2pΩq,

Qε Ñ q in L2pΩq,

where pw, qq P L2pΩqn �H1
0 pΩq are given as the solution of (3.84).

Proof. After separating the micro- and macroscopic variable in (3.70), we obtain (3.84) for
w �

³
Y �pt,xq

w0 dy. From Theorem 3.24, we obtain the strong convergence ofQε Ñ q and the

weak two-scale convergence of wε to w0, which yields the weak convergence w̃ε á w.

The case of no-slip boundary conditions
In the case of no-slip boundary conditions, i.e.

vΓεpt, xq � vΓεpt, x, yq � pBtψεqpt, ψ
�1
ε pt, xqq,

the right-hand side of the macroscopic divergence condition can be expressed by means
of the time-derivative of the porosity. In order to derive this result, we restore the
time dependency in the transformations, i.e. ψεpxq � ψεpt, xq and ψ0px, yq � ψ0pt, x, yq,
J0pt, x, yq � J0pt, x, yq and A0px, yq � A0pt, x, yq.

Lemma 3.26. Let vΓεpxq � vΓεpt, xq � Btψεpt, ψεpt, xqq. Then,»
Y �pt,xq

divypvΓεpt, xqq dy �

»
Y �

divypA0pt, x, yqv̂Γεpt, x, yqq dy � BtΘpt, xq (3.85)

for Θpt, xq :� |Y �pt, xq|.

Proof. The Jacobi formula says that almost everywhere

Bt detpAptqq � trpadjpAptqqBtAptqq � detpAptqqA�1ptq : BtA
Jptq

for every A PW 1,8p0, T qn�n
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With the Leibniz rule, the Jacobi formula applied to Byψ0 and the Piola identity (3.7),
we infer

divypA0pt, x, yqBtψ0pt, x, yqq � A0pt, x, yq : ∇Btψ0pt, x, yq � divypA0pt, x, yqqBtψ0pt, x, yq

� BtJ0pt, x, yq � 0Btψ0pt, x, yq � BtJ0pt, x, yq.

Hence, we obtain»
Y �

divypA0pt, x, yqv̂Γεpt, x, yqq dy �

»
Y �

BtJ0pt, x, yq dy � Bt

»
Y �

J0pt, x, yq dy � BtΘpt, xq.

Consequently, we can simplify the Darcy equation:

Quasi-stationary Darcy law for no-slip boundary condition

wpt, xq � Kpt, xqpfpt, xq �∇ppt, xqq in p0, T q � Ω,

divpwpt, xqq � �BtΘpt, xq in p0, T q � Ω,

ppt, xq � pb,0pt, xq on p0, T q � BΩ.

(3.86)

In (3.86), we can observe that the change of the local porosity yields some inhomogeneous
divergence condition. Together with the first equation of (3.86), the local change of the
porosity becomes a source and sink term for the pressure.

3.2. Homogenisation of instationary Stokes flow

3.2.1. The microscopic equations

Now, we consider the homogenisation for the instationary Stokes flow. For sake of com-
pleteness, we recap the geometric setting, which we have also used for the quasi-stationary
Stokes flow. Let Ω � Rn be an an open set, representing the domain of the porous medium,
and let p0, T q for T ¡ 0 be the time interval. Let pεnqnPN be a decreasing positive sequence
which converges to 0, and scales the microstructure. We write ε � εn in the following. We
assume that Ω is such that it consists of entire ε-scaled copies of the unit cell Y � p0, 1qn,
i.e. Ω � int

� �
εkPIε

k � εY
�
for some Iε � Zn. Now, we assume that for every ε and every

t P r0, T s, there exists an open set Ωεptq � Ω, which represents the pore space, and com-
plementary solid space Ωs

εptq � intpΩzΩεptqq. We denote the interface of the pore and the
solid phase at time t by Γεptq :� BΩεptq X BΩs

εptq and the remaining boundary of the pore
space by Ξεptq :� BΩεptqzΓεptq. Then, we define the evolving domain with its boundary

106



3.2. Homogenisation of instationary Stokes flow

by

QT
ε :�

¤
tPr0,T s

ttu � Ωεptq, GTε :�
¤

tPr0,T s

ttu � Γεptq, HT
ε :�

¤
tPr0,T s

ttu � Ξεptq

The instationary Stokes equation for the unknown fluid velocity vε and pressure pε is given
by:

Instationary Stokes equations in an evolving perforated domain

Btvε � div
�
ε2µ2epvεq

�
�∇pε � fε in QT

ε ,

divpvεq � 0 in QT
ε ,

vε � vΓε on GTε ,�
�ε2µ2epvεq � pε1

�
n � pb,εn on HT

ε ,

vεp0q � vinε in Ωεp0q,

(3.87)

where epφq denotes the symmetric gradient

epφq :�
�
∇φ� p∇φqJ

�
{2.

µ ¡ 0 is the fluid’s viscosity, fε the source term, vinε the fluid’s initial velocity, vΓε

the fluid velocity at the interface, pb,ε the normal stress and n the outer normal of
Ωεptq.

In order to derive the weak formulation, we assume that the the Dirichlet boundary
values vΓε and the normal stress pb,ε can be extended into Ωεptq. Then, we subtract these
extensions from the fluid velocity vε and the pressure pε, i.e. we set

wε � vε � vΓε , win
ε � vinε � vΓεp0q, qε � pε � pb,ε,

which gives

Btwε � div
�
µε22epwεq

�
�∇qε � fε �∇pb,ε � BtvΓε � div

�
ε2µ2epvΓεq

�
in QT

ε ,

divpwεq � �divpvΓεq in QT
ε ,

wε � 0 on GTε ,�
�ε2µ2epwεq � qεI

�
n � ε2µ2epvΓεqn on HT

ε ,

wεp0q � win
ε in Ωεp0q

(3.88)

for win
ε � vinε � vΓεp0q. We multiply the first equation of (3.88) by a test function

φ P H1
Γεptq

pΩεptqq
n, integrate over Ωεptq and subsequently integrate the left-hand side

by parts. By employing the two boundary conditions we obtain the first equation of
(3.89). Moreover, we multiply the second equation by η P L2pΩεptqq and integrate over
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Ωεptq. Then, we obtain the weak form:

Weak form of the instationary Stokes equations in an evolving perforated
domain

Find pwε, qεq P L
2p0, T ;H1

Γεptq
pΩεptqq

nq�L2pΩεptqq with Btwε P L
2p0, T ;L2pΩεptqq

nq

such that, for a.e. t P p0, T q,»
Ωεptq

Btwεpt, xq � φpxqdx�

»
Ωεptq

ε2µ2epwεqpxq : ∇φpxq dx�
»

Ωεptq

qεpxqdivpφpxqq dx

�

»
Ωεptq

pfεpxq �∇pb,εpxqq � φpxq dx

�

»
Ωεptq

BtvΓεpt, xq � φpxq dx� ε2µ2epvΓεpxqq : ∇φpxq dx

»
Ωεptq

divpwεpxqqηpxq dx � �

»
Ωεptq

divpvΓεpxqqηpxqdx

(3.89)

for every pφ, ηq P H1
Γεptq

pΩεptqq
n � L2pΩεptqq and wεp0q � win

ε .

The weak differentiability of wε with respect to time has to be understood in the sense
that the extension of wε by zero is in H1p0, T ;L2pΩqnq and the time derivative is zero
outside of Ωεptq i.e. Btwε P L

2p0, T ;L2pΩεptqq
nq. Thus, the initial condition is also well-

posed.

We make the following assumptions on the data and the domain.

Assumption 3.27. We assume that:

� Ωεptq is a sequence of locally evolving periodic domains over a time interval r0, T s
in the sense of Definition 2.36, with two-scale limit domains

Qptq � tpx, yq P Ω� Y | y P Y �pt, xqu

QT � tpx, y, tq P r0, T s � Ω� Y | px, yq P Qptqu,

for t P r0, T s. We denote the periodic substitute domain by Ωε and the reference cell
by Y �.

Moreover, we assume that the sequence of locally evolving periodic transformation
has improved time regularity, namely, ψε P C

1,1pr0, T s;C2pΩεq
nq and there exists a

constant C such that

εl�1}Btψεpt1q � Btψεpt2q}ClpΩεq
¤ C|t1 � t2|, (3.90)
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for l P t0, 1, 2u. Furthermore, ψε and its derivatives satisfy Assumption 2.41.

For the periodic substitute domain, we assume that

– 0   |Y �|   1,

– Y �
# :� int

� �
kPZn

εk � εY �
�
and intpRnzY �

#q are open sets with C1-boundary, which

are locally located on one side of their boundary and Y �
# is connected,

– Y � is an open connected set with a locally Lipschitz boundary.

For a detailed discussion of the assumptions on the periodic substitute domain see
[All89].

� fε is a sequence in L2pQT
ε q
n and f P L2pp0, T q � Ωqn, such that

fε
2, 2

ÝÝÝÝáÝÝÝÝÝáχQT f.

� vinε is a sequence in H1pΩεp0qq
n with divpvinε q � 0 and there exists

vin0 P L2pΩ;H1pY �p0, xqqnqq with divpvin0 q � 0 such that

}vinε }H1pΩεp0qq ¤ C,

vinε
2

ÝÝáÝÝÝávin0 .

� vΓε is a sequence in H1p0, T ;H2pΩqnq and there exists vΓ P H
1p0, T ;L2pΩ;H1

#pY q
nqq

such that

vΓεp0q � vinε on Γεp0q, vΓp0q � vin0 p0, xq on BY �pt, xq for a.e. x P Ω,

ε�1vΓε

2, 2
ÝÝÝÝáÝÝÝÝÝávΓ, ∇vΓε

2
ÝÝáÝÝÝá∇yvΓ, BtvΓε

2
ÝÝáÝÝÝá0,

ε�1vΓεp0q
2, 2

ÝÝÝÝáÝÝÝÝÝávΓp0q, ∇vΓεp0q
2

ÝÝáÝÝÝá∇yvΓp0q,

}Bt∇vΓε}L2pp0,T q�Ωq � }∇∇vΓε}L2pp0,T q�Ωq ¤ C.

� pb,ε is a sequence in L2p0, T ;H1pΩεptqqq and ppb,0, pb,1q P L
2p0, T ;H1pΩqq�L2pp0, T q�

Ω;H1
#pY

�pt, xqqq, such that

∇pb,ε
2, 2

ÝÝÝÝáÝÝÝÝÝáχQT∇xpb,0 �∇ypb,1.

The Lipschitz regularity with respect to time of Btψε can be transferred to the Jacobians.

Lemma 3.28. Let ψε satisfy Assumption 3.27. Then, there exists a constant C such that

}Ψεpt1q �Ψεpt2q}L8pΩεq � }Ψ�1
ε pt1q �Ψ�1

ε pt2q}L8pΩεq ¤ C|t1 � t2|,

}Jεpt1q � Jεpt2q}L8pΩεq � }J�1
ε pt1q � J�1

ε pt2q}L8pΩεq ¤ C|t1 � t2|,

}Aεpt1q �Aεpt2q}L8pΩεq � }A�1
ε pt1q �A�1

ε pt2q}L8pΩεq ¤ C|t1 � t2|,
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ε}BxA
�1
ε pt1q � BxA

�1
ε pt2q}L8pΩεq ¤ C|t1 � t2|,

}BtΨεpt1q � BtΨεpt2q}CpΩεq
� }BtΨ

�1
ε pt1q � BtΨ

�1
ε pt2q}CpΩεq

¤ C|t1 � t2|,

}BtJεpt1q � BtJεpt2q}CpΩεq
� }BtJ

�1
ε pt1q � BtJ

�1
ε pt2q}CpΩεq

¤ C|t1 � t2|,

}BtAεpt1q � BtAεpt2q}CpΩεq
� }BtA

�1
ε pt1q � BtA

�1
ε pt2q}CpΩεq

¤ C|t1 � t2|

for every t1, t2 P r0, T s and all ε ¡ 0. Moreover, the estimate of Lemma 2.43 holds also
pointwise in time for every t P r0, T s.

Proof. The Lipschitz estimates for Ψε,Ψ
�1
ε , Jε, J

�1
ε , Aε, A

�1
ε follow from the uniform esti-

mates of the time derivatives, which are provided by Lemma 2.43. The Lipschitz estimate
for BtΨε � BtBxψε is given in Assumption 3.27. By means of Lemma 2.42, the entries of
BtAε and BtJε are polynomials in the entries of Ψε and BtΨε. Then, we obtain the Lipschitz
estimate for BtAε and BtJε from the uniform boundedness and Lipschitz regularity of Ψε

and BtΨε.
The uniform Lipschitz estimate for Jε can be transferred to J�1

ε since Jε ¥ cJ . Then,
Lemma 2.42 shows that BtJ

�1
ε and the entries of BtΨ

�1
ε and BtA

�1
ε are polynomials in the

entries of Ψε, BtΨε and J�1
ε , for which we have already shown the uniform boundedness

and Lipschitz estimate.

Remark 3.29. While it is natural to state the assumptions on the right-hand sides hε and
pb,ε in Eulerian coordinates, it can be natural, depending on the application, to state the
assumptions on vΓε in some fixed reference coordinates, i.e. set the assumptions for v̂Γε.
From an analytical point of view, we will also work with the properties of v̂Γε. Therefore,
we note that the assumptions on vΓε in Assumption 3.27 can be replaced by the following
assumptions on v̂Γε, where v̂Γεpt, xq � vΓεpt, ψεpt, xqq, v̂Γpt, x, yq � vΓεpt, x, ψεpt, x, yqq.
We assume that v̂Γε P H

1p0, T ;H1pΩεq
nq and there exists v̂Γ P H

1p0, T ;L2pΩ;H1
#pY

�qnqq
such that

ε�1v̂Γε

2, 2
ÝÝÝÝáÝÝÝÝÝáv̂Γ, ∇v̂Γε

2
ÝÝáÝÝÝá∇yv̂Γ,

ε�1v̂Γεp0q
2, 2

ÝÝÝÝáÝÝÝÝÝáv̂Γp0q, ∇v̂Γεp0q
2

ÝÝáÝÝÝá∇yv̂Γp0q

Btv̂Γε

2, 2
ÝÝÝÝáÝÝÝÝÝá0.

In particular, this implies that there exists a constant C ¡ 0 such that

ε�1}v̂Γε}L2pp0,T q�Ωεq � }∇v̂Γε}L2pp0,T q�Ωεq � }Btv̂Γε}L2pp0,T q�Ωεq ¤ C,

ε�1}v̂Γεp0q}L2pΩεq � }∇v̂Γεp0q}L2pΩεq ¤ C.

Moreover, we assume that there exists a constant C ¡ 0 such that

}Bt∇v̂Γε}L2pp0,T q�Ωεq ¤ C.
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Remark 3.30. In the case of no-slip boundary conditions, i.e. v̂Γε � Btψε, the two-scale
convergence of ε�1v̂Γε and ∇v̂Γε is given by Assumption 2.41. However, the two-scale
convergence of v̂Γεp0q and the uniform estimate of Bt∇v̂Γε lead to a higher time regularity
for Btψε and Btψ0.

3.2.2. Transformation to a periodic substitute domain

We transform the Stokes equations (3.87) as well as the weak formulation (3.89) onto the
reference domain Ωε, where we denote the transformed data by

f̂εpt, xq :� fεpt, ψεpt, xqq, v̂Γεpt, xq :� vΓεpt, ψεpt, xqq, p̂b,εpt, xq :� p̂εpt, ψεpt, xqq

v̂inε pt, xq :� vinε pt, ψεpt, xqq ŵin
ε pt, xq :� win

ε pt, ψεpt, xqq,

(3.91)

where ψε are the locally periodic transformations in the sense of Definition 2.37. We define
the boundaries Γε and Ξε by Γε � ψ�1

ε pt,Γεptqq and Ξε � ψ�1
ε pt,Ξεptqq, respectively, and

recap the notation Ψε :� Bxψε, Jε :� detpΨεq and Aε :� AdjpΨεq. Then, we obtain for

v̂εpt, xq � vεpt, ψεpt, xqq, p̂εpt, xq � pεpt, ψεpt, xqq

the transformed strong formulation:

Instationary Stokes equations in an evolving perforated domain in the
reference coordinates

Btv̂ε �∇v̂Jε Ψ�1
ε Btψε � J�1

ε div
�
ε2µAε2eεpv̂εq

�
�Ψ�J

ε ∇p̂ε � f̂ε in p0, T q � Ωε,

J�1
ε divpAεv̂εq � 0 in p0, T q � Ωε,

v̂ε � v̂Γε on p0, T q � Γε,�
�ε2µ2eεpv̂εq � p̂ε1

�
}Ψ�J

ε n̂}�1Ψ�J
ε n̂ � p̂b,ε}Ψ

�J
ε n̂}�1Ψ�J

ε n̂ on p0, T q � Ξε,

v̂εp0q � v̂inε in Ωε,

(3.92)

where eεpvεq :�
�
Ψ�J
ε ∇v̂ε � pΨ�J

ε ∇v̂εqJ
�
{2, denotes the transformed symmetric

gradient and n̂ the outer normal of Ωε.

For

ŵεpt, xq � wεpt, ψεpt, xqq, q̂εpt, xq � qεpt, ψεpt, xqq (3.93)

we obtain the transformed weak formulation, where we drop the t- and x-dependency of
the functions for the sake of better readability, which we continue in the following when
useful.
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Weak form of the instationary Stokes equations in an evolving perforated
domain in the reference coordinates

Find pŵε, q̂εq P L
2p0, T ;H1

Γε
pΩεq

nq � L2pp0, T q � Ωεq with Btwε P L
2p0, T ;L2pΩεq

nq
such that, for a.e. t P p0, T q,»

Ωε

JεBtŵε � φdx�

»
Ωε

p∇ŵεqJAεBtψε � φdx�

»
Ωε

ε2µAε2eεpŵεq : ∇φdx

�

»
Ωε

q̂ε divpAεφqdx �

»
Ωε

�
Jεf̂ε �AJ

ε p̂b,ε � JεBtv̂Γε � p∇v̂Γεq
JAεBtψε

�
� φdx

�

»
Ωε

ε2µAε2eεpv̂Γεq �∇φdx

»
Ωε

divpAεŵεqη dx � �

»
Ωε

divpAεv̂Γεqη dx,

(3.94)

for every pφ, ηq P H1
Γε
pΩεq

n � L2pΩεq and ŵεp0q � ŵin
ε .

For the transformed data, we obtain the following estimates and convergence results.

Lemma 3.31. Assume that vinε , fε, pb,ε and vΓε satisfy Assumption 3.27 and let ŵin
ε , f̂ε,

p̂b,ε, v̂Γε be given by (3.91). Then,

f̂ε
2, 2

ÝÝÝÝáÝÝÝÝÝáχY � f̂ , ∇p̂b,ε
2, 2

ÝÝÝÝáÝÝÝÝÝáχY �∇xp̂b,0 �∇yp̂b,1 ŵin
ε

2
ÝÝáÝÝÝáŵin

0 ,

χΩεε
�1v̂Γε

2, 2
ÝÝÝÝáÝÝÝÝÝáχY �vΓ, χΩε∇v̂Γε

2, 2
ÝÝÝÝáÝÝÝÝÝáχY �∇yv̂Γ, χΩεBtv̂Γε

2, 2
ÝÝÝÝáÝÝÝÝÝá0

where

f̂pt, xq � fpt, xq, v̂Γpt, x, yq � vΓpt, x, ψ0pt, x, yqq, ŵin
0 px, yq � win

0 px, ψ0p0, t, xqq

p̂b,0pt, xq � pb,0pt, xq, p̂b,1pt, x, yq � pb,1pt, x, ψ0pt, x, yqq �∇xp̂b,0pt, xq �|ψ0pt, x, yq

for a.e. pt, x, yq P p0, T q � Ω� Y �. In particular, there exists a constant C ¡ 0 such that

ε�1}v̂Γε}L2pp0,T q�Ωεq � }∇v̂Γε}L2pp0,T q�Ωεq � }Btv̂Γε}L2pp0,T q�Ωεq ¤ C,

}f̂ε}L2pp0,T q�Ωεq � }ŵin
ε }L2pΩεq � }p̂b,ε}L2pp0,T q�Ωεq � }∇p̂b,ε}L2pp0,T q�Ωεq ¤ C.

Moreover, there exists a constant C ¡ 0

}ŵin
ε }H1pΩεq � }∇v̂Γεp0q}L2pΩεq � }Bt∇v̂Γε}L2pp0,T q�Ωεq ¤ C.

Proof. By means of the results of Chapter 2, we can transfer the two-scale convergences
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and uniform bounds from fε, ∇pb,ε, ε�1vΓε , ∇vΓε , which are given in Assumption 3.27, to

f̂ε, ∇p̂b,ε, ε�1v̂Γε , ∇v̂Γε ,

The two-scale convergence of Btv̂Γε can be deduced with the identity Btv̂Γεpt, xq �
BtvΓεpt, ψεpt, xqq�∇v̂JΓε

pt, xqΨ�1
ε pt, xqBtψεpt, xq and the two-scale convergences of vΓε and

Btψε
2, 2

ÝÝÝÝáÝÝÝÝÝá0 as well as the boundedness of ∇v̂Γε and Ψ�J
ε . Similarly, the uniform bounds

of }Bt∇v̂Γε}L2pp0,T q�Ωεq can be deduced by applying the chain rule and estimating the re-
sulting summands.

In order to transform the initial values win
ε , we note that, for a sequence of locally

evolving periodic transformations in the sense of Definition 2.37, Assumption 2.41 gives
the continuity of the transformations with respect to time. Then, for every point in time
the transformations are locally periodic transformations in the sense of Definition 2.2.

3.2.3. Existence, uniqueness and a-priori estimates

In this section, we show the following existence and uniqueness result for the solution of
the Stokes equations (3.6). It provides also the a-priori estimates, which we will use later
for the two-scale compactness arguments.

Theorem 3.32. For every ε ¡ 0, there exists a unique solution
pŵε, q̂εq P L2p0, T ;H1

Γε
pΩεq

nq � L2pp0, T q � Ωεq with Btŵε P L2pp0, T q � Ωεq of (3.94).
Moreover, there exists a constant C such that

}ŵε}L2pp0,T q�Ωεq � ε}∇ŵε}L2pp0,T q�Ωεq � }q̂ε}L2pp0,T q�Ωεq ¤ C (3.95)

for every ε ¡ 0.

We prove Theorem 3.32 by means of the following generic existence and uniqueness
result for time-dependent differential equations with algebraic constraints. Employing a
subtle scaling of the involved norms, it will provide directly the a-priori estimates (3.95).

For Banach spaces V,W and a P LpV,W 1q, we write apv, wq :� apvqpwq for v P V and
w PW .

Theorem 3.33. Let V,H be separable Hilbert spaces such that V is densely embedded
into H with continuity constant CVÑH , i.e. }v}H ¤ CVÑH}v}V for all v P V , and let Q
be a Banach space. Assume that a P C1pr0, T s;LpH,H 1qq, b P C0,1pr0, T s;LpV, V 1qq and
c P LpV,Q1q satisfy Assumption 3.34 (1.), Assumption 3.34 (2.) and Assumption 3.34 (3.),
respectively. Then, for every g P H1p0, T ;Q1q, f1 P L

2p0, T ;H 1q, f2 P H
1p0, T ;V 1q and

vin P V with cvin � gp0q, there exists a unique solution pv, qq P pH1p0, T ;HqXL2p0, T ;V qq�
L2p0, T ;Qq such that, for a.e. t P p0, T q,

aptqBtvptq � bptqvptq � c�pptq � f1ptq � f2ptq in V 1,

cvptq � gptq in Q1,

vp0q � vin.

(3.96)
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Moreover, there exists a constant C such that

}Btv}L2p0,T ;Hq � }v}L8p0,T ;Hq � }v}L2p0,T ;V q � }p}L2p0,T ;Qq ¤ C,

where C depends only on T,CVÑH , Ca, Cb, Cb1 , Cb2 , Cb3 , Cb4 , α, β, γ, La, Lb1, Lb3, }v
in}V ,

}g}H1p0,T ;Q1q, }f1}L2p0,T ;H 1q, }f2}H1p0,T ;V 1q, which are given in Assumption 3.34, but does
not depend on }c}LpV,Q1q.

Proof. A proof of Theorem 3.33 is given in Appendix A.

Assumption 3.34. (1.) Let a P C1pr0, T s;LpH,H 1qq be Lipschitz continuous, uniformly
coercive and symmetric, i.e. there exist constants La, α, Ca such that

}apt1q � apt2q}LpH,H 1q ¤ La|t1 � t2| for all t1, t2 P r0, T s, (3.97)

aptqpv, vq ¥ α}v}2H for all t P r0, T s and all v P H, (3.98)

aptqpv, wq � aptqpw, vq for all t P r0, T s and all v, w P H, (3.99)

We write Ca :� }a}Cpr0,T s;LpH,H 1qq.

(2.) Let b P C0,1pr0, T s;LpV, V 1qq. Assume that b can be decomposed into

b � b1 � b2 � b3 � b4 (3.100)

for

b1 P C0,1pr0, T s;LpV, V 1qq,

b2 P C0,1pr0, T s;LpV,H 1qq,

b3 P C0,1pr0, T s;LpH,V 1qq,

b4 P C0,1pr0, T s;LpH,H 1qq,

with Lipschitz constants Lb, Lb1 , Lb2 , Lb3 , Lb4, i.e.

}b1pt1q � b1pt2q}LpV,V 1q ¤ Lb1 |t1 � t2|,

}b2pt1q � b2pt2q}LpV,H 1q ¤ Lb2 |t1 � t2|,

}b3pt1q � b3pt2q}LpH,V 1q ¤ Lb3 |t1 � t2|,

}b4pt1q � b4pt2q}LpH,H 1q ¤ Lb4 |t1 � t2|.

Moreover, we assume that b1 is symmetric and uniformly coercive, i.e. there exists
a constant β ¡ 0 such that

b1ptqpv, vq ¥ β}v}2V ,

b1ptqpv, wq � b1ptqpw, vq

for every t P r0, T s and all v, w P V .
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We write Cb :� }b}Cpr0,T s;LpV,V 1qq, Cb1 :� }b1}Cpr0,T s;LpV,V 1qq, Cb2 :� }b2}Cpr0,T s;LpV,H 1qq,
Cb3 :� }b3}Cpr0,T s;LpH,V 1qq and Cb4 :� }b4}Cpr0,T s;LpH,H 1qq.

(3.) Let c P LpQ,V 1q fulfil a uniform inf–sup condition, i.e. there exists γ ¡ 0, such that

inf
pPQzt0u

sup
vPV zt0u

cpv, pq

}p}Q}v}V
¥ γ.

Now, we use this generic existence results in order to show the existence, uniqueness
and a-priori estimates for the transformed instationary Stokes equation.

Proof of Theorem 3.32. To apply Theorem 3.33 for (3.94), we need a time-independent
algebraic constraint, which we obtain by substituting

uε � Aεŵε, i.e. ŵε � A�1
ε uε � J�1

ε Ψεuε

in (3.94) and using test functions A�1
ε φ. For the substitution in the time-derivative term,

we note that

JεBtpA
�1
ε uεq �A

�1
ε φ � JεBtA

�1
ε uε �A

�1
ε φ� JεA

�1
ε Btuε �A

�1
ε φ

� BtA
�1
ε uε �Ψεφ� JεA

�1
ε Btuε �A

�1
ε φ

and for the spatial derivatives, we use the Leibniz rule

∇pA�1
ε φq � ∇pA�1

ε qφ�∇φA�J
ε .

Then, we obtain the following weak form, which is equivalent to (3.94):

Find uε P L
2p0, T ;H1

Γε
pΩεq

nq with Btuε in L2p0, T ;L2pΩεq
nq and q̂ε P L

2p0, T ;L2pΩεqq
such that, for a.e. t P p0, T q,

aεptqpBtuεptq, φq � bεptqpuεptq, φq � cεpqεptq, φq � f1,εptqpφq � f2,εptqpφq,

cεpqεptq, θq � gεptqpθq
(3.101)

for every pφ, θq P H1
Γε
pΩεq

n � L2pΩεq, where

aεptqpu, vq :�pJεptqA
�1
ε ptqu,A�1

ε ptqvqL2pΩεq � pΨεptqu,A
�1
ε ptqvqL2pΩεq,

bεptqpu, vq :�
4̧

i�1

biεptqpu, vq,

b1εptqpu, vq :�
�
ε2µ2e1εpuq, A

J
ε ptq∇vA�J

ε ptq
�
L2pΩεq

,

b2εptqpu, vq :�
�
ε2µ2e1εpuqptq, A

J
ε ptq∇pA�1

ε ptqqv
�
L2pΩεq

,

b3εptqpu, vq :�
�
ε2µ

�
Ψ�J
ε ptq∇pA�1

ε ptqqu�
�
Ψ�J
ε ptq∇pA�1

ε ptqqu
�J�

, AJ
ε ptq∇vA�J

ε ptq
�
L2pΩεq

�
�
A�1
ε ptq∇uJAεptqBtψεptq, A�1

ε v
�
L2pΩεq

,
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b4εptqpu, vq :�
�
ε2µ

�
Ψ�J
ε ptq∇pA�1

ε ptqqu�
�
Ψ�J
ε ptq∇pA�1

ε ptqqu
�J�

, AJ
ε ptq∇pA�1

ε qptqv
�
L2pΩεq

� pBtpA
�1
ε qptqu,ΨεptqvqL2pΩεq �

�
p∇pA�1

ε qptquqJAεptqBtψεptq, A
�1
ε v

�
L2pΩεq

,

cεpp, vq :�pdivpvq, pqL2pΩεq,

f1,εptqpuq :�pf̂εptq,ΨεptqφqΩε � p∇p̂b,εptq, uqL2pΩεq � pJεptqBtv̂Γε , A
�1
ε ptquqL2pΩεq

� pp∇v̂Γεptqq
JAεptqBtψεptq, A

�1
ε ptquqL2pΩεq,

f2,εptqpvq :�� pε2µAεptq2eεpv̂Γεqptq, A
�1
ε ptq∇uqL2pΩεq,

gεptqppq :�� pdivpAεptqv̂Γεptqq, pqL2pΩεq � �pAεptq : ∇v̂Γεptq, pqL2pΩεq

for

e1εpuqpt, xq �
�
Ψ�J
ε pt, xq∇upxqA�J

ε pt, xq �
�
Ψ�J
ε pt, xq∇upxqA�J

ε pt, xq
�J�

{2

We set Vε � H1
Γε
pΩεq

n, Hε � L2pΩεq
n and Qε � L2pΩεq with the scalar products and

norms defined by

}v}2Vε :� pv, vqVε pv, wqVε :� ε2p∇v,∇wqL2pΩεq for v, w P Vε,

}w}2Hε
:� pw,wqHε pv, wqVε :� pv, wqL2pΩεq for v, w P Hε,

}q}2Vε :� pq, qqQε pq, pqQε
:� pq, pqL2pΩεq for p, q P Qε.

Due to the Poincaré inequality (3.14), } � }Vε actually defines a norm on Vε and p�, �qVε is
a scalar product. Now, we show that these bilinear forms and right-hand sides fulfil the
assumptions of Theorem 3.33. Moreover, we show that all constants which appear in the
estimate of Theorem 3.33 can be chosen ε-independently.

� embedding constant: From Lemma 3.13, we obtain a constant C such that

}v}Hε � }v}L2pΩεq ¤ εC}∇v}L2pΩεq � C}v}Vε

and, thus, the embedding constant of Vε into Hε is independent of ε.

� bilinear form aε:

– continuity of aεptq: Using the Hölder inequality and the boundedness of Ψε and
A�1
ε given by Lemma 2.40, we obtain a constant Ca such that

|aεptqpu, vq| � |pΨεptqu,A
�1
ε ptqvqL2pΩεq|

¤ }Ψεptq}L8pΩεq}A
�1
ε ptq}L8pΩεq}u}Hε}v}Hε ¤ Ca}u}Hε}v}Hε

for all t P r0, T s and all u, v P Hε.

– Lipschitz regularity with respect to time: Using again the uniform bounds of
the coefficients from Lemma 2.40 and their uniform Lipschitz estimates with
respect to time, which are provided by Lemma 3.28, we obtain a constant
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La ¡ 0 such that

|paεpt1q � aεpt2qqpu, vq|

�|pΨεpt1qu,A
�1
ε pt1qvqL2pΩεq � pΨεpt2qu,A

�1
ε pt2qvqL2pΩεq|

¤|pΨεpt1q �Ψεpt2qu,A
�1
ε pt1qvqL2pΩεq| � |pΨεpt2qu,A

�1
ε pt1q �A�1

ε pt2qvqL2pΩεq|

¤}Ψεpt1q �Ψεpt2q}L8pΩεq}A
�1
ε pt1q}L8pΩεq}u}Hε}v}Hε

� }Ψεpt2q}L8pΩεq}A
�1
ε pt1q �A�1

ε pt2q}L8pΩεq}u}Hε}v}Hε

¤La|t1 � t2|}u}Hε}v}Hε .

(3.102)

for every t1, t2 P r0, T s and all u, v P Hε.

– coercivity of aεptq: Employing the essential boundedness of the coefficient given
by Lemma 2.40, we obtain a constant α such that

}v}2Hε
� }J�1{2

ε ptqAεptqJ
1{2
ε ptqA�1

ε ptqv}2L2pΩεq

¤ }J�1{2
ε ptqAεptq}

2
L8pΩεq

}J�1{2
ε ptqA�1

ε ptqv}2L2pΩεq

¤ 1
α}J

�1{2
ε ptqΨεptqv}

2
L2pΩεq

� 1
αpJεptqA

�1
ε ptqv,A�1

ε ptqvqΩε

� 1
αaεptqpv, vq

every t P r0, T s and all u, v P Hε.

– symmetry of aεptq:

aεptqpu, vq � pJεptqA
�1
ε ptqu,A�1

ε ptqvqΩε � aεptqpv, uq

for every t P r0, T s and all u, v P Hε.

� bilinear form bεptq: We note that b1εptq P LpVε, V 1
ε q, b

2
εptq P LpVε, H 1

εq, b
3
εptq P

LpHε, V
1
ε q, b

4
εptq P LpHε, H

1
εq, for every t P r0, T s. Hence, by the embedding of

Vε into Hε, we obtain bεptq �
°4
i�1 b

4
εptq P LpVε, V 1

ε q.

– continuity of bε,iptq: Lemma 2.40 provides uniform essential bounds for the
coefficients Ψ�J

ε , A�J
ε and ε∇A�1

ε . Moreover, having the ε-scaling in the norm
} � }Vε , we observe that every gradient, no matter if it belongs to a coefficient
or to u or v, requires one factor ε for the ε-uniform estimates.

We separate the symmetric gradients and write b1εptq and b
2
εptq as two sums each.

Then, we observe that each summand contains two gradient terms, which get
exactly balanced with the ε2 term. Thus, we obtain with the Hölder inequality
constants Cb1 , Cb2 ¡ 0 such that

|b1εptqpu, vq| ¤ε
2µ2}Ψ�J

ε ptq}L8pΩεq}∇u}L2pΩεq}A
�J
ε ptq}L8pΩεq

}AJ
ε ptq}L8pΩεq}∇v}L2pΩεq}A

�J
ε ptq}L8pΩεq

¤Cb1ε}∇u}L2pΩεqε}∇v}L2pΩεq ¤ Cb1}u}Vε}v}Vε
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for every t P r0, T s and all u, v P Vε and

|b2εptqpu, vq| ¤ Cb2ε}∇u}L2pΩεq}v}L2pΩεq ¤ Cb1}u}Vε}v}Hε

for every t P r0, T s and all u P Vε and v P Hε.

In order to estimate b3εptq and b
4
εptq, we use the same argument. However, the

second summand of b3εptq and the last summand b4εptq have one gradient term but
no explicit ε-factor. Nevertheless, we can estimate these terms uniformly with
respect to ε since the essential bound for ε�1Btψε generates the missing ε-factor.
Moreover, for the second summand of b4εptq, we note that BtA

�1
ε is uniformly

essentially bounded (see Lemma 2.40). Hence, these bilinear forms can be
estimated with the Hölder inequality and we obtain constants Cb3 , Cb4 ¡ 0
such that

|b3εptqpu, vq| ¤ Cb3}u}L2pΩεqε}∇v}L2pΩεq ¤ Cb3}u}Hε}v}Vε

for every t P r0, T s and all u P Vε and v P Hε and

|b4εptqpu, vq| ¤ Cb4}u}L2pΩεq}v}L2pΩεq ¤ Cb4}u}Hε}v}Hε

for every t P r0, T s and all u, v P Hε.

– Lipschitz regularity of bε: Using the Lipschitz estimates and the uniform bounds
for the coefficients, we can follow the argumentation of (3.102) in order to derive
the following Lipschitz regularities. The same argumentation that we have used
for the derivation of the uniform bounds for bε,iptq shows that these Lipschitz
constants are independent of ε. Thus, we obtain constants Lb1 , Lb2 , Lb3 , Lb4 ¡ 0
such that

|pb1εpt1q � b1εpt2qqpu, vq| ¤ Lb1 |t1 � t2|}u}Vε}v}Vε for all u, v P Vε,

|pb2εpt1q � b2εpt2qqpu, vq| ¤ Lb2 |t1 � t2|}u}Vε}v}Hε for all u P Vε, v P Hε,

|pb3εpt1q � b3εpt2qqpu, vq| ¤ Lb3 |t1 � t2|}u}Hε}v}Vε for all u P Hε, v P Vε,

|pb4εpt1q � b4εpt2qqpu, vq| ¤ Lb4 |t1 � t2|}u}Hε}v}Hε for all u, v P Hε

for all t1, t2 P r0, T s.

– coercivity of b1ε: First, we rewrite b
1
εptq. Then, we use the essential boundedness

of J�1
ε ptq ¤ c�1

J , which provides

}e1εpwqptq}L2pΩεq � }J�1{2
ε ptqJ1{2

ε ptqe1εpwqptq}L2pΩεq ¤ c�1
J }J1{2

ε ptqe1εpwqptq}L2pΩεq.

Afterwards, we employ the Korn-inequality of Lemma 3.35 from below, which
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provides a constant β ¡ 0 such that

b1εptqpu, vq �
1
2

�
ε2µ2e1εpvqptq, A

J
ε ptq∇vA�J

ε ptq �
�
AJ
ε ptq∇vA�J

ε ptq
�J�

L2pΩεq

�ε2µ
�
e1εpvqptq, Jεptqe

1
εpwqptq

�
L2pΩεq

� ε2µ}
a
Jεptqe

1
εpwqptq}L2pΩεq

¥ε2µcJ}e
1
εpwqptq}L2pΩεq ¥

1
β ε

2}∇v}2L2pΩεq
¥ 1

β }v}
2
Vε

for every t P r0, T s and all v P Vε.

– symmetry of b1ε: The symmetry follows by rewriting b1ε as we did for showing
the coercivity of b1ε.

� bilinear form cε:

– continuity: From the Hölder inequality, we obtain

cεpv, qq � pp,divpvqqL2pΩεq ¤ C}p}L2pΩεq}∇vε}L2pΩεq ¤ ε�1C}p}Qε}vε}Vε
(3.103)

for every p P Pε and v P Vε. We note that cε is not uniformly bounded with
respect to ε. However, cε is not incorporated in the estimates of the solution
that is provided by Theorem 3.33.

– inf–sup estimate: with the operator div�1
ε : L2pΩεq Ñ H1

Γε
pΩεq

n from Lemma 3.8,
we obtain γ ¡ 0 such that

inf
pPQεzt0u

sup
vPVεzt0u

|cεpv, pq|

}p}Qε}v}Vε
¥ inf

pPQεzt0u

|cεpdivpdiv
�1
ε p, vqq|

}p}Qε} div
�1
ε p}Vε

� inf
pPQεzt0u

}p}2L2pΩεq

}p}Qεε}∇ div�1
ε ppq}L2pΩεq

¥ inf
pPQεzt0u

}p}2Qε

}p}Qεγ
�1}p}Qε

¥ γ.

� estimates on the data (right-hand sides):

– boundedness of f1,ε: Employing the Hölder inequality, the estimates on the
coefficients, which are given by Lemma 2.40 and the bounds on the data from
Lemma 3.31, we can estimate the first two summands of f1,εptq by

|pJεptqf̂εptq, A
�1
ε ptquqL2pΩεq| ¤ C}f̂εptq}}u}L2pΩεq ¤ Kεptq}u}Hε ,

|pAJ
ε ptq∇p̂b,εptq, A�1

ε ptquqL2pΩεq| ¤ C}∇p̂b,εptq}L2pΩεq}u}L2pΩεq ¤ Kεptq}u}Hε

for some Kε P L
2p0, T q, which is ε-independently bounded in L2p0, T q, i.e. there

exists a constant C such that }Kε}L2p0,T q ¤ C. The remaining summands of
f1,εptq can be uniformly estimated with respect to time. For this, we use the
Hölder inequality and the boundedness of the coefficients and the data Btv̂Γε

and v̂Γε

|pJεptqBtv̂Γεptq, A
�1
ε ptquqL2pΩεq| ¤ C}Btv̂Γεptq}L2pΩεq}u}Hε ¤ C}u}Hε
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|pp∇v̂Γεptqq
JAεptqBtψεptq, A

�1
ε ptquqL2pΩεq|,

¤ C}∇v̂Γεptq}L2pΩεq}Btψεptq}L8pΩεq}u}Hε ¤ εC}u}Hε .

After integrating over p0, T q, we obtain

}f1,ε}L2p0,T ;H 1
εq
} ¤ C.

These calculations show that the summands of f1,ε, which belong to v̂Γε and
∇v̂Γε are of order ε. Therefore, they will also vanish in the homogenisation
process.

– boundedness of f2,ε: By similar estimates as used for f1,ε, we obtain

|f2,εptqpuq| ¤ εC}u}Vε

for every t P r0, T s. Since f2,ε is of order ε, it will also vanish during the
homogenisation process later.

Moreover, using the Leibniz rule, the Hölder inequality and the boundedness of
the coefficients as well as the bounds of their derivatives (see Lemma 2.8 and
Lemma 2.43), we can estimate the time derivative of f2,ε by

|Btf2,εptqpuq| ¤ ε2µ|pBtAεptqeεpv̂Γεqptq,∇uqL2pΩεq|

� ε2µ|pAεptq
�
BtΨ

�J
ε ptq∇v̂Γεptq � pBtΨ

�J
ε ptq∇v̂Γεptqq

J
�
,∇uqL2pΩεq|

� ε2µ|pAεptqeεpBtv̂Γεqptq,∇uqL2pΩεq|

¤ εC
�
}∇v̂Γεptq}L2pΩεq � }Bt∇v̂Γεptq}L2pΩεq

�
ε}u}Vε

After integrating over p0, T q an applying the boundedness of ∇v̂Γε and εBt∇v̂Γε ,
we get

}Btf2,ε}L2p0,T ;V 1
εq
¤

�
εC � C}Bt∇v̂Γε}L2pp0,T q�Ωεq

�
¤ C.

– boundedness of gε: With the Hölder inequality and the uniform bound of Aεptq,
∇v̂Γεptq and Bt∇v̂Γε , we get

}gε}L20,T ;Q1εq
�}Aε : ∇v̂Γε}L2pp0,T q�Ωεq

¤ C}Aεptq}L8pp0,T q�Ωεq}∇v̂Γε}L8pp0,T q�Ωεq ¤ C

}Btgε}L20,T ;Q1εq
�}BtpAε : ∇v̂Γεq}L2pp0,T q�Ωεq

¤C}BtAε}L8pp0,T q�Ωεq}∇v̂Γε}L8p0,T ;L2pΩεqq

� C}Aε}L8pp0,T q�Ωεq}Bt∇v̂Γε}L2pp0,T q�Ωεq ¤ C.

Having shown all the assumptions of Theorem 3.33 with constants independent of ε, we
obtain a unique solution puε, q̂εq P L

2p0, T ;Vεq � L2p0, T ;Qεq with Btuε P L
2p0, T ;Hεq of
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(3.101) and a constant C independent of ε such that

}uε}L8p0,T ;Hεq � ε}∇uε}L2p0,T ;Vεq � }q̂ε}L2p0,T ;Qεq ¤ C. (3.104)

Since the weak form (3.101) is equivalent to the weak form (3.94), we obtain a unique
solution pŵε, q̂εq P L2p0, T ;H1

Γε
pΩεq

nq � L2p0, T ;L2pΩεqq with Btuε P L2p0, T ;L2pΩεq
nq.

Moreover, we can transfer the uniform estimate (3.104) onto pŵε, q̂εq via

ŵε � A�1
ε uε, Btŵε � BtA

�1
ε uε �A�1

ε Btŵε, ε∇ŵε � ε∇A�1
ε uε � ε∇uεA�J

ε

using the uniform essential boundedness of BtA
�1
ε , ε∇A�1

ε , A�J
ε .

Korn-type inequality

We have used the following Korn-type inequality in order to show the coercivity of b1ε
in the proof of Theorem 3.32.

Proposition 3.35. There exists a constant β such that

}Ψ�J
ε ptq∇vA�1

ε ptq � pΨ�J
ε ptq∇vA�1

ε ptqqJ}2L2pΩεq
¥ β}∇v}2L2pΩεq

(3.105)

for all v P H1
Γε
pΩεq

n and every ε ¡ 0.

Compared to the Korn-type inequality from Proposition 3.9, which we have used for
the quasi-stationary case, the gradient is now multiplied not only from one but from both
sides by matrices. Nevertheless, it can be shown by a similar argumentation and we point
out the main differences. Again, we reduce it to a Korn-type inequality for a fixed domain
and fixed space-dependent coefficient.

Lemma 3.36. Let 1   p   8 and U be an open, bounded domain in Rn for n ¥ 2 with
Lipschitz boundary BU . Let S be an open subset of BΩ with |S| ¡ 0. Let A,B P CpUqn�n

with detpApxqq,detpBpxqq ¥ c ¡ 0. Then, there exists a constant α ¡ 0 such that»
U

|Apxq∇upxqBpxq � pApxq∇upxqBpxqqJ|p dx ¥ α

»
U

|∇upxq|p dx (3.106)

for every u PW 1,p
S pUqn.

In order to prove Lemma 3.36, we reduce it to the following generic Korn-type inequality,
which was shown in [Pom03]. Therefore, we need the following definition.

Definition 3.37. Let m,n, r P N. A mapping A : Rm�n Ñ Rr with r ¥ m is called elliptic
if ApηξJq � 0 for all η P Rm, ξ P Rn with η � 0 and ξ � 0.

Lemma 3.38. Let 1   p   8 and U � Rn (n ¥ 2) be a connected, open, bounded
Lipschitz domain with V � BU . Let m, r P N with r ¥ m and let Apxq : Rm�n Ñ Rr be a
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family of linear elliptic mappings whose coefficients aijk are continuous on U . Then, there
exists a constant c ¡ 0 such that�»

U
|Apxq∇vpxq|p dx


1{p

�

�»
V
|vpxq|p dσx


1{p

¥ c}v}W 1,ppUq

for all v PW 1,ppUqm.

Proof. See [Pom03, Theorem 2.4].

Extending the argumentation of [Pom03, Corollary 4.1], we can prove Lemma 3.36.

Proof of Lemma 3.36. Due to Lemma 3.38 it suffcies to show that

F ÞÑ AFB � pAFBqJ P Rn�n � Rn
2

is elliptic, i.e.

ApηξJqB � pApηξJqBqJ � 0 (3.107)

for all η, ξ P Rnzt0u. Let η, ξ P Rnzt0u and assume that (3.107) does not hold, then
ApηξJqB is skew-symmetric, which implies that rankpApηξJqBq � 0 or rankApηξJqB ¥ 2.
Since detpAq, detpBq � 0, we obtain rankpApηξJqBq � rankpηξJq � 1, which is a contra-
diction. Thus, F ÞÑ AFB � pAFBqJ is elliptic.

Proof of Proposition 3.35. Proposition 3.35 can be traced back to Lemma 3.36 by the
same arguments that we used in order to trace back Proposition 3.9 to Lemma 3.10.

3.2.4. Identification of the two-scale limit problem

Now, we derive the following instationary two-pressure Stokes equations as the two-scale
limit problem of (3.92).
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3.2. Homogenisation of instationary Stokes flow

Instationary two-pressure Stokes equations in the reference coordinates

Btŵ0 �∇yŵ
J
0 Ψ

�1
0 Btψ0 � J�1

0 divy
�
µA0Ψ

�J
0 ∇yŵ0

�
�Ψ�J

0 ∇xp̂�Ψ�J
0 ∇yp̂1 � f in p0, T q � Ω� Y �,

J�1
0 divypA0ŵ0q � 0 in p0, T q � Ω� Y �,

ŵ0 � 0 on p0, T q � Ω� Γ,

ŵ0p0q � v̂in in Ω� Y �,

y ÞÑ ŵ0, q̂1 Y -periodic,

divx

� »
Y �

A0ŵ0 dy
	
�

»
Y �

divpA0v̂Γqdy in p0, T q � Ω,

p̂ � p̂b,0 on p0, T q � BΩ,

(3.108)

The weak formulation of this instationary two-pressure Stokes equation is given by:

Weak form of the instationary two-pressure Stokes equations in the ref-
erence coordinates

Find pŵ0, q̂, q̂1q P L2pp0, T q � Ω;H1
Γ#pY

�qnq � L2p0, T ;H1
0 pΩqq � L2pp0, T q �

Ω;L2
0pY

�qq with Btŵ0 P L
2pp0, T q � Ω;L2pY �qnq such that, for a.e. t P p0, T q,»

Ω

»
Y �

J0Btŵ0 � φdy dx�

»
Y �

p∇ŵ0q
JA0Btψ0 � φdy dx�

»
Ω

»
Y �

µA0Ψ
J
0 ∇yŵ0 : ∇yφdy dx

�

»
Ω

»
Y �

AJ
0 ∇xq̂ � φ� q̂1 divypA0φqdy dx �

»
Ω

»
Y �

pJ0f �AJ
0 p∇xp̂b,0 �∇yp̂b,1qq � φdy dx,

»
Ω

divx

� »
Y �

A0ŵ0 dy
	
η0 dx � �

»
Ω

»
Y �

divy
�
A0v̂Γ

�
dy η0 dx,»

Ω

»
Y �

divypA0ŵ0qη1 dy dx � 0

(3.109)

for all pφ, η0, η1q P L
2pΩ;H1

Γ#pY
�qnq �H1

0 pΩq � L2pΩ;L2pY �qq and ŵ0p0q � ŵin
0 .

For the identification of the limit problem, we can partially follow the argumentation
for the stationary case. However, we cannot derive a strong L2-compactness result for
the pressure q̂ε or some extension since we have no additional time regularity for the
pressure, which would be needed for compactness arguments. Nevertheless, we can show
the weak two-scale convergence of q̂ε and that its limit is constant with respect to y, which
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Chapter 3. Stokes flow in porous media with evolving microstructure

is sufficient for the identification of the limit equations.

Theorem 3.39. Let pŵε, q̂εq be the solution of (3.92). Then,

˜̂wε 2, 2
ÝÝÝÝáÝÝÝÝÝá˜̂w0, (3.110)

ε∇̃ŵε
2, 2

ÝÝÝÝáÝÝÝÝÝá∇̃yŵ0, (3.111)

εB̃tŵε
2, 2

ÝÝÝÝáÝÝÝÝÝáB̃tŵ0, (3.112)

q̂ε
2, 2

ÝÝÝÝáÝÝÝÝÝáχY � q̂ (3.113)

where pŵ0, q̂q P L
2pp0, T q � Ω;H1

Γ#pY
�qnq � L2p0, T ;H1

0 pΩqq are the first two components
of the solution of (3.109).

Proof. Due to the a-priori estimates (3.95), we can apply two-scale compactness results

and obtain ŵ0 such that (3.110)–(3.112) and ŵεp0q
2

ÝÝáÝÝÝáŵ0p0q hold for a subsequence.

Moreover, from ŵεp0q � ŵin
ε

2
ÝÝáÝÝÝáŵin

0 it follows that ŵ0p0q
2

ÝÝáÝÝÝáŵin
0 .

By arguing as in Lemma 3.16 for the quasi-stationary case, it can be shown that ŵ0

fulfils the microscopic incompressibility and the macroscopic compressibility condition of
(3.109), as well as that ŵ0 is zero on Γ.

Due to the a-priori estimate (3.95) for the pressure q̂ε, we obtain q̂ P L
2pp0, T q�Ω�Y �q

such that q̂ε
2, 2

ÝÝÝÝáÝÝÝÝÝáq̂ for a further subsequence. In order to show that q̂ is independent
of y, i.e. q̂ � χY � q̂ for q̂ P L2pp0, T q � Ωq, we test (3.94) by εϕptqA�1

ε pt, xqφpx, xε q for
φ P C8pΩ;H1

Γ#pY
�qnq with divypφq � 0 and ϕ P Cpr0, T sq and integrate over p0, T q. Due

to the factor ε in the test function, all terms in (3.94) besides the pressure term are of
order ε at least (for the second summand on the left-hand side, we note that the factor
Btψε is of order ε which compensates ∇ŵ0, which is of order ε�1). Therefore, these terms
vanish in the limit εÑ 0 and we obtain

0 � lim
εÑ0

T»
0

»
Ωε

q̂εpt, xqdiv
�
εφ

�
x, xε

��
ϕptq dx dt

� lim
εÑ0

T»
0

»
Ωε

q̂εpt, xqϕptq
�
ε divx

�
φ
�
x, xε

��
� divy

�
φ
�
x, xε

���
dx dt

�

T»
0

»
Ω

»
Y p

q̂pt, x, yqϕptqdivypφpx, yqq dy dx dt,

which shows that q̂ is constant on Y �, i.e. q̂pt, x, yq � χY �pyqq̂pt, xq.
Now, we can identify the limit equation as in the quasi-stationary case, which we only

sketch here. First, we test (3.94) by ϕptqA�1
ε pt, xqφpx, xε q for φ P C8pΩ;H1

Γ#pY
�qnq with

divypφq � 0, ϕ P Cpr0, T sq and integrate over p0, T q. Then, we pass to the limit εÑ 0 and
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3.2. Homogenisation of instationary Stokes flow

increase the set of test function by a density argument. Then, we show that q̂ is weakly
differentiable with respect to space, i.e. q̂ P L2p0, T ;H1

0 pΩqq. Afterwards, we reconstruct
the microscopic pressure q̂1 such that the limit equation holds for arbitrary test functions
which are not divergence-free. Finally, we show that

³
Y �

A0Ψ
�J
0 ∇ŵJ

0 : ∇φdy � 0, which

gives (3.109).

The uniqueness of the solution of the limit problem can be shown by means of The-
orem 3.33 after a substitution of the solution and the test function as in the ε-scaled
problem. The inf–sup estimate for the algebraic divergence constraints can be shown as
in Lemma 3.20.

Due the uniqueness of the solution of the limit equation, the convergence holds for the
whole sequence.

Back-transformation of the instationary two-pressure Stokes equations
After a back-transformation of (3.109), we obtain the following instationary two-pressure
Stokes equations

Weak form of the instationary two-pressure Stokes equations

Find w0 P L2pp0, T q � Ω;H1
Γpt,xq#pY

�pt, xqqnq with Btŵ0 P L2pp0, T q �

Ω;L2pY �pt, xqqnq and q P L2p0, T ;H1
0 pΩqq, q1 P L

2pp0, T q � Ω;L2
0pY

�pt, xqqq such
that, for a.e. t P p0, T q,»

Ω

»
Y �pt,xq

Btw0 � φdy dx�

»
Ω

»
Y �pt,xq

µ∇yw0 : ∇yφdy dx

�

»
Ω

»
Y �pt,xq

∇xq � φ� q1 divypφqdy dx �

»
Ω

»
Y �pt,xq

pf �∇xpb,0 �∇ypb,1q � φdy dx,

»
Ω

divx

� »
Y �pt,xq

w0 dy
	
η0 dx � �

»
Ω

»
Y �pt,xq

divy
�
vΓ
�
dy η0 dx,

»
Ω

»
Y �pt,xq

divypw0qη1 dy dx � 0

(3.114)

for all pφ, η0, η1q P L2pΩ;H1
Γpt,xq#pY

�pt, xqqnq � H1
0 pΩq � L2pΩ;L2pY �pt, xqqq and

w0p0q � win
0 .

The time derivative Btw0 has to be understood in the sense of the extension by zero as
already in the ε-scaled case, i.e. w̃0 P H

1p0, T ;L2pΩ� Y qq. The strong form of (3.114) is
given by:
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Chapter 3. Stokes flow in porous media with evolving microstructure

Instationary two-pressure Stokes equations

Btw0 � divy
�
µ∇yw0

�
�∇xp�∇yp1 � f in QT ,

divypw0q � 0 in QT ,

v0 � 0 on GT ,

v0p0q � vin on Qp0q,

y ÞÑ w0, p1 Y -periodic,

divx

� »
Y �

w0 dy
	
�

»
Ω

»
Y �pt,xq

divpvΓq dy in p0, T q � Ω,

p � pb,0 on p0, T q � BΩ,

(3.115)

Theorem 3.40. Let pwε, qεq be the solution of (3.89). Then, it holds

w̃ε
2

ÝÝáÝÝÝáw̃0, (3.116)

ε∇̃wε
2

ÝÝáÝÝÝá∇̃yw0, (3.117)

εB̃twε
2

ÝÝáÝÝÝáB̃tw0, (3.118)

qε
2

ÝÝáÝÝÝáχY �q (3.119)

where pw0, qq P L
2pp0, T q�Ω;H1

Γpt,xq#pY
�pt, xqqnq�L2p0, T ;H1

0 pΩqq are the first two com-

ponents of the solution of (3.114).

Proof. The back-transformation can be done analogously to the quasi-stationary case.

3.2.5. A Darcy law with memory for evolving microstructure

Now, we separate the micro- and macroscopic variables in (3.108) and, thus, derive effec-
tive equations, namely a Darcy law with memory for evolving microstructure. In order
to shorten the writing, we consider in the following only the case of no-slip boundary
condition, i.e. v̂Γε � Btψε, which yields»

Y �

divypA0pt, x, yqBtψ0pt, x, yqq dy � BtΘpt, xq (3.120)

for Θpt, xq � |Y �pt, xq|. The general case can be done as in the quasi-stationary case.
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3.2. Homogenisation of instationary Stokes flow

As in the quasi-stationary case, we aim to express the macroscopic quantities

wpt, xq :�

»
Y �

J0pt, x, yqŵ0pt, x, yq dy �

»
Y �

w0pt, x, yqdy, p :� q̂ � p̂b,0 � q � pb,0.

(3.121)

In order to express w explicitly by means of cell problems, we have to use two different
types of cell problems. The first cell problems take into account the source terms of
the momentum equation of the instationary two-pressure Stokes equation, namely, the
macroscopic pressure and the force term. The solutions pζ̂ips, x; t, yq, π̂ips, x; t, yqq of the
cell problems depend on the parameters s P p0, T q and x P Ω, which model the initial time
and the macroscopic position, respectively, and on the variables t P ps, T q and y P Y �,
which represent the time and microscopic position.

Cell problems for the permeability coefficient in the reference coordi-
nates

Btζ̂i �∇y ζ̂
J
i Ψ

�1
0 Btψ0 � J�1

0 divypA0Ψ
�J
0 ∇y ζ̂iq �Ψ�J

0 ∇π̂i � 0 in ps, T q � Y �,

J0 divypA0ζ̂iq � 0 in ps, T q � Y �,

ζ̂i � 0 on ps, T q � Γ,

y ÞÑ ζ̂i, π̂i Y -periodic,

ζ̂ipt � sq � ei in Y �,

(3.122)

for parameters ps, xq P p0, T q � Ω.

The second cell problem is (3.123) it has a solution ζ̂ inpt, x, yq, π̂inpt, x, yq and takes into
account the initial condition of the instationary two-pressure Stokes equation.

Cell problems for the initial values in the reference coordinates

Btζ̂
in � p∇y ζ̂

inqJΨ�1
0 Btψ0 � J�1

0 divypµA0Ψ
�J
0 ∇y ζ̂

inq �Ψ�J
0 ∇π̂in � 0 in p0, T q � Y �,

J0 divypA0ζ̂
inq � 0 in p0, T q � Y �,

ζ̂ in � 0 on p0, T q � Γ,

y ÞÑ ζ̂ in, π̂in Y -periodic,

ζ̂ inpt � 0q � v̂in0 in Y �,

(3.123)

for parameter x P Ω.
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Chapter 3. Stokes flow in porous media with evolving microstructure

Using these cell problems, we can separate the micro- and macroscopic variable in (3.108)
and obtain the following Darcy law with memory for evolving microstructure.

Darcy law with memory for evolving microstructure

vpt, xq � vinpt, xq �
1

µ

t»
0

Kps, x, tqpf �∇pqps, xq ds in p0, T q � Ω,

divpvpt, xqq � �BtΘ in p0, T q � Ω,

ppt, xq � pb,0pt, xq on p0, T q � BΩ,

(3.124)

where the permeability coefficient K is given by

Kjipt, s, xq :�

»
Y �

J0pt, x, yqζ̂ips, x; t, yq � ej dy, (3.125)

for i, j P t1, . . . , nu and the contribution vin of the initial values by

vinpt, xq :�

»
Y �

J0pt, x, yqζ̂
inpt, x, yq dy.

Since the initial values in (3.122) are not compatible with the boundary condition, we
cannot expect that the cell problems have solutions with Btζtps, x, �, �q P L

2pps, T q;L2pY �qnq
and π̂ips, x, �, �q P L

2
0pps, T q;L

2
0pY

�qq. Thus, we cannot use the same solution concept as we
have used for the instationary two-pressure Stokes equation in (3.109). Instead, we look
for a solution of (3.122) with less regular time-derivative and only distributional pressures.
After a substitution of ζ̂i by ûi � A0ζ̂i in (3.122) and multiplication of the first equation by
ΨJ

0 , we obtain a time independent divergence condition as already in the ε-scaled Stokes
equation. Then, the Leibniz rule can be employed to fit (3.122) in the setting of [Zim21,
Chapter 7.1], which provides a well-posed weak formulation with a unique solution.

Then, one can rewrite

ŵ0pt, x, yq �

t»
0

ņ

i�1

ζ̂ips, x; t, yqpfips, xq � Bxipps, xqds, (3.126)

which leads to (3.124)–(3.125).

Back-transformation of the cell problems
We transform the cell problems back to the moving cell domains, i.e.

ζ̂ips, x; t, yq � ζips, x; t, ψ0pt, x, yqq, π̂ps, x; t, yq � πips, x; t, ψ0pt, x, yqq
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3.2. Homogenisation of instationary Stokes flow

solve

Cell problems for the permeability coefficient

Btζi � divyp∇yζiq �∇πi � 0 for t P ps, T q, y P Y �pt, xq,

divypζiq � 0 for t P ps, T q, y P Y �pt, xq,

ζi � 0 for t P ps, T q, y P BΓpt, xq,

y ÞÑ ζi, πi Y -periodic,

ζipt � sq � ei in Y �.

(3.127)

Then, the permeability tensor can be equivalently written by

Kjipt, s, xq :�

»
Y �

ζips, x; t, yq � ej dy.

The transformation of the cell problems for the initial values shows that

ζ̂ips, x; t, yq � ζips, x; t, ψ0pt, x, yqq, π̂ps, x; t, yq � πips, x; t, ψ0pt, x, yqq

solve

Cell problems for the initial values

Btζ
in � divypµ∇yζ

inq �∇πin � 0 for t P p0, T q, y P Y �pt, xq,

divypζ
inq � 0 for t P p0, T q, y P Y �pt, xq,

ζi � 0 for t P p0, T q, y P BΓpt, xq,

y ÞÑ ζi, πi Y � periodic,

ζ ini pt � 0q � vin0 in Y �,

(3.128)

which gives

vinpt, xq :�

»
Y �pt,xq

ζ inpt, x, yq dy.

Further discussion of the Darcy law with memory
In the instationary two-pressure Stokes equation, the force term and the macroscopic
pressure contribute as source terms in the momentum equation. Due to the memory
structure of the resulting Darcy law, i.e. the integration over the time interval p0, tq, these
source terms become initial values in the cell problems. Correspondingly, the cell problems
do not model the fluid velocity but its acceleration. One should be aware of this if one
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Chapter 3. Stokes flow in porous media with evolving microstructure

wants to formulate the equations with unites, since the Stokes equations structure of the
cell equations could be misleading otherwise.
In the case of a stationary domain the cell problems can be integrated with respect to

time, which translates the initial condition into a source term for the momentum equation.
This integration changes the units accordingly and one has to define the permeability
tensor K by means of the time derivative of the solution of these new cell problems
instead of by the solution itself in the definition. The resulting equations are presented for
instance in [Hor97, Chapter 3.2]. This approach can not be used directly for the case of a
time-dependent domain since the integration and differentiation of differential equations
with time-dependent coefficients leads to additional terms.
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Chapter 4.

Reaction–diffusion problem with coupled
evolving microstructure

This chapter is based on [WP23, D. Wiedemann and M. A. Peter Homogenisation of
local colloid evolution induced by reaction and diffusion, Nonlinear Analysis 227 (2023),
113168] and is devoted to the homogenisation of a reaction–diffusion process with coupled
microstructure evolution. In contrast to the previous chapter, we do not consider an
a-priori given evolution of the microstructure. Instead, the evolution of the domain is
coupled to the solution of the reaction–diffusion equation, leading to a free boundary
problem. Nevertheless, we can apply the transformation approach of Chapter 2. The
microscopic domain is given by ε-scaled periodically distributed spherical obstacles with
evolving radii. Concentration-dependent reactions model a precipitation and dissolution
process at the interface of the obstacles and couple the domain evolution with the unknown
of a reaction–diffusion equation.

To account for the unknown evolving microstructure, we transform the equations by a
generic coordinate transformation. This results in a highly non-linear system including
a partial differential equation for the unknown concentration ûε and ordinary differential
equations for the radii rε, which describe the spherical obstacles. We show the existence
of a solution by means of Schauder’s fixed-point theorem and the uniqueness by energy
estimates. Due to the non-linear structure of the problem, strong compactness results
become necessary for the homogenisation. For the unknown ûε and its spatial gradient
∇ûε, we obtain uniform a-priori bounds by energy estimates. However, we do not obtain a
uniform bound for the time-derivative Btûε and, therefore, cannot apply the Aubin–Lions
lemma. Instead, we use a Steklov average in order to provide additional control over
ûε with respect to time. Then, we can use Simon–Kolmogorov’s compactness argument
to infer strong convergence for the unknown ûε. With the strong convergence of ûε, we
deduce strong convergence for the radii by comparing the ordinary differential equations
for the radii with the limit equation. Having the strong convergence of the radii, we can
can show the convergence of the transformation mappings in the sense of Chapter 4.

Having all necessary two-scale compactness results, we can pass to the homogenisation
limit in the transformed coordinates. By separating the micro- and macroscopic variables,
we arrive at a homogenised reactive transport problem. We also translate the equations
back to the locally upscaled microstructure, which leads to a transformation-independent
homogenisation result. This limit reactive transport system consists of a reaction–diffusion
equation and an ordinary differential equation at each macroscopic point modelling the
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local upscaled microstructure evolution. On the one hand the growth rate for the concen-
tration of the reaction–diffusion equation is scaled by the evolution of the local upscaled
porosity and the local effective diffusivity is adapted to the local microstructure using cell
problems. On the other hand, the ordinary differential equations that describe the evo-
lution of the microstructure and the porosity depend on the local microstructure. Thus,
the resulting reactive transport system couples the micro- and macroscopic processes.

This chapter is based on the results of [WP23] but differs from it in the microscopic
existence result. In [WP23], Banach’s fixed-point theorem was used for the existence result,
which also provides the uniqueness of the solution. However, the contraction property
requires delicate estimates, so we present a different more elegant argument here. In
particular, the contraction property was shown for small and ε-dependent time intervals.
Thus, the existence proof for the whole time interval required the concatenation of solutions
for small intervals and additional estimates to ensure that the solution does not blow up
in finite time.

The homogenisation of a similar problem was also considered in [GP23] using also the
transformation approach. There, the existence of a solution for the microscopic problem
was shown by Rothe’s method and similar a-priori estimates were derived. In order to
prove strong compactness results, uniform estimates for the shifts of the radii with respect
to space and time were shown. This leads to the strong convergence of the radii and the
strong two-scale convergence of the corresponding transformation coefficient, which were
used to infer the strong convergence of the unknown for the reaction–diffusion equation.

This chapter is structured as follows: in Section 4.1, we present the microsopic evolving
domain and derive a coupling with the reaction–diffusion process based on the law of con-
servation of mass. In Section 4.2, we construct a generic parameterisable transformation
to the upscaled reference cell. Using this transformation, we transform the ε-scaled perfo-
rated domain to a periodically perforated domain. For this system, we show the existence
and uniqueness of a solution by means of a fixed-point argument in Section 4.3. From
the existence proof, we extract uniform a-priori estimates on the solution of the reaction–
diffusion problem and its spatial derivative. In Section 4.4, we pass to the limit ε Ñ 0
in the system of equations. Then, we separate the micro- and macroscopic variables and
transform the equations back leading to a transformation-independent reactive transport
system.

4.1. The microscopic model in the evolving domain

Microscopic geometry

Let T ¡ 0, Ω � Rn for n P N be a domain such that Ω consists of entire ε-scaled cells
Y � p0, 1qn, i.e. Ω � intp

�
kPIε

εk � εY q for all ε ¡ 0, where Iε � Zn and ε is a positive

monotone sequence ε � pεnqnPN which converges to 0.

The pore structure is assumed to be given by removing one spherical obstacle in each
ε-scaled cell εk�εY for k P Iε. The obstacles are centred in the ε-scaled cell and have radii
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of order ε, which depend on the time. Thus, the ε-scaled perforated domain is defined by

Ωεptq :� Ωzε
¤
kPIε

Brε,kptqpk �mq (4.1)

where m :� p0.5, . . . , 0.5qJ is the center of the reference cell and rε,kptq is the ε�1-scaled
radius of the solid obstacle located in the cell εk� εY at time t P r0, T s. In order to avoid
topological changes, the radii can only grow or shrink between given bounds, i.e.

rmin ¤ rε,kptq ¤ rmax for all k P Iε, t P r0, T s

and 0   rmin   rmax   0.5. Thus, the interface of the pore space with the obstacle in each
cell k P Iε is given for each point in time t P r0, T s by

Γε,kptq � BεBrε,kptqpk �mq � BBεrε,kptqpεpk �mqq.

We denote the union of these interfaces for a point in time t P r0, T s by Γεptq, i.e.

Γεptq :� BΩεptqzBΩ �
¤
kPIε

Γε,kptq.

Then, the in time non-cylindrical pore space and its interface are given by

QT
ε :�

¤
tPr0,T s

ttu � Ωεptq, HT
ε :�

¤
tPr0,T s

ttu � Γεptq, HT
ε,k :�

¤
tPr0,T s

ttu � Γε,kptq. (4.2)

Figure 4.1.: Microscopic domain Ωεptq in white for two different values of t.

Evolution equations
The evolution of the obstacles is motivated by concentration-dependent reaction kinet-
ics at their interface. It models the dissolution and precipitation of the solid obstacle.
The reaction rate εgpuε, rε,kq depends on the concentration uε and the radius rε,k and
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corresponds to the flux jε,kpt, xq in normal direction through Γε,kptq, i.e.

jεpt, xq � npt, xq � εgpuεpt, xq, rε,kptqq for t P r0, T s, k P Iε, x P Γε,kptq, (4.3)

where n denotes the outer normal of Ωεptq. This flux leads to a growth or shrinkage of the
solid obstacle. Under the assumption that the solid has a constant density cs and remains
spherical, the conservation of mass implies

d

dt
|Bεrε,kptqpεpk �mqq|cs �

»
Γε,kptq

jεpt, xq � npt, xq dσx. (4.4)

From elementary calculus, we obtain

d

dt
|Bεrε,kptqpεpk �mqq| � BtVnpεrε,kptqq � Sn�1pεrε,kptqqεBtrε,kptq,

where Vnprq denotes the volume of the n-ball with radius r and Sn�1prq denotes the surface
volume of the pn � 1q-sphere with radius r. Combining the last three equations leads to
the following ordinary differential equation for the radii

Btrε,kptq �
1

cs

 

Γε,kptq

gpuεpt, xq, rε,kpt, xqq dσx. (4.5)

The loss or gain of mass in the solid region is accompanied by the opposed loss or gain of
dissolved solute concentration in the pore region. This process is modeled by setting the
flux jεpt, xq at the moving interface Γε,kptq equal to the sum of the diffusive and advective
flow. The diffusive flux is modeled by Fick’s law, i.e. jε,Dpt, xq � �D∇uεpt, xq. The advec-
tive flux is induced by the moving interface and is given by jε,Apt, xq � �vΓε,k

pt, xqupt, xq,
where vΓε,k

denotes the velocity of the interface. This advective flux can be understood
in the following sense: When the carrier medium becomes solid and contains a higher
concentration than the density cs of the solid medium, then any excess dissolved concen-
tration is pushed into the pore space. Thus, the total flux at the interface is Γε,kptq for
t P r0, T s and k P Iε is given by

jεpt, xq � jε,Dpt, xq � jε,Apt, xq � �D∇uεpt, xq � vΓε,k
pt, xqupt, xq.

Together with the identification of the normal flux with the reaction rate in (4.3), we
obtain the following boundary condition

p�D∇uεpt, xq � vΓε,k
pt, xqupt, xqq � npt, xq � jεpt, xq � npt, xq � gpuεpt, xq, rε,kpt, xqq. (4.6)

Using the fact that vΓε,k
pt, xq � �εBtrε,kptqnpt, xq, we can simplify

�vΓε,k
pt, xquεpt, xq � npt, xq � εBtrε,kptqnpt, xquεpt, xq � npt, xq � Btrε,kptquεpt, xq.
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In the pore space Ωεptq, we model the transport with a reaction–diffusion equation
and assume a homogeneous Neumann boundary condition at the outer boundary BΩ.
We complete the system with the boundary condition (4.6) at the interfaces Γε,kptq, the
ordinary differential equation (4.5) for the radii and initial values uinε and rinε for the
concentration and the radii, respectively. This leads to the following system with unknowns
uε and rε,k for k P Iε.

Microscopic reaction–diffusion equation with coupled domain evolution

Btuεpt, xq � divpD∇uεpt, xqq � fpt, xq in QT
ε ,

�D∇uεpt, xq � npt, xq � εBtrε,kptq � εgpuεpt, xq, rε,kpt, xqq on HT
ε,k, k P Iε,

�D∇uεpt, xq � npt, xq � 0 on p0, T q � BΩ,

uεp0, xq � uinε pxq in Ωε,

Btrε,kptq �
1

cs

 

Γε,kptq

gpuεpt, zq, rε,kpt, zqq dσz for t P p0, T q, k P Iε,

rε,kp0q � rinε,k for k P Iε,

(4.7)

where npt, xq denotes the outer normal of Ωεptq at x P BΩεptq and D ¡ 0 the
diffusion coefficient. Moreover, the domain Ωεptq and, thus, QT

ε as well as the
interfaces Γε,kptq in (4.7) are coupled with rε via (4.1)–(4.2).

We note that rε is a vector-valued function, i.e. rε � prε,kqkPIε : r0, T s Ñ R|Iε|. For the
sake of simplifying the notation and for stating the convergence results on rε, we abuse its
notation. Namely, we identify rε with the piecewise constant function rε : r0, T s � Ω Ñ
rrmin, rmaxs, rεpt, xq :� rε,kptq for x P εpk�Y q with k P Iε. Similarly, we write for the initial
values rinε pxq � rinε,k for x P εpk� Y q with k P Iε. We switch between these interpretations
wherever it is more convenient.

Assumption 4.1. We assume that:

� f P Cpr0, T s�Ωq is uniformly Lipschitz continuous with respect to x, i.e. there exists
Lf ¡ 0 such that

|fpt, x1q � fpt, x2q| ¤ Lf |x1 � x2| (4.8)

for all x1, x2 P Ω and all t P r0, T s.

� g : R�RÑ R is bounded and uniformly Lipschitz, i.e. there exist constants Cg, Lg ¡
0 such that

}g}CpR2q ¤ Cg   8,
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Chapter 4. Reaction–diffusion problem with coupled evolving microstructure

|gpu1, r1q � gpu1, r1q| ¤ Lgp|u1 � u2| � |r1 � r2|q

for all u1, u2, r1, r2 P R. Moreover, we assume that

gpu, rq ¥ 0 for r ¤ rmin and gpu, rq ¤ 0 for r ¥ rmax (4.9)

holds for all u P R.

� rinε � rrmin, rmaxs
|Iε|, i.e. rinε can be identified with a sequence of piecewise constant

functions on Ω with values in rrmin, rmaxs. Moreover, there exists rin0 P L2pΩq such
that rinε Ñ rin0 in L2pΩq.

� uinε is a sequence in L2pΩεp0qq such that uinε pxq
2

ÝÝÑÝÝÝÑχY �

rin0 pxq

pyqu0pxq for some u0 P

L2pΩq for Y �
rin0 pxq

:� Y zBrin0
pmq.

The assumption (4.9) ensures that the solution of the ordinary differential equation from
(4.7) stays between the bounds rmin and rmax, i.e. rε,kptq � rrmin, rmaxs for every t P r0, T s
and every k P Iε.

4.2. Transformation to a periodic reference domain

In order to transform Ωεptq to a periodic reference domain Ωε, we use some generic dif-
feomorphism ψpr; �q : Y ÞÑ Y which is defined on the reference cell Y � r0, 1sn and
is parameterised by r P rrmin, rmaxs. It maps the reference cell with obstacle of radius
R P rrmin, rmaxs onto the cell with obstacle radius r and it satisfies the following proper-
ties:

ψpr; �q : Y Ñ Y is bijective,

ψpr;BRpmqq � Brpmq,

ψpr; yq � y for P Y zBrmax�δpmq,

(4.10)

for all r P rrmin, rmaxs and a safety constant 0   δ   maxtrmin{2, p0.5 � rmaxq{2u, which
is necessary in order to achieve a smooth transition between the deformed region and the
region where ψpr; �q is the identity. The last condition ensures that ψr is the identity close
to the boundary Y and allows us to glue transformations ψpr; �q next to each other when we
use it in order to define the ε-scaled transformations ψε. Moreover, we assume that ψpr; �q is
also smooth with respect to the parameter r, i.e. ppr; yq ÞÑ ψpr; yqq P C8prrmin, rmaxs�Y q

n

and satisfies the following uniform bounds

|Brψpr; yq| � |Byψpr; yq| � |BrByψpr; yq| � |BrBrByψpr; yq| ¤ C,

detpByψpr; yqq ¥ cJ ¡ 0
(4.11)

for all pr, yq P rrmin, rmaxs � Y .
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4.2. Transformation to a periodic reference domain

Employing the radial symmetry, we can construct the generic cell transformation ψpr; �q
by means of a mapping Φpr; �q : r0,8q Ñ r0,8q, via

ψpr; �qpyq �

#
m� Φpr; �qp}y �m}q y�m

}y�m} for y � m,

m for y � m,
(4.12)

where (4.10) can be reduced to

Φpr; �q : r0,8q Ñ r0,8q is bijective,

Φpr; r0, Rsq � r0, rs,

Φpr; yq � y for y ¥ rmax � δ,

(4.13)

for all r P rrmin, rmaxs. Furthermore, the assumptions on the regularity for ψ can be
reduced to the regularity of

ppr, yq ÞÑ ψpr; yqq P C8prrmin, rmaxs � r0,8qq,

Φpr; yq � y for y ¤ rmin � δ, r P rrmin, rmaxs,

where the latter condition yields ψpr; yq � y for y P Brmin�δpmq and, thus, ensures the
regularity of ψpr; �q at m and also the uniform bounds in a neighbourhood of m.

Moreover, outside this neighbourhood of m the uniform bounds (4.11) can be deduced
from

|BrΦpr; yq| � |ByΦpr; yq| � |BrByΦpr; yq| � |BrBrByΦpr; yq| ¤ C,

ByΦpr; yq ¥ c
(4.14)

for all pr, yq P rrmin, rmaxs � Y and some c ¡ 0 after a change to the spherical coordinates.
Note that the translation of (4.13) into (4.14) leads to an a-priori y-dependent constant
on the right-hand side. However, since we consider Φpr; �q only in a bounded region with
positive distance to the origin m, we can omit this y-dependence.

Indeed the precise choice of Φ is not important for the arguments later and it can
be constructed in several ways. Nevertheless, for sake of completeness, we present one
construction. For this, we construct the following family of continuous and piecewise
affine functions Φ̃pr; �q : RÑ R first:

Φ̃pr; yq :�

$''''''&''''''%

y for y ¤ rmin � 2δ̃,

rmin � 2δ̃ � c1prqpy � prmin � 2δ̃qq for rmin � 2δ̃ ¤ y ¤ R� δ̃,

r � py �Rq for R� δ̃ ¤ y ¤ R� δ̃,

rmax � 2δ̃ � c2prqpy � prmax � 2δ̃qq for R� δ̃ ¤ y ¤ rmax � 2δ̃,

y for rmax � 2δ̃ ¤ y,

(4.15)
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for r P rrmin, rmaxs and δ̃ :� δ{3 with slopes

c1prq �
r � δ̃ � prmin � 2δ̃q

R� δ̃ � prmin � 2δ̃q
�

pr � rminq � δ̃

pR� rminq � δ̃
,

c2prq �
rmax � 2δ̃ � pr � δ̃q

rmax � 2δ̃ � pR� δ̃q
�

prmax � rq � δ̃

prmax �Rq � δ̃
.

An illustration of Φ̃pr; �q is given in Figure 4.2.

r
0

Φ̃pr, �q

rmin R rmax 0.5

r

2δ̃ δ̃ δ̃ 2δ̃

Figure 4.2.: Φ̃pr; �q

We note that

ByΦ̃rpyq P t1, c1prq, c2prqu,

δ̃

prmax � rminq � δ̃
¤ 1, c1prq, c2prq ¤

prmax � rminq � δ̃

δ̃

for all r,R P rrmin, rmaxs and a.e. y P R, which bounds the derivatives from below and
above. Moreover, we observe that, for every fixed y P R, r ÞÑ Φ̃pr; yq P C8prrmin, rmaxs;Rq
and the derivatives are uniformly bounded with respect to y, i.e. for every l P N, there
exists a constant Cl such that

|BlrΦ̃pr; yq| ¤ Cl

for all r P rrmin, rmaxs and all y P R.
However, Φ̃ is only Lipschitz continuous with respect to y while r ÞÑ ByΦ̃pr; yq is not

even continuous. By means of a convolution with a standard mollifier with respect to
the second argument of Φ̃, the function becomes smooth, while other desired properties
remain preserved. Namely, we define

Φpr; yq :�

»
R

Φ̃pr;xq ηpy � xq dx,
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4.2. Transformation to a periodic reference domain

where

ηpxq :�

$&%
� ³

R
exp

�
�1

1�|y{δ̃|2

	
dy

	�1
exp

�
�1

1�|x{δ̃|2

	
for |x|   δ̃,

0 |x| ¥ δ̃.

First, we note that

Φpr;Rq :�

»
R

Φ̃pr;xq ηpR� xqdx �

R�δ̃»
R�δ̃

pr � px�Rqq ηpR� xqdx � r,

Φpr; yq �

y�δ̃»
y�δ̃

x ηpr � xq dx � y for y ¤ rmin � 3δ̃ � rmin � δ,

Φpr; yq �

y�δ̃»
y�δ̃

x ηpr � xq dx � y for y ¥ rmax � 3δ̃ � rmax � δ,

which shows the equalities in (4.13) as well as the equality thereafter. Moreover, the

essential bound of ByΦr ¥
δ̃

prmax�rminq�δ̃
from below, is preserved during the convolution

since

ByΦpr; yq �

»
R

ByΦ̃pr;xq ηpy � xqdx ¥

»
R

δ̃

prmax � rminq � δ̃
ηpy � xq dx

¥
δ̃

prmax � rminq � δ̃
.

Hence, Φ is strictly monotonically increasing and, in particular, bijective. It remains
to show the regularity and the uniform bounds for the derivatives. For this, we deduce
iteratively

Bkr B
l
yΦpr; yq �

»
R

BkrΦpr;xqB
l
yηpy � xqdx

for all k, l P N. Since BkrΦpr; yq and Blyη are bounded in rrmin, rmaxs�R for every k, l P N, we
obtain the first estimate of (4.14) and can iteratively infer the continuity of the derivatives
leading to the regularity ψ P C8prrmin, rmaxs � Y qn.

The cell displacement mapping
Having the cell transformation ψ, we define the corresponding displacement mapping by

qψpr; yq � ψpr; yq � y,
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Chapter 4. Reaction–diffusion problem with coupled evolving microstructure

which is zero in Y zBrmax�δpmq due to (4.10). Hence, the Y -periodic extension of qψ is
smooth. We identify the displacement mapping qψ with its Y -periodic extension in the
following. Moreover, the uniform upper bound on the derivative of ψ from (4.11) can be
transferred onto qψ, i.e.

| qψpr; yq| � |Br qψpr; yq| � |BrBr qψpr; yq| � |By qψpr; yq| � |BrBy qψpr; yq| ¤ C,

|BrBrBy qψpr; yq| � |ByBy qψpr; yq| � |BrByBy qψpr; yq| � |BrBrByBy qψpr; yq| ¤ C
(4.16)

for every pr, yq P rrmin, rmaxs � Rn.

Further properties of the transformation
For a time-dependent radius r : r0, T s ÞÑ rrmin, rmaxs and y P BBRpmq, we note that

Btψprptq, yq � BtΦprptq; }y �m}q
y �m

}y �m}
� BtΦprptq;Rq

y �m

}y �m}
� Btrptq

y �m

}y �m}

� Btrptqn̂pyq,

where n̂pyq denotes the outer normal of Y zBRpmq at y P BBRpmq.

Moreover, by transforming the surface integral

Sn�1prq �

»
BBrpmq

1 dσy �

»
BBRpmq

}AdjpByψpr; yqqn̂}1 dσy

and using the radial symmetry of ψpr; �q, we obtain

|AdjpByψpr; yqqn̂ �
Sn�1prq

Sn�1pRq
�

rn�1

Rn�1
�

� r
R

	n�1
(4.17)

for y P BBRpmq.

ε-scaling of the transformation
For a fixed reference radius R P rrmin, rmaxs, we define the periodic reference domain by

Ωε :� Ωzε
¤
kPIε

BRpk �mq

with interfaces

Γε,k :� BεBRpk �mq � BBεRpεpk �mqq, Γε :�
¤
kPIε

Γε,k.

Let Ωεptq be given by radii rεptq, then we map Ωε onto Ωεptq by scaling and shifting the
mapping ψpr; �q for every ε-scaled cell. Since ψpr; �q is the identity near the boundary of
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4.2. Transformation to a periodic reference domain

Y , we can glue these mappings smoothly together. Hence, we define

ψεpt, xq :� rxsε,Y � εψprεpt, xq, txuε,Y q, (4.18)

where rxsε,Y �
n°
i�1

ε
X
xi
ε

\
ei and txuε,Y � ε�1px� rxsε,Y q for the Euclidian unit vectors ei.

The resulting displacement |ψεpt, xq :� ψεpt, xq�x can be also expressed by the displace-
ment qψpr; yq � ψpr; yq � y of the generic cell transformation

ψεpt, xq � x � rxsε,Y � εψprεpt, xq, txuε,Y q � x

� rxsε,Y � ε qψprεpt, xq, txuε,Y q � εtxuε,Y � x

� ε qψprεpt, xq, txuε,Y q � ε qψprεpt, xq, x{εq. (4.19)

Since qψ � 0 in a neighbourhood of BY , no jumps arise at εk � εBY , for k P Iε, although
rε and txuε,Y are not continuous there. Hence, |ψε and ψε are smooth with respect to x.

Uniform a-priori estimates for ψε
In the following, we derive estimates for ψε and its derivatives, which are independent of
the radii rε as long as the radii stay between certain bounds. These bounds are ensured by
the ordinary differential equations that define rε. Thus, we can derive uniform estimates
on the a-priori unknown coefficients, which arise due to the coordinate transformation of
(4.7). Moreover, we show that these coefficients depend Lipschitz regularly on the radii,
which becomes useful for proving the uniqueness of the solution of the system.

Lemma 4.2. Let rε P C
0,1pr0, T s; rrmin, rmaxsq

|Iε| with }Btrε,k}L8p0,T q ¤ Cgc
�1
s for every

k P Iε. Let ψε be given by (4.18). Then, ψε P C
0,1pr0, T s;C2pΩqq and ψεpt, �q is bijective

from Ω onto Ω with ψεpt,Ωεq � Ωεptq. Moreover, there exist constants C, cJ , which are
independent of rε such that

ε�1}ψε � x}Cpr0,T s�Ωq � }Bxψε}Cpr0,T s�Ωq � ε}BxBxψε}Cpr0,T s�Ωq ¤ C,

Jεpt, xq ¥ cJ ,

ε�1}Btψε}L8p0,T ;CpΩqq � }BtBxψε}L8p0,T ;CpΩqq � ε}BtBxBxψε}L8p0,T ;CpΩqq ¤ C.

Proof. In order to derive the estimates, we employ the identity |ψεpt, xq � ψεpt, xq�x and
the identification qψpr; yq � ψεpr; yq � y given in (4.19). Then, we can compute with the
chain rule and the uniform bounds on qψ and its derivatives

}|ψε}Cpr0,T s�Ωq ¤ ε} qψ}Cprrmin,rmaxs�Y q ¤ εC,

}Bt|ψε}L8p0,T ;CpΩqq ¤ C}Br qψ}Cprrmin,rmaxs�Y q}Btrε}L8pp0,T q�Ωq ¤ C,

}Bx|ψε}Cpr0,T s�Ωq ¤ }By qψ}Cprrmin,rmaxs�Y q ¤ C,

}BtBx|ψε}L8p0,T ;CpΩqq ¤ C}BrBy qψ}Cprrmin,rmaxs�Y q}Btrε}L8pp0,T q�Ωq ¤ C,
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}BxBx|ψε}Cpr0,T s�Ωq ¤ ε�1}ByBy qψ}Cprrmin,rmaxs�Y q ¤ ε�1C,

}BtBxBx|ψε}L8p0,T ;CpΩqq ¤ C}BrByBy qψ}Cprrmin,rmaxs�Y q}Btrε}L8pp0,T q�Ωq ¤ ε�1C.

These estimates can be transferred to ψε via

Btψε � Bt|ψε, Bxψε � Bx|ψε � 1, BtBxψε � BxBt qψ
BxBxψε � BxBx|ψε, BtBxBxψε � BxBxBt|ψε

The estimate for Jε follows from (4.11) via the pointwise estimate

Jεpt, xq � detpBxψεpt, xqq � detpBx|ψεpt, xq � 1q � detpBy qψprpt, xq, x{εq � 1q

� detpByψprpt, xq, x{εqq ¥ cJ

for every pt, xq P r0, T s � Ω.

We recap the notions for the Jacobian matrix of ψε, its determinant and adjugate matrix
from Chapter 2

Ψεpt, xq :� Bxψpt, xq, Jεpt, xq � detpBxψεpt, xqq,

Aεpt, xq � AdjpΨεpt, xqq � Jεpt, xqΨ
�1
ε pt, xq.

(4.20)

Lemma 4.3. Let rε P C
0,1pr0, T s; rrmin, rmaxsq

|Iε| with }Btrε,k}L8p0,T q ¤ Cgc
�1
s for every

k P Iε. Let ψε be given by (4.18) and Ψε, Jε and Aε by (4.20). Then, there exists a
constant C, which is independent of ε and rε such that

}Ψεptq}CpΩεq
� }Ψ�1

ε ptq}CpΩεq
� }Jεptq}CpΩεq

� }J�1
ε ptq}CpΩεq

¤ C,

}Aεptq}CpΩεq
� }A�1

ε ptq}CpΩεq
� ε}∇J�1

ε ptq}CpΩεq
¤ C

for every t P r0, T s and

}BtΨεptq}L8pΩεq � }BtΨ
�1
ε ptq}L8pΩεq ¤ C,

}BtJεptq}L8pΩεq � }BtJ
�1
ε ptq}L8pΩεq ¤ C,

}BtAεptq}L8pΩεq � }BtA
�1
ε ptq}L8pΩεq ¤ C

for a.e. t P p0, T q.

Moreover, AεDΨ�J
ε is uniformly coercive, i.e. there exists a constant α, which does not

depend on ε or rε, such that

Aεpt, xqDΨ�J
ε pt, xqξ � ξ ¥ α|ξ|2

for all pt, xq P r0, T s � Ωε and all ξ P Rn.

Proof. Arguing as in the proof of Lemma 2.8 and Lemma 2.43, we can infer the uniform
a-priori estimate from the uniform estimates given in Lemma 4.2. The uniform coercivity
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4.2. Transformation to a periodic reference domain

of AεDΨ�J
ε can be deduced from these uniform bounds as in (2.38).

In order to obtain the uniqueness of the solution of the microscopic problem, the fol-
lowing Lipschitz estimates become useful.

Lemma 4.4. Let rε,i P C
0,1pr0, T s; rrmin, rmaxsq

|Iε| with }Btrε,i,k}L8p0,T q ¤ Cgc
�1
s for every

k P Iε for i P t1, 2u and ψε,i be given by (4.18) for rε � rε,i. Let Ψε,i, Jε,i, Aε,i be defined
accordingly. Then, there exist constants C which are independent of rε,i such that for
a.e. t P p0, T q

}Ψε,1 �Ψε,2}Cpr0,ts�Ωq � }Jε,1 � Jε,2}Cpr0,ts�Ωq ¤ C}rε,1 � rε,2}Cpr0,ts;L8pΩqq,

}BxΨε,1 � BxΨε,2}Cpr0,ts�Ωq � }BxJε,1 � BxJε,2}Cpr0,ts�Ωq ¤ ε�1C}rε,1 � rε,2}Cpr0,ts;L8pΩqq,

}Aε,1 �Aε,2}Cpr0,ts�Ωq � }Ψ�1
ε,1 �Ψ�1

ε,2}Cpr0,ts�Ωq ¤ C}rε,1 � rε,2}Cpr0,ts;L8pΩqq,

and

}Btψε,1 � Btψε,2}L8pΩ;L2p0,tqq ¤ εC
�
}Btrε,1 � Btrε,2}L8pΩ;L2p0,tqq � }rε,1 � rε,2}L8pp0,tq�Ωq

�
,

}BtJε,1 � BtJε,2}L8pΩ;L2p0,tqq ¤ C
�
}Btrε,1 � Btrε,2}L8pΩ;L2p0,tqq � }rε,1 � rε,2}L8pp0,tq�Ωq

�
.

This implies in particular

}Aε,1DΨ�J
ε,1 �Aε,2DΨ�J

ε,2 }L8pΩ;L2p0,tqq ¤ C}rε,1 � rε,2}L8pp0,tq�Ωq,

}Aε,1Btψε,1 �Aε,2Btψε,2}L8pΩ;L2p0,tqq ¤ εC
�
}Btrε,1 � Btrε,2}L8pΩ;L2p0,tqq

� }rε,1 � rε,2}L8pp0,tq�Ωq

�
.

Proof. Similarly to the proof of Lemma 4.2, we use ψεpt, xq � |ψεpt, xq � x and |ψε �
ε qψprεpt, xq, x{εq. Then, we can estimate

}Ψε,1 �Ψε,2}Cpr0,ts�Ωq � }Bx qψε,1 � Bx qψε,1}Cpr0,ts�Ωq � }By qψprε,1, �{εq � By qψprε,2, �{εq}Cpr0,ts�Ωq

¤ }BrBy qψ}Cprrmin,rmaxs�Y q
}rε,1 � rε,2}Cpr0,ts;L8pΩqq

¤ C}rε,1 � rε,2}Cpr0,ts;L8pΩqq.

The estimate for }Jε,1�Jε,2}Cpr0,T s�Ωq follows from the fact that Jε,i are polynomials in the
entries of Ψε,i, and that Ψε,i as well as rε,i are uniformly bounded. Since Jε,i is uniformly
bounded from below, we can transfer this estimate to

}J�1
ε,1 � J�1

ε,2 }Cpr0,T s�Ωq ¤ C}rε,1 � rε,2}Cpr0,ts;L8pΩqq.

Similarly, due to the polynomial structure of Ψ�1
ε,i and A�1

ε,i with respect to the entries of

Ψε,i and J
�1
ε,i , we obtain the estimate

}Aε,1 �Aε,2}Cpr0,T s�Ωq � }Ψ�1
ε,1 �Ψ�1

ε,2}Cpr0,T s�Ωq ¤ C}rε,1 � rε,2}Cpr0,T s;L8pΩqq.
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The estimate of the spatial derivatives can be inferred similarly, by

}BxΨε,1 � BxΨε,2}Cpr0,ts�Ωq � }BxBx qψε,1 � BxBx qψε,1}Cpr0,ts�Ωq

� ε�1}ByBy qψprε,1, �{εq � ByBy qψprε,2, �{εq}Cpr0,ts�Ωq

¤ ε�1C}BrByBy qψ}Cprrmin,rmaxs�Y q
}rε,1 � rε,2}Cpr0,ts;L8pΩqq

¤ ε�1C}rε,1 � rε,2}Cpr0,ts�Ωq.

Due to the polynomial structure of Jε and the uniform boundedness of the entries of Ψε

and εBxΨε, we can transfer this estimate to

}BxJε,1 � BxJε,2}Cpr0,ts�Ωq ¤ ε�1C}rε,1 � rε,2}Cpr0,ts�Ωq.

The estimate on the time-derivatives follows with the uniform essential boundedness of
BrBr|ψε and Btrε by

}Btψε,1 � Btψε,2}L8pΩ;L2p0,tqq � ε}Br qψprε,1, �{εqBtrε,1 � Br qψprε,2, �{εqBtrε,2}L8pΩ;L2p0,tqq

¤ ε}Br qψprε,1, �{εq � Br qψprε,2, �{εq}L8pp0,tq�Ωq}Btrε,1}L8pΩ;L2p0,tqq

� ε}Br qψprε,2, �{εq}L8pp0,tq�Ωq}Btrε,1 � Btrε,2}L8pΩ;L2p0,tqq

¤ ε}BrBr qψ}L8pp0,tq�Y q}rε,1 � rε,2}L8pp0,tq�Ωq}Btrε,1}L8pΩ;L2p0,tqq

� ε}Br qψ}L8pp0,tq�Y q}Btrε,1 � Btrε,2}L8pΩ;L2p0,tqq

¤ εC
�
}rε,1 � rε,2}L8pp0,tq�Ωq � }Btrε,1 � Btrε,2}L8pΩ;L2p0,tqq

�
.

An easy extension of this argument shows the estimate for }BtΨε,1 � BtΨε,2}L8pΩ;L2p0,tqq.
Then, we use the polynomial structure of Jε in order to deduce

}BtJε,1 � BtJε,2}L8pΩ;L2p0,tqq ¤ C
�
}Btrε,1 � Btrε,2}L8pΩ;L2p0,tqq � }rε,1 � rε,2}L8pp0,tq�Ωεq

�
from the previous Lipschitz estimates.

Finally, the last two Lipschitz estimates of Lemma 4.4 follow from the triangle inequality,
the previous Lipschitz estimates and the essential boundedness of the involved terms.

Lemma 4.5. Let rε P C
0,1pr0, T s; rrmin, rmaxsq

|Iε| with }Btrε,k}L8p0,T q ¤ Cgc
�1
s for every

k P Iε. Let ψε be given by (4.18), f by Assumption 4.1 and f̂εpt, xq :� fpt, ψεpt, xqq for
a.e. pt, xq P p0, T q � Ωε. Then, f̂ε P L

2pp0, T q � Ωεq and, in particular,

}f̂ε}L2pp0,T q�Ωεq ¤ C

for a constant C which does not depend on ε and rε.

Proof. Due to Lemma 4.2, Jε is uniformly bounded from below. Then, the uniform esti-
mate on f̂ε can be deduced by computations as in Lemma 2.11.
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4.2. Transformation to a periodic reference domain

Further properties of the coordinate transformation
The ε-scaling of (4.17),yields

Jεpt, xq}Ψ
�J
ε pt, xqn̂pt, xq} �

Sn�1pεrεpt, xqq

Sn�1pεRq
�

�
rεpt, xq

R


n�1

(4.21)

for x P Γε. Furthermore, we note the identity

JεΨ
�J
ε pt, xqn̂ � n̂ � |Jεpt, xqΨ

�J
ε pt, xqn̂| for pt, xq P p0, T q � BΩε,

which holds for general coordinate transformations and can be derived by means of the
theorem of Gauß and the integral transformation for bulk and surface integrals. Since
Jε ¡ 0, we obtain in particular

Ψ�J
ε pt, xqn̂ � n̂ � |Ψ�J

ε pt, xqn̂| for pt, xq P p0, T q � BΩε. (4.22)

Strong form in reference coordinates
With the transformation ψε from (4.18), we transform the data and the unknown uε by

f̂εpt, xq :� fpt, ψεpt, xqq, ûinε p0q :� uεpψεp0, xqq, ûεpt, xq :� uεpt, ψεpt, xqq.

We define

Γε,k :� BεBRpk �mq for k P Iε, Γε :�
¤
kPIε

Γε,k.

Then, transforming (4.7) onto the periodic reference domain leads to:

Microscopic reaction–diffusion equation with coupled domain evolution
in the reference coordinates

Btûε � BxûεΨ
�1
ε Btψε � J�1

ε divpAεDΨ�J
ε ∇ûεq � f̂ε in p0, T q � Ωε,

�DΨ�J
ε ∇ûε � }Ψ�J

ε n̂}�1Ψ�J
ε n̂� εBtrε,k � εgpûε, rε,kq on p0, T q � Γε,k, k P Iε,

�DΨ�J
ε ∇ûε � }Ψ�J

ε pt, xqn̂}�1Ψ�J
ε n̂ � 0 on p0, T q � BΩ,

ûεpt � 0q � ûinε in Ω,

Btrε,kptq �
1

cs

 

Γε,kptq

gpûεpt, zq,rε,kpt, zqq dσz for t P p0, T q, k P Iε,

rε,kp0q � rinε,k for k P Iε,

(4.23)

where n̂ denotes now the outer normal vector of Ωε.
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Chapter 4. Reaction–diffusion problem with coupled evolving microstructure

Weak form in reference coordinates

In order to derive the weak formulation, we multiply the first equation of (4.23) by Jεφ
for φ P H1pΩεq. Then, we obtain with the Leibniz rule and the fact that divypAεBtψεq �
BtJε (cf. also the proof of Lemma 3.26) that

JεBtûε � JεBxûεΨ
�1
ε Btψε � BtpJεûεq � BtJεûε � JεΨ

�1
ε Btψε �∇ûε

� BtpJεûεq � divpAεBtψεqûε � JεΨ
�1
ε Btψε �∇ûε

� BtpJεûεq � divpAεBtψεûεq.

(4.24)

After this substitution, we integrate over Ωε, which yields»
Ωε

BtpJεûεqφdx� divpAεDΨ�J
ε ∇ûε �AεBtψεûεqφdx �

»
Ωε

Jεf̂εφdx.

We integrate the divergence term by parts, which leads to

�

»
Ωε

divpAεDΨ�J
ε ∇ûε �AεBtψεûεqφdx

�

»
Ωε

pAεDΨ�J
ε ∇ûε �AεBtψεûεq : ∇φdx�

»
BΩε

pAεDΨ�J
ε ∇ûε �AεBtψεûεqφ � n̂ dx.

We rewrite this boundary integral using the fact that Btψε � 0 on BΩ and Btψε � �εBtrεn
on Γε, (4.22), (4.21) and as well as the boundary conditions from (4.23),

�

»
BΩε

AεDΨ�J
ε ∇ûε � φn̂�AεBtψεûε � φn̂ dσx

� �
¸
kPIε

»
Γε,k

AεDΨ�J
ε ∇ûε � φn̂� φBtrεûεJεΨ

�J
ε n̂ � n̂ dσx �

»
BΩ

AεDΨ�J
ε ∇ûε � φn̂ dσx

� �
¸
kPIε

»
Γε,k

AεDΨ�J
ε ∇ûε � φn̂� Jε}Ψ

�J
ε n̂}Btrε,kφdσx

� �
¸
kPIε

»
Γε,k

εJε}Ψ
�J
ε n̂}gpûε, rε,kqφdσx

� �
¸
kPIε

�rε
R

	n�1
»

Γε,k

εgpûε, rε,kqφdσx.

Moreover, we use (4.21) in order to transform the boundary integral of the right-hand side
of the ordinary differential equation of (4.23). Then, we obtain the following weak form:
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4.3. Existence, uniqueness and a-priori estimates

Weak form for the transformed microscopic reactive transport problem

Find pûε, rεq P L
2p0, T ;H1pΩεqq � C0,1pr0, T s; rrmin, rmaxsq

|Iε| with
BtpJεûεq P L

2p0, T ;H1pΩεq
1q such that, for a.e. t P p0, T q,

xBtpJεûεqptq, φyH1pΩεq1,H1pΩεq �

»
Ωε

Aεpt, xqDΨ�J
ε pt, xq∇ûεpt, xq �∇φpxq dx

�

»
Ωε

Aεpt, xqBtψεpt, xqûεpt, xq �∇φpxqdx �
»
Ωε

Jεpt, xqf̂εpt, xqφpxq dx

�
¸
kPIε

�
rε,kptq
R

	n�1
»

Γε,k

εgpûεpt, xq, rε,kptqqφdσx,

Btrε,kptq �
1

cs

 

Γε,k

εgpûεpt, xq, rε,kptqq dσx for all k P Iε,

rεp0q � rinε , ûεp0q � ûinε

(4.25)

for every φ P H1pΩεq and Jε,Ψε, Aε depending on rε as described above.

We note that rε P C
0,1pr0, T s; rrmin, rmaxsq

|Iε| yields Jε P C
0,1pr0, T s;C8pΩεqq and with

xBtpJεûεqptq, φyH1pΩεq1,H1pΩεq �xBtûεptq, JεptqφyH1pΩεq1,H1pΩεq

� xûεptq, BtJεptqφyH1pΩεq1,H1pΩεq,

we obtain Btûε P L
2p0, T ;H1pΩεqq and, thus, the initial condition ûεp0q � ûinε is well-posed.

4.3. Existence, uniqueness and a-priori estimates

We show the existence of a solution of (4.25) with a fixed-point argument and the unique-
ness by means of energy estimates. From the existence result, we can directly deduce
uniform a-priori estimates for ûε, ∇ûε and BtpJεûεq.

Theorem 4.6. For every ε ¡ 0, there exists a unique solution pûε, rεq P L
2p0, T ;H1pΩεqq�

C0,1pr0, T s; rrmin, rmaxsq
|Iε| with BtpJεûεq P L

2p0, T ;H1pΩεq
1q of (4.25). Moreover, there

exists a constant C such that

ε�1}Btûε}L2p0,T ;H1pΩεq1q � }BtpJεûεq}L2p0,T ;H1pΩεq1q ¤ C,

}ûε}L8p0,T ;L2pΩεqq � }ûε}L2p0,T ;H1pΩεqq ¤ C.
(4.26)

Proof. We reformulate (4.25) as fixed-point problem in L2pS;HβpΩεqq for β P
�
1
2 , 1

�
with
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Chapter 4. Reaction–diffusion problem with coupled evolving microstructure

fixed-point operator

L : L2p0, T ;HβpΩεqq Ñ L2p0, T ;HβpΩεqq,

u ÞÑ Lpuq :� L2pL1puq, uq,

where L1 is the solution operator of the ordinary differential equations in (4.25), i.e.

L1puq : L
2pS;HβpΩεqq Ñ Rε,

u ÞÑ L1puq :� rε,

where rε is the solution of

Btrε,k �
1

cs

 

Γε,k

gpu, rε,kqdσx for all k P Iε,

rεp0q � rinε ,

(4.27)

and

Rε :� trε P C
0,1pr0, T s; rrmin, rmaxsq

|Iε| | |rε,kpt1q � rε,kpt2q| ¤ Cgc
�1
s , k P Iε, t1, t2 P r0, T su,

where we endow Rε with theW 1,2p0, T q|Iε|-norm. The operator L2 is the solution operator
of the reaction–diffusion equation (4.25) for given right-hand side and transformation
quantities, i.e.

L2 : Rε � L2p0, T ;HβpΩεqq Ñ L2p0, T ;HβpΩεqq,

prε, uq ÞÑ L2prε, uq :� ûε,

where ûε P L
2p0, T ;H1pΩεqq with BtpJεûεq P L

2p0, T ;H1pΩεq
1q solves

xBtpJεûεqptq, φyH1pΩεq1,H1pΩεq �
�
Aεptq

�
DΨ�J

ε ptq∇ûεptq � Btψεptqûεptq
�
,∇φ

�
L2pΩεq

� pJεptqf̂εptqq,∇φqL2pΩεq �
¸
kPIε

�
rε,kptq
R

	n�1
εpgpuptq, rε,kptqq, φqL2pΓε,kq,

ûεp0q � ûinε

(4.28)

for almost every t P p0, T q and every φ P H1pΩεq.

In Lemma 4.7 and Lemma 4.12, we will show that the operators L1 and L2 are well-
posed and with Lemma 4.8 and Lemma 4.13, we can infer their continuity. Thus, L is
well-posed and continuous. Moreover, Lemma 4.12 provides a constant Cε such that

}Btûε}L2p0,T ;H1pΩεq1q � }ûε}L8p0,T ;L2pΩεqq � }ûε}L2p0,T ;H1pΩεqq ¤ Cε (4.29)

for all pr, uq P Rε � L2p0, T ;HβpΩεqq, where ûε � L2pr, uq. We fix this constant Cε
and denote the set of all functions uε P L2p0, T ;HβpΩεqq that satisfy (4.29) by Kε �
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4.3. Existence, uniqueness and a-priori estimates

L2p0, T ;HβpΩεqq. From (4.29) and the construction of L, we obtain

}BtLpuq}L2p0,T ;H1pΩεq1q � }Lpuq}L8p0,T ;L2pΩεqq � }Lpuq}L2p0,T ;H1pΩεqq ¤ Cε.

for all u P L2p0, T ;HβpΩεqq and, in particular, L maps Kε into Kε. It can be easily
observed that Kε is convex. Moreover, the lemma of Aubin–Lions shows that Kε is
compact in L2p0, T ;HβpΩεqq. Thus, Schauder’s fixed-point theorem provides a fixed-point
of L in Kε and by the construction of L and L1, we can infer that pûε,L1pûεqq solves
(4.25).
The uniqueness of the solution will be shown in Lemma 4.14.

In the following lemmas, we show that the operators L1 and L2 are well-posed and
satisfy some Lipschitz type estimate.

Lemma 4.7. Let L1 be defined as in the proof of Theorem 4.6. Then, L1 is well-posed.

Proof. Since pt, rq ÞÑ 1
cs

�
Γε,k

gpupt, xq, rqdσx is globally Lipschitz continuous with respect

to r and measurable with respect to t for u P L2p0, T ;HβpΩεqq, Carathéodory’s existence
theorem gives a unique solution rε,k P W 1,1p0, T q of the ordinary differential equation
(4.27) for every k P Iε. Moreover, Assumption (4.9) ensures that rε,k P rrmin, rmaxs and
the boundedness of g implies that

|Btrε,kptq| �
1

cs

���  
Γε,k

gpupt, xq, rε,kptqq dσx

��� ¤ Cg
cs

for a.e. t P p0, T q. Hence, rε P Rε and L1 is well-posed.

Lemma 4.8. Let L1 be defined as in the proof of Theorem 4.6. Then, there exists a
constant Cε such that, for every t P r0, T s

}rε,1 � rε,1}L8pp0,tq�Ωq � }Btrε,1 � Btrε,2}L8pΩ;L2p0,tqq ¤ Cε}u1 � u2}L2pp0,tq�Γεq (4.30)

where rε,i � L1puiq for arbitrary u1, u2 P L
2pS;HβpΩεqq and i P t1, 2u. In particular L1 is

continuous.

Proof. Let t P p0, T q and ui P L
2p0, t;HβpΩεqq for i P t1, 2u and δu � u1 � u2. Let rε,i,k

be the solution of (4.27) for data ui and we write δrε,k � rε,1,k � rε,2,k.
Multiplying (4.27) with δrε,k and integrating over p0, tq yields

1

2
|δrε,kptq|

2 �

t»
0

Btδrε,kpτqδrε,kpτqdτ

�

t»
0

1

cs

 

Γε,k

�
gpu1pτ, xq, rε,1,kpτqq � gpu1pτ, xq, rε,1,kpτqq

�
dσxδrε,kpτq dτ.
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Then, we obtain with the Lipschitz estimate for g, the Hölder and Young inequalities

1

2
|δrε,kptq|

2 ¤ εC
� t»

0

 

Γε,k

|δupτ, xq|dσx � |δrε,kpτ, xq|
	
δrε,kpτq dτ

¤ Cε
�
}δu}L2p0,t;L1pΓε,kqq � }δrε,k}L2p0,tq

�
}δrε,k}L2p0,tq

¤ Cε
�
}δu}2L2pp0,tq�Γε,kq

� }δrε,k}
2
L2p0,tq

�
Then, the Lemma of Gronwall leads to

}δrε,k}
2
L8p0,tq ¤ Cε}δu}

2
L2pp0,tq�Γε,kq

. (4.31)

In order to estimate the time-derivative, we multiply (4.27) with Btδrε,k, integrate over
p0, tq, proceed as above and use (4.31), which gives

}Btδrε,k}
2
L2p0,tq � ε

t»
0

1

cs

 

Γε,k

�
gpu1pτ, xq, rε,1,kpτqq � gpu2pτ, xq, rε,2,kpτqq

�
dσxBtδrε,kpτqdt

¤ Cε
�
}δu}L2pp0,tq�Γε,kq � }δrε,k}L2p0,T q

�
}Btδrε,k}L2p0,tq

¤ Cε}δu}L2pp0,tq�Γε,kq}Btδrε,k}L2p0,tq.

(4.32)

By noting that

}δrε}
2
L8pp0,tq�Ωq � max

kPIε
}δrε,k}

2
L2p0,tq ¤ max

kPIε
Cε}δu}

2
L2pp0,tq�Γε,kq

¤ Cε}δu}
2
L2pp0,tq�Γεq

,

}Btδrε}
2
L8pΩ;L2p0,tqq � max

kPIε
}Btδrε,k}

2
L2p0,tq ¤ max

kPIε
Cε}δu}

2
L2pp0,tq�Γε,kq

¤ Cε}δu}
2
L2pp0,tq�Γεq

,

we obtain the desired result.

In order to show that L2 is well-posed, we use the theory of monotone operators from
[Sho97].

Definition 4.9. Let V be a Banach space. A function A : V Ñ V 1 is monotone if
xApuq �Apvq, u� vyV 1,V ¥ 0 for all u, v P V .

Definition 4.10. Let W be a separable Hilbert space. A family of operators tBptq P
LpW ;W 1q | t P r0, T su with Bp�qpu, vq P L8p0, T q for all u, v P W is called regular if for
each pair u, v P W the function Bp�qpu, vq is absolutely continuous on r0, T s and there
exists K P L1p0, T q such that

|BtpBptqpu, vqq| ¤ Kptq}u}W }v}W for all u, v PW and a.e. t P p0, T q. (4.33)

Proposition 4.11. Let V,W be separable Hilbert spaces such that V can be embedded
continuously and densely in W . Let Aptq P LpV, V 1q and Bptq P LpW,W 1q for every
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4.3. Existence, uniqueness and a-priori estimates

t P r0, T s and assume that Ap�qpu, vq P L8p0, T q for all u, v P V and Bp�qpu, vq P L8p0, T q
for all u, v P W . Moreover, we assume that tBptq P LpW,W 1q | t P r0, T su is a regular
family of self-adjoint operators with Bp0q monotone and we assume that there are constants
λ, c ¡ 0 such that

2Aptqpv, vq � λBptqpv, vq � B1ptqpv, vq ¥ c}v}V

for all v P V and a.e. t P p0, T q. Then, for given uin PW and f P L2p0, T ;V 1q there exists
u P L2p0, T ;V q such that

BtpBuqptq �Aptquptq � fptq in L2p0, T ;V 1q (4.34)

with pBuqp0q � Bp0quin.

We note that B1ptq P LpW,W 1q is defined by B1ptqu :� BtpBptqpuqq for u P V .

Proof. See [Sho97, Chapter III.3, Proposition 3.2].

Lemma 4.12. Let L2 be defined as in the proof of Theorem 4.6. Then, L2 is well-posed
and there exists a constant C such that

ε}Btûε}L2p0,T ;H1pΩεq1q � }BtpJεûεq}L2p0,T ;H1pΩεq1q ¤ C, (4.35)

}ûε}L8pp0,T q�Ωεq � }∇ûε}L2pp0,T q�Ωεq ¤ C (4.36)

for every prε, uq P Rε�L
2p0, T ;HβpΩεqq where ûε � L2prε, uq. In particular, BtpJεûεq, Btûε P

L2p0, T ;H1pΩεq
1q and ûε P L

2p0, T ;H1pΩεqq.

Proof. First, we show the existence of a solution of (4.28) by means of Proposition 4.11.
Then, we show the uniqueness of the solution and the uniform a-priori estimates by energy
estimates. We choose V � H1pΩεq, W � L2pΩεq and define

Aptqpu, vq :� pAεptqpDΨ�J
ε ptq∇u� Btψεptqu,∇vqL2pΩεq for u, v P V,

Bptqpu, vq :� pJεptqu, vqL2pΩεq for u, v PW,

and

fpuq �pJεf̂ε, φqL2pp0,T q�Ωεq �
¸
kPIε

�
ε
� rε,k
R

�n�1
gpu, rε,kq, φ

	
L2pp0,T q�Γε,kq

for u P L2p0, T ;HβpΩεqq.

Now, we have to verify the assumptions of Proposition 4.11. We transfer the essential
boundedness of rε and Btrε to the uniform a-priori estimates on ψε and its derivatives via
Lemma 4.2. These estimates can be transferred further to the coefficients via Lemma 4.3.
Then, we can analyse the operators A and B as well as the right-hand side f .
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� Ap�qpv, wq P L8p0, T q for all u, v P V : From the Hölder inequality, we get

Aptqpu, vq :� pAεptqpDΨ�J
ε ptq∇u� Btψεptqu,∇vqL2pΩεq

¤
�
}AεptqDΨ�J

ε ptq}L8pΩεq}∇u}L2pΩεq � }Aε}L8pΩεq}Btψε}L8pΩεq}u}L2pΩεq

�
}∇v}L2pΩεq

¤ C}u}V }v}V

for all u, v P V and every t P p0, T q.

� Bp�qpv, wq P L8p0, T q for all u, v PW : from the Hölder inequality, we get

Bptqpu, vq :� pJεptqu, vqL2pΩεq � }Jεptq}L8pΩεq}u}L2pΩεq}v}L2pΩεq ¤ C}u}W }v}W .

for all u, v P V and every t P p0, T q.

� Bptq is a regular family of self-adjoint operators and Bp0q is monotone: using the
uniform essential boundedness of BtJε, we obtain with the Hölder inequality

|BtpBptqpu, vqq| � |pBtJεptqu, vqL2pΩεq| ¤ C}u}L2pΩεq}v}L2pΩεq

for all u, v P W and a.e. t P p0, T q, which shows that B is a family of regular
operators. From the structure of Bptq it is clear that it is self-adjoint for every
t P r0, T s and that Bp0q is monotone.

� coercivity: the uniform coercivity of AεDΨ�J
ε and Jε is given by Lemma 4.3 and

Lemma 4.2, respectively. Together with the essential bounds of the coefficients, we
obtain constants C1, C2 ¡ 0 such that

α}∇u}L2pΩεq ¤ pAεptqDΨ�J
ε ptq∇u,∇uqL2pΩεq,

cJ}u}L2pΩεq ¤ pJεptqu, uqL2pΩεq � Bptqpu, uq,
pAεptqBtψεptqu,∇vqL2pΩεq ¤ εC}u}L2pΩεq}∇u}L2pΩεq ¤ C1}u}

2
L2pΩεq

� α{2}∇u}2L2pΩεq
,

�B1ptqpu, uq � �pBtJεptqu, uqL2pΩεq ¤ C2}u}L2pΩεq

(4.37)

for a.e. t P p0, T q. Combining these estimates, yields

2Aptqpv, vq � λBptqpv, vq � B1ptqvpvq ¥ α}∇v}L2pΩεq � pλcJ � 2C1 � C2q}v}
2
L2pΩεq

¥ α}v}2H1pΩεq

for λ � pα� 2C1 � C2q{cJ .

� right-hand side f : from Lemma 4.5, we obtain f̂ε P L
2pp0, T q � Ωεq and with the

embedding of HβpΩεq into L
2pΓε,kq, the essential boundedness of Jε and g, we can

infer f P L2p0, T ;H1pΩεq
1q. Moreover, ε-independent estimates for f are presented

below.
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With all requirements of Proposition 4.11 shown, we obtain a solution ûε P L
2p0, T ;H1pΩεqq

with BtpJεûεq P L
2p0, T ;H1pΩεq

1q of (4.28) such that pJεûεqp0q � Jεp0qû
in
ε .

Since Jε P C
0,1pr0, T s;C1pΩεqq, we obtain Btûε P L

2p0, T ;H1pΩεq
1q with

T»
0

xBtpJεûεqptq, φptqyH1pΩεq1,H1pΩεq dt

�

T»
0

xBtûεptq, JεptqφptqyH1pΩεq1,H1pΩεq dt� pûε, BtJεφqL2pp0,T q�Ωεq

(4.38)

for every φ P L2p0, T ;H1pΩεqq. Thus, we can embed ûε in Cpr0, T s;L2pΩεqq and with
Jε P Cpr0, T s;CpΩεqq, we can transfer the initial condition to ûεp0q � ûinε .

In the following, we derive the uniform a-priori estimates (4.35)–(4.36) and show the
uniqueness of the solution. Therefore, we test (4.28) with the solution itself and integrate
over p0, tq for t P p0, T q, which gives

t»
0

xBtpJεûεqpτq, ûεpτqyH1pΩεq1,H1pΩεq dτ � pAεDΨ�J
ε ∇ûε,∇ûεqL2pp0,tq�Ωεq

� pAεBtψεûε,∇ûεqL2pp0,tq�Ωεq � pJεf̂ε,∇ûεqL2pp0,tq�Ωεq

�
¸
kPIε

� � rε,k
R

�n�1
εgpu, rε,kq, ûε

	
L2pp0,tq�Γε,kq

.

(4.39)

With computations as in (4.38), we can rewrite the first term of the left-hand side of (4.39)
by

t»
0

xBtpJεûεqpτq, ûεpτqyH1pΩεq1,H1pΩεq dτ

� 1
2}J

1{2
ε ptqûεptq}L2pΩεq �

1
2}J

1{2
ε p0qûinε }L2pΩεq �

1
2ppBtJεqûε, ûεqL2pp0,tq�Ωεq

where the last term can be estimated with the uniform essential bound for BtJε by

|ppBtJεqûε, ûεqL2pp0,tq�Ωεq| � }BtJε}L8pp0,T q�Ωεq}ûε}
2
L2pp0,tq�Ωεq

¤ C}ûε}
2
L2pp0,tq�Ωεq

.

The first summand of the right-hand side of (4.39) can be estimated with the uniform
essential bound of Jε and the Hölder and Young inequalities by

pJεf̂ε,∇ûεqL2pp0,tq�Ωεq ¤ C
�
}f̂ε}

2
L2pp0,tq�Ωεq

� }ûε}
2
L2pp0,tq�Ωεq

�
. (4.40)

For the second term of the right-hand side of (4.39), we use additionally the boundedness of
g, the Hölder and Young inequalities as well as the uniform trace inequality of Lemma 1.28
for Γε. Then, we obtain for every δ ¡ 0 a constant Cδ, which is in particular independent
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of ε, such that

�
¸
kPIε

� � rε,k
R

�n�1
εgpu, rε,kq, ûε

	
L2pp0,tq�Γε,kq

¤ εC}}g}L8pR�rrmin,rmaxsq}L2pp0,tq�Γεq}ûε}L2pp0,tq�Γεq

¤ εC}}g}L8pR�rrmin,rmaxsq}
2
L2pp0,tq�Γεq

� ε}ûε}
2
L2pp0,tq�Γεq

¤ C}g}2L8pR�rrmin,rmaxsq
� Cδ}ûε}

2
L2pp0,tq�Ωεq

� δ}∇ûε}2L2pp0,tq�Ωεq

After estimating the second and third term on the left-hand side of (4.39) similarly to
(4.37), we can combine it with the previous estimates. Then, after collecting all the
constants and choosing δ small enough, we obtain

}J1{2
ε ptqûεptq}L2pΩεq ¤ C

�
}ûε}

2
L2pp0,tq�Ωεq

� }f̂ε}
2
L2pp0,T q�Ωεq

� }J1{2
ε p0qûinε }L2pΩεq � }g}2L8pR�rrmin,rmaxsq

�
.

Lemma 4.5 shows that }f̂ε}
2
L2pp0,T q�Ωεq

is uniformly bounded and a similar argumentation

yields the uniform boundedness of }J
1{2
ε p0qûinε }L2pΩεq. Then, by applying the Lemma of

Gronwall, we obtain the uniform a-priori estimate (4.36).

For f̂ε � 0, g � 0 and ûinε � 0 the Lemma of Gronwall yields ûε � 0. Together with the
linearity of the equation, this yields the uniqueness of the solution of (4.28).

By testing (4.28) with φ P L2pp0, T ;H1pΩεqq and employing the estimate (4.36), we
obtain with similar estimates the uniform boundedness of }BtpJεûεq}L2p0,T ;H1pΩεqq. After-
wards, we use (4.38) and (4.36) in order to estimate

T»
0

xBtûεptq, φptqyH1pΩεq1,H1pΩεq

¤ }BtpJεûεq}L2p0,T ;H1pΩεqq}J
�1
ε φ}L2p0,T ;H1pΩεqq � }ûε}L2pp0,tq�Ωεq}BtJεJ

�1
ε φ}L2pp0,tq�Ωεq

¤ ε�1C}φ}L2p0,T ;H1pΩεqq � C}φ}L2pp0,tq�Ωεq ¤ ε�1C}φ}L2pp0,tq�Ωεq,

where the factor ε�1 arises, since }∇J�1
ε }L8pp0,T q�Ωεq ¤ ε�1C. Thus, we obtain (4.35).

Lemma 4.13. Let L2 be defined as in the proof of Theorem 4.6. Then, there exists a
constant Cε such that

}pûε,1 � ûε,2qptq}
2
L2pΩεq

� }∇pûε,1 � ûε,2q}
2
L2pp0,tq�Ωεq

¤Cε
�
}ûε,1 � ûε,2}

2
L2pp0,tq�Ωεq

� }u1 � u2}
2
L2pp0,tq�Γεq

� }rε,1 � rε,1}
2
L8pp0,tq�Ωq � }rε,1 � rε,2}

2
L8pΩ;L2p0,tqq

�
,

(4.41)

for every t P p0, T q and prε,i, uiq P Rε � L2p0, T ;HβpΩεqq where ûε,i � L2prε,i, uiq for
i P t1, 2u. In particular, L2 is continuous.
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Proof. Let rε,i P Rε and ui P L
2p0, T ;H1pΩεqq for i P t1, 2u. Then, we denote the corre-

sponding transformation quantities by ψε,i, Ψε,i, Jε,i and Aε,i for i P t1, 2u and f̂ε,ipt, xq :�
fpt, ψε,ipt, xqq. Now, define ûε,i :� L2prε,1, uiq. Moreover, we write δrε :� rε,1 � rε,2,
δu :� u1 � u2, δψε :� ψε,1 � ψε,2 and similarly for the differences of the coefficients and
the products of those terms.

In order to estimate δûε, we test (4.28) with δûε, integrate over p0, tq for t P p0, T q and
subtract the resulting equations by each other, which yields

t»
0

xBtδpJεûεqpτq, δûεpτqyH1pΩεq1,H1pΩεq dτ � pδpAεDΨ�J
ε ∇ûεq,∇δûεqL2pp0,tq�Ωεq

� pδpAεBtψεûεq,∇δûεqL2pp0,tq�Ωεq � pδpJεf̂εq, δûεqL2pp0,tq�Ωεq

�
¸
kPIε

ε
� � rε,1,k

R

�n�1
gpu1, rε,1,kq �

� rε,2,k
R

�n�1
gpu2, rε,2,kq, φ

�
L2pp0,tq�Γε,kq

,

(4.42)

Using

t»
0

xBtδpJεûεqpτq, δûεpτqyH1pΩεq1,H1pΩεq dτ

�}J
1{2
ε,1 ptqδûεptq}L2pΩεq �

1
2pBtJε,1δûε, δûεqL2pp0,tq�Ωεq �

1
2pBtδJε,1ûε,2, δûεqL2pp0,tq�Ωεq

�

t»
0

xBtûε,2pτq, δJεpτqδûεpτqyH1pΩεq1,H1pΩεq dτ,

(4.43)

we can rewrite (4.42) by

I1 � I2 :� }J
1{2
ε,1 ptqδûεptq}

2
L2pΩεq

� pAε,1DΨ�J
ε,1 ∇δûε,∇δûεq

2
L2pp0,tq�Ωεq

�1
2pBtJε,1δûε, δûεq

2
L2pp0,tq�Ωεq

� pBtδJεûε,2, δûεqL2pp0,tq�Ωεq

�

t»
0

xBtûε,2pτq, δJεpτqδûεpτqyH1pΩεq1,H1pΩεq dτ � pδpAεDΨ�J
ε q∇ûε,2,∇δûεqL2pp0,tq�Ωεq

� pδpAεBtψεûεq,∇δûεqL2pp0,tq�Ωεq � pδpJεf̂εq, δûεqL2pp0,tq�Ωεq

�
¸
kPIε

ε
� � rε,1,k

R

�n�1
gpu1, rε,1,kq �

� rε,2,k
R

�n�1
gpu2, rε,2,kq, δûε

�
L2pp0,tq�Γε,kq

�:
9̧

i�3

Ii

(4.44)

In the next step, we estimate I1 and I2 from below and I3, . . . , I9 from above. For this,
we use the uniform estimates for the coefficients of Lemma 4.3 and the uniform Lipschitz
estimates of Lemma 4.4.
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� I1, I2: With the uniform coercivity of Jε,1 and Aε,1DΨ�J
ε,1 , we obtain

I1 � }J
1{2
ε,1 ptqδûεptq}

2
L2pΩεq

¥ cJ}δûεptq}
2
L2pΩεq

,

I2 � pAε,1DΨ�J
ε,1 ∇δûε,∇δûεq

2
L2pp0,tq�Ωεq

¥ α}∇δûε}2L2pp0,tq�Ωεq
.

� I3: With the Hölder inequality and the essential boundedness of BtJε,1, we obtain

I3 �
1
2pBtJε,1δûε, δûεqL2pp0,tq�Ωεq ¤ C}δûε}

2
L2pp0,tq�Ωεq

.

� I4: With the Lipschitz estimate from Lemma 4.4, the boundedness of ûε,2 and the
Hölder and Young inequalities, we obtain a constant Cε ¡ such that

I4 � �pBtδJεûε,2, δûεqL2pp0,tq�Ωεq

¤ }BtδJε}L8pΩε;L2p0,tqq}ûε,2}L8p0,t;L2pΩεqq}δûε}L2p0,t;L2pΩεqq

¤ Cε
�
}Btδrε}L8pΩ;L2p0,tqq � }δrε}L8pp0,tq�Ωq

�
}δûε}L2p0,t;L2pΩεqq

¤ Cε
�
}Btδrε}

2
L8pΩ;L2p0,tqq � }δrε}

2
L8pp0,tq�Ωq � }δûε}

2
L2p0,t;L2pΩεqq

�
.

� I5: First, we use the boundedness of }Btûε,2}L2p0,t;H1pΩεq1q in order to estimate

I5 � �

t»
0

xBtûε,2pτq, δJεpτqδûεpτqyH1pΩεq1,H1pΩεq dτ

¤ }Btûε,2}L2p0,t;H1pΩεq1q}δJεδûε}L2p0,t;H1pΩεqq ¤ ε�1C}δJεδûε}L2p0,t;H1pΩεqq.

Afterwards, we obtain with the Hölder and Young inequalities for every λ ¡ 0 a
constant Cλ such that

}δJεδûε}L2p0,t;H1pΩεqq �}δJεδûε}L2p0,t;L2pΩεqq � }∇pδJεδûεq}L2p0,t;L2pΩεqq

¤
�
Cλ}δJε}

2
L8pp0,tq�Ωεq

� C}δûε}
2
L2pp0,tq�Ωεq

� C}δ∇Jε}2L8pp0,tq�Ωεq
� λ}δ∇ûε}2L2pp0,tq�Ωεq

�
and, then, the Lipschitz estimate from Lemma 4.4 yields

I5 ¤ CεCλ}δrε}
2
L8pp0,tq�Ωq � Cε}δûε}

2
L2pp0,tq�Ωεq

� λ}δ∇ûε}2L2pp0,tq�Ωεq
.

� I6: By similar arguments as above and the boundedness of }∇ûε,2}L2pp0,tq�Ωεq, we
can infer

I6 � �pδpAεDΨ�J
ε q∇ûε,2,∇δûεqL2pp0,tq�Ωεq

¤ }δpAεDΨ�J
ε q}L8pp0,tq�Ωεq}∇ûε,2}L2pp0,tq�Ωεq}δ∇ûε}L2pp0,tq�Ωεq

¤ Cλ}δrε}
2
L8pp0,tq�Ωq � λ}δ∇ûε}2L2pp0,tq�Ωεq

.
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� I7: We note that δpAεBtψεûεq � δpAεBtψεqûε,1 � pAεBtψεq1δûε. Then, we obtain by
similar arguments as above

I7 � pC}δpAεBtψεq}L8pp0,tq�Ωεq � C}δûε}L2pp0,tq�Ωεq

�
}∇δûε}L2pp0,tq�Ωεq

¤ CεCλ
�
}δrε}

2
L8pp0,tq�Ωq � }Btδrε}

2
L8pΩ;L2p0,tqq � }δûε}

2
L2pp0,tq�Ωεq

�
� λ}δ∇ûε}2L2pp0,tq�Ωεq

.

� I8: With the Hölder inequality, we can estimate

I8 ¤ }δpJεf̂εq}L2pp0,tq�Ωεq}δûε}L2pp0,tq�Ωεq

¤
�
}δJε}L8pp0,tq�Ωεq}fp�, ψε,1q}L2pp0,tq�Ωεq � }Jε,2}L8pp0,tq�Ωεq}δf̂ε}L2pp0,tq�Ωεq

�
}δûε}L2pp0,tq�Ωεq.

From Lemma 4.5, we get }fp�, ψε,1q}L2pp0,tq�Ωεq ¤ C and with the Lipschitz continuity
of f and the boundedness of rε, we obtain

}δf̂ε}L2pp0,tq�Ωεq ¤ }Lδψε}L2pp0,tq�Ωεq ¤ εC}δrε}L2pp0,tq�Ωεq ¤ εC}δrε}L8pp0,tq�Ωq.

Thus, we get

I8 ¤ C}δrε}
2
L8pp0,tq�Ωq � C}δûε}

2
L2pp0,tq�Ωεq

.

� I9: We employ the Lipschitz estimate on g, the uniform boundedness of rε and g,
the Hölder and Young inequalities as well as the trace inequality to deduce

I9 � �
¸
kPIε

��
rε,1,k
R

	n�1
gpu1, rε,1,kq �

�
rε,2,k
R

	n�1
gpu2, rε,2,kq, δûε

	
L2pp0,tq�Γεq

¤ Cε
�
}δrε}L8pp0,tq�Ωq � }δu}L2pp0,tq�Γεq

�
}δûε}L2pp0,tq�Γεq

¤ Cε
�
}δrε}

2
L8pp0,tq�Ωq � }δu}2L2pp0,tq�Γεq

� }δûε}
2
L2pp0,tq�Γεq

�
¤ Cε

�
}δrε}

2
L8pp0,tq�Ωq � }δu}2L2pp0,tq�Γεq

�
� Cε

�
Cλ}δûε}

2
L2pp0,tq�Ωεq

� λ}∇δûε}2L2pp0,tq�Ωεq

�
.

After combining the estimates of I1, . . . , I9 with (4.44), choosing δ small enough so that
the gradient terms on the right-hand side can be absorbed by the gradient term on the
left-hand side, we collect all constants and get (4.41).

The continuity of L2 can be inferred from (4.41) with the lemma of Gronwall.

Lemma 4.14. The system (4.25) has at most one solution.

Proof. Let pûε,i, rε,iq P L
2p0, T ;H1pΩεqq � C0,1pr0, T s; rrmin, rmaxsq

|Iε| for i P t1, 2u be two
solutions of (4.25). Following the proof of Theorem 4.6, these solution ûε,i solve also the
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fixedpoint problem ûε,i � L2prε,i, ûε,iq, rε,i � L1pûε,iq for L1 and L2 defined as in the proof
of Theorem 4.6. We define δûε � ûε,1 � ûε,2 and δrε � rε,1 � rε,2.

Then, the Lipschitz estimate from Lemma 4.13, yields a constant Cε such that for
a.e. t P p0, T q

}δûεptq}
2
L2pΩεq

� }∇δûε}2L2pp0,tq�Ωεq

¤ Cε
�
}δûε}

2
L2pp0,tq�Ωεq

� }δûε}
2
L2pp0,tq�Γεq

� }δrε}L8pp0,tq�Ωq � }Btδrε}L8pΩ;L2p0,tqq

�
.

With Lemma 4.8, we can estimate δrε and δBtrε in terms of δûε. Then, we apply the trace
inequality for Γε and obtain for every λ ¡ 0 a constant Cε,λ such that

}δûεptq}L2pΩεq � }∇δûε}L2pp0,tq�Ωεq ¤Cε
�
}δûε}

2
L2pp0,tq�Ωεq

� }δûε}
2
L2pp0,tq�Γεq

�
¤Cε,λ}δûε}

2
L2pp0,tq�Ωεq

� λ}∇δûε}2L2pp0,tq�Ωεq
.

After choosing λ small, we can absorb the gradient term from the right-hand side with
the gradient term from the left-hand side. Then, the Lemma of Gronwall yields

}δûεptq}
2
L2pΩεq

� }∇ûε}2L2pp0,tq�Ωεq
� 0.

for a.e. t P p0, T q and, thus, the solution is unique.

The a-priori estimates (4.26) do not control the time-derivative Btûε uniformly with
respect to ε, which would be necessary in order to apply the Aubin–Lions lemma. Never-
theless, we can control some time shifts of ûε uniformly with respect to ε.

Lemma 4.15. Let ûε be the solution of (4.25). Then,

T�h»
0

}ûεpt� hq � ûεptq}
2
L2pΩεq

dtÑ 0 uniformly with respect to ε (4.45)

for hÑ 0, i.e. there exists a continuous monotonically increasing function ω : r0, T q with
ωp0q � 0 such that

T�h»
0

}ûεpt� hq � ûεptq}
2
L2pΩεq

¤ ωphq (4.46)

for every h ¡ 0 and every ε ¡ 0.

Proof. For a time-dependent function φ, we define δhφptq :� φpt � hq � φptq for h ¡ 0.
First, we note that

δhpJεûεq � Jεδhûε � δhJεûεp� � hq. (4.47)

After multiplication with δhûε, we can estimate with the uniform coercivity of Jε and the
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triangle inequality

cJ}δhûε}
2
L2pp0,T�hq�Ωεq

¤ pJεδhûε, δhuεqL2pp0,T�hq�Ωεq

¤ |pδhpJεûεq, δhuεqL2pp0,T�hq�Ωεq| � |pδhJεûεp� � hq, δhuεqL2pp0,T�hq�Ωεq|.
(4.48)

Since 1
h}δhJε}L8pp0,T q�Ωεq ¤ }BtJε}L8pp0,T q�Ωεq ¤ C, we can estimate the last term on the

right-hand side of (4.48) by

|pδhJεûεp� � hq, δhuεqL2pp0,T�hq�Ωεq| ¤ Ch}ûεp� � hq}L2pp0,T�hq�Ωεq}δhuε}L2pp0,T�hq�Ωεq

¤ Ch}δhuε}L2pp0,T�hq�Ωεq

¤ 2hC}ûε}L2pp0,T q�Ωεq ¤ hC.

(4.49)

Hence, this term converges uniformly to zero and it suffices to show the uniform conver-
gence for the first term on the right-hand side of (4.48). For this, we use the following
Steklov average argument. We rewrite the first term on the left-hand side of (4.25) for
φ P H1p0, T ;H1pΩεqq by

T»
0

xBtpJεûεqptq, φptqyH1pΩεq1,H1pΩεq dt � �pJεûε, BtφqL2pp0,T q�Ωεq

�pJεpT qûεpT q;φpT qqL2pΩεq � pJεp0qûεp0q, φp0qqL2pΩεq.

Now, we assume that φ P H1p�h, T ;H1pΩεqq with φp�hq � φpT q � 0, test (4.25) with
δ�hφ for δ�hφptq :� φpt� hq � φptq and use

pJεûε, Btδ�hφqL2pp0,T q�Ωεq �pδhpJεûεq, BtφqL2pp0,T�hq�Ωεq � ppJεûεqp� � hq, BtφqL2pp�h,0q�Ωεq

� pJεûε, BtφqL2ppT�h,T q�Ωεq.

Then, we get

pδhpJεûεq, BtφqL2pp0,T�hq�Ωεq

�ppJεûεqp� � hq, BtφqL2pp�h,0q�Ωεq � pJεûε, BtφqL2ppT�h,T q�Ωεq

� pJεp0qûεp0q, φp0qqL2pΩεq � pJεpT qûεpT q;φpT � hqqL2pΩεq

� pAεDΨ�J
ε ∇ûε,∇δ�hφqL2pp0,T q�Ωεq � pAεBtψεûε,∇δ�hφqL2pp0,T q�Ωεq

� pJεf̂ε, δ�hφqδ�hφqL2pp0,T q�Ωεq �
¸
kPIε

�
ε
� rε,k
R

�n�1
gpûε, rε,kq, δ�hφ

�
L2pp0,T q�Γε,kq

�:
8̧

i�1

Mi.

(4.50)
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Now, we choose

φptq �
1

h

t�h»
t

ûεpτqdτ

for t P r�h, T s, where we implicitly extend ûε by 0 outside r0, T s. Then, we obtain

Btφptq �

$'&'%
h�1ûεpt� hq for � h   t   0,

h�1pûεpt� hq � ûεptqq for 0   t   T � h,

�h�1ûεptq for T � h   t   T.

(4.51)

for a.e. t P p0, T q. Consequently, the left-hand side of (4.50) is the term that we want to
estimate, i.e.

pδhpJεûεq, BtφqL2pp0,T�hq�Ωεq � h�1pδhpJεûεq, δhûεqL2pp0,T�hq�Ωεq. (4.52)

Now, we estimate the terms Mi for i P t1, . . . , 8u for this choice of φ:

� M1, . . . ,M4: Since ûε P L
2p0, T ;H1pΩεqq X H1p0, T ;H1pΩεq

1q, we obtain that ûε P
Cpr0, T s;L2pΩεqq, and thus the uniform bound }ûε}L2p0,T ;L2pΩεqq ¤ C holds pointwise,
i.e. }ûε}Cpr0,T s;L2pΩεqq ¤ C. Using additionally the uniform bound }Jε}L8pp0,T q�Ωεq ¤
C, we obtain

M1 � �h�1ppJεûεqp� � hq, ûεp� � hqqL2pp�h,0q�Ωεq ¤ h�1hC ¤ C,

M2 � �h�1pJεûε, ûεqL2ppT�h,T q�Ωεq ¤ h�1hC ¤ C,

M3 �
�
Jεp0qûεp0q, h

�1

» t�h
0

ûεpτqdτ
	
L2pΩεq

h�1hC ¤ C

M4 �
�
JεpT qûεpT q, h

�1

» T
T�h

ûεpτqdτ
	
L2pΩεq

h�1hC ¤ C.

� M5, . . . ,M7: We show the estimate for M5. The estimates for M6 and M7 follow
analogously. First, we decompose M5 into

M5 �h
�1

T»
0

�
AεptqDΨ�J

ε ptq∇ûεptq,
» t
t�h

ûεpτqdτ
	
L2pΩεq

dt

� h�1

T»
0

�
AεptqDΨ�J

ε ptq∇ûεptq,
» t�h
t

ûεpτq dτ
	
L2pΩεq

dt �:M5,a �M5,b.
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4.4. Derivation of the limit equations

Then, we change the order of the integration and estimate with the Hölder inequality

M5,a � h�1

h»
0

T»
0

pAεptqDΨ�J
ε ptq∇ûεptq,∇ûεpt� h� τqqL2pΩεq dt dτ

¤ Ch�1

h»
0

}∇ûε}L2pp0,T q�Ωεq}∇ûεp� � h� τq}L2pp0,T q�Ωεq dτ

¤ C}∇ûε}2L2pp0,T q�Ωεq
.

The same argumentation provides also a uniform bound for M5,b.

� M8: We split M8 in two sums like for M5. We show the estimate for the first
summand and the second summand can be estimated analogously. We change again
the order of integration and use the essential boundedness of g and the ε-scaled trace
inequality Lemma 1.28 for Γε

¸
kPIε

T»
0

�
ε
�
rε,kptq
R

	n�1
gpûεptq, rε,kptqq, h

�1

» t
t�h

ûεpτqdτ



L2pΓε,kq

dt

¤
¸
kPIε

h�1

h»
0

T»
0

�
ε
�
rε,kptq
R

	n�1
gpûεptq, rε,kptqq, ûεpt� h� τq dτ



L2pΓε,kq

dt

¤ ε
¸
kPIε

h�1C

h»
0

T»
0

»
Γε,k

|ûεpt� h� τ, xq|dσx dτ dt

¤ εh�1C

h»
0

T»
0

»
Γε

|ûεpt� h� τ, xq|dτ dσx dt

¤ C}ûε}L1pp0,T q�Ωεq � εC}∇ûε}L1pp0,T q�Ωεq ¤ C.

Combining the estimates of M1, . . . ,M8, with (4.50) and (4.52) shows that

pδhpJεûεq, δhûεqL2pp0,T�hq�Ωεq ¤ hC.

Together with (4.48) and (4.49), this yields the desired result.

4.4. Derivation of the limit equations

Strong compactness for ûε
In order to derive some strong compactness result for ûε, we use the following Simon–
Kolmogorow compactness result.
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Chapter 4. Reaction–diffusion problem with coupled evolving microstructure

Lemma 4.16. Let F � Lpp0, T ;Bq. F is relatively compact in Lpp0, T ;Bq for 1 ¤ p   8
if and only if:

�

#
t2³
t1

fptq dt | f P F

+
is relatively comapct in B for all 0   t1   t2   T ,

� }fp� � hq � f}Lpp0,T�h;Bq Ñ 0 uniformly as hÑ 0 for f P F .

Proof. See [Sim87, Theorem 1].

The following lemma translates Lemma 4.16 in the framework of our a-priori estimates
and provides the strong two-scale for a subsequence of ûε.

Proposition 4.17. Let vε be a bounded sequence in L2p0, T ;H1pΩεqq such that

T�h»
0

}vεpt� hq � vεptq}
2
L2pΩεq

dtÑ 0 uniformly with respect to ε (4.53)

for hÑ 0.

Then, there exists v0 P L
2pp0, T q � Ωq and a subsequence such that

Eεvε Ñ v0 in L2pp0, T q � Ωq,

where Eε denotes the extension operator from Lemma 1.24.

Proof. Let Eεvε be the extension of vε. Then,

}pEεvεqp� � hq � Eεvε}L2pp0,T�hq�Ωq � }Eεpvεp� � hq � vεq}L2pp0,T�hq�Ωq

¤ C}vεp� � hq � vε}L2pp0,T�hq�Ωεq Ñ 0

converges uniformly to zero for hÑ 0 with respect to ε. Moreover, we can estimate with
the Hölder inequality, for every 0 ¤ t1   t2   T ,��� » t2

t1

Eεvεptq dt
���2
H1pΩq

�

»
Ω

� » t2
t1

Eεvεpt, xqdt
	2

dx�

»
Ω

� » t2
t1

∇Eεvεpt, xqdt
	2

dx

¤

»
Ω

}1}2L2p0,T q}Eεvεpxq}
2
L2p0,T q dt�

»
Ω

}1}2L2p0,T q}∇Eεvεpxq}
2
L2p0,T q dt

¤ C}Eεvε}
2
L2p0,T ;H1pΩεqq

¤ C,

which shows that
³t2
t1
Eεvεptq dt is bounded in H1pΩq and, therefore, relatively compact

in L2pΩq. Hence, we have verified both assumptions of Lemma 4.16 and it provides the
desired result.
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4.4. Derivation of the limit equations

Strong convergence of rε
In order to formulate the convergence for the radii rε P Cpr0, T s; rrmin, rmaxsq

|Iε|, we recap
the embedding in L8pp0, T q�Ωq where we identify rε with the piecewise constant function
rε : r0, T s � ΩÑ rrmin, rmaxs, rεpt, xq :� rε,kptq for x P εpk � Y q with k P Iε. Similarly, we
can consider Btrε as element in L8pp0, T q�Ωq. This embedding allows the formulation of
the convergence results in Lp-spaces.

Lemma 4.18. Let ûε be a bounded sequence in L2p0, T ;H1pΩεqq and û0 P L
2pp0, T q �Ωq

such that

ûε
2, 2

ÝÝÝÝÑÝÝÝÝÝÑû0 on Γε

and let rinε P rrmin, rmaxs
|Iε| such that rinε Ñ rin0 in L2pΩq for some rin0 P L8pΩq with

rmin ¤ r0 ¤ rmax almost everywhere. Assume that rε satisfies

Btrε,kptq �
1

cs

 

Γε,k

εgpûεpt, xq, rε,kptqq dσx for all k P Iε,

rεp0q � rinε

(4.54)

for a.e. t P p0, T q. Then,

rε Ñ r0 in L8p0, T ;LppΩqq,

Btrε Ñ Btr0 in Lppp0, T q � Ωq,

for every p P r1,8q, where r0 P L
8pp0, T q � Ωq with Bt P L

8pp0, T q � Ωq is the unique
solution of

Btr0pt, xq �
1
cs
gpû0pt, xq, r0pt, xqq,

r0p0, xq � rin0 pxq
(4.55)

for a.e. pt, xq P p0, T q � Ω.

Proof. Carathéodory’s existence theorem provides a unique solution r0 PW
1,1p0, T ;L2pΩεqq

of (4.54). Due to the boundedness of g, one has r0, Btr0 P L
8pp0, T q � Ωεq and with as-

sumption (4.9), we can infer that r0 attains only values in rrmin, rmaxs. In order to show
the convergence of rε Ñ r0, we multiply (4.54) with rε,k � r0, integrate over x P εk � εY
and p0, tq for t P p0, T q and sum over k P Iε, which gives

t»
0

»
Ω

Btrεpτ, xqprε � r0qpτ, xqdx dτ

�

t»
0

¸
kPIε

»
εk�εY

Btrε,kpτqprε,kpτq � r0pτ, xqq dx dτ
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�

t»
0

¸
kPIε

»
εk�εY

1

cs

 

Γε,k

εgpûεpτ, yq, rε,kpτqq dσyprε,kpτq � r0pτ, xqq dx dt

�

t»
0

»
Ω

1

cs

 

Γ

gpTεpûεqpτ, x, yq, Tεprεqpτ, xqq dσyprε � r0qpτ, xqdx dt. (4.56)

Note that Tεprεqpt, x, yq � Tεprεqpt, xq since rε is constant on every cell. Similarly, we
multiply (4.55) with rε,k � r0, integrate over x P εk � εY and p0, tq and sum over k P Iε,
which gives

t»
0

»
Ω

Btr0pt, xqprε � r0qpτ, xqdx dτ �

t»
0

»
Ω

1

cs
gpû0pτ, xq, r0pτ, xqq dσyprε � r0qpτ, xq dx dτ.

(4.57)

Subtracting (4.57) from (4.56) leads to

t»
0

»
Ω

Btprε � r0qpτ, xqprε � r0qpτ, xq dx dτ

�

t»
0

»
Ω

1

cs

 

Γ

gpTεpûεqpτ, x, yq, Tεprεqpτ, xqq � gpû0pτ, xq, r0pτ, xqq dσyprε � r0qpτ, xq dx dτ.

We rewrite the left-hand side and estimate the right-hand side with the Cauchy–Schwarz
inequality, the Lipschitz continuity of g and the Young inequality. Thus, we obtain

1
2}rεptq � r0ptq}

2
L2pΩq �

1
2}rεp0q � r0p0q}

2
L2pΩq

¤

t»
0

»
Ω

1

cs

 

Γ

Lg
�
|pTεpûεq � û0qpτ, x, yq| � |Tεprεqpτ, xq � r0pτ, xq|

�
dσy

|rεpτ, xq � r0pτ, xq|dx dt

¤ C
�
}Tεpûεq � û0}

2
L2pp0,T q�Ω�Γq � }rε � r0}L2pp0,T q�Ωq

�
.

With the Lemma of Gronwall, we can estimate further

}rε � r0}L8p0,T ;L2pΩεqq ¤ C
�
}Tεpûεq � û0}

2
L2pp0,T q�Ω�Γq � }rinε � rin0 }

2
L2pΩq

�
Ñ 0, (4.58)

where the convergence of the first summand of the right-hand side is given by the two-
scale convergence of ûε on Γε and the strong convergence of the initial values is given the
Assumption 4.1.

Given the boundedness of rε and r0, one gets the convergence of rε Ñ r0 with the Hölder
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4.4. Derivation of the limit equations

inequality with respect to the L8p0, T ;LppΩqq-norm for every p P r1,8q.
The strong convergence Btrε Ñ Btr0 in L2pp0, T q � Ωq can be shown like the strong

convergence of rε Ñ r0 by multiplying the differential equation of (4.25) and (4.55) with
Btprε,k � r0q. Afterwards, the uniform essential boundedness of Btrε and Btr0 lead to the
strong convergence Btrε Ñ Btr0 in Lppp0, T q � Ωq for every p P r1,8q.

Strong convergence of ψε
From the strong convergence of rε, we can infer the strong two-scale convergence of ψε
and its derivatives. We define the limit transformation mapping ψ0 by

ψ0pt, x, yq :� ψpr0pt, xq, yq (4.59)

and the corresponding displacement mapping by

|ψ0pt, x, yq :� ψ0pt, x, yq � y � qψpr0pt, xq, yq (4.60)

for a.e. x P Ω and every pt, yq P r0, T s�Y . We recap the notation for the Jacobian matrix,
its determinant and its adjugate matrix, namely,

Ψ0pt, x, yq :� Byψ0pt, x, yq, J0pt, x, yq :� detpByψ0pt, x, yqq,

A0pt, x, yq � AdjpΨ0pt, x, yqq.
(4.61)

Lemma 4.19. Let rε P Cpr0, T s; rrmin, rmaxsq
|Iε| � L8pp0, T q�Ωq and r0 P L

8pp0, T q�Ωq
such that rε Ñ r0 in L2pp0, T q � Ωq. Let ψε by given by (4.18) and ψ0 by (4.59), then,

ε�1pψεpt, xq � xq
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑψ0pt, x, yq � y,

Bxψε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑByψ0,

ε�1BxBxψε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑByByψ0.

If additionally rε P C
0,1pr0, T s; rrmin, rmaxsq

|Iε| with }Btrε,k}L8p0,T q ¤ C for every k P Iε
and Btr0 P L

8pp0, T q � Ωq such that Btrε Ñ R0 in L2pp0, T q � Ωq, then

ε�1Btψεpt, xq
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑBtψ0pt, x, yq

BxBtψε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑByBtψ0

ε�1BxBxBtψε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑByByBtψ0.

Proof. With (4.19), we can rewrite

ε�1pψεpt, xq � xq � ε�1|ψεpt, xq � qψprεpt, xq, x{εq,
Bxψεpt, xq � Bx|ψεpt, xq � 1 � By qψprεpt, xq, x{εq � 1,

εBxBxψεpt, xq � εBxBx|ψεpt, xq � ByBy qψprεpt, xq, x{εq
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and similarly we rewrite with (4.60)

qψpr0pt, xq, yq � |ψ0pr0pt, xq, yq � |ψ0pt, x, yq � y,

By qψpr0pt, xq, yq � 1 � By|ψ0pr0pt, xq, yq � 1 � By|ψ0pr0pt, xq, yq � 1,

ByBy qψpr0pt, xq, yq � ByBy|ψ0pr0pt, xq, yq.

Thus, it suffices to show

Byα
qψprεpt, xq, x{εq  8,  8

ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑByα
|ψ0pr0pt, xq, yq

for multi indices α P t0, 1, 2un with |α| ¤ 2. Using the unfolding operator, we can translate
the two-scale convergence in classical Lp-convergence, namely into the strong convergence

TεpByα qψprε, �{εqq Ñ Byα
|ψ0pr0, �q (4.62)

in Lppp0, T q � Ω� Y q for every p P p1,8q. We rewrite the left-hand side of (4.62) by

TεpByα qψprε, �{εqqpt, x, yq � Byα
qψprεpt, rxsε,Y � εyq, prxsε,Y � εyq{εqq � Byα

qψprεpt, xq, yq.
(4.63)

Due to the strong convergence of rε, we can pass to a subsequence rε such that, for
a.e. pt, xq P Ω� Y , rεpt, xq Ñ r0pt, xq. This pointwise convergence, can be transferred via
the continuity of Byα and (4.63) to the pointwise convergence

TεpByα qψprε, �{εqqpt, x, yq Ñ Byα
|ψ0pr0pt, xq, yq (4.64)

for a.e. pt, x, yq P p0, T q �Ω� Y . Together with the bound for |TεpByα qψprε, �{εqqpt, x, yq| ¤
}Byα

qψ}Cprrmin,rmaxs�Y q, we can apply Lebesgue’s dominated convergence theorem and get
(4.62), for this subsequence. Since this argument is valid for every arbitrary subsequence,
we obtain the convergence for the whole sequence.

The convergence for the time-derivatives can be shown analogously. Namely, we rewrite

ε�1Btψεpt, xq � ε�1Bt|ψεpt, xq � Br qψprεpt, xq, x{εqBtrεpt, xq,
BxBtψεpt, xq � BxBt|ψεpt, xq � ByBr qψprεpt, xq, x{εqBtrεpt, xq,
εBxBxBtψεpt, xq � BxBxBt|ψεpt, xq � ByByBr qψprεpt, xq, x{εqBtrεpt, xq

and, similarly, the limit functions

Br qψpr0pt, xq, yqBtr0pt, xq � Bt|ψ0pr0pt, xq, yq � ψ0pt, x, yq � y,

By qψpr0pt, xq, yqBtr0pt, xq � By|ψ0pr0pt, xq, yq � By|ψ0pr0pt, xq, yq,

ByBy qψpr0pt, xq, yqBtr0pt, xq � ByBy|ψ0pr0pt, xq, yq.

Then, we can translate the convergence into classical Lp-convergence with the unfolding
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4.4. Derivation of the limit equations

operator and argue via the pointwise convergence as above.

Having the above compactness and two-scale convergence results, we can pass to the
two-scale limit in (4.25), which yields the following two-scale limit problem:

Weak form of the two-scale limit problem of the reactive transport

Find pû0, û1q P L
2p0, T ;H1pΩqq�L2pp0, T q�Ω;H1

#pY
�q{Rq and r0 P L8pp0, T q�Ωq

with Btr0 P L
8pp0, T q�Ωq and BtpΘpr0qû0q P L

2p0, T ;H1pΩq1q such that for a.e. t P
p0, T q

xBtpΘpr0qû0qptq,φyH1pΩq1,H1pΩq �

»
Ω

»
Y �

A0pt, x, yqDΨ�J
0 pt, x, yq

p∇xû0pt, xq �∇yû1pt, x, yqq � p∇xφ0pxq �∇yφ1px, yqq dy dx

�

»
Ω

�
Θpr0pt, xqqfpt, xq � csBtpΘpr0pt, xqqq

�
φ0pxq dx,

Btr0pt, xq �
1
cs
gpû0pt, xq, r0pt, xqq

Θpr0q � 1� Vnpr0q,

pΘpr0qû0qp0q � Θprin0 qû
in
0

r0p0q � rin0

(4.65)

for all pφ0, φ1q P L
2p0, T ;H1pΩqq � L2pp0, T q � Ω;H1

#pY
�q{Rq.

Since r0 P L
8pp0, T q�Ωq, we get Θpr0q P L

8pp0, T q�Ωq, and with u0 P L
2pp0, T q�Ωq we

obtain Θpr0qu0 P L
2pp0, T q�Ωq � L2p0, T ;H1pΩq1q. Since BtpΘpr0qu0q P L

2p0, T ;H1pΩq1q,
we can infer Θpr0qu0 P Cpr0, T s;H

1pΩq1q and, thus, the initial condition pΘpr0qû0qp0q �
Θprin0 qû

in
0 of (4.65) makes sense in H1pΩq1.

Theorem 4.20. Let pûε, rεq P L
2p0, T ;H1pΩεqq � C0,1pr0, T s; rrmin, rmaxsq

|Iε| be the so-
lution of (4.25). Then, for every subsequence pûε, rεq there exists a further subsequence
pûε, rεq such that

ûε
2, 2

ÝÝÝÝÑÝÝÝÝÝÑû0, (4.66)

∇ûε
2, 2
ÝÝáÝÝÝáχY �∇xû0 �∇û1, (4.67)

rε Ñ r0 in L8p0, T ;LppΩqq, (4.68)

Btrε Ñ Btr0 in Lppp0, T q � Ωq (4.69)

for every p P r1,8q, where pû0, û1, r0q P L
2p0, T ;H1pΩqq � L2pp0, T q � Ω;H1

#pY
�q{Rq �

L8pp0, T q � Ωq is a solution of (4.65).

Proof. Having the uniform a-priori estimates (4.26), we obtain û0, û1 P L
2p0, T ;H1pΩqq �
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L2pp0, T q � Ω;H1
#pY

�q{Rq such that for a subsequence

ûε
2, 2

ÝÝÝÝáÝÝÝÝÝáχY � û0, ∇ûε
2, 2

ÝÝÝÝáÝÝÝÝÝáχY �∇xû0 �∇xû1. (4.70)

With (4.45), we can additionally control the time shift of ûε , and we can apply Proposition
4.17, which provides a function v0 P L

2p0, T ;L2pΩqq such that

Eεûε Ñ v0 in L2pp0, T q � Ωq (4.71)

after passing to a further subsequence. By multiplying Eεûε with χΩε and passing to the
limit ε Ñ 0, we can identify v0 � û0 and, thus, the first convergence in (4.70) is in fact
strong for this subsequence.

In the next step, we transfer the strong two-scale convergence with the unfolding op-
erator Tε on the trace of ûε. The strong convergence (4.71) implies the strong two-scale
convergence of Eεûε, and hence

TεpEεûεq Ñ u0 in L2pp0, T q � Ω� Y q. (4.72)

Using the identity Tεp∇Eεûεq � ε�1∇yTεpEεûεq, the isometry of Tε and the uniform
boundedness of ∇ûε, we obtain

}∇yTεpEεûεq}L2pp0,T q�Ω�Y q � ε}Tεp∇Eεûεq}L2pp0,T q�Ω�Y q � ε}∇Eεûε}L2pp0,T q�Ωq

¤ ε}∇ûε}L2pp0,T q�Ωq ¤ εC Ñ 0,

Since û0 is independent of y, we can deduce with (4.72) and the trace operator for Γ

}Tεpûεq � û0}L2pp0,T q�Ω�Γq

¤ C}Tεpûεq � û0}L2pp0,T q�Ω�Y �q � C}∇ypTεpûεq � û0q}L2pp0,T q�Ω�Y �q

¤ C}TεpEεûεq � û0}L2pp0,T q�Ω�Y q � C}∇yTεpEεûεq}L2pp0,T q�Ω�Y q Ñ 0,

(4.73)

which is equivalent to the strong two-scale convergence ûε
2, 2

ÝÝÝÝÑÝÝÝÝÝÑû0 on Γε.

Having the strong convergence of ûε, we can infer with Lemma 4.18 the strong conver-
gence of rε and afterwards with Lemma 4.19 the strong two-scale convergence of ψε and
its derivatives. The convergence of ψε can be transferred by Lemma 2.44 to the strong
two-scale convergence of the coefficients

Ψε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑΨ0, Ψ�J

ε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑΨ�J

0 , Aε
  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑA0, Jε

  8,  8
ÝÝÝÝÝÝÝÑÝÝÝÝÝÝÝÝÑJ0.

(4.74)

Now, we have all necessary convergences for the individual terms in order to pass to
the limit ε Ñ 0 in (4.25). For this, we test (4.25) with φ0pt, xq � εφ1

�
t, x, xε

�
for φ0 P

C8pr0, T s;C8pΩqq and φ1 P C8pr0, T s;C8pΩ;C8
# pY qqq with φ0pT q � φ1pT q � 0 and
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integrate the time-derivative term by parts, which leads to»
Ωε

Jεp0, xqû
in
ε pxq

�
φ0p0, xq � εφ1

�
0, x, xε

��
dx

�

T»
0

»
Ωε

Jεpt, xqûεpt, xq
�
Btφ0pt, xq � εBtφ1

�
t, x, xε

��
dx dt

�

T»
0

»
Ωε

Aεpt, xqDΨ�J
ε pt, xq∇ûεpt, xq

�
∇xφ0pt, xq � ε∇xφ1

�
t, x, xε

�
�∇yφ1

�
t, x, xε

��
dx dt

�

T»
0

»
Ωε

Aεpt, xqBtψεpt, xqûεpt, xq
�
∇xφ0pt, xq � ε∇xφ1

�
t, x, xε

�
�∇yφ1

�
t, x, xε

��
dx dt

�

T»
0

»
Ωε

Jεpt, xqf̂εpt, xq
�
φ0pt, xq � εφ1

�
t, x, xε

��
dx dt

�
¸
kPIε

T»
0

»
Γε,k

�
rεpt, xq

R


n�1

εgpûεpt, xq, rε,kptqq
�
∇xφ0pt, xq � εφ1

�
t, x, xε

��
dσx dt.

(4.75)

For all terms besides the boundary term, we can pass to the limit by standard arguments.
We note that the fourth summand vanishes since it is of order ε and, therefore, we do not
need the strong convergence of Btrε for the identification of the limit equations.

In order to pass to the limit in the boundary term, we rewrite it with the unfolding
operator and use (4.73)

¸
kPIε

T»
0

»
Γε,k

�
rεpt, xq

R


n�1

εgpûε, rε,kq
�
φ0pt, xq � εφ1

�
t, x, xε

��
dσx dt

�

T»
0

»
Ω

»
Γ

�
rεpt, xq

R


n�1

gpTεpûεqpt, x, yq, Tεprεqpt, xqq

�
Tεpφ0qpt, x, yq � εTε

�
φ1

�
�, �, �ε

��
pt, x, yq

�
dσy dx dt

Ñ

T»
0

»
Ω

»
Γ

�
r0pt, xq

R


n�1

gpû0pt, xq, r0pt, xqqφ0pt, xqdσy dx dt.

(4.76)
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With the identity Sn�1prq � BrVnprq and the ordinary differential equation for r0, we get

|Γ|
�
r0pt,xq
R

	n�1
gpû0pt, xq, r0pt, xqq � Sn�1pr0pt, xqqcsBtr0pt, xq

� csBrVnpr0pt, xqqBtr0pt, xq

� csBtpVnpr0pt, xqqq,

which allows us to rewrite the right-hand side of (4.76), leading to

¸
kPIε

T»
0

»
Γε,k

�
rεpt, xq

R


n�1

εgpûε, rε,kq
�
φ0pt, xq � εφ1

�
t, x, xε

��
dσx dt

Ñ

T»
0

»
Ω

csBtVnpr0pt, xqqφ0pt, xqdx dt.

Then, we obtain for the limit εÑ 0 in (4.75)

»
Ω

»
Y �

J0p0, x, yq dy û
in
0 pxqφ0p0, xq �

T»
0

»
Ω

»
Y p

J0pt, x, yq dy û0pt, xqBtφ0pt, xq dx dt

�

T»
0

»
Ω

»
Y p

A0pt, x, yqDΨ�J
0 pt, x, yqp∇xû0pt, xq �∇yû1pt, x, yqq

� p∇xφ0pt, xq �∇yφ1pt, x, yqq dy dx dt

�

T»
0

»
Ω

»
Y p

J0pt, x, yqfpt, xqdy φ0pt, xq � csBtVnpr0pt, xqqφ0pt, xq dx dt.

(4.77)

With the identity
³
Y �

J0pt, x, yqdy � Θpt, xq � 1� Vnpr0pt, xqq, integration by parts of the

time-derivative term in (4.77) and the fundamental lemma of the calculus of variations,
we get (4.65). Finally, by a density argument, (4.65) holds for all pφ0, φ1q P H

1pΩεq �
L2pΩ;H1

#pY
�qq.

The homogenised limit equations
In order to derive the homogenised limit system, we separate the micro- and macroscopic
variables in (4.65). Then, we parameterise the reference cell by means of the radius, i.e. we
employ the identity ψ0pt, x, yq � ψprpt, xq; yq. For this, we define the Jacobian matrix of
ψ, its determinant and its adjugate matrix by

Ψpr; yq :� Byψpr; yq, Jεpr; yq :� detpΨpr; yqq, Apr; yq :� AdjpΨpr; yqq (4.78)
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4.4. Derivation of the limit equations

for every pr, yq P rrmin, rmaxs � Y .

Then, we obtain the following homogenised limit system:

Effective coupled reactive transport system in the reference coordinates

BtpΘpr0qu0q � divpD�pr0q∇u0q � Θf � csBtΘpr0q

Btr0 �
1
cs
gpu0, r0q,

Θpr0q � 1� Vnpr0q,

pΘpr0qu0qp0q � Θprin0 qu
in
0 ,

r0p0q � rin0 ,

(4.79)

where the homogenised coefficient D� : rrmin, rmaxs Ñ Rn�n is given by

D�
ijprq :�

»
Y �

Apr; yqDΨ�Jpr; yqpej �∇y ζ̂jpr; yqq � ei dy (4.80)

where ζ̂ipr; �q P H
1
#pY

�q, for rrmin, rmaxs, is the unique solution of

�divypApr; yqDΨ�Jpr; yqpej �∇y ζ̂jpr; yqqq � 0 in Y �,

pApr; yqDΨ�Jpr; yqpej �∇y ζ̂jpr; yqqq � n � 0 on Γ,

y ÞÑ ζ̂jpr; yq Y -periodic.

In order to formulate the limit problem in terms of the natural upscaled domains, we
transform the cell problems from Y � onto Y �

r :� Y zBrpmq via ψpr; �q. Moreover, we define
the interface for an upscaled cell with obstacle radius r by Γr :� BBrpmq.

Following the arguments of Chapter 2, we transforming the solutions of the cell problems
via

ζ̂ipr; yq � ζipr;ψpr; yqq � qψpr; yq � ei in Y �,

ζipr; yq � ζ̂ipr;ψpr; yqq � }ψ�1pr; yq � ei in Y �
r .

This leads to transformation-independent cell problems and a transformation-independent
formula for the effective diffusion coefficientD�. The complete transformation-independent
homogenised limit problem is given as follows.
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Chapter 4. Reaction–diffusion problem with coupled evolving microstructure

Effective coupled reactive transport system

BtpΘpr0qu0q � divpD�pr0q∇u0q � Θf � csBtΘpr0q

Btr0 �
1
cs
gpu0, r0q,

Θpr0q � 1� Vnpr0q,

pΘpr0qu0qp0q � Θprin0 qu
in
0 ,

r0p0q � rin0 ,

(4.81)

where the homogenised coefficient D� : rrmin, rmaxs Ñ Rn�n is given by

D�
ijprq �

»
Y �
r

»
Y �

Dpej �∇yζjpr; yqq � ei dy, (4.82)

where ζipr; �q P H
1
#pY

�
r q, for rrmin, rmaxs, is the unique solution of

�divypDpej �∇yζjpr; yqqq � 0 in Y �
r ,

pej �∇yζjpr; yqqq � n � 0 on Γr,

y ÞÑ ζjpr; yq Y -periodic.

The weak form of (4.79) and (4.81) is given by:

Weak form of the effective coupled reactive transport system

Find u0 P L
2p0, T ;H1pΩqq and r0 P L

8p0, T � Ωq with Btr0 P L
8p0, T � Ωq and

pΘpr0qu0q P L
2p0, T ;H1pΩq1q such that, for a.e. t P p0, T q

xBtpΘpr0u0qptq, φqyH1pΩq1;H1pΩq � pD�pr0ptqq∇u0ptq,∇φptqqL2pΩq

� pΘpr0ptqqfptq � csBtΘpr0ptqq, φptqqL2pΩq,

Btr0ptq �
1
cs
gpu0ptq, r0ptqq,

Θpr0q � 1� Vnpr0q,

pΘpr0qu0qp0q � Θprin0 qu0
in,

r0p0q � rin0

(4.83)

for all pφ0, φ1q P L
2p0, T ;H1pΩqq � L2pp0, T q � Ω;H1

#pY
�qq. The initial condition

pΘpr0qu0qp0q � Θprin0 qu0
in holds in H1pΩq1.

Theorem 4.21. Let pû0, û1, r0q be the solution of (4.65). Then, pu0, r0q, for û0 � u0,
solves (4.83), where the effective diffusivity D� is given by (4.80) or equivalently by (4.82).

Proof. Following Chapter 2, we can separate the micro- and macroscopic variables in
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4.4. Derivation of the limit equations

(4.65). Then, we use the identity ψ0pt, x, yq � ψpr0pt, xq, yq in order to parameterise the
cell problems and the effective coefficient. Finally, we transform the cell problems and the
formula of the effective coefficients from the fixed reference domain Y � to the domain Y �

r

by arguments as in Chapter 2.

Remark 4.22. After a substitution of r in terms of Θ one can reparameterise D� and
g such that this limit system can be formulated in terms of the local porosity and u0 only
without the internal variable r0.

Remark 4.23. In the two-scale limit system (4.65) and the homogenised system (4.83),
the initial values for Θu0 hold only in H1pΩq1 and not in L2pΩq. The reason for this is
that Θpr0qu0 cannot be embedded a-priori into Cpr0, T s;L2pΩqq.
With the following additional assumptions, we get Θpr0qu0 P Cpr0, T s;L

2pΩqq and can
improve the space for the initial condition. Moreover, it allows us to reformulate the
initial condition in terms of u0 only. If we assume that the initial value rin0 has higher
regularity, namely rin0 P H1pΩq, the ordinary differential equation for r0 becomes an equa-
tion in H1pΩq. This improves the regularity of r0 to Cpr0, T s;H1pΩq X L8pΩqq and due
to the polynomial structure of Θ and the uniform boundedness of r0 from below, we ob-
tain Θpr0q,Θpr0q

�1 P L8p0, T ;H1pΩq X L8pΩqq. Moreover, under the additional assump-
tion that the initial values ûε are uniformly essentially bounded, i.e. }ûε}L8pΩεq ¤ C,
it can be shown that ûε is also uniformly essentially bounded, i.e. }ûε}L8pp0,T q�Ωεq ¤
C (see also [WP23, Theorem 5]). Therefore, the two-scale limit of ûε is essentially
bounded and we can restrict the weak forms (4.65) and (4.83) to solutions u0 that are in
L8pp0, T q�Ωq. Having these additional regularities, we obtain Θpr0qu0 P L

2p0, T ;H1pΩqq
and with BtpΘpr0qu0q P L2p0, T ;H1pΩq1q, we get pΘpr0qu0q P Cpr0, T s;L2pΩqq and con-
sequently, u0 � Θpr0q

�1Θpr0qu0 P Cpr0, T s;L
2pΩqq. Thus, we can formulate the initial

condition in the space L2pΩq and in terms of u0 or equivalently in terms of Θpr0qu0.

Remark 4.24. In Theorem 4.20, the convergence of ûε and rε is formulated only for a
subsequence. If the solution of (4.65) and (4.83) is unique, the convergence holds for the
whole sequence.
The argument that we have used to show the uniqueness in the ε-scaled problem, cannot

be used for the limit system since it requires to controlling ∇Jε in L8pp0, T q � Ωεq. This
would correspond to control ∇Θ or ∇r0 in L8pp0, T q � Ωq. If the solutions have a higher
regularity, the uniqueness can be shown by similar arguments as in the ε-scaled problem.
Otherwise arguments as in [Ott96] may be useful.
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Chapter 5.

Conclusion and outlook

We discussed the homogenisation of several processes in non-periodically perforated do-
mains, which may evolve in time. For this, we transformed the corresponding differen-
tial equations onto a periodically perforated substitute domain. This translates the non-
periodicity of the domain into a non-periodicity of additional coefficients in the equations.
The resulting substitute problems in the periodic domain can be homogenised by means
of two-scale convergence, which can handle the non-periodic coefficients arising from the
transformation of non-periodic domains. We derived a generic framework for which the
homogenisation of the substitute problem is equivalent to the homogenisation of the ac-
tual problem. For this, we employed a family of ε-scaled coordinate transformations ψε
and a family of cell transformations ψ0. We showed that the coordinate transformations
commute with the two-scale convergence in the sense

uεpxq
2

ÝÝáÝÝÝáu0px, yq if and only if uεpψεpxqq
2

ÝÝáÝÝÝáu0px, ψ0px, yqq,

which justified the homogenisation of the transformed problem. In particular, we for-
mulated the assumptions on ψε by purely asymptotic statements and did not employ
any structural assumptions, which leads to a very general setting and allows for purely
compactness argument based proofs. Moreover, we provided an additional transforma-
tion result for the correctors, which arise in the homogenisation. This enables the back-
transformation of the homogenisation result leading to transformation-independent ho-
mogenisation results in physically meaningful domains. We transferred this appproach
also to the case of time-dependent microstructure by parameterising the transformations
ψε and ψ0 over a time-interval.

We applied this transformation method to homogenise the quasi-stationary and the
instationary Stokes equations in a porous medium with locally evolving cavities. For the
quasi-stationary case, this led to a quasi-stationary Darcy law, i.e.

v � Kpf �∇pq,
divpvq � �BtΘ

with a time- and space-dependent permeability K � Kpt, xq and an inhomogeneous diver-
gence condition. The permeability tensor can capture locally different microstructure and
the divergence condition incorporates the local change of the porosity leading to an addi-
tional source or sink term for the pressure. For the instationary case, the homogenisation
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led to a Darcy law with memory

v � vin �

t»
0

Kinpt, sqpf �∇pqpsq ds

divpvq � �BtΘ,

with a permeability tensor Kinpt, sq � Kinps, t, xq.
Moreover, we homogenised a reaction–diffusion equation in a perforated domain with

free boundary. The evolution of the domain is coupled with the concentration and, thus,
a-priori unknown. The result is a system for coupled reactive transport

BtpΘuq � divpApΘq∇uq � Θf � csBtΘ,

BtΘ � gpu,Θq.

It couples the evolution of the local porosity Θ � Θpt, xq to the unknown concentration
by means of a family of ordinary differential equations. Moreover, it adjusts the effective
concentration flux via cell problems depending on the local microstructure and rescales
the local change in concentration by taking into account the evolution of the porosity.

Outlook
This work can be continued in a number of ways. For instance, the Stokes flow can
be coupled with the reactive transport. At the microscopic level this leads to a system
consisting of an advection–reaction–diffusion equation, the Stokes equations providing a
model for the fluid velocity and a model for the evolution of the pore domain. The
coupling of the domain evolution with the unknown concentration can be extended as
well. In particular, connected solid domains might be studied. This is not only interesting
for the case where the solid domain change due to dissolution or precipitation processes
but also for fluid–solid interactions where the solid domains changes due to deformation.
From a more theoretical point of view the following extension is very worth following.

Here, the transformation approach is derived for the case where the microstructure is
aligned along an ε-scaled grid with only a small distortion, which vanishes in the limit.
Thus, the upscaled geometry inside the cells is locally different while the shape of the
periodicity cell is macroscopically constant. This setting can only handle microscopic
geometry changes which do not affect the cell position. In deformable porous media
several processes can affect the cell alignment and, thus, change the macroscopic shape
of the porous media. In order to consider the homogenisation for such problems, the
framework presented in this work has to be extended. A new notion of local two-scale
convergence could be helpful, which can capture locally different sizes and shapes of the
reference cell. This would correspond to an extension of the asymptotic behaviour of the
transformations ψε taking into account also macroscopic domain evolution. The large
number of further research directions shows the potential of the presented transformation
method and its importance on the applications in the field of homogenisation.
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Appendix A.

Time dependent–differential
algebraic-equations

This appendix provides a proof of Theorem 3.33 by means of Rothe’s method.

Proposition A.1. Let the assumptions of Theorem 3.33 hold. Let N P N be large enough,
k � T {N and ti � mk for m P t0, 1, . . . , Nu. We define

am :� aptmq, bm :� bptmq, f1,m :�
1

k

» tm�1

tm

f1ptq dt, f2,m :� f2ptmq, gm :� gptmq

for m P t1, . . . , Nu. Then, there exists a unique solution vi P V for i P t0, . . . , Nu and
pi P Q for i P t1, . . . , Nu such that

v0 � vin in V,

am

�
vm � vm�1

k



� bmvm � c�pm � f1,m � f2,m in V 1,

cvm � gm in Q1

(A.1)

for all m P t1, . . . , Nu.

Moreover, there exists a constant C, which is independent of N , such that

max
mPt0,...Nu

}vm}H � k
Ņ

m�1

}vm}
2
V �

Ņ

m�1

1
k }vm � vv�1}

2
H �

Ņ

m�1

k}pm}P ¤ C. (A.2)

Moreover, the constant C depends only on T,CVÑH , Ca, Cb, Cb1 , Cb2 , Cb3 , Cb4 , α, β, γ, La,
Lb1, Lb3, }v

in}V , }g}H1p0,T ;Q1q, }f1}
2
L2p0,T ;H 1q, }f2}H1p0,T ;V 1q, which are given in Assumption

3.34, but not on }c}LpV,Q1q.

Before we prove Proposition A.1 we note that the assumptions on b imply the following
G̊arding’s inequality.

Lemma A.2. Assume that b is given as in Theorem 3.33 and β as in Assumption 3.34(2.).
Then, there exists cb ¡ 0 such that

1
2β}v}

2
V � cb}v}

2
H ¤ bptqpv, vq (A.3)
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for all v P V .

Proof. We use the decomposition of b, the coercivity of b1 and the Young inequality and
obtain

bptqpv, vq � b1ptqpv, vq � b2ptqpv, vq � b3ptqpv, vq � b4ptqpv, vq

¥ }v}2V � Cb2}v}V }v}H � Cb3}v}V }v}H � Cb4}v}H}v}H

¥ }v}2V �
β
4 }v}

2
V �

C2
b2

β }v}2H � β
4 }v}

2
V �

C2
b3

β }v}2H � Cb4}v}
2
H

¥ β
2 }v}

2
V �

�
C2

b2

β �
C2

b3

β � Cb4



looooooooooomooooooooooon

�:cb

}v}2H

for every t P r0, T s and every v P V .

Proof of Proposition A.1. We show the existence and uniqueness of a solution pvm, pmq P
V � P for m P t1, . . . , Nu. First, we choose v0 � vin. Then, we rewrite (A.1) into the
following saddle point problem:

1
kamvm � bmvm � c�pm � 1

kamvm�1 � f1,m � f2,m in V 1,

cvm � g1,m in Q1.
(A.4)

From the coercivity estimate (3.98) for am and G̊arding’s inequality (A.3), we obtain for
N big enough (αk ¥ cb)

1
kampφ,φq � bmpφ,φq ¥

α
k }φ}

2
H � β

2 }φ}
2
V � cb}φ}

2
H ¥ β

2 }φ}
2
V (A.5)

for every m P t1, . . . , Nu and every φ P V . This provides the coercivity of 1
kam � bm

in V . Moreover, we have the inf–sup condition for c and the embedding V � H yields
1
kvm � f1,m � f2,m P V 1. Hence, Proposition 3.5 provides iteratively the existence and
uniqueness of a solution pum, pmq P V �Q for m P t1, . . . , Nu.

In order to derive the a priori estimates, we decompose vm along the V -orthogonal
decomposition V � V0 ` V K

0 for V0 :� kerpcq, i.e. let vm � zm �wm for all m P t1, . . . , Nu
with zm P V0 and wm P V K

0 .

In the lemmas below, we estimate zm and wm separately. Combining the estimate (A.17)
for wm and the estimate (A.20) for zm yields

k
Ņ

m�1

}vm}
2
V ¤ C. (A.6)

Using additionally the embedding of V in H, we obtain also the pointwise estimate for vm
from (A.16) and (A.18)

}vm}H ¤ }zm}H � }wm}H ¤ }zm}H � CVÑH}wm}V ¤ C. (A.7)
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Similarly, we estimate the discrete time derivative with (A.15) and (A.36)

Ņ

m�1

1
k }vm � vv�1}

2
H ¤ 2

Ņ

m�1

1
k }zm � zv�1}

2
H � }wm � wv�1}

2
H

¤ 2
Ņ

m�1

1
k }zm � zv�1}

2
H � CVÑH}wm � wv�1}

2
V ¤ C.

Finally, we obtain the estimate for the pressure from Lemma A.10.

Proof of Theorem 3.33. Let vN0 and pvNm , p
N
mq for m P t1, . . . , Nu be the discrete Rothe

approximation given by Proposition A.1, where we stress the N -dependence since we pass
to the limit N Ñ8. Then, we define the piecewise constant function vN : r0, T s Ñ V and
the piecewise affine function v̄N : r0, T s Ñ V by

v̄N ptq :�

#
vN0 for t � 0,

vNm for t P ptm�1, tms,

vN ptq :�

#
vN0 for t � 0,

vNm � t�tm
k pvNm � vNm�1q for t P ptm�1, tms.

Moreover, we define the piecewise constant function q by

q̄N ptq :�

#
qN1 for t � 0,

qNm for t P ptm�1, tms.

In the same way, we define the piecewise constant operators āN : r0, T s Ñ LpH,H 1q and
b̄N : r0, T s Ñ LpV, V 1q, which we identify with their corresponding Nemytskii operators,
i.e. āN P LpL2p0, T ;Hq;L2p0, T ;Hqq , b̄N P LpL2p0, T ;V q;L2p0, T ;V 1qq. Moreover, we de-
note the piecewise constant extensions of the right-hand sides f1, f2 and g, by f̄N1 , f̄

N
2 , ḡ

N .
Then, we can reformulate the discretised equation (A.1) into

āNBtv
N � b̄N v̄N � c�p̄N � f̄N1 � f̄N2 in L2p0, T ;V 1q,

cv̄N � ḡN in L2p0, T ;Q1q.
(A.8)

From the a-priori estimates of Proposition A.1, compactness arguments and standard
Rothe method arguments, we obtain v P H1p0, T ;Hqq X L2p0, T ;V q and q P L2p0, T ;Hqq,
such that for a subsequence v̄N converges weakly to v in L2p0, T ;V q, Btv

N converges
weakly to Btv in L2p0, T ;Hq and q̄N converges weakly to q in L2p0, T ;Hq.

In order to pass to the limitN Ñ8 in (A.8), we identify a and b with their corresponding
Nemytskii operators. Then, we obtain

T»
0

xb̄N ptqv̄N ptq � bptqvptq, φptqyV 1,V dt �
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�

T»
0

xpb̄N ptq � bptqqv̄N ptq, φptqy � xv̄N ptq � vptq, b�φptqy dtÑ 0,

where the first term on the right-hand side tends to zero due to the uniform Lipschitz
continuity of b and the boundedness of v̄N . The second term tends to zero since b�φ P
L2p0, T ;V 1q. With the same argumentation, we can also pass to the limit N Ñ 8 for
the fist term in the left-hand side of (A.8). Moreover, with standard Rothe method
arguments, we can pass to the limit in the other terms and can show that the initial
values are fulfilled. Thus, pv, pq solves (3.96), which provides the existence of a solution
of (3.96). The a-priori estimates are transferred via the limit process from the discrete
Rothe approximation onto v and p. The uniqueness of the solution follows from Lemma
A.11, which is shown below.

In order to estimate the Rothe solutions in Proposition A.1, we have to control the
right-hand sides by the following lemmas.

Lemma A.3. Let gm be defined as in Proposition A.1 for g P H1p0, T ;Q1q. Then,

1

k

Ņ

m�1

}gm � gm�1}
2
Q1 ¤ }Btg}

2
L2p0,T ;Q1q (A.9)

and }gm}Q1 ¤ }g}Cpr0,T s;Q1q ¤ C}g}H1p0,T ;Q1q for every m P t1, . . . , Nu and a constant C
which is independent of m and N .

Proof. With the Hölder inequality, we obtain

}gm � gm�1}Q1 � }

» tm
tm�1

gptq dt}Q1 ¤

» tm
tm�1

}gptq}Q1 dt ¤ k
1
2

� » tm
tm�1

}Btgptq}
2
Q1 dt

	1
2

(A.10)

for m P t1, . . . Nu. Squaring both sides in (A.10), multiplying with 1
k and summing over

m P t1, . . . , Nu yields

1

k

Ņ

m�1

}gm � gm�1}
2
Q1 ¤

Ņ

m�1

» tm
tm�1

}Btgptq}
2
Q1 dt � }Btg}

2
L2p0,T ;Q1q,

which shows (A.9).

The estimate on gm can be infered from the continuous embedding of Cpr0, T s;Q1q in
H1p0, T ;Q1q.

Lemma A.4. Let f2,m be defined as in Proposition A.1 for f2 P H
1p0, T ;V 1q. Then,

1

k

Ņ

m�1

}f2,m � f2,m�1}
2
V 1 ¤ }Btf2}

2
L2p0,T ;V 1q (A.11)
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and }f2,m}V 1 ¤ }f2,m}Cpr0,T s;Q1q ¤ C}f2}H1p0,T ;V 1q for every m P t1, . . . , Nu and a constant
C which is independent of m and N .

Proof. Lemma A.4 can be shown in the same way as Lemma A.3.

Lemma A.5. Let f1,m be defined as in Proposition A.1 for f P L2p0, T ;H 1q. Then,

k
Ņ

m�1

}f1,m}
2
H 1 ¤ }f1}

2
L2p0,T ;H 1q (A.12)

Proof. We obtain the desired result with the Hölder inequality via

k
Ņ

m�1

}f1,m}
2
H 1 �

1

k

Ņ

m�1

��� » tm
tm�1

f1ptq dt
���2
H 1

¤
1

k

Ņ

m�1

� » tm
tm�1

��f1ptq��H 1 dt
	2

�
1

k

Ņ

m�1

» tm
tm�1

��f1ptq��2H 1 dt |tm � tm�1| �

» T
0

��f1ptq��2H 1 dt � }f1}
2
L2p0,T ;H 1q.

First, we estimate wm, which is the part of vm that is orthogonal to V0, using the
algebraic condition. Therefore, we have to exchange the vector spaces in the inf–sup
condition, which can be done by considering only V J

0 .

Lemma A.6. Let U,W be Banach spaces, c P LpV,Q1q. Then, the following statements
are equivalent:

� There exists a constant γ ¡ 0 such that

inf
qPQzt0u

sup
vPV zt0u

|cpv, qq|

}v}V }q}Q
¥ γ. (A.13)

� The operator c : kerpcqK Ñ Q1 is an isomorphism and

}cpvq}Q1 ¥ γ}v}V for all v P kerpcqK. (A.14)

Proof. See for instance [Bra07, Lemma 4.2].

Lemma A.7. Let wm for m P t0, . . . , Nu be given as in the proof of Proposition A.1.
Then,

k
Ņ

m�1

����wm � wm�1

k

����2
V

¤
1

γ2
}Btg}

2
L2p0,T ;Q1q, (A.15)

}wm}
2
V ¤

1

γ2
}gm}

2
Q1 ¤ C}g}2H1p0,T ;Q1q for every m P t0, . . . , Nu,

(A.16)
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k
Ņ

m�1

}wm}
2
V ¤

T

γ2
}g}2Cpr0,T s;Q1q ¤ C}g}2H1p0,T ;Q1q. (A.17)

Proof. We observe, that pwm � wm�1q P V
K
0 by construction. Hence Lemma A.6 yields

γ}wm � wm�1}V ¤ }cpwm � wm�1q}Q1

and, moreover, it holds cpwm � wm�1q � cpvm � vm�1q. Then, we can estimate

γ2}wm � wm�1}
2
V ¤ }cpwm � wm�1q}

2
Q1 � }cpvm � vm�1q}

2
Q1 � }gm � gm�1}

2
Q1 .

After multiplying with 1
k , summing over m P t1, . . . , Nu, we obtain with Lemma A.3

k
Ņ

m�1

����wm � wm�1

k

����2
V

¤
1

γ2
k

Ņ

m�1

����gm � gm�1

k

����2
Q1
¤

1

γ2
}Btg}L2p0,T ;Q1q,

which shows (A.15).

Similarly, we obtain

γ2}wm}
2
V ¤ }cpwmq}

2
Q1 � }cpvmq}

2
Q1 � }gm}

2
Q1 ¤ }g}2Cpr0,T s;Q1q

and after multiplication with k, and summing over m P t1, . . . , Nu, Lemma A.3 yields

γ2k
Ņ

m�1

}wm}
2
V ¤ k

Ņ

m�1

}gm}
2
L2p0,T ;Q1q ¤ T }g}2Cpr0,T s;Q1q ¤ C}g}2H1p0,T ;Q1q.

Thus, we obtain (A.17).

In the next step, we estimate zm, i.e. the V -orthogonal projection of vm to V0 using the
parabolic equation of the saddle point problem. Compared to the estimate for wm, this
estimate does not provide a uniform control of the discrete time derivative and we have
to estimate the discrete time derivative afterwards.

Lemma A.8. Let zm for m P t0, . . . , Nu be given by the proof of Proposition A.1. Then,
there exists a constant CZ , which depends only on T,CVÑH , Ca, Cb, α, β, γ, La, }v

in}V ,
}g}H1p0,T ;Q1q, }f1}L2p0,T ;H 1q, }f2}H1p0,T ;V 1q, such that

}zm}
2
H ¤ CZ for all m P t1, . . . , Nu, (A.18)

Ņ

i�1

}zm � zm�1}
2
H ¤ CZ , (A.19)

k
Ņ

i�1

}zm}
2
V ¤ CZ . (A.20)
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Proof. We multiply (A.1) by k and rewrite it employing vm � zm � wm

ampzm � zm�1q � kbmzm � kc�pm � �ampwm � wm�1q � kbmwm � kf1,m � kf2,m.
(A.21)

Now, we multiply (A.21) by 2zm and define }φ}2m,H :� ampφ,φq. Using the symmetry of
am, we can rewrite the resulting first term of the left-hand side of (A.21) by

ampzm � zm�1, 2zmq �}zm � zm�1}
2
m,H � }zm}

2
m,H � }zm�1}

2
m,H .

We estimate the second term of the resulting left-hand side of (A.21) from below by
(A.3), the third term on the left-hand side of (A.21) vanishes since zm P V0. Moreover,
we estimate the terms on the right-hand side with the continuity estimates and the Young
inequality and obtain in total

}zm � zm�1}
2
m,H � }zm}

2
m,H � }zm�1}

2
m,H � kβ}zm}

2
V � 2kcb}zm}

2
H

¤ 2Cak}wm � wm�1}H}zm}H � 2kCb}wm}V }zm}V

� 2k}f1,m}H 1}zm}H � 2k}f2,m}V 1}zm}V

¤ Ca
1
k }wm � wm�1}

2
H � 1

2k}zm}
2
H � 2Cb

β k}wm}
2
V �

β
4k}zm}

2
V

� k}f1,m}
2
H 1 � 1

2k}zm}
2
H � 2k}f2,m}

2
V 1 �

β
4k}zm}

2
V .

(A.22)

The coercivity estimate of a provides

}zm}
2
H ¤ 1

α}zm}
2
m,H (A.23)

and, thus, we can estimate (A.22) further and obtain after rearranging

p1� 2cb�1
α kq}zm}

2
m,H � }zm � zm�1}

2
m,H � }zm�1}

2
m,H �

β

2
k}zm}

2
V

¤ Ca
1
k }wm � wm�1}

2
H � 2Cb

β k}wm}
2
V � k}f1,m}

2
H 1 � 2k}f2,m}

2
V 1 .

(A.24)

In the next step, we want to sum (A.24) over m such that the first term on the left-
hand side of (A.24) for m� 1 cancels with the third term on the left-hand side of (A.24).
Therefore, we multiply (A.24) with λpkqM�m ¥ 0, where we fix λ later, forM P t1, . . . , Nu,
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and obtain

M̧

m�1

λpkqM�mp1� 2cb�1
α kq}zm}

2
m,H �

M̧

m�1

λpkqM�m}zm � zm�1}
2
m,H

�
M̧

m�1

λpkqM�m}zm�1}
2
m,H �

M̧

m�1

λpkqN�mβ

2
k}zm}

2
V

¤
M̧

m�1

λpkqM�m
�
Ca

1
k }wm � wm�1}

2
H � 2Cb

β k}wm}
2
V � k}f1,m}

2
H 1 � 2k}f2,m}

2
V 1

	
.

(A.25)

The first and third summands on the left hand side of (A.25) can be estimated by

M̧

m�1

λpkqM�mp1� 2cb�1
α kq}zm}

2
m,H �

M̧

m�1

λpkqM�m}zm�1}
2
m,H

�
M̧

m�1

λpkqM�mp1� 2cb�1
α kq}zm}

2
m,H �

M�1¸
m�0

λpkqM�pm�1q}zm}
2
m�1,H

¤p1� 2cb�1
α kq}zM}

2
M,H � λpkqM�1}z0}

2
1,H

�
M�1¸
m�1

λpkqM�m
�
p1� 2cb�1

α kq}zm}
2
m,H � λpkq�1}zm}

2
m�1,H

	
.

(A.26)

Moreover, the Lipschitz continuity and the coercivity of a yields

}zm}
2
m�1,H � am�1pzm, zmq � ampzm, zmq � pam�1 � amqpzm, zmq

¤ }zm}
2
m,H � Lak}zm}

2
H ¤ }zm}

2
m,H � La

α kampzm, zmq

� }zm}
2
m,H � La

α k}zm}
2
m,H .

(A.27)

Thus, by choosing

λpkq ¥ p1� La
α kqp1�

2cb�1
α kq�1, (A.28)

we obtain for k small enough

p1� 2cb�1
α kq}zm}

2
m,H � λpkq�1}zm}

2
m�1,H

¥ p1� 2cb�1
α kq}zm}

2
m,H � λpkq�1p1� La

α kq}zm}
2
m,H ¥ 0

and we can estimate (A.26) further

M̧

m�1

λpkqM�mp1� 2cb�1
α kq}zm}

2
m,H �

M̧

m�1

λpkqM�m}zm�1}
2
m,H

¥ p1� 2cb�1
α kq}zM}

2
M,H � λpkqM�1}z0}

2
1,H .

(A.29)
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Now, we choose λpkq :� 1 � µk such that (A.28) holds for k small enough, namely, we

choose µ :� La�2p2cb�1q
α � La

α 22cb�1
α . Then, for k ¤ max

!
1, α

2p2cb�1q

)
, we obtain with

Lemma A.12 from below

p1� La
α kqp1�

2cb�1
α kq�1 ¤ p1� La

α kqp1� 22cb�1
α kq

¤ 1� La�2p2cb�1q
α k � La

α 22cb�1
α k2

¤ 1� pLa�2p2cb�1q
α � La

α 22cb�1
α qk ¤ 1� µk.

For m P t0, . . . ,Mu, we can estimate λM�m from below by 1 ¤ λM�m and from above by

λM�m � epM�mq lnpλq � epM�mq lnp1�µkq ¤ epM�mqµk ¤ eNµk � eTµ. (A.30)

Combining (A.25),(A.29) and (A.30) gives

p1� 2cb�1
α kq}zM}

2
M,H � eTµ}z0}

2
1,H �

M̧

m�1

�
}zm � zm�1}

2
m,H �

β

2
k}zm}

2
V

	
¤ eTµ

M̧

m�1

�
Ca

1
k }wm � wm�1}

2
H � 2Cb

β k}wm}
2
V � k}f1,m}

2
H 1 � 2k}f2,m}

2
V 1

	
.

(A.31)

Estimating }z0}
2
1,H by

}z0}
2
1,H ¤ Ca}z0}

2
H ¤ CVÑHCa}z0}

2
V ¤ CVÑHCa}v0}

2
V � CVÑHCa}v

in}2V (A.32)

and the right hand-side of (A.31) with Lemma A.4, Lemma A.5 and Lemma A.7 yields

p1� 2cb�1
α kq}zM}

2
M,H �

M̧

m�1

�
}zm � zm�1}

2
m,H �

β

2
k}zm}

2
V

	
¤ eTµ

�
CVÑHCa}v

in}2V � C2
VÑH

Ca
γ2
}Btg}

2
L2p0,T ;Q1q �

2CbT
βγ2

}g}2Cpr0,T s;Q1q

� }f1}
2
L2p0,T ;H 1q � 2T }f2}

2
Cpr0,T s;V 1q

	
.

(A.33)

With the coercivity of a, we can estimate for k ¤ α
2p2cb�1q

α
2 }zM}

2
H ¤ 1

2}zM}
2
M,H ¤ p1�2cb�1

α kq}zM}
2
M,H . (A.34)

Then, (A.33)–(A.34) yield (A.18)–(A.20).

Now, we estimate the discrete time derivative of zm.

Lemma A.9. Let zm, for m P t0, . . . , Nu, be given by the proof of Proposition A.1. Then,
there exists a constant C, which depends only on T,CVÑH , Ca, Cb, Cb1 , Cb2 , Cb3 , Cb4 , α, β,
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γ, La, Lb1 , Lb3, }v
in}V , }g}H1p0,T ;Q1q, }f1}

2
L2p0,T ;H 1q, }f2}H1p0,T ;V 1q such that

}vm}
2
V ¤ C, (A.35)

Ņ

m�1

1
k }zm � zm�1}

2
H ¤ C. (A.36)

Proof. We use the decomposition vm � vm�1 � wm � wm�1 � pzm � zm�1q and multiply
(A.1) with zm � zm�1. Then, we obtain with zm � zm�1 P V0

1
kampzm � zm�1, zm � zm�1q � bmpvm, zm � zm�1q

� � 1
kampwm � wm�1, zm � zm�1q � f1,mpzm � zm�1q � f2,mpzm � zm�1q.

(A.37)

With the coercivity of a, the estimates for f1 and f2 and the Young inequality, we obtain

α
k }zm � zm�1}

2
H � bmpvm, zm � zm�1q

¤ 1
kCa}wm � wm�1}H}zm � zm�1}H � }f1,m}H 1}zm � zm�1}H

� f2,mpzm � zm�1q

¤ 2C2
a

αk }wm � wm�1}
2
H � α

8k }zm � zm�1}
2
H

� 2k
α }f1,m}

2
H 1 � α

8k }zm � zm�1}
2
H � f2,mpzm � zm�1q.

(A.38)

In order to estimate bm, we decompose bm � b1m � b2m � b3m � b4m analogously to (3.100)

bmpvm, zm � zm�1q �b
1
mpvm, zm � zm�1q � b2mpvm, zm � zm�1q

� b3mpvm, zm � zm�1q � b4mpvm, zm � zm�1q
(A.39)

We note that the estimates and the pointwise properties of b1, b2, b3, b4 from Assumption
3.34 hold for the decomposition of bm as well. Thus, b1m is coercive, continuous and
symmetric and, hence, it defines a scalar product on V and a norm via

}u}2m,V :� b1mpu, uq

for u P V . Using the Cauchy–Schwarz and the Young inequalities, we obtain for any
u, s P V

b1mpu, sq � }u}m,V }s}m,V ¤ 1
2}u}

2
m,V �

1
2}s}

2
m,V

and we can conclude

b1mpu, u� sq � b1mpu, uq � b1mpu, sq ¥ }u}2m,V �
1
2}u}

2
m,V �

1
2}s}

2
m,V

� 1
2}u}

2
m,V �

1
2}s}

2
m,V .

(A.40)
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Employing (A.40), we can estimate

b1mpvm, zm � zm�1q � b1mpvm, vm � vm�1q � b1mpvm, wm � wm�1q

� 1
2}vm}

2
m,V �

1
2}vm�1}

2
m,V � b1mpvm, wm � wm�1q.

(A.41)

Using the continuity of b2m and b4m and the Young inequality, we can estimate the second
and the fourth summands on the right-hand side of (A.39) by

�b2mpvm, zm � zm�1q ¤ Cb2}vm}V }zm � zm�1}H

¤ 2
αC

2
b2k}vm}

2
V �

α
8k }zm � zm�1}

2
H

�b4mpvm, zm � zm�1q ¤ Cb2}vm}H}zm � zm�1}H

¤ 2
αC

2
b4k}vm}

2
H � α

8k }zm � zm�1}
2
H .

(A.42)

Combining (A.38), (A.39), (A.41) and (A.42) yields

α
2k }zm � zm�1}

2
H � 1

2}vm}
2
m,V �

1
2}vm�1}

2
m,V

¤2C2
a

αk }wm � wm�1}
2
H � 2k

α }f1,m}
2
H 1 � 2

αC
2
b2k}vm}

2
V �

2
αC

2
b4k}vm}

2
H

� b1mpvm, wm � wm�1q � f2,mpzm � zm�1q � b3mpvm, zm � zm�1q.

(A.43)

With the continuity estimate for b1 and the Young inequality, we obtain

b1mpvm, wm � wm�1q ¤ Cb1}vm}V }wm � wm�1}V

¤
C2

b1

4 k}vm}
2
V �

1
k }wm � wm�1}

2
V .

(A.44)

After inserting (A.44) in (A.43), we obtain with the continuous embedding of V into H

α
2k }zm � zm�1}

2
H � 1

2}vm}
2
m,V �

1
2}vm�1}

2
m,V

¤
�
2C2

a
α C2

VÑH � 1
	

1
k }wm � wm�1}

2
V �

2k
α }f1,m}

2
H 1

�

�
C2

b1

4 � 2
αC

2
b2 �

2
αC

2
b4C

2
VÑH



k}vm}

2
V

� f2,mpzm � zm�1q � b3mpvm, zm � zm�1q.

(A.45)

Now, we multiply (A.45) by λpkqM�m ¥ 0, where λpkq is determined later, for M P
t1, . . . , Nu and sum over m P t1, . . . ,Mu. Thus, we obtain

M̧

m�1

λpkqM�m α
2k }zm � zm�1}

2
H � 1

2

M̧

m�1

λpkqM�m
�
}vm}

2
m,V � }vm�1}

2
m,V

�
¤

M̧

m�1

λpkqM�m
��

2C2
a
α C2

VÑH � 1
	

1
k }wm � wm�1}

2
V �

2k
α }f1,m}

2
H 1
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�
M̧

m�1

λpkqM�m

��
C2

b1

4 � 2
αC

2
b2 �

2
αC

2
b4C

2
VÑH



k}vm}

2
V




�
M̧

m�1

λpkqM�mf2,mpzm � zm�1q �
M̧

m�1

λpkqM�mb3mpvm, zm � zm�1q

�:I1 � I2 � I3 � I4. (A.46)

We rewrite, the second term on the left-hand side of (A.46)

1
2

M̧

m�1

λpkqM�m
�
}vm}

2
m,V � }vm�1}

2
m,V

�
�1

2

M̧

m�1

λpkqM�m}vm}
2
m,V �

1
2

M�1¸
m�0

λpkqM�pm�1q}vm}
2
m�1,V

�1
2}vM}

2
M,V �

1
2λpkq

M�1}v0}
2
1,V

� 1
2

M�1¸
m�1

λpkqM�m
�
}vm}

2
m,V � λpkq�1}vm}

2
m�1,V

�
.

(A.47)

From the Lipschitz continuity and the coercivity of b1m, we obtain

}vm}
2
m�1,V � b1,m�1pvm, vmq � b1mpvm, vmq � pb1m � b1,m�1qpvm, vmq

¤ }vm}
2
m,V � Lb1k}vm}

2
V ¤ }vm}

2
m,V �

Lb1

β kb1mpvm, vmq

� }vm}
2
m,V �

Lb1

β k}vm}
2
m,V .

(A.48)

Now, we choose

λpkq � 1�
Lb1

β k (A.49)

such that we can estimate the last term on the right-hand side of (A.47) with (A.48) from
below

}vm}
2
m,V � λpkq�1}vm}

2
m�1,V ¥ }vm}

2
m,V � λpkq�1p1�

Lb1

β kq}vm}
2
m,V � 0. (A.50)

Moreover, we have

λpkqM�m � epM�mq lnpλpkqq ¤ e
pM�mq ln

�
1�

Lb1

β k



¤ e

pM�mq
Lb1

β k
¤ e

T
Lb1

β . (A.51)
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Using (A.50), (A.51), the coercivity and continuity of b1, we can estimate (A.47) further

1
2

M̧

m�1

λpkqM�m
�
}vm}

2
m,V � }vm�1}

2
m,V

�
¥ 1

2}vM}
2
M,V �

1
2λpkq

M�1}v0}
2
1,V

¥ β 1
2}vM}

2
V �

1
2e
T
Lb1

β Cb1}v0}
2
V ¥ β 1

2}vM}
2
V �

1
2e
T
Lb1

β Cb1}v
in}2V .

(A.52)

Now, we estimate the terms I1, I2, I3, I4 of the right-hand side of (A.46). Using (A.51),
Lemma A.7 and Lemma A.5, we can estimate I1 by

I1 ¤ e
T
Lb1

β
��

2C2
a
α C2

VÑH � 1
	

1
γ2
}Btg}

2
L2p0,T ;Q1q �

2
α}f1}

2
L2p0,T ;H 1q

	
(A.53)

and with (A.51), Lemma A.7 and Lemma A.8, we obtain

I2 ¤ e
T
Lb1

β

�
C2

b1

4 � 2
αC

2
b2 �

2
αC

2
b4C

2
VÑH



pCZ �

T
γ2
}g}Cpr0,T s;Q1qq. (A.54)

Furthermore, we obtain

I3 �f2,M pzM q �
M�1¸
m�1

λpkqM�pm�1qpλpkq � 1qf2,mpzmq

�
M�1¸
m�1

λpkqM�pm�1q pf2,mpzmq � f2,m�1pzmqq � λpkqM�1f2,1pz0q

¤}f2,M}V 1}zM}V � e
T
Lb1

β

M�1¸
m�1

k
Lb1

β }f2,m}V 1}zm}V

� e
T
Lb1

β

M�1¸
m�1

}f2,m � f2,m�1}V 1}zm}V � e
T
Lb1

β }f2,1}V 1}z0}V .

(A.55)

Then, applying the Young inequality, the estimate }zM}V ¤ }vM}V , Lemma A.4 and
Lemma A.8 give

I3 ¤
2
β }f2,M}

2
V 1 �

β
8 }zM}

2
V �

M�1¸
m�1

k
L2
b1

β2 }f2,m}
2
V 1 � k}zm}

2
V

�
M�1¸
m�1

e
2T

Lb1

β 1
4k }f2,m � f2,m�1}

2
V 1 � k}zm}

2
V �

1
4e

2T
Lb1

β }f2,1}
2
V 1 � }z0}

2
V

¤ 2
β }f2}Cpr0,T s;V 1q �

β
8 }vM}

2
V � T

L2
b1

β2 }f2}Cpr0,T s;V 1q � CZ

� e
2T

Lb1

β 1
4}Btf2}

2
L2p0,T ;V 1q � CZ �

1
2e

2T
Lb1

β }f2}Cpr0,T s;V 1q � }z0}
2
V
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¤p 2β � T
L2
b1

β2 � 1
4e

2T
Lb1

β q}f2}Cpr0,T s;V 1q �
β
8 }vM}

2
V � 2CZ

� e
2T

Lb1

β 1
2}Btf2}

2
L2p0,T ;V 1q � }vin}2V . (A.56)

In the next step, we estimate

I4 �� b3,M pvM , zM q � λpkqM�1b3,1pv1, z0q

�
M�1¸
m�1

λpkqM�pm�1q
�
λpkqb3mpvm, zmq � b3,m�1pvm�1, zmq

�
:�J1 � J2 � J3.

(A.57)

Using the continuity of b3m, the Lipschitz continuity of b3, the Young inequality, the esti-
mate }zM}V ¤ }vM}V , Lemma A.7 and Lemma A.8 gives

J1 ¤ Cb3}vM}H}zM}V ¤ C2
b3

1
β p}wM}H � }zM}Hq

2 � β 1
4}zM}

2
V

¤ 4
βC

2
b3C

2
VÑH

1
γ2
}g}2Cpr0,T s;Q1q �

4
βC

2
b3CZ �

β
8 }vM}

2
V

J2 ¤ e
T
Lb1

β Cb3}v1}H}z0}V ¤ e
2T

Lb1

β C2
b3

1
2p}z1}H � }w1}Hq

2 � 1
2}v0}

2
V

¤ e
2T

Lb1

β C2
b3CZ � e

2T
Lb1

β C2
b3C

2
VÑH

1
γ }g}

2
Cpr0,T s;Q1q �

1
2}v

in}2V .

(A.58)

In order to estimate J3, we estimate first

�pλpkqb3mpvm, zmq � b3,m�1pvm�1, zmqq

� � pλpkqb3mpvm, zmq � b3mpvm, zmqq � pb3mpvm � vm�1, zmqq

� pb3m � b3,m�1qpvm�1, zmq

¤
Lb1

β Cb3k}vm}H}zm}V � Lb3k}vm�1}H}zm}V

� Cb3p}zm � zm�1}H � }wm � wm�1}Hq}zm}V

¤
L2
b1

2β2C
2
b3C

2
VÑHk}vm}

2
V �

1
2k}zm}

2
V � L2

b3
1
2C

2
VÑHk}vm�1}

2
V �

1
2k}zm}

2
V

� α
4k }zm � zm�1}

2
H � α

4kC
2
VÑH}wm � wm�1}

2
V �

2
αC

2
b3k}zm}

2
V .

(A.59)

Having this, we can estimate J3 with Lemma A.7 and Lemma A.8

J3 ¤e
T
Lb1

β

M�1¸
m�1

�
L2
b1

2β2C
2
b3C

2
VÑHkp}zm}

2
V � }wm}

2
V q � p1� 2

αC
2
b3qk}zm}

2
V

� L2
b3

1
2C

2
VÑHkp}zm�1}

2
V � }wm�1}

2
V q �

α
4kC

2
VÑH}wm � wm�1}

2
V

	
�
M�1¸
m�1

λpkqM�pm�1q α
4k }zm � zm�1}

2
H
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¤e
T
Lb1

β
�
L2
b1

β2 C
2
b3C

2
VÑHpCZ �

T
γ2
}g}2Cpr0,T s;Q1qq � p1� 2

αC
2
b3qCZ

� L2
b3

1
2C

2
VÑHpCZ �

T
γ2
}g}2Cpr0,T s;Q1qq �

α
4C

2
VÑH

1
γ2
}Btg}

2
L2p0,T ;Q1q

	
�

M̧

m�2

λpkqM�m α
4k }zm�1 � zm}

2
H . (A.60)

Estimating the left-hand side of (A.46) by (A.52) and the right-hand side by (A.53),
(A.54), (A.56), (A.57), (A.58), and (A.60), we obtain after collecting all the constants and
using 1 ¤ λpkq

β
4 }vM}

2
V �

M̧

m�1

λpkqM�m α
4k }zm � zm�1}

2
H ¤ C,

where C depends on T,CVÑH , Ca, Cb, Cb1 , Cb2 , Cb3 , Cb4 , α, β, γ, La, Lb1 , Lb3 , }v
in}V ,

}g}Cpr0,T s;Q1q, }Btg}L2p0,T ;Q1q, }f1}
2
L2p0,T ;H 1q, }Btf2}L2p0,T ;V 1q. This shows (A.35)–(A.36).

Lemma A.10. Let pm be given as in Proposition A.1. Then,

M̧

m�1

k}pm}P ¤ C (A.61)

for a constant C, which depends only on T,CVÑH , Ca, Cb, Cb1 , Cb2 , Cb3 , Cb4 , α, β, γ, La,
Lb1, Lb3, }v

in}V , }g}H1p0,T ;Q1q, }f1}
2
L2p0,T ;H 1q, }f2}H1p0,T ;V 1q.

Proof. Using (A.1), we can estimate

}c�pm}V 1 � } � 1
kam pvm � vm�1q � bmvm � f1,m � f2,m}V 1

¤ CaCVÑH
1
k }vm � vm�1}H � Cb}vm}V � CVÑH}f2,m}H 1 � }f2,m}V 1 .

(A.62)

From the inf–sup estimate of c, we obtain γ}pm}Q ¤ }c�pm}V 1 , which yields

γ}pm}Q ¤ CaCVÑH
1
k }vm � vm�1}H � Cb}vm}V � CVÑH}f2,m}H 1 � }f2,m}V 1 .

After multiplication by k and summing over m P t0, . . . , Nu, we obtain

γ
M̧

m�1

k}pm}P ¤
M̧

m�1

kCaCVÑH
1
k

�
}vm � vm�1}H

�
� Cbk}vm}V

�
M̧

m�1

CVÑHk}f1,m}H 1 � k}f2,m}V 1 .

(A.63)

Then, we obtain (A.61) with the estimates from Lemma A.5, Lemma A.4, Lemma A.7
and Lemma A.9.
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Lemma A.11. The solution of Theorem 3.33 is unique.

Proof. Due to the linearity of (3.96), we can assume that f1, f2, g, v
in � 0 and it suffices

to show that every solution v, p of (3.96) is already 0. We decompose v � w � z as above
and obtain similarly as in Lemma A.7 that w � 0. Then, we multiply (3.96) by zptq and
get

aptqpBtzptq, zptqq � bptqpzptq, zptqq � �aptqpBtwptq, zptqq � bptqpwptq, zptqq � 0.

Since a P C0,1pr0, T s;LpH,H 1qq, we get t ÞÑ aptqpv, wq P C0,1pr0, T sq � W 1,8p0, T q for
every fixed v, w P H and it holds |Btaptqpv, wq| ¤ La}v}H}v}W for a.e. t P p0, T q and all
v, w P H. Hence, a is family of regular operators in the sense of [Sho97, Chapter III.3].
Then, a1ptq P LpH,H 1q can be defined by a1ptqv :� Btpaptqpv, �q and we obtain from [Sho97,
Chapter III. Proposition 3.2]

Btpaptqpzptq, zptqqq � 2aptqpBtzptq, zptqq � a1ptqpzptq, zptqq

almost everywhere, which leads to

1
2Btpaptqpzptq, zptqqq � bptqpzptq, zptqq � 1

2a
1ptqpzptq, zptqq.

Integrating over p0, tq yields

1
2paptqpzptq, zptqqq �

1
2pap0qpzp0q, zp0qqq �

t»
0

bpτqpzpτq, zpτqq dτ �

t»
0

1
2a

1pτqpzpτq, zpτqq dτ.

Due to the zero initial values, the coercivity of a, the G̊arding’s inequality for bptq and the
estimate for a1ptq with the Lipschitz constant of a, we obtain

1
2α}zptq}

2
H � 1

2β}z}
2
L2pp0,tq;V q ¤

�
cb �

1
2La

�
}z}2L2pp0,tq;Hq.

Then, the Lemma of Gronwall shows that z � 0 and, therefore v � 0. Then, we obtain
with the inf–sup estimate

γ}pptq}Q ¤ }c�pptq}V 1 � } � aptqBtvptq � bptqvptq}V 1 � 0,

which shows p � 0.

Lemma A.12. Let b ¡ a ¡ 0. Then,

p1� axq�1 ¤ p1� bxq (A.64)

for all x P r0, b�aab s
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Proof. We note that 0 ¤ x ¤ b�a
ab yield pa� bqx� abx2 ¤ 0 and

1� p1� bxqp1� axq ¤ 0.

Moreover, we have 1� ax ¥ 1� a b�aab � 1
b ¡ 0 and, therefore,

p1� axq�1 � p1� bxq �
1� p1� bxqp1� axq

1� ax
¤ 0

which provides the desired result.
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Notation

Notation

1 identity matrix
detpAq determinant
AdjpAq adjugate matrix
trpAq trace
Y K orthogonal complement
|x| Euclidean norm in Rn or Forbenius norm in Rn�n
|x|8 maximum norm
distpA,Bq distance
Brpxq ball with radius r around x
intpAq interior

A closure
BA boundary
ei Euclidean unit vector in Rn
supppfq support of a function
C generic constant
Cε generic constant depending on ε
c generic constant used for bounds from below
CpΩq continuous functions
Cm,αpΩq Hölder continuous functions
C1,αpΩq Lipschitz continuous functions

CkpΩq k-times continuously differentiable functions
C8
0 pΩq infinitely differentiable functions with compact support

DpΩq the set C8
0 pΩq with a suitable topology (see [Alt16])

C#pY q Y -periodic continuous functions
C8
# pY q Y -periodic infinitely differentiable functions

LppΩq Lebesgue space
LppΩ, Bq Lebesgue-Bochner space
W k,ppΩq Sobolev space
HkpΩq �W k,2pΩq

W 1,p
0 pΩq functions with zero trace on BΩ

W 1,p
Γ pΩq functions with zero trace on Γ

W 1,p
# pY q Y -periodic functions

LpV,W q space of linear and continuous operators
V 1 dual space
x � y Euclidean inner product in Rn
A : B Euclidean inner product in Rn�n
px, yq inner product
xx1, xyX 1,X dual pairing�
U

average integral
�
� 1

|U |

³
U

�
c� adjoint operator
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Notation

Notation for derivatives:
Let U � Rn and u : U Ñ R, v : U Ñ Rn and A : U Ñ Rn�n, x P U and i, j, k P t1, . . . , nu:

Bxupxq P R1�n, Bxupxq1i :� Bxiupxq,

∇upxq :� pBxupxqq
J P Rn,

Bxvpxq P Rn�n, Bxvpxqji :� Bxivjpxq,

∇vpxq :� pBxvpxqq
J P Rn�n,

BxApxq P Rpn�nq�n, BxApxqjki :� BxiAjkpxq,

∇Apxq :� pBxApxqq
J P Rn�pn�nq, ∇Apxqijk � BxApxqjki,

divpvpxqq :�
ņ

i�1

Bxivi � trpBxvq,

divpApxqq P Rn, divpApxqqj :� divppAijq
n
i�1pxqq �

ņ

i�1

BxiAij

∆upxq :� divp∇uq
∆vpxq :� divp∇vpxqq P Rn, p∆vpxqqi � ∆vipxq

In particular, these notations for the derivatives lead to the following Leibniz rules

Bxpuvq � vBxu� uBxv,

BxpuAq � ABxu� uBxA,

BxpAvq � vJBxA�ABxv,

divpuvq � udivpvq �∇u � v,
divpuAq � udivpAq �AJ : ∇u,
divpAvq � divpAq � v �A : ∇v.
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in LppΩ, Bq, Stud. Univ. Babeş-Bolyai Math. 61 (2016), 279–290.

[GNRK16a] M. Gahn, M. Neuss-Radu and P. Knabner, Derivation of an effective model
for metabolic processes in living cells including substrate channeling, Vietnam
J. Math. 45 (2016), 265–293.

[GNRK16b] M. Gahn, M. Neuss-Radu and P. Knabner, Homogenization of reaction-
diffusion processes in a two-component porous medium with nonlinear flux
conditions at the interface, SIAM J. Appl. Math. 76 (2016), 1819–1843.

201



Bibliography

[GNRK17] M. Gahn, M. Neuss-Radu and P. Knabner, Derivation of an effective model
for metabolic processes in living cells including substrate channeling, Vietnam
J. Math. 45 (2017), 265–293.

[GNRP21] M. Gahn, M. Neuss-Radu and I. S. Pop, Homogenization of a reaction-
diffusion-advection problem in an evolving micro-domain and including non-
linear boundary conditions, J. Differ. Equ. 289 (2021), 95–127.

[GP23] M. Gahn and I. S. Pop, Homogenization of a mineral dissolution and precipi-
tation model involving free boundaries at the micro scale, J. Differ. Equ. 343
(2023), 90–151.
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