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Abstract—The increasing popularity of empathetic sensors can
play a significant role in the affective computing era. Recognizing
human emotion from these unobtrusive devices is an important
building block in this context. Multi-task learning has been
studied extensively for various machine learning tasks, including
affective computing, which uses the shared information between
related tasks to improve performance. Since the physiological
data from the mentioned sensors contain private data, they can
also lead to privacy threats by exposing highly sensitive infor-
mation. To address this issue, we combine differential privacy
and federated learning approaches with multi-task learning to
efficiently recognize the user’s mental stress while perturbing
private user identity information. More concretely, the proposed
framework improves the performance of emotion recognition
tasks by taking advantage of multi-task learning and preserv-
ing privacy. We extensively evaluate our framework with the
employed dataset: results show an accurate emotion recognition
of 90% while limiting the re-identification accuracies to 47%.

I. INTRODUCTION

Affect recognition is a significant research field that has a
direct impact on our daily lives. Affect recognition research
makes use of facial expressions [1] and speech [2] because
the correlation between facial expressions and speech with
emotions is known for a long time. The physiology-based
solution is another alternative for affect recognition. Its main
advantage is its suitability for continuous monitoring in daily
life without disturbing users. Wearable devices are pervasive
tools for collecting passive and quantitative physiological
data. More than 330 million smartwatches, fitness trackers,
and similar wearables have been sold, and the market has
been growing each year [3]. Physiological, environmental,
and activity-related data can be collected without interrupting
users, which makes them a favorable prospect for recognizing
affects.

Multi-task learning (MTL) is proposed to address the train-
ing of multiple related tasks simultaneously. MTL transfers
knowledge between these multiple tasks to improve the per-
formance of each model [4]. It can be considered as an
implicit data augmentation technique or eavesdropping of
additional supervision to enhance the generalization capability
of machine learning (ML) models [5]. MTL is applied to
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improve the performance of ML models in various domains
including affective computing [6].

Nevertheless, collecting and analyzing personal private data,
such as identity, gender, age, and user location, raise concerns
about users’ privacy, especially when the analysis is performed
in a cloud-based wearable application. For instance, cloud-
based ML algorithms can provide beneficial services (e.g.,
stress monitoring or health apps), but the redundant data
collected from the users could be used for illegitimate purposes
(e.g., identity recognition for targeted social advertising). In-
tuitively, extracting such information without an individual’s
consent can be considered a violation of their privacy. In this
regard, researchers often employ data obfuscation techniques
to anonymize private data users; however, most of them rely
only upon relational data and cannot be applied to model train-
ing data. In addition, they often require human intervention to
label the sensitive information held in the original data, which
is usually computationally expensive.

Recent research has explored the possibility of modifying
the learning paradigm such that feature attributes may not be
shared while the only learning model can be used only for
legitimate tasks. Researchers proposed a Federated Learning
(FL) approach to train the user data locally. It allows the
users to train their data collaboratively by sharing trained
model parameters instead of original data. It abides by the
data protection laws such as EU General Data Protection
Regulation (GDPR) and California Consumer Privacy Act
(CCPA). The emerging concept of FL has shown promising
solutions for preserving user privacy in healthcare networks,
social networks, and the IoT.

The FL approach is a big step in preserving users’
privacy but is not invincible. Sensitivity information can
still be retrieved by applying reverse engineering to the
local model parameters. On top of FL, researchers applied
privacy-preserving approaches in ML for physiological data.
Differential privacy (DP) is a well-known method that has
been largely used in an FL paradigm to mitigate such a
trade-off. It injects noise into each model in the client or
server, perturbs the updates, and limits gradient leakage
shared between the nodes (i.e., client and server) [7].

In practice, protecting the user’s privacy without degradation
in model utility is still an open problem. In this study, we first



TABLE I: Studies using MTL or Privacy preserving ap-
proaches for various applications.

Study Application Signal MTL FL DP Multimodal

[10]
Network Anomaly

Detection Network Signals X X

[11] Activity recognition
Acceleration,

Gyroscope X

[12] Affect recognition Speech, video, text X X

[9] Affect recognition Face images X X X

[13] Affect recognition Face images X X X

[14] Affect recognition Face and speech X X

[15] Affect recognition Speech X X

[16] Affect Recognition PPG X X X

Our Study Affect Recognition
PPG, EDA,

Acceleration, ST

implemented a multitask learning architecture for recognizing
stress and identity from multimodal physiological signals.
We further added FL and DP mechanisms to preserve
privacy. In this way, we were able to improve the stress
recognition performance with the help of MTL and hide
identity information by adding noise to the identity task
model by using DP. To the best of our knowledge, this study
is the first MTL-based affect recognition study using FL and
DP to preserve privacy at the same time.

II. RELATED WORKS

In order to develop a robust affective computing system that
can be used in practical applications, researchers tested various
modalities with the state of the art deep learning techniques.
Multi-task learning has also raised significant attention from
various domains over the past few years, including affective
computing. It was applied to audiovisual signals [8] for
detecting arousal and valence levels in a continuous manner.
In another study, MTL was used for detecting smile detection,
emotion recognition and gender classification [9]. By using
MTL with CNN, they achieved better accuracies on benchmark
datasets. However, when private tasks (i.e. face, gender, person
detection) are included in MTL to improve affect recognition
performances, the models create the risk to reveal this sensitive
information to possibly malicious parties.

Data privacy has become an issue of great concern in
affect recognition using either verbal or nonverbal data, as
the gender, age, and identity of the user could be revealed in
the process. For instance, statistical manipulation could exploit
facial images of users to assume their identities and infiltrate
biometric authentication systems. FL is proposed to preserve
privacy while taking advantage of ML. It attracted significant
attention from various domains over the past few years,
affective computing research and applications on emotion
recognition-related tasks are rarely discussed. Most existing
works are conducted on private datasets or in limited scenarios,
making it difficult for researchers to compare their methods
and push the frontier forward fairly. Arji et al. [17] used an FL
approach to train N (i.e., number of clients) local feed-forward
neural network model using multimodal streaming data, called
DEAP dataset to predict the underlying valence-arousal level
and monitor the emotion status of the users in real-time.

Their approach has been validated on their own datasets and
achieved a better average accuracy of 0.842 %. In [18], they
investigated FL with the two affective computing tasks of
classifying self-report and perception ratings. This approach
was developed to classify affective constructs from self-reports
and perception ratings in audio, video, and text datasets. In
another context related to the facial expression task, in [13],
they trained a few-shot federated self-learning framework on
facial expression with partially annotated data. Their approach
has been validated on two datasets and achieved an accuracy
of 84.9 % on the first and 97.3% accuracy on the second
dataset, respectively. Using speech modality, in [19], they
investigated an FL approach in emotion recognition tasks
while sharing only the model among clients. Their approach
has been validated on the EMOCAP dataset and achieved
54.8 unweighted average recall (UAR) (%) using the LSTM
classifier. In another work [14], they combined face and speech
modalities using the FL approach. Their proposed framework
has been validated and tested for facial and speech emotion
recognition on their own dataset, and it achieved an accuracy
of 71.64% and 85.04%, respectively. On the other hand, FL is
used rarely for recognizing affects from physiological signals.
Can and Ersoy [16] employed the FL learning model to predict
stress mood using physiological data. Each sub-client performs
an MLP classifier to train its own local data on edge and the
sharing of each single updating parameters MLP using the
FedAVG algorithm.

Although FL has been proposed to improve the training
model in term of privacy, the privacy vulnerabilities of the
stochastic gradient descent (SGD) algorithm remains unsolved.
Moreover, since affective recognition task often handles im-
portant labeling and annotation data that attackers may use to
infer sensitive information, such as age, gender, identity, and
so on. DP mechanism has been mostly spoken in FL settings,
and it implies injecting noise into each model client or server,
perturbing the updates, and limiting gradient leakage shared
among nodes (i.e., client and server) [20]. In one of the first
applications, authors introduced a new private training method,
called differential private stochastic gradient descent, that de-
creases local and global gradient information leakage between
the client and server. Instead of using the standard composition
theorem to compute the final distribution of overall noise
clients, they used a moment’s accountant metric to adaptively
track the overall privacy loss. Since the servers are often
curious or untrustworthy, Wei et al. [21] introduced a local DP
mechanism algorithm by adding distribution Gaussian noise
into the user models before uploading them to servers. To scale
the communication number required for optimal convergence
upper bound for the DP, they introduced a new approach called
a communication rounds discounting (CRD) method that can
achieve a much better trade-off between the computational
complexity of searching and the convergence performance. DP
has been also used for affect recognition. Feng et al. [15] used
user-level differential privacy (UDP) for alleviating privacy
leaks of FL for speech emotion recognition. Recently, Smith et
al. [11] demonstrated a promising performance for preserving



privacy via multi-task FL for activity recognition.
When we examine the affective computing literature, al-

though there are studies using MTL to improve performance
and using FL or DP to preserve privacy separately, there is
no study that both takes advantage of MTL and preserves
privacy. This study is the first MTL-based affect recognition
study using FL and DP to preserve privacy at the same time.

III. PROPOSED METHODOLOGY

Our proposed framework is divided into three main sub-
steps: feature extraction, FL model, and FL with DP settings.

A. Data Description and Feature Extraction

WESAD dataset [22] has been created for affective state
monitoring. Each participant recorded physiological signals
such as blood volume pulse, electrocardiogram, electrodermal
activity, electromyogram, respiration, body temperature, and
three-axis acceleration measured from the chest and wrist
using RespiBAN and Empatica E4 devices. Fifteen people (12
males and three females) participated in this experience. There
were four states: baseline, amusement, stress, and meditation.
More details can be found in [22]. Each modality signal is seg-
mented using 700 sample windows size with 50% overlap, as
suggested in the literature [23]. In total, 121813 segments were
created. To maximize the correlation among inter-subjects
and minimize among subjects, these segments were further
processed for extracting features [24] such as mean, variance,
root mean square, frequency domain features, average first
amplitude difference, second amplitude difference, skewness,
kurtosis, and entropy as a nonlinear feature.

B. Decentralized multi-task FL model

For privatizing the user’s identity while preserving stress
recognition accuracy, we adopted a multi-task FL approach
that can effectively improve the performance of stress recog-
nition while limiting the risk of inferring sensitive information
from the training model since the client does not want to
be exposed to the cloud service provider. Multi-task FL
architecture-based stress recognition is developed as follows:

1) The dataset is partitioned into k clients. The data size of
all the clients is the same. The client distribution is also
assumed as independent and identically distributed (IID)
and not independent and identically distributed (No-IID)
[25].

2) For the local training process, only one iteration for SGD
local training for each client. In particular, w is the local
model parameter [25], given by:

wDi

U = argmin
wU

FU (wU ) +
µ

2
wU −w(Di−1)∥2)

(1)
3) The local data of different clients cannot be communi-

cated and only the models can be shared.
4) The server employs a global averaging approach to

aggregate all local training models to compute the final

global model. Formally [25], the server aggregates the
weights sent from the K clients as (FedAvg), as:

w =

K∑
U=1

piw
Di

U (2)

Where wi is the parameter vector trained at the kth client,
w is the parameter vector after aggregating at the server,
K is the number of participating clients, Di is the dataset
size of each participating client, D =

⋃
Di the whole

distributed dataset, and PU = |Di| /|D|.
5) The global training epoch is set to M rounds (aggrega-

tions). The server solves the optimization problem [25]

W∗ = argmin
wU

M∑
U=1

PUFU (wU,Di) (3)

where FU is the local loss function of the kth client.
Generally, the local loss function is given by local
empirical risks.

C. Decentralized FL with DP

In conventional FL, the global model is computed through
averaging over model client participants, which performs
better within homogeneous FL settings. However, employing
inference or adversarial attack, this shared model may contain
sensitive and private information such as gender, age, bio-
metric template user, etc. In such cases, the MFL framework
is required to reduce the leakage of the black box gradient
exchanged model. To overcome this limitation, researchers
have employed the DP scheme to protect either local or global
data training FL model. However, the perturbed gradient using
DP with a low budget has high variance, which leads to
worse performance and slower convergence. Motivated by
personalized FL [26], our work focuses on client-level privacy,
which aims to a private specific layer of the client model
rather than perturbing the entire whole local model. This is
because the base layers are mostly redundant information,
while the most important information that holds private and
public information is located in the upper layer. To meet the
utility privacy trade-off guarantee for the personalization FL
model, the DP mechanism is to perturb the gradients using
Gaussian noise at a specific layer or task. Here, We employ
all steps in the FL model; except step 4, i.e., before uploading
the local SGD model client to the global server, we inject an
amount of noise to the updated local parameters. In that sense,
we will perturb the local gradient training inference with two
kinds of noise distributions:

1) An additive Gaussian noise η∼N
(
0, σ2

l

)
to each weight

local model. This operation can be mathematically de-
scribed as follows:

wt+1 = wt + η (4)

2) A set of noise distributions can be sampled from the
DP mechanism (DP). A randomized mechanism M on
the training set with domain X and range R satisfies



(ϵ, δ) − DP for two small positive numbers and if the
following inequality holds [20]:

Pr[M(x) ∈ S] ≤ eϵ Pr [M (x′) ∈ S] + δ (5)

where x and x′ ∈ X are two input neighbor datasets, and
S ⊆ R where R is the set of all possible outputs, δ is privacy
loss or failure probability and ϵ is privacy budget.

An ideal DP mechanism provides a lower value of δ and
a smaller value of ϵ. Unfortunately, these values decrease the
function utility (e.g., accuracy metric), so the main question
is how much DP values we must perturb its output while
guaranteeing trade-off privacy-utility. Intuitively, an output
perturbation mechanism takes an input x and returns a random
variable s(x). This operation can be modeled by:

M(x) = s(x) +Nσ (6)

where N is scaling noise sampled from specific distribution.
In this work, we chose Laplace and Gaussian mechanisms
[20] that employ L1 and L2 norm sensitivity, respectively. The
sensitivity function can be expressed as:

∆f = max
D,D′

s(x)− s (x′)1,2

∥∥∥ (7)

And scaling noise can be computed as:

σ = ∆f/ε (8)

Output perturbation satisfies (ϵ, δ)−DP when we properly
select the value scaling noise. Thus, it sampled from Laplace
and Gaussian distributions [20] as:

MLaplace (x, f, ε, δ) = s(x) + Lap(µ = 0, b) (9)

MGaussien (x, f, ε, δ) = f(x) +N
(
µ = 0, σ2

)
(10)

The gradient information leakage can be reduced by applying
gradient thresholding or clipping algorithm. As explained in
[7], gradient clipping is crucial in ensuring the DP of FL
algorithms. So, each provider’s/client’s model update needs
to have a bounded norm, which is ensured by applying an
operation that shrinks individual model updates when their
norm exceeds a given threshold. Clipping impacts of an FL
algorithm’s convergence performance should be known to
create FL algorithms that protect DP.

IV. EXPERIMENTAL RESULTS

Three scenarios are created to tackle the aforementioned
challenges with the DP learning approaches: centralized, de-
centralized FL, and decentralized FL. Their performances are
evaluated on the WESAD dataset, which consists of multi-
modal physiological data of 15 individuals on two different
tasks. The first task is identifying users from a set of registered
and recorded users. The second task is perceived binary stress
recognition, which tries to distinguish the user’s stress level,
stress vs. non-stress. We trained a multi-task deep learning
model for simultaneous tasks. The accuracy metric is used for

Algorithm 1 Multi task FL approach with DP.
Number of communication rounds M, the initial global param-
eter w0, the sample ratio q = K

N , the clipping threshold C, the
variance of noise σ2 and DP parameter initializations (ϵi, δi)

1: Initialize : t = 0
2: The server broadcasts w and T to all selected clients
3: while t < M do
4: for i ∈ K do
5: Update the local parameters as:
6: w

(t)
i = argminwi

(
Fi (wi) +

µ
2

∥∥wi −w(t−1)
∥∥2)

7: Clip the updated parameters model

8: w
(t)
i = w

(t)
i /max

(
1,

w
(t)
i

C

9: ▷ Perturb selected layers (full, shared, task)
10: ▷ Add with DP or Gaussian noise, i.e., η∼N

(
0, σ2

l

)
11: w̃

(t)
i = w

(t)
i + n

(t)
i

12: end for
13: Update the global parameters wt+1 =

∑
i∈K piw̃

t+1
i

14: The server broadcasts the global parameters
15:
16: for C1, C2, CN do
17: Test aggregating parameters on the local data
18: end for
19: t = t+ 1
20: end while
21: Results : w̃(T )

TABLE II: Parameters of multi-task 1D-CNN model. Abbre-
viations are listed: IN: Input, OUT: Output, K: Kernel size(K).

Layer Type Parameters
Input Input Features size
Conv_1 Convolution IN=1, OUT=20, K=8 Stride=1 , Padding
Relu_2 Activation function Relu
Pooling_3 Pooling S=2, Stride=2: Max Pooling
Conv_4 Convolution IN=20, OUT=40, K=8 Stride=1 , Padding
Relu_5 Activation function Relu
Pooling_6 Pooling S=8, Stride=2: Max Pooling
Conv_7 Convolution IN=40, OUT=60, K=8 Stride=1 , Padding
Relu_8 Activation function Relu
Pooling_9 Pooling S=2, Stride=2: Max Pooling
FC_1 Fully connected layer IN=360, OUT=100
FC_2 Fully connected layer IN=100,OUT=300
Linear_1 IN=100, OUT=2 Output=2 classes, activation function:linear
Linear_2 IN=300, OUT=15 Output=15 classes, activation function:linear

measuring identification and stress recognition performance.
In each simulation scenario, we run 5-fold cross-validation,
where each fold is tested based on the training of the other
four. As described in Table 2, the multi-task 1D-CNN model
is based on 3 convolutional layers, a pooling layer, 2 fully
connected layers, and 2 linear classifiers to classify the stud-
ied tasks. The multi-task model uses the cross-entropy loss
function and SDG Learning rate (β=0.0005).

For each target task, the individual loss is determined by
the cross-entropy for both stress recognition (Loss1) and
identification tasks (Loss2). The individual losses are summed
and form the total cost function (LossT ).

A. Centralized learning (CL) approach

We carry out the CL approach on the WESAD data set
as a baseline experiment. Here, only one training model



Fig. 1: Three different scenarios for adding noise with DP.
Adding noise to only shared layers, task-specific layers and
full layers.

was created to train and test the whole dataset. We set the
maximum number of training epochs to 30.

Figure 2 shows the results of our centralized learning
approach: a 1D-CNN multi-task for stress and identity recog-
nition tasks. After training, the output layers are used to infer
the stress mood and identity of the user, resulting in quite
similar average scores of 99%. The results demonstrate the
potential information leakage in this case, which preserves
model accuracy while not protecting user privacy. As a result,
this approach could not guarantee users’ privacy since the user
data is transmitted to the server, and the model is trained on
the server side.

Fig. 2: Stress vs. identity recognition using multi-task FL

B. Multi task FL approach

Here, K (i.e., participating clients) training models were
created to train the whole dataset and the size of local
samples Di=1000. We set the number of training epochs
(communication round) to T=40 and local training epochs to
1. Overall, The best accuracy result achieved is 97% for stress
mood recognition and 93% for user identification.

To examine the effect of client participation within the
multi-task FL model, we tried different numbers of clients, i.e.,
K=5, k=10, and K=20. As reported in [27] and confirmed in
Figure 3), an increasing number of clients and more client
participation provide better performance for MFL training.
The client distribution is different in assessing the MFL

model in real-world conditions. We compare the convergence
performance of the MFL model under IID and NO IID (see
Figure 3). We can note that the data distribution dramatically
affects the quality of the FL training and obviously affects
MFL’s convergence performance.

Adjusting FL hyper-parameter settings results can achieve
a better performance than the centralized learning approach;
however, it may lead to a lower privacy level. As a result,
SGD training may still reveal sensitive information about the
client while exchanging the ML model with the global server.

C. Multi-task FL with DP approach

To highlight the benefits of our proposed approach, we
examine the impact of injecting noise into the local client
training network according to these three scenarios: the full
layers, shared layers, and task-specific layers (see Figure 1).
The employed noise is sampled via the following mechanisms:
1) Without the DP technique, the noise scale is drawn from
Gaussian distribution, i.e., η ∼ N

(
0, σ2

)
. The noise-added

parameters model can prevent the privacy breach with an
appropriate choice of variance.

2) With DP technique-based Laplace and Gaussian mecha-
nisms, the noise scale is drawn from the output perturbation
mechanism. DP parameters are computed at each local training
round to generate appropriate noise injected from specific
distributions (i.e., Laplace and Gaussian). Besides appropriate
(ϵ,δ)-DP initialization, there are a few hyper-parameters to
be tuned, such as the number of clients N , the number of
maximum communication rounds T and the number of chosen
clients K.

a) Laplace distribution [7] is computed as:

σ =
∆f

(11)

a) Gaussian distribution, two distributions are given by [7]
and [21] respectively.

σ1 =

√
2 log 1.25

δ

ε
(12)

σ2 =
∆f

√
2qT log

(
1
δ

ε
(13)

where ∆f = 2C
Ui

; q = K
N ; and C= clipping threshold.

We set the clipping factor to 1 and δ to 0.00001. Figures
4 and 5 show the accuracy comparison of adding Gaussian
distribution levels into local training according to the three
scenarios. Compared to the baseline scenario, i.e., no private
mechanism, the perturbing share layer scheme with σ=0.1 and
σ=0.3 only provides better results for utility tasks; however,
the identification task reached an accuracy of around 86%.

In this case, the amount of noise drawn from the Gaussian
distribution is employed to balance the utility and privacy and
does not consider the FL settings parameters. The Gaussian
levels are set to σ=0.1, σ=0.3, and σ=0.6. For instance, in-
creasing Gaussian noise leads to poor performance, as depicted



Fig. 3: On the left, the impact of the user participant size on the MFL performance and, on the right, the impact of the IID
vs. NO IID distribution on the MFL performance.

Fig. 4: On the left, the results of the MFL approach under Gaussian noise level (sigma=0.1) and, on the right, the results of
the MFL approach under Gaussian noise level (sigma=0.3).

Fig. 5: The results of the MFL approach under Gaussian noise
level (sigma=0.6)

in Figure 7.
To examine the DP impact on the utility-privacy tradeoff,

we assessed the performance of MFL with a DP mechanism
under the aforementioned scenarios. The DP budgets are set as
follows ϵ=5, ϵ=15, ϵ=15, ϵ=50 for this experiment. As depicted
in Figures 6 and 7 and compared to the baseline scenario, i.e.,
no private mechanism, adding DP noise into both share and
specific layers provides better results for utility performance;

however, in terms of privacy, the perturbing specific task layer
scheme provides better results than the perturbing shared layer.
Results show that FL with perturbing all layers slows up the
convergence compared to others, although it provides better
privacy (i.e., decreasing identification accuracy).

Intuitively, our results demonstrate that adding noise to
upper layers (identity recognition layers) effectively achieves
a better privacy-utility tradeoff. This advantage comes at the
expense of a formal quantification of the relationship between
learning features, i.e., what we aim to share, and private
variables, i.e., what we aim to protect, which is rarely available
in practice.

We also evaluate the impact of distribution type on the
proposed framework performance. The results demonstrate
that adding Laplace Noise in our local training model can
achieve stress recognition accuracy more than the Gaussian
noise types (see Figure 6); however, it maintains the identity
recognition task performance.

Nevertheless, employing the Gaussian mechanism (i.e.,
Gaussian 2) increases the privacy level of the local training
model because increasing the number of global iterations will
also negatively affect its global convergence performance, i.e.,
a larger T would increase the noise level variance, dramatically



Fig. 6: On the left, the performance of the MFL approach under the DP mechanism (epsilon =1). the performance of the MFL
approach under the DP mechanism (epsilon =5) is shown on the right.

Fig. 7: On the left, the performance of the MFL approach under the DP mechanism (epsilon=15). The performance of the
MFL approach under the DP mechanism (epsilon=50) is shown on the right.

Fig. 8: On the left, the evaluation results of the MFL approach with three DP distributions (specific layer task perturbation),
and on the right, the evaluation results of the MFL approach with three DP distributions (Full perturbation).

decreasing the global accuracy model (see Equation 13).
In addition, we have found that a larger K contributes to
avoiding the vanishing local SGD gradient problem; however,
a larger N leads to a scale-down in the variance of noise level
injected into the model parameters and fools the SGD training
inference.

Furthermore, compared to the FL approach results, the
performance of the multi-task FL approach is more consistent.
When DP is also used in FL, our experiments suggest that it

provides an encouraged result even on lower budget values
(i.e., increasing privacy requirements).

V. CONCLUSION

In this work, we formulate a personalized multi-task fed-
erated model framework with differential privacy for a stress
recognition system. To satisfy the tradeoff between utility and
privacy, We employ a user-level DP mechanism by injecting
an amount of noise into personalized layers for perturbing



identity while preserving task-specific utility. Our results will
guide researchers on the DP privacy-accuracy trade-off for
selecting appropriate parameters and distributions according
to the tradeoff of utility privacy. Currently, new gradient-
based unsupervised adversarial attackers are attacking deep
neural classification models to infer the privacy of distributed
training gradient. In this case, we aim to provide additional
experiments with the federated differentially private generative
adversarial networks that can provide better privacy protection
and data diversity for widespread applications of physiological
computing systems.

VI. ETHICAL IMPACT STATEMENT

In order to improve the state of the art in the affective
computing field, several new architectures have been tested.
MTL is one of the promising ones. However, it can also
reveal privacy-sensitive identity information. In practice, it
may create privacy issues which can have severe ethical im-
pacts. We tried to alleviate privacy concerns while developing
robust systems by using MTL. Having said that, the proposed
study has not been tested with a population with sociocultural
differences yet.
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