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A B S T R A C T

We compare linear regression, local polynomial regression and selected machine learning methods for modeling
credit spread changes. Using partial dependence plots (PDPs) and H-statistic, we find that the outperformance
of machine learning models compared to regression ones is mostly attributable to complex non-linearities and
not to interactions. The PDPs are additionally used to perform a factor hedging. For the first time, credit spread
changes are decomposed by applying SHapley Additive exPlanation (SHAP) values. The proposed framework
is applied to US and Euro Area corporate and covered bond credit spread changes of different maturities
to quantify the influence of several macroeconomic and financial variables. Despite several commonalities
between the decompositions of US and Euro Area credit spread changes, we also observe some differences —
particularly related to the impact of certain explanatory variables during crisis periods.
1. Introduction

Credit spreads are defined as the difference between interests paid
on bonds with a low and a higher level of risks. Fluctuations in
credit spreads indicate that general market conditions are changing.
These fluctuations appear frequently due to various reasons such as
changes in economic conditions, changes in liquidity etc. The seminal
work by Collin-Dufresne et al. (2001) shows that factors, which in
theory should explain credit spread changes, fail to do so since they
only account for about one quarter of the variation in credit spread
changes according to the adjusted 𝑅2. Moreover, these authors find that
regression residuals are mostly driven by a single common factor and
suppose that a measure of supply/demand shocks can be a pertinent
determinant of credit spread changes. Since the revelation of these
surprising results, researchers are eager to find the true unknown
common factor.

Among them, Javadi et al. (2018) study the impact of Federal
Open Market Committee (FOMC) actions as potential determinants of
changes in credit spreads and lend credence to the conjecture of Collin-
Dufresne et al. (2001). Namely, they identify FOMC actions, which by
design affect the supply/demand of bonds, as determinants of credit
spread changes. However, when adding FOMC action dummies, the
whole set of explanatory variables still only accounts for at most 22%
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of the variation in credit spread changes according to the adjusted 𝑅2

for the data set considered by the authors.
Friewald and Nagler (2019) examine, whether systematic over-the-

counter market frictions drive the unexplained common component
proven to be present in yield spread changes. They claim that market-
wide inventory, search, and bargaining frictions explain about one third
of the variation of the common component. Yet, when additionally
adding all of these frictions, the whole set of factors still only accounts
for about 30% of the variation in credit spread changes according to
the adjusted 𝑅2.

Kaviani et al. (2020) study the impact of policy uncertainty on
corporate credit spread changes. The policy uncertainty is measured
by a policy uncertainty index (PUI), that is constructed from four
components, namely a comprehensive measure of uncertainty based on
the number of articles about economic policy uncertainty in ten major
newspapers, taxation uncertainty based on data from the Congres-
sional Budget Office on expiring tax provisions, inflation uncertainty,
and government expenditure uncertainty based on the dispersion in
professional analyst forecasts. The authors find a significantly pos-
itive relationship between the PUI and changes in corporate credit
spreads. Adding the PUI as variable to a regression including the control
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variables considered in Collin-Dufresne et al. (2001) yields an adjusted
𝑅2 of at most 31%.

Likewise, He et al. (2022) investigate whether two intermediary-
based factors, a broad financial distress measure and a dealer corporate
bond inventory measure are responsible for the unknown common
component in credit spread changes. They find that those two factors
explain about half of the unexplained common variation in credit
spread changes. When adding these factors, the whole set of explana-
tory variables accounts for about 50% of the variation in credit spread
changes according to the adjusted 𝑅2.

In addition, besides the application of regression modeling, the
iterature offers further approaches used for analyzing credit spread
hanges. For example, Manzoni (2002) follow a time-series approach
y applying ARCH and GARCH models to changes in the credit spreads
n the Sterling Eurobond index. The authors find that the time-series
roperties of the credit spreads provide evidence of non-linearities.

Despite multiple attempts examining a wide range of possible
xplanatory variables, the large common component remains unex-
lained. In this paper, we examine, whether the lack in performance
hen modeling credit spread changes using linear regression on the

tandard set of explanatory variables is due to non-linearities and
ariable interactions and provide strong empirical evidence that this
s indeed the case. We show how machine learning (ML) models can
e applied to decompose credit spread changes and propose alternative
pproaches for performing a factor hedging of credit spread changes.

To be precise, our contributions are fourfold. Firstly, we link the
rea of analyzing the determinants of credit spread changes with the
ield of machine learning. We conduct a comparative analysis of a
election of the most common machine learning methods. The ML
odels are additionally compared to a standard linear regression model

nd a local polynomial regression, the first serving as benchmark. We
dentify the best-performing method using performance measures such
s the coefficient of determination 𝑅2, the Sum of Squares Residual

(SSR) ratio, the root-mean-squared error (RMSE) and the direction-of-
change (DoC) accuracy. The performance is evaluated using 20 data
sets containing credit spread change data of different bond types,
maturities and countries, each covering a period of twenty years.

Second, we apply two explainable artificial intelligence (XAI) tech-
niques called partial dependence plots (PDPs) and H-Statistic — intro-
duced by Friedman (2001) and Friedman and Popescu (2008), respec-
tively — to examine if the outstanding performance of the machine
learning models is attributable to non-linear relationships or interac-
tions. We additionally make use of the PDPs to provide evidence that
our approach can be used for hedging.

Third, we propose a novel approach for quantifying the influ-
ence of different macroeconomic and financial variables on credit
spread changes. Our selected variables are similar to those of Collin-
Dufresne et al. (2001). Unlike the techniques of all other studies
known to us, our method is based on an XAI technique called SHap-
ley Additive exPlanation (SHAP) values. In contrast to the classic
regression-based decomposition approach pursued by Collin-Dufresne
et al. (2001), which provides one decomposition of the credit spread
changes over the whole time period, our approach enables the explana-
tion of every single credit spread change. Moreover, as SHAP values are
model-agnostic, our approach is not limited to linear regression models
but also allows for the usage of machine learning models.

Fourth, the above introduced methodology of modeling the credit
spread changes using a supervised machine learning method, examin-
ing the presence of non-linearities and interactions, executing a fac-
tor hedging and decomposing the model predictions into the spread
changes’ determinants is also validated on US and Euro Area corporate
and covered bond spread changes of different maturities.

So overall, the paper sheds light on the questions, which method
to use when it comes to modeling credit spread changes and why
this method is best suited. Besides, it offers an XAI method that can
2

be used for executing a factor hedging. Finally, it also proposes an
approach for decomposing credit spread changes into its components.
This approach allows for the usage of ML models and additionally
enables a decomposition of every single credit spread change and not
only of one decomposition over the whole time period considered in
the model.

The remainder of this paper proceeds as follows: In Section 2, we
briefly present the machine learning methods used for modeling the
credit spread changes, followed by a short summary of the theory re-
quired for the analysis of non-linearities and interactions as well as for
the factor hedging. The section ends with a concise description of the
theory used for the decomposition methodology. In Section 3, the pre-
viously introduced methods are applied to model credit spread changes,
examine the presence of non-linearities and interactions, perform a
factor hedging and decompose the model predictions into the spread
changes’ determinants. To be precise, this is done for corporate and
covered bond spread changes across different maturities and countries.
Section 4 concludes and discusses further research.

2. Modeling methodology

We start by outlining the machine learning methods considered in
our analysis. Some of them are standard statistical models, whereas
others are more advanced ML methods. Subsequently, the performance
measures used to select the best model are presented. We statistically
justify the choice of the best model using Friedman’s rank sum test with
Iman and Davenport correction followed by Friedman’s post-hoc test.
Afterwards, we introduce our framework for validating the presence of
non-linearities and interactions. Finally, we illustrate the methodology
used to decompose credit spread changes.

2.1. Machine learning models

In order to decompose credit spread changes using machine learning
methodology, clearly the first step is to find the model that shows the
best possible performance in modeling the credit spread changes. This
is done by conducting a comparative study of the five popular machine
learning methods listed in Table 1.

Most of the studies analyzing credit spread determinants typically
base their analysis on the application of linear regression models,
see for example Collin-Dufresne et al. (2001), Friewald and Nagler
(2019) or He et al. (2022). Therefore, we additionally fit a standard
linear regression, which is considered as benchmark model and a local
polynomial regression. In particular, we check whether and to which
extend advanced machine learning models are able to outperform the
classic OLS regression and the local polynomial regression in modeling
credit spread changes. As a first machine learning model we include
a common support vector regression in our analysis. In addition, as
suggested by some literature on modeling bond returns, credit spreads
or credit default swaps using machine learning such as Bianchi et al.
(2021), Xiong et al. (2019) or Son et al. (2016), respectively, we con-
sider two different ensemble methods — random forest and Bayesian
additive regression trees. Besides these ensemble methods, the litera-
ture also suggests using neural networks. Therefore, we additionally
consider a Bayesian regularized artificial neural network as well as a
long short-term memory neural network. A brief description of these
models is given in Table 1.

2.2. Performance evaluation

First, we evaluate the models predictive ability in terms of the
root-mean-squared error. Second, to ensure that our model correctly
captures the direction of the spread changes, we consider the direction-
of-change accuracy by binary labeling the series according to whether
its values are positive or negative and evaluating the corresponding
accuracy. Third, to capture the proportion of variance in credit spread

changes that is explained by the explanatory variables, we evaluate the
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Table 1
Overview of the considered ML models.

Model Description

OLS OLS refers to the classic multiple linear regression, see for example Chapter 3 in Greene (2003).

LPR Local Polynomial Regression (LPR) is a non-parametric regression method where a weighted polynomial regression is fitted at each point of the
independent variable based on all the observations, whose values of the independent variable are within the range of a predefined bandwidth, see for
example Cleveland et al. (1992).

SVR Support vector regression (SVR) is the regression version of a support vector machine (SVM), which belongs to the so-called large margin classifiers. The
SVM aims at separating instances of different classes by the maximum margin hyperplane, where the margin is the minimum distance from instances of
different classes to the classification hyperplane. In contrast, SVR aims at finding a hyperplane that is closest to all data points with respect to a chosen
distance measure. For more details, we refer to Section 14.5 in Murphy (2012).

RF The random forest (RF) belongs to the class of bagging methods. It bootstraps the underlying sample and estimates one model — typically a decision
tree — for each bootstrap sample by using only a small, randomly selected subset of the available features. The final predictions are obtained by
averaging all models’ predictions. For more information, we refer to Chapter 3 of Zhou (2012).

BART The Bayesian additive regression tree model (BART) is defined by a sum-of-trees model paired with a regularization prior on the model parameters.
Thereby, each tree is constrained by a regularization parameter to keep the individual effect of each tree small. For more details on BART models, we
refer to Chipman et al. (2010).

BRANN The Bayesian regularization artificial neural network (BRANN) consists of a common artificial neural network (NN) paired with Bayesian regularization.
Thereby, one additionally imposes a certain prior distribution on the NN model parameters and penalizes large weights. The advantage of such BRANNs
is their robustness. For more information on BRANNs, see for example Sariev and Germano (2019).

LSTM The key idea behind long short-term memory (LSTM) NN is the so-called cell state that runs through the whole NN with only linear interactions.
Thereby, it allows the information to pass straight through the units and serves as a highway for the gradients to flow during backpropagation. These
linear interactions are regulated by three gates — forget gate, input gate, and output gate — that exhibit the ability to add or remove information to the
cell state. For more details on LSTMs, see for example Hochreiter and Schmidhuber (1997) or Gers et al. (2000).
Fig. 1. Splitting data for in-sample performance evaluation into training, validation and test sets using an extending window approach.
coefficient of determination 𝑅2 in terms of in-sample performance. In
contrast to the in-sample 𝑅2, the out-of-sample 𝑅2 considered by Camp-
bell and Thompson (2008) might take values in (−∞, 1] and is not
simple to interpret. However, note that comparing two models 𝑚1 and
𝑚2 with respect to the out-of-sample 𝑅2 is equivalent to comparing their
Sum of Squares Residuals:

𝑅2
𝑚1

< 𝑅2
𝑚2

⇔ 1 −
𝑆𝑆𝑅𝑚1

𝑆𝑆𝑇
< 1 −

𝑆𝑆𝑅𝑚2

𝑆𝑆𝑇
⇔ 𝑆𝑆𝑅𝑚2

< 𝑆𝑆𝑅𝑚1
,

where 𝑆𝑆𝑇 denotes the Sum of Squares Total. In order to enhance
interpretability, we propose to examine the SSR ratio 𝑆𝑆𝑅𝑚2

∕𝑆𝑆𝑅𝑚1
with 𝑚1 being the linear regression model. This quantity indicates the
percentage of the SSR of model 𝑚2 compared to the SSR of the linear
regression model and thereby also allows for the comparison of two
different models other than OLS via the linear regression.

To evaluate the in-sample performance, we first need to obtain
suitable hyperparameters for each of the considered ML models listed in
Table 1. To do so, we split the whole data into training and validation
set, successively fit the models for different hyperparameters on the
training set as illustrated in Fig. 1 and predict the validation set month-
by-month whereby the training set is enlarged by one observation every
month in an extending window manner. Next, the hyperparameters
that perform best over this six-year validation period are chosen for
each model. Finally, the in-sample performance is obtained by fit-
ting the model using the chosen hyperparameters and evaluating the
performance metrics each over the whole data set.

To determine the out-of-sample performance, we adapt the idea
introduced in Gu et al. (2020). Doing so, each data set is divided into
training, validation and test sets in an extending window approach as
visualized in Fig. 2. The first training set comprises 70% of the data
and subsequently enlarges step by the data of the upcoming year. In
contrast, the validation set always comprises four years and the test
set consists of the year following the validation set whereby both,
validation and test set move onward in time. In every step, i.e. every
3

row of Fig. 2, all models are fitted on the training set for a variety of
different hyperparameter combinations. The validation set is predicted
month-by-month. This is done by refitting the models every month on
the monthly enlarging training set and predicting the month following
the current training set. This procedure is repeated over the whole four-
year validation period. Subsequently, the performance is evaluated by
comparing the series of predictions with their corresponding actuals.
Then, the hyperparameters exhibiting the best performance per model
are chosen and used to predict the test-year month-by-month. The final
out-of-sample performance is obtained by evaluating the performance
measures on the test period.

In order to validate whether our selected best model is indeed
significantly better than the other considered models in terms of 𝑅2

respectively SSR ratio, RMSE and DoC accuracy, we apply Friedman’s
rank sum test with Iman and Davenport correction followed by Fried-
man’s post-hoc test with a control model as proposed by Demsar (2006)
[Section 3.2.2].

If the null-hypothesis that all algorithms are equivalent can be
rejected, one can proceed with Friedman’s post-hoc test with con-
trol classifier in order to confirm that the control model significantly
outperforms all other models, see Demsar (2006) [Section 3.2.2]. To
account for multiple comparisons, finally Benjamini–Hochberg’s multi-
ple testing correction proposed by Benjamini and Hochberg (1995) is
used.

2.3. Methodology for examining the presence of non-linearities and inter-
actions

In this section, we present our methodology for examining the
presence of non-linearities and interactions in the model using two ex-
plainable AI techniques called partial dependence plot and H-statistic.
We additionally shed light on the usage of partial dependence plots to
perform a factor hedging.
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Fig. 2. Splitting data for out-of-sample performance evaluation into training, validation and test sets using an extending window approach.
The partial dependence plot introduced by Friedman (2001) depicts
the marginal effect of an explanatory variable on the predicted credit
spread changes and thereby allows to examine the functional relation-
ship between the considered explanatory variable and the change in
credit spreads. That is to say, when applied to a linear regression model
the partial dependence profile shows a linear relationship whereas this
might not be the case when applied to machine learning models that
are able to learn non-linearities.

Formally, let 𝑥𝑆 be the explanatory variable for which the partial
dependence should be evaluated and let 𝑥𝐶 be all other explanatory
variables. Then, the partial dependence function of feature 𝑥𝑆 for model
𝑓 is defined as

𝑓𝑆 (𝑥𝑆 ) = 𝐸𝑥𝐶 [𝑓 (𝑥𝑆 , 𝑥𝐶 )] = ∫ 𝑓 (𝑥𝑆 , 𝑥𝐶 )𝑝𝐶 (𝑥𝐶 )𝑑𝑥𝐶 . (1)

In the above formula, 𝑝𝐶 (𝑥𝐶 ) = ∫ 𝑝(𝑥𝑆 , 𝑥𝐶 )𝑑𝑥𝑆 is the marginal prob-
ability density of 𝑥𝐶 with 𝑝(𝑥𝑆 , 𝑥𝐶 ) representing the joint density of
all inputs. The marginal probability density can be estimated on the
training data. Then, Eq. (1) becomes

𝑓𝑆 (𝑥𝑆 ) =
1
𝑛

𝑛
∑

𝑖=1
𝑓 (𝑥𝑆 , 𝑥𝐶𝑖

),

with 𝑛 being the number of observations. This partial dependence
function evaluates the average marginal effect on the prediction of
the credit spread change for given values of explanatory variable 𝑥𝑆 .
Intuitively, the partial dependence function at a certain value of the
explanatory variable is calculated as the average prediction when all
data points are forced to assume this value of the explanatory variable.
However, the PDP assumes that explanatory variables 𝑥𝑆 for which the
partial dependence is evaluated are uncorrelated with all other features
𝑥𝐶 . Otherwise, the partial dependence plot might include unlikely data
points. For more information, we refer the interested reader to Molnar
(2022).

To ensure that the assumption of uncorrelated features is satisfied,
only explanatory variables with rather small correlations should be
chosen. Table 4 shows two correlation matrices whose cells represent
the pairwise correlations between all explanatory variables used in
our models during the case study for the US and the Euro Area case,
respectively. As can be seen, overall the correlations between the
considered features are quite small — for example for the US data,
the correlation between 𝛥CLI and 𝛥BidAsk only amounts to 0.003.
Hence, the assumption of uncorrelated features can be assumed to
approximately hold for our case studies.

Besides examining the functional form of the relationship between
bond spread changes and explanatory variables, PDPs can also be used
to perform a factor hedging using credit default swaps (CDS). To see
this, note that a PDP can be interpreted as the sensitivity of the change
in the credit spread depending on the change of some explanatory
variable and thus represents a hedge ratio.

To execute a hedging, a model for the credit default swap spread
changes must first be fitted using the explanatory variables of the credit
4

spread change model. In the linear regression framework, this approach
is pursued to select explaining factors for changes in credit default
swap spreads among macroeconomic variables considered for credit
spread changes (see e.g. Breitenfellner & Wagner, 2012). Hence, it is
reasonable to apply the same type of model with the same explanatory
variables on credit default swap spread changes that we used for the
credit spread changes.

After fitting the model, the PDPs for the credit default swap spread
changes must be created for all considered explanatory variables similar
to the PDPs for the credit spread changes. These credit spread change
and credit default swap spread change PDPs then provide the sensitiv-
ities 𝑃𝐷𝑃𝐶𝑆

𝑥𝑖
= 𝛥𝐶𝑆

𝛥𝑥𝑖
and 𝑃𝐷𝑃𝐶𝐷𝑆

𝑥𝑖
= 𝛥𝐶𝐷𝑆

𝛥𝑥𝑖
relative to the explanatory

variables 𝑥𝑖, respectively.
Having these sensitivities available, the goal of a factor hedging is

to determine the factor 𝛼𝑖 such that the squared error between the
credit spread PDP and the credit default swap spread PDP is minimized,
i.e., more formally:

min
𝛼𝑖

∑

𝑘∈𝐾
(𝑃𝐷𝑃𝐶𝑆

𝑥𝑖𝑘
− 𝛼𝑖 ⋅ 𝑃𝐷𝑃𝐶𝐷𝑆

𝑥𝑖𝑘
)2,

where 𝐾 represents the set of data points of the PDPs whose 𝑥-values
are contained within the range between their 5th and 95th quantile.
The factor 𝛼𝑖 can be determined by fitting a linear regression with target
𝑃𝐷𝑃𝐶𝑆

𝑥𝑖
and explanatory variable 𝑃𝐷𝑃𝐶𝐷𝑆

𝑥𝑖
. To be precise, 𝛼𝑖 is then

given by the slope of the linear regression and implies that 𝛼𝑖 parts of
the credit default swap must be purchased for hedging.

Note that such a hedging can be transformed into a cash payment.
However, this would require some information regarding the composi-
tion of the bond portfolio. Since the paper at hand uses bond indices,
this required information is not available in our case. Hence, this paper
solely focuses on the hedging execution using PDPs.

The H-statistic introduced by Friedman and Popescu (2008) is based
on the idea of partial dependence and allows to measure whether and to
what extend an explanatory variable interacts with all other variables.
Formally, the H-statistic for testing whether one variable 𝑥𝑆 interacts
with any other variable is defined as

𝐻2
𝑆 =

∑𝑛
𝑖=1[𝑓 (𝑥𝑆𝑖

, 𝑥𝐶𝑖
) − 𝑓𝑆 (𝑥𝑆𝑖

) − 𝑓𝐶 (𝑥𝐶𝑖
)]2

∑𝑛
𝑖=1 𝑓 2(𝑥𝑆𝑖

, 𝑥𝐶𝑖
)

,

where 𝑓 (𝑥𝑆𝑖
, 𝑥𝐶𝑖

) represents the model prediction for the whole original
observation 𝑖 and 𝑓𝑆 and 𝑓𝐶 denote the partial dependence functions
for feature 𝑆 and feature subset 𝐶 respectively. The H-statistic differs
from zero to the extent that the explanatory variable 𝑥𝑆 interacts with
one or more other features, see Molnar (2022). As the H-statistic is
based on partial dependence, it overtakes the assumption of uncorre-
lated features. As mentioned before, we account for this requirement by
choosing a set of explanatory variables with rather small correlations
as can be seen in Table 4.
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2.4. Methodology for decomposing credit spread changes

In this section, we present our methodology for decomposing credit
spread changes that are modeled using advanced ML methods. These
methods are known to be black boxes, as — in contrast to linear models
— it is difficult to interpret them directly due to their high complexity.
Fortunately, in the last few years, a variety of explainable artificial
intelligence methods for interpreting black-box models evolved. Among
them, SHAP values that are proposed by Lundberg and Lee (2017) are
current state-of-the art in the field of model interpretability.

SHAP values approximate the model locally by using a so-called
explanation model 𝑔. To be precise, the SHAP values belong to the
class of additive feature attribution methods and aim at explaining the
original model 𝑓 locally around the instance 𝑥 under consideration
by using an explanation model 𝑔, that is a linear function of binary
variables

𝑔(𝑥′) = 𝜙0 +
|𝐹 |

∑

𝑖=1
𝜙𝑖(𝑥)𝑥′𝑖 , (2)

where the base value 𝜙0 ∶= 𝐸[𝑓 (𝑥)] is defined as the average model
prediction, 𝜙𝑖 ∈ R represents the attribution of feature 𝑖 and 𝑥′ ∈
{0, 1}|𝐹 | represents the so-called simplified inputs with |𝐹 | indicating
the number of such simplified features, which are defined to be binary
with an entry of 1 implying the presence of the corresponding feature
value, whereas an entry of 0 represents its absence. This local explana-
tion model satisfies three desirable properties, namely local accuracy,
missingness and consistency.

The local accuracy requires the explanation model 𝑔 to at least
match the output of the original model 𝑓 for the simplified input 𝑥′,
i.e.

𝑓 (𝑥) = 𝑔(𝑥′) = 𝜙0 +
|𝐹 |

∑

𝑖=1
𝜙𝑖(𝑥)𝑥′𝑖 (3)

when 𝑥 = ℎ𝑥(𝑥′). The mapping ℎ𝑥 transfers the simplified input 𝑥′ into
the original feature space as detailed in the below description of the
KernelSHAP.

The missingness property requires missing features to have zero
impact, i.e.

𝑥′𝑖 = 0 ⟹ 𝜙𝑖(𝑥) = 0. (4)

The consistency states that if a model changes in a way such that some
simplified input’s contribution increases or stays the same regardless
of the other inputs, then that input’s attribution should not decrease,
i.e. for any two models 𝑓 and 𝑓 ,

𝑓𝑆 − 𝑓𝑆−𝑖 ≥ 𝑓𝑆 − 𝑓𝑆−𝑖 ⟹ �̂�𝑖(𝑥) ≥ 𝜙𝑖(𝑥), (5)

where 𝑓𝑆 denotes 𝑓 being applied to features contained in 𝑆 ⊆ 𝐹 .
According to Lundberg and Lee (2017), the unique explanation

model belonging to the class of additive feature attribution methods
and satisfying the three properties mentioned above is given by

𝜙𝑖(𝑥) =
∑

𝑆⊆𝐹⧵{𝑖}

|𝑆|!(|𝐹 | − |𝑆| − 1)!
|𝐹 |!

[𝑓 (𝑥𝑆 ) − 𝑓 (𝑥𝑆−𝑖)], (6)

where 𝑥𝑆 ∶= (𝑥𝑘(1),… , 𝑥𝑘(|𝑆|)), 1 ≤ 𝑘(1) ≤ 𝑘(|𝑆|) ≤ |𝐹 | denotes the obser-
vation 𝑥 under consideration where only features in 𝑆 are considered
and 𝑓 (𝑥𝑆 ) ∶= 𝐸[𝑓 (𝑥)|𝑥𝑆 ] denotes the conditional expectation given 𝑥𝑆 .

The goal of SHAP values is to attribute a value to each explanatory
variable that corresponds to the change in the expected model predic-
tion. To be precise, SHAP values explain the difference between the
base value, that is to say the average model prediction 𝐸[𝑓 (𝑥)] and the
current output 𝑓 (𝑥). This is qualitatively visualized in Fig. 3 with 𝑓 (𝑥)
being the modeled spread change and 𝐸[𝑓 (𝑥)] being its average.

Changes in credit spreads are calculated by taking the first order dif-
ferences between consecutive observations. The resulting credit spread
changes are stationary with zero mean. Therefore, SHAP values indeed
5

Fig. 3. Decomposition of credit spread changes using SHAP values.

explain the difference between the average modeled spread change and
each individual modeled spread change.

As the exact calculation of SHAP values is challenging, Lundberg
and Lee (2017) propose a model-agnostic approach called KernelSHAP
and a variety of model-specific approaches such as DeepSHAP for deep
learning models to approximate SHAP values. Moreover, Lundberg
et al. (2018) propose the model-specific TreeSHAP, a fast implementa-
tion for tree-based models. As according to our study, the best method
for modeling credit spread changes is the random forest, which is a
tree-based method, both the KernelSHAP and the TreeSHAP can be
applied for the decomposition of the spread changes. To decide which
method to use, we compare the advantages and disadvantages of both
approaches.

The biggest advantage of SHAP values in general is their strong
game-theoretical foundation ensuring that the prediction is fairly dis-
tributed across all explanatory variables. However, SHAP values are
computationally expensive. Particularly the KernelSHAP is pretty slow
making it difficult to apply this method to a large number of instances.
Moreover, in case of feature dependence the random replacement of
feature values carried out in the KernelSHAP might result in putting
weight on unlikely observations. The TreeSHAP overcomes this issue
by modeling the conditional expected prediction. However, by relying
on conditional expected predictions the TreeSHAP changes the value
function, which might result in unintuitive attribution scores including
non-zero scores for features actually having no influence at all. For a
more detailed comparison of advantages and disadvantages of SHAP
values see Molnar (2022).

In our study, we only execute the decomposition of the credit spread
changes once per target. Moreover, our data set only comprises 240
observations per target. Thus, the computational complexity does not
matter in our case. In addition, as our goal is to obtain a reliable
decomposition of the credit spread changes, we do not want to get unin-
tuitive attribution scores and therefore rather rely on the KernelSHAP
method. To overcome the issue of the KernelSHAP assuming feature
independence, we choose a selection of explanatory variables that are
rather low correlated as can be seen in Table 4.

Intuitively, the KernelSHAP proceeds as depicted in Fig. 4. Before
the KernelSHAP procedure can be applied, one needs to choose the
observation that should be decomposed. Moreover, the training and
background sets need to be defined whereby the background set either
equals the full training set or a random subset thereof. Lastly, the ML
model that should be explained must be trained on the training set.
After having fulfilled these requirements, the KernelSHAP procedure
can be applied. Doing so, the first step is to construct possible coalition
vectors 𝑥′𝑘 ∈ {0, 1}|𝐹 |, where 1 again indicates the presence of a feature
and 0 its absence. Next, the coalition vectors need to be transferred
into the original feature space. This is done by replacing each 1 with
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Fig. 4. KernelSHAP procedure.
the original feature value of the observation that should be explained
and each 0 by a random feature sample from the background set.
Subsequently, the pretrained ML model is applied to the backtrans-
formed features and a prediction is generated. Next, using the Shapley
Kernel a weight is calculated for each coalition. Intuitively, the Shapley
Kernel ensures that those coalitions where either almost all or almost
no features are present get the highest weights. Finally, the coalitions,
weights and predictions are used to fit a weighted linear model. The
resulting model coefficients are the Shapley values.

3. Application

In the following, the methodology introduced in Section 2 is applied
to US and Euro Area corporate and covered bond credit spread changes
of different maturities.

3.1. Data

Recall that the credit spread is defined as the difference between
a corporate respectively covered bond yield and the corresponding
sovereign bond yield of the same maturity. We use monthly IBoxx Euro
and USD corporate, covered and sovereign data for different maturities
that is provided by Datastream. Based on this, we define the credit
spread change 𝛥𝐶𝑆𝑡 at time 𝑡 as the difference between two consecutive
credit spread observations, i.e.

𝛥𝐶𝑆𝑡 = 𝐶𝑆𝑡 − 𝐶𝑆𝑡−1.

The monthly data covers the range from January 2002 until December
2021. An overview of the considered target variables is provided in
Table 2.

To fit the previously introduced models on credit spread changes,
we do not only use historical spread changes but supplement the
above mentioned data by a set of explanatory variables provided by
Datastream. The selection of explanatory variables is mostly composed
of the variables included in the benchmark linear regression executed
by Collin-Dufresne et al. (2001), Friewald and Nagler (2019) and He
et al. (2022). These variables include changes in the 10-year Benchmark
Treasury rate, squared changes in the 10-year Benchmark Treasury
6

rate, changes in the slope of the yield curve defined as the difference
between 10-year and 2-year Benchmark Treasury yields, changes in
VIX, S&P 500 returns and changes in the SKEW index. The latter, in
line with Kim et al. (2017), is a proxy for the slope of the volatility
smirk.

Moreover, as Martell (2008) finds evidence of a liquidity-based
explanation for the unknown common component in credit spread
changes, we augment the explanatory variables used in the above
mentioned literature by the bid–ask spread as proxy for bond market
liquidity as proposed by Amihud and Mendelson (1986) and Feldhütter
and Poulsen (2018). In addition, we add OECD’s Composite Leading
Indicator (CLI) to capture early signals of turning points in the business
cycle as suggested by Hauptmann et al. (2014). An overview of the
considered explanatory variables is given in Table 3; their correlations
are summarized in Table 4. This data is used to fit the previously
mentioned models listed in Table 1.

3.2. Model performance comparison

The models’ in-sample as well as out-of-sample performances in
terms of the coefficient of determination 𝑅2, the SSR ratio, the root-
mean-squared error and the direction-of-change accuracy are evaluated
across all considered data sets. The in-sample performance is obtained
by fitting the models and evaluating the above mentioned metrics each
on the whole 20-year time period from January 2002 to December
2021 whereas the out-of-sample performance is evaluated using the
extending window approach introduced in Section 2.2. The resulting
performances with respect to the different measures are summarized in
Tables 5–7.

Taking a look at the 𝑅2 listed in Table 5, the by far best model in
terms of the coefficient of determination is the random forest model
showing an in-sample 𝑅2 amounting to around 0.773 across all con-
sidered data sets. This implies that the proportion of variance in the
credit spread changes that is explained by the explanatory variables
introduced in Section 3.1 constitutes around 77% for the random forest
model, while there is only a mere 23% unexplained variation. More-
over, notice that almost all machine learning models at least double
performance in terms of in-sample 𝑅2 compared to the linear regression
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Table 2
Overview of monthly target variables.

Name Description

𝛥𝐶𝑆USD Corporate 1-3 USD corporate bond spread changes (1–3 years)
𝛥𝐶𝑆USD Corporate 3-5 USD corporate bond spread changes (3–5 years)
𝛥𝐶𝑆USD Corporate 5-7 USD corporate bond spread changes (5–7 years)
𝛥𝐶𝑆USD Corporate 7-10 USD corporate bond spread changes (7–10 years)
𝛥𝐶𝑆USD Corporate 10+ USD corporate bond spread changes (10+ years)

𝛥𝐶𝑆USD Covered 1-3 USD covered bond spread changes (1–3 years)
𝛥𝐶𝑆USD Covered 3-5 USD covered bond spread changes (3–5 years)
𝛥𝐶𝑆USD Covered 5-7 USD covered bond spread changes (5–7 years)
𝛥𝐶𝑆USD Covered 7-10 USD covered bond spread changes (7–10 years)
𝛥𝐶𝑆USD Covered 10+ USD covered bond spread changes (10+ years)

𝛥𝐶𝑆EURO Corporate 1-3 Euro corporate bond spread changes (1–3 years)
𝛥𝐶𝑆EURO Corporate 3-5 Euro corporate bond spread changes (3–5 years)
𝛥𝐶𝑆EURO Corporate 5-7 Euro corporate bond spread changes (5–7 years)
𝛥𝐶𝑆EURO Corporate 7-10 Euro corporate bond spread changes (7–10 years)
𝛥𝐶𝑆EURO Corporate 10+ Euro corporate bond spread changes (10+ years)

𝛥𝐶𝑆EURO Covered 1-3 Euro covered bond spread changes (1–3 years)
𝛥𝐶𝑆EURO Covered 3-5 Euro covered bond spread changes (3–5 years)
𝛥𝐶𝑆EURO Covered 5-7 Euro covered bond spread changes (5–7 years)
𝛥𝐶𝑆EURO Covered 7-10 Euro covered bond spread changes (7–10 years)
𝛥𝐶𝑆EURO Covered 10+ Euro covered bond spread changes (10+ years)

Table 3
Overview of monthly explanatory variables.

Name Description

𝛥𝑟10 change in 10-year Benchmark Treasury rate
(𝛥𝑟10)2 squared change in 10-year Benchmark Treasury rate
𝛥Slope change in 10-year minus 2-year Treasury yields
𝛥VIX change in volatility index VIX
retSP500 S&P 500 returns
𝛥SKEW change in SKEW
𝛥BidAsk change in Bid–Ask Spread
𝛥CLI change in OECD Composite Leading Indicator

Table 4
Correlation matrix.

US

𝛥𝑟10 (𝛥𝑟10)2 𝛥Slope 𝛥VIX retSP500 𝛥SKEW 𝛥BidAsk 𝛥CLI

𝛥𝑟10 1
(𝛥𝑟10)2 −0.065 1
𝛥Slope 0.396 0.049 1
𝛥VIX −0.152 0.131 0.015 1
retSP500 0.213 −0.137 0.058 −0.541 1
𝛥SKEW 0.119 −0.137 0.109 −0.157 0.235 1
𝛥BidAsk 0.010 −0.115 0.029 −0.009 0.000 0.022 1
𝛥CLI 0.159 −0.076 0.086 −0.088 0.230 0.063 0.003 1

Euro Area

𝛥𝑟10 (𝛥𝑟10)2 𝛥Slope 𝛥VIX retSP500 𝛥SKEW 𝛥BidAsk 𝛥CLI

𝛥𝑟10 1
(𝛥𝑟10)2 −0.128 1
𝛥Slope 0.338 0.062 1
𝛥VIX −0.175 0.126 0.060 1
retSP500 0.220 −0.181 0.004 −0.541 1
𝛥SKEW 0.142 −0.129 0.114 −0.157 0.235 1
𝛥BidAsk 0.005 0.020 −0.011 −0.092 0.068 −0.017 1
𝛥CLI 0.178 −0.123 0.036 −0.088 0.230 0.063 0.032 1

model, whose in-sample 𝑅2 on average amounts to approximately 18%.
his amount of variance explained by the linear regression is in line
ith the findings of Collin-Dufresne et al. (2001), Friewald and Nagler

2019) and He et al. (2022).
Notably, the random forest model also exhibits a comparably good

erformance in terms of average out-of-sample SSR ratio, which totals
.512 implying that the out-of-sample SSR of the random forest model
nly amounts to approximately 50% of the SSR of the linear regression
odel. The same holds for the LPR, the LSTM and the SVR model
hereas the BART and the BRANN models both perform worse with
SR ratios of 0.629 and 0.911, respectively.
7

d

Examining the in-sample as well as out-of-sample RMSE listed in
able 6, the worst model in terms of in-sample RMSE is the local poly-
omial regression with an average RMSE amounting to 0.176 whereas
he worst model in terms of out-of-sample RMSE is the linear regres-
ion, showing an average RMSE of 0.199. The by far best-performing
odel in terms of in-sample RMSE is the random forest model, whose

verage in-sample RMSE amounts to around 0.090. The best models
n terms of out-of-sample RMSE are the local polynomial regression
nd the random forest with average out-of-sample RMSE of 0.132 and
.133, respectively.

As can be seen in Table 7, the random forest model also shows
he best in-sample as well as out-of-sample performance in terms of
irection-of-change accuracy, which on average amounts to around
8.7% respectively 56.6% across all considered data sets. In contrast,
he worst model in terms of in-sample and out-of-sample direction-of-
hange accuracy is the linear regression with average accuracy scores
mounting to 58.6% and 52.8%, respectively.

In total, considering all of the above performance measures, the
andom forest model on average shows the highest 𝑅2, one of the
ighest SSR ratios, one of the lowest RMSEs and the highest direction-
f-change accuracy. Nevertheless, we shall additionally check whether
he random forest model is significantly better than the other consid-
red models in terms of 𝑅2, SSR ratio, RMSE and direction-of-change
ccuracy.

To do so, we first use Friedman’s rank sum test with Iman and
avenport correction to check the null hypothesis that all considered
odels are equivalent. Applying this test to the above 𝑅2, RMSE and
irection-of-change accuracy in-sample performance tables yields that
he null hypothesis can be rejected in all three cases with p-values less
han 2.2 ⋅ 10−16. Likewise, applying the test to the SSR ratio, RMSE and
irection-of-change accuracy out-of-sample performance tables yields
hat the null hypothesis can be rejected in case of RMSE and SSR
atio with p-values less than 2.2 ⋅ 10−16. The p-value in case of the
irection-of-change accuracy amounts to 0.144.

Therefore, in order to validate whether the random forest model
ignificantly outperforms all other models, we can now proceed with
riedman’s post-hoc test using random forest as control model. Ap-
lying this test to the 𝑅2, RMSE and direction-of-change accuracy
n-sample performance tables yields, that the random forest model
s significantly better than all other models with respect to all three
erformance measures at a ten percent level of significance. Likewise,
pplying this test to the above SSR ratio, RMSE and direction-of-change
ccuracy out-of-sample performance tables yields that the random for-
st model is significantly better than all other analyzed models except
or LPR, SVR and LSTM with respect to at least two of the three per-
ormance measures at a ten percent level of significance. Moreover, the
andom forest model shows the best average in-sample performance for
ll three performance measures and the best out-of-sample performance
or one out of the three performance measures. Hence, all in all, the
ypothesis tests confirm that the random forest model is better than
ll other considered models. Therefore, this model is taken as ‘best’
odel, which we also use to examine the presence of non-linearities

nd interactions and to decompose a variety of different bond spread
hanges.

.3. Examination of the presence of non-linearities and interactions

In contrast to linear regression models, machine learning methods in
eneral are able to automatically learn non-linearities and interactions
rom the data. As all machine learning models outperform the linear
egression model, we assume that their major performance can be
ttributed to such non-linearities and/or interactions. To investigate
he assumption of non-linearities, we create partial dependence plots
or all explanatory variables of all credit spread change models. Due to
pace constraints and better readability, we only show selected partial

USD Corporate 5-7
ependence plots of the model with target 𝛥𝐶𝑆 in Fig. 5.
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Table 5
R2 (in-sample) respectively SSR ratio (out-of-sample).

In-sample Performance Out-of-sample Performance

OLS LPR SVR RF BART BRANN LSTM OLS LPR SVR RF BART BRANN LSTM

𝛥𝐶𝑆USD Corporate 1-3 0.207 0.173 0.366 0.784 0.654 0.214 0.544 1.000 0.201 0.216 0.193 0.410 0.648 0.235
𝛥𝐶𝑆USD Corporate 3-5 0.138 0.114 0.373 0.761 0.542 0.102 0.467 1.000 0.270 0.298 0.283 0.374 0.720 0.279
𝛥𝐶𝑆USD Corporate 5-7 0.060 0.047 0.283 0.739 0.330 0.042 0.367 1.000 0.302 0.373 0.395 0.432 0.469 0.422
𝛥𝐶𝑆USD Corporate 7-10 0.158 0.117 0.341 0.779 0.484 0.161 0.562 1.000 0.385 0.461 0.530 0.613 0.986 0.357
𝛥𝐶𝑆USD Corporate 10+ 0.189 0.089 0.373 0.787 0.338 0.180 0.452 1.000 0.509 0.579 0.608 0.712 0.883 0.521
𝛥𝐶𝑆USD Covered 1-3 0.231 0.149 0.431 0.782 0.582 0.283 0.487 1.000 0.471 0.537 0.625 0.761 1.392 0.573
𝛥𝐶𝑆USD Covered 3-5 0.255 0.126 0.426 0.792 0.518 0.236 0.500 1.000 0.596 0.670 0.600 0.756 0.997 0.717
𝛥𝐶𝑆USD Covered 5-7 0.036 0.053 0.273 0.753 0.276 0.023 0.307 1.000 0.681 0.754 0.771 0.836 0.778 0.756
𝛥𝐶𝑆USD Covered 7-10 0.256 0.205 0.403 0.805 0.731 0.308 0.582 1.000 0.274 0.368 0.343 1.066 1.539 0.348
𝛥𝐶𝑆USD Covered 10+ 0.190 0.153 0.288 0.797 0.607 0.270 0.313 1.000 0.558 0.579 0.556 0.818 0.921 0.571
𝛥𝐶𝑆EURO Corporate 1-3 0.306 0.244 0.362 0.794 0.727 0.365 0.434 1.000 0.429 0.432 0.342 0.414 0.956 0.395
𝛥𝐶𝑆EURO Corporate 3-5 0.338 0.247 0.421 0.798 0.711 0.399 0.484 1.000 0.521 0.504 0.390 0.385 1.007 0.425
𝛥𝐶𝑆EURO Corporate 5-7 0.342 0.262 0.435 0.803 0.777 0.371 0.505 1.000 0.467 0.454 0.372 0.391 1.137 0.486
𝛥𝐶𝑆EURO Corporate 7-10 0.323 0.235 0.408 0.796 0.731 0.327 0.439 1.000 0.424 0.418 0.349 0.407 0.692 0.378
𝛥𝐶𝑆EURO Corporate 10+ 0.269 0.229 0.438 0.805 0.702 0.267 0.465 1.000 0.518 0.503 0.438 0.540 1.052 0.419
𝛥𝐶𝑆EURO Covered 1-3 0.031 0.044 0.168 0.691 0.422 0.028 0.082 1.000 0.535 0.602 0.603 0.677 0.881 0.547
𝛥𝐶𝑆EURO Covered 3-5 0.047 0.057 0.233 0.734 0.333 0.041 0.140 1.000 0.719 0.751 0.765 0.790 0.884 0.796
𝛥𝐶𝑆EURO Covered 5-7 0.047 0.048 0.249 0.751 0.290 0.035 0.173 1.000 0.680 0.728 0.766 0.731 0.792 0.726
𝛥𝐶𝑆EURO Covered 7-10 0.064 0.056 0.254 0.742 0.334 0.045 0.152 1.000 0.477 0.475 0.579 0.650 0.704 0.547
𝛥𝐶𝑆EURO Covered 10+ 0.059 0.059 0.242 0.763 0.239 0.047 0.123 1.000 0.599 0.712 0.741 0.808 0.779 0.714

Average 0.177 0.135 0.338 0.773 0.516 0.187 0.379 1.000 0.481 0.521 0.512 0.629 0.911 0.511
Table 6
RMSE.

In-sample Performance Out-of-sample Performance

OLS LPR SVR RF BART BRANN LSTM OLS LPR SVR RF BART BRANN LSTM

𝛥𝐶𝑆USD Corporate 1-3 0.193 0.198 0.173 0.101 0.128 0.193 0.147 0.309 0.138 0.143 0.136 0.198 0.249 0.150
𝛥𝐶𝑆USD Corporate 3-5 0.175 0.178 0.149 0.092 0.128 0.179 0.138 0.254 0.132 0.138 0.135 0.155 0.215 0.134
𝛥𝐶𝑆USD Corporate 5-7 0.154 0.155 0.134 0.081 0.130 0.155 0.126 0.183 0.101 0.112 0.115 0.121 0.126 0.119
𝛥𝐶𝑆USD Corporate 7-10 0.144 0.148 0.128 0.074 0.113 0.144 0.104 0.162 0.100 0.110 0.118 0.127 0.161 0.097
𝛥𝐶𝑆USD Corporate 10+ 0.129 0.136 0.113 0.066 0.116 0.129 0.106 0.143 0.102 0.109 0.111 0.121 0.134 0.103
𝛥𝐶𝑆USD Covered 1-3 0.175 0.184 0.150 0.093 0.129 0.169 0.143 0.212 0.146 0.155 0.168 0.185 0.250 0.161
𝛥𝐶𝑆USD Covered 3-5 0.208 0.226 0.183 0.110 0.167 0.211 0.171 0.209 0.161 0.171 0.162 0.181 0.208 0.177
𝛥𝐶𝑆USD Covered 5-7 0.186 0.185 0.162 0.094 0.162 0.188 0.158 0.159 0.131 0.138 0.140 0.145 0.140 0.138
𝛥𝐶𝑆USD Covered 7-10 0.208 0.215 0.186 0.106 0.125 0.201 0.156 0.199 0.104 0.121 0.117 0.206 0.247 0.117
𝛥𝐶𝑆USD Covered 10+ 0.459 0.470 0.431 0.230 0.320 0.436 0.423 0.368 0.275 0.280 0.275 0.333 0.353 0.278
𝛥𝐶𝑆EURO Corporate 1-3 0.207 0.216 0.198 0.113 0.130 0.198 0.187 0.302 0.198 0.198 0.176 0.194 0.295 0.190
𝛥𝐶𝑆EURO Corporate 3-5 0.182 0.194 0.171 0.101 0.121 0.174 0.161 0.276 0.199 0.196 0.173 0.171 0.277 0.180
𝛥𝐶𝑆EURO Corporate 5-7 0.182 0.193 0.169 0.100 0.106 0.178 0.158 0.273 0.187 0.184 0.166 0.171 0.291 0.190
𝛥𝐶𝑆EURO Corporate 7-10 0.173 0.184 0.162 0.095 0.109 0.172 0.157 0.267 0.174 0.172 0.157 0.170 0.222 0.164
𝛥𝐶𝑆EURO Corporate 10+ 0.115 0.118 0.101 0.059 0.073 0.115 0.098 0.214 0.154 0.152 0.142 0.157 0.219 0.138
𝛥𝐶𝑆EURO Covered 1-3 0.128 0.127 0.119 0.072 0.099 0.128 0.125 0.088 0.065 0.069 0.069 0.073 0.083 0.065
𝛥𝐶𝑆EURO Covered 3-5 0.105 0.105 0.094 0.056 0.088 0.106 0.100 0.087 0.074 0.075 0.076 0.077 0.082 0.078
𝛥𝐶𝑆EURO Covered 5-7 0.108 0.108 0.096 0.055 0.093 0.108 0.100 0.089 0.073 0.076 0.078 0.076 0.079 0.076
𝛥𝐶𝑆EURO Covered 7-10 0.095 0.095 0.084 0.050 0.080 0.096 0.090 0.093 0.065 0.064 0.071 0.075 0.078 0.069
𝛥𝐶𝑆EURO Covered 10+ 0.097 0.097 0.087 0.049 0.087 0.098 0.094 0.086 0.067 0.073 0.074 0.077 0.076 0.073

Average 0.171 0.176 0.154 0.090 0.125 0.169 0.147 0.199 0.132 0.137 0.133 0.151 0.189 0.135
The PDPs for the remaining explanatory variables can be found in
the supplementary materials. Each of these figures depicts the possible
values of the respective explanatory variable on the 𝑥-axis and the
corresponding partial dependence values — i.e. the average prediction
when all data points assume this value of the explanatory variable —
on the 𝑦-axis. At the bottom of each PDP, a rug — that is to say an
indicator for data points — is displayed on the 𝑥-axis to represent the
variable distribution. The area between the 25th and the 75th quantile
of the respective explanatory variable is highlighted in yellow, the
supplementing area between the 5th and 95th quantile in blue.

Taking a look at the PDPs immediately shows that the functional
relationship between the explanatory variables and the target is non-
linear. Moreover, comparing the sign of the relationships between
explanatory variables and target with those expected in the literature
such as Collin-Dufresne et al. (2001) shows, that they mostly agree on
the yellow area where the majority of data points is located. The same
analysis is performed for all other types of credit spread changes includ-
ing US corporate, US covered, EURO corporate and EURO covered bond
spread changes of all considered maturities. We observe non-linearities
in all of these cases though the functional form of the relationship
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between the explanatory variables and the credit spread changes varies
slightly.

As mentioned before, besides using these PDPs to examine the
functional form of the relationship between bond spread changes and
explanatory variables, they can also be used to perform a hedging.
We exemplary show the results of the factor hedging for selected
explanatory variables and target 𝛥𝐶𝑆USD Corporate 5-7 in Fig. 6.

Taking a look at Fig. 6 shows that the factor hedgings 𝛼𝑖 ⋅ 𝑃𝐷𝑃𝐶𝐷𝑆
𝑥𝑖

— indicated by the red lines — are quite similar to the original
credit spread partial dependence plots 𝑃𝐷𝑃𝐶𝑆

𝑥𝑖
— colored in black —

within the yellow and blue plot areas. This indicates that a hedging
using solely the explanatory variable under consideration is successfully
possible.

Next, to examine the assumption of the presence of interactions,
we investigate the H-statistic for all explanatory variables of all credit
spread change models. Due to space constraints, we only show the H-
statistic of the US corporate bond spread change model of maturity
5–7 years in Fig. 7. The plot depicts the H-statistics for all explanatory
variables used in the model for the US corporate bond spread changes
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Table 7
Direction-of-change accuracy.

In-sample Performance Out-of-sample Performance

OLS LPR SVR RF BART BRANN LSTM OLS LPR SVR RF BART BRANN LSTM

𝛥𝐶𝑆USD Corporate 1-3 0.512 0.533 0.704 0.883 0.696 0.525 0.650 0.556 0.500 0.556 0.569 0.611 0.556 0.542
𝛥𝐶𝑆USD Corporate 3-5 0.496 0.608 0.713 0.871 0.700 0.508 0.683 0.417 0.542 0.556 0.528 0.431 0.417 0.458
𝛥𝐶𝑆USD Corporate 5-7 0.579 0.596 0.700 0.929 0.683 0.558 0.762 0.389 0.486 0.431 0.472 0.444 0.444 0.472
𝛥𝐶𝑆USD Corporate 7-10 0.567 0.592 0.725 0.883 0.675 0.575 0.733 0.514 0.403 0.444 0.486 0.500 0.500 0.500
𝛥𝐶𝑆USD Corporate 10+ 0.617 0.617 0.746 0.908 0.650 0.596 0.746 0.514 0.500 0.514 0.500 0.458 0.542 0.500
𝛥𝐶𝑆USD Covered 1-3 0.617 0.554 0.683 0.921 0.717 0.608 0.688 0.458 0.528 0.514 0.444 0.528 0.458 0.528
𝛥𝐶𝑆USD Covered 3-5 0.608 0.625 0.754 0.942 0.758 0.633 0.754 0.444 0.639 0.472 0.556 0.472 0.458 0.500
𝛥𝐶𝑆USD Covered 5-7 0.529 0.604 0.667 0.883 0.650 0.483 0.683 0.403 0.458 0.458 0.569 0.486 0.375 0.458
𝛥𝐶𝑆USD Covered 7-10 0.571 0.546 0.667 0.896 0.729 0.588 0.733 0.472 0.486 0.444 0.514 0.542 0.514 0.514
𝛥𝐶𝑆USD Covered 10+ 0.613 0.629 0.733 0.921 0.758 0.633 0.729 0.556 0.611 0.597 0.708 0.625 0.569 0.639
𝛥𝐶𝑆EURO Corporate 1-3 0.637 0.642 0.762 0.883 0.717 0.658 0.708 0.625 0.583 0.708 0.597 0.639 0.611 0.569
𝛥𝐶𝑆EURO Corporate 3-5 0.675 0.638 0.796 0.871 0.679 0.654 0.713 0.681 0.653 0.681 0.653 0.667 0.667 0.667
𝛥𝐶𝑆EURO Corporate 5-7 0.637 0.654 0.779 0.863 0.721 0.646 0.729 0.667 0.681 0.653 0.694 0.722 0.681 0.667
𝛥𝐶𝑆EURO Corporate 7-10 0.679 0.633 0.762 0.854 0.696 0.671 0.708 0.681 0.653 0.694 0.694 0.722 0.681 0.681
𝛥𝐶𝑆EURO Corporate 10+ 0.625 0.638 0.771 0.896 0.729 0.617 0.700 0.667 0.639 0.667 0.694 0.653 0.667 0.722
𝛥𝐶𝑆EURO Covered 1-3 0.529 0.525 0.754 0.833 0.662 0.500 0.650 0.444 0.472 0.500 0.444 0.472 0.431 0.625
𝛥𝐶𝑆EURO Covered 3-5 0.558 0.596 0.767 0.871 0.662 0.579 0.654 0.556 0.486 0.542 0.583 0.514 0.569 0.528
𝛥𝐶𝑆EURO Covered 5-7 0.562 0.604 0.762 0.887 0.679 0.554 0.667 0.500 0.514 0.500 0.569 0.556 0.528 0.528
𝛥𝐶𝑆EURO Covered 7-10 0.546 0.567 0.762 0.875 0.637 0.554 0.717 0.514 0.486 0.611 0.514 0.417 0.625 0.528
𝛥𝐶𝑆EURO Covered 10+ 0.567 0.529 0.767 0.871 0.604 0.554 0.679 0.500 0.486 0.583 0.528 0.486 0.500 0.472

Average 0.586 0.596 0.739 0.887 0.690 0.585 0.704 0.528 0.540 0.556 0.566 0.547 0.540 0.555
Fig. 5. Partial dependence plot for explanatory variables (a) 𝛥𝑟10, (b) 𝛥Slope, (c) 𝛥ret𝑆𝑃500 and (d) 𝛥CLI. The yellow area indicates values of explanatory variables between 25%
and 75% quantiles. The supplementing blue area indicates explanatory variables’ values between 5% and 95% quantiles.
of maturity 5–7 years. As can be seen, the change in bid–ask spread
exhibits the highest H-statistic, followed by the change in SKEW and
the change in OECD’s CLI. Overall, even the highest H-statistic scores
are only around 0.3, implying that at most 30% of the total variation
explained by the respective variable can be attributed to interactions
with all other variables. Hence, all in all the evidence for interactions
in US corporate bond credit spread change models of 5–7 year maturity
is rather low.

This observation also holds for all other bond spread changes in-
cluding US corporate, US covered and Euro Area corporate and covered
bond spread changes of all maturities. Therefore, we conclude that the
9

major reason for the out-performance of machine learning models com-
pared to linear regression models can be attributed to non-linearities
instead of interactions.

3.4. Decomposition of US corporate bond spread changes

After having fit the random forest model to our data, we apply the
SHAP framework introduced in Section 2 to receive SHAP values for
every observation (i.e. every month) and every considered explanatory
variable. In Table 8, the resulting variable attributions of the model
with target 𝛥𝐶𝑆USD Corporate 5-7 are exemplary visualized for the first
observation (January 2002) of our data set.
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Fig. 6. Factor Hedging for explanatory variables (a) 𝛥𝑟10, (b) 𝛥Slope, (c) 𝛥ret𝑆𝑃500 and (d) 𝛥CLI. The yellow area indicates values of explanatory variables between 25% and 75%
quantiles. The supplementing blue area indicates explanatory variables’ values between 5% and 95% quantiles.
Fig. 7. H-statistic for all explanatory variables of USD corporate bond spread changes of 5–7 year maturity.
Table 8
Variable attributions.

Explanatory variable Attribution

𝛥𝑟10 −0.0028
(𝛥𝑟10)2 −0.0029
𝛥Slope 0.0031
𝛥VIX −0.0077
retSP500 −0.0032
𝛥SKEW −0.0091
𝛥BidAsk 0.0009
𝛥CLI −0.0122
10
Plotting the values for the first observation listed in the above table
results in the stacked bar for January 2002 in Fig. 8. To be precise,
this bar is a stack of the eight explanatory variables’ attributions to the
spread change. This is now done for every observation in the data set.
Visualizing the results yields the barplot shown in Fig. 8.

As can be seen in Fig. 8, there are extreme peaks and troughs in
the USD corporate credit spread changes of 5–7 years maturity which
seem to correspond to major crisis periods such as the financial crisis
around 2008 and the Covid-19 pandemic in 2020. Note that this finding
is in line with Guha and Hiris (2002), who empirically investigate the
relationship between corporate bond spreads and the business cycle.
According to their observations, the spread behaves counter-cyclically
since it narrows during business cycle expansions and widens during
contractions.



International Review of Financial Analysis 94 (2024) 103315J. Heger et al.
Fig. 8. Decomposition of USD corporate bond credit spread changes for 5–7 year maturity over the period from January 2002 to December 2021.
Fig. 9. Decomposition of USD corporate bond (5–7 year) credit spread changes over the period from (a) January 2008 to December 2009, (b) January 2020 to December 2021
and (c) January 2013 to December 2014.
Moreover, we find that the same holds true for USD corporate bond
credit spread changes of all other maturities though the peaks and
troughs are more extreme for shorter maturities and tend to get less
intense when maturity increases. Hence, the predicted spread changes
indicate that crisis have less impact on changes in long maturity bond
spreads. We refer the interested reader to the supplementary materials
for the visualization of the decomposition of the USD corporate bond
credit spread changes of all other maturities.

As Fig. 8 is quite tiny, in Fig. 9 we zoom into the decomposition of
the USD corporate (5–7 year) credit spread changes at three different
periods. First, we take a look at the period of the financial crisis be-
tween January 2008 and December 2009. This crisis period is compared
to the period between January 2020 and December 2021 capturing the
Covid-19 pandemic. In addition, we compare the two crisis periods to
the non-crisis period from January 2013 to December 2014.
11
The plot visualized in part (a) of Fig. 9 provides the decomposition
of the modeled US corporate bond credit spread changes over the
period between January 2008 and December 2009. It shows a strong
peak in September 2008 implying that the US corporate bond credit
spread strongly increased between the end of August and the end of
September 2008. This sharp increase coincides with the bankruptcy of
the investment bank Lehman Brothers and the resulting stock market
crash in September 2008. This strong increase in the spread can be
mostly attributed to squared changes in the 10-year Treasury rate, S&P
500 returns, changes in the yield curve slope and changes in CLI, which
is in line with the fact that the CLI faced an extreme trough at that
point in time. The next-largest peak can be observed in March 2009
when the market plummeted even more, leading to panicking investors.
This strong increase in spread is mostly driven by changes in the 10-
year Treasury rate and S&P 500 returns, which is in line with the fact
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𝑏

Fig. 10. Absolute variable proportions of the decomposition of USD corporate bond (5–7 year) spread changes over the period from (a) January 2008 to December 2009, (b)
January 2020 to December 2021 and (c) January 2013 to December 2014.
that the S&P 500 faced an extreme trough at that time. In April 2009,
the European Central Bank provided a swap line of $80 billion to the
Federal Reserve, the British Central Bank granted them £60 billion, the
Swiss central bank provided CHF 40 billion and the Japanese central
bank 10 billion Yen. At that time, the spread starts to decline and does
so until the end of the time period depicted in part (a) of Fig. 9. This
change can be mostly attributed to changes in the CLI, which indeed
constantly increases over this time period.

Comparison of these observations with the decomposition over
the period of the Covid-19 pandemic depicted in part (b) of Fig. 9
yields quite similar results. There is an extreme peak in March 2020
corresponding to the rapid spread of the Covid-19 pandemic. Again,
this strong increase in spreads can be attributed to changes in CLI
and S&P 500 returns as well as to changes in the 10-year Treasury
rate, which is in line with the strong drop in CLI. However, unlike
during the financial crisis, financial markets recovered by far faster
which is reflected by the fact that the spreads already start to constantly
decrease the month after the strong peak. Again, the decline in spreads
can be mostly attributed to changes in CLI which corresponds to the
fact that CLI constantly recovers over this time period.

Comparison of both crisis periods with the non-crisis period be-
tween January 2013 and December 2014 visualized in part (c) of Fig. 9
yields that the magnitude of the spread changes is smaller during
non-crisis times. Moreover, the changes in spreads are less driven by
changes in CLI and more by changes in SKEW though the spread
changes are more constantly attributed to the different explanatory
variables.

To facilitate the recognition of the percentage amount each explana-
tory variable contributes to the spread change, we scale the attributions
visualized in Fig. 9 to being between 0 and 100. More formally, let
𝑏𝑡1, 𝑏𝑡2, 𝑏𝑡3, 𝑏𝑡4, 𝑏𝑡5, 𝑏𝑡6, 𝑏𝑡7 and 𝑏𝑡8 denote the attributions of the eight
explanatory variables listed in Table 3 to the spread change 𝛥𝐶𝑆𝑡
at time 𝑡 respectively. Then, the absolute variable proportion �̂�𝑡𝑗 of
explanatory variable 𝑗 ∈ {1, 2, 3, 4, 5, 6, 7, 8} at time 𝑡 is given by

̂ 𝑡𝑗 =
|𝑏𝑡𝑗 |

∑8
𝑘=1 |𝑏𝑡𝑘|

. (7)

These absolute variable proportions are calculated for every observa-
tion in the data set. The resulting absolute proportions are visualized
12
in Fig. 10. Note that variable shares, which contribute negatively to
the spread changes are highlighted in the light colored version of their
positive counterpart.

As can be seen in Fig. 10, this type of visualization strongly supports
our findings that the positive peaks in the onset of the financial crisis
and the Covid-19 pandemic can be mostly attributed to changes in CLI.
Likewise, the constant decline in spreads in the offset of both crisis
can again be mostly attributed to changes in CLI. Moreover, part (c) of
Fig. 10 supports our claim that during non-crisis periods, the changes
in spreads are way more evenly distributed across all explanatory
variables.

3.5. Euro area versus US corporate bond spread change decomposition

In this subsection, we address the question regarding similarities
and differences between US and Euro Area corporate bond spread
changes by comparing their respective decompositions. To do so, the
decomposition of the Euro Area corporate bond credit spread changes
for 5–7 year maturity is visualized in Fig. 11. The visualization of the
decomposition of the EURO corporate bond spread changes of all other
maturities can be found in the supplementary materials. Note that these
figures are obtained analogously to the US case described before.

As can be seen when comparing the decomposition of the Euro
Area corporate bond credit spread changes with the US counterpart
visualized in Fig. 8, the overall margin of the spread changes is similar.
Likewise, also the overall evolution of the spread changes appears to be
approximately the same. Particularly, we again observe extreme peaks
during the financial crisis and the Covid-19 pandemic. Though, the
margin of the peaks is larger than for US spread changes, especially in
case of the Covid-19 peak. Moreover, we observe an additional peak
in the middle of 2011 corresponding to the Euro-crisis. Overall, the
margin of the aforementioned peaks again decreases with maturity
though the decline is not as strong as in the US case.

To facilitate a detailed comparison, we only contrast the decompo-
sition of EURO corporate bond (5–7 year) credit spread changes for the
two crisis periods 2008–2009 and 2020–2021 and the non-crisis period
between 2013 and 2014 visualized in Fig. 12 with the corresponding
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Fig. 11. Decomposition of EURO corporate bond credit spread changes for 5–7 year maturity over the period from January 2002 to December 2021.
Fig. 12. Absolute variable proportions of the decomposition of EURO corporate bond (5–7 year) spread changes over the period from (a) January 2008 to December 2009, (b)
January 2020 to December 2021 and (c) January 2013 to December 2014.
decompositions for the US corporate bond spread changes of maturity
5–7 years visualized in Fig. 10.

Comparing the absolute variable proportions of the decomposition
of Euro Area corporate bond (5–7 year) spread changes depicted in
Fig. 12 over the two crisis periods 2008–2009 and 2020–2021 and the
non-crisis period 2013–2014 with their US counterparts visualized in
Fig. 10, the overall evolution is quite similar. To be precise, in both
cases the strong positive peaks in the onset of the financial crisis and
the Covid-19 pandemic as well as the constant decline in spreads in the
offset of both crisis can be mostly attributed to changes in CLI and S&P
500 returns. Though, there seems to be a stronger impact of changes
in the VIX for Euro Area corporates during crisis periods compared
to US corporates. Moreover, in contrast to the US case, part (c) of
Fig. 12 shows that during non-crisis periods, the changes in Euro Area
13
spreads are strongly driven by S&P 500 returns and changes in SKEW.
In addition, all three plots in this figure convey the impression that
Euro Area corporate bond spread changes are less driven by changes in
10-year Treasury rates than their US counterparts.

3.6. Corporate versus covered bond spread change decomposition

We apply our methodology to US and Euro Area covered bond
spread changes and compare the resulting decompositions with their
US and Euro Area corporate counterparts depicted in Figs. 8 and 11,
respectively. For this purpose, the decompositions of US and Euro Area
covered bond spread changes for maturity 5–7 years are visualized in
Figs. 13 and 14, respectively. We refer the interested reader to the
supplementary materials for visualizations of all other maturities.
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Fig. 13. Decomposition of USD covered bond credit spread changes for 5–7 year maturity over the period from January 2002 to December 2021.
Fig. 14. Decomposition of EURO covered bond credit spread changes for 5–7 year maturity over the period from January 2002 to December 2021.
The decompositions of US and Euro Area covered bond spread
hanges are obtained analogously to the corporate bond spread change
ase. Further, the USD covered bond yield data is only available from
anuary 2013. In addition, for maturities 5–7, 7–10 and 10+ year, the
overed bond yield time series already end in December 2017, Decem-
er 2015 and February 2016, respectively. For this reason, the missing
ata is extrapolated back to January 2002 and forth till December 2021
sing linear regression. To do so, daily US corporate and sovereign
nd Euro Area covered and sovereign bond yields are used as possi-
le explanatory variables and the best linear model is selected using
idirectional stepwise selection. The resulting model fit lies between
4% and 99% according to the coefficient of determination 𝑅2.

Fig. 13 shows that the magnitude of the visualized US covered
bond spread changes is in general smaller and less sensitive to crisis
compared to the US corporate case. Moreover, the impact of crisis
again seems to decrease with maturity. The magnitude of the Euro Area
covered bond spread changes in Fig. 14 is even smaller and in general
smallest across all spread changes that we compared during the course
of our analysis. Moreover, the Euro Area covered bond spread changes
seem to be only slightly affected by the major crisis. Interestingly, the
14
impact of the Euro-crisis on the Euro Area covered bond spread changes
even seems to be stronger than the impact of the financial crisis or the
Covid-19 pandemic.

We again visualize the absolute variable proportions of US and
Euro Area covered bond (5–7 year) credit spread changes each for
the two crisis periods 2008–2009 and 2020–2021 and the non-crisis
period between 2013 and 2014 in Figs. 15 and 16, respectively. These
plots are compared to their corporate bond spread change counterparts
visualized in Figs. 10 and 12, respectively.

Comparison between the USD covered bond spread change decom-
positions visualized in Fig. 15 and their USD corporate counterparts
depicted in Fig. 10 yields that their overall evolution is quite similar.
However, as can be seen in parts (a) and (b) of Fig. 15, the impact of the
change in CLI during crisis is smaller compared to our previous analysis.
In addition, especially during the time period between January 2020
and December 2021 that is visualized in part (b) of Fig. 15 there seems
to be a partially enlarged impact of changes in VIX. Taking a look
at part (c) of Fig. 15 yields that especially changes in SKEW have a
larger impact in non-crisis periods compared to corporate bond spread

changes.
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Fig. 15. Absolute variable proportions of the decomposition of USD covered bond (5–7 year) spread changes over the period from (a) January 2008 to December 2009, (b) January
020 to December 2021 and (c) January 2013 to December 2014.
Fig. 16. Absolute variable proportions of the decomposition of EURO covered bond (5–7 year) spread changes over the period from (a) January 2008 to December 2009, (b)
January 2020 to December 2021 and (c) January 2013 to December 2014.
In contrast to US covereds, the strong changes in Euro Area covered
bond spreads during crisis can be mostly attributed to changes in CLI
as shown in Fig. 16. In addition, similar to the US covered case, there
seems to be an enlarged impact of changes in VIX during the time
period between January 2020 and December 2021 that is visualized
in part (b) of Fig. 16. Moreover, part (c) of Fig. 16 shows that changes
in Euro Area covered bond spreads are quite evenly distributed across
all explanatory variables during non-crisis periods, which is in line with
15

the Euro Area corporate case.
3.7. Summary of credit spread change decomposition results

In this section, we tabularly summarize our findings regarding the
decomposition of US and Euro Area corporate and covered bond credit
spread changes in Table 9.

4. Conclusion and future research

In this paper, we aimed at modeling credit spread changes using

a local polynomial regression model and different machine learning
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Table 9
Summary of credit spread change decomposition results.

Similarities Differences

US vs. Euro Area
• similar time series evolution over time (strong peaks and troughs
corresponding to major crisis periods such as financial crisis around 2008 and
the Covid-19 pandemic in 2020)
• impact of major crisis on both Euro Area and US spread changes decreases
with maturity ⇒ the crisis have less impact on changes in long maturity bond
spreads
• spreads are more constantly attributed to the different explanatory variables
during non-crisis periods
• magnitude of spread changes is smaller during non-crisis periods

• margin of peaks during crisis periods is larger for Euro Area than for US
spread changes (particularly for the Covid-19 crisis)
• Euro Area spread changes show an additional peak in the middle of 2011
corresponding to the Euro-crisis
• decline of the margin of the peaks with maturity is less strong in the Euro
Area case compared to the US
• in general differing impact of explanatory variables on spread changes
• credit spread changes are mostly driven by OECD‘s CLI and S&P 500 returns
in the US and Euro Area case but also by the 10-year Treasury rate in the US
case and by the VIX in the Euro Area case during crisis periods
• during non-crisis periods, US spread changes are mostly driven by changes
in the SKEW whereas Euro Area spread changes are mostly driven by changes
in the SKEW and S&P 500 returns

corporate vs. covered
• similar time series evolution over time (strong peaks and troughs
corresponding to major crisis periods such as financial crisis around 2008 and
the Covid-19 pandemic in 2020)
• impact of crisis decreases with maturity
• magnitude of spread changes is smaller during non-crisis periods
• spreads are more constantly attributed to the different
explanatory variables during non-crisis periods

• corporate bond spread changes are in general wider and more sensitive to
crisis compared to covered bond spread changes
• in general differing impact of explanatory variables on spread changes
• changes in VIX have larger impact on covereds than on corporate bond
spread changes during crisis periods whereas in non-crisis periods changes in
the SKEW are more important for covered bond spread changes than for their
corporate counterparts
methods to analyze the presence of non-linearities and interactions as
potential reasons for the failure of standard factors within linear re-
gression models. For this purpose, we started with applying a selection
of the most common machine learning models to a variety of different
US and Euro Area credit spread changes to measure their performance.
We find that all machine learning models on average outperform the
linear regression in terms of all four considered performance measures
both in-sample as well as out-of-sample. In addition, most machine
learning approaches also outperform the local polynomial regression
model. We identify the random forest as the model that fits the credit
spread changes significantly best.

The random forest model is thus used for the examination of the
presence of non-linearities and interactions as well as for the decom-
position of the credit spread changes into the explanatory variables.
To facilitate the analysis of non-linearities and interactions, we pro-
pose the usage of two popular explainable AI methods called partial
dependence plots and H-statistic. We find that the major reason for
the out-performance of machine learning models compared to linear
regression can be attributed to the presence of non-linear relationships
and less to interactions. Moreover, we provide evidence that PDPs can
be successfully used to perform a factor hedging.

We propose the usage of SHAP values for the decomposition of
credit spread changes. This method is applied to US and Euro Area
corporate and covered bond spread changes of different maturities.
We find that the overall movement of US corporate and covered bond
spread changes mostly coincides with their Euro Area counterparts
though the impact of the different explanatory variables on the changes
might partly differ. In particular, we observe that onsets and offsets
of crisis periods are well explained by changes in OECD’s composite
leading indicator and S&P 500 returns. Moreover, USD bond spread
changes seem to be strongly driven by changes in the 10-year Treasury
rate during crisis periods whereas in the Euro Area case, changes in the
VIX are more important. During non-crisis periods, US spread changes
are increasingly driven by changes in the SKEW whereas Euro Area
spread changes are driven by changes in SKEW and S&P 500 returns.
Likewise, corporate and covered bond spread changes overall evolve
quite similar though the impact of the different explanatory variables
on the changes differs slightly. The impact of the change in CLI during
crisis is way smaller for US covered bond spread changes. Instead,
changes in the VIX have a larger impact on covered bond spread
changes during crisis periods. Moreover, in non-crisis periods, changes
in SKEW seem to be more important for covered bond spread changes
than for their corporate counterparts.
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Besides the contents of this paper, there are some topics that can
be further studied. First, we consider a selection of the most popular
explanatory variables for modeling credit spread changes. This selec-
tion of features can be extended by considering further variables that
have not yet been examined in the literature such as crisis indicators
or probabilities (see e.g. Hauptmann et al. 2014). Second, besides our
selection of models, there exist other promising ML models such as new
architectures of neural network models or boosting approaches that can
be tested. Third, we have proposed the usage of selected XAI techniques
for examining the presence of non-linearities and interactions as well as
for decomposing the credit spread changes. In recent years, the number
of XAI methods that can be used for these purposes is ever growing.
Hence it might be interesting to compare our results to those obtained
by the application of further methods such as Variable Interaction Net-
works, Greenwell interactions, permutation-based feature importance,
LIME, or breakDown (see e.g. Molnar 2022). Finally, an application of
the proposed framework for the allocation of a bond portfolio is a next
research topic.
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