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A B S T R A C T   

Models such as ICAP hypothesize that effects of technology-enhanced learning (TEL) are mediated by the 
learning activity that is facilitated by technology. In this systematic review of meta-analyses and second-order 
meta-analysis, we examined effects of instruction with versus without digital technology in higher education 
while considering students’ learning activities in the technology and nontechnology conditions. Based on NES =

45 eligible effects from NMA = 28 meta-analyses (that include Nprimary = 1286 effect sizes from primary studies), 
our results showed that when digital technology instruction was used as a substitute for nontechnology in-
struction, there was no substantial change in students’ cognitive learning outcomes. However, cognitive learning 
outcomes improved when the technology provided learning-activity-specific support. Further, digital technolo-
gies that offered more advanced learning activities resulted in higher cognitive learning outcomes for students. 
Our results indicate that effects of TEL are mediated by the learning activity that is facilitated by technology. 
Educational relevance and implications statement: Our study highlights the relevance of how digital technology is 
used during learning in higher education. Specifically, our study supports two proposed mechanisms of effective 
TEL, (a) enhancing the ICAP-level of learning activities and (b) facilitating specific learning activities and un-
derlying cognitive processes through cognitive support. Thus, consideration of students’ individual differences in 
learning activities when learning with digital technologies are crucial and can influence effects in empirical 
studies as well as meta-analyses. For practice, our results imply that promoting the engagement of all learners in 
active forms of learning (particularly constructive and interactive learning activities) with the help of digital 
technologies can foster students’ learning in higher education. Additionally, digital technologies incorporating 
cognitive support (e.g., scaffolding, feedback, sequencing) for specific learning activities and its underlying 
cognitive processes can foster students’ learning.   

1. Introduction 

Technology-enhanced learning (TEL) has been studied for decades 
(Tamim et al., 2011). During this time, thousands of experimental 
studies have been conducted and summarized in meta-analyses (e.g., 
Bernard et al., 2004). However, these meta-analyses have often focused 
on effects of specific digital technologies and their technology-specific 
features on learning outcomes. Therefore, a general analysis targeting 
the impact of digital technology on learning across different technolo-
gies is apparently difficult. Tamim et al. (2011) attempted to address this 
problem by combining multiple meta-analyses into a second-order meta- 
analysis but without providing empirical answers to the question of why 

digital technologies might have an impact on learning outcomes. They 
included 25 meta-analyses that compared instruction with and without 
digital technologies and found a significant but small overall weighted 
mean effect size (ES) for the effect of digital technology on students’ 
learning outcomes with high heterogeneity in the results. According to 
Clark (1994)’s media debate, this heterogeneity is caused by differences 
in instructional methods rather than differences in technological fea-
tures. These changes in instructional methods are often inherent to the 
respective digital technologies and might thus confound the effect of 
technology. Therefore, which kind of digital technology is employed 
may be less relevant. Rather, the important question may be how the 
technology is used in a learning context (Fütterer et al., 2022; Sailer 
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et al., 2021; Wekerle et al., 2020). 
One way to assess the use of digital technology in learning is to use 

the ICAP (Interactive Constructive Active Passive) model (Chi & Wylie, 
2014) to classify the learning activities afforded to the students by the 
technology (see Stegmann, 2020). The ICAP model operationalizes 
students’ learning activities (i.e., as interactive, constructive, active, and 
passive), which are approximations of different cognitive processes and 
different degrees of cognitive engagement (Chi, 2009; Chi & Wylie, 
2014). It allows findings to be generalized from the digital technology 
implementations under investigation, and then the findings can be used 
to develop general recommendations for the use of digital technologies 
in TEL. This process seems especially necessary due to the progressive 
nature of digital technologies and their increasing implementation in 
higher education (Hamilton et al., 2016). The lack of sound recom-
mendations has received broader attention as a result of the COVID-19 
pandemic (Seufert et al., 2021), further highlighting the need for 
research that can inform teaching practices. Therefore, in this study, we 
conducted a systematic review of meta-analyses and second-order meta- 
analysis on the impact of digital technology instruction in higher edu-
cation by using the ICAP classification to focus on student learning 
activities. 

1.1. The role of changes in learning activities through technology- 
enhanced learning 

Among others, research on TEL was synthesized by Hattie (2009). He 
distinguished between different categories of digital technology use, 
namely, interactive video methods, audiovisual methods, simulations, 
programmed instruction, and web-based learning. Although this 
distinction seems plausible from a technology-development perspective, 
it lacks an educational/psychological theory-driven approach for syn-
thesizing the effects of TEL. For example, Mayer (2012) applied a more 
theory-driven approach to investigate effects of TEL. Based on a cogni-
tive psychology perspective, the cognitive theory of multimedia learning 
adopts a systematic approach that formulates clear recommendations 
for TEL. However, research and recommendations based on the cogni-
tive theory of multimedia learning clearly focus on the reception of 
content via digital technologies, but they tend to ignore other, more 
constructive learning activities that learners might engage in when 
interacting with digital technologies. However, focusing only on effects 
of TEL on students’ reception of learning content might not allow more 
general recommendations to be made for TEL in more active, produc-
tive, and constructive learning scenarios, especially because, according 
to Tamim et al. (2011), digital technologies have the greatest potential 
for promoting various forms of active learning. 

The application of a systematic approach for differentiating digital 
technology use by the learning activities it affords seems promising for 
deriving more general recommendations for the implementation of TEL. 
The ICAP model allows for such a systematic classification of different 
affordances provided by digital technologies by focusing on students’ 
learning activities (Chi, 2009; Chi & Wylie, 2014). The notion of the 
ICAP model fits well with TEL research because, when the model is 
applied to TEL, the focus is on how students use technology and how they 
are most likely cognitively stimulated by it and engaged with it, instead 
of focusing on the frequency and types of technologies applied (Lachner 
et al., 2024; Reinhold et al., 2024; Sailer et al., 2021; Wekerle et al., 
2020). As the acronym ICAP refers to interactive, constructive, active, 
and passive learning activities, the model operationalizes different types 
of observable learning activities as approximations of cognitive 
engagement in learning contexts. Cognitive engagement broadly refers 
to cognitive investment in learning (Chi et al., 2018), emphasizing the 
metacognitive effort involved (Greene, 2015). The learning activities 
that approximate cognitive engagement and are postulated by the ICAP 
model are based on four underlying cognitive processes with different 
knowledge-altering potential: storing, activating, linking, and inferring. On 
the basis of assumptions about probability, Chi (2009) postulated that 

different learning activities make certain cognitive processes more likely 
to happen. 

Passive learning activities take place when attention is focused solely 
on listening, watching, or reading the given learning material, without 
any physical interaction. Therefore, learners’ storing of new information 
is likely to occur in isolation, and the stored knowledge is likely to be 
applied only in identical contexts (Chi & Wylie, 2014). Active learning 
activities refer to students’ physical engagement with and manipulation 
of given learning material and are also referred to as hands-on learning 
activities. By selecting or focusing on parts of the given learning material, 
learners are more likely to activate their prior knowledge and link the 
new information to the prior information before storing the new infor-
mation (Chi, 2009). Examples of active learning activities include 
highlighting, copying and pasting, pausing/rewinding/fast-forwarding 
audio or video material, and answering questions that essentially 
require mere repetition of the given learning material (see Sailer et al., 
2021). Passive and active learning activities can be allocated to the 
category of shallow processing strategies (Chi et al., 2018), which are 
characterized as rote processing strategies (Greene, 2015). 

In contrast to shallow processing strategies, deep processing strategies 
involve elaboration of the material that is being learned (Craik & 
Lockhart, 1972). Constructive and interactive learning activities are 
classified at the levels of deep processing strategies (Chi et al., 2018). 
Constructive learning activities refer to students’ generation of knowl-
edge and ideas that go beyond the given learning material by indepen-
dently comparing, explaining, questioning, arguing, and summarizing 
(Chi et al., 2018). In addition, applying knowledge and learning material 
to other contexts and solving problems (i.e., in serious games or simu-
lations) are also considered generative and thus constructive (Brod, 
2020). Due to their generative quality, constructive learning activities are 
connected by inferring new knowledge from prior knowledge that has 
been activated and storing the inferred knowledge. The last group of 
learning activities is composed of interactive learning activities. For this 
type of social learning activity to be present, students must meet the 
following requirements: Two or more individuals must interact recip-
rocally in a co-generative manner, and the activities the learners engage 
in must be constructive in the first place. Examples include collaborative 
problem solving, discussion, and argumentation (Chi et al., 2018). These 
interactive learning activities are likely to involve the cognitive pro-
cesses storing, activating, linking, and inferring. In addition, processes of 
co-inferring are possible as learners are able to make inferences on the 
basis of their own knowledge and the knowledge of others (Chi & Wylie, 
2014). 

Given the assumed increase in the variety and quality of cognitive 
processes from passive to interactive, the ICAP model assumes a hierarchy 
and hypothesizes that the potential of enhancing learning increases 
along that continuum (Chi & Wylie, 2014). The classification of about 40 
existing experimental studies into the ICAP framework and their com-
parison with regard to learning outcomes showed that interactive 
learning activities are superior to constructive ones, which are superior 
to active ones, which in turn are superior to passive learning activities 
(Chi, 2009; Chi & Wylie, 2014). No differences were found between 
studies on the same learning activity level. An experimental study with 
students learning in different ways according to the ICAP model also 
found results that were in line with the ICAP hypothesis (Menekse et al., 
2013). However, when the measurement of the learning outcome was 
based only on the given information in the learning material, interactive 
learning activities did not result in better scores than constructive 
learning activities (Menekse et al., 2013). 

In taking the ICAP theory and applying it to TEL research, we expect 
that digital technologies that are implemented in such a way that they 
either (a) facilitate specific learning activities at a certain level or (b) 
even enhance the ICAP level of students’ learning activities will result in 
positive effects of the implementation of the digital technologies. Fig. 1 
illustrates these two proposed mechanisms of TEL. 
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1.1.1. Facilitation of specific learning activities 
Digital technologies have merit in that they can offer additional 

cognitive support for the learning processing that underlie a certain 
learning activity without changing it. They can offer support and feed-
back and thus optimize cognitive processes within a certain learning 
activity. Diverse learning theories focus on guiding instructors to pro-
vide the kind of support that is needed for specific learning materials, 
learning goals, and learners’ learning prerequisites, such as cognitive 
load theory (Sweller et al., 2019), the script theory of guidance (Fischer 
et al., 2013), behavioral theories (Kirsch et al., 2004), constructivist 
theories (Tobias & Duffy, 2009), and sociocognitive theories (Glaser & 
Chi, 1988; Lave & Wenger, 1991; Piaget, 1965; Vygotsky, 1980). In-
struction with digital technologies can increase the variety of functional 
enhancements and the possibility of providing the appropriate cognitive 
support and thereby positively influence students’ cognitive processes 
and learning outcomes (Salomon & Perkins, 2005), for example, by of-
fering adaptive support (Plass & Pawar, 2020). 

In the ICAP model, this means that even though instruction with and 
without digital technologies might share an ICAP level, it can still vary 
in the extent and appropriateness of the cognitive support that is offered 
and, therefore, the potential to increase the likelihood or the quality of 
the underlying cognitive processes: storing, activating, linking, and (co-) 
inferring. In line with this argumentation, Wekerle et al. (2020) found 
that active learning activities with digital technology significantly pre-
dicted learning outcomes in higher education students, whereas non-
digital active learning activities did not. 

1.1.2. Enhancement of the ICAP level of Students’ learning activities 
One of the central mechanisms of TEL might be that it can increase 

the depth of cognitive processing and thus promote learning. This po-
tential is particularly true for deep understanding, knowledge applica-
tion, and problem solving (Chi et al., 2018; Sailer et al., 2021). This idea 
is in line with meta-studies that have emphasized that digital technol-
ogies have the highest potential to afford higher level learning activities 
(Tamim et al., 2011). For example, research on instruction in higher 
education has shown that students are more likely to engage in 
constructive learning activities when teachers use digital technology 
compared with nondigital instruction (Wekerle et al., 2020). 

1.2. ICAP-inspired SAMR model: Comparing effects of TEL from a 
learning activity perspective 

A model for systematically classifying implementations of digital 

technology is the SAMR model (Puentedura, 2006, 2014). SAMR dif-
ferentiates on the basis of the extent to which the learning task is 
changed by the integration of digital technologies. Accordingly, the 
model categorizes comparisons between digital technology imple-
mentations and nontechnology implementations in the categories sub-
stitution, augmentation, modification, and redefinition (SAMR). If 
technology-free teaching methods are replaced by technology- 
supported methods, and the use of technology does not result in a 
functional change in the task, the technology is considered a substitution. 
If the learning task remains identical but the use of digital technology 
results in a functional improvement in the task, it is considered an 
augmentation. If technology integration leads to a significant redesigning 
of a task, it is referred to as a modification. Finally, if digital technology is 
used to create novel tasks, it is referred to as a redefinition (Puentedura, 
2006, 2014). Puentedura (2014) hypothesized that as the degree of 
functional change increases from substitution to redefinition, so does the 
potential to enhance learning. 

At first glance, the operationalization of the model might be plau-
sible and, thus, the model has often been adopted in teaching practice 
(Hamilton et al., 2016). The SAMR model offers a practical framework 
for analyzing whether teachers and their specific implementations of 
technology truly capitalize on the potential of digital technology to 
enhance learning (Lachner et al., 2024). However, the model has been 
criticized for its lack of systematic empirical support, its rigid structure, 
and its focus on products instead of learning processes (Hamilton et al., 
2016). From our perspective, the justified criticism of the SAMR model 
might be addressed by applying a learning activity perspective through 
the lens of the ICAP model. 

Against this background, we propose an ICAP-inspired SAMR model. 
By doing so, the lack of process-orientation of the SAMR model (see 
Lachner et al., 2024) will be addressed while keeping its analytical focus 
on the comparison of implementations of TEL: For substitutions and 
augmentations, the students’ learning activities are not changed by the 
use of technology. Thus, comparisons between instruction with and 
without technology operate on the same ICAP level. In addition, com-
parisons labeled substitutions refer to situations in which none of the 
students in different experimental conditions are offered additional 
support for their cognitive processes. In contrast to substitutions, aug-
mentations offer an enhancement by providing additional support for 
cognitive learning processes through digital technology without 
changing the learning activity. Modifications lead to the redesigning of a 
task by changing the central learning activity through the use of digital 
technology. This change occurs within the level of shallow learning 

Fig. 1. Mechanisms of TEL to foster learning based on the ICAP Model: (a) facilitation of specific learning activities and (b) Enhancement of the ICAP Level of 
students’ learning activities. 
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processes (a change between passive and active learning activities) or 
within deep learning processes (a change between constructive and 
interactive learning activities). Thus, learning activities are modified but 
are not changed in a significant way (i.e., because they don’t change 
from shallow to deep learning processes; see Chi et al., 2018). When the 
change in the central learning activity occurs between shallow learning 
processes and deep learning processes, a redefinition is present. Fig. 2 
illustrates the allocation of comparisons. 

Based on this ICAP perspective, which we are applying to the SAMR 
framework here, effects of digital technology use can be allocated and 
discussed regarding their effectiveness for TEL in higher education. 

1.3. The present study 

In this study, we conducted a systematic review and second-order 
meta-analysis of individual ESs from meta-analyses in which instruc-
tion with digital technology was compared with instruction without 
digital technology in higher education. Thus, in our qualitative (sys-
tematic review) and quantitative analyses (second-order meta-analysis), 
we focused on effects from meta-analyses that were based on (quasi-) 
experimental designs. Furthermore, we used the ICAP model to allocate 
the students’ learning activities from the technology and nontechnology 
experimental conditions. In addition, we classified the comparisons 
between the two conditions on the basis of our ICAP-inspired SAMR 
model. 

On the basis of the theoretical considerations and empirical findings, 
we hypothesized that teaching with digital technologies would have a 
positive impact on higher education students’ learning outcomes if it 
increased students’ cognitive engagement with the learning material. 
This positive impact can be achieved, (a) on the one hand, by providing 
appropriate cognitive support for the successful execution of the 
cognitive processes storing, activating, linking, inferring, or combinations; 
or (b) on the other hand, by providing opportunities for higher learning 
activity levels with an increased likelihood of a broad variety of cogni-
tive processes (activating, linking, inferring, or combinations). 

Assuming that these two mechanisms occur in TEL resulted in the 
following three research questions: 

RQ1. To what extent does digital technology impact learning out-
comes in higher education when the use of digital technology does not 
change students’ central learning activities? 

We expect that, comparing groups in the two conditions (i.e., with 
and without digital technology) on the same ICAP level, would result in 
a positive effect for the TEL group only if the digital instruction provided 
adequate cognitive support for the successful execution of the cognitive 
processes storing, activating, linking, inferring, or combinations. Thus, we 
expect that only augmentations with cognitive support, and not imple-
mentations that served as substitutions, would lead to higher learning 
outcomes for TEL. 

RQ2. To what extent does digital technology impact learning out-
comes in higher education when the use of digital technology changes 
the students’ central learning activities? 

We assume that digital technologies that help students engage in 

higher learning activities will result in higher learning gains. If a change 
in the learning activity level were to occur, that is, if it changed from 
shallow cognitive processing to deep cognitive processing (i.e., redefi-
nition), we would expect a higher learning gain compared with a change 
in learning activity levels within shallow or deep cognitive processing (i. 
e., modification). 

RQ3. To what extent does the level of the ICAP-inspired SAMR model 
moderate the effect of digital technology on learning outcomes in higher 
education? 

We expect that the level in our ICAP-inspired SAMR model moder-
ates the effects of TEL in higher education. Based on the ICAP model, 
redefinitions lead to the highest ES, followed by modifications, followed 
by substitutions (see mechanisms b). Further, substitutions should not 
affect learning at all. While the ICAP model implies that an increase of 
effects of digital technology on learning requires an increase of ICAP- 
level, our ICAP-inspired SAMR model suggests that augmentations 
with cognitive support are supposed to foster learning as well (see 
mechanism a). 

By addressing these research questions, we aim to derive to sound 
recommendations for the use of digital technologies in higher education 
for research and practice across boundaries of specific instructional 
approaches and/or digital technologies. 

2. Method 

We conducted a systematic review of meta-analyses and second- 
order meta-analysis to address the research questions. The procedure 
was inspired by the approach used by Stegmann (2020) to conduct a 
systematic review of TEL in the context of K-12 education. Hereby, we 
identified ESs from meta-analyses. These results gave us insights into the 
effects of instruction with digital technology compared with instruction 
without digital technology on learning outcomes in higher education. 
We classified the ESs into the ICAP model and the ICAP-inspired SAMR 
model. 

2.1. Literature search 

First, we identified existing meta-analyses that had been published 
by the end of 2011 by screening the reference lists of two second-order 
meta-analyses, which, among other factors, investigated TEL: Hattie 
(2009) and Tamim et al. (2011). For publications from 2012 or later, we 
conducted three advanced database searches: one on April 22, 2015, the 
second on March 18, 2021, and the third on November 23, 2023. The 
search terms and databases we used are provided in Supplement A. The 
literature search resulted in 5826 hits (see Fig. 3). All hits from all 
sources were screened for eligible ESs according to the following in-
clusion criteria. 

2.2. Inclusion criteria 

ESs from meta-analyses had to meet the following criteria to be 
included in this review. Judgments about eligibility were based on the 
information provided in the meta-analyses. This information had to 

Fig. 2. ICAP-inspired SAMR model.  
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enable clear decisions about the following inclusion criteria:  

1. Eligible ESs were published in meta-analyses written in English.  
2. Eligible ESs were pooled on at least two quantitative primary studies.  
3. Eligible ESs referred to the comparison of a teaching condition that 

used digital technology versus a teaching condition that did not use 
digital technology in a between-subjects design (i.e., experimental or 
quasi-experimental design) with both conditions receiving some 
form of instruction. Designs with waitlist control groups were 
excluded. We defined digital technology as computer-based tech-
nologies that are used to present information or to enable students to 
interact with the content as well as each other (Stegmann, 2020).  

4. Eligible ESs referred to an objective learning outcome such as 
achievement, academic performance, grades, exams, test scores, 
number of correct answers, knowledge, retention, and measures of 
behavior or skills. Effects that were based on students’ self- 
assessments of learning outcomes were excluded.  

5. Eligible ESs referred predominantly (>50 %) to higher education 
students or settings (in line with the inclusion criteria applied by 
Schneider & Preckel, 2017). According to the definition of the 
UNESCO General Conference (1993), higher education includes 
postsecondary learning environments provided by approved in-
stitutions, where, after completing their K-12 education, individuals 
can qualify to pursue an additional higher education learning op-
portunity or can become prepared to pursue a profession. Generally, 
we considered universities, colleges, and medical schools to be 
higher education settings, and therefore, we included university 
students, college students, undergraduate students, and graduate 
students. We also included precollege students and baccalaureates 

because they are postsecondary, and as such, they participate in 
higher education precourses at higher education institutions.  

6. Eligible ESs constituted a standardized mean difference (e.g., 
Cohen’s d, Hedges’ g, Glass’s delta) and were presented with infer-
ential statistics (e.g., confidence interval or p-value).  

7. Control as well as experimental condition of eligible ESs could be 
clearly assigned to one learning activity level in the ICAP framework. 

As shown in Fig. 3, trained coders first screened the Titles and Ab-
stracts of our 4023 hits (without duplicates) for violations of Inclusion 
Criteria 1 to 4. The training data set was randomly selected. Three 
rounds of trainings were performed. Between each round, disagreements 
were discussed until 100 % agreement was achieved. At the end of the 
coding training sessions, the two coders reached an interrater reliability 
of Cohen’s κ = 0.75. 

We retrieved full texts through the libraries of affiliated universities, 
online databases, professional social networking sites (e.g., Research-
Gate), and by directly contacting authors of the publications. From the 
remaining 585 hits, we were able to retrieve 566 full texts. We investi-
gated the full texts one after another to determine their eligibility. To 
determine whether an ES referred predominantly to higher education 
(Inclusion Criterion 5), we determined the proportion of students in 
higher education in the corresponding meta-analysis (see Schneider & 
Preckel, 2017). We thereby favored information on the number of study 
participants over the number of (primary) studies over the number of 
ESs. If this information was not provided in the meta-analysis, the pri-
mary studies were scanned by Title and Abstract for determination. For 
meta-analyses that focused solely on higher education, all ESs were 
considered for further processing. If the percentage of students in higher 
education in a meta-analysis ranged from 51 % to 99 %, only those ESs 

Fig. 3. Flow chart for meta-analyses included in the systematic review.  
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for which the majority could still be ensured to be from higher education 
were included in our review. In meta-analyses in which higher education 
students were represented in only <50 % of the studies, we screened the 
meta-analysis for a sub analysis containing 100 % higher education 
students and included those ESs in cases in which such ESs were re-
ported (e.g., Ozdemir et al., 2018). 

In summary, 76 meta-analyses reported at least one ES that passed 
Inclusion Criteria 1 to 5 (see Fig. 3). However, 16 of these meta-analyses 
lacked inferential statistical results (Inclusion Criterion 6). Thus, 60 
meta-analyses were included in the coding process for eligibility 
regarding Inclusion Criterion 7. 

2.3. Coding procedure 

To prevent having a bias toward single meta-analyses, we aimed to 
include one ES per meta-analysis in our analyses. If a meta-analysis 
included multiple eligible ESs and these ESs reflected different ICAP 
comparisons, learning outcomes, or SAMR levels, we included all ESs 
that investigated these aspects in a differentiated manner. We used 
either the overall effect size from the meta-analysis or the eligible ESs 
from a sub analysis to ensure independence of ESs as much as possible. 
We describe the step-by-step process, including the coding of the 
different ESs, in the following subsections. 

2.3.1. Learning activities in the experimental conditions 
The classification of the learning activity levels for the experimental 

conditions was based on the ICAP framework (Chi, 2009). The frame-
work distinguishes four levels of cognitive engagement in learning 
contexts on the basis of different types of observable learning activities. 
The differentiation is thereby based on learners’ behavior and the 
products they generate (Chi & Wylie, 2014). Due to the approach that 
we used to conduct this systematic review of meta-analyses, it was not 
possible to consider individual learning activities. Further, instruction 
and student activities cannot be expected to perfectly concur in learning 
environments (Chi et al., 2018). However, given that different learning 
opportunities increase the probability of certain students’ learning ac-
tivities, it is possible to assume a strong connection between students’ 
learning activities and the learning opportunities afforded through 
teachers’ instruction (Sailer et al., 2021). Therefore, we view the coding 
of the described learning conditions with and without digital technology 
as able to provide a sufficient approximation of students’ learning ac-
tivity levels. 

Whenever the learning conditions suggested that the students 
received content only in the forms of printed text (Steenbergen-Hu & 
Cooper, 2014), static pictures and animations (Höffler & Leutner, 2007), 
or lecture-based instruction (Tudor Car et al., 2019), we coded them as 
passive. For the integration of methods such as drill and practice (Viljoen 
et al., 2019) or audience-response systems (Hunsu et al., 2016), which 
require or result in active reactions to or manipulations of the learning 
material, we assigned the code active. We assigned the code constructive 
to learning activities that required students to add their own consider-
ations that went beyond the learning material and to activities that were 
generative in nature (Brod, 2020). This is the case when students engage 
in problem-solving tasks during simulation-based learning (Ozdemir 
et al., 2018), when they write original text passages (Al-Wasy, 2020), or 
when they perform computations and calculations (Sosa et al., 2011). If 
co-construction of knowledge by two or more students was possible in 
collaborative situations, we coded the learning activity as interactive 
(Kyaw et al., 2019). 

If different learning activity levels were subsumed under one 
learning condition, three scenarios were distinguished: First, when the 
activity level varied across the primary studies included in the pooled 
effect size, with at least 70 % sharing an activity level, the activity level 
of the majority of studies was coded. Second, when the activity level 
varied within the primary studies included in the pooled ES and there-
fore co-occurred in a real (classroom) learning scenario, the highest 

ICAP level was coded because, according to the ICAP model, higher 
learning activity levels subsume the lower learning activity levels (Chi & 
Wylie, 2014). Third, when neither was the case, the effect size was 
excluded from our systematic review. 

As the students’ learning activities in the conditions were not always 
described in detail in the meta-analyses—especially for the control 
condition—we used state-of-the-art knowledge about technical terms as 
well as learning and instruction to code the learning activities in the 
conditions: We considered standard institutional learning conditions (e. 
g., traditional, conventional, face-to-face, classroom instruction) to be 
active because they typically included phases of reception of knowledge 
combined with hands-on activities involving the learning material (Chi 
et al., 2018). Such a constellation can be described as a typical seminar 
situation in higher education. We also considered computer-assisted or 
computer-based instruction and web-based or distance education 
without further description to be standard instruction and therefore 
coded these as active as well. ICAP coding training was conducted in 
eight rounds by five coders, including 1267 ESs from 36 meta-analyses. 
The training data set was randomly selected from meta-analyses that 
passed Criteria 1 to 4. Between each round, disagreements were dis-
cussed until 100 % agreement was achieved. At the end of the coding 
training sessions, the five coders reached an interrater reliability of 
Cohen’s κmedian = 0.79 (κmin = 0.59, κmax = 0.89). 

In summary, of the 60 meta-analyses that met criteria 1–6, 28 meta- 
analyses were eligible based on the ICAP coding, encompassing 39 ESs. 

2.3.2. Learning outcomes 
To capture the types of learning outcomes associated with the 

respective ESs, we differentiated between conceptual knowledge and 
application-oriented knowledge. Conceptual knowledge describes the 
repetition of facts and decontextualized information. Application- 
oriented knowledge includes procedures that involve “knowing how, 
when and why” (Förtsch et al., 2018; Johannsen et al., 2019). Thus, we 
assigned the codes conceptual knowledge, application-oriented knowledge, 
or mixed when both types of outcomes were synthesized in an ES. Out-
comes that were solely labeled learning outcomes, achievement, tests, or 
grades (e.g., Shi et al., 2020) were coded as conceptual knowledge. For an 
outcome to be considered application-oriented knowledge, testing had to 
include behavioral outcomes, production-related outcomes, or knowl-
edge application (e.g., Chen et al., 2018). Two independent coders 
achieved perfect agreement. 

In three of the 39 ESs we included, further differentiations regarding 
learning outcomes were eligible, resulting in the inclusion of 43 ESs for 
further processing. 

2.3.3. Comparisons of instruction with and without technology 
In a next step, we used the SAMR model to code the ESs from the 

comparisons of instruction with and without technology, and we com-
plemented the SAMR model with the ICAP model. For this purpose, we 
additionally considered eligible ESs from sub analyses out of the 43 ESs 
included so far that potentially indicated different SAMR levels by 
addressing different (didactic) implementations of the instruction in the 
nontechnology or technology condition. This was potentially the case 
for four ESs, resulting in a total of 50 ESs that we coded. These were 
labeled substitutions or augmentations if the nontechnology and tech-
nology conditions shared the same ICAP level (27 ESs); modification if 
the technology condition’s ICAP level was enhanced from passive to 
active or constructive to interactive (three ESs); and redefinition if the 
learning activity level of the technology condition was constructive or 
interactive in comparison with a passive or active nontechnology condi-
tion (20 ESs). 

Whether a comparison within the same ICAP level constituted an 
augmentation or a substitution depended on whether the technology- 
based instruction provided additional support for cognitive processes 
(storing, activating, linking, and inferring), for example, through scaf-
folding (e.g., Taj et al., 2016) or corrective feedback (e.g., Grgurović 
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et al., 2013) or not. We coded comparisons with cognitive support from 
digital technologies as augmentations and comparisons without addi-
tional cognitive support as substitutions. Two independent coders were 
trained in two rounds. In the first round, seven out of 27 ESs, which 
shared the identical ICAP classification, were randomly chosen for 
coding. Disagreements were discussed until 100 % agreement was 
achieved. In the second round, five new randomly selected ESs were 
coded by the two independent coders. In this round, they reached per-
fect agreement. 

If the additionally included ESs from the subanalyses regarding 
different (didactic) implementations resulted in different SAMR levels, 
we selected them and excluded the overall ES. Otherwise, we 

disregarded the subanalysis ESs and selected the overall ES. Eventually, 
22 of the 27 ESs that potentially distinguished between substitution and 
augmentation were included. 

In total, we included 45 ESs from 28 meta-analyses as the final data 
set for our study. 

2.4. Extraction of meta-analytic features and effect sizes 

We extracted the following information from the meta-analyses: type 
of higher education students and the relative proportions of all the 
participants that were included, descriptions of the instruction with and 
without technology, and context (topic or domain). In a next step, we 

Table 1 
Included meta-analyses with topic of study, publication year of primary studies, percentage of students in higher education, applied statistical model, investigation of 
publication bias, correction of outliers, and interrater reliability.  

Reference Topic Primary studies’ 
publication year 

Percentage of 
higher education 
students 

Statistical 
model 

Publication 
bias 

Correction of 
outliers 

Interrater 
reliability 

Akın (2022)* Mathematics education 2000–2020 27 %† REM No indication 
of bias 

Not reported Reported 

Al-Wasy (2020) Foreign language learning 2012–2018 56 %† REM Not reported Not reported Not reported 
Bernard et al. 

(2004)* 
STEM and business education 1985–2002 88 % Not 

reported 
Not reported Applied Reported 

Cao and Hsu (2023) STEM education 2008–2021 61 % REM No indication 
of bias 

Applied Reported 

Chen et al. (2018) Mainly health education and other 
studies 

2012–2016 100 % REM No indication 
of bias 

Not reported Reported 

Dixon et al. (2021) Language learning 2000–2021 100 % REM No indication 
of bias 

Not reported Reported 

Grgurovic et al. 
(2013)* 

Foreign language learning 1970–2006 76 % Not 
reported 

Not reported Not reported Reported 

Gui et al. (2023)* STEM education 2005–2020 28 %† REM No indication 
of bias 

Applied Reported 

Höffler and Leutner 
(2007)* 

Mainly STEM and other studies 1973–2003 65 % REM Indication of 
bias 

Applied Not reported 

Hunsu et al. (2016)* Mainly science and engineering 1998–2014 96 % FEM No indication 
of bias 

Not reported Reported 

Kyaw et al. (2019) Medical education 2000–2017 100 % REM Not reported Not reported Reported 
Li (2023a)* Foreign language learning 2000–2022 57 % REM No indication 

of bias 
Applied Not reported 

Li (2023b)* Foreign language learning 2000–2022 62 % REM No indication 
of bias 

Applied Not reported 

Mahdi (2018)* Foreign language learning 2001–2017 62–81 % REM Not reported Not reported Not reported 
Mihaylova et al. 

(2022)* 
Language learning 2007–2019 78 % REM No indication 

of bias 
Applied Reported 

Mitchell and 
Ivimey-Cook 
(2023) 

Medical education 2011–2021 32 %† REM No indication 
of bias 

Not reported Not reported 

Mukawa (2006)* Foreign language learning, computer 
science education, medical education, 
business education, and others 

2001–2006 88 % Not 
reported 

Not reported Not reported Reported 

Ozdemir et al. 
(2018) 

Mainly natural sciences and social 
sciences 

2007–2017 19 %† REM Not reported Not reported Reported 

Seyyedrezaei et al. 
(2022)* 

Language learning 1990–2020 78 % REM Indication of 
bias 

Applied Reported 

Sharifi et al. 
(2018)* 

Foreign language learning 1990–2016 72 % REM No indication 
of bias 

No correction 
necessary 

Reported 

Shi et al. (2020) STEM, medical education, social science 
education 

2006–2019 100 % REM No indication 
of bias 

No correction 
necessary 

Reported 

Sosa et al. (2011)* Statistics education 1974–2005 87–98 % MEM No indication 
of bias 

Applied Reported 

Steenbergen-Hu and 
Cooper (2014)* 

Mainly STEM education and business 
education 

1990–2011 100 % REM Indication of 
bias 

Applied Reported 

Taj et al. (2016) Foreign language learning 2008–2015 62 % Not 
reported 

Indication of 
bias 

Not reported Not 
Reported 

Tudor Car et al. 
(2019) 

Medical education 1997–2017 100 % REM Not reported Not reported Not 
Reported 

Viljoen et al. (2019) Medical education 1965–2017 95 % REM Not reported Not reported Reported 
Zeng et al. (2023) Medical education 2006–2019 57 % FEM No indication 

of bias 
Not reported Not reported 

Zheng et al. (2023)* Mainly social sciences and STEM 2012–2021 70 % REM No indication 
of bias 

Not reported Reported 

Note. *meta-analyses included in the second-order meta-analysis. † For these meta-analyses, we included the higher education-specific ES. Thus, the percentage of 
higher education students was 100 %. 
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extracted the methodological features of the meta-analyses. The meth-
odological rigor of the respective meta-analysis plays an important role 
because it influences the accuracy of the effect (Borenstein & Hedges, 
2019). We therefore examined the data set containing the meta-analyses 
by considering the publication date and whether the authors considered 
publication bias, controlled for outliers, considered the design of pri-
mary studies, and reported sufficient interrater reliability. We further 
extracted how the ESs were synthesized, that is, whether the authors 
integrated them through a fixed-effect model or a random-effects model, 
and which significance tests the effects were tested on. The benefit of 
random-effects models (over fixed-effect models) is that they account for 
differences across participants and differences in how the interventions 
are implemented because they are based on the assumption that the true 
effect varies between primary studies. Moreover, random-effects models 
offer the opportunity to generalize findings to other instructional sce-
narios, whereas fixed-effect models are limited in this regard (Borenstein 
et al., 2009). In addition, we extracted the number of primary studies 
and/or the number of ESs from primary studies for each synthesized ES 
in our review and examined whether the included ESs were independent 
and homogeneous. 

When given a choice between an ES synthesized through a fixed- 
effect model and a random-effects model, we preferred the latter. 

In a final step, we extracted concrete ESs, the confidence interval or 
p-value, and information about how the standard mean difference was 
calculated: Hedges’ g with a correction for small sample sizes, Cohen’s 
d without a correction for small sample sizes, and SMD without any 
further description. The meta-analysis by Taj et al. (2016) reported 
Fischer’s Zr. To enhance comparability, we transformed Fischer’s Zr into 
Cohen’s d (see Borenstein et al., 2009). The ESs were interpreted as 
small (> 0.20), medium (> 0.50), or large (> 0.80) according to the 
standards set forth by Cohen (1977). 

3. Results 

We conducted a systematic review of meta-analyses to answer RQ1 
(see 3.1) and RQ2 (see 3.2). To answer RQ3, we conducted a second- 
order meta-analysis (see 3.3). 

Overall, ESs from 28 meta-analyses were included in this systematic 
review (see Table 1). The meta-analyses were published between 2004 
and 2023. They were based on 1286 ESs from primary studies from 1965 
to 2021. 19 meta-analyses reported checks for potential publication bias 
(see Table 2). Four of those could not rule out publication bias. Twelve 
meta-analyses investigated the necessity for the correction of outliers. 
21 meta-analyses used random-effects models (REM), two used a fixed- 
effects model (FEM), one used a mixed-effects model (MEM), and the 
rest (four meta-analyses) did not report which model they used for 
primary effect integration. 19 meta-analyses reported interrater reli-
ability with respect to the coding process, and nine did not. The ESs were 
calculated using Hedges’ g, Cohen’s d, or Fischer’s Zr and tested for 95 % 
confidence intervals. 

From the 28 meta-analyses, 45 ESs were eligible for our systematic 
review. ESs were clustered by comparisons within the same learning 
activity level (RQ1; see 3.1) and between different learning activity 
levels (RQ2; see 3.2). For our and second-order meta-analysis (RQ3; see 
3.3), we included all meta-analyses from our systematic review that 
reported Hedges’ g. Accordingly, 16 meta-analyses and 25 ESs were 
included in the second-order meta-analyses. 

3.1. Effects of TEL without changing Students’ learning activities 

Overall, 22 ESs referred to comparisons of instruction with and 
without technology in higher education in which the two conditions had 
the same learning activity levels according to the ICAP model. The ESs 
varied from g = − 0.25, 95 % CI [− 0.72, 0.22] (Steenbergen-Hu & 
Cooper, 2014, ES1) to d = 2.13, 95 % CI [1.09, 3.00] (Al-Wasy, 2020), 
indicating a broad range of ESs for TEL when comparing instruction that 

occurred on the same ICAP level. Nine ESs referred to substitutions with 
digital technologies, 13 ESs referred to augmentations with additional 
cognitive support through digital technologies (see Table 2). 

3.1.1. Substitutions with digital technologies 
ESs that referred to comparisons between instruction with and 

without technology but did not provide additional cognitive support for 
cognitive processes through the technology and did not change the 
learning activity could be assigned to the substitution category. We 
assumed that substitutions would not result in a significant positive ef-
fect for TEL. ESs ranged from g = − 0.25, 95 % CI [− 0.72, 0.22] 
(Steenbergen-Hu & Cooper, 2014, ES1) to SMD = 0.18, 95 % CI [− 0.20, 
0.55] (Kyaw et al., 2019, ES1). All nine ESs were nonsignificant. Fig. 4 
shows an overview of ESs that refer to substitutions. 

For active learning activities, five ESs were categorized as sub-
stitutions. Viljoen et al. (2019, ES1) reported effects of substituting 
stand-alone computer-assisted instruction for traditional face-to-face 
instruction in the field of medical education. The two conditions 
implemented similar features, and none of the groups stood out 
regarding the support they offered for cognitive processes. The ES was 
not significant. Similarly, Bernard et al. (2004) compared face-to-face 
instruction with distance (synchronous and asynchronous) education. 
This comparison showed a nonsignificant effect. In the field of language 
learning, Dixon et al. (2021) also conducted a comparison between 
traditional face-to-face instruction and various forms of hybrid instruc-
tion (namely, blended, synchronous, and asynchronous online 
methods), finding the difference in effectiveness to be nonsignificant. In 
a similar direction, Mukawa (2006) compared face-to-face instruction 
with distance education and blended learning, resulting in a nonsignif-
icant effect. Hunsu et al. (2016, ES1) compared question-driven con-
ventional lectures with lectures that included clicker-based digital 
technologies. The result of the comparison was nonsignificant. 

Comparisons of two conditions that both engaged in constructive 
learning activities were investigated in one meta-analysis: Steenbergen- 
Hu and Cooper (2014, ES1) investigated comparisons of human tutoring 
with an intelligent tutoring system and found a nonsignificant effect. 

Interactive learning activities in both the technology and non-
technology conditions were investigated in three meta-analyses, all from 
medical education. Tudor Car et al. (2019, ES1) synthesized compari-
sons of traditional problem-based learning in small groups and face-to- 
face problem-based learning in small groups in which the actual prob-
lem was introduced in a technology supported way. The comparison 
resulted in a nonsignificant effect. Similarly, comparisons of standard 
curriculum including small group discussions with blended video-based 
digital instruction, which incorporated similar features, showed two 
nonsignificant effects on knowledge, (Kyaw et al., 2019, ES1), and on 
communication skills (Kyaw et al., 2019, ES2). 

For passive learning activities, we did not find any eligible ESs. 
Digital technology implementations that were classified as sub-

stitutions showed nonsignificant results. Without the augmentation with 
cognitive support, TEL had no positive effect on learning. 

3.1.2. Augmentations with cognitive support for learning activities 
With regard to cognitive support for the cognitive processes of stor-

ing, activating, linking, or inferring, we assumed that TEL would lead to a 
positive effect only if augmentations with additional cognitive support 
were available compared with the nontechnology condition. 13 ESs 
implemented such cognitive support in their technology implementa-
tions and represent augmentations (see Table 2). The ESs from these 
comparisons varied from g = 0.24, 95 % CI [0.14, 0.33] (Grgurović et al., 
2013) to d = 2.13, 95 % CI [1.09, 3.00] (Al-Wasy, 2020). All of the ef-
fects indicated significant positive results (see Fig. 5). 

Our review shows a broad variety of cognitive support on all levels of 
learning activities (passive, active, constructive, and interactive): 

Höffler and Leutner (2007)’s study is the only one to report com-
parisons of passive learning activities in the two conditions. They 
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Table 2 
Effects of comparisons within the same learning activity level with descriptions of both technology and nontechnology conditions, assignment to ICAP-inspired SAMR model and ICAP model, measured learning outcome, 
effect size, and 95 % confidence interval, number of primary effect sizes as well as primary studies included with that effect, and investigations of the homogeneity of the effect.  

ES reference Nontechnology condition Technology condition SAMR ICAP Learning 
outcome 

ES 95 % CI Primary ESs 
(studies) 

Homogeneity of 
the effect 

Bernard et al. (2004) Face-to-face classroom instruction Distance education (synchronous and 
asynchronous) 

S A vs. A Mixed g = 0.01 [− 0.01, 0.03] 318 (>232) No 

Dixon et al. (2021) Traditional face-to-face instruction Hybrid language instruction (blended, 
synchronous online, and asynchronous 
online instruction) 

S A vs. A Application- 
oriented 
knowledge 

d = 0.14 [− 0.10, 0.43] 24 (9) Not reported 

Hunsu et al. (2016), 
ES1 

Question-driven conventional lectures Clicker-based technologies with 
multiple-choice questioning 

S A vs. A Mixed g = 0.00 [− 0.04, 0.03] 45 (45) No 

Mukawa (2006) Face-to-face instruction Online distance education and blended 
learning 

S A vs. A Conceptual 
knowledge 

g = 0.14 [− 0.06, 0.33] 25 (25) Yes 

Viljoen et al. (2019), 
ES1 

Traditional face-to-face instruction for 
electrocardiogram teaching (including 
lecturer/tutor interactions) 

Computer-assisted instruction S A vs. A Application- 
oriented 
knowledge 

d = 0.03 [− 0.49, 0.19] 5 (5) Not reported 

Steenbergen-Hu and 
Cooper (2014), 
ES1 

Human tutoring Intelligent tutoring system S C vs. C Conceptual 
knowledge 

g = − 0.25 [− 0.72, 0.22] 3 (3) Yes 

Kyaw et al. (2019), 
ES1 

Traditional learning including small group 
discussions and role play 

Blended video-based digital education, 
including team discussion and role play 

S I vs. I Conceptual 
knowledge 

SMD = 0.18 [− 0.20, 0.55] 2 (2) No 

Kyaw et al. (2019), 
ES2 

Traditional learning including small group 
discussions and role play 

Blended video-based digital education, 
including team discussions and role 
playing 

S I vs. I Application- 
oriented 
knowledge 

SMD = 0.15 [− 0.26, 0.56] 4 (4) No 

Tudor Car et al. 
(2019), ES1 

Text- or paper-based problem-based 
learning in small collaborative groups 

Face-to-face problem-based learning 
with the presentation of digital 
problems in small collaborative groups 

S I vs. I Mixed SMD = 0.04 [− 0.20, 0.28] 4 (4) Yes 

Höffler and Leutner 
(2007) 

Learning with static pictures Learning with computer-based 
instructional animations 

A P vs. P Mixed g = 0.37 [0.25, 0.49] 76 (26) No 

Grgurović et al. 
(2013) 

Traditional classroom instruction Computer-assisted language learning A A vs. A Mixed g = 0.24 [0.14, 0.33] 49 (37) Not reported 

Li (2023a) Traditional methods for vocabulary 
learning 

computer-mediated feedback for 
vocabulary learning 

A A vs A Conceptual 
knowledge 

g = 0.85 [0.65, 1.06] 28 (25) No 

Mahdi (2018) Traditional language learning Mobile-assisted language learning A A vs. A Conceptual 
knowledge 

g = 0.67 [0.46, 0.72] 16 (16) No 

Mihaylova et al. 
(2022) 

Traditional methods in language learning Mobile-assisted language learning A A vs. A Mixed g = 0.88 [0.62; 1.14] 19 (19) No 

Sharifi et al. (2018) Face-to-face language learning classroom 
instruction 

Computer-assisted language learning 
and web-based learning 

A A vs. A Mixed g = 0.50 [0.43, 0.60] 158 (140) No 

Taj et al. (2016) Traditional language learning Mobile-assisted language learning A A vs. A Conceptual 
knowledge 

d = 0.89* [0.32, 0.53] 13 (13) Not reported 

Viljoen et al. (2019), 
ES2 

Traditional face-to-face instruction for 
electrocardiogram teaching (including 
lecturer/tutor interaction) 

Blended learning, computer-assisted 
instruction 

A A vs. A Application- 
oriented 
knowledge 

d = 0.84 [0.54, 1.14] 3 (3) Not reported 

Al-Wasy (2020) Traditional ways of teaching language 
writing 

Technology-based language writing 
teaching 

A C vs. C Application- 
oriented 
knowledge 

d = 2.13 [1.09, 3.00] 10 (10) No 

Li (2023b) Traditional methods in writing Automated writing evaluation tools A C vs. C Application- 
oriented 
knowledge 

g = 0.43 [0.27, 0.59] 33 (25) No 

Seyyedrezaei et al. 
(2022), ES1 

Non-technology writing instruction educational technology in writing class A C vs. C Application- 
oriented 
knowledge 

g = 0.80 [0.53, 1.07] 30 (30) No 

Steenbergen-Hu and 
Cooper (2014), 
ES2 

Self-reliant learning (including laboratory 
exercise without support) 

Intelligent tutoring system A C vs. C Conceptual 
knowledge 

g = 0.82 [0.44, 1.20] 5 (5) Yes 

Tudor Car et al. 
(2019), ES2 

Text- or paper-based problem-based 
learning in small collaborative groups 

Distance-based digital problem-based 
learning in small collaborative groups 
with support for collaboration 

A I vs. I Mixed SMD = 0.57 [0.23, 0.92] 2(2) Yes 

Note. *ESs transformed from Fischer’s Zr to Cohen’s d. 
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examined the use of computer and video-based instructional animations 
compared with static pictures primarily in science education and found 
that the animations had a significant, positive small effect. Instructional 
animations provided the opportunity to illustrate the flow of the process 
and allowed for sequencing (see Sweller et al., 2019), thus providing 
cognitive support for the cognitive process of storing. 

Regarding active learning activities, seven ESs represented results in 
which learners were provided with augmented cognitive support 
through the use of digital technologies. Viljoen et al. (2019, ES2) found a 
large positive effect when comparing traditional face-to-face instruction 
with computer-assisted instruction in medical education. Similarly, 
Sharifi et al. (2018) compared face-to-face instruction with computer- 
assisted instruction for learners and found a significant, positive, and 
medium-sized effect. Fife ESs stemmed from meta-analyses conducted in 
the context of language learning: Grgurović et al. (2013) reported a 
synthesized effect from computer-assisted language learning that was 
positive and small. Taj et al. (2016) compared nondigital vocabulary 
learning with mobile-assisted language learning. The ES in favor of the 
technology condition was large and significant. Mahdi (2018) also 
synthesized effects of mobile-assisted language learning on vocabulary 
learning regarding conceptual knowledge. He found a significant 
medium-sized effect of technology instruction. Effects on mobile- 
assisted language learning on conceptual as well as application- 

oriented knowledge were synthesized by Mihaylova et al. (2022), who 
reported a large effect size compared to traditional language learning 
methods. In the context of vocabulary learning, Li (2023a) also observed 
a large effect of computer-mediated feedback over traditional methods. 
These seven positive effects from meta-analyses refer to comparisons in 
which the technology-based instruction was provided with additional 
cognitive support for storing, activating, and linking by implementing 
corrective and automated feedback, scaffolding (including fading; see 
Belland et al., 2017), and (linguistic) support. 

Regarding constructive learning activities, three ESs referred to an 
augmentation that offered cognitive support from digital technologies. 
Al-Wasy (2020) reported a large effect for technology-based second- 
language learning compared with traditional second-language learning. 
Focusing on writing skills, the participants in the TEL condition were 
given scaffolds to support their document editing, indicating cognitive 
support for storing, activating, linking, or inferring. Similarly, Li (2023b) 
and Seyyedrezaei et al. (2022, ES1) compared automatic writing eval-
uation tools and educational technologies in writing class with non- 
technology writing instruction. Their findings indicated a small effect 
size in the case of Li (2023b), and a medium-sized effect size in the study 
by Seyyedrezaei et al. (2022, ES1) for TEL. In the context of medical 
education, Steenbergen-Hu and Cooper (2014, ES2) reported a positive 
effect when comparing self-reliant learning with intelligent tutoring 

Fig. 4. Forest plot with reported effect sizes (ES) of substitutions with digital technologies differentiated by ES type (SMD: standardized mean difference; d: Cohen’s 
d; Hedges’ g). The point estimate of the meta-analysis result is represented by a black box. Horizontal lines representing the 95 % confidence intervals, with each end 
of the line representing the boundaries of the confidence interval. 

Fig. 5. Forest plot with reported effect sizes (ES) of augmentations through digital technologies differentiated by ES type (SMD: standardized mean difference; d: 
Cohen’s d; Hedges’ g). The point estimate of the meta-analysis result is represented by a black box. Horizontal lines representing the 95 % confidence intervals, with 
each end of the line representing the boundaries of the confidence interval (in case of extreme values, arrows show that boundaries are located outside of the limits of 
the visualized range of values). 
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systems that provided scaffolding to students. 
The meta-analysis by Tudor Car et al. (2019, ES2) was the only study 

that compared interactive learning activities and the implementation of 
an augmentation with cognitive support. Synthesizing effects of studies 
on medical students who engaged in traditional problem solving 
compared with distance-based digital problem solving that was 
augmented with a scaffolded collaboration, the results showed a 
medium-sized effect. 

All ESs that included augmentations showed significant positive re-
sults, indicating the potential of digital technologies to augment cogni-
tive support to the different cognitive processes that occur when people 
engage in different learning activities. 

3.2. Effects of TEL involving changes in Students’ learning activities 

Overall, 23 ESs referred to comparisons of instruction with and 
without technology in higher education in which the experimental 
conditions differed in their learning activity level. In all 23 eligible ef-
fects, the condition in which instruction included technology had a 
higher learning activity level as defined by the ICAP model. Two ESs 
examined a change in learning activity within shallow learning pro-
cesses, that is, a leap from passive to active learning activities. One ES 
analyzed a transition within deep learning processes, specifically a shift 
from constructive to interactive learning activities. These three ESs 
could be assigned to the category of modification. 20 ESs synthesized 
comparisons in which a leap in learning activities from surface learning 
processes to deep learning processes took place (from passive/active to 
constructive/interactive). These effects belonged to the category of 
redefinition (see Table 3). 

3.2.1. Modifying learning activities with digital technologies 
ESs that referred to comparisons between instruction that involved 

versus did not involve technology with a change in learning activity 
level within shallow learning processes (passive and active) or within 
deep learning processes (constructive and interactive) could be assigned 
to the modification category. In total, we found three eligible ESs that 
indicated significant positive results (see Fig. 6). 

Two of them with a comparison of passive learning activities (non-
technology condition) with active learning activities (technology con-
dition): Sosa et al. (2011, ES1) compared lecture-based instruction with 
computer-based instructional tools and web-communication tools, 
which were primarily implemented as distance education. The topic of 
the study was statistics. In the technology condition, students used 
audience-response systems, resulting in a significant, small, and positive 
effect. In a similar direction, Hunsu et al. (2016, ES2) compared con-
ventional lectures with lectures that included audience-response sys-
tems. Most of the synthesized primary studies referred to the topics of 
science and engineering. The effect was significant and very small. 

One ES referred to a comparison of constructive learning activities 
(nontechnology condition) with interactive learning activities (tech-
nology condition) and thus a comparison within deep learning pro-
cesses: Seyyedrezaei et al. (2022, ES2) compared non-technology 
writing instruction with the use of peer feedback via collaborative 
technologies in language learning. The effect in favor of the collabora-
tive technology group was large. 

Although only three ESs referring to modifications were eligible for 
our systematic review, the direction of the effect was an indicator that 
enhanced learning activity levels with digital technologies might have 
the potential to improve learning outcomes. 

3.2.2. Redefining learning activities with digital technologies 
Comparisons of instruction that involved versus did not involve 

technology with a significant change in learning activity level from 
shallow learning processes (passive and active) to deep learning pro-
cesses (constructive and interactive) could be assigned to the category of 
redefinition. We found 20 ESs that referred to a significant change in 

learning activity level (see Fig. 7). 
Six effects compared passive learning activities in the nontechnology 

condition with constructive learning activities in the technology condi-
tion: Steenbergen-Hu and Cooper (2014, ES3) synthesized comparisons 
of students reading texts with students learning with intelligent tutoring 
systems in contexts focusing on STEM education. The authors reported a 
significant medium-sized effect of TEL. In the context of learning sta-
tistics, Sosa et al. (2011, ES2) compared traditional lecture-based 
teaching with the use of number crunchers (e.g., statistical software) 
that allowed the students to analyze data themselves. This comparison 
resulted in a significant medium-sized effect in favor of TEL. Shi et al. 
(2020, ES1) compared traditional instruction with technology-enabled 
active learning environments that included problem solving and flip-
ped classrooms (see Bredow et al., 2021). The resulting effect was sig-
nificant and large. Chen et al. (2018) compared lecture-based 
instruction with flipped classroom approaches. ESs were reported 
regarding three learning outcomes: examination scores (Chen et al., 
2018, ES1), course grades (Chen et al., 2018, ES2), and objective 
structured clinical examinations (Chen et al., 2018, ES3). Whereas the 
first two effects were positive, the third was nonsignificant but with 
large confidence intervals and based on only two studies. 

Two effects were from comparisons of passive instruction without 
technology versus instruction involving interactive learning activities 
with technology: Tudor Car et al. (2019, ES3) compared traditional 
textbook- and lecture-based instruction with digital problem-based 
learning in medical education. The result was a medium-sized positive 
effect, but only three ESs were synthesized in this effect. Shi et al. (2020, 
ES2) compared traditional instruction with collaborative, technology- 
enabled active learning environments, including collaborative problem 
solving and flipped classrooms with peer collaboration. Although this 
effect did trend in a positive direction, the ES was nonsignificant. 

Comparisons of an active nontechnology group with a constructive 
technology group that could also be classified as redefinition were 
synthesized in nine ESs: Steenbergen-Hu and Cooper (2014, ES4) 
compared traditional classroom instruction with intelligent tutoring 
systems, resulting in a small significant effect. In addition, Ozdemir et al. 
(2018) compared traditional instruction methods with augmented re-
ality applications. Although based on only three ESs from primary 
studies, the overall effect was large. In medical education, Zeng et al. 
(2023) compared traditional training for advanced life support with 
high-fidelity simulations. While finding a medium sized effect on con-
ceptual knowledge (Zeng et al., 2023, ES1), no significant effect on 
knowledge application was found (Zeng et al., 2023, ES2). Similarly, in 
the realm of medical education with simulations, Mitchell and Ivimey- 
Cook (2023) found a medium sized effect in favor of simulations 
including virtual reality compared to traditional training. In the context 
of STEM education, Cao and Hsu (2023) compared traditional teaching 
methods with virtual experiments that simulate experimental operation 
process or experimental phenomena. They found a small effect in favor 
of virtual experiments. Specifically focusing on mathematics instruction, 
Akın (2022) compared traditional mathematics instruction with web- 
based mathematics instruction that includes drill-and-practice applica-
tions, simulations, and intelligent tutoring systems. The TEL condition 
had a large effect on learning. Also in the STEM context, Gui et al. (2023) 
compared traditional teaching with digital game-based learning and 
found a positive and large effect in favor of games. Following a more 
general approach including a variety of domains (primarily social sci-
ences and STEM) Zheng et al. (2023) synthesized effects of learning 
analytics intervention in comparison to conventional instructional 
methods. The authors found large effect of digital problem-based 
learning (Zheng et al., 2023, ES1) and a medium-sized effect of flip-
ped classroom interventions (Zheng et al., 2023, ES2). The effect of 
digital game-based learning was nonsignificant, however, only based on 
two ESs from primary studies (Zheng et al., 2023). 

One effect, also stemming from Zheng et al. (2023, ES4), was from a 
comparison of active instruction without technology versus instruction 
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Table 3 
Effects that investigated comparisons of different learning activity levels with descriptions of both technology and nontechnology conditions, assignment to ICAP-inspired SAMR model and ICAP model, measured learning 
outcome, effect size, and 95 % confidence interval, number of primary effect sizes as well as primary studies included with that effect, and investigations of the homogeneity of the effect.  

ES reference Nontechnology condition Technology condition SAMR ICAP Learning outcome ES 95 % CI Primary ES 
(studies) 

Homogeneity of 
effect 

Hunsu et al. (2016), 
ES2 

Conventional lectures Clicker-based technologies with multiple-choice 
questioning 

M P vs. A Mixed g = 0.13 [0.09, 0.17] 41 (41) No 

Sosa et al. (2011), ES1 Traditional lecture-based 
instruction 

Computer-assisted instruction with instructional 
tools (keypads or clickers) 

M P vs. A Conceptual 
knowledge 

g = 0.33 [0.12, 0.53] 13 (13) Not reported 

Seyyedrezaei et al. 
(2022), ES2 

Non-technology writing 
instruction 

Collaborative technologies in writing class with 
peer feedback 

M C vs. I Application- 
oriented 
knowledge 

g = 1.20 [0.94; 1.45] 34 (34) No 

Chen et al. (2018), 
ES1 

Traditional lecture-based 
instruction 

Flipped classroom R P vs. C Conceptual 
knowledge 

SMD = 0.47 [0.31, 0.63] 41 (41) No 

Chen et al. (2018), 
ES2 

Traditional lecture-based 
instruction 

Flipped classroom R P vs. C Conceptual 
knowledge 

SMD = 0.35 [0.16, 0.55] 9 (9) No 

Chen et al. (2018), 
ES3 

Traditional lecture-based 
instruction 

Flipped classroom R P vs. C Application- 
oriented 
knowledge 

SMD = 3.12 [− 2.22, 8.45] 2 (2) No 

Shi et al. (2020), ES1 Traditional lecture-based 
instruction 

Technology-enabled active learning environments - 
individual 

R P vs. C Conceptual 
knowledge 

SMD = 0.84 [0.58, 1.09] 19 (19) Not reported 

Sosa et al. (2011), ES2 Traditional lecture-based 
instruction 

Number cruncher: tools to manipulate or analyze 
data (e.g., SPSS, STATA); providing users with 
computations and statistical output 

R P vs. C Conceptual 
knowledge 

g = 0.34 [0.06, 0.63] 14 (14) Not reported 

Steenbergen-Hu and 
Cooper (2014), ES3 

Reading printed text Intelligent tutoring system R P vs. C Conceptual 
knowledge 

g = 0.50 [0.22, 0.78] 8 (8) Yes 

Shi et al. (2020), ES2 Traditional lecture-based 
instruction 

Collaborative technology-enabled active learning 
environments 

R P vs. I Conceptual 
knowledge 

SMD = 0.26 [− 0.02, 0.54] 10 (10) Not reported 

Tudor Car et al. 
(2019), ES3 

Traditional learning with 
textbooks and lectures 

Digital problem-based learning R P vs. I Conceptual 
knowledge 

SMD = 0.67 [0.14, 1.19] 3 (3) No 

Akın (2022) Traditional mathematics 
instruction 

Web-based mathematics instruction R A vs. C Application- 
oriented 
knowledge 

g = 1.91 [1.61, 2.22] 32 (32) No 

Cao and Hsu (2023) Traditional teaching Virtual experiments R A vs. C Mixed d = 0.48 [0.30, 0.65] 62 (62) No 
Gui et al. (2023) Traditional training Digital game-based learning R A vs. C Mixed g = 0.91 [0.58, 1.23] 32 (24) Not reported 
Mitchell and Ivimey- 

Cook (2023) 
Traditional training Digital technology-enhanced simulation including 

virtual reality 
R A vs. C Mixed SMD = 0.55 [0.11, 1.00] 44 (44) Not reported 

Ozdemir et al. (2018) Traditional methods Augmented reality application R A vs. C Conceptual 
knowledge 

d = 0.84 [0.19, 1.06] 3 (3) Not reported 

Steenbergen-Hu and 
Cooper (2014), ES4 

Traditional classroom 
instruction 

Intelligent tutoring system R A vs. C Conceptual 
knowledge 

g = 0.38 [0.21, 0.55] 16 (16) Yes 

Zeng et al. (2023), 
ES1 

Traditional training high-fidelity simulation-based training R A vs. C Conceptual 
knowledge 

SMD = 0.71 [0.51, 0.97] 5 (5) Yes 

Zeng et al. (2023), 
ES2 

Traditional training high-fidelity simulation-based training R A vs. C Application- 
oriented 
knowledge 

SMD = − 0.08 [− 0.37, 0.22] 7 (7) Yes 

Zheng et al. (2023), 
ES1 

Conventional methods Problem-based learning R A vs. C Conceptual 
knowledge 

g = 0.82 [0.44, 1.20] 5 (5) Not reported 

Zheng et al. (2023), 
ES2 

Conventional methods Flipped classroom R A vs. C Conceptual 
knowledge 

g = 0.72 [0.04, 1.40], 5 (5) Not reported 

Zheng et al. (2023), 
ES3 

Conventional methods Game-based learning R A vs. C Conceptual 
knowledge 

g = − 0.30 [− 1.89, 1.29] 2 (2) Not reported 

Zheng et al. (2023), 
ES4 

Conventional methods Collaborative learning R A vs. I Conceptual 
knowledge 

g = 1.51 [0.69, 2.33] 7 (7) Not reported  
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involving interactive learning activities with technology: Conventional 
instructional methods were compared to digital collaborative learning. 
The ES was large in favor of TEL. 16 out of 20 effects that reflected re-
definitions of learning activities with digital technologies showed sig-
nificant positive results. These results indicate that redefining learning 
activities by changing them from shallow learning processes to deep 
learning processes with the help of digital technologies might be a 
central mechanism of TEL that can help students reach higher gains in 
their learning. When comparing the effects of modification with the 
effects of redefinition, our systematic review was limited to a small 
amount of data: We found only three eligible modification ESs. Thus, the 
potential conclusion that redefinition effects are larger than modifica-
tion effects must be viewed with caution. 

3.3. Moderating effect of ICAP-inspired SAMR level: Second-order Meta- 
analyses 

To answer the research question whether the ICAP-inspired SAMR 
level moderates the effect of digital technology on learning outcomes in 
higher education, we conducted a second-order meta-analysis using the 
R-packages ‘psychmeta’ (Dahlke & Wiernik, 2019) and ‘metafor’ 
(Viechtbauer, 2010). To reduce biases by methodological flaws in 
included meta-analyses, we only included meta-analyses which reported 
Hedges’ g. Hedges’ g corrects Cohen’s d to address the small sample bias 
(i.e. the problem that small samples bear a higher risk to overestimate 
effect sizes; see Borenstein & Hedges, 2019). Since random effects were 
addressed within the first order meta-analyses and no variation in used 
type of effect size, a fixed effects model was applied to integrate effect 
sizes from multiple meta-analyses. Inverse-variance weighting was used 
to compute summary effects sizes (i.e. the more precise the estimation of 
an effect size, the higher the weight; see Borenstein & Hedges, 2019). In 

Fig. 6. Forest plot with reported effect sizes (ES) of modifications with digital technologies differentiated by ES type (SMD: standardized mean difference; d: Cohen’s 
d; Hedges’ g). The point estimate of the meta-analysis result is represented by a black box. Horizontal lines representing the 95 % confidence intervals, with each end 
of the line representing the boundaries of the confidence interval. 

Fig. 7. Forest plot with reported effect sizes (ES) of redefinitions through digital technologies differentiated by ES type (SMD: standardized mean difference; d: 
Cohen’s d; Hedges’ g). The point estimate of the meta-analysis result is represented by a black box. Horizontal lines representing the 95 % confidence intervals, with 
each end of the line representing the boundaries of the confidence interval (in case of extreme values, arrows show that boundaries are located outside of the limits of 
the visualized range of values). 
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summary, we included 25 ESs from 16 meta-analyses in the second- 
order meta-analyses. 

The results showed that digital technology has no substantial general 
effect on learning outcomes in higher education (overall effect size: g =
0.03, 95 % CI [0.03, 0.04]; see Fig. 8). 

As expected, the effect of digital technology on learning outcomes in 
higher education was moderated by the level of the ICAP-inspired SAMR 
model; Q(3)=497.40, p < .001: While digital technology used as sub-
stitution had no substantial effect on students’ learning (g = 0.01, 95 % 
CI 0.01, 0.01]), digital technology used to modify learning activities had 
a significantly higher though still not substantial effect (g = 0.15, 95 % 
CI [0.12, 0.19]). Digital technology used to redefine learning activities 
had a large effect (g = 0.85, 95 % CI [0.74, 0.97]). In line with the ICAP 
model, these results support the proposed mechanism of TEL that 
enhancing learning activities by digital technologies fosters learning 
outcomes in higher education. In addition, the second proposed mech-
anism of TEL (facilitating certain learning activities by cognitive sup-
port) is also supported by our results: Digital technologies affected 
learning outcomes in higher education positively if they acted as an 
augmentation for cognitive support (g = 0.46, 95 % CI [0.44, 0.47]). A 
large proportion of R2 = 64.21 % variance in overall technology use in 
higher education was explained by the ICAP-inspired SAMR model. 
About 91 % of the remaining 35.79 % unexplained variance can be 
potentially explained by other factors beyond the ICAP-inspired SAMR; 
Q(21)=226.83, p < .001, I2=90.74 %. 

4. Discussion 

We conducted a systematic review and second-order meta-analysis of 
effects from meta-analyses that compared instruction with versus 
without digital technology in higher education from a learning activity 
perspective. With this approach, we aimed to provide an overview of 
how digital technologies are used in teaching in higher education and on 
the extent to which digital technologies have an impact on students’ 
learning outcomes. Our approach is very different from the commonly 
employed approaches that focus on the effects of specific digital tech-
nologies. To account for the nature of technology use, we used the ICAP 
model to code the learning activities used in both the technology and 
nontechnology conditions (see Chi & Wylie, 2014). In addition, when 
comparing instruction with versus without digital technology, we also 
distinguished between effects that referred to comparisons of learning 
activities that were on the same learning activity level versus effects that 
referred to comparisons of learning activities that were on different 
learning activity levels. When comparisons of instruction with versus 
without technology referred to the same level, we differentiated be-
tween the use of digital technology as a substitution versus an 
augmentation of cognitive support for students’ learning processes. 
When comparisons referred to different learning activity levels, we 
differentiated between modifications that occurred within shallow or 
deep learning processes and redefinitions that led to major changes in 

learning activity levels (i.e., moving from shallow to deep learning 
processes). 

Regarding comparisons on the same learning activity level, our re-
sults showed that when digital technology was implemented as a sub-
stitution, the effects on students’ learning outcomes in higher education 
were nonsignificant. By contrast, all augmentations of cognitive support 
for learners’ cognitive processes had significant positive effects on stu-
dents’ learning outcomes in favor of instruction that employed tech-
nology. These results indicate that cognitive support plays a central role 
in the effectiveness of the use of digital technology. Without the 
augmentation of such cognitive support, TEL did not positively affect 
learning. 

With regard to the results of the comparisons of different learning 
activity levels, our results show that the vast majority of these effects led 
to a significant positive effect on students’ learning outcomes. Although 
we found only three effect size from an investigation of a modification, 
the results on redefinition highlighted that using digital technologies to 
help redefine learning activities so that the processes involved in the 
activities change from shallow to deep might be a central mechanism of 
TEL that can help students achieve more in their learning. 

Our approach of using the ICAP model and an ICAP-inspired SAMR 
classification helped to reveal the central ways in which digital tech-
nologies can affect learning outcomes as well as the conditions under 
which they do not result in learning gains. We clearly see three groups of 
studies that can be categorized along the ICAP-inspired SAMR classifi-
cation: (a) a group of meta-analyses that investigated digital technolo-
gies that were being used as substitutes for nontechnology instruction 
with no significant effects of TEL; (b) a group of meta-analyses that 
investigated digital technologies that implemented cognitive support for 
students without changing the learning activity (in comparison with a 
nontechnology condition) with significant effects on students’ learning; 
and (c) a group of meta-analyses that synthesized effects of imple-
mentations that afforded more advanced learning activities through the 
use of digital technologies, also with significant effects on students’ 
learning. We discuss the three groups of ESs in more detail next. 

4.1. Technology-based substitutes for nontechnology instruction do not 
enhance learning 

On the one hand, our results highlight that the use of digital tech-
nologies per se does not make a difference in students’ learning out-
comes in higher education. In line with Clark (1994), a change in the 
medium of instruction while students engage in the same learning ac-
tivity with no or an equal amount of cognitive support does not lead to a 
significant improvement in students’ learning outcomes compared with 
instruction without technology. However, although significant effects of 
using digital technology as a substitute for nontechnology instruction on 
learning outcomes are clearly missing, the goal of such implementations 
can go beyond an increase in the learning outcomes that were measured 
in the meta-analyses from our review. For example, in the study by 

Fig. 8. Forest plot of results from second-order meta-analysis. N ES (MA) specifies the number of ES from meta-analyses included. N ES (primary) specifies the 
number of ESs from primary studies that are included in this effect. The point estimate of the second-order meta-analysis result is represented by a diamond. 
Horizontal lines representing the 95 % confidence intervals, with each end of the line representing the boundaries of the confidence interval. 
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Steenbergen-Hu and Cooper (2014) regarding ES1, the comparison of 
intelligent tutoring systems with human tutors did not lead to a signif-
icant difference between the two groups. This result can be interpreted 
to mean that technology can indeed be a successful substitute in learning 
situations in which resources for tutors are low and in which elaborated 
just-in-time feedback might be more desirable than a delay in feedback 
from a tutor. In addition, elaborated automated feedback can be used as 
an additional resource for support that can be provided in practice 
alongside support from human tutors. 

Further, the learning outcomes that result from digital technology 
substitutes could go beyond the mostly domain-related measures of 
knowledge and skills: Getting students to use digital technologies or 
virtual learning environments can be a desired outcome that might not 
have been captured in meta-analyses but that are essential with regard 
to the 21st century skills of higher education students (Kirschner & 
Stoyanov, 2020). Further, based on our approach of systematically 
reviewing meta-analytic effects, aspects of the digital condition (Stalder, 
2018) that emphasize that technology changes our behaviors and 
learning in a fundamental way beyond measured (domain-specific) 
learning outcomes might not be reflected in the approach we chose to 
use for our analysis. However, it might be a relevant topic to consider for 
higher education and students’ future careers and life. An awareness of 
the cognitive-focused learning outcomes in our analysis is important 
when interpreting the results. The interpretation regarding these 
cognitive outcomes is very clear: When the goal is to improve stu-
dents’—mostly domain-specific—cognitive learning outcomes, it will 
not be possible to contribute to achieving this goal by using teaching 
with digital technologies as a substitute for nontechnology instruction 
without changing the afforded learning activities or without systemat-
ically implementing cognitive support. 

On the other hand, our results clearly point out two directions that 
can be helpful when using digital technologies to foster students’ 
learning outcomes in higher education: augmenting support for cogni-
tive processes through digital technologies and changing the central 
learning activity with the help of digital technologies so that deep 
learning processes are engaged. 

4.2. Augmentations that use technology to provide cognitive support 
enhance learning 

Augmenting a certain learning activity by providing cognitive sup-
port for the underlying cognitive processes through digital technologies 
was shown to be effective in fostering students’ learning in higher ed-
ucation. According to our results, these augmentations of cognitive 
support work for all types of learning activities in the ICAP model: 
scaffolding students by applying dynamic changes to the representation 
of learning content for better storing of information (Höffler & Leutner, 
2007); offering additional cognitive support for storing, activating, and 
linking when students engage in active learning activities by providing 
corrective and automated feedback (Viljoen et al., 2019, ES2); sup-
porting the cognitive processes of activating, linking, and inferring 
during the execution of generative learning activities by implementing 
scaffolding (Al-Wasy, 2020); and in the context of interactive learning 
activities, providing support for the cognitive process of co-inferring by 
implementing scaffolded collaboration (Tudor Car et al., 2019, ES2). 
These results are in line with theories and related meta-analyses that 
have emphasized the important role of feedback (Hattie & Timperley, 
2007), scaffolding (Belland et al., 2017), and sociocognitive scaffolding 
(Radkowitsch et al., 2020) in technology-based learning environments. 
In conclusion, digital technology implementations that do not differ in 
the extent to which they afford students’ learning activities can have a 
positive effect on students’ learning outcomes as long as they include 
systematic cognitive support for students’ learning activities. This 
pattern of results is in line with our expectations regarding RQ1. 

4.3. Redefining learning activities enhances learning 

Integrating digital technology into learning contexts offers more 
diverse teaching and learning opportunities (Hattie, 2009). In our re-
view, a group of meta-analyses that investigated a change in students’ 
central learning activities showed that digital technologies were indeed 
implemented so that they afforded a higher learning activity level 
compared with nontechnology instruction and thus afforded more so-
phisticated learning opportunities to students. In line with the ICAP 
model (Chi & Wylie, 2014) and in line with our expectations regarding 
RQ2, the vast majority of these effect sizes showed an increase in stu-
dents’ learning outcomes in higher education. Thus, digital technologies 
that are implemented so that they increase the level of learning activity 
as represented in the ICAP model have greater potential to also lead to 
an increase in students’ learning outcomes. In addition, our results 
suggest that digital technologies might help teachers and designers of 
technology-rich environments to afford an increase in ICAP levels with 
the help of digital-technology-based instruction. This idea is in line with 
research that showed that college students were more likely to engage in 
constructive learning activities when their teacher used digital tech-
nology compared with nondigital instruction (Wekerle et al., 2020). 

To answer the question whether this change in learning activity level 
must take place between shallow and deep learning processes or within 
one of these two, results of our study have to be viewed with caution as 
we only found three ES referring to modifications. However, results from 
the second-order meta-analysis show that while modifications do have 
an ES below the small threshold, redefinitions show a large ES. We can 
therefore conclude that a change from shallow to deep learning pro-
cesses (i.e., from passive or active to constructive or interactive) has 
great potential to result in significant positive effects on students’ 
learning outcomes. Interestingly, and compared to effects of sub-
stitutions, augmentations, and modifications, the ES of redefinitions not 
only shows the largest ES, but also the largest variance. This may indi-
cate that the contextual conditions of implementing those sophisticated 
learning activities with digital technologies should be considered and 
investigated in future research (Sailer et al., 2021). 

In conclusion, our results provide support for the ICAP model (Chi & 
Wylie, 2014). Despite the justified criticism of the SAMR model, our 
approach of augmenting the SAMR model with a learning activity 
perspective showed the applicability of the model in the context of TEL 
when focusing on students’ context-specific and cognitive learning 
outcomes. This is also supported by the results of our second-order meta- 
analysis that indicate a moderating role of the ICAP-inspired SAMR level 
on the effect of TEL in higher education. Further, the ICAP-inspired 
SAMR model explained a large amount of variance of TEL in higher 
education, supporting its high explanatory power. 

4.4. Limitations and future research 

The results of this systematic review and second-order meta-analysis 
need to be viewed in light of several limitations. Some issues in this 
systematic review are due to the typical limitations of meta-analyses (see 
Borenstein et al., 2009; Borenstein & Hedges, 2019). First, the reported 
effects could be biased from the incorporation of poor-quality studies. 
Although the eligible primary studies used (quasi-)experimental data, 
preexisting differences were not tested or controlled for in all cases. The 
effects could be overestimated because studies with large effects are 
more likely to be published, and published studies are more likely to be 
included in a meta-analysis. Of the 28 meta-analyses we included, nine 
did not report on publication bias testing, and four reported that a 
publication bias was possible (see Table 1). Second, when multiple 
primary effects are extracted per study, the ESs are not independent, and 
a study with more effect sizes than others contribute more weight than 
studies with fewer effect sizes. Third, the models that were chosen for 
synthesizing the ESs can influence the results. Whereas FEMs assume 
that the true effect size for all primary studies is identical, and the 
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variances of the ESs are attributed to errors in estimating the ESs, REMs 
do not assume a true effect and instead estimate the mean of a distri-
bution of effects (Borenstein & Hedges, 2019). For the field of TEL, it is 
rather naive to assume a true effect, and thus—also in general for the 
fields of educational sciences and educational psychology—the inte-
gration of effect sizes through the REM is regarded as current state-of- 
the art (Borenstein & Hedges, 2019). Four meta-analyses did not 
report the type of statistical model they used, and two meta-analysis 
used FEM (see Table 1). Therefore, the generalization of the findings 
from these analyses cannot be guaranteed. 

There are some other limitations that are grounded in the approach 
we followed in conducting our systematic review and second-order 
meta-analysis: First, due to the meta-meta level of this systematic re-
view and second-order meta-analysis, some meta-analyses might have 
included some of the same primary studies. Therefore, some primary 
studies may have contributed repeatedly to our findings. However, as 
the domains and subjects of the meta-analyses included in our study 
were rather diverse (see Table 1), this limitation likely does not concern 
a major proportion of the studies. Second, our classification of the ICAP 
level was based on the descriptions provided in the meta-analyses about 
the digital technologies or their pedagogical use. These descriptions 
differed in the level of detail they provided and also led to a large 
number of studies that were not eligible because of a lack of detail. Our 
systematic review and second-order meta-analysis clearly show the 
importance of reporting and considering the learning activities involved 
in both the experimental and control conditions in primary studies as 
well as in meta-analyses. Future research (primary studies and meta- 
analyses) have to consider student learning activities in their research 
to provide a clearer picture of the effects of TEL and instructional in-
terventions in general. As our systematic review and second-order meta- 
analysis showed, when investigating the effects of a certain instructional 
approach, the effect sizes might vary fundamentally depending on the 
comparison group that was applied in the research. Third, while com-
parisons within the same ICAP level allowed us to examine the effect of 
technology in providing cognitive support, comparisons between 
different ICAP levels did not enable us to distinguish whether the 
observed effect was due solely to the change in learning activity, or to a 
combination of this change and additional cognitive support for new 
learning activities. This ambiguity might also explain the substantial 
heterogeneity observed in the redefinition category. Conversely, the 
significantly higher effects observed in redefinitions compared to aug-
mentations underscore that changes in learning activities were indeed 
pivotal. For a more nuanced understanding of these potentially com-
bined effects, future research could delve deeper into primary studies 
within meta-analyses, rather than adopting a meta-meta-analytic 
approach. 

Finally, the ICAP model is based on observations of student behavior 
and student learning products (Chi, 2009). In our study, we applied the 
ICAP model on the basis of descriptions of either the students’ behavior 
or instruction with or without digital technology as an approximation of 
students’ actual behavior. However, these different kinds of instruction 
might function as affordances that learners can take advantage of only 
when certain motivational variables, attitudes, or learning prerequisites 
are taken into consideration (see Sailer et al., 2021). 

4.5. Implications for practice 

Our systematic review suggests some recommendations for the use of 
digital technologies in TEL that go beyond recommendations for specific 
implementations of digital technologies and that might therefore be 
helpful for higher education teachers and higher education policy 
makers. In light of the COVID-19 pandemic, such recommendations are 
important for providing teachers with central mechanisms that can be 
applied to improve higher education students’ learning outcomes. 

When we compared different learning activity levels in our study, the 
digital technology condition always had the more sophisticated learning 

activity level, possibly suggesting that it is easier to engage all learners 
in active, constructive, or interactive learning activities when teaching 
incorporates digital technology (see Tamim et al., 2011). Also, the ef-
fects of the implementations of technology showed a clear positive 
tendency for digital technology implementations to evoke a change in 
learning activities. Focusing on ways to include forms of TEL that pro-
mote the engagement of all learners in active forms of learning 
(particularly constructive, and interactive learning activities; Chi & 
Wylie, 2014) is a central mechanism for improving students’ learning. 
According to our review, digital technologies are a suitable means for 
achieving this aim. 

Another important mechanism that can be derived on the basis of our 
results is the augmentation of instructional settings with cognitive 
support for learning activities. Systematically implementing cognitive 
support with digital technologies can help higher education students 
improve their learning. The possibilities for implementing such cogni-
tive support for certain learning activities are manifold: Different types 
of scaffolding and feedback were shown to be effective ways to improve 
students’ learning. In addition, recent advances in the development of 
digital technologies and learning environments often allow for adaptive 
and personalized support measures that might further increase the po-
tential for applying cognitive support (Bernacki et al., 2021). 

4.6. Conclusion 

With this systematic review and second-order meta-analysis, we 
provide evidence that, just as Clark (1994), Tamim et al. (2011), 
Wekerle et al. (2020), and Sailer et al. (2021) previously recommended, 
the relevance of how digital technology is used should be the focus 
instead of which kind of technology is used. A paradigm shift from 
technology-driven research to educational science-driven research, 
which takes into consideration the form of instructional support and the 
learning activities as approximations of cognitive processes, might be 
helpful for TEL research to further elaborate on the mechanisms that are 
responsible for how digital technologies might facilitate learning. 

Our systematic review of meta-analyses and second-order meta- 
analysis is a first step toward understanding the mechanisms that 
describe how digital technologies can foster learning in higher educa-
tion: Digital technologies can provide higher education students with 
support for cognitive processes (e.g., by implementing scaffolding or 
feedback). Implementations of systematic cognitive support resulted in 
positive effects in the meta-analyses included in our study. Further, 
digital technologies can afford more advanced learning activities to 
higher education students. Our review of meta-analyses showed that 
implementing a broad variety of more advanced learning activities with 
the help of digital technologies is an effective way to enhance students’ 
learning. 

These results highlight the importance of considering learning ac-
tivities in TEL research and adopting such a perspective when investi-
gating effects of digital technologies. Further, they can be seen as 
providing strong empirical support for the ICAP model (Chi & Wylie, 
2014) in the context of TEL in higher education. By combining a learning 
activity perspective with an ICAP-inspired SAMR interpretation to 
conduct our review, we offer a successful advancement of theory- 
building to categorize effect sizes in TEL research and derive recom-
mendations for TEL in higher education. 
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