
Evolving Processing Pipelines for Industrial
Imaging with Cartesian Genetic Programming

Andreas Margraf
Digital Production and AI

Fraunhofer IGCV
Augsburg, Germany

andreas.margraf@igcv.fraunhofer.de

Henning Cui
Organic Computing Group

University of Augsburg
Augsburg, Germany

henning.cui@uni-a.de

Anthony Stein
AI in Agricultural Engineering

University of Hohenheim
Stuttgart, Germany

anthony.stein@uni-hohenheim.de

Jörg Hähner
Organic Computing Group

University of Augsburg
Augsburg, Germany

joerg.haehner@uni-a.de

Abstract—The reconfiguration of machine vision systems heavily
depends on the collection and availability of large datasets, ren-
dering them inflexible and vulnerable to even minor changes in
the data. This paper proposes a refinement of Miller’s Cartesian
Genetic Programming methodology, aimed at generating filter
pipelines for image processing tasks. The approach is based
on CGP-IP, but specifically adapted for image processing in
industrial monitoring applications. The suggested method allows
for retraining of filter pipelines using small datasets; this concept
of self-adaptivity renders high-precision machine vision more
resilient to faulty machine settings or changes in the environ-
ment and provides compact programs. A dependency graph is
introduced to rule out invalid pipeline solutions. Furthermore,
we suggest to not only generate pipelines from scratch, but store
and reapply previous solutions and re-adjust filter parameters.
Our modifications are designed to increase the likelihood of
early convergence and improvement in the fitness indicators.
This form of self-adaptivity allows for a more resource-efficient
configuration of image filter pipelines with small datasets.
Index Terms—cgp, image filters, monitoring, segmentation

I. INTRODUCTION

In recent years, image processing has been dominated by

convolutional neural networks (CNNs), achieving high accu-

racy in object detection and recognition, even in industrial

applications for process monitoring. Most neural networks,

however, entail a training overhead that requires extensive

datasets with predefined labels, which might be challenging to

obtain. On the other hand, traditional image processing with

problem-tailored filters offers reproducibility, interpretability,

and stability but may struggle with complex recognition tasks

due to limited flexibility. To address this limitation, we propose

an organic computing (OC) approach using Cartesian Genetic

Programming (CGP) to evolve image filters for image pro-

cessing tasks. CGP uses filter functions and parameters from

common programming libraries to bridge the gap for appli-

cations in which low complexity and transparency outweigh

generalizability.

A. The Role of Machine Learning in Industrial Monitoring

The reliable discovery of anomalies is considered crucial

in real-world applications like inline monitoring or scrap

detection systems. Machine vision systems play a key role

in industrial quality assurance, especially in manufacturing

environments, using optical monitoring sensors to scan product

surfaces during an ongoing process. This study examines

surface patterns of high-performance textiles, glass, metal,

wood, electronics, plastics, and fluids, including defects like

fiber misalignments, aggregations of foreign structure and

manufacturing-induced surface anomalies. Image-based mon-

itoring systems aim to maintain production within a tol-

erance window. Detecting deviations from product-specific

requirements is a challenging task that state-of-the-art machine

learning models may not always meet.

B. Organic Computing Principles in Image Segmentation

State-of-the-art computer systems have become more complex

and ubiquitous, which is why managing their complexity and

unpredictable behavior is challenging. With the rise of infor-

mation technologies and edge computing, we are surrounded

by intelligent interactive systems [1]. The design paradigm of

OC addresses large computing systems with so-called self-x
properties. OC systems are characterized by productive and

organic parts responsible for system (re-)configuration and

adaptation. Building such systems remains a challenge, but our

proposed methodology integrates OC principles using biology

and nature-inspired algorithms to provide self-configuration,

self-learning, and self-optimization. Additionally, the approach

is deemed to generate interpretable and human-readable pro-

grams, transforming logic into compact, robust, transparent,
and self-adaptive pipelines for industrial image filter problems.

C. Related Work

The following section will give an overview on prior work in

related fields of research:

Inspired by Genetic Programming (GP) applications for circuit

generation and boolean function learning, Miller et al. intro-

duced CGP [2] to evolve efficient programs. The current state

of CGP and open research questions have been elaborated by

Miller in a recent publication [3]. Furthermore, the evolution

of image filters has been applied to FPGA programming [4]

as well as GPU architectures [5]. In a comparable context,

Kowaliw et al. [6] investigated the use of GP for image

transforms. Leitner et al. applied CGP-based image processing

to demonstrate its potential for humanoid robot machine vision

[7]. Subsequently, Sekanina et al. and Harding et al. published

extensive surveys on the theory and application of CGP on

133

2023 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)

image processing tasks [8], [9]. Moreover, Goldman et al.

proposed an approach to minimize wasted evaluations in CGP

[10]. Additionally, CGP enhanced image filtering has been

applied to industrial monitoring problems for different types

of carbon fiber [11], [12] and for biomedical image analysis

in a framework Katezio as presented by Cortacero et al. [13].

To the best of our knowledge, this paper is the first to study

the impact of dependency graphs on CGP evolved programs

in the context of industrial image segmentation.

D. Structure

The remainder of this paper is structured as follows: In

Section I, we present an overview of evolutionary algorithms

in industrial imaging and open questions. Section II outlines

modifications to CGP and the dependency graph for industrial

image segmentation. Section III covers the experimental de-

sign, application environments, and evaluation methods, while

Section IV critically analyzes the results. In Section V, we

conclude the study and provide a summary of future research.

II. METHODOLOGY

In traditional computer vision, image processing pipelines are

manually engineered based on sample images with pre-labeled

areas known as regions of interest (ROI). These pipelines

use cascading filters or function operators to extract features

that approximate specific elements in the image based on a

reference dataset to solve segmentation tasks. To reduce the

effort of domain-specific algorithm configuration, we propose

a CGP approach for image processing operators.

A. Cartesian Genetic Programming

CGP is a specialized version of GP that arranges all nodes

F on a two-dimensional cartesian grid for genotype repre-

sentation. These nodes consist of three operator types: input
nodes, function nodes, and output nodes. CGP’s configuration

prevents genetic bloat, resulting in small, resource-efficient

programs. The many-to-one phenotype-genotype mapping cre-

ates non-coding genes that do not directly affect the final solu-

tion, which benefits redundancy and genetic diversity. In each

iteration, the mutation of edges affects inactive genes, leading

to neutral genetic drift, which is favored by a high number

of inactive genes in the genotype [14]. The configuration of

CGP is specified by a program P :

P = {F, r, c, n, l, i, o} (1)

P uses a set of function nodes F which includes a variety of

image filter operations. The nodes are positioned on a cartesian

grid. The size of this cartesian grid is defined by the number of
nodes n, rows r and columns c. Furthermore, the levels back
parameter l indicates the number of columns from which each

node may accept an input. The parameters i and o define the

number of input and output nodes, respectively.

B. Modifications by Node Type Dependencies

In order to avoid invalid solutions, we introduce a dependency
graph DG. In contrast to traditional CGP, our approach

reduces the combinatorial complexity by only allowing con-

nections between nodes that produce an executable solution.

The rationale is to prevent the occurrence of invalid, non-

executable individuals. Conversely, this means that only con-

nections between operator nodes are formed that are allowed

by graph dependency. We introduce the directed acyclic de-
pendency graph DG(T,EDG), consisting of operator types

T and relationships EDG among operator types Ti ∈ T
with T = {T1, T2, . . . , Tt}. DG defines the structure of the

operator pipeline on the cartesian grid to ensure that any

filter combination is executable. Thus, data processed by one

node and passed on to another carries enough information for

reasonable filtering. Once a filter is applied, it restricts the

number of possible successors. DG is monotonic, therefore:

∀Ti, Tj : i < j −→ Ti < Tj . Also, it is acyclic, ergo:

∀Ei,j = (Ti, Tj) ∈ E : i < j. Our approach extends the

methodology proposed by Miller et al. [15] by defining a

pipeline solution as a composition of edges EDG. Thereby,

an edge Ea,b connects operators OPa and OPb only if the

types T of both operators are connected by edge EG in DG:

∀Ea,b = (OPa, OPb) ∈ EC : (T (OPa), T (OPb)) ∈ EG (2)

In contrast to earlier implementations, the restrictions on DG
are reduced, allowing the search space to be explored more

efficiently (cf. [12]). We introduce a program P ′ which is

derived from P and adjusted it as follows:

P ′ = {F, T,G, nr} (3)

F represents the set of function nodes and T the set of operator

types. While r represents the number of rows, the number of

layers contained in graph G reflects the number of columns c,
therefore P ′ is not directly dependent on it. The height of G
equals c and its size, thereby: c = |G| = height(G). Unlike

earlier implementations (cf. [16]), the arity a of each function

varies, allowing to mutate each parameter of a function,

therefore a = max(#Inputs(Fi)). Each node Ni,j belongs

to a layer which an operator type Ti is assigned to, therefore:

∀Ni,j with i ∈ [0, nr) : T (Ni,j) = Ti

The image processing operators are divided into 6 groups

as presented in Figure 1: RegionToRegion, ImageAndRe-
gionToRegion, EdgeAmpAndRegionToRegion, ImageToRegion,
EdgeAmplitude and ImageToImage. InputImage is mandatory

to be appended to the end of the pipeline, therefore is not to

be classified as an operator type in the strict sense. Operators

representing the category ImageAndRegionToRegion would

force the program to fail because filters of the type Image-
AndRegionToRegion only accept tuples of image and region

object. This applies to the HALCON library and equivalent

implementations such as OpenCV1. CGP training returns a

sequence of filters, arithmetic, or functions. This pipeline is

1cf. documentations of HALCON: (https://www.mvtec.com/doc/halcon/13/
en/index.htm), and OpenCV (https://docs.opencv.org/)

134

Fig. 1: Illustration of operator types and the dependencies

serving as a constraint to the evolutionary process; all filter

pipelines depend from the input image serving as root node.

Fig. 2: Configuration of the CGP algorithm, employing image

filter operators for image segmentation

represented by a DAG defining the data flow from input to

output nodes. CGP applies a (μ + λ) ES with μ = 1 and

λ = 4 for combinatorial optimization problems with elitist

selection for fitness rank-based individual selection in each

cycle. The termination criterion is set at a maximum of 150

generations. By default, an input RGB image per pipeline is

connected to one result image, ergo i = 1, o = 1. The grid

is defined by r = 10, with c = 7 derived from the DG (cf.

Figure 1). The fitness is computed using Matthew’s correlation

coefficient (MCC) for the intersection between ground truth

and prediction in each image-label pair and can be formally

stated as follows:

TP × TN − FP × FN
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

We managed to expand our operator set to a total of 69

operators which are distributed as follows: 30 ImageToImage,

13 ImageToRegion and 16 RegionToRegion, 7 ImageAndRe-
gionToRegion, 2 EdgeAmplitude and 1 EdgeAmpAndRegion-
ToRegion, yielding a total number of nf = 69.

Figure 2 illustrates a sample pipeline with assigned node types

as generated for the Tile Crack dataset. Due to DG, we only

allow filter operators in the first instance connected to the

image that can process an RGB image. Other configurations

allow more inputs [7], [9] or use 3 separate channels [13]. All

function nodes have been implemented using the HALCON

Fig. 3: Average MCC fitness represented by blue bars and

standard deviation (black) per dataset

framework. The function nodes depicted in Figure 2 form an

active pipeline that comprises:

SobelAmp(FilterType=y, MaskSize=7), LocalThresh-
old(Method=adapted std deviation, MaskSize=31),
Closing(A=30, B=16, C=-0.393, StructElementType=Circle)
and Dilation(Iterations=14, StructElement=Rectangle, A=4,
B=3). The node connections INP → GaussFilter(MaskSize=3)
→ Connection(Neighbourhood=8) represent a common

structure found in CGP genotypes. The graph shown in

Figure 2 is a representative example of a solution generated

from CGP training: The final node (Connection) is not

connected to an output node making it a non-coding gene.

C. Measures for Image Complexity

The complexity of an image reflects the amount of information

contained in an image. Furthermore, it describes the process-

ability of this information or parts of the image data and

the level of difficulty associated with the segmentation task.

Inspired by Mishra et al. [17], we define the following metrics

to evaluate different aspects of image complexity: Histogram
Entropy (HE), Rectangle Size (RS), JPEG Complexity (JD),
Texture Features (TF), Edge Density (ED) and Number of
Superpixels (SP). The rectangle size (RS) is computed for

the image frame (I) or the equivalent rectangular bounding

box of the label: RS(I) = H(I) · W (I). The entropy

of the histogram, denoted as H(X), quantifies the amount

of non-randomness in the distribution and is computed as:

H(X) = −∑n
i=1 p(xi)log2p(xi). According to [17], the

level of compression achieved by the JPEG image com-

pressor can implicitly determine the amount of information

contained in an image. Mishra et al. define the JPEG-based

complexity (JR) as the inverse of the compression ratio:

JR = size(image)
size(compressed image) . As texture features (TF) we

calculated the properties contrast, homogeneity, correlation
and energy of a Grey Level Co-occurrence Matrix (GLCM)

135

using scikit-image2. For the edge density (ED), we denote

the length and width of a set of edges E detected after

applying the canny edge operator as L and W , and the

area of the image as S(I) = H(I) · W (I). The mathemat-

ical definition of edge density (ED) can be expressed as:

ED = |E|/S(I). To compute the number of superpixels

(SP) with S = {s1, s2, ..., sN} of Image I we minimize the

following energy function: E(S) = Edata(S)+λ·Esmooth(S).
Minimizing E(S) iteratively allows determining the optimal

set of superpixels S for partitioning the image. In addition, we

log the number of labels per frame (label count per image)

which potentially increases the difficulty of a segmentation

task rendering it a noteworthy parameter.

III. EMPIRICAL INVESTIGATION

This section describes the experimental algorithm configura-

tion: By using a (1+4) ES, 4 offspring individuals are derived

from each parent to undergo mutation. For the experimental

setup, nr is set to 10, while c is derived from DG. For each

node in DG, one column c is generated. As the number of

columns is quantified as c = 7, it yields a total of n = 70.

This configuration is within the recommended range for n [14].

A. Experimental Setup

We conducted experiments on 36 datasets from various in-

dustrial monitoring applications, each representing a distinct

segmentation problem. The evaluation is set to evaluate CGP

performance on industrial datasets without directly comparing

it to related segmentation models. While we acknowledge the

potential of well-designed CNN architectures, they cannot be

directly related to CGP due to differences in inference com-

plexity and hardware requirements. Nonetheless, we encourage

further research in this area.

B. Datasets from Industrial Applications

All 36 reference sets from 6 publishers contain scan data

from material surfaces of 12 different kinds. The images

show objects on moving conveyor belts, continuous textile

manufacturing (cf. fibers, films, or papers), and testing islands,

some of which have been discussed by Margraf et al. [18].

The datasets used in this study include: Electrical Com-
mutator/KollektorSSD, consisting of 400 microscopic images

of defected electrical commutators captured in a controlled

environment; Carbon Fiber Processing, representing industrial

textiles with aligned filaments used in aircraft and wind

energy parts; Pultrusion Resin Injection, comprising images

of resin flow fronts used for impregnating carbon fibers; Steel
Welding, containing images of flat steel surfaces for fault

detection; Magnetic Tiles, with top-down views of magnetic

tiles showcasing surface defects; Fabric AITEX, consisting of

fabric images with pattern anomalies; and the MVTec Anomaly
Detection dataset, which contains high-resolution images of

industry-related objects and textures. Table I presents de-

tails on the datasets while Figure 4 displays image samples

2cf. https://scikit-image.org

ID Dataset Name Material Publisher MCCi σi # Runs # Images
1 CF t 8 Textile (CF) Fraunhofer 0.035 0.002 3 24

2 CF 80 bright Textile (CF) Fraunhofer 0.040 0.005 6 32

3 CF 80 dark 1 Textile (CF) Fraunhofer 0.063 0.019 8 16
4 CF 80 dark 2 Textile (CF) Fraunhofer 0.178 0.036 6 16
5 CF 80 dark 3 Textile (CF) Fraunhofer 0.161 0.022 9 16
6 CF 80 dark 4 Textile (CF) Fraunhofer 0.292 0.055 6 8
7 CF 80 dark 5 Textile (CF) Fraunhofer 0.084 0.008 6 16
8 CF RefSet Textile (CF) Fraunhofer 0.187 0.056 12 34
9 CF RefSet Sm Dark Textile (CF) Fraunhofer 0.191 0.037 5 6

10 CF RefSet Sm Light Textile (CF) Fraunhofer 0.233 0.097 3 7
11 FabricDefectsAITEX Textile AITEX 0.168 0.016 7 20
12 KolektorSDD Electronics Kolektor 0.094 0.009 9 8
13 CF Sp0-0315 Textile (CF) Fraunhofer 0.637 0.002 3 105
14 CF Sp0-0315Thrd Textile (CF) Fraunhofer 0.202 0.104 6 29
15 CF Sp0-0315Thrd256 Textile (CF) Fraunhofer 0.179 0.082 9 29
16 CF Sp2-0816 Textile (CF) Kolektor 0.348 0.094 15 88
17 MT Blowhole train Metal Chinese A.o.S. 0.399 0.029 6 57
18 Bottle Brkn Lg Glas MVTec 0.347 0.012 3 10
19 Bottle Brkn Sm Glas MVTec 0.380 0.092 6 11
20 Cable Missing Electronics MVTec 0.886 0.042 4 6
21 Capsule Plastic MVTec 0.214 0.080 3 10
22 Carpet Textile MVTec 0.303 0.154 6 10
23 Grid Thread Metal MVTec 0.462 0.013 3 10
24 Hazelnut Crack Food MVTec 0.508 0.050 3 9
25 Metal Nut Metal MVTec 0.129 0.009 3 11
26 Pill Crack Plastic MVTec 0.564 0.023 3 13
27 Screw Scratch Metal MVTec 0.274 0.114 2 12
28 Tile Crack Tile MVTec 0.643 0.034 8 8
29 Toothbrush Sm Plastic MVTec 0.213 0.012 3 12
30 Wood Scratch Wood MVTec 0.593 0.045 3 9
31 Zipper Rough Clothing MVTec 0.416 0.084 3 8
32 MVTec D Leather Clothing MVTec 0.444 0.061 6 10
33 Pul Resin Fluid Resin Fraunhofer 0.679 0.040 3 20
34 Pul Resin Augtd Fluid Resin Fraunhofer 0.446 0.078 3 20
35 Pul Window Fluid Resin Fraunhofer 0.786 0.098 3 20
36 severstal-steel Metal Severstal 0.267 0.046 10 15

TABLE I: List of datasets with name, publisher, material

surface, number of training images, mean MCCi fitness,

standard deviation σi, CGP runs and number of images;

highest values are bold, the lowest values are underlined.

Fig. 4: Segmentation results evolved by means of CGP for

different monitoring scenarios (cf. referenced ID); the colored

overlays are encoded as follows: red represents false negatives,

yellow all false positives, and green all true positives.

with segmentation results as overlays, indicating ground truth

(green), false positives (red), and true positives (yellow).

Although the majority of datasets we selected for experi-

mentation have been collected for research purposes, 15 of

the 36 use cases were collected at Fraunhofer’s lab and had

to be specifically prepared. The data was cleaned to avoid

inconsistencies and effects of noise or overfitting. From the

public datasets, only a smaller portion of images was used

during training as this study is focussed on the training stage

to examine the improvements on CGP generated pipelines.

IV. DISCUSSION OF RESULTS

This section analyzes the results of CGP experiments on

industrial image datasets. We noticed that the fitness tends

to decrease or remain constant for larger training sets. We

make the assumption that datasets containing a high number

136

of images hold a larger variety of features contained in the

data. CGP, however, is designed to perform well on data with

limited variance.

A. Analysis of Runs with Different Datasets

As can be seen in Figure 3, the mean fitness values range

from MCC = 0.04 for CF 80 bright and to MCC =
0.886 for MVTec Cable Missing. The datasets labeled MVTec
missing cable and Pultrusion Window attained the highest

fitness while the third-best were achieved for pultrusion resin
and pultrusion resin window. The lowest MCC values were

returned for CF t 80 bright, CF t 80 dark 5, KollektorSDD
and CF 80 dark 1. Upon visually examining the datasets

depicted in Figure 4 it becomes apparent that the surface

structures are less intricate and stand out from the background.

This suggests that the CGP pipeline is better suited for struc-

tures with clear contrast and problems of lower complexity.

While recent developments in AI-driven image segmentation

relies heavily on CNN models, which perform well on large

datasets, the authors of CGP-IP and its modifications are

aware of this trend and have designed their approach to be

complementary. CGP allows evolving effective pipelines on

small datasets, therefore can quickly generate a solution with

little computational resources. Also, simplicity keeps pipelines

nearly human-readable. Since preprocessing pipelines address

a narrow and specific objective, they are by nature determined

to perform efficiently. Compact solutions allow improving the

performance of existing complex models, which can lead to

better results overall.

B. Critical Reflection on Pipeline Performance

For better (pre-)selection of operators, we propose to ana-

lyze the segmentation task before filter pipelines are applied.

Thereby, we examine how complexity and difficulty of a

dataset and its annotation relate to the fitness achieved by CGP.

The results suggest conducting a more detailed examination of

the underlying dependency of data structure and processability.

Visual examination suggets that pipelines yield high MCC

values for structures of lower complexity (cf. Figure 5).

We collected a number of high-level image descriptors and

explained how they are linked to filter results.

Studies have shown that as the complexity of an image and

its segmentation task increases, more complex models are

required [?]. Our experiments suggest that for low complexity

and less difficult segmentation tasks, CGP pipelines yield

comparably high fitness levels. Therefore, we examined the

correlation between the fitness achieved on the datasets. Ac-

cording to Table II, the histogram entropy of images and

edge density of labels indicate a moderate positive correlation.

JPEG complexity and hist entropy achieve a weak but

measurable correlation of 0.2 < ρ < 0.4. Weak correlations

appear for num superpixels and edge density. Two metrics

show essentially no correlation at ρ ∼ 0.0: edge density
and label count per image. A moderate positive correlation

between histogram entropy, texture features and the fitness

achieved using CGP has been found. It is worth noting that

Fig. 5: Mean JPEG Complexity values of full image frames

(top) and mean edge density computed from labels (bottom)

TABLE II: ρ between complexity metrics Ci and mean fitness

MCC for dataset i for image frames (left) and labels (right);

highest values are bold, lowest values are underlined.

Metric ρMCCi,Ci

image size 0.174
hist entropy 0.239
jpeg complexity 0.248
texture features 0.174
edge density -0.059
num superpixels -0.090

Metric ρMCCi,Ci

label count per image -0.052
label size -0.097
relative label size -0.208
lbl hist entropy -0.116
lbl texture features 0.207
lbl edge density 0.277
lbl num superpixels 0.219

the obtained results are specific to the context of industrial

surface monitoring.

In summary, the dependency graph avoids invalid candidates

and eliminates exception handling, which yields early con-

vergence and high fitness. The approach is helpful for highly-

efficient filtering, image preprocessing and FPGA implementa-

tions. It allows for reproducible and high-volume data handling

in real-time or high-resolution environments.

V. CONCLUSION AND FUTURE WORK

This study confirms the importance of data pre-processing in

self-learning systems. Pipelines are set to be used within an

OC system’s observer and integrated in a knowledge base to

incrementally build upon industrial filter problems. Imaging

solutions rely on parameters such as brightness, contrast or sur-

137

face characteristics, so the level of automation correlates with

the quality of image filters used to extract information. The

proposed concept can enhance the detection quality of imag-

ing systems by obtaining more individualized configurations

with less configuration effort. While data-driven ML models

struggle with noisy data, CGP allows to automate parameter

configuration for transparent, human-readable pipelines.

While industrial settings mostly have in common highly con-

trolled production conditions, for the agricultural sector and

crop production is but one example where such assumptions

do not hold. For instance, crop production is characterized

by high degrees of uncertainty regarding both the objects to

be produced as well as the environment [19]. Agricultural

production is also dependent on weather and micro-climatic

conditions. Climate change substantially increases this envi-

ronmental uncertainty leading to higher degrees of variability.

Modern agricultural technology is increasingly equipped with

sensors, actuators and computational units to process data in

situ during the operations, which is referred to as smart farm-
ing or digital farming. Image analysis is important here due to

its non-destructive way of sensing. As mentioned, alternative

algorithmic approaches allow a) to quickly reconfigure and
adapt to changing conditions reflected in the images, and,

b) executing highly efficient image processing on specialized

hardware on computationally limited machines essentially

used in future intelligent agricultural technology. Examples

of recent research on image segmentation in agricultural

production focus e.g., on segmenting vegetables from ground

for informing yield predictions [20] and novel ways for more

efficient training of the underlying deep learning models [21],

[22]. Further examples of image analysis applications are

targeted to the pixel-wise classification of remaining biomass

and soil cover from ground images [23] or weed detection [24].

Since this study does not compare the CGP approach to state-

of-the-art CNN models, future work should be continued in

this direction using metrics beyond accuracy, e.g., complexity

and efficiency metrics. While CNN models are known for

generalizing better with increasing complexity, CGP aims

to provide efficient and transparent programs that interact

with other ML models. Finally, we encourage investigating

applications beyond controlled industrial monitoring, as in

sports, food or environmental monitoring.

ACKNOWLEDGEMENTS

The authors like to thank the German Federal Ministry for Economic
Affairs and Climate Action (BMWK) for funding AirCarbon III within

Lufo-IV and the German Federal Ministry of Education and Research
(BMBF) for supporting SaMoA within VIP+.

REFERENCES

[1] H. Schmeck, C. Müller-Schloer, E. Çakar, M. Mnif, and U. Richter,
“Adaptivity and self-organization in organic computing systems,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 5, no. 3, pp.
1–32, sep 2010.

[2] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in
Proc. of the Third European Conference on Genetic Programming
(EuroGP2000)., vol. 1802, 2000, pp. 121–132.

[3] J. F. Miller, “Cartesian genetic programming: its status and future,”
Genetic Programming and Evolvable Machines, pp. 1–40, 2019.

[4] Z. Vasicek and L. Sekanina, “Evaluation of a new platform for image
filter evolution,” in NASA/ESA Conference on Adaptive Hardware and
Systems(AHS 2007). IEEE, 2007, 0-7695-2866-X.

[5] S. L. Harding, “Evolution of image filters on graphics processor units
using cartesian genetic programming,” in IEEE Congress on Evolution-
ary Computation (CEC 2008), 2008, 978-1-4244-1823-7.

[6] T. Kowaliw, W. Banzhaf, N. Kharma, and S. Harding, “Evolving novel
image features using genetic programming-based image transforms,” in
2009 IEEE Congress on Evolutionary Computation. IEEE, May 2009.

[7] J. Leitner, P. Chandrashekhariah, S. Harding, M. Frank, G. Spina,
A. Förster, J. Triesch, and J. Schmidhuber, “Autonomous learning of
robust visual object detection and identification on a humanoid,” 11
2012.

[8] L. Sekanina, S. L. Harding, W. Banzhaf, and T. Kowaliw, Cartesian
genetic programming, ser. Natural Computing Series. Springer Science
& Business Media, 2011, ch. Image Processing and CGP, pp. 181–215.

[9] S. Harding, J. Leitner, and J. Schmidhuber, Genetic programming theory
and practice x. Kluwer Academic Publishers, 2013, ch. Cartesian
Genetic Programming for Image Processing, pp. 1–17.

[10] B. W. Goldman and W. F. Punch, “Reducing wasted evaluations in
cartesian genetic programming,” in European Conference on Genetic
Programming. Springer, 2013, pp. 61–72.

[11] A. Margraf, A. Stein, L. Engstler, S. Geinitz, and J. Hähner, “An
evolutionary learning approach to self-configuring image pipelines in
the context of carbon fiber fault detection,” in Proc. of 16th IEEE
International Conference for Machine Learning and Applications, 2017.

[12] A. Margraf, S. Geinitz, A. Wedel, and L. Engstler, “Detection of surface
defects on carbon fiber rovings using line sensors and image processing
algorithms,” in Proc. of the SAMPE Europe Conference 2017 Stuttgart,
2017.

[13] K. Cortacero, B. McKenzie, S. Müller, R. Khazen, F. Lafouresse,
G. Corsaut, N. V. Acker, F.-X. Frenois, L. Lamant, N. Meyer, B. Vergier,
D. G. Wilson, H. Luga, O. Staufer, M. L. Dustin, S. Valitutti, and
S. Cussat-Blanc, “Kartezio: Evolutionary design of explainable pipelines
for biomedical image analysis.”

[14] A. J. Turner and J. F. Miller, Genetic programming and evolvable
machines. Springer Science and Business Media, May 2015, vol. 16,
no. 4, ch. Neutral genetic drift: an investigation using Cartesian Genetic
Programming, pp. 531–558.

[15] J. F. Miller, Cartesian Genetic Programming, ser. Natural Computing
Series. Springer-Verlag Berlin Heidelberg, 2011, ch. Cartesian Genetic
Programming, pp. 17–34.

[16] J. Leitner, S. L. Harding, and A. Förster, “Humanoid learns to detect its
own hands,” Jun. 2013.

[17] S. Mishra, D. Z. Chen, and X. S. Hu, “Image complexity guided network
compression for biomedical image segmentation,” ACM Journal on
Emerging Technologies in Computing Systems, vol. 18, no. 2, pp. 1–
23, dec 2021.

[18] A. Margraf, H. Cui, S. Heimbach, J. Hähner, and S. Geinitz, “Model-
driven optimisation of monitoring system configurations for batch pro-
duction,” in Proc. of MODELSWARD 2023, in press 2023.

[19] A. Bechar and C. Vigneault, “Agricultural robots for field operations:
Concepts and components,” Biosystems Engineering, vol. 149, pp. 94–
111, 2016.

[20] N. Lüling, D. Reiser, J. Straub, A. Stana, and H. W. Griepentrog, “Fruit
volume and leaf-area determination of cabbage by a neural-network-
based instance segmentation for different growth stages,” Sensors,
vol. 23, no. 1, 2023.

[21] J. Boysen and A. Stein, “AI-supported data annotation in the context
of uav-based weed detection in sugar beet fields using deep neural
networks.” in GIL Jahrestagung, 2022, pp. 63–68.

[22] N. Lüling, J. Boysen, H. Kuper, and A. Stein, “A context aware and self-
improving monitoring system for field vegetables,” in 35th Int. Conf. on
Architecture of Computing Systems. Springer, September 2022, pp.
226–240.

[23] P. Riegler-Nurscher, J. Prankl, T. Bauer, P. Strauss, and H. Prankl, “A
machine learning approach for pixel wise classification of residue and
vegetation cover under field conditions,” Biosystems Engineering, vol.
169, pp. 188–198, 2018.

[24] N. Genze, R. Ajekwe, Z. Güreli, F. Haselbeck, M. Grieb, and D. G.
Grimm, “Deep learning-based early weed segmentation using motion
blurred uav images of sorghum fields,” Computers and Electronics in
Agriculture, vol. 202, p. 107388, 2022.

138

