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Abstract 

Estimating soil moisture from microwave brightness temperature is extremely challenging in 

densely vegetated areas. The soil moisture retrieved from the Soil Moisture Active Passive 

(SMAP) measurements tends to be consistently overestimated, sometimes exceeding the 

saturation level of mineral soils. Therefore, the retrieved soil moisture cannot detect or monitor 
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climate extremes, such as floods and droughts for forests, natural resource management, and 

climate change research. We hypothesize that the main issue is that the scattering albedo (ω) and 

the optical depth (τ) are parameterized solely with NDVI (Normalized Difference Vegetation 

Index), neglecting the polarization characteristics from vegetation structure. This study proposes 

a weighting factor between scattering and optical thickness, a function of MPDI (Microwave 

Polarization Difference Index), and applies it to both parameters simultaneously to increase the 

scattering effect and decrease the attenuation effect in high MPDI. The validation results based 

on the Climate Reference Network revealed that considering MPDI is critical in reducing soil 

moisture overestimation errors and obtaining more accurate soil moisture over forested regions. 

This results in correlation improving from 0.36 to 0.44, a decrease in ubRMSE from 0.179 to 

0.125 cm³cm-³, and bias lowering from 0.127 to 0.060 cm³cm-³ in comparison with the SMAP 

measurements over forested regions. 

 

1. Introduction 

 

     Global-scale soil moisture (SM) information can be obtained from satellite measurements such 

as microwave brightness temperature of SMOS (Soil Moisture and Ocean Salinity), AMSR-2 

(Advanced Microwave Scanning Radiometer 2) and SMAP (Soil Moisture Active Passive). 

Among them, SMAP provides SM products using the Single Channel Algorithm (SCA ) (Jackson, 

1993) and Dual Channel Algorithm (DCA) (P. O'Neill et al., 2020; Chaubell et al., 2020). The 

Multi-Temporal Dual Channel Algorithm (MT-DCA) for estimating albedo as a spatially variable 

parameter has also been proposed (Konings et al., 2017). Still, some uncertainties in the 

microwave radiation transfer model (RTM or forward model) must be solved to more accurately 

estimate SM from satellites. It is known that even L-band, the most penetrating available 

waveband on current satellite platforms, cannot provide a reliable SM information in the forests 

or dense vegetation areas even though studies have shown that the SMAP SM product, for 

example, does demonstrate sensitivity to SM changes in forests (Colliander et al., 2020; Ayres et 

al., 2021; Ambadan et al., 2022; Abdelkader et al., 2022). A recent study (Al-Yaari et al., 2019) 

found that SM retrieval with vegetation water content (VWC) greater than 5 kg m-2 

(approximately 0.6 VOD) is not usable and unreliable in some SM products. Fig.1b shows 

abnormally high SM values in dense vegetation areas as shown in Fig 1a.  
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c) Longitudinal soil moisture estimated by NASA baseline algorithm at N46.36° 

 

Fig.1 a) MODIS NDVI and c) the cross section overestimated SMAP SCA soil moisture (black 

dots) comparing to in situ (red dots) over vegetation with VODNDVI (green dots) indicated with 

the red boundary in a), b) and longitudinal range from -90 to -65, where vegetation optical depth 

over 0.5 in b), measured in 1st, August 2015. 

 

     Recent research suggests that the poor performance of satellite SM products over dense 

vegetation is due to the unsolved uncertainty regarding vegetation properties within RTM, rather 

than an inherent limitation of the technique. For example, Ambadan et al. (2022) and Colliander 

et al. (2020) suggested that SM can be estimated using SMAP brightness temperature (Tb) under 

temperate forests if vegetation properties such as attenuation and scattering parameters are 

properly estimated within the microwave forward model.  

     Currently, in both SCA and DCA, the vegetation scattering albedo is fixed regardless of 

vegetation density. We selected SCA-based algorithms to work on the improvement for VOD 

characterization, We bring the argument forward that disentangling vegetation and soil emission 

contribution is not strait forward when using both polarizations,TBv and TBh, since both 

observations are not fully statistically independent, especially in dense (forested) vegetation. In 
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this realm, we revisited the single-polarization SCA approaches, where VOD is not retrieved, but 

an input to the retrieval. In this study, we develop several advanced strategies how to represent 

VOD more realisticly and efficiently. To address this issue, Park et al., (2020) described a 𝜏-ω 

type RTM based on a variational scattering albedo approach, where increasing vegetation optical 

depth (VOD) computed by NDVI increases the scattering albedo. This analysis focused on 

resolving the impact of unrealistic scattering albedo in forested regions with high vegetation 

optical depth on SM. Chaparro et al. (2022) showed that the retrievability of SM from vertically 

and horizontally polarized Tb can be determined with a metric called the robustness of vegetation 

optical depth, indicating higher robustness over non-woody vegetation rather than in forests. In 

our study, we found that the current SMAP SCA exhibits error patterns related to VOD calculated 

using NDVI as well as the Microwave Polarization Difference Index (MPDI) calculated using Eq 

(1) (Becker and Choudhury 1988), as seen in Fig 2. 

 

𝑀𝑃𝐷𝐼 =
(𝑇𝑏𝑉 − 𝑇𝑏𝐻)

(𝑇𝑏𝑉 + 𝑇𝑏𝐻)
 

    (1) 

  

Fig. 2 The relationship between 𝜏 from MODIS NDVI and MPDI from SMAP TbH and TbV and 

the degree of the soil moisture bias from SMAP SCA SM compared to the in-situ soil moisture 

obtained from USCRN sites (ΔSM SCA) along the NDVI-MPDI relationship (gray: missing 

calculation in the SM estimations) 
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In Figure 2, the blue and red dots indicate that SM predictions are underestimated and 

overestimated respectively. This figure shows that the SCA method overestimates SM when VOD 

(computed from NDVI) and MPDI are high. This is because the conventional RTM does not 

consider the polarization characteristics of vegetation in dense vegetation areas. To elaborate, at 

a 𝜏 value of 0.6, less SM bias was observed in the lower MPDI range. According to Equation (1), 

in scenarios of low MPDI, the difference between vertical and horizontal scattering, as well as 

their resulting Tb, should be minimal. This implies that a lower MPDI is expected to yield a 

relatively smaller SM bias in SMAP SCA predictions, even when assuming a uniform scattering 

albedo within the SCA model. Conversely, in the case of a higher MPDI, it will reveal an issue 

due to the constant scattering assumption in SCA. For instance, when neglecting these factors in 

the SCA model—when there is a substantial difference in scattering albedo between horizontal 

and vertical polarizations (likely when MPDI is high)— the Tb simulations in horizontal and 

vertical polarization with a fixed scattering albedo lead to a bias in SM estimation (a positive SM 

bias for horizontally polarized Tb). Consequently, it is crucial to adjust vegetation-related 

parameters, such as VOD and scattering albedo, particularly at higher MPDI values. The 

methodology section will further elaborate on this strategy. 

2. Method 

     We propose a 𝜏-ω model that is parameterized with both NDVI and MPDI to resolve the 

issue of the missing vegetation structural information in the RTM used by SCA and DCA, we 

propose a 𝜏-ω model that is parameterized with both NDVI and MPDI. To introduce this 

method, we will first discuss the SM errors that arise from the current RTM, particularly those 

that are caused by an incomplete 𝜏-ω model. 

2.1 Microwave radiative transfer model 

     Soil moisture is the most impactful surface property to low-frequency microwave emission due 

to its dipole structure. Therefore, L-band (1.4 GHz) Tb measurements are the best wavelength to 

extract SM information. The microwave radiative transfer model connects SM within the wet soil 

emissivity (esoil) and microwave Tb. However, this does not mean that other variables are 

negligible in Eq. (2), which is a function of esoil, surface temperature (T), vegetation optical depth 

(𝝉), and vegetation scattering albedo (ω). 
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TbH = 𝑒soil (𝑆𝑀)𝑒−𝜏 + (1 − 𝜔)(1 − 𝑒−𝜏)𝑇 + 𝑒−𝜏(1 − 𝑒soil (𝑆𝑀))(1 − 𝜔)(1 − 𝑒−𝜏)𝑇 

   (2) 

 

An accurate dielectric mixing model (between esoil and SM) and 𝜏-ω (for vegetation effects) model 

are prerequisites to invert vegetation and SM components from the measured Tb or to simulate 

Tb closest to the observed Tb. Various studies have discussed improvements to the inversion 

formulation, for example, 1) dielectric mixing model considering explicitly organic matter 

(Bircher et al., 2016; Mironov et al., 2018, 2019; Park et al., 2019; Park et al., 2017); 2) roughness 

effect parameterized with SM (Fernandez-Moran et al., 2015, 2017, Parrens et al., 2016, Peng et 

al., 2017) ; 3) 𝜏-ω model by considering multiple scattering properties (Kurum, 2013; Feldman et 

al., 2018), by specifying it in space as look-up table (Konings et al., 2016, 2017) and by 

parameterizing it with VOD in order to impose variability in time and space (Park et al., 2020). 

Because both high VOD and rich SOM regions have shown unrealistic retrieval values in the 

current SMAP SCA and DCA SM, an improvement is anticipated in these areas.  

     Wigneron et al. 2014 found that vegetation model parameters are influenced in L-band SM 

estimation, by factors like system configuration and crop type, including VOD, scattering albedo, 

and polarization properties. These discoveries help to enhance forward modeling and retrieval 

techniques for estimating SM over regions covered by vegetation. Based on Eq. (2), to translate 

the measured Tb to a lower SM value, the simulated Tb (Tbsim) should be made lower by 

increasing the scattering albedo and/or decreasing the optical depth.. This new adjustment will be 

made according to the polarizability information from MPDI and in addition to the dynamic 

scattering albedo introduced by Park et al. (2020). Therefore, this study will apply the MPDI 

approach (Chaparro et al., 2022) with the variational ω model (Park et al., 2020) to improve the 

polarization representation in the 𝜏-ω model. 

 

2.2 MDPI based 𝜏-ω model 

     Figure 3a shows that the conventional 𝜏-ω model sets the scattering albedo, ω, to a constant 

that varies only according to IGBP land cover classification (SCA and DCA). Therefore, in high 

vegetation states, only τ affects Tb simulation. In the modified τ-ω approach (Figure 3b), ω can 

also increase with increasing NDVI. In this approach, τ and ω are related to a power function 

based on the allometric theory. Even so, with the relatively high τ, the SM estimation is accurate 
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with a low MPDI but the overestimation still occurred in high MPDI. Hence, to reduce the SM 

error, which tends to increase when MPDI increases, both 𝜏 and ω are supposed to be readjusted 

by MPDI input as shown in the Fig. 3c.  

  

Fig. 3 Effect of high vegetation on the microwave brightness temperature simulated by (a) the 

conventional NDVI-based 𝜏-ω model (SCA), (b) the allometry-based 𝜏-ω model (Park et al., 

2020), and (c) the τ-ω model adjusted by MPDI (red lines: new consideration in this study) 

 

      In this new approach (Fig. 3.c), ω is adjusted in proportion to MPDI, especially when applied 

to the forward simulation of horizontally polarized Tb. In our earlier method (Fig. 3.b), only 

NDVI is used for Tbh simulation, linking it to vegetation density and assuming a constant ratio of 

vertical to horizontal components (no directionality in vegetation structure) for the same IGBP 
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type. This means a higher NDVI indicates denser vegetation, resulting in more attenuation (𝜏) 

and increased scattering (ω). This method reduces the error caused by the fixed ω in the dense 

forest by enhancing ω. However, in the scenarios where horizontal vegetation scattering is the 

dominant factor within the same IGBP, relying on NDVI for Tbh simulations poses issues. The 

NDVI-based ω, which assumes a consistent ratio between horizontal and vertical scattering (e.g., 

a randomly distributed vegetation canopy), turns out to be lower than the actual ω when the 

horizontal vegetation component exceeds the average for the IGBP class in a particular SMAP 

grid cell. This case leads to an underestimated scattering albedo, causing an overestimation in Tb 

simulations and, consequently, an overestimation of SM. 

     Introducing MPDI addresses the problem with underestimated scattering albedo by being 

“positively proportional to horizontally polarized” scattering albedo. An abnormally high MPDI 

can indicate a higher horizontally polarized scattering albedo than the typically applied scattering 

albedo based on the IGBP classification. When the horizontally polarized scattering exceeds that 

of the vertically polarized components, the horizontally polarized ω becomes larger than the one 

assumed for both polarizations based on the IGBP type, reducing the Tbh. This reduction in Tbh 

provides a physical basis for the positive correlation between scattering and MPDI measurements:  

 

Higher ωH ➔ Lower TbH ➔ higher MPDI, (TbV-TbH)/ (TbV+TbH). 

 

A solitary TbH value is insufficient for delineating scattering properties due to its variation with 

factors such as soil temperature, moisture, roughness, and both the density and structural 

properties of vegetation. In contrast, MPDI provides insight into scattering properties by utilizing 

both TbH and TbV, measured under identical conditions of temperature, moisture, and vegetation 

density but differ in their structural responses. By subtracting these values and normalizing them 

by their sum, the effects of temperature, soil moisture, roughness, and vegetation density on TbH/V 

are mitigated to a first degree, leaving only the structural characteristics. This is where MPDI 

excels, as it effectively isolates and represents these structural properties. This relationship in the 

TbH forward simulation (Higher ωH ➔ lower TbH with no change in TbV) allows the model to 

incorporate structural details inversely from MPDI, such as an increased horizontal component, 

which cannot be captured by using only the conventional approach where ωH = ωV. In other words, 

for a canopy with more horizontal components at the same density (indicating a higher MPDI in 
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the same VOD scenario), the horizontal ω should be set higher than the vertical ω. Therefore, it 

is necessary to set ω in proportion to both MPDI and NDVI, as illustrated with the ‘+’ signs in 

Fig. 3. Inversely, in the high MPDI condition, the simulated TbH is lower (Higher MPDI → Higher 

ωH  → Lower TbH as shown along the red arrows in Fig.3), which does not deviate substantially 

from the measured TbH. Under this condition, SM is estimated in the moderate range and is not 

unrealistically overestimated. The NDVI-MPDI approach (EXP2) is shown in Table 1, along with 

the conventional NDVI-based SMAP SCA algorithm theoretical basis document (ATBD) 

(O’Neill et al., 2021) and the allometric-based model of Park et al. (2020) (EXP1). 

 

Table 1. The mathematical equations for calculating 𝜏 and ω used in the microwave radiative 

transfer model. 

 Optical thickness (𝜏) Scattering albedo (ω) 

SCA τ = 𝑏VWC  

𝜏 = 𝑏 ((1.9134𝑁𝐷𝑉𝐼2 − 0.3215𝑁𝐷𝑉𝐼)

+ StemFactor
𝑁𝐷𝑉𝐼𝑟𝑒𝑓 − 0.1

1 − 0.1
) 

Constant 

EXP1 ω = 𝑐𝐼𝐺𝐵𝑃τ2/3 

EXP2 𝜏 = (1 − 0.2𝑓𝑀𝑃𝐷𝐼)𝑏𝑉𝑊𝐶 

𝜏 = (1 − 0.2𝑓𝑀𝑃𝐷𝐼)𝑏 ((1.9134𝑁𝐷𝑉𝐼2 −

0.3215𝑁𝐷𝑉𝐼) + StemFactor
𝑁𝐷𝑉𝐼𝑟𝑒𝑓−0.1

1−0.1
)  

 ω = 𝑓𝑀𝑃𝐷𝐼𝑐𝐼𝐺𝐵𝑃τ2/3 

 

The cIGBP in Table 2 is an empirical parameter that represents different types of vegetation 

presented by Park et al. (2020). It is calculated by multiplying the maximum vegetation scattering 

albedo (ωmax) by the product of the vegetation canopy parameter (b), the physical density of plant 

elements (𝜌E), the unique thickness of the plant element (h), and a canopy environmental 

parameter (c) raised to the power of two-thirds as shown in Eq. (3). 

 

𝑐IGBP = ωmax(b ρE c h)−2/3 

     (3) 
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Table 2 shows that cIGBP values found for forests tend to be lower than for crops and grasslands, 

which is consistent with the empirically derived relation that cIGBP is inversely proportional to the 

height of vegetation, h, in Eq.(4). 

 

Table 2. Empirical allometry parameter 𝑐𝐼𝐺𝐵𝑃 for each IGBP type (modified from Park et al., 

2020) (shaded cells : the classified by forested regions (IGBP from 1 to 5)) 

Evergreen 

needle 

IGBP=1 

0.40 

Mixed 

forest 

IGBP=5 

0.30 
Savana 0.20 Urban 0.10 

Evergreen 

broad 

IGBP=2 

0.15 

Closed 

shrubland 
0.60 Grass 0.60 

Mixed 

crop 
0.6 

Deciduous 

needle 

IGBP=3 

0.40 

Open 

shrubland 
0.2 

Permanent 

wetland 
0.10 

Snow & 

ice 
3 

Deciduous 

Broadleaf 

IGBP=4 

0.20 

Woody 

savanna 
0.5 Crop 0.40 

Spared 

vegetation 
3 

 

The weighting factor fMPDI, Eq.(4), enables an enhancement of the scattering albedo while 

simultaneously reducing the optical depth, as derived from the MPDI compared to traditional τ  

and ω values. This model, which posits an inverse relationship between MPDI and NDVI, is 

supported by the measured in Figure 2 and the study from Becker et al., 1988.  

 

 𝑓𝑀𝑃𝐷𝐼 = 𝑎𝑀𝑃𝐷𝐼0.5 + 𝑏     (4) 

 

In this study, these parameters are found by empirically minimizing SM errors (a is 2 and b is 

0.65). Now, in the new 𝜏-ω model, both 𝜏 and ω are functions of NDVI, considering vegetation 

structural information by the weighting factor, fMPDI in Eq. (4), and the allometric parameter, cIGBP 

in Eq.(3) (simplified as constants in Table 2). 

 

2.3 Cost function minimization 

   To estimate SM from the Tbobs, the Tb absolute error is computed by Eq. (2) by searching for 

the minimum absolute difference between observed TbObs and simulated Tbsim with given state 

variables X (soil texture, soil temperature, roughness, soil organic matter, soil temperature, and 

NDVI-based VOD) and additional ancillary MPDI according to the following function: 
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 min
𝑋=𝑆𝑀

𝐽 = 0 = ∑(𝑇𝑏obs − 𝑇𝑏sim(𝑋, 𝑁𝐷𝑉𝐼, 𝑀𝑃𝐷𝐼))
2
   (5) 

 

In Eq. (3), higher MPDI induces higher fMPDI (the weighting factor increases in scattering and 

decreases in attenuation by absorption) allowing more accurate SM retrieval, owing to the lower 

Tb simulation in Eq. (2). Therefore, MPDI will help to reduce overestimation of SM (Eq.(5)) by 

increasing the weighting factor (Eq.(3)) for scattering and decreasing the weighting factor for 

absorption in Eq. (2). 

 

2.4 Validation 

SM validation should occur outside rain periods (Colliander et al., 2020b) and over a range 

of wetness conditions. Therefore, validation points for this study were only considered if SM 

conditions were below saturation (i.e., assuming no flooded regions). The validation compares 

our retrieved SM to in situ data, where SM is larger than the saturation point, which is function 

of soil organic matter and clay proposed by Park et al. (2021). 

 

3.  Data 

     USCRN (US Climate Reference Network) is used in this study to validate the SM estimates 

because of its dense distribution of validation networks (Diamond et al., 2013). The results of the 

new 𝜏-ω model are investigated with all in situ from these sites. Furthermore, to demonstrate how 

SM estimation from SMAP Tb can be improved in densely vegetated areas, a longitudinal band 

across a strong vegetation gradient in the US was selected, as shown in Fig. 4 a). Also, the NEON 

(the National Science Foundation’s National Ecological Observatory Network) is used because 

many of the monitoring stations are located under a forest canopy (Ayres et al., 2021) b). 
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Fig.4 a) USCRN (US Climate Reference Network) with the longitudinal cross section points in 

the orange box (latitude: 46.36°, longitude: -125° to -65°) used in the validation of the soil 

moisture estimations, b) NEON (National Ecological Observatory Network) forest sites marked 

by green diamond symbols. 

 

The evaluation of our methodology focused exclusively on forested areas within the United States, 

specifically leveraging sites from the USCRN and NEON. These forested sites present unique 

challenges for soil moisture estimation. 

 

Table 3. Classification of forested regions for this study based on IGBP categories 

USCRN NEON 

Site name IGBP  IGBP  IGBP 

Asheville-13-S 5 Kingston-1-W 4 D01.BART 5 

Asheville-8-SSW 5 Limestone-4-NNW 5 D01.HARV 5 

Charlottesville-2-SSE 4 McClellanville-7-NE 5 D02.SCBI 4 

Chatham-1-SE 5 Millbrook-3-W 5 D05.STEI 5 

Coos-Bay-8-SW 1 Old-Town-2-W 5 D05.TREE 5 

Corvallis-10-SSW 1 Quinault-4-NE 1 D05.UNDE 5 

Darrington-21-NNE 1 Redding-12-WNW 1 D07.GRSM 5 

Durham-2-SSW 5 Salem-10-W 5 D07.MLBS 4 

Elkins-21-ENE 4 Sandstone-6-W 5 D07.ORNL 4 

Gaylord-9-SSW 5 Selma-13-WNW 5 D08.DELA 5 
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John-Day-35-WNW 1 Spokane-17-SSW 1 D08.LENO 5 

Kenai-29-ENE 1 Watkinsville-5-SSE 5 D10.RMNP 1 

    D13.NIWO 1 

    D16.ABBY 5 

    D16.WREF 1 

 

The table 3 categorizes the study locations according to the International Geosphere-Biosphere 

Programme (IGBP) classification system, indicating the predominant vegetation type as the 

forested resions. This targeted approach ensures that our soil moisture estimation technique is 

properly tested in forested regions where it is most challenged for the SMAP SCA. 

The applied brightness temperature data is the SMAP L3 horizontally polarized brightness 

temperature measured in descending node time, at approximately 6 am local time (de Jeu et al., 

2008; Zhang et al., 2019). The input vegetation information is the 𝝉NDVI, which is the same input 

used for the conventional SMAP 𝑆𝑀𝑆𝐶𝐴 algorithm.  

 

4. Results 

     The 𝜏-ω RTM was initially analyzed to see if the proposed 𝜏-ω could improve the accuracy of 

the SM estimation from SMAP Tb. Figure 5 demonstrates the advantage of using the MPDI-based 

𝜏-ω model. The baseline 𝜏-ω RTM with a constant ω (Figure 5a) is unable to produce accurate 

SM estimates with the VOD derived from NDVI. As a result, SM SCA estimates over high-VOD 

regions (forests) using the constant ω exceed 0.55 cm3cm-3. On the other hand, Figure 5b shows 

an increase in ω by 𝜏, leading in turn to a decrease in simulated Tb, resulting in a more accurate 

SM estimate (positive bias decrease of approximately 0.5 cm3cm-3). The most accurate result is 

obtained with the proposed approach, in which both 𝜏 and ω are further adjusted by MPDI (Figure 

5c). Our findings indicate that this technique is successful when the TbV-value is lower than 230 

K and the VOD is larger than 0.1, provided that the coefficient 'a' is set to 15000 and 'b' is 3 in 

Equation (3). 
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Fig. 5 Scatter plots comparing a) SCA-H, b) NDVI-based 𝜏 and ω model (EXP1), and c) NDVI-

MPDI-based 𝜏 and ω model (EXP2) with in situ soil moisture measurements in USCRN forest 

and d), e) and f) in NEON forest sties classified with IGBP from 1 (blue), 4 (green) and 5 (red). 

 

     As Fig. 5 shows, the NDVI-MPDI-based 𝜏 and ω model demonstrated enhanced soil moisture 

estimation in validation with in situ measurements, achieving approximately reduction 55% in 

bias, a 21% reduction in ubRMSE and a 32% increase in correlation compared to SCA-H SM. 

 

As shown in figure 8. increased ω by high NDVI decrease the SM estimation (EXP1) comparing 

to the constant ω (control) both in a) USCRN and b) NEON forest sites where IGBP is ranged 

from 1 to 5 (forest  regions). Addtionaly, the further increased ω by high MPDI in forest from c) 

Jo
urn

al 
Pre-

pro
of



USCRN and d) NEON forest sties decrease SM from EXP1 to EXP2. Ultimately the gradual 

decrease SM by NDVI and MPDI consideration in 𝜏-ω leads the bias degrease soilving unrealistic 

SM estimation from the microwave brightness temperature measured over the forest regions. 

 

     Figure 6 illustrates the NDVI - MPDI effects on SM estimations. For both the USCRN (a) and 

NEON (b) forest sites with IGBP classifications ranging from 1 to 5 (indicative of forest regions), 

an increase in the NDVI-adjusted parameter ω results in a decrease of SM estimation (EXP1) 

compared to a control scenario with constant ω. Further, an increased ω, this time modulated by 

high MPDI values, is observed to reduce SM from EXP1 to EXP2 in forest sites from both 

USCRN (c) and NEON (d).  

 

 

Fig. 6 The NDVI and MPDI effect on soil moisture estimation : ω NDVI effect on SM in a) 

USCRN and b) NEON  and 𝜏-ω NDVI and MPDI effect on SM in c) USCRN and d) NEON in 

forest sites (IGBP classification from 1 to 5) 

 

This sequential reduction in SM estimations is well displayed in Fig.7. Factoring in the effects of 

NDVI and MPDI in the τ-ω model leads to a more accurate bias correction in SM derived from 

microwave brightness temperature measurements over forest regions. The figure underscores the 

significance of considering NDVI and MPDI influences for realistic SM estimation in dense forest 

regions. 
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Fig. 7 Bias and RMSE change with different 𝜏-ω models W_sca (SMAP SCA), W_NDVI (EXP1) 

and W_MDPI (EXP1) in a) USCRN forest and b) NEON forest sites. 

 

     In Fig. 8, we explored this error in SM estimation as a function of VOD (or NDVI) and MPDI. 

The green dots indicate the SM bias change that arises from the switch from SCA to EXP1, 

demonstrating the effect of incorporating NDVI 𝜏-ω. The orange dots represent the change in SM 

bias from EXP1 to EXP2, displaying the influence of MPDI on the accuracy of SM. The majority 

of the unrealistic SM overestimations are rectified within the reasonable SM range. This 

improvement is evident from the increase in green data points after incorporating NDVI and 

MPDI parameters for 𝜏 and ω, as depicted in Figure 7a. While high VOD (> 0.6) benefits from 

the ω parameterization with NDVI, some overestimation issues persist across all VOD ranges. 

However, the MPDI parameterization has effectively mitigated this error by increasing ω and 

decreasing 𝜏 (or absorption), particularly when MPDI values are elevated, as shown in Figure 8c. 

 

 

Fig. 8 SM estimation error along VOD (or NDVI) and MPDI (green dots: SM bias change from 

SCA to EXP1, showing the effect by the incorporation of the NDVI 𝜏-ω, orange dots: the SM 

a)

b)

c)
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bias change from EXP1 to EXP2, highlighting the impact of MPDI on SM accuracy) in USCRN; 

SM bias error by a) SCA method, b) EXP1 and c) EXP2. 

 

Figure 9 illustrates an evident improvement. The high positive SM errors, represented by red dots 

in both SCA (ΔSM SCA) and the NDVI-based 𝜏-ω model (ΔSM EXP1), have been effectively 

reduced, now falling within the moderate SM error range (less than 0.2 cm³ cm⁻³), as highlighted 

by the green dots in Figure 9. 

 

Fig. 9 The SM error distribution in NDVI x -axis and MPDI y-axis (green: acceptable, red: 

severely positive, blue: severely negative SM error) 

 

5. Discussion  

5.1 Mismatching issue 

     The comparisons of SMAP SM with in situ measurements can result in large errors because 

of the representativeness differences between satellite observations and in situ measurements 

(e.g., Gruber et al., 2020; Montzka et al., 2020; Colliander et al., 2022;). This study shows that 

SMAP SM is unrealistically high in dense vegetation regions, even without comparing to in situ 

data. This is due to the radiative transfer model (RTM) not considering dynamic scattering albedo 

varying with NDVI and MPDI. The proposed new 𝜏-ω model reduced these positive bias errors 

related to VOD or MPDI. 

 

5.2 NDVI issue 

5.2.1 NDVI saturation in dense vegetation 

     Various studies demonstrated the MODIS-based VOD used in the SCA (τNDVI) can produce 

errors for SM estimation (Chaubell et al., 2020; Dong et al., 2018). For example, SM error can be 
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caused by the saturation of NDVI in dense vegetation. However, this is unlikely to cause SM 

overestimation. If the real VOD is higher than the saturated τNDVI, Tb will increase, exacerbating 

the overestimation of SM based on Fig.3.a. 

     One of the emerging method is a kernel NDVI (k-NDVI) (Camps-Valls, et al., 2021, Wang et 

al., 2023) to solve the NDVI saturation issue in the forested regions. However, this technique 

employs a kernel function sometimes masking the essential physical processes,  complicating the 

understanding of its outcomes. Our research presents a solution rooted in physical principles, 

effectively addressing this limitation. We characterize the fluctuations of the τ and ω parameters 

as they relate not only to NDVI, but also MPDI. By fine-tuning the τ parameter associated with 

NDVI in combination with MPDI, we have directly tackled the issue of saturation in dense 

vegetation—a critical challenge for conventional NDVI-based VOD applications. This 

adjustment emerges as a vital strategy for overcoming the saturation hurdle, allowing for the 

extraction of pertinent vegetation parameters. Consequently, our methodology not only resolves 

the overestimation issue of soil moisutre in forest but also sheds light on the physical processes 

driving variations in vegetation signals, providing more understanding of these dynamics in 

forest. In a future study, we will pursue the synergy between more adavnced approaches, such as 

k-NDVI, and our physical based MPDI consideration for further improvements in the soil 

moisture estimation from microwave Tb over dense forest. 

 

5.2.2 Climatological NDVI input in RTM 

     As shown in Fig. 10, the SM SCA (gray curve from -110 to -98) is systematically 

underestimated under crops and grass classified by IGBP in the top panel of the figure. One 

possible cause of this issue is the use of MODIS VOD in SCA, which is the monthly average over 

10 years. In the real world, vegetation changes every year, especially cropland, due to different 

agricultural practices. The average VOD from MODIS applied in SCA decreases in the west as 

increasing VOD with longitude increase depicted in Fig.10. The gradual decrease of VOD in this 

region (longitude from -110 to -98) may be caused by averaging temporal patterns in each pixel, 

which is a definite discrepancy from the more temporally and spatially highly resolved snapshot 

measurements from VIIRS and lidar. The opposite case (lower 𝜏, lower SM estimation) can also 

be seen, where the NDVI VOD (monthly averaged VOD) is higher than the VIIRS VOD (more 

real-time VOD), where the NDVI based SM showed underestimation due to lower NDVI 𝜏 than 

Jo
urn

al 
Pre-

pro
of



real VIIRS 𝜏 as shown in Fig. 10. In other words, the replacement of NDVI VOD with VIIRS 

VOD can be a further improvement of the current 𝜏-ω model. 

 

Fig. 10 Longitudinal comparisons of SCA and EXP (modified) soil moisture (smooth fit soil 

moisture curve for gray: SCA, for blue: proposed approach and red: in situ soil moisture 

measurements) with scattering albedo applied in SCA and EXP1 and other vegetation properties 

(vegetation fractions from VIIRS daily observation, MODIS 10 year daily average and NASA 

spaceborne lidar measurement GEDI (RH100 global forest canopy height in m) (scaled by 

dividing 100 in this study). 

 

5.3 Absorption issue rather than scattering albedo 

     The recent study (Bauer et al., 2021) found that the scattering changes over time are not as 

significant as absorption in dense vegetation. In nature it is obvious that if the leaves just start 

growing or dying, not only VOD increases and decreases, but also the scattering albedo should 

change by leaves number and size (Park et al., 2020). Therefore, with higher NDVI both 𝜏 and ω 

should increase.  
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5.4 Issue by missing consideration of VWC effect 

     The seasonal increase in 𝝉 NDVI (green dots in August in Fig.11) is also a valid indicator of 

changes in leaf size and number in forest, leading to an increase in scattering probability because 

𝝉 NDVI is positively propotional to NDVI based leaf area index (LAI). This consideration has been 

considered by the NDVI-based allometric approach (Park et al., 2020). However, the NDVI can 

be high in the summer because plants have a higher volumetric water content (VWC), absorbing 

more than they scatter, according to a study by Bauer et al. (2021). This adjustment (scattering 

decreases but absorption increases) has been done by adjustment with low MPDI input (purple 

dots in August in Fig. 11) according to Fig. 3c. 

 

 

Fig. 11 The seasonal change of NDVI 𝜏 and MPDI in Avondale-2-N (USCRN; lat: 39.8593, 

lon: -75.7861) 

 

5.5 Relationship between vegetation density and MPDI 

     The NDVI exhibits a positive correlation with vegetation density. However, the relationship 

between vegetation density and the MPDI tends to be inversely proportional, as indicated by the 

scatterplots of NDVI and MPDI in Fig. 2 and the dynamics of NDVI and MPDI in Fig. 11. 

Nevertheless, this relationship alone cannot always accurately determine vegetation density from 

MPDI. When vegetation primarily consists of horizontally oriented leaves, the MPDI can increase 

the scattering albedo in horizontally polarized waves, even in high vegetation density. As a result, 

the MPDI can increase independently from vegetation density or, for the same vegetation density, 

MPDI can vary for different vegetation types. Consequently, using only MPDI or NDVI alone 
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cannot effectively improve the 𝜏-ω model in a realistic manner. To accurately reflect vegetation 

density and vegetation structure in the 𝜏-ω model, it is necessary to incorporate both NDVI and 

MPDI, as shown in Fig .3. 

 

5.6 Heterogeneity issue 

     SM is frequently overestimated by SCA. This problem has been partially addressed by using 

a dynamic scattering albedo that is parameterized with VOD (Park et al., 2020). However, SM is 

still overestimated in low Tb ranges (Tb < 230K) where they are classified as inhomogeneous 

vegetation, such as mixed forests and mixed crops, as Figure 12 shows. This can be attributed to 

the fact that the heterogeneity of the landscape leads to a clear distinction between TBv and TBh. 

  

Fig. 12 SMAP soil moisture error in low Tb (<230K) with NDVI, MPDI and IGBP information 

This study first presents the integration of NDVI (vegetation health state) and MPDI (vegetation 

structural state) into the existing 𝜏-ω model showing the improvement in SM estimation with 

higher correlation and lower ubRMSE.  

 

5.7 cIGBP simplification issue 

 

5.7.1 Missing height variability in cIGBP   

     Based on the inverse relationship between cIGBP and h shown in Eq. (3), the high average h for 

forests compared to grasslands or crops should lead to a lower value of cIGBP. As shown in Table 

2, the cIGBP values of forests found with the least error tend to be lower than those of crops and 
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grasses. Although cIGBP is a complex number that is determined by four parameters (b, ρE, c, and 

h), this study assumed that all these parameters are mainly determined by vegetation type 

according to the IGBP classification, rather than identifying each component. This approach is 

practical, but it still contains some uncertainty due to its physical simplification. In a future study, 

further improvement can be expected by specifying those parameters in each SMAP grid.  

 

5.7.2 Missing b parameter variability in cIGBP 

     Similar to the mixed forest, the mixed crop sites suffer the issue in the SM estimated by the 

proposed 𝜏-ω model. For example, by the plant classification by C3 or C4, the b parameter, 

compounded in cIGBP in our study, has been specified in more detail in various studies (e.g., 

Jackson, 1993; Jackson & Schmugge, 1991; Saleh et al., 2007; Wigneron et al., 2003). A further 

differentiation of cIGBP similar to existing global information of b parameter provided by SMAPL3 

products might be a possible option to tackle this issue. Another way to solve this challenge is to 

apply various studies about the allometry of vegetation (Asner et al., 2013; Asner & Mascaro, 

2014; Chambers et al., 2001; Chave et al., 2005, 2014). These studies are helpful to consider a 

more specific ratio between height and area for different types of crops within the allometry 

parameters. This kind of further sub-classification within the IGBP cropland classification is 

necessary. 

     Another potential reason is the spatial heterogeneity assumption within one SMAP grid 

granule. If a SMAP granule, classified as cropland, contains several mixed surface types, for 

example 34% cropland, 33% forest and 33% grass, one single allometry parameter (used for 

cropland) might cause a large uncertainty for the 𝜏-ω unified model. Hence, in the next research 

study, it is necessary to focus on the classification issue (for example C3/C4) as well as on the 

heterogeneity issue and how these problems can be solved. 

 

5.8 Roughness model issue 

     The error of SMAP SCA is also highly affected by the uncertainty of the soil roughness 

parameters. However, if the SM estimated by SCA becomes uncertain due to the roughness model, 

it should explain why this error happens especially in dense vegetation and should demonstrate 

this can be really the solution to relate to the SM overestimation issue of SCA. Arguably, soil 

roughness in more vegetated regions will be higher than less vegetated or bare soil. In forest, due 
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to the litter falls and surface-emerging root system, the soil tends to be rougher than for non or 

less vegetated areas (Shroder, 2013). Furthermore, because of the litter, moss, and other top-of-

surface layers, the air-soil interface is not cleanly defined, affecting the roughness 

parameterization and likely increasing the effective value of h. Therefore, the real soil roughness 

is likely higher than assumed in SCA. In this case, the RTM simulation of microwave Tb will be 

higher. However, this consideration will exacerbate the SM overestimation rather than mitigating 

because of the necessity of wetter soil conditions to simulate Tb close to the measured Tb. The 

SM overestimation does not originate from the unrealistic roughness parameter model and the 

improvement of the roughness model cannot be a solution for the SCA issue presented in this 

study. Therefore, this study applied the same roughness parameters used in the SCA approach to 

demonstrate the improvement by the proposed 𝜏-ω model. 

5.9 Dielectric mixing model issue 

     Another way to improve the SM retrieval accuracy is within the soil part looking into the 

dielectric mixing model. The dielectric mixing model shown in Fig. 2 is important for the accurate 

estimation of SM from microwave Tb because it simulates the effective dielectric constant of wet 

soil (mixture of minerals and water). One of the main uncertainties in this simulation is the ratio 

of free to bound water in the soil. Because bound water has a much lower dielectric constant 

compared to free water (80), a dielectric mixing model not considering the bound water increase 

due to the soil organic matter will underestimate the microwave Tb (Park et al., 2017). To simulate 

microwave Tb more accurately in this study, a more recent dielectric mixing model was applied, 

considering organic matter (Park et al., 2019; Park et al., 2021). Currently, the dielectric mixing 

model is the function of soil organic carbon such as wilting point, saturation point, and the bound 

water dielectric constant and the dielectric constant of dried organic carbon. This model is 

validated by comparison with in situ SM and in situ soil organic carbon. Then, this model was 

applied with input of a soil organic matter map (from SoilGrid250m, Hengl et al., 2014, 2017).  

This map can have errors for some land use or regions in the world. In the future, this needs to be 

investigated as well. 

 

5.10 MPDI ambiguity 

     MPDI is not solely influenced by vegetation but can also be influenced by other environmental 

factors like soil roughness, moisture (Chen et al., 2018), or snow. Therefore, relying solely on the 
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𝜏-ω model with MPDI can introduce uncertainty when the vegetation effect is minimal compared 

to soil effects. To address this, it is first crucial to precisely discern whether the measured MPDI 

was determined by the emission signal of the contributions of soil and vegetation. The strong 

correlation of SM with MPDI presented in Chen et al., 2018 could have been originated from the 

strong correlation between vegetation and SM, in which case the MPDI is correlated with the 

polarizing effects of the vegetation rather than those of SM. After this investigation, soil and 

vegetation contributions can be incorporated into the dielectric mixing model and roughness 

model. While in-depth ground surveys and frequency-specific analyses could potentially resolve 

this ambiguity, such approaches are beyond the scope of our current research. However, it is 

important to note that in dense forests, MPDI significantly reduces uncertainty, as demonstrated 

in our study. 

 

5.11 Application to DCA 

     In a future study, the application to the current DCA will be pursued. In the DCA approach, 

NDVI input is not necessary. Therefore, to apply the method to the current DCA, the TB will be 

simulated close to the observed SMAP Tb with the optimal VOD (not calculated with NDVI) 

searched with ω changed by the VOD and the additional input of MPDI. 

 

5.12 Application to level 4 product 

     The observation operator with the improved 𝜏-ω can be used with better accuracy for data 

assimilation products such as SMAPL4. The improvement in the accuracy of SMAPL4 owing to 

the new 𝜏-ω model with MPDI input might be interesting to see. When such satellite soil moisture 

is used for model validation (Yuan & Quiring, 2017) such as CMIP5, the performance of the 

model is evaluated incorrectly, and when used for data assimilation of the estimated soil moisture 

rather than brightness temperature from satellite (Nambiar et al., 2020), the improvement effect 

of model prediction by initialization on soil moisture cannot be anticipated. Furthermore, soil 

moisture extremes present during, or preceding climate extremes associated with droughts and 

floods cannot be adequately detected over these regions. 

 

6. Summary 
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     Even microwaves with long wavelengths capability cannot accurately estimate soil moisture 

(SM) from satellites over some agricultural and forested areas due to dense vegetation (Yarri et 

al. 2019). But this study started with the hypothesis that the limitation of SM estimation from 

dense vegetation is not the thick optical opacity of the vegetation, but the vegetation scattering 

albedo improperly considered in the RTM severely affected especially in dense vegetation.  In 

this study, the SM estimation (Park et al., 2020) is more accurate than the constant ω approach 

(SCA and DCA) but still overestimated regardless of applying the NDVI-based varying ω in the 

SM retrieval. The hypothesis is that the missing polarization information for vegetation structural 

property is the main uncertainty in the NDVI-based-supported, time-dynamic 𝜏-ω model. The 

method presented here derives a fraction factor from the microwave polarization difference index 

(MPDI) to adjust the NDVI-based 𝜏 and ω. The results show that the modified retrieval provides 

more accurate estimates of SM.  

     In most of the studies, the SM products from dense forest areas have been excluded in most of 

the validation studies (Fan et al., 2020; Li et al., 2022; Ma et al., 2023). However, based on the 

proposed microwave RTMs, extreme hydrological events such as floods and droughts in densely 

vegetated areas can be adequately detected or monitored. Furthermore, owing to the proposed 

approach, various studies using SMAP SM products as well as vegetation optical depth over dense 

vegetation areas (Chaparro et al., 2022; Zwieback et al., 2019), downscaling (Das et al., 2018; 

Mishra et al., 2018), machine learning (Lee et al., 2022) and SM monitoring study (Mladenova et 

al., 2019) will be able to be more extensively performed. 
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Highlights (for review) 
 

- Optical depth increases with high NDVI and low MPDI. 
- Scattering albedo increases with high NDVI and high MPDI. 
- Increasing scattering albedo decreases brightness temperature in forward simulation. 
- Decreased brightness temperature in simulation resolved overestimation of SMAP SM. 
- L-band (1.4 GHz) radiometer measurements can assess forest soil moisture (SM). 
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