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Abstract

Efficiency and profitability are the main drivers of globalization and have led to long and complex supply chains. 
Recent disturbances such as COVID-19 or the Suez Canal obstruction caused severe supply disruptions and thereby 
unveiled the vulnerability of global trade. Resilient supply chains are characterized by the capacity to absorb, adapt 
to, and restore after disruptions. Building upon the established concept of the ‘resilience curve’, this article explores 
the interplay between resilience capacities, metrics, and actions in the state-of-the-art literature. We first analyze 
and harmonize the terminology used to describe capacities as well as metrics for quantifying resilience. This results 
in a set of 17 resilience metrics that describe all characteristics of the resilience curve and can be used as a tool to 
assess the resilience of a supply chain. Subsequently, we propose how these metrics can be applied to quantify the 
effect of resilience actions. Finally, we analyze which actions are proposed in the literature and classify those actions 
according to their relation to traditional supply chain planning tasks. Practitioners such as supply chain decision-
makers can implement these actions to strengthen the absorptive, adaptive, and restorative capacities and are 
provided with mathematical formulations to quantify the strengthening effect of actions. Academic research can, 
inter alia, integrate the metrics into multi-criteria optimization models for decision-making and explore the 
interplay between economic efficiency, environmental sustainability, and resilience.
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1 Introduction

Supply chains provide products and services to customers and society, and to be competitive, the product or service 
must be provided cost-efficiently and fast. Companies thus strive to increase their economic performance by 
increasing revenues (e.g., expansion of product variety), reducing costs (e.g., reduction of the number of suppliers, 
just-in-time production), and reducing assets (e.g., outsourcing of less profitable divisions), which has led to long 
and complex global supply chains (Tang, 2006). However, economic efficiency under normal circumstances can 
come with high costs and even lead to uncompetitive supply chains in case of unexpected disruptions and changing 
market environments (Lee, 2004). In light of pandemics, politically unstable regions, vulnerable trade routes, and 
consequences of climate change, the topic of supply chain disruptions is more discussed than in previous decades. 
For example, the COVID-19 pandemic demonstrated how shortages due to local production stops can propagate 
through highly specialized, efficient, and global supply chains, leading to disrupted systems and networks (Pujawan 
& Bah, 2022). Similarly, the obstruction of the Suez Canal by the Ever Given in March 2021 blocked 12% of the daily 
global trade for six days and caused a total economic loss of between $6 and $10 billion, illustrating the vulnerability 
of global supply chains (Russon, 2021). 

Those two prominent examples demonstrate that a wide variety of causes can compromise the performance of a 
supply chain. Bruneau et al. (2003) initially presented a conceptual framework for studying a system’s resilience by 
mapping a performance degradation after a disruption over time, which later resulted in the so-called ‘resilience 
curve’. Resilience metrics formally describe the curve and are thereby an indicator for the resilience of a system 
that faces a disruption (Poulin & Kane, 2021). How good or bad a supply chain copes with a disruption depends on 
its resilience capacities, i.e., its capabilities to absorb the disturbance, adapt to the changed conditions, or restore 
the status quo ante (S. Hosseini et al., 2019). Resilience actions are precautionary, anticipatory steps that decision-
makers can proactively take to strengthen the absorptive (e.g., physical protection of plant), adaptive (e.g., 
rerouting), and restorative (e.g., repair team) capacities and thereby to improve the resilience metrics (Carvalho et 
al., 2012; S. Hosseini et al., 2019; Sun et al., 2022).

Several literature reviews on supply chain resilience (SCR) have investigated definitions, quantification methods, 
and resilience actions. Among existing definitions of SCR, there is little consensus regarding terminologies and the 
various aspects that ‘resilience’ may comprise (Y. Han et al., 2020; Hohenstein et al., 2015; Kamalahmadi & Parast, 
2016; Poulin & Kane, 2021; Ribeiro & Barbosa-Póvoa, 2018). To fill this gap, some reviews have synthesized existing 
definitions (e.g., Kamalahmadi & Parast, 2016) or proposed frameworks to analyze existing and standardize new 
definitions (e.g., Ribeiro & Barbosa-Póvoa, 2018).

Other reviews have focused on existing quantitative SCR assessment methods and their relation to qualitative, 
theoretical resilience concepts. Han et al. (2020) synthesized the literature on performance metrics of resilience, 
identified readiness, response, and recovery as the three main resilience capacities, and presented a framework to 
link capacities to metrics. Hosseini et al. (2019) reviewed operations research (OR) models incorporating resilience 
metrics and categorized actions (i.e., proactive or reactive decisions) to increase SCR according to the absorptive, 
adaptive, and restorative capacity. Both studies identified a lack of resilience metrics that are developed based on 
capacities (Y. Han et al., 2020; S. Hosseini et al., 2019). Ribeiro & Barbosa-Póvoa (2018) reviewed quantitative SCR 
models and concluded that many studies examine drivers of resilience (e.g., connectivity of edges within a network, 
or robustness of a supply chain) without quantifying resilience per se. Similarly, Sharkey et al. (2021) investigated 
the relationship between network optimization and resilience theory in articles on physical or cyber-physical 
systems by classifying networks according to four resilience aspects (robustness, rebound, adaptability, and 
extensibility). They found that most models focus on the optimization of system robustness and rebound, while the 
aspects of adaptability and extensibility are rarely represented. As a first attempt to close the gap between 
quantitative approaches and concepts of resilience theory, Poulin & Kane (2021) addressed previous findings on 
heterogeneous metrics and terminologies. They introduced a standardized taxonomy and categorized existing 
metrics according to the characteristics of the resilience curve they describe (Poulin & Kane, 2021).

Other reviews have focused on quantitative methods that aim to increase SCR by actions. Hohenstein et al. (2015) 
and Behzadi et al. (2020) analyzed existing quantitative methods and categorized actions separately, and Snyder et 



al. (2016) categorized methods from OR and management science according to their aim (e.g., assessment of 
disruption effects on supply chains, modeling of decisions on sourcing strategy) and found that most models 
consider only a single resilience action.

Although the existing reviews contribute to a better understanding of existing SCR definitions and the interrelations 
between resilience capacities and resilience metrics, as well as between resilience actions and resilience metrics, 
the following research gaps still exist:

Gap 1: The terminology for resilience capacities is heterogeneous and needs clarification and consolidation. In 
contrast to existing reviews, we aim to provide an overview of various existing terms and analyze which of the 
aforementioned capacities established in resilience theory (i.e., absorptive, adaptive, restorative capacity) is 
addressed.

Gap 2: The relation between the concept of the resilience curve, resilience capacities, and existing quantitative 
metrics needs to be analyzed. To extend the work of Poulin & Kane (2021), we use their proposed taxonomy to 
reformulate the heterogeneous mathematical formulation of the various metrics employed in the literature, locate 
them along the resilience curve, and analyze the differences in the mathematical formulation. Finally, we propose 
a set of metrics with a unified terminology and synthesized mathematical formulations, with which all 
characteristics of the resilience curve can be described quantitatively. In addition, we integrate the resilience 
capacities into the resilience curve to draw the relationship between resilience capacities, resilience metrics, and 
the resilience curve.

Gap 3: The benefit of resilience actions needs to be quantifiable (Behzadi et al., 2020). We conceptually present 
how the set of metrics (cf. gap 2) can be used to quantify the positive effect of resilience actions on each 
characteristic of the resilience curve.

Gap 4: The relation between resilience actions, traditional supply chain planning tasks, and their effect on resilience 
is underrepresented in SCR literature. Sharkey et al. (2021) state that the contribution of resilience actions to the 
improvement of the overall resilience of a system is insufficiently investigated. Studies have already classified 
existing resilience actions according to their type (e.g., Hohenstein et al., 2015), time-horizon (e.g., Ribeiro & 
Barbosa-Póvoa, 2018), or which capacities they strengthen (e.g., S. Hosseini et al., 2019). However, understanding 
the interplay between traditional supply chain planning tasks, resilience actions, and the capacities strengthened 
by these actions is essential for estimating the effect of planning decisions on SCR. Our work categorizes identified 
resilience actions according to their time-horizon and type of planning task and draws the link to the capacities that 
are strengthened. Against this background, we investigate the following research questions:

❖ RQ1: Which terminology does resilience literature use to describe resilience capacities (Gap 1)?
❖ RQ2: Which general mathematical formulations of resilience metrics can be derived from literature to describe 

the resilience curve and to assess the resilience capacities (Gap 2)? How can the effect of resilience actions be 
quantified with these metrics (Gap 3)?

❖ RQ3: Which resilience actions for strengthening the SCR are proposed in the literature, and how can they be 
classified (Gap 4)?

To answer RQ1 and RQ2, we review articles on SCR as well as articles on systems and networks other than supply 
chains. This is attributed to the rapid development of the field of resilience research, which is why including systems 
and networks ensures that the state of the art of system resilience theory and resilience quantification is captured. 
Finally, RQ3 is answered based on the reviewed supply chain literature specifically.

This work adds to the existing literature by investigating the relations between resilience capacities, resilience 
metrics, and resilience actions. It further contributes to a standardized terminology and, consequently, a common 
qualitative and quantitative understanding of resilience in the supply chain context based on the concept of the 
resilience curve. To the best of our knowledge, our work is the first that derives a literature-based set of generalized 
metrics for assessing the benefit of resilience actions on each characteristic of the resilience curve. This set is 
proposed as a basis for decision-making to strengthen the resilience of supply chains. Section 2 presents the method 



to identify, review, and analyze the relevant literature. Section 3 answers the research questions: Subsection 3.1 
analyzes the existing types of performance, i.e., the benchmark value against which the resilience of a system is 
measured. Subsection 3.2 analyzes how resilience capacities are understood in the literature and which terms are 
used. Subsection 3.3 analyzes existing metrics, their relation to the resilience curve and the capacities, and how 
they can be used to assess resilience actions. In subsection 3.4, the resilience actions proposed in the supply chain 
literature are classified into an extended version of the traditional supply chain planning matrix by Fleischmann et 
al. (2008). Finally, section 4 discusses the limitations of our work and provides an outlook on how our findings can 
be used by both academia for future research and supply chain decision-makers. 

2 Method

Figure 1 visualizes the research procedure to identify resilience capacities, metrics, and actions from existing 
literature. Since we focus on articles that explicitly provide a resilience metric, keywords referring to metrics and 
resilience are included in a title search. Many quantitative SCR articles have developed optimization models 
containing metrics as objective functions or constraints to design or improve resilient systems. Consequently, the 
title search also includes two keywords referring to optimization to cover these articles in our analysis. Furthermore, 
the applied search string is tailored to detect metrics in the context of systems and networks, and supply chains in 
particular. Since existing research on resilience theory mainly focuses on systems, with supply chains being one 
prominent example (S. Hosseini et al., 2016; Poulin & Kane, 2021; Quitana et al., 2020), we extend the search to 
the literature on resilient systems in general, aiming to transfer insights (e.g., metrics) to supply chains specifically. 
The terms system, network, supply network, and supply chain are therefore searched in title, abstract, and 
keywords. The terms capacity and actions are intentionally not included in the search string since existing literature 
may refer to these concepts with a plethora of different terms. The search for peer-reviewed articles was conducted 
in August 2023 in the ‘Web of Science’ database, which was chosen due to its multidisciplinary scope and frequent 
use within quantitative resilience reviews. We are aware that the applied search string might not identify all articles 
on resilience optimization models that might be applied in individual OR case studies. However, the search string 
adequately covers our primary goal to include a broad set of existing metrics that are sufficient to quantify all 
resilience curve characteristics and the effect of resilience actions. The application of a broader search string, 
including synonymous of resilience (e.g., disruption or risk) or the keywords metric or optimization in the topic 
search, would lead to an unmanageable number of results.

In total, 1653 articles were identified and subsequently screened based on their title, abstract, and keywords. In 
this step, 1159 articles were excluded when they (1) focus on psychology, livelihood, or human, animal, social, or 
ecological systems, (2) do not present resilience metrics or a resilience objective function, or (3) cannot be linked 
to the resilience curve. Consequently, 494 articles were identified as eligible for the full-text analysis as they present 
a resilience metric in the context of supply chains, systems, or networks and can be linked to the resilience curve 
or resilience capacities.

After the full-text analysis, 323 articles were excluded when (1) the proposed resilience metric cannot be expressed 
quantitatively, (2) the resilience metric cannot be linked with the resilience curve, (3) the mathematical formulation 
of the resilience metric is missing, or (4) the article presents a review of resilience metrics, resulting in 171 relevant 
articles. Lastly, we conducted a backward search with (previously excluded) SCR reviews and the identified SCR 
articles, which yielded 49 additional articles. In total, 220 relevant articles (see Appendix A) were analyzed in depth. 
If possible, three main pieces of information were extracted from these articles: (1) the terminology applied to 
describe resilience capacities, (2) the resilience metric and its mathematical formulation, and (3) the resilience 
actions proposed to strengthen the resilience capacities of supply chains.

Section 3.2 assigns the identified terms to describe resilience aspects to the corresponding capacities. Section 3.3 
analyzes and consolidates the resilience metrics. First, we identify the mathematical formulations of 395 metrics in 
the investigated literature. Second, these metrics are reformulated using the taxonomy of Poulin & Kane (2021) to 
express the mathematical formulations in a standardized language (e.g., 𝑝(𝑡) is the performance at any time 𝑡). 
Third, the standardized metrics are mapped to the characteristics of the resilience curve they describe. Fourth, we 
analyze the variants of the mathematical formulations for each characteristic and ultimately synthesize them into 



17 unified metrics. Finally, in section 3.4, the identified resilience actions are assigned to existing supply chain 
planning tasks and categorized according to the planning horizon and the resilience capacity that is strengthened. 
All identified actions are located in an extended version of the traditional supply chain planning matrix introduced 
by Fleischmann et al. (2008).

Figure 1: Literature search and review methodology

3 Results

Section 3 analyzes the identified terminologies for capacities, metrics, and actions. It discusses different types of 
system performances (section 3.1), analyzes and harmonizes terms used to describe resilience capacities and maps 
them to the resilience curve (section 3.2), compiles a set of 17 metrics to quantify all characteristics of the resilience 
curve and the benefit of resilience actions (section 3.3), and reviews resilience actions and classifies them into an 
extended supply chain planning matrix (section 3.4).

3.1 Types of performance

A wide variety of causes can disrupt the performance of supply chains. Observing performance over time allows for 
illustrating the resilience curve of disrupted systems, which builds the foundation for resilience considerations in 
various studies. Since there is no unambiguous measure of a system’s performance, this section examines how 
‘performance’ is interpreted in the literature: It either refers to the productivity of a system (economic performance 
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𝑝𝑒(𝑡), physical output 𝑝𝑜(𝑡)), to the quality (𝑝𝑞(𝑡)), or to availability criteria (availability/number of components 𝑝𝑛
(𝑡)) (Poulin & Kane, 2021).

The majority (174 of 220) of the reviewed articles present resilience metrics based on output performance. In the 
context of supply chains specifically, this can refer to the percentage of fulfilled demand (Ojha et al., 2018; Ribeiro 
& Barbosa-Póvoa, 2022; Sawik, 2017; Schmitt & Singh, 2012; Zavala et al., 2019), the number of products shipped 
from the manufacturer to the customer (Fattahi et al., 2017; Rajesh, 2016), the number of products not delivered 
from supplier to the manufacturer (Torabi et al., 2015), or the production capacity (Vugrin et al., 2011). Most of the 
remaining studies refer to the output performance in terms of the loss in system functionality (e.g., Francis & 
Bekera, 2014; Ghosh & De, 2022; Henry & Ramirez-Marquez, 2012; Sun et al., 2022). Only 52 of 220 studies present 
resilience metrics based on economic, quality, or availability criteria. Economic criteria determine the system’s 
performance in 30 studies, especially in the context of SCR. Here, most of the presented metrics are based on the 
increase in costs associated with a disruption and/or recovery (e.g., Anderson et al., 2018; Arab et al., 2016; Belhadi 
et al., 2021; Carvalho et al., 2012; Fattahi et al., 2020; Hishamuddin et al., 2013; Maheshwari et al., 2017; Mari et 
al., 2014; Shahbazi et al., 2021; Smith et al., 2020; Vugrin et al., 2011; H. Zhang et al., 2018, 2019), or to the overall 
profit or lost profit (e.g., Bao et al., 2019; Behzadi et al., 2020; Shang et al., 2022; W. J. Tan et al., 2020). Ribeiro & 
Barbosa-Póvoa (2022) propose the cash flow-based expected net present value as part of their resilience metric. 
16 studies describe the performance through quality parameters 𝑝𝑞(𝑡) such as the lead time (Carvalho et al., 2012; 
Spiegler et al., 2012), the ratio of products delivered on-date, the ratio of shipments arriving with no damage 
(Rajesh, 2016), the reliability of infrastructure (Aghababaei et al., 2021; Bruneau et al., 2003) or individual 
performance indices (e.g., Y. Bai et al., 2022; Zarghami & Zwikael, 2022). Ten studies refer to the performance based 
on the availability of components 𝑝𝑛(𝑡) by evaluating the number of failed edges or nodes in power systems 
(Ouyang et al., 2012; Panteli et al., 2017; Yarveisy et al., 2020; H. Zhang et al., 2018), the number of employed 
workers (Di Tommaso et al., 2023) or the number of facilities affected by a stockout within a supply chain (Rajesh, 
2016).

3.2 Resilience capacities

How a system maintains its performance in case of a disruption depends on the system’s resilience capacities. Most 
conceptual resilience literature differentiates between absorptive, adaptive, and restorative capacity (Biringer et 
al., 2013; S. Hosseini et al., 2019; Vugrin et al., 2011), with some literature separately including a withstanding 
capacity (Ouyang et al., 2012; Shin et al., 2018; Umunnakwe et al., 2021). Absorptive capacity is the extent of a 
system’s ability to resist or absorb external impacts and refers to the system’s vulnerability (Biringer et al., 2013; 
Vugrin et al., 2011). Adaptive capacity is a system’s ability to reorganize itself to offset disruptions (Biringer et al., 
2013; Vugrin et al., 2011), and restorative capacity describes a system’s repair efficiency and effectiveness (Biringer 
et al., 2013; Vugrin et al., 2011); both refer to a system’s recoverability. In this chapter, we investigate the terms 
used in literature to refer to the characteristic of the resilience curve that is addressed by a metric. Consequently, 
the evaluated terms are assigned to the related resilience capacity. Our procedure aims to categorize 
heterogeneous terminology on resilience capacities. We thereby contribute to a better understanding of the 
relation between resilience metrics and absorptive, adaptive, and restorative capacity, as pointed out by Y. Han et 
al. (2020). In some works, it is noticeable that the terms capacity and capability have been used interchangeably, 
with a majority of studies using the term capacity. This work only uses capacity but understands the two terms as 
synonyms. In total, 248 terms (81 unique terms) relating to the absorptive, adaptive, or restorative capacity were 
identified in the literature and are analyzed in detail in the following (cf. Table 1).

95 of the 220 investigated studies refer to the absorptive capacity. Absorptive capacity has the highest impact on a 
system’s performance from the beginning of the disruptive event until the performance is compromised the most 
(cf. Figure 2). The term ‘absorptive capacity’ itself has been used by ten studies (Aghabegloo et al., 2023; Cheng et 
al., 2020; Francis & Bekera, 2014; Jinyi et al., 2020; Ouyang et al., 2012; Vugrin et al., 2011; Y. Yang et al., 2018; 
Yarveisy et al., 2020; Zhao et al., 2016, 2017). Eleven studies use the term ‘robustness' when referring to absorptive 
capacity (Ahmadi et al., 2022; Amirioun et al., 2019; Beyza & Yusta, 2021; Cimellaro et al., 2010; Dong et al., 2022; 
Fang & Zio, 2019; Goldbeck et al., 2019; Y. Li & Zobel, 2020; Reed et al., 2009; Tao et al., 2022; Yao et al., 2023; Z. 
Zhang et al., 2023). For example, Fang & Zio (2019) propose a resilience metric to quantify the robustness of a 



system as the functionality right after the disruption. Nine studies use the term ‘vulnerability’ (Alguacil et al., 2014; 
Amirioun et al., 2019; Fang et al., 2015; Ghorbani-Renani et al., 2020; Kim & Yeo, 2016; Mari et al., 2014; Niu et al., 
2023; Ojha et al., 2018; Z. Zhang et al., 2023) to describe resilience metrics which e.g. assess the event impact in 
terms of the immediate performance decline (Amirioun et al., 2019). Six studies use the term ‘absorption’ (Najarian 
& Lim, 2019; Roach et al., 2018; Tran et al., 2017; Valenzuela et al., 2018; Veit et al., 2023) for metrics that evaluate, 
e.g., how well the performance of a system can be retained during a disruption (Najarian & Lim, 2019). Five studies 
refer to ‘responsiveness’ to describe the immediate reaction to a disruption (Ahmadian et al., 2020; Ayala-Cabrera 
et al., 2019; Rajesh, 2016; Schmitt & Singh, 2012). Three studies use the term ‘resistance’, which is used similarly 
to ‘robustness’ (Amirioun et al., 2019; H. Li et al., 2023; H. Zhang et al., 2018). Only three studies use the term 
‘absorptive capability’ (Nan et al., 2016; Nan & Sansavini, 2017; X. Wang et al., 2022), underlining the dominance 
of the term ‘capacity’ in quantitative resilience literature. However, some works use terms like ‘recovery speed’ (Y. 
Li & Zobel, 2020; Z. Liu & Wang, 2021; Schmitt & Singh, 2012) or ‘rapidity’ (Huang & Pang, 2014; Ren et al., 2017; X. 
Wang et al., 2022) which do not explicitly refer to absorptive capacity. Those works aim at quantifying resilience on 
an aggregated level without differentiation between resilience capacities. In this case, we separated the applied 
metrics into the components that describe the characteristics of the resilience curve that refer to absorptive 
capacity (see 3.3). For example, the duration of performance degradation from the start of disruption to the 
minimum performance describes the absorptive capacity of the system as part of a metric that quantifies the total 
duration of disruption (e.g., Ren et al., 2017). The remaining identified terms are closely related to absorptive 
capacity and either refer to the aspect of robustness (i.e., ‘redundancy and robustness’, ‘resistant capacity’, 
‘resistance ability’, ‘withstanding capacity’, ‘withstanding capability’) or absorption (i.e., ‘response’, ‘mitigation’, 
‘mitigation ability’ ‘sustainability’). 78 studies do not use a term related to the absorptive capacity, although we 
conclude that they present a corresponding metric.

The adaptive capacity and restorative capacity jointly correspond to a system’s recoverability (S. Hosseini et al., 
2019) after a shock and thus affect the performance from its lowest point to the end of recovery. The adaptive 
capacity is mentioned in eleven studies, of which the majority directly refer to the resilience curve and the 
differentiation between the three resilience capacities. The majority of studies use the term ‘adaptive capacity’ 
(Aghabegloo et al., 2023; Francis & Bekera, 2014; Gotangco et al., 2016; Vugrin et al., 2011; Yarveisy et al., 2020; 
Zhao et al., 2016, 2017). These studies aim to assess the extent to which a system can increase its performance to 
a new equilibrium as a reaction to a disruption. Alternative terms are ‘adaptive capability’ (C. Chen et al., 2021; Nan 
& Sansavini, 2017) and ‘adaptation’ (Najarian & Lim, 2019, 2020), appearing in two studies each, and ‘adaptability’ 
(Ojha et al., 2018). The term ‘redundancy’ is used by two studies to evaluate the extent of performance recovery 
by using alternative routes within a redundant road network (Aghababaei et al., 2021) or the duration until the 
redundancy of a network is used for performance recovery of a communication network (Appasani et al., 2022). 33 
studies refer with their metrics to restorative capacity. Most of them use the term ‘restoration’ (Alizadeh et al., 
2022; Arab et al., 2016; Baroud et al., 2014; Cavdaroglu et al., 2013; Fang & Sansavini, 2017b, 2019; Heath et al., 
2016; Henry & Ramirez-Marquez, 2012; Matisziw et al., 2010; Ni et al., 2018; Niu et al., 2023; Nurre et al., 2012; 
Nurre & Sharkey, 2018; Pant et al., 2014; Sang et al., 2021; Y. Tan et al., 2018, 2019; Ulusan & Ergun, 2018; Z. Yang 
& Marti, 2022), followed by the term ‘restorative capacity’ (Aghabegloo et al., 2023; Cheng et al., 2020; Ouyang et 
al., 2012; Vugrin et al., 2011; Y. Yang et al., 2018; Yarveisy et al., 2020). The majority of these studies present metrics 
to assess the extent of performance restored from disruptions by repair activities (e.g., Baroud et al., 2014; Henry 
& Ramirez-Marquez, 2012; Ouyang et al., 2012; Pant et al., 2014; Yarveisy et al., 2020). Similar terms like ‘restorative 
capability’ (Nan & Sansavini, 2017), ‘restoration ability’ (Khayatzadeh et al., 2022), and ‘restoration capability’ (C. 
Chen et al., 2021) appear in single studies. Two studies each refer to the terms ‘restoration efficiency’ to assess the 
effectiveness (Amirioun et al., 2019; H. Zhang et al., 2018) and ‘restoration economy’ to evaluate the costs (H. Zhang 
et al., 2018, 2019) of restoration.

108 studies use terminology that cannot be mapped unambiguously to one of the three capacities. The most 
common ambiguous term is ‘recovery’, appearing in 36 studies (e.g., Li et al., 2017), followed by ‘recovery ability’ 
in ten studies (Galbusera et al., 2016; Hao et al., 2023; Jinyi et al., 2020; H. Li et al., 2023; Nan et al., 2016; Podesta 
et al., 2021; W. J. Tan et al., 2020; Tao et al., 2022; J. W. Wang et al., 2010; Zhao et al., 2016) indicating that most 
of these studies do not build their resilience metrics on the theoretical concept of three distinct capacities. Instead, 
they differ in the ability of a system to absorb and recover from a disruption (e.g., Galbusera et al., 2016) without 



clearly indicating if the adaptive or restorative capacity has effected the recovery. In eight studies, the term 
‘responsiveness’ is used to describe the speed and extent of performance recovery attributable to the system’s 
restorative and adaptive capacities (Fattahi et al., 2017; Ribeiro & Barbosa-Póvoa, 2022; Schmitt & Singh, 2012; 
Watson et al., 2022; H. Zhang et al., 2018). The term ‘rapidity’ and ‘recovery rapidity’ is used in eight and four 
studies and refers to the speed (Goldbeck et al., 2019; Mao et al., 2021; Najarian & Lim, 2020; Ren et al., 2017; Q. 
Zhang et al., 2020; Zhou & Chen, 2020), the slope of the performance curve (Arjomandi-Nezhad et al., 2021; 
Cimellaro et al., 2010; Reed et al., 2009), or the ability/inability to recover within a proper time (Arjomandi-Nezhad 
et al., 2021; Bruneau et al., 2003; Fang & Zio, 2019; Huang & Pang, 2014), which could either be attributed to 
adaptive or restorative capacity. The terms ‘recovery capability’, ‘recovery capacity’, ‘recovery effort’, and 
‘recoverability’ are also used to describe metrics focusing on the extent of performance recovery and do not 
explicitly refer to adaptive or restorative capacity. 29 studies use individual terms to describe their resilience 
metrics. However, 90 studies present resilience metrics, which – according to our understanding – assess adaptive 
or restorative capacity without using any terminology besides ‘resilience’.

Table 1: Heterogeneity in the terminology in the observed literature. The table links the used terms with associated resilience capacities 
(absorptive, adaptive, and restorative; Vugrin et al., 2011). The numbers of the respective sources refer to the numbering of the reviewed 
articles as provided in Appendix A.

Term Articles

Absorptive capacity

“robustness” 11 (Ahmadi et al., 2022; Amirioun et al., 2019; Cimellaro et al., 2010; Dong et al., 2022; Fang & Zio, 2019; Goldbeck 
et al., 2019; Y. Li & Zobel, 2020; Reed et al., 2009; Tao et al., 2022; Yao et al., 2023; Z. Zhang et al., 2023)

“absorptive 
capacity” 10 (Aghabegloo et al., 2023; Cheng et al., 2020; Francis & Bekera, 2014; Jinyi et al., 2020; Ouyang et al., 2012; 

Vugrin et al., 2011; Y. Yang et al., 2018; Yarveisy et al., 2020; Zhao et al., 2016, 2017)

“vulnerability” 9 (Alguacil et al., 2014; Amirioun et al., 2019; Fang et al., 2015; Ghorbani-Renani et al., 2020; Kim & Yeo, 2016; 
Mari et al., 2014; Niu et al., 2023; Ojha et al., 2018; Z. Zhang et al., 2023)

“absorption” 6 (Najarian & Lim, 2019, 2020; Roach et al., 2018; Tran et al., 2017; Valenzuela et al., 2018; Veit et al., 2023)

“responsiveness” 4 (Ayala-Cabrera et al., 2019; Q. Han et al., 2023; Rajesh, 2016; Schmitt & Singh, 2012)

“resistance” 3 (Amirioun et al., 2019; H. Li et al., 2023; H. Zhang et al., 2018)

"absorptive 
capability” 3 (Nan et al., 2016; Nan & Sansavini, 2017; X. Wang et al., 2022)

“recovery speed” 3 (Y. Li & Zobel, 2020; Z. Liu & Wang, 2021; Schmitt & Singh, 2012)

“sustainability” 3 (Anderson et al., 2018; Cimellaro et al., 2015; C. Zhang et al., 2022)

“rapidity” 3 (Huang & Pang, 2014; Ren et al., 2017; X. Wang et al., 2022)



“redundancy”; 
“robustness” 2 (Ayyub, 2014; Didier et al., 2018)

“resistant capacity” 2 (Ouyang et al., 2012; Y. Yang et al., 2018)

“response” 2 (Ahmadian et al., 2020; Z. Zhang et al., 2023)

“mitigation” 2 (X. Liu et al., 2021; Lücker & Seifert, 2017)

“resistance ability” 2 (W. J. Tan et al., 2020; Tao et al., 2022)

“withstanding 
capacity” 2 (Fan et al., 2023; Marasco et al., 2022)

“withstanding 
capability” 2 (Kwasinski, 2016; Tofani et al., 2018)

“mitigation ability” 2 (Abdin et al., 2019; Gabrielli et al., 2022)

+ 24 other terms 1

Adaptive capacity

“adaptive capacity” 7 (Aghabegloo et al., 2023; Francis & Bekera, 2014; Gotangco et al., 2016; Vugrin et al., 2011; Yarveisy et al., 2020; 
Zhao et al., 2016, 2017)

“adaptive 
capability” 2 (C. Chen et al., 2021; Nan & Sansavini, 2017)

adaptation 2 (Najarian & Lim, 2019, 2020)

redundancy 2 (Aghababaei et al., 2021; Appasani et al., 2022)

adaptability 1 (Ojha et al., 2018)

Restorative capacity

“restoration” 20

(Alizadeh et al., 2022; Arab et al., 2016; Baroud et al., 2014; Cavdaroglu et al., 2013; Fang & Sansavini, 2017a, 
2019; Heath et al., 2016; Henry & Ramirez-Marquez, 2012; Matisziw et al., 2010; Ni et al., 2018; Niu et al., 2023; 
Nurre et al., 2012; Nurre & Sharkey, 2018; Pant et al., 2014; Sang et al., 2021; Sharkey et al., 2015; Y. Tan et al., 
2018, 2019; Ulusan & Ergun, 2018; Z. Yang & Marti, 2022)



“restorative 
capacity” 6 (Aghabegloo et al., 2023; Cheng et al., 2020; Ouyang et al., 2012; Vugrin et al., 2011; Y. Yang et al., 2018; 

Yarveisy et al., 2020)

“restoration 
efficiency” 2 (Amirioun et al., 2019; H. Zhang et al., 2018)

“restoration 
economics” 2 (H. Zhang et al., 2018, 2019)

+ 4 other terms 1

Adaptive or restorative capacity (allocation ambiguous)

“recovery” 36

(Abdelmalak et al., 2023; Ahmadi et al., 2021, 2022; Ahmadian et al., 2020; G. Bai et al., 2021; Bao et al., 2019; 
Beyza & Yusta, 2021; Burton et al., 2017; Carvalho et al., 2022; Di Tommaso et al., 2023; Dui et al., 2023; Fattahi 
et al., 2020; Hishamuddin et al., 2013; Y. Hosseini et al., 2023; Kwasinski, 2016; Kyriakidis et al., 2018; M. Li et al., 
2019; R. Li et al., 2017; X. Liu et al., 2021; Mishra et al., 2022; Munoz & Dunbar, 2015; Najarian & Lim, 2019; 
Reed et al., 2009; Roach et al., 2018; Senkel et al., 2021; Smith et al., 2020; Spiegler et al., 2012; Tofani et al., 
2021; Tran et al., 2017; Veit et al., 2023; J. Zhang et al., 2022; J. Zhang, Li, et al., 2023; J. Zhang, Ren, et al., 2023; 
M. Zhang et al., 2022; Z. Zhang et al., 2023; Zhao & You, 2019) 

"recovery ability” 10 (Galbusera et al., 2016; Hao et al., 2023; Jinyi et al., 2020; H. Li et al., 2023; Nan et al., 2016; Podesta et al., 2021; 
W. J. Tan et al., 2020; Tao et al., 2022; J. W. Wang et al., 2010; Zhao et al., 2016)

“responsiveness” 8 (Fattahi et al., 2017; Q. Han et al., 2023; Rajesh, 2016; Ribeiro & Barbosa-Póvoa, 2022; Schmitt & Singh, 2012; 
Watson et al., 2022; H. Zhang et al., 2018, 2019)

“rapidity” 8 (Bruneau et al., 2003; Cimellaro et al., 2010; Goldbeck et al., 2019; Huang & Pang, 2014; Reed et al., 2009; Ren et 
al., 2017; Q. Zhang et al., 2020; Zhou & Chen, 2020)

“recovery 
capability” 7 (Baroud et al., 2014; L. Chen & Miller-Hooks, 2012; Fang & Sansavini, 2017b; Q. Han et al., 2023; Miller-Hooks et 

al., 2012; Nan & Sansavini, 2017; X. Wang et al., 2022)

“recovery capacity” 6 (Fan et al., 2023; Marasco et al., 2022; Song et al., 2022; Yu & Baroud, 2019; Zhao et al., 2016, 2017)

“recovery rapidity” 4 (Arjomandi-Nezhad et al., 2021; Fang & Zio, 2019; Mao et al., 2021; Najarian & Lim, 2020)

“recoverability” 3 (Fang et al., 2016; Francis & Bekera, 2014; Ghorbani-Renani et al., 2020)

“recovery effort” 2 (Chan & Schofer, 2016; Das, 2020)

+ 29 other terms 1



3.3 Resilience metrics

Resilience metrics describe the resilience curve and can be used to assess a system’s capacities to absorb, adapt, or 
restore in case of a disruption. In the literature, we identify 395 metrics. As already apparent from the terminology 
used to describe these metrics (see 3.2), many studies combine different aspects of the resilience curve into one 
single metric, which we break down into its components for comparability. This procedure results in 523 metrics 
analyzed in this review (see Supporting Information B). We apply a consistent taxonomy (cf. Appendix B) on these 
metrics to reformulate the mathematical formulations for a comparative analysis. Finally, they are categorized 
according to the characteristic elements of the resilience curve they describe and to the related capacity. Thus, we 
complement and extend the set of resilience metrics introduced by Poulin & Kane (2021). The resulting set of 17 
resilience metrics describes all characteristics of the resilience curve. It represents the state of the art of quantifying 
resilience (i.e., the absorptive, adaptive, and restorative capacities) of systems and networks, specifically supply 
chains. After describing the resilience curve in Figure 2, this section analyses the 17 metrics in detail and proposes 
mathematical formulations to assess the improvement of these metrics by resilience actions.

Figure 2 displays the idealized performance of a system in case of a disruption, commonly referred to as the 
resilience curve. The performance is generically denoted with 𝑝(𝑡) and each characteristic point in time is based on 
the literature: The observation period starts at 𝑡0 (e.g., Fang & Zio, 2019; Q. Han et al., 2023; Losada et al., 2012; 
Ouyang et al., 2012; Poulin & Kane, 2021; Spiegler et al., 2012; Touzinsky et al., 2018; Veit et al., 2023), the actual 
hazard at 𝑡ℎ0 (e.g., Abdin et al., 2019; Amirioun et al., 2019; Anderson et al., 2018; Poulin & Kane, 2021; Y. Yang et 
al., 2018), and the disruption at 𝑡𝑒 (e.g., Fattahi et al., 2020; R. Li et al., 2017; Munoz & Dunbar, 2015; Vugrin et al., 
2011). The hazard then ends at 𝑡ℎ1 (Senkel et al., 2021; Y. Yang et al., 2018; H. Zhang et al., 2018), the performance 
stops to degrade at 𝑡𝑑 (e.g., Ayyub, 2014; Shen et al., 2023; Valenzuela et al., 2018; Zavala et al., 2019; J. Zhang, 
Ren, et al., 2023), the recovery starts at 𝑡𝑠 (e.g., Nan & Sansavini, 2017; Panteli et al., 2017; Poudel et al., 2020; H. 
Zhang et al., 2019) and ends at 𝑡𝑓 (e.g., Das, 2020; Marasco et al., 2022; Omer et al., 2009; Sun et al., 2022). 𝑡𝑐 marks 
the end of the observation period (e.g., Blagojević et al., 2022; Cimellaro et al., 2010; Nozhati, 2021; Tran et al., 
2017). Our work introduces the metrics absorb duration, failure ratio, cumulative absorptive performance, and 
cumulative absorptive impact in addition to the resilience metrics depth of impact, residual performance, critical 
threshold, residual capacity, failure rate, and resistive duration (defined by Poulin & Kane, 2021), which can be 
applied for assessing its absorptive capacity. We further introduce the metrics cumulative recovery performance, 
cumulative recovery impact, endure duration, and the recovery duration in addition to the recovery rate, recovery 
ratio, and restored performance (defined by Poulin & Kane, 2021), which can be used to determine adaptive and 
restorative capacity. 



Figure 2. General resilience curve with resilience metrics identified in the reviewed literature or as summarized by Poulin & Kane (2021). 
Nomenclature: 𝑝𝑐 critical threshold | 𝑡0 beginning of control interval | 𝑡ℎ0 exposure to hazard | 𝑡𝑒 initial system disruption | 𝑡𝑑 end of 
performance degradation | 𝑡𝑠 begin of system recovery | 𝑡𝑓 completion of system recovery | 𝑡ℎ1 end of exposure to hazard | 𝑡𝑐 end of 

control interval (see Appendix B)

Table 2 lists all 17 resilience metrics, separated into metrics affecting the absorptive, adaptive, and restorative 
capacity, and whether the metric is performance-, time-, rate-, or integral-based. It includes the generic formulation 
for quantifying each metric (column a). Except for three relative metrics, the remaining formulations are not 
normalized to receive absolute values. However, as identified in some studies, normalization can be useful in the 
case of comparative studies. Table 2 further recommends how these metrics can be applied to assess the positive 
effect of resilience actions (column b) compared to a system without explicit resilience considerations. Except for 
three relative metrics, the remaining formulations are not normalized to receive absolute values. However, as 
identified in some studies, normalization can be useful in the case of comparative studies. Figure 3 displays the 
performance increase resulting from improved resilience capacities by resilience actions for systems facing a 
disruption. The magnitude of the performance increase can be calculated for each metric using the calculation rule 
of Table 2, column b.

Resistive duration (metric 1a in Table 2) was identified in five studies as the duration from the beginning of the 
hazardous event, which is chosen as the start of the observation period (𝑡0 = 𝑡ℎ0) to the start of performance 
disruption (𝑡𝑒) (Amirioun et al., 2019; Anderson et al., 2018; X. Wang et al., 2022; J. Zhang et al., 2022) A single 
study proposes a normalization by the extreme event duration (𝑡ℎ0 𝑡𝑜 𝑡𝑑) as part of a resistance metric to assess 
the absorptive capacity (Kwasinski, 2016). A resilience action could lead to a delayed start of performance 
disruption, which could be quantified as the difference between resistive duration with implemented resilience 
actions and without (metric 1b). Absorb duration (2a) was defined in our study as the duration from 𝑡𝑒 to the end 
of performance degradation (𝑡𝑑) in line with five studies (Abdelmalak et al., 2023; Malek et al., 2023; Ren et al., 
2017; Roach et al., 2018; X. Wang et al., 2022). The remaining 17 studies refer to the absorb duration by assessing 
the total disruption phase from 𝑡𝑒 to 𝑡𝑓 (e.g., Losada et al., 2012; W. J. Tan et al., 2020) and thus do not differ 
between the three capacities. For these studies, we focus in our analysis on the component of the metric 
representing the absorb duration (i.e., 𝑡𝑒 to 𝑡𝑑). Six studies propose to normalize this metric, either against the 
duration of the hazardous event (Senkel et al., 2021), the observation period (Didier et al., 2018), or the disruption 
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duration (Q. Han et al., 2023; Jinyi et al., 2020; Veit et al., 2023). A resilience action could lead to, e.g., a delayed 
drop in performance, and could be quantified analogously to the resistive duration (2b).

Depth of impact (3a) was identified in 28 studies and is measured as the difference between the undisrupted 
performance (𝑝(𝑡0)) and the performance after the end of performance degradation (𝑝(𝑡𝑑)) (e.g., Ahmadian et al., 
2020; Shang et al., 2022). Eleven of these studies propose a normalization by dividing by 𝑝(𝑡0) (e.g., Amirioun et 
al., 2019; Fang et al., 2015). A resilience action mitigates the impact of the disruption on the maximum performance 
loss. The performance gap with and without adequate resilience action can quantify this benefit (3b).

The resilience metrics critical threshold and residual capacity are only provided in the framework by Poulin & Kane 
(2021). Critical threshold (4a) defines the minimum level of performance required to prevent a system collapse 
(Poulin & Kane, 2021). A resilience action could lower this threshold and thus decrease the system’s vulnerability 
(4b). Residual capacity (5a) is the distance between the critical threshold and the performance at its lowest point 𝑝
(𝑡𝑑) (Poulin & Kane, 2021). Residual performance (6a) is defined in our work according to the majority of studies 
(14 out of 25) as the distance between 𝑝(𝑡𝑑) and zero performance (e.g., Cimellaro et al., 2010; Nan & Sansavini, 
2017; Badr et al., 2023). Ten of 25 studies normalize the residual performance against 𝑝(𝑡0) (e.g., Goldbeck et al., 
2019). Both residual capacity and residual performance can be increased by lowering the critical threshold or 
reducing the depth of impact by a suited resilience action (5b, 6b). 

Failure ratio (7a) is defined in our work as the percentage of performance that, at any time 𝑡, has not degraded yet. 
This is in line with five studies (Azimian et al., 2021; Carvalho et al., 2012; Z. Liu & Wang, 2021; Rajesh, 2016; Schmitt 
& Singh, 2012), mainly from the supply chain context, which formulate this metric as the current performance 
during a disruption 𝑝(𝑡) normalized by the hypothetical undisrupted performance 𝑝(𝑡0). In contrast, three studies 
refer to the performance already degraded until time 𝑡 (Haeri et al., 2020; Hosseini-Motlagh et al., 2020; Zahiri et 
al., 2017). When this ratio is measured during the endure or recovery duration instead of the absorb duration, it is 
called the recovery ratio (14a; see below). Failure rate (8a) is defined as the slope of the performance curve, i.e., 
the ratio of the total performance loss and the absorb duration as identified in six studies (Abdelmalak et al., 2023; 
Di Tommaso et al., 2023; Nan et al., 2016; Nan & Sansavini, 2017; Panteli et al., 2017; X. Wang et al., 2022). Similar 
to the failure ratio, a higher absorptive capacity due to a resilience action could lead to a shallower slope and, thus, 
a more controlled, less severe performance degradation. The resulting improvement could be quantified as the 
difference between the respective metric with and without a resilience action (7b, 8b).

Cumulative absorptive performance is the most common metric identified for measuring absorptive capacity. It 
represents the area under the performance curve as the time integral of the system’s performance until 𝑡𝑑 (9a) as 
identified in 10 studies (e.g., Ayyub, 2014; Cheng et al., 2020; X. Liu et al., 2021; Tao et al., 2022). Another, only 
rarely employed variant is to calculate the integral between the beginning of the hazard (𝑡ℎ0) and 𝑡𝑒 (Anderson et 
al., 2018) or 𝑡𝑑 (Abdin et al., 2019) to assess the ability of a system to completely resist a disruption without 
performance loss. Most studies propose to normalize the integral of the disrupted against the undisrupted 
performance. Conversely, cumulative absorptive impact represents the time-integrated performance loss. It is 
measured as the area over the resilience curve until 𝑡𝑑 (Amirioun et al., 2019; Chan & Schofer, 2016; Nan et al., 
2016; Nan & Sansavini, 2017; Shen et al., 2023). Analogously to disruption duration as a proposed metric, 71 studies 
refer to the area above or under the resilience curve and quantify resilience by a single value comprising the 
absorptive, adaptive, and restorative capacity. Thus, these studies do not refer exclusively to the characteristics of 
the resilience curve attributed to the absorptive capacity. Their metrics capture the area under the performance 
curve either during the observation period (from 𝑡0 to 𝑡𝑐) (e.g., Cimellaro et al., 2015; Ghorbani-Renani et al., 2020; 
Kalinowski et al., 2015; Ouyang et al., 2012; Spiegler et al., 2012; Veit et al., 2023) or the disruption phase (from 𝑡𝑒 
to 𝑡𝑓) (e.g., Cubillo & Martínez-Codina, 2019; Hong et al., 2021; Panteli et al., 2017; Vugrin et al., 2011; Yao et al., 
2023). Especially studies in the optimization context often do not differentiate between resilience capacities but 
apply area-based metrics as objective functions (e.g., Nozhati, 2021) or just use them to evaluate the resilience of 
a network (e.g., Lau et al., 2018). When an implemented resilience action has a positive effect on the resilience 
curve’s trajectory (e.g., a longer resistive duration, a smaller failure rate, or a smaller depth of impact), the area 
below the performance curve increases accordingly. As illustrated in Figure 3, we propose to measure this 
cumulative absorptive improvement as the difference between the time-integrated performances with and without 



resilience actions between 𝑡0 and 𝑡𝑑 or 𝑡𝑑𝑟, depending on which of the two curves reaches the point of lowest 
performance last (9b, 10b). A selection of cases where the lowest performance is reached earlier with the resilience 
action not in place is displayed in Appendix C.

Endure duration (11a) covers the disrupted phase from 𝑡𝑑 to 𝑡𝑠, as identified in three studies (Malek et al., 2023; 
Panteli et al., 2017; Ren et al., 2017), only two studies propose a duration from the end of the hazard (𝑡ℎ1) to 𝑡𝑠 (H. 
Zhang et al., 2018, 2019). As for the absorb duration, eleven studies propose the total disruption phase (from 𝑡𝑒 to 
𝑡𝑓) as resilience metric (e.g., Losada et al., 2012; Paseka et al., 2018), which includes the endure duration without 
explicitly referring to its characteristic of the resilience curve or its relation to the capacities. A resilience action 
could shorten the endure phase by a prolonged absorb duration or by an earlier start of recovery activities (11b). 
The endure duration is followed by the recovery duration (12a) from 𝑡𝑠 to 𝑡𝑓 which is in line with 16 studies (e.g., 
Carvalho et al., 2022; Goldbeck et al., 2019; Munoz & Dunbar, 2015; Pant et al., 2014). Another 16 studies measure 
it from 𝑡𝑑 to 𝑡𝑓 or 𝑡𝑐, either assuming that recovery operations starts immediately (𝑡𝑑 = 𝑡𝑠, no endure duration) 
(e.g., Francis & Bekera, 2014; Veit et al., 2023) or do not precisely differentiate between endure and recovery 
duration (e.g., Ahmadi et al., 2021; Burton et al., 2017; Chan & Schofer, 2016). Simultaneously to the absorb and 
endure duration, the recovery duration is identified as part of the disruption duration (e.g., Badr et al., 2023; Belhadi 
et al., 2021). Like for the endure duration, a resilience action could have the effect of a shortened recovery duration 
(12b).

Restored performance (13a) and the recovery ratio (14a) describe the percentage of performance after full recovery 
relative to the undisrupted performance 𝑝(𝑡0). Restored performance is identified in 27 studies (e.g., Miller-Hooks 
et al., 2012; Podesta et al., 2021; Zavala et al., 2019) as the metric of the performance after full recovery at 𝑡𝑓. The 
metric is often used as objective function of models optimizing the SCR (e.g., Dixit et al., 2016; Ribeiro & Barbosa-
Póvoa, 2022). Few studies either quantify the extent of recovered performance (𝑝(𝑡𝑓) ― 𝑝(𝑡𝑑) or 𝑝(𝑡𝑓) ― 𝑝(𝑡𝑠)) 
.(e.g., Q. Han et al., 2023; Jinyi et al., 2020; Zavala et al., 2019; H. Zhang et al., 2018), or the deviation of 𝑝(𝑡𝑓) from 
𝑝(𝑡0) (H. Li et al., 2023; Z. Zhang et al., 2023). The recovery ratio is applied in five studies (e.g., Carvalho et al., 2012; 
Schmitt & Singh, 2012) as the metric of recovered performance relative to the undisrupted performance generically 
for any time 𝑡. As already identified for the failure ratio, three studies quantify the performance not recovered yet 
as the difference between the performance at any time 𝑝(𝑡) and 𝑝(𝑡0) (Haeri et al., 2020; Hosseini-Motlagh et al., 
2020; Zahiri et al., 2017) during the endure and recovery duration, whereas one study additionally normalized this 
expression by 𝑝(𝑡0) (Gotangco et al., 2016). Two studies quantify the actual performance restored (𝑝(𝑡) ― 𝑝(𝑡𝑠)) 
relative to the performance lost (𝑝(𝑡0) ― 𝑝(𝑡𝑠)) (Baroud et al., 2014; Henry & Ramirez-Marquez, 2012), which we 
adopted for our set of mathematical formulations (14a). The effect of a resilience action can be quantified 
analogously to the failure ratio (13b, 14b; see 7b). 

Recovery rate (15a), analogously to failure rate (8a), is defined as the slope of the performance curve during the 
recovery duration and appears in seven studies as proposed in our work (e.g., Kwasinski, 2016; Reed et al., 2009). 
A resilience action that leads to a steeper slope thus strengthens the restorative and/or adaptive capacities of the 
system (15b).

Similar to cumulative absorptive performance during the resistive and absorb duration, the most common metric 
to quantify the recoverability is cumulative recovery performance, which is identified in 106 studies. 43 of these 
studies refer to the area under the curve during the complete observation or disruption period as already discussed 
for cumulative absorptive performance and consequently do not propose metrics exclusively assessing the adaptive 
or restorative capacity. In contrast, 21 studies explicitly correspond to the area under the performance curve from 
𝑡𝑑 to 𝑡𝑐 which is adopted in our formulation (16a) (e.g., Alizadeh et al., 2022; Cavdaroglu et al., 2013; Iloglu & Albert, 
2020; Shang et al., 2022) or from 𝑡𝑑 to 𝑡𝑓 as in 26 studies (e.g., Arjomandi-Nezhad et al., 2021; Ayyub, 2014; Lei et 
al., 2019). Most of the studies propose a normalization against the area under the undisrupted performance curve. 
Eight studies subtract the performance at the end of degradation (𝑝(𝑡𝑑)) to only consider the recovered part of the 
area under the performance curve (e.g., Mishra et al., 2022; Sharkey et al., 2015). Only a few studies refer to the 
performance integral from 𝑡𝑑 to 𝑡𝑠 (e.g., Poudel et al., 2020) or from 𝑡𝑠 to 𝑡𝑓 as in ten studies (e.g., Cheng et al., 
2020). Conversely, cumulative recovery impact is – similar to cumulative absorptive impact – defined as the integral 



of the performance lost. The most common formulation is the area above the curve during disruption (from 𝑡𝑒 to 
𝑡𝑓) (e.g., Ghosh & De, 2022) or observation period (𝑡0 to 𝑡𝑐) (e.g., Huang & Pang, 2014). 13 studies (e.g., Bao et al., 
2019; Bruneau et al., 2003; Fang & Sansavini, 2019; Kyriakidis et al., 2018) measure it from 𝑡𝑑 to 𝑡𝑓, while four 
studies integrate from 𝑡𝑑 until a defined level of recovery (𝑡𝑐) (Burton et al., 2017; Munoz & Dunbar, 2015; Y. Tan 
et al., 2018, 2019) which we choose as most appropriate formula in our work (17a) to additionally consider the 
performance loss until the end of the observation period when the performance does not return to the initial state. 
Only four studies integrate from 𝑡𝑠 to 𝑡𝑓 (Goldbeck et al., 2019; Y. Hosseini et al., 2023; Nan et al., 2016; Nan & 
Sansavini, 2017). Thirteen studies propose a normalization against the undisrupted performance curve (e.g., 
Amirioun et al., 2019; Uday & Marais, 2014) or the duration of endure and/or recovery duration (e.g., Hong et al., 
2021; X. Wang et al., 2022). Two studies quantify the area above the curve from 𝑡𝑠 until any time t (e.g., G. Bai et 
al., 2021; Dui et al., 2023) following the idea of the recovery ratio. An exemplary resilience action could increase 
the overall cumulative recovery performance and reduce the cumulative recovery impact (e.g., through a shorter 
endure phase, a shorter recovery phase, a higher recovery ratio, a faster recovery rate, or a higher restored 
performance). This effect can be quantified analogously to cumulative absorptive performance as cumulative 
recovery improvement (16b, 17b; see 9b, 10b), starting at the point (𝑡𝑑 or 𝑡𝑑𝑟) at which the latter two end. Heath 
et al. (2016) propose to assess the benefit of network restoration according to the area between the resilience 
curve with and without the implementation of a resilience action as proposed in this work.

Figure 3. Application of resilience metrics to determine the effect of resilience decisions on performance. Mathematical formulations for the 
computation of the positive effect of resilience decisions can be found in Table 2, column b. Nomenclature: 𝑝𝑐𝑟 lower critical threshold | 𝑡𝑒𝑟 

delayed initial system disruption | 𝑡𝑑𝑟 delayed end of performance degradation | 𝑡𝑠𝑟 earlier begin of system recovery | 𝑡𝑓𝑟 earlier 
completion of system recovery (cf. Figure 2 and Appendix B)
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Table 2. Overview of resilience metrics, their localization along the resilience curve, their quantification (column a), and how they quantify the positive effect of resilience decisions (b).

Resilience metric Articles Capacity Type (a) Quantification (b) Positive effect of resilience decisions

(1) 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 1 absorptive time-based 𝑡𝑒 ― 𝑡0 (𝑡𝑒𝑟 ― 𝑡0) ― (𝑡𝑒 ― 𝑡0) = 𝑡𝑒𝑟 ― 𝑡𝑒

(2) 𝑎𝑏𝑠𝑜𝑟𝑏 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 8 absorptive time-based 𝑡𝑑 ― 𝑡𝑒 (𝑡𝑑𝑟 ― 𝑡𝑒𝑟) ― (𝑡𝑑 ― 𝑡𝑒)

(3) 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑖𝑚𝑝𝑎𝑐𝑡 10 absorptive performance-based 𝑝(𝑡𝑑) ― 𝑝(𝑡0) (𝑝𝑟(𝑡𝑑𝑟) ― 𝑝𝑟(𝑡0)) ― (𝑝(𝑡𝑑) ― 𝑝(𝑡0))

(4) 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 1 absorptive performance-based 𝑝𝑐 ― (𝑝𝑐𝑟 ― 𝑝𝑐)

(5) 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 1 absorptive performance-based 𝑝(𝑡𝑑) ― 𝑝𝑐 (𝑝𝑟(𝑡𝑑𝑟) ― 𝑝𝑐𝑟) ― (𝑝(𝑡𝑑) ― 𝑝𝑐)

(6) 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 11 absorptive performance-based 𝑝(𝑡𝑑) 𝑝𝑟(𝑡𝑑𝑟) ― 𝑝(𝑡𝑑)

(7) 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑖𝑜 5 absorptive performance-based
𝑝(𝑡) ― 𝑝(𝑡𝑑)

𝑝(𝑡0) ― 𝑝(𝑡𝑑)
𝑝𝑟(𝑡) ― 𝑝𝑟(𝑡𝑑𝑟)

𝑝𝑟(𝑡0) ― 𝑝𝑟(𝑡𝑑𝑟) ―
𝑝(𝑡) ― 𝑝(𝑡𝑑)

𝑝(𝑡0) ― 𝑝(𝑡𝑑)  

(8) 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 2 absorptive rate
𝑝(𝑡𝑑) ― 𝑝(𝑡𝑒)

𝑡𝑑 ― 𝑡𝑒

𝑝𝑟(𝑡𝑑𝑟) ― 𝑝𝑟(𝑡𝑒𝑟)
𝑡𝑑𝑟 ― 𝑡𝑒𝑟

―
𝑝(𝑡𝑑) ― 𝑝(𝑡𝑒)

𝑡𝑑 ― 𝑡𝑒

(9) 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 20 absorptive time integral ∫𝑡𝑑

𝑡0
𝑝(𝑡) 𝑑𝑡 ∫𝑚𝑎𝑥(𝑡𝑑,𝑡𝑑𝑟)

𝑡0
(𝑝𝑟(𝑡) ― 𝑝(𝑡)) 𝑑𝑡 

(10) 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑣𝑒 𝑖𝑚𝑝𝑎𝑐𝑡 14 absorptive time integral ∫𝑡𝑑

𝑡0
(𝑝(𝑡) ― 𝑝(𝑡0)) 𝑑𝑡 ∫𝑚𝑎𝑥(𝑡𝑑,𝑡𝑑𝑟)

𝑡0
[(𝑝𝑟(𝑡) ― 𝑝𝑟(𝑡0)) ― (𝑝(𝑡) ― 𝑝(𝑡0))] 𝑑𝑡 



(11) 𝑒𝑛𝑑𝑢𝑟𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 14 adapt. / restor. time-based 𝑡𝑠 ― 𝑡𝑑 ― ((𝑡𝑠𝑟 ― 𝑡𝑑𝑟) ― (𝑡𝑠 ― 𝑡𝑑))

(12) 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 22 adapt. / restor. time-based 𝑡𝑓 ― 𝑡𝑠 ― 𝑡𝑓𝑟 ― 𝑡𝑠𝑟 ― 𝑡𝑓 ― 𝑡𝑠  s.

(13) 𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 13 adapt. / restor. performance-based 𝑝 𝑡𝑓

𝑝(𝑡0)
𝑝𝑟 𝑡𝑓𝑟

𝑝𝑟(𝑡0) ―
𝑝 𝑡𝑓

𝑝(𝑡0)

(14) 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑖𝑜 7 adapt. / restor. performance-based
𝑝(𝑡) ― 𝑝(𝑡𝑠)

𝑝(𝑡0) ― 𝑝(𝑡𝑠)
𝑝𝑟(𝑡) ― 𝑝𝑟(𝑡𝑠𝑟)

𝑝𝑟(𝑡0) ― 𝑝𝑟(𝑡𝑠𝑟) ―
𝑝(𝑡) ― 𝑝(𝑡𝑠)

𝑝(𝑡0) ― 𝑝(𝑡𝑠)

(15) 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 5 adapt. / restor. rate 𝑝 𝑡𝑓 ― 𝑝(𝑡𝑠)
𝑡𝑓 ― 𝑡𝑠

𝑝𝑟 𝑡𝑓𝑟 ― 𝑝𝑟(𝑡𝑠𝑟)
𝑡𝑓𝑟 ― 𝑡𝑠𝑟

―
𝑝 𝑡𝑓 ― 𝑝(𝑡𝑠)

𝑡𝑓 ― 𝑡𝑠

(16) 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 32 adapt. / restor. time integral ∫𝑡𝑐

𝑡𝑑
𝑝(𝑡) 𝑑𝑡 ∫𝑡𝑐

𝑚𝑎𝑥(𝑡𝑑,𝑡𝑑𝑟)(𝑝𝑟(𝑡) ― 𝑝(𝑡)) 𝑑𝑡 

(17) 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑖𝑚𝑝𝑎𝑐𝑡 22 adapt. / restor. time integral ∫𝑡𝑐

𝑡𝑑
(𝑝(𝑡) ― 𝑝(𝑡0)) 𝑑𝑡 ∫𝑡𝑐

𝑚𝑎𝑥(𝑡𝑑,𝑡𝑑𝑟)[(𝑝𝑟(𝑡) ― 𝑝𝑟(𝑡0)) ― (𝑝(𝑡) ― 𝑝(𝑡0))] 𝑑𝑡 



3.4 Resilience actions

This section reviews the resilience actions identified in the observed literature on SCR in particular. Resilience 
actions are precautionary, anticipatory actions that decision-makers can implement proactively to strengthen the 
system’s absorptive, adaptive, and restorative capacities to cope with disruptions and improve resilience, as 
visualized in Figure 3. The observed literature does not apply a consistent terminology for resilience actions, 
wherefore different studies refer to management controls (e.g., Pettit et al., 2010), resilience or mitigation 
measures (e.g., C. Chen et al., 2021; L. Chen et al., 2020; Lücker & Seifert, 2017), and resilience or mitigation 
strategies (e.g., Carvalho et al., 2012). In quantitative models for SCR planning, the resilience actions are the ‘objects 
of decision’, i.e., it needs to be decided which set of different actions is to be implemented, at what time, and to 
what extent. The type of action varies according to the capacity to be strengthened, the planning horizon 
(strategical, tactical, operational), the potential disruption, and the industry. Actions take a central role in 
quantitative decision models (Behzadi et al., 2020; Ribeiro & Barbosa-Póvoa, 2018), which is why an overview and 
classification of identified actions is given in the following.

Figure 4 gives an overview of the analyzed systems and the type and frequency of the investigated disruptions. 
Supply chains are, with 29 studies, most frequently subject to resilience considerations, followed by electric power 
systems, communities, and production sites. Generic disruptions without further specification and meteorologically 
caused disruptions (e.g., storms, tornados, blizzards, and drought) are most frequently assumed, followed by 
geophysical-caused disruptions (e.g., earthquakes) and generic supply disruptions. A few studies assume 
anthropogenic disruptions such as cyber and terrorist attacks. While studies on multi-echelon supply chains mostly 
consider generic supply, transportation, or distribution disruptions without further description of causality, studies 
on electric power systems and communities primarily assume natural disasters (especially meteorological and 
geophysical).

Figure 4. Frequency of analyzed systems in the identified literature with the assumed type of disruptions.

The supply chain planning matrix is a model for structuring the planning tasks that underlie supply chain decision-
making (Fleischmann et al., 2008). It hierarchizes the individual decisions in supply chain management by their 
planning horizon into the strategic, tactical, and operational decision levels (Fleischmann et al., 2008). It further 
subdivides the planning tasks by the supply chain processes of procurement, production, distribution, and sales. 
Figure 5 gives an overview of all identified resilience actions classified by an extended supply chain planning matrix 
(Fleischmann et al., 2008) that additionally clusters into absorptive, adaptive, and restorative actions alongside the 
two regular dimensions. Since some resilience actions cannot be matched with the four existing SC processes, it 
introduces supporting actions as an additional process. To indicate the focus of current research, the figure further 
shows the number of studies in which a resilience action was mentioned. We identified 63 actions on the strategic 
level, 44 on the tactical level, and 16 on the operational level. While most actions are identified in the procurement, 
only a few are found for sales. 
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Very few studies classify their proposed resilience actions by resilience capacity, horizon, or process. Hosseini et al. 
(2019) are the only study to classify SCR actions by their hierarchical decision level. To address this literature gap, 
this work classifies the actions based on the context of the studies they originate from and matches them to the 
planning tasks and horizons of the original supply chain planning matrix introduced by Fleischmann et al. (2008). 

Actions associated with large investments and long-term planning horizons are classified on the strategic level, and 
most identified actions on the strategic level strengthen absorptive capacity. The strategic procurement 
strengthens absorptive capacity through supplier segregation (rejection of high-risk suppliers) and multiple sourcing 
(S. Hosseini et al., 2019). Storage planning for raw material and intermediates storage location and capacity is 
suggested by various literature as actions for increasing the absorptive capacity (Ribeiro & Barbosa-Póvoa, 2018). 
Adaptive capacity is enhanced by the identification of potential backup suppliers, by strategic cooperations with 
backup suppliers that are used in case of primary supplier disruption (S. Hosseini et al., 2019), and by sharing 
information that contributes to the recovery process with cooperating supply chain partners (Belhadi et al., 2021). 
A resilience action of strategic production planning is location planning that contributes to absorptive capacity by 
spatially distributed facilities and warehouses (Fang & Zio, 2019; Senkel et al., 2021). Production system planning 
increases absorptive capacity through resilience-oriented planning of production capacities, which mainly includes 
the planning of redundant production capacities (Ribeiro & Barbosa-Póvoa, 2018; W. J. Tan et al., 2020). Another 
action is the physical protection of assets (Vugrin et al., 2011). To strengthen adaptive capacity, backup facilities 
and technologies can be implemented, which are only activated in the event of disturbances (W. J. Tan et al., 2020). 
Strategic distribution planning increases absorptive capacity by implementing redundant transportation links 
(Ribeiro & Barbosa-Póvoa, 2018) and resilience-oriented warehouse location planning (Fattahi et al., 2017; Schmitt 
& Singh, 2012). A supporting action with a strategic character that increases absorptive capacity is the 
implementation of big data analytics for the early identification of disruptions (Rajesh, 2016). To strengthen 
adaptive capacity, financial resources for system modifications can be kept available for urgently required system 
modifications (Vugrin et al., 2011).

On tactical level, procurement strengthens the absorptive capacity through resilience-oriented inventory policies 
(Spiegler et al., 2012). Qualifying staff can prevent potentially hazardous behavior (Sun et al., 2022) and improve 
staff’s ability to analyze and interpret information on critical system components (Belhadi et al., 2021). Adaptive 
capacity is strengthened by flexibly adapting inventory policies in the event of disruptions, e.g., by placing orders 
at backup suppliers (Torabi et al., 2015). Restorative capacity is strengthened by introducing a qualified repair team 
(C. Chen et al., 2021; Sun et al., 2022; Vugrin et al., 2011). Tactical production planning increases resilience by 
outsourcing production capacities (Ribeiro & Barbosa-Póvoa, 2018) and proactive maintenance (Sun et al., 2022). 
Adaptive capacity is strengthened by backup resources such as machinery and personnel (Behzadi et al., 2020; 
Vugrin et al., 2011). Tactical distribution planning improves absorptive capacity by increasing final product 
inventories (Ojha et al., 2018) and by proactive maintenance of lifelines (Belhadi et al., 2021). Adaptive capacity is 
strengthened by keeping backup transportation modes available in case of primary mode disruptions (S. Hosseini 
et al., 2019). Reallocating final product inventories in case of disruptions increases the adaptive capacity (Fattahi et 
al., 2017; Zavala et al., 2019). Tactical sales improves adaptive capacity by prioritizing customers (Fattahi et al., 
2017). The regular monitoring of critical system components is a supporting action that increases the absorptive 
capacity (Datta et al., 2007). To strengthen the restorative capacity, resilience management can implement a 
monitoring system that detects failures and tracks down disruptions efficiently (Vugrin et al., 2011). 

On the operational decision level, no actions for improving absorptive capacity were identified. Adaptive capacity 
is determined by the actual realizable quantities of backup suppliers (Torabi et al., 2015; Zhao et al., 2017), the agile 
adaption of order management(C. Chen et al., 2021; Hishamuddin et al., 2013), and the ability to flexibly substitute 
input materials (Vugrin et al., 2011). The adaptive capacity of the production is strengthened by the efficient 
integration of backup production capacities and flexible production rescheduling (Hishamuddin et al., 2013). 
Distribution planning improves the adaptive capacity by flexible routing abilities (Carvalho et al., 2012). In sales, 
adjusting prices and flexibly adjusting the pursued service level (e.g., not serving the entire demand) simultaneously 
increase the supply chain’s adaptive capacity (S. Hosseini et al., 2019). Customer prioritization (Fattahi et al., 2017) 
and the ability to temporarily deliver a product substitute (Carvalho et al., 2022) also improve adaptive capacity. 



Torabi et al. (2015) suggest to support disrupted suppliers in their recovery efforts to ensure continuous supply, 
which we ascribe to the supporting actions that increase restorative capacity. 

Figure 5. Supply chain planning matrix (based on (Fleischmann et al., 2008) extended by absorptive, adaptive, and restorative resilience 
actions and structured by hierarchical decision-level and supply chain process. The number indicates in how many studies the respective 

measures were found (please find the full table with references in Supporting Information C).

4 Discussion and conclusion

Hardly predictable disturbances can affect the functionality of systems and impair their performance. Depending 
on how well a system can absorb, adapt to, or restore from a disruption, the performance decline and recovery will 
turn out differently. Building upon Poulin & Kane (2021), who set the basis for assessing infrastructure resilience by 
a consistent set of metrics that describe the resilience curve, our work covers the interplay between the curve, 
capacities, metrics, and actions in a supply chain context (as illustrated in the graphical abstract). First, we extract 
395 metrics from the investigated literature and second, harmonize them by the terminology of Poulin & Kane 
(2021). We then map the standardized metrics to the characteristics of the resilience curve and eventually 
synthesize them into 17 unified metrics with respective mathematical formulations (i.e., 1a-17a). This set 
represents the state of the art of quantifying resilience based on the concept of the resilience curve and the 
absorptive, adaptive, and restorative capacities of systems and networks generally and supply chains specifically. 
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Based on the identified set of metrics, we propose a set of mathematical formulations for those metrics to assess 
the effect of resilience actions (i.e., 1b-17b).

The applicability is given in science and practice: Research, for example, could apply the set of standardized 
mathematical formulations (i.e., 1a-17a) in ex-post analyses to compare, e.g., how different systems have coped in 
the face of disruption and what resilience capacities the system possessed in each case. Companies could apply the 
metrics for assessing the resilience of their supply chain by simulating hypothetical disruption scenarios to 
approximate their resilience curve and gain insights into their absorptive, adaptive, and restorative capacities. As 
an example, an OEM interested in assessing its absorptive capacity could investigate the performance (e.g., in terms 
of produced units) in the face of a real historical or simulated hypothetical disruption. The resulting curve could 
then be characterized by the metrics relating to the absorptive capacity (e.g., resistive duration, absorptive 
duration, depth of impact, failure rate) to draw conclusions on the state of resilience or to deduce if additional 
actions are required to build up resilience capacities.

Decision-makers aiming to increase resilience (of a system in general, a supply chain, or a specific process) could 
apply the metrics (i.e., 1b-17b) to compare the efficiency of different potential resilience actions in cost-benefit 
assessments. These metrics could further be integrated into optimization models to decide on the optimal 
combination of actions aiming at maximizing economic or resilience objectives. For instance, Iris & Lam (2019) 
studied the case of berth and quay crane planning in vessel loading by using the concept of recoverable robustness 
to optimally balance the absorption of uncertainties through buffers and the recoverability through efficient 
rescheduling in case of disruptions. Our concept could be applied in such assessments to quantify the benefit of 
integrated optimization approaches compared to less elaborate resilience planning approaches.

Furthermore, we classified anticipatory resilience actions identified in literature into the traditional supply chain 
planning matrix according to their time horizon, similar to Hosseini et al. (2019), and the supply chain stage. In 
addition, we identified supporting actions for strengthening resilience capacities, extending the traditional supply 
chain planning tasks. The resulting Figure 4 gives practitioners and researchers an overview of actions, organized 
by planning task, time horizon (i.e., short-term, mid-term, long-term), and affected resilience capacity.

Naturally, the conclusions drawn from our results are subject to certain limitations. While applying the proposed 
metrics works in a synthetic and academic setting, real-life cause-effect chains are often difficult to trace and 
interpret. Therefore, the applicability of practical case studies and potential adjustments needs further 
investigation. Consequently, the trajectory of the resilience curve (Figure 2) and the effect of resilience actions on 
it (Figure 3) are only illustrated exemplarily. To show the abundance of possible trajectories, Appendix C presents 
three alternative examples of how actions could affect the resilience curves and their metrics. The concept of the 
resilience curve, the proposed set of metrics, and the understanding of ‘resilience’ in our study are only one attempt 
to assess resilience in a supply chain context. Without adjustments, it is not universally applicable to other resilience 
contexts, such as urban or food system resilience. In addition, we only consider metrics that can be located along 
the resilience curve and exclude formulations that do not fit the resilience curve concept, e.g., metrics that quantify 
the volatility of performance during recovery (Tran et al., 2017). 

As illustrated in Appendix C, resilience actions do not necessarily positively impact all metrics simultaneously. For 
example, the positive effect of a shorter endure duration and an earlier start of recovery could come, in turn, with 
a decreased recovery rate (cf. Appendix C, case IV). Consequently, we advise decision-makers to select resilience 
metrics according to the supply chain process they want to improve. For instance, in critical infrastructure (e.g., 
electric grids, hospitals), the time-integrated performance may be less relevant than the ability to ensure a 
minimum performance level, for which magnitude-based metrics may be more meaningful. It also bears mentioning 
that the presented resilience metrics are interdependent, meaning that a change in one metric will automatically 
lead to a change in at least one other metric (e.g., between duration-based and integral-based metrics). Generally, 
we deem time integral-based resilience metrics like the cumulative absorptive performance preferable, as they 
convey the most information. However, they require a high level of data available to be precise and meaningful. 
Time-based (e.g., endure duration) or performance-based metrics (e.g., depth of impact) may be preferable when 



performance data is only available for certain points in time or when single characteristics of the curve are to be 
assessed.

The underlying data to describe the resilience curve can either be empirical (real-life data of disruption and 
following recovery) or be estimated based on simulated disruption scenarios and predictions of the resulting 
reactions (Poulin & Kane, 2021). While ex-post analyses can yield relevant insights on passed events, conclusions 
for future system performances are limited since disruptions can occur in a wide variety of different and hardly 
predictable ways. The decision as to which resilience actions should be implemented requires a prediction of 
disruption scenarios and an approximation of the resulting change in performance. It must be emphasized that an 
exact determination of a system’s resilience is hardly possible due to uncertainties in predicting the nature, scope, 
and timing of eventual disruptions. The preciseness of resilience considerations depends on various factors, such 
as the accuracy of prediction on how an action affects the system or whether a disruption occurs as predicted.

Building upon our findings, future research could focus on the following aspects: (1) application of the proposed 
metrics and their mathematical formulations in real case studies for a better understanding of resilience curve 
characteristics and related capacities, (2) application of the metrics to select and assess the effect of actions to 
strengthen capacities, (3) integration of the proposed metrics as resilience objectives in multi-criteria optimization 
models to weight the benefit of resilience actions against economic or environmental objectives (e.g., minimizing 
costs) or by integrating them as constraints. If research introduces new metrics, they should be categorized 
according to the presented characteristics of the resilience curve and related capacities.

The uncertainty of future disruptions remains the main challenge. Therefore, future studies could assess the effect 
of actions on the resilience curve by the proposed metrics for various scenarios weighted by their probability of 
occurrence as a measure of risk. To bring the concepts of "resilience" and "risk and uncertainty" together, future 
studies could also examine the existing literature specifically on risk and uncertainty in the context of resilience. 
The overview of SCR actions gives an idea about possible resilience-enhancing measures and how actions could be 
classified in future studies. This study’s search string was not pivotally designed to identify resilience actions, 
wherefore future research could explicitly review feasible actions to be applied to strengthen the absorptive, 
adaptive, and restorative capacities of supply chains.
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Abdelmalak 
et al.

20
23 SR electric power system meteorological x x recovery x x x

Abdin et al. 20
19 SR electric power system meteorological x mitigation ability x

Aghababaei 
et al.

20
21 SR road network geophysical x robustness; redundancy x

Aghabegloo 
et al.

20
23 SR integr. energy system generic disruption x x x absorptive capacity; adaptive capacity; 

restoration capacity x x

Ahmadi et al. 20
22 SR electric power system meteorological x x robustness; recovery; readjust ability x x x

Ahmadi et al. 20
21 SR electric power system meteorological x x recovery; readjust ability x x



Ahmadian et 
al.

20
20 SR electric power system production 

disruption x x x responsiveness; restoration; criticality x x

Alguacil et al. 20
14 SR electric power system generic disruption x vulnerability x

Alizadeh et 
al.

20
22 SR other generic disruption x restoration x

Amin et al. 20
23 SR electric power system generic disruption x - x

Amirioun et 
al.

20
19 SR electric power system meteorological x x robustness; vulnerability; resistance; 

restoration efficiency x x x

Anderson 20
18 SR electric power system meteorological x sustainability x x

Appasani et 
al.

20
22 SR electric power system generic disruption x redundancy x

Arab et al. 20
15 SR electric power system meteorological x - x

Arab et al. 20
16 SR electric power system generic disruption x restoration x

Arjomandi-
Nezhad et al.

20
21 SR electric power system meteorological x x recovery rapidity x x



Ash et al. 20
22 SCR multi-echelon SC biological x x - x

Ayala-
Cabrera et al.

20
19 SR water supply system technical x responsiveness x

Ayyub et al. 20
14 SR community generic disruption x x redundancy; robustness; resourcefulness; 

rapidity x

Azimian et al. 20
21 SR electric power system generic disruption x x - x

Badr et al. 20
23 SR integr. energy system generic disruption x x - x x x

G. Bai et al. 20
21 SR electric power system generic disruption x recovery x

Y. Bai et al. 20
22 SR integr. energy system technical x x x degradation; adaption; restoration x

Bao et al. 20
19 SR production site terrorist attack x recovery x

Baroud et al. 20
14 SR water supply system meteorological x x recovery capability; restoration x x

Behzadi et al. 20
20 SCR multi-echelon SC technical x x - x x



Belhadi et al. 20
21 SCR multi-echelon SC biological x x - x

Beyza & 
Yusta

20
21 SR electric power system generic disruption x x recovery x

Blagojevic et 
al.

20
22 SR community generic disruption x x - x

Borghei & 
Ghassemi

20
20 SR electric power system meteorological x x - x

Bruneau et 
al.

20
03 SR community geophysical x rapidity x

Burton et al. 20
17 SR community geophysical x x recovery x x x

Carvalho et 
al.

20
12 SCR multi-echelon SC supply disruption x x - x

Carvalho et 
al.

20
22 SCR multi-echelon SC

supply disruption; 
production 
disruption

x x recovery x x

Castillo et al. 20
20 SR other technical x restorability x



Cavdaroglu 20
13 SR electric power system; other generic disruption x restoration x

Chan & 
Schofer

20
16 SR rail transportation meteorological x x preparedness; recovery effort; rebound 

ability x x

Chandrasekar
an & 
Banerjee

20
16 SR other geophysical x - x

C. Chen et al. 20
21 SCR production site terrorist attack x x x

resistance capability & mitigation 
capability; adaptive capability; restoration 
capability

x

H. Chen et al. 20
17 SR port terrorist attack x redundancy; efficiency x

L. Chen & 
Miller-Hooks

20
12 SCR freight transportation meteorological x recovery ability x

Cheng et al. 20
20 SR other generic disruption x x absorptive capacity; restorative capacity x x

Cimellaro et 
al.

20
10 SR hospital geophysical x x rapidity; robustness x x x

Cimellaro et 
al.

20
15 SR integr. energy system geophysical x x sustainability x



Confrey et al. 20
20 SR electric power system meteorological x - x

Cubillo & 
Martinez-
Codina

20
19 SR water supply system meteorological x x response capacity x

Das et al. 20
20 SR road network hydrological x recovery effort x

Didier et al. 20
18 SR community generic disruption x x redundancy; robustness; resourcefulness; 

rapidity x x x

Dixit et al. 20
16 SR freight transportation meteorological x - x

Dong et al. 20
22 SR road network generic disruption x x robustness; adaption; recovery capability x

Dui et al. 20
23 SR freight transportation transport 

disruption x recovery x

Fan et al. 20
23 SR integr. energy system supply shock x x withstanding capacity; recovery capacity x x

Fang et al. 20
16 SR integr. energy system meteorological x recoverability x



Fang et al. 20
15 SR electric power system cyber attack x vulnerability x

Fang & 
Sansavini

20
19 SR electric power system generic disruption x restoration x

Fang & 
Sansavini

20
17
b

SR electric power system generic disruption x x x

Fang & 
Sansavini

20
17
a

SR electric power system cyber attack x recovery capability x

Fang & Zio 20
19 SR electric power system generic disruption x x robustness; recovery rapidity x

Fattahi et al. 20
17 SCR multi-echelon SC distribution 

disruption x responsiveness x

Fattahi et al. 20
20 SCR multi-echelon SC distribution 

disruption x recovery x

Faturechi et 
al.

20
14 SR airport generic disruption x - x

Feng et al. 20
22 SR other terrorist attack x - x



Figueroa-
Candia

20
18 SR electric power system meteorological x restoration ability x

Filippi et al. 20
19 SR other technical x x - x

Francis & 
Bekera

20
14 SR electric power system meteorological x x x absorptive capacity; adaptive capacity; 

recoverability x x

Gabrielli et al. 20
22 SCR multi-echelon SC generic disruption x x mitigation ability; recovery possibility x

Galbusera et 
al.

20
16 SR other generic disruption x x recovery ability x

Garifi et al. 20
22 SR electric power system meteorological x x - x

Gerges et al. 20
23 SR community generic disruption x x - x

Ghorbani-
Renani et al.

20
20 SR integr. energy system terrorist attack x x vulnerability; recoverability x

Ghosh & De 20
22 SR electric power system meteorological x x - x

Goldbeck et 
al.

20
19 SR rail transportation; electric power system meteorological x x robustness; rapidity x x x



Gong & You 20
18 SR production site generic disruption - x

Gotangco et 
al.

20
16 SR community meteorological x x adaptive capacity x

Haeri et al. 20
20 SCR multi-echelon SC generic disruption x x - x

Q. Han et al. 20
23 SR other - x x responsiveness; survivability; recovery 

capability x x x

Hao et al. 20
23 SR rail transportation generic disruption x recovery ability x

Hashemifar 
et al.

20
22 SR electric power system generic disruption x x - x

Heath et al. 20
16 SR electric power system meteorological x - x

Henry & 
Ramirez-
Marquez

20
12 SR road network geophysical x restoration x

Hishamuddin 
et al.

20
13 SCR multi-echelon SC meteorological x recovery x



Hong et al. 20
21 SR community meteorological x x - x

Y. Hosseini et 
al.

20
23 SR road network geophysical x recovery x

Hosseini-
Motlagh et 
al.

20
20 SCR multi-echelon SC generic disruption x x - x

Y. H. Huang 20
21 SR electric power system generic disruption x x - x

Huang & 
Pang

20
14 SCR multi-echelon SC meteorological x x rapidity; redundancy x x

Hulse et al. 20
21 SR other generic disruption x x resistance; absorption; restoration; 

recovery x

Iloglu & 
Albert

20
20 SR road network meteorological x - x

Ivanov 20
18 SCR multi-echelon SC supply disruption x - x

Jeong et al. 20
06 SR water supply system terrorist attack x - x



Kalinowski et 
al.

20
15 SR - generic disruption x x - x

Khalili et al. 20
17 SCR multi-echelon SC generic disruption x - x

Khayatzadeh 
et al.

20
22 SR integr. energy system generic disruption x x withstanding ability; restoration ability x

Kim & Yeo 20
16 SR road network generic disruption x vulnerability x

Kwasinski 20
16 SR electric power system generic disruption x x withstanding capability; recovery x x

Kyriakidis et 
al.

20
18 SR integr. energy system meteorological x recovery x x

Ladipo et al. 20
19 SR other meteorological x x - x

Lau et al. 20
18 SR electric power system generic disruption x x - x

Lei et al. 20
19 SR electric power system meteorological x - x

H. Li 20
23 SR other terrorist attack x x resistance; recovery ability x x



M. Li et al. 20
19 SR rail transportation generic disruption x recovery x

Li et al. 20
17 SCR multi-echelon SC generic disruption x x withstand disruption; recovery x

Y. Li & Zobel 20
20 SCR multi-echelon SC generic disruption x x x robustness; restorative capacity; recovery 

speed x x x

L. Liao & Ji 20
20 SR electric power system meteorological x x - x

T. Liao et al. 20
18 SR road network terrorist attack x x - x

X. Liu et al. 20
21 SR integr. energy system generic disruption x x mitigation; recovery x

Z. Liu & Wang 20
21 SR electric power system cyber attack x x reliability; recovery speed x x x

Losada et al. 20
12 SR production site generic disruption x x - x

Lücker & 
Seifert

20
17 SCR multi-echelon SC production 

disruption x x mitigation x

Maheshwari 
et al.

20
17 SCR multi-echelon SC meteorological x x - x



Malek et al. 20
23 SR electric power system generic disruption x x - x x x

Mao et al. 20
21 SR road network meteorological x recovery rapidity x x

Marasco et 
al.

20
22 SR community meteorological x x withstanding capacity; recovery capacity x x

Mari et al. 20
14 SCR multi-echelon SC generic disruption x x vulnerability x

Matisziw et 
al.

20
10 SR other generic disruption x x restoration x

Miller-Hooks 
et al.

20
12 SR freight transportation generic disruption x recovery capability x

Mishra et al. 20
22 SR electric power system generic disruption x x coping capacity; recovery x

Munoz & 
Dunbar

20
15 SCR - - x x recovery x x x

Najarian & 
Lim

20
19 SR electric power system generic disruption x x x absorption; adaptation; recovery x x

Najarian & 
Lim

20
20 SR electric power system generic disruption x x x absorption; adaptation; rapidity x x



Nan & 
Sansavini

20
17 SR electric power system meteorological x x x x absorptive capability; adaptive capability; 

restorative capability; recovery capability x x x

Nan et al. 20
16 SR electric power system meteorological x x x absorptive capability; adaptive capability; 

restorative capability; recovery ability x x x

Ni et al. 20
18 SR production site generic disruption x restoration x

Niu et al. 20
23 SR road network geophysical x x vulnerability; restoration x

Nozhati 20
21 SR electric power system geophysical x x -

Nurre et al. 20
12 SCR electric power system; other meteorological x restoration x

Nurre & 
Sharkey

20
18 SR electric power system meteorological x restoration x

Ojha et al. 20
18 SCR multi-echelon SC generic disruption x x vulnerability; adaptability x

Omer et al. 20
09 SR other geophysical x vulnerability reduction x

Omidian & 
Khaji

20
22 SR other geophysical x sustainability x



Ouyang et al. 20
12 SR electric power system biological x x resistant capacity; absorptive capacity; 

restorative capacity x

Ouyang & 
Fang

20
17 SR electric power system terrorist attack x x - x

Pant et al. 20
14 SR port transport 

disruption x restoration x

Panteli et al. 20
17 SR electric power system meteorological x x - x x x x

Paseka et al. 20
18 SR water supply system meteorological x x - x

Podesta et al. 20
21 SR community meteorological x x recovery capacity x x x

Poudel et al. 20
20 SR electric power system meteorological x x - x

Rajesh 20
16 SCR multi-echelon SC supply disruption x x flexibility; responsiveness x

Reed et al. 20
09 SR electric power system meteorological x x robustness; rapidity; recovery x x x

Ren et al. 20
17 SR other generic disruption x x rapidity x



Ribeiro & 
Barbosa-
Povoa

20
22 SCR multi-echelon SC supply disruption x responsiveness x

Roach et al. 20
18 SR water supply system meteorological x x absorption; recovery x x x

Sabouhi et al. 20
21 SCR multi-echelon SC generic disruption x - x

Salehi et al. 20
22 SCR multi-echelon SC production 

disruption x x - x

Salmeron et 
al.

20
09 SR electric power system terrorist attack x - x

Salmeron & 
Wood

20
15 SR electric power system terrorist attack x - x

Sanchis et al. 20
20 SCR production site generic disruption x - x

Sanci & 
Daskin

20
19 SR other transport 

disruption x - x

Sang et al. 20
21 SR integr. energy system generic disruption x x restoration x



Sawik et al. 20
17 SCR production site supply disruption x x - x

Schmitt & 
Singh M.

20
12 SCR multi-echelon SC supply disruption x x recovery speed; responsiveness x x

Senkel et al. 20
21 SR integr. energy system distribution 

disruption x x recovery x x x

Shahbazi et 
al.

20
21 SR electric power system meteorological x x - x

Shang et al. 20
22 SR hospital geophysical x x redundancy; resourcefulness x x x

Sharkey et al. 20
15 SR electric power system; water supply 

system; other meteorological x restoration x

Shen et al. 20
23 SR electric power system generic disruption x x recovery response x

Simonovic & 
Arunkumar

20
16 SR water supply system meteorological x - x

P. Singh et al. 20
23 SR other meteorological x x - x

Smith et al. 20
20 SR electric power system; water supply 

system geophysical x recovery x



Song et al. 20
22 SR water supply system geophysical x recovery capacity x x

Soualah et al. 20
23 SR electric power system generic disruption x x - x

Spiegler et al. 20
12 SCR multi-echelon SC supply disruption x x readiness; responsiveness; recovery x

Sun et al. 20
22 SCR production site generic disruption x x - x

J. Sun et al. 20
23 SR

other (infrastructure system: road 
network, electric power system, 
wastewater system)

meteorological x x - x

W. J. Tan et 
al.

20
20 SCR multi-echelon SC generic disruption x x effectiveness; resistance ability; recovery 

ability x x

Y. Tan et al. 20
18 SR electric power system; water supply 

system meteorological x restoration x

Y. Tan et al. 20
19 SR electric power system; water supply 

system meteorological x restoration x

Tang et al. 20
23 SR other generic disruption x x - x



Tang et al. 20
21 SR rail transportation transport 

disruption x x - x

Tao et al. 20
22 SR road network technical x x resistance ability; recovery ability; 

robustness x x

Tariverdi et 
al.

20
19 SR hospital generic disruption x - x

Tofani et al. 20
21 SR electric power system generic disruption x recovery x

Tofani et al. 20
18 SR electric power system generic disruption x x withstanding capability x

Di Tommaso 
et al.

20
23 SR other generic disruption x x recovery x x

Torabi et al. 20
15 SCR multi-echelon SC geophysical x robustness; rapidity x

Touzinsky et 
al.

20
18 SR port meteorological x x preparation; resistance; recovery; 

adaption x

Tran et al. 20
17 SR other meteorological x x absorption; recovery; responsiveness; 

recovery speed x x

Uday & 
Marais

20
14 SR airport generic disruption x recoverability importance; disruption 

importance x



Ulusan & 
Erugn

20
18 SR other geophysical x restoration x

Valenzuela et 
al.

20
18 SCR - - x absorption x

Veit et al. 20
23 SR other cyber attack x x absorption; recovery; performance 

capacity x x x

Verleysen et 
al.

20
23 SR production site supply disruption x x - x

Vugrin et al. 20
11 SR multi-echelon SC meteorological x x x absorptive capacity; adaptive capacity; 

restoration efficiency x

J. Wang & Liu 20
19 SR road network meteorological x absorbing ability x

J. W. Wang et 
al.

20
10 SR other cyber attack x recovery ability x

X. Wang et al. 20
22 SR airport meteorological x x x x

susceptibility; absorptive capability; 
rapidity; recovery capability; adaptive 
capability;

x x x x

Y. Wang & 
Wang

20
20 SR road network generic disruption x recovery effectiveness x



Watson et al. 20
22 SR other generic disruption x responsiveness x

Jinyi et al. 20
20 SR other cyber attack x x absorptive capacity; recovery ability; 

stable state capability x x x

Xu et al. 20
23 SR electric power system meteorological x x - x

Y. Yang et al. 20
18 SR electric power system meteorological x x resistant capacity; absorptive capacity; 

restorative capacity x

Z. Yang & 
Marti

20
22 SR electric power system generic disruption x restoration x

Yao et al. 20
23 SR electric power system meteorological x x robustness x x x

Yarveisy et al. 20
20 SR electric power system generic disruption x x x absorptive capacity; adaptive capacity; 

restorative capacity x x x

Yu & Baroud 20
19 SR community meteorological x recovery capacity x

Yuan et al. 20
14 SR electric power system terrorist attack x - x

Zahiri et al. 20
17 SCR multi-echelon SC generic disruption x x - x



Zarghami & 
Zwikael

20
22 SR other generic disruption x x - x

Zavala et al. 20
19 SCR multi-echelon SC distribution 

disruption x capability to recover x

C. Zhang et 
al.

20
22 SR water supply system technical x x sustainability x x x

H. Zhang et 
al.

20
19 SR electric power system meteorological x responsiveness; recovery efficiency; 

restoration economics x x x

H. Zhang et 
al.

20
18 SR electric power system meteorological x x

toughness; resistance; responsiveness; 
restoration efficiency; restoration 
economics

x x x

Zhang, Li et 
al.

20
23 SR community geophysical x x recovery x x

J. Zhang et al. 20
22 SR rail transportation technical x recovery x x

Zhang, Ren et 
al.

20
23 SR rail transportation technical x recovery x

J. M. Zhang & 
T. Wang

20
23 SR other biological x x - x



M. Zhang et 
al.

20
22 SR other geophysical x recovery x x

Q. Zhang et 
al.

20
20 SR water supply system geophysical x rapidity x x

X. Zhang et 
al.

20
21 SR electric power system meteorological x restoration x

X. G. Zhang et 
al.

20
22 SR production site meteorological x - x

Z. Zhang et al. 20
23 SR rail transportation biological x x vulnerability; robustness; response; 

recovery x x

Zhao et al. 20
17 SR water supply system biological x x x adaptive capacity; absorptive capacity; 

recovery capacity x x x

Zhao et al. 20
16 SR water supply system biological x x x absorptive capacity; adaptive capacity; 

recovey capacity; recovery ability x x x

S. Zhao & You 20
19 SCR multi-echelon SC generic disruption x x recovery x

J. X. Zheng & 
Huang

20
23 SR electric power system meteorological x x - x

Zhou et al. 20
20 SR airport generic disruption x x - x



Zhou & Chen 20
20 SR airport meteorological x rapidity x

Zobel et al. 20
21 SR community meteorological x resistance ability; recovery ability x

Zong et al. 20
22 SR integr. energy system geophysical x x - x

Zukhruf & 
Frazila

20
18 SR port technical x recovery response x



Appendix B. Nomenclature used within this article

Explanation Without implementation of resilience actions With implementation of resilience 
actions

beginning of control interval 𝑡0

exposure to hazard 𝑡ℎ0

initial system disruption 𝑡𝑒 𝑡𝑒𝑟

end of performance degradation 𝑡𝑑 𝑡𝑑𝑟

begin of system recovery 𝑡𝑠 𝑡𝑠𝑟

completion of system recovery 𝑡𝑓 𝑡𝑓𝑟

end of exposure to hazard 𝑡ℎ1

end of control interval 𝑡𝑐

performance 𝑝(𝑡) 𝑝𝑟(𝑡)

performance based on the output 𝑝𝑜(𝑡) 𝑝𝑜𝑟(𝑡)

performance based on number of system 
components 𝑝𝑛(𝑡) 𝑝𝑛𝑟(𝑡)

performance based on technical system 
parameters 𝑝𝑡(𝑡) 𝑝𝑡𝑟(𝑡)

performance based on economic parameters 𝑝𝑒(𝑡) 𝑝𝑒𝑟(𝑡)

critical threshold 𝑝𝑐 𝑝𝑐𝑟



Appendix C. Alternative trajectories of the resilience curve

(I) Resilience curve as illustrated and described in section 3.3
(II) Alternative case 1: The resilience actions lead to a performance disruption starting at 𝑡𝑒 = 𝑡𝑒𝑟 and ending at 

𝑡𝑑𝑟 > 𝑡𝑑. As a result, the resistive duration is not affected by a resilience action, but i.a., the absorb duration 
has been increased and thus improved (cf. formulations in Table 2), strengthening the absorptive capacity. 
Likewise, the adaptive and/or restorative capacity have been strengthened by shorter endure and recovery 
phases and a higher restored performance and recovery rate, resulting in a higher cumulative recovery 
performance.

(III) Alternative case 2: The resilience actions lead to a performance disruption starting at 𝑡𝑒𝑟 > 𝑡𝑒 and ending at 
𝑡𝑑𝑟 < 𝑡𝑑. As a result, i.e., the resistive duration, residual performance, and depth of impact are positively 
affected by the resilience actions, strengthening the absorptive capacity. However, the absorb duration has 
been shortened, and the failure rate has increased, offsetting improvement in the cumulative absorptive 
performance to some degree. The adaptive and/or restorative capacities have been strengthened regarding 
a higher restored performance, recovery rate, and residual performance, correlating with a higher cumulative 
recovery performance. Some resilience metrics remain almost unchanged (e.g., endure duration).

(IV) Alternative case 3: The absorptive capacity remains entirely unchanged by the resilience actions. Only the 
adaptive and/or restorative capacities are strengthened by a shorter endure duration, a higher restored 
performance, and, consequently, a higher cumulative recovery performance.
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6 Highlights

• Harmonization of terminologies used to describe resilience capacities
• Harmonization & categorization of existing metrics to assess resilience capacities

• Derivation of mathematical formulae to quantify the effect of resilience actions
• Classification of proposed resilience actions into the Supply Chain Planning Matrix


