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Abstract—Service Function Chains (SFCs) can be used with
containerization to efficiently enable the ever-increasing Internet
of Things (IoT) deployments in heterogeneous edge–cloud envi-
ronments. In this context, SFC schedulers often employ mech-
anisms such as migration and consolidation of Containerized
Network Functions (CNF) to adapt to dynamic environments.
However, the costs of the CNF lifecycle are often not investigated,
especially deep into its states and state transitions, have created a
gap between theoretical research and practical implementation.
To this end, this paper comprehensively examines the capability
of the edge–cloud in accommodating CNF-based IoT deployments
with a key focus on the CNF lifecycle invocation cost, including
latency, resource, and energy consumption. Our findings show the
actual cost of using and reconfiguring CNFs, which is a common
SFC optimization technique. We then provide a comprehensive
profiling that could be used to develop realistic SFC placement
strategies and algorithms.

Index Terms—Cloud Computing, Network Function Virtual-
ization, Internet of Things, Service Migration

I. INTRODUCTION

The emergence of massive Internet of Things (IoT) deploy-
ments has given birth to a hybrid computing model named
edge–cloud, which combines the scalability and power of
cloud computing with the low latency and privacy of edge
computing. To overcome the heterogeneity of edge devices,
flexibility and fault tolerance in resource allocation are essen-
tial. This can be achieved through Network Function Virtual-
ization (NFV), which enables the design of IoT applications as
loosely coupled Virtual Network Functions (VNF) that reside
in Virtual Machines (VM). Virtualization enables the flexible
placement, configuration, and migration of VNFs and Service
Function Chains (SFC), which can lead to efficient resource
allocation, even under dynamic conditions such as unknown
arrivals and departures of SFC requests, user mobility, and
device failures.

Recently, containerization is expected to further empower
NFV in resource-constrained environments such as edge–
cloud. In this context, virtual networks are hosted within con-
tainers [1], which are significantly more lightweight, agile, and
fault-tolerant than traditional VMs. To exploit these benefits,
research in the domain of edge-related computing utilizes
Containerized Network Functions (CNFs) to enhance various
objectives, such as energy-resource efficiency and latency [2].
In the face of rapid environmental changes caused by users

and network conditions, state-of-the-art approaches rely on
migration to sustain the desired objective. However, unlike
conventional VM-based VNFs, which have been extensively
studied, CNF implementation costs in dynamic edge–cloud
environments have been overlooked, especially those param-
eters related to sustainability, such as energy and resource
consumption. This is partly due to the assumption of container
lightweights. To address this gap, this article aims to answer
the following two research questions:

• RQ1: What is the real cost of accommodating CNF
in edge–cloud regarding latency, resource demands, and
power consumption of computing devices?

• RQ2: How can specific edge–cloud computing accom-
modate heterogeneous CNF implementations considering
the cost of the reconfiguration process?

We answer these questions by conducting experiments on a
real testbed, where realistic measurement are applied for an
IoT system. The contributions of our work are two-fold.

First, to understand the relevant costs of CNF implementa-
tion on edge–cloud, we formulate and investigate a complete
lifecycle of CNFs. Our results show that CNF states yield
different resource consumption, and state transitions incur
significant costs on latency, energy, and resource utilization.
These effects are even worsened by current cutting-edge
resource optimization approaches, which often require massive
CNF relocation. Second, based on our measurement results,
we profile all targeted metrics as a function of the number of
CNFs and their costs. These models can be used to measure the
implementation costs of CNFs over edge-cloud environments
and serve as the basis for optimized allocation strategies.

The remainder of this article is organized as follows. Sec-
tion II reviews the background information necessary to under-
stand our work. Section III surveys related works and shows
that the impacts of CNF reconfiguration on edge clouds has not
been studied in the literature. Section IV presents a use case
and a testbed to evaluate the impact of CNF reconfiguration
on edge clouds. We provide an in-depth profiling of the CNF
lifecycle and its impact on different performance aspects of
the edge cloud system, based on real testbed measurements.
Section V concludes the article.
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Fig. 1: A typical lifecycle of a CNF.

II. BACKGROUND INFORMATION

As the demands for Big Data and IoT services have been
increased recently, the realization of VNF/CNF in edge–
cloud and Multi-access Edge Computing (MEC) attracts much
attention thanks to its flexibility and scalability. To enhance
the understanding of this article, we introduce basic knowl-
edge about containerization in NFV and the SFC embedding
problem.

A. Containerized Network Function

Compared to VMs, containers are more agile, lightweight,
and resilient. As a result, containers have been standardized
as the replacement of VMs to accommodate network services
in NFV Release 4 by the European Telecommunications
Standards Institute (ETSI) [1]. In this context, VNF terminol-
ogy is replaced by CNF. Most notably, the CNF relocation,
which corresponds to VM migration in VNF terminology,
is performed by stateless configuration, in which the CNF
instance at an unwanted position is replaced by a new one
spawned up at the desired location. As this process is often
called reconfiguration in literature, we will also use this phrase
in this work. The CNF reconfiguration essentially invokes the
container’s lifecycle, which typically consists of three states
and four transient actions as proposed in Figure 1. The states
are defined as follows.

Null indicates the non-existent state of a CNF. When a
request arrives, the system creates a new CNF instance through
the Initiate action.

Idle/Warm denotes the non-working state of an instance
that has been spawned in the system. The program inside a
CNF is already loaded and waiting for traffic. When a job is
available, the warm container actively runs via the Activate
action. On the contrary, a warm container can be removed
through a Terminate action.

Active is the working state of a container instance that
performs the assigned job. An active container can either be
deactivated back to the warm state when the task is finished
or can be wiped out of the system via a Terminate action.

While the figure represents a theoretical view of the CNF’s
lifecycle, the states and actions can practically be implemented

by container orchestrations such as Kubernetes [3]. Normally,
active state is the main profiling target of any CNF in terms
of energy or resource usage. The other states and the transient
actions, while also incurring costs (power, resources, latency),
have often been overlooked in the literature, to the best of our
knowledge. We argue that these costs might be significant in
scenarios where millions of events constantly cause containers
to jump between states.

B. CNF Reconfiguration in Edge-Cloud

Generally, SFC deployment in NFV-enabled edge–
cloud/MEC is challenged by the environment dynamicity. In
this context, CNF reconfiguration occurs in the following
scenarios to reoptimize the system.

Offloading of CNFs between computing tiers is a key usage
of edge–cloud, MEC, or fog computing. For example, from
end devices to an IoT gateway/MEC server and a central
cloud. In critical cases such as low battery and/or limited
computing capacity, offloading helps to guarantee Service
Level Agreements (SLAs) [4].

Consolidation of CNFs in the data center also needs to
be investigated. Since an idle server can consume more than
half the power of a fully-loaded one [5], consolidation of
low-utilized servers together is often used. In addition, CNFs
belonging to SFCs can also be consolidated into one server,
or in a group of neighboring servers, to reduce traffic.

Redeployment of SFCs that had been mapped to the system
to increase the SFC’s acceptance rate. The dynamicity of
SFCs requires resource allocation and de-allocation for joining
SFCs and leaving SFCs, respectively. Over time, the system
will fall into an un-optimized state whose resource needs to
be rearranged. Therefore, redeployment of all SFCs inside is
performed to re-optimize the system.

Mobility of user’s equipment (UE) (smartphone, smart-
watch, etc.) from the Radio Access Network (RAN) spectrum
of one Base Station (BS), where its functions are processed
at an MEC server, to another BS that is far from the original
server. To reduce the backbone’s bandwidth usage and service
latency, CNFs are usually migrated to a server near the new
BS. Follow Me Cloud (FMC) [6] is a work that adopts this
migration technique to ensure low latency (1.0ms - 10.0ms)
for mobile users.

III. RELATED WORK

In this section, we will survey the state of the art that
targets specifically to CNF and CNF-like reconfiguration costs.
Then, an overview of SFC deployment that is both aware and
unaware of reconfiguration in edge–cloud/MEC is provided.

A. CNF Lifecycle and Reconfiguration

As VNF/CNF is built upon VM/container, its lifecycle is
basically the VM/container’s lifecycle. From the VM’s side,
reconfiguration is commonly done by migrating the VM from
one machine to another via a network connection. Here,
the costs are comprehensively studied in the work of Hines
et al. [7]. While VM-alike migration mechanisms are also
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applicable for containers [8], profiling results [9] show that
a 75MB RAM-usage container requires approximately 100−
200MB data transmission for migration, which is an expensive
cost and time-consuming for IoT services. For that reason,
along with container usage favoring agility, stateless migration
by provoking the lifecycle is preferred.

Costs of the container’s lifecycle are concerned more in the
context of serverless computing [10]. To reduce latency caused
by moving from inactive state to active state of a container,
well-known serverless frameworks like AWS lambda [11] keep
a number of frequently-used containers at idle/warm state
for a fixed period of time. From the literature, Mohan et
al. [12] propose an advanced technique that pre-crafts a warm
container to prepare for an upcoming task, which can achieve
an 80% reduction in execution time. Kunal et al. [13] exploit
the similarities in container content to reduce network require-
ments for the code-pulling process, hence reducing the time
needed for cold starting. Wu et al. [14] propose a container
scheduler to keep track of the current status of containers
(used, paused, or evicted) to re-use them for upcoming traffic
optimally. Overall, the aforementioned works focus only on the
latency problem of the cold process and propose a solution
to improve the Quality of Service (QoS) of the incoming
requests. While the warm state of a container has been used to
reduce service downtime significantly, no work analyses the
impact of different container states and their transient actions
on energy, resource, and other performance aspects of the
edge–cloud system, especially under situations where SFCs
and their CNFs have high migration rates.

B. Reconfiguration-Aware SFC Deployment

SFC deployment is a process of manipulating CNF locations
and networking to utilize edge–cloud resources efficiently.
To increase the acceptance ratio, Xu et al. [15] and our
previous work [16] consider the redeployment of running SFCs
to re-arrange the mapping strategy and eliminate resource
fragmentation. VNF offloading between edge and cloud or
between edge devices [17] [18] [19] is also deployed to
instantaneously save energy and allocate resources for arriving
SFCs.

Aware of the complexity and costs of reconfiguration, Padhy
et al. [20] introduce REAP, an energy-efficient algorithm that
chooses the appropriate reconfiguration mechanisms among
four options: mapping, redirection, migration, and scaling
out the CNF number. Their results show 60% in energy
consumption. Wang et al. [4] minimizes the number of CNF
reconfigurations in mobility scenarios by applying Markov
Decision Process (MDP) to relocate CNF to an optimal place
with minimal cost. Similarly, Zhao et al. [21] introduce a two-
step algorithm to reduce the downtime and operational cost of
the reconfiguration process. VNFs are duplicated to restore
users’ vital services, such as front-end VNFs, and migrate
other VNFs later.

Furthermore, knowing traffic patterns in advance to plan
ahead is an effective strategy to reduce repetitive reconfig-
uration and avoid the incurred costs. To this end, Machine

Cap Dec Den LOS

Substrate Network
Central Cloud

Mapping

Edge devices

SFC request Result

Cap Dec
Den LOS

Fig. 2: Smart traffic camera can be massively deployed as SFC
in a smart city.

Learning (ML) has been used to predict future demands to alter
VNFs/CNFs following environmental changes. Kim et al. [22]
predict the future CPU usage of each VNF by using Long
Short-Term Memory (LSTM). Since their model is general and
requires no agent at individual devices, it reduces the pressure
on resources for a trade-off of prediction accuracy. Lange et
al. [23] forecast load changes using classification algorithms.
The algorithm decides if the system needs to add one, remove
one, or do nothing for the current number of VNFs. Vahidinia
et al. [24] use Reinforcement Learning to learn the lifecycle
invocation patterns and determine the best time to keep the
containers warm and an LSTM model to predict the future to
know how many containers can be kept in the system.

On the other hand, as there are no profiling results of the
CNF lifecycle in the literature, the lack of precise quantifica-
tion of energy, resource demand, and latency during lifecycle
invocation of SFC deployment poses a concern about the real
cost in realistic implementation.

IV. CNF LIFECYCLE PROFILING

In this section, we define and measure an IoT use case over
a testbed to investigate the impact of CNF reconfiguration,
where lifecycle invocation plays the key role. Targeted metrics
are resource consumption, power usage, and latency. Measure-
ment results are then modeled as a set of equations that are
crucial for precise energy and QoS-aware SFC deployments
and strategies in the domain.

A. Use Case

In this article, we build the testbed and perform the simu-
lation based on an IoT application that is deployed over an
edge–cloud system, as shown in Figure 2. The application
is about smart traffic monitoring via IP cameras to help
authorities in large cities analyze traffic intensity, especially
in peak hours, by analyzing the traffic density via captured
images. This service is designed in the form of an SFC
containing four CNFs: Capture (Cap), Decode (Dec), Density
(Den) and Level of Traffic (LOT), which perform capturing
JPEG images, decoding images sent from the first function,
evaluating traffic density, and classifying the level of traffic of
the road, respectively. The SFC is deployed over a substrate
network containing various edge devices placed at every road
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Fig. 3: Testbed implementation.

Fig. 4: States and transient actions of a CNF with the corre-
sponding costs and duration.

corner of the city and a central cloud. Depending on the
traffic state and time of the day, cameras and applications
can be turned on/off following users’ demands. Under this
scenario, the system can benefit from the agility and flexibility
of SFCs in resource allocation. However, as CNFs in this
SFC are linearly dependent on each other, interruption caused
by one CNF reconfiguration will cause the entire SFC to
freeze temporarily, therefore, highlighting the impacts of CNF
migration on the edge–cloud system performance.

B. Testbed and Measurement Setups

1) Testbed Instruments: Fig. 3 describes the setup of our
testbed. In detail, there is a Supervisor machine, which con-
trols the flow of deploying CNFs and collects measurement
results, and an edge–cloud cluster where CNFs are deployed
and managed by Kubernetes. The cluster consists of three
machines: a Master node and two Worker nodes. The Master
node receives deployment commands from the Supervisor
machine, converts them into manifest files, and deploys them
to one of the Workers. These Workers are IBM server and

TABLE I: Testbed configurations

Hardware Software

Edge Raspberry Pi 4B: 1.5GHz Quad-core
Cortex-A72, 4G RAM, Fast Ethernet

Ubuntu 20.04 server
Kubernetes v1.23.5

Cloud IBM x3650 M4: 2.60GHz Intel Xeon
E5-2670, 64G RAM, Gigabit Ethernet

Ubuntu 20.04 server
Kubernetes v1.23.5

Supervise DELL PowerEdge 3640
Fast Ethernet Ubuntu 20.04 LTS

Measurement
instruments

UM25C: 4 - 24V DC, 0 - 5A,
Accuracy: 0.5%;
Pzem-004T: 80 - 260V AC, 0 - 100A,
Accuracy: 0.5%

Prometheus 2.34.0
Node-exporter 1.3.1
UM25C-rdumtool
PZEM-004T-v30

Raspberry Pi, which represent the cloud machine and edge
devices, respectively.

The measurement part is handled by a monitoring software
called Prometheus [25] and two power meter devices. Logging
results are sent back to the Supervisor machine. More details
of the equipment are described in Table I.

CNFs will be deployed as pods, which are virtual units
defined by Kubernetes. The maximum number of pods that
can be hosted on a device is determined by the ratio of
the requested amount of resources (specified in the manifest
files) to the device’s resource capacity. For example, a 16GB
RAM machine can host a maximum of 16 one-GB-RAM
pods. However, CNFs’ lifecycles require flexibility in resource
usage, so we intentionally ignore the fixed resource provision
in manifests to create a higher number of CNFs.

However, we observed that the maximum number of pods
that our edge and server machines can run concurrently is
around 45 and 100, respectively. Beyond this, the edge starts
freezing and some of the server’s pods are unable to be turned
on. This is restricted by the private Classless Inter-Domain
Routing (CIDR) policy of Kubernetes. Therefore, we defined
the feasible values of CNFs as 45 for the edge and 100 for
the server. This restriction applies to most CNF types, except
for the Capture CNF. Because its job is to control the physical
camera, it is bound to the limited number of USB ports, which
are used to communicate with cameras, at the edge device.
Thus, only four pods of this type were able to run in our
experiment.

2) Targeted Measurements: Fig. 4 shows three states {null,
warm, active} and four transient actions {initiate, activate,
deactivate, terminate} of a CNF. While the time duration of
each CNF state is merely determined by its service time, the
time duration of initiate and terminate actions, denoted as tinit
and tterm, are device-dependent. These durations are the time
taken to create or remove a CNF. These actions require efforts
from the hosting machine to allocate or de-allocate system
resources. Thus, they also consume additional resources as
discussed later in the paper. On the other hand, since the
difference of a CNF in warm and active states is whether
it receives traffic, the transition time between these two states
denoted as tact and tdeact in Fig. 4 can be neglected.

Based on the above discussion, we quantify CNF’s lifecycle
following these states and actions:
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Fig. 5: Resource and power usage of different states at edge device. Note that the x ticks follow log2 scale. LoT CNF does
not exist at the edge side. Since the warm and null states of all four CNFs exhibit a similar trend, we report one example only.
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Fig. 6: Resource and power usage of warm and active states at the cloud server. Cap CNF does not exist in Cloud. Other
information is similar to Fig. 5’s caption.

• Cold/Initiate action starts when the deployment order
from the Supervisor machine is given to the Master
until all of the required CNF instances are spawned up
successfully by the Worker machines.

• Idle/Warm state begins at the end of the cold one. Since
CNF instances have not yet received requests, they are
essentially staying at the idle state.

• Active is the state where a warm CNF begins to receive
and process incoming traffic.

• Terminate action begins when the Master receives the
termination command issued from the Supervisor node
to delete a CNF. It completes when the CNF instance no
longer exists within the cluster.

For each state or action, the following performance metrics
are measured:

• Device resources, CPU and RAM utilization of an edge
or cloud machine in its states and transient actions.

• Power consumption of each state and transient action.
• Latency, which is the time required to change the CNF

from one state to another.
The above measurement process repeats for an ascending

number of CNF instances, and the results are recorded ac-

cordingly.

C. Result Evaluation
To characterize the measured parameters, we perform 50

repetitive measurements, each representing the average of
instantaneous values obtained from monitoring devices. To
model these 50 data points, we employ polynomial regression
to generate interpolated lines that capture the underlying trend.
The accuracy of each polynomial model is assessed using the
coefficient of determination (R2) and the root mean square
error (RMSE). The degree of the polynomial is iteratively
increased until no further improvement of the R2 and the
RMSE is observed. For clarity, the subsequent result figures
depict only the polynomial lines.

1) State Consumption: The CNF’s state {null, warm, ac-
tive} consumption on an edge and a cloud are represented in
Fig. 5 and Fig. 6, respectively. Our measurements show that all
four CNFs exhibit the same resource usage in the warm state
since this state is essentially idle. Therefore, we only report
the resource usage of one CNF in the warm state (green line).

The null state is the idle state of the device with no CNF
running. In this state, only system tasks are running, resulting
in a low CPU usage. In the warm state, CNFs have been
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Fig. 7: Resource, power usage and delay of cold and terminate actions at edge device. Note that these CNFs are
created/terminated simultaneously
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Fig. 8: Resource, power usage, and delay of cold and terminate actions at the cloud server. Note that these CNFs are
created/removed simultaneously

created, and their nested processes are listening for incoming
traffic. In this state, the CPU is mainly used by the Kubernetes
management component kubelet, which monitors pods [26].
This results in low computing usage, even in limited-capability
edge devices. However, an increase in CPU usage is observed
when the number of CNFs reaches its maximum. This is clear
with almost 20% CPU usage for the edge device compared
to negligible CPU usage for the cloud server. When modeling
these measurements by polynomial regression in Equation (3)
and Equation (4) of Table II, the result in about 0.03% and
0.24% CPU for one warm container in the cloud and edge,
respectively. Therefore, operators may keep many CNFs warm
without any concern about wasted CPU consumption.

The active state consumes the most resources and is linearly
proportional to the number of CNFs. Note that the x-scale of
Fig. 5 and Fig. 6 is logarithmic, so the linear line appears as
a curve. The active CPU usage of each CNF varies depending
on the nested program, with CPU-intensive tasks such as
calculating density (Den) and estimating Level of Traffic (LoT)
using more computing power than less demanding tasks such
as Capturing images (Cap) and decoding images (Dec). While
the trends are similar on both cloud and edge tiers, CNFs
deployed on cloud servers use 3-4 times less CPU than those
on edge devices due to the more powerful CPUs in cloud

servers. Regarding horizontal scaling, CPU resources are the
main limitation for opening more active CNFs.

The memory utilization of both edge device and the cloud
machine is shown in Fig. 5–b and Fig. 6–b. As RAM is
essentially used for loading process variables, it is linearly
proportional to the pod number. For our use case, a warm pod
utilizes approximately 9MB for the container’s libraries and
variables of the nested software when hosted on an edge device
(Equation (7)) and 11MB on cloud server (Equation (8)),
which are relatively identical between the two tiers. When
CNFs move to Active, more RAM is allocated for storing
the input data and processing temporary variables. This result
shows that RAM could be the limitation when keeping CNFs
in a warm state because they still take up significant space.

As CPU is the main energy-draining source, power con-
sumption is proportional to CPU usage, as shown in Fig. 5–c
and Fig. 6–c. The Equation (11) and Equation (12) provide
more details on the numbers. Similar to CPU, power con-
sumption is low in the warm state and high in the active state,
with different CNFs consuming different amounts of power.
Notably, the abnormally high power consumption of the active
Cap CNF is due to the power usage of the camera that operates
alongside this CNF on the edge device. Compared to edge
devices, cloud servers consume significantly more base power,
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TABLE II: CNFs lifecycle’s modeling results in terms of CPU, RAM, power, and latency that is used for plotting Fig. 5 to
Fig. 8 and for the proposed algorithm. x stands for the number of CNFs, its range for the edge device is 1 to 45, and for the
cloud server is 10 to 100.

Metric Cloud server Edge device

Cold CPU (%) ccs(x) = 6.12 + 1.09x− 1.28× 10−2x2 + 5.28× 10−5x3 (1) cce(x) = 5.43 + 6.04x− 1.74× 10−1x2 + 1.74× 10−3x3 (2)

Warm CPU (%) wcs(x) = 0.93 + 0.03x (3) wce(x) = 4.85 + 0.24x (4)

Terminate CPU (%) tcs(x) = 2.58 + 0.20x (5) tce(x) = 3.89 + 1.31x− 8.63× 10−3x2 (6)

Warm RAM (MB) wrs(x) = 3.36× 103 + 11.24x (7) wre(x) = 4.45× 102 + 9.18x (8)

Cold Power (W) cps(x) = 1.12× 102 + 4.55× 10−1x− 2.24× 10−3x2 (9) cpe(x) = 2.79 + 8.64× 10−2x− 2.49× 10−3x2 + 2.58× 10−5x3 (10)

Warm Power (W) wps(x) = 1.10× 102 + 5.01× 10−2x (11) wpe(x) = 2.45 + 6.20× 10−3x (12)

Terminate Power (W) tps(x) = 1.12× 10−2 + 0.15x (13) tpe(x) = 2.50 + 1.69× 10−2x (14)

Cold Time (s) cts(x) = 4.24 + 0.70x (15) cte(x) = 5.13 + 1.06x (16)

Terminate Time (s) tts(x) = 36.91 + 0.35x (17) tte(x) = 36.90 + 0.51x (18)

as can be seen from the constant terms in the two equations.
The power scale for one CNF on a cloud server is also higher
than that of an edge device. Therefore, it is a good strategy
to keep functions at the edge even when CNFs are in a warm
state, as the operating power is low. This is in contrast to cloud
servers.

With the above measurement results, we answer the RQ1
as follows: Lightweight CNFs enable edge-cloud environments
to accommodate CNFs even on low-capability devices. Warm
state consumes minimal CPU resources and remains consistent
across all CNFs when they are not actively handling tasks.
Nevertheless, RAM utilization remains substantial in the warm
state, whether on edge or cloud devices. Hence, while CNFs at
warm do not impact CPU usage, RAM consumption should be
considered. Furthermore, if all CNFs on a machine are in the
warm state and not serving any actual traffic, then the power
used to operate the machine is wasted. While this may not be
a concern for edge devices due to their low-power nature, the
high idle power consumption of servers is a problem.

2) Action Consumption: Results for CPU consumption dur-
ing CNF’s cold start (Cold) and termination (Term) according
to edge and cloud are presented in Fig. 7–a and Fig. 8–a,
respectively. Overall, the trends are identical for both edge
and cloud, with Cold requiring more computing power than
termination. Between the two processes, Term CPU usage
increases relatively proportional to the number of pods in case
of termination. Meanwhile, Cold CPU seems to be saturated
when it comes to high pod numbers, especially on the edge
device, where the CPU utilization reaches around 80% at
45 pods. The CPU consumption during these transitions is
credited mainly to two processes. One is the resource alloca-
tion and management handled by Kubelet. The other is the
pre-processing of the nested program. For the edge case, the
maximum number of CNFs that can be opened is limited by
CPU usage, as evidenced by saturated CPU usage at 45 pods.
In contrast, the cloud server can still handle 100 pods with
less than half of its CPU capacity. Therefore, it is important to

consider the resource consumption of CNF lifecycle transition
phases when deploying SFCs in a system, as this may interfere
with other running CNFs or processes. Equation (1) and
Equation (2) provide approximate CPU values for transitions
that can be used to calculate the real CPU requirements of SFC
deployment in dynamic environments such as edge–cloud.

We also measured RAM usage during CNF actions, but the
results were simply a gradual increase from zero to the warm
state’s value for allocation and vice versa for termination.
Therefore, we omit these results and focus on more significant
metrics.

Fig. 7–b and Fig. 8–b describe the duration for Cold or Term
CNFs at the edge device and in the cloud server, respectively.
While both actions show a linear trend, Term starts at a high
value, and its orientation is flatter. The reason stems from a
policy called GraceTime of Kubernetes, which allows a nested
container to finish its job in a defined amount of time before
being reaped. The default value is 30 s [27]. Cold process, on
the other hand, takes less time at the low number of pods;
however, it gradually reaches, or surpasses, Term value with a
high pod number. While the cloud server has a better hardware
compared to the edge device, it is surprising that the cold start-
ing duration is not much different between them. As shown
in Equation (15) and Equation (16), the edge is only 30%
slower than the cloud. This might come from the characteristic
of the nested application, more sophisticated programs may
favor better hardware more clearly. Term process also shows
similar results as depicted in Equation (17) and Equation (18).
The duration of pod creation and deletion affects not only the
latency of the reconfiguration process but also how long a
specific amount of CPU resources must be allocated for these
actions and the energy that will be consumed when combined
with the power results below.

The average power usage is shown in Fig. 7–c and Fig. 8–
c. Similar to state results, the power consumption of actions
is proportional to CPU usage. Therefore, cold start consumes
more power than termination, even though Term power is also

2024 27th Conference on Innovation in Clouds, Internet and Networks (ICIN)

15



significant. For edge devices, opening a high number of CNFs
(e.g., 20 to 45) consumes 150% to 200% more power than
idle power. This gap is only 20% for the cloud with more than
70 CNF creations. This difference is due to the higher CPU
usage on edge devices than the average CPU usage on cloud
servers for cold-starting CNFs. Between the two computing
tiers, the cloud consumes more power to create or terminate
the same number of CNFs, even though the trend is similar.
This is understandable because of the higher performance of
typical servers. With this measured power consumption and the
duration mentioned above, the exact amount of energy used by
transition processes can be derived by multiplying the duration
equations and power equations provided in Table II.

Based on the results, we can answer our second research
question RQ2 with: The reconfiguration process, notably the
transitions between states, causes a significant delay, resource
demand, and power usage, especially on the edge device. This
may affect not only QoS but also interfere with other tasks in
the system. Therefore, it is strongly recommended to consider
the reconfiguration costs before implementing SFC over edge–
cloud. Keeping CNFs warm is also a strategy to avoid the
expensive cost of lifecycle invocation. However, the trade-off
for RAM resources should be considered carefully.

V. CONCLUSIONS

In this paper, we first study the lifecycle of a CNF and
its behavior in dynamically changing environments that may
have an impact on the general QoS, system resource demands,
and energy efficiency. Then, we perform an investigation by
measuring an IoT use case over a real testbed over edge–
cloud. Our results show that while the edge–cloud is capable of
hosting CNFs, the cost of reconfiguration must be considered
in this context. These costs are made transparent with our
measurement results and fitted model equations. Consequently,
these results can be used for SFC placement strategies and
algorithms to manipulate the CNF lifecycle towards a specific
objective in a more realistic manner.
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