
HALIDS: a Hardware-Assisted Machine Learning

IDS for in-Network Monitoring

B. Brandino∗†, E. Grampin∗, K. Dietz‡, N. Wehner‡, M. Seufert§, T. Hoßfeld‡, P. Casas†

∗INCO–FING, Universidad de la República, †AIT Austrian Institute of Technology
‡University of Würzburg, §University of Augsburg

Abstract—Early decision-making at the network device level
is crucial for network security. This entails moving beyond tra-
ditional forwarding functions towards more intelligent network
devices. Integrating Machine Learning (ML) models into the data
plane enables quicker processing and reduced reliance on the
control plane. This paper explores the development of a ML-
driven Intrusion Detection System (IDS) where network devices
autonomously make security decisions or defer to an expert
Oracle, relying on in-band and off-band traffic analysis. Pro-
grammable devices, such as those using P4, are essential to enable
these functionalities and allow for network device re-training
to adapt to changing traffic patterns. We introduce HALIDS, a
prototype for in-band ML-IDS using P4, complemented with off-
band Oracles which support in-network ML-driven classification
with more confident classifications, targeting an active learning
logic for more accurate in-band analysis. We implement HALIDS
using the open source software switch BMv2, and show its
operation with real traffic traces publicly available.

Index Terms—In-network machine learning; Programmable
data plane; P4; Active learning; Oracles

I. INTRODUCTION

The ever-growing volume of traffic in modern networks

motivates the utilization of machine learning (ML) in net-

working [1]. When it comes to network monitoring for cy-

bersecurity, a promising idea is to do traffic classification as

early as possible, directly within network devices. Resources

in network devices have been traditionally constrained, encom-

passing limitations in terms of memory, processing capacity,

available operations, and more. Consequently, these devices

are traditionally treated as “dumb” from a traffic monitoring

perspective, performing only the essential functions required

for the network to operate. The emergence of new data plane

architectures raises the hope that network devices will perform

functions beyond simple traffic forwarding. By doing so, the

burden on the control and management planes is alleviated,

and a portion of the processing is decentralized. Additionally,

processing within the network device occurs more expedi-

tiously, reducing the need for offloading to the control plane.

Network programmability entails the ability to specify and

modify algorithms in both the control and the data plane [2].

This paper involves the creation of an Intrusion Detection

System (IDS), wherein the network device can make a de-

cision with an appropriate level of confidence, or delegate

this decision to an expert (oracle). Both the network device

and the oracle employ a machine learning model for traffic

classification. Considering programmable network devices, P4

(Programming protocol-independent packet processors) [3]

stands as the most widely adopted programming language for

the data plane and is the one used. This also provides us with

the ability to re-train the network device, making it adaptable

to changes in traffic patterns.

Within its limited resources, the network device is intended

to make a prompt decision determining whether a flow is

malicious or not. The concept revolves around leveraging the

limited processing capabilities and memory of these devices to

quickly process traffic, identifying packets that are evidently

malicious. In instances where the decision carries a high level

of confidence, actions are taken accordingly. Conversely, when

the confidence in the decision is low, the responsibility is

deferred to an expert (the oracle) for further assessment. The

integration of machine learning into this concept is proposed,

involving a simple model on the network device, reflective of

its constraints, and deploying a more robust machine learning

model on the oracle to make better decisions. In the case of the

device, the model would normally be trained with fewer data

than the oracle’s model due to privacy reasons. It is crucial

to find a ML model for the network device (the switch) that

is not only straightforward but also naturally aligns with the

programmable match-action pipeline. In line with the related

work, Random Forests (RF) easily map to the match-action

pipeline by associating each level of the tree with a table.

Ideally deployed on a server, the oracle’s model can not only

be more complex but also trained with all available data to

enhance the accuracy of its predictions.

Finally, it is proposed to re-train the network device model.

This crucial step allows adaptability to changing network

traffic. Once a designated metric is reached, such as after

offloading a specific number of packets, the network device

will undergo re-training using decisions made by the oracle.

Consequently, as the traffic pattern evolves, the switch is ex-

pected to reach decisions that may not be sufficiently reliable.

By re-training with more accurate decisions from the oracle,

the network device aims to dynamically adapt to the evolving

traffic conditions. Since the match-action pipeline associates

each level of the tree with a table, re-training the switch simply

involves rewriting the tables from the control plane.

II. RELATED WORK

Several papers addressing different parts of the raised issue

have been found, all using P4. Firstly, SwitchTree [4] proposes

the integration of RF into the data plane for abnormal traffic



R1,1

R2,1 R3,1 C

R2,2

yes

no

no

yes yes

parser deparsermatch-action pipeline

Fig. 1. An instance embedding of a tree within the Random Forest deployed
in the switch [4]. Ri,j represents the decision rule at node j at depth i.

identification. It extracts flow-level features with early detec-

tion (calculating the features in each packet) and incorporates

RF as tables. pForest [5] introduces a similar idea, but various

RF are trained for different phases of the flow, additionally

proposing a confidence percentage for decision-making. CML-

IDS [6], the work most similar to ours, proposes an RF in

the data plane, and an oracle used to provide more accurate

decisions in case of a lack of confidence in the switch’s

decision. CML-IDS has a strong focus on providing more

powerful algorithms in the oracle but does not involve switch

re-training. The aforementioned solutions are all implemented

in software. MARINA [7] is a hardware-based solution where

the network device extracts the necessary (more complex than

those used in other solutions) features and sends them to an

ML server with a powerful prediction model. Flowrest [8]

proposes a solution designed for hardware implementation,

integrating a RF into the data plane.

III. THE HALIDS SYSTEM

We choose SwitchTree [4] as the basis for HALIDS’ pro-

grammable switch implementation, while the communication

mechanism with the oracle is inspired by CML-IDS [6].

SwitchTree consists of a P4 program responsible for extracting

and calculating features for each packet and processing them

with the previously trained RF. Traffic classification occurs

at flow level, performing early detection, meaning it does

not wait for the flow to complete before classifying it. For

each packet arriving at the switch, a hash is applied using

the standard quintuple IPs/ports/protocol as a key to identify

each flow. For every incoming packet, both stateless (such as

destination port) and stateful features (such as flow duration)

are calculated, and a decision is made for each packet,

based on the flow information obtained up to that moment.

As the flow progresses, more information is gathered (more

packets arrive), and if it is eventually detected as malware, the

remaining packets of the flow are marked accordingly. Most

of the stateful features are approximated since they involve

floating-point operations, not supported by P4.

The classification is done by the RF, which is embedded

in tables within the switch. In Figure 1, a Decision Tree

embedded in a match-action pipeline is illustrated. Each level

in-band 

P4 programmable switch

Student AI/ML-driven IDS

pkti

if Pin-switch < DCT :

export Xi to Oracle 
Coracle (pkti)

Active Learning Logic Path
periodic re-train with Oracle labels 

P4Runtime API

off-band AI/ML server

Oracle AI/ML-driven IDS

1

2

3

Fig. 2. HALIDS architecture for in-band/off-band traffic classification, an
eventual re-training through Active Learning.

of the tree is mapped to a match-action stage, where a feature

is checked at each level. Depending on whether the condition

is satisfied or not, processing proceeds to the next level. This

process continues until reaching a leaf, where a decision is

made, and a class is assigned to the packet. The tables at each

level will match the node and previously evaluated feature

and have two types of action, one that checks the next feature

(providing the necessary values) and one that sets the class.

Figure 2 depicts the HALIDS architecture. We enhance

SwitchTree in several ways. Firstly, the entire switch training

process is automated. Secondly, the concept of oracle is

introduced. The oracle is an ML model - in this case also a RF

- but trained with all the available data and with a higher model

complexity as compared to the switch. The oracle establishes

a connection with the switch via P4Runtime [9] and installs

the P4 program. It also trains the switch for the first time using

a reduced set of available data and a smaller RF. For this, it

trains the model, generates the rules, and writes them into the

switch’s tables. Then, for each packet received by the oracle,

it feeds the received features to the RF model and predicts

the label, sending this value back to the switch. P4Runtime is

utilized for communication between the switch and the oracle,

encompassing packet exchange, configuration, and switch re-

training, all in execution time. The analysis workflow logic of

HALIDS is detailed in Figure 3.

At the switch, the confidence percentage of the decision

made by the RF is incorporated. To achieve this, these

values must be obtained during the training stage. Empir-

ical probabilities are calculated as the number of samples

of the label divided by the number of samples reaching a

leaf. If the classification probability surpasses a pre-defined

Decision Confidence Threshold (DCT), the normal forwarding

is executed, taking into account the class predicted by the

tree. If not, the packet is marked to be sent to the oracle,

allowing for a more confident class assignment. When more

than one tree are present, instead of a simple majority vote,

these probabilities are weighted by the number of trees, and

the classification is determined by the one with the highest

value. To send the packet to the oracle, packet IO support

from the P4Runtime shell [10] is employed. In this context,

the goal is to transmit to the oracle the necessary features

for class determination, along with some data required for

feature approximation. Additionally, the oracle will store all



in-band 

P4 programmable switch

Student AI/ML-driven IDS

pkti

❶ get and store flow ID f-ID

§ if f-ID is already tagged as attack :

o assign pkti to class attack and discard
§ else:

o update stateless/stateful features Xi from flow f-ID

o apply in-band AI/ML-driven IDS to Xi (cf., Fig. 1)

o get class (benign/attack) and probability {P0 , P1}

§ pre-label pkti with Cin-switch = class-max {P0 , P1}

§ if Cin-switch = attack à pre-block pkti 

§ let Pin-switch = max {P0 , P1} be the decision confidence

§ if Pin-switch < DCT (Decision Confidence Threshold)

o export Xi to oracle for labeling

o get Coracle (pkti)

o assign pkti to class Coracle

§ if Coracle = benign à release pkti

o else: assign pkti to class attack and discard

§ move on to pkti+1 à go to 1

Fig. 3. HALIDS traffic analysis workflow.

the classifications it generates (along with the corresponding

feature values) and use this information for re-training the

switch at runtime.

Note that our focus with HALIDS is to provide a closed

loop, where a student ML model deployed at the switch can

make quick decisions with a certain degree of confidence using

a simple machine learning model in the data plane. In cases

where the confidence level is not sufficiently high, the decision

is offloaded to the oracle, which integrates a more powerful

model. The oracle returns the decision made on the packet

to the switch, which acts accordingly. Simultaneously, with

the decisions made by the oracle, the switch is re-trained to

keep it adaptive to changing traffic, therefore closing the loop.

This periodic re-training logic is driven by an Active Learning

Logic Path, which lets the student ML model to select those

samples which require further analysis from the oracle, using

the resulting labels for re-training after a certain number of

queries has been met.

IV. PRELIMINARY RESULTS

We implement and deploy HALIDS using the Sim-

pleSwitchGrpc version of BMv2 [11], employing virtual in-

terfaces. Traffic traces are injected using TCP-replay [12].

Training and validation of the ML models is done using the

UNSW-NB15 dataset1, whereas testing is performed on top

of a small packet trace from the same dataset (1000 packets).

Recall that HALIDS works at the flow-level, but analyzing

1https://research.unsw.edu.au/projects/unsw-nb15-dataset

80 % 90 % 95 %

Decision Confidence Threshold (DCT)

0

20

40

60

80

100

120

D
e
te

c
ti
o
n
 P

e
rf

o
rm

a
n
c
e
 G

a
in

 (
%

)

baseline

Fig. 4. Detection performance gain using HALIDS.

each incoming packet for early flow classification. In all the

the evaluation examples provided next, the detection of the

malware flows is realized with almost perfect accuracy, given

the small size and characteristics of the trace used for testing.

Therefore, we proceed with the classification evaluation at the

packet level, where a better model performance is realized

when the Recall for the packets of the malware flow is higher.

We assess the operation of HALIDS in two different setups:

firstly, we verify that the functioning of the in-switch student

model and the oracle model realize the same performance

when integrating the same model, as a means to verify the

correct implementation of HALIDS. We refer to this scenario

as the baseline. The implementation is validated by processing

all the testing packets through the switch, and alternatively by

processing all these packets through the oracle. In both cases,

student and oracle ML models’ training is done with the all the

training data, using the same DT architecture with a depth of

5-levels. As expected, and as a means for verification, obtained

results are exactly the same at the switch and at the oracle.

Using the baseline detection performance as basis for the

analysis, we then evaluate the operation of HALIDS as a

functional detection system. In this case, we train the student,

in-switch model with only 50% of the training dataset, main-

taining a tree depth of 5, while the oracle is trained with all

the training data, using a significantly more dense architecture,

with 100 trees of depth 15. Using this setup, we test the

detection performance for three different decision confidence

thresholds DCT, taking DCT = 80%, 90%, and 95%. In a

nutshell, the higher DCT, the more packets which are sent

for classification to the oracle. Figure 4 depicts the obtained

results, normalized to the baseline performance. Setting DCT

to 80% results in all the packets classfied in-band at the switch.

As expected, given that the model is trained in this case with

half of the training data as compared to the baseline, detection

performance signifincalty degrades, dropping by almost 30%.

When we take higher DCT thresholds, more packets are sent

to the oracle, and detection performance improves with respect

to the baseline, by about 10% for DCT = 90%, and by almost

20% for DCT = 95%.



ACKNOWLEDGMENT

This work has been partially supported by the FWF Austrian

Science Fund, Project I-6653 GRAPHS4SEC, by the Austrian

FFG ICT-of-the-Future project DynAISEC – Adaptive AI/ML

for Dynamic Cybersecurity Systems – project ID 887504, as

well as by the Uruguayan Agencia Nacional de Investigación

e Inovación (ANII).

REFERENCES

[1] R. Boutaba, M. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and M. Caicedo, “A Comprehensive Survey on Ma-
chine Learning for Networking: Evolution, Applications and Research
Opportunities,” Journal of Internet Services and Applications, 2018.

[2] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A Survey on Data Plane Programming
with P4: Fundamentals, advances, and applied research,” ArXiv, vol.
abs/2101.10632, 2021.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” SIGCOMM

Comput. Commun. Rev., vol. 44, no. 3, 2014.
[4] J.-H. Lee and K. Singh, “Switchtree: In-network Computing and Traffic

Analyses with Random Forests,” Neural Computing and Applications,
11 2020.

[5] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Vanbever,
“pForest: In-network Inference with Random Forests,” CoRR, vol.
abs/1909.05680, 2019. [Online]. Available: http://arxiv.org/abs/1909.
05680

[6] P. Golchin, C. Zhou, P. Agnihotri, P. Agnihotri, M. Hajizadeh, R. Kundel,
and R. Steinmetz, “CML-IDS: Enhancing Intrusion Detection in SDN
through Collaborative Machine Learning,” in 2023 19th International

Conference on Network and Service Management (CNSM), 2023, pp.
1–9.

[7] M. Seufert, K. Dietz, N. Wehner, S. Geissler, J. Schüler, M. Wolz,
A. Hotho, P. Casas, T. Hossfeld, and A. Feldmann, “MARINA: Realizing
ML-driven Real-time Network Traffic Monitoring at Terabit Scale,”
IEEE Transactions on Network and Service Management, 2024.

[8] A. T.-J. Akem, M. Gucciardo, and M. Fiore, “Flowrest: Practical Flow-
level Inference in Programmable Switches with Random Forests,” IEEE

INFOCOM 2023 - IEEE Conference on Computer Communications, pp.
1–10, 2023.

[9] T. P. A. W. Group, “P4Runtime Specification,” https://p4lang.github.
io/p4runtime/spec/main/P4Runtime-Spec.pdf, [Online; Accessed: April
2024].

[10] P. L. Consortium, “Packet IO,” https://github.com/p4lang/
p4runtime-shell/blob/main/usage/packet\ io.md, [Online; Accessed:
April 2024].

[11] ——, “Simpleswitchgrpc - a version of Simpleswitch with P4Runtime
Support,” https://github.com/p4lang/behavioral-model/blob/main/targets/
simple switch grpc/README.md, [Online; Accessed: April 2024].

[12] A. Turner and F. Klassen, “tcpreplay - pcap Editing and Replaying
Utilities,” https://tcpreplay.appneta.com, [Online; Accessed: April 2024].


