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P H Y S I C S

Direct evidence for efficient ultrafast charge separation 
in epitaxial WS2/graphene heterostructures
Sven Aeschlimann1,2*, Antonio Rossi3,4, Mariana Chávez-Cervantes1,  
Razvan Krause1,2, Benito Arnoldi5, Benjamin Stadtmüller5, Martin Aeschlimann5,  
Stiven Forti3, Filippo Fabbri3,4,6, Camilla Coletti3,6, Isabella Gierz1,2*

We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer 
in an epitaxial heterostructure made of monolayer WS2 and graphene. This heterostructure combines the benefits 
of a direct-gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a 
semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photo-
excitation at resonance to the A-exciton in WS2, the photoexcited holes rapidly transfer into the graphene layer 
while the photoexcited electrons remain in the WS2 layer. The resulting charge-separated transient state is found 
to have a lifetime of ∼1 ps. We attribute our findings to differences in scattering phase space caused by the relative 
alignment of WS2 and graphene bands as revealed by high-resolution ARPES. In combination with spin-selective 
optical excitation, the investigated WS2/graphene heterostructure might provide a platform for efficient optical 
spin injection into graphene.

INTRODUCTION
The availability of many different two-dimensional materials has 
opened up the possibility to create novel ultimately thin hetero-
structures with completely new functionalities based on tailored 
dielectric screening and various proximity-induced effects (1–3). 
Proof-of-principle devices for future applications in the field of 
electronics and optoelectronics have been realized (4–6).

Here, we focus on epitaxial van der Waals heterostructures con-
sisting of monolayer WS2, a direct-gap semiconductor with strong 
spin-orbit coupling and a sizable spin splitting of the band structure 
due to broken inversion symmetry (7), and monolayer graphene, a 
semimetal with conical band structure and extremely high carrier 
mobility (8), grown on hydrogen-terminated SiC(0001). First in-
dications for ultrafast charge transfer (9–15) and proximity-induced 
spin-orbit coupling effects (16–18) make WS2/graphene and similar 
heterostructures promising candidates for future optoelectronic 
(19) and optospintronic (20) applications.

We set out to reveal the relaxation pathways of photogenerated 
electron-hole pairs in WS2/graphene with time- and angle-resolved 
photoemission spectroscopy (tr-ARPES). For that purpose, we 
excite the heterostructure with 2-eV pump pulses resonant to the 
A-exciton in WS2 (21, 12) and eject photoelectrons with a second 
time-delayed probe pulse at 26-eV photon energy. We determine 
kinetic energy and emission angle of the photoelectrons with a 
hemispherical analyzer as a function of pump-probe delay to get 
access to the momentum-, energy-, and time-resolved carrier dynamics. 
The energy and time resolution is 240 meV and 200 fs, respectively.

Our results provide direct evidence for ultrafast charge transfer 
between the epitaxially aligned layers, confirming first indications 
based on all-optical techniques in similar manually assembled 
heterostructures with arbitrary azimuthal alignment of the layers 
(9–15). In addition, we show that this charge transfer is highly 
asymmetric. Our measurements reveal a previously unobserved 
charge-separated transient state with photoexcited electrons and 
holes located in the WS2 and graphene layer, respectively, that lives 
for ∼1 ps. We interpret our findings in terms of differences in scat-
tering phase space for electron and hole transfer caused by the relative 
alignment of WS2 and graphene bands as revealed by high-resolution 
ARPES. Combined with spin- and valley-selective optical excitation 
(22–25) WS2/graphene heterostructures might provide a new plat-
form for efficient ultrafast optical spin injection into graphene.

RESULTS
Figure 1A shows a high-resolution ARPES measurement obtained 
with a helium lamp of the band structure along the K-direction 
of the epitaxial WS2/graphene heterostructure. The Dirac cone is 
found to be hole-doped with the Dirac point located ∼0.3 eV above 
the equilibrium chemical potential. The top of the spin-split WS2 
valence band is found to be ∼1.2 eV below the equilibrium chemical 
potential.

Figure 1B shows a tr-ARPES snapshot of the band structure 
close to the WS2 and graphene K-points measured with 100-fs 
extreme ultraviolet pulses at 26-eV photon energy at negative 
pump-probe delay before the arrival of the pump pulse. Here, the 
spin splitting is not resolved because of sample degradation and the 
presence of the 2-eV pump pulse that causes space charge broaden-
ing of the spectral features. Figure 1C shows the pump-induced 
changes of the photocurrent with respect to Fig. 1B at a pump-
probe delay of 200 fs where the pump-probe signal reaches its 
maximum. Red and blue colors indicate gain and loss of photoelec-
trons, respectively.

To analyze this rich dynamics in more detail, we first determine 
the transient peak positions of the WS2 valence band and the 
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graphene -band along the dashed lines in Fig. 1B as explained in 
detail in the Supplementary Materials. We find that the WS2 valence 
band shifts up by 90 meV (Fig. 2A) and the graphene -band shifts 
down by 50 meV (Fig. 2B). The exponential lifetime of these shifts 
is found to be 1.2 ± 0.1 ps for the valence band of WS2 and 1.7 ± 
0.3 ps for the graphene -band. These peak shifts provide first 
evidence of a transient charging of the two layers, where additional 
positive (negative) charge increases (decreases) the binding energy 
of the electronic states. Note that the upshift of the WS2 valence 
band is responsible for the prominent pump-probe signal in the area 
marked by the black box in Fig. 1C.

Next, we integrate the pump-probe signal over the areas indicated 
by the colored boxes in Fig. 1C and plot the resulting counts as a 
function of pump-probe delay in Fig. 3. Curve 1 in Fig. 3 shows 
the dynamics of the photoexcited carriers close to the bottom of 
the conduction band of the WS2 layer with a lifetime of 1.1 ± 0.1 ps 
obtained from an exponential fit to the data (see the Supplementary 
Materials).

In curves 2 and 3 of Fig. 3, we show the pump-probe signal of the 
graphene -band. We find that the gain of electrons above the equilib-

rium chemical potential (curve 2 in Fig. 3) has a much shorter lifetime 
(180 ± 20 fs) compared to the loss of electrons below the equilibrium 
chemical potential (1.8 ± 0.2 ps in curve 3 Fig. 3). Further, the initial 
gain of the photocurrent in curve 2 of Fig. 3 is found to turn into loss 
at t = 400 fs with a lifetime of ∼2 ps. The asymmetry between gain 
and loss is found to be absent in the pump-probe signal of uncovered 
monolayer graphene (see fig. S5 in the Supplementary Materials), 
indicating that the asymmetry is a consequence of interlayer coupling 
in the WS2/graphene heterostructure. The observation of a short-lived 
gain and long-lived loss above and below the equilibrium chemical 
potential, respectively, indicates that electrons are efficiently removed 
from the graphene layer upon photoexcitation of the heterostruc-
ture. As a result, the graphene layer becomes positively charged, 
which is consistent with the increase in binding energy of the -band 
found in Fig. 2B. The downshift of the -band removes the high- 
energy tail of the equilibrium Fermi-Dirac distribution from above 
the equilibrium chemical potential, which partly explains the change 
of sign of the pump-probe signal in curve 2 of Fig. 3. We will show 
below that this effect is further enhanced by the transient loss of 
electrons in the -band.

This scenario is supported by the net pump-probe signal of the 
WS2 valence band in curve 4 of Fig. 3. These data were obtained by 
integrating the counts over the area given by the black box in Fig. 1B 
that captures the electrons photoemitted from the valence band at 
all pump-probe delays. Within the experimental error bars, we find 
no indication for the presence of holes in the valence band of WS2 
for any pump-probe delay. This indicates that, after photoexcitation, 
these holes are rapidly refilled on a time scale short compared to our 
temporal resolution.

To provide final proof for our hypothesis of ultrafast charge 
separation in the WS2/graphene heterostructure, we determine the 
number of holes transferred to the graphene layer as described in 
detail in the Supplementary Materials. In short, the transient elec-
tronic distribution of the -band was fitted with a Fermi-Dirac 
distribution. The number of holes was then calculated from the 
resulting values for the transient chemical potential and electronic 
temperature. The result is shown in Fig. 4. We find that a total 

Fig. 1. Equilibrium band structure and photocarrier dynamics of WS2/graphene heterostructure. (A) Equilibrium photocurrent measured along the K-direction 
with an unpolarized helium lamp. (B) Photocurrent for negative pump-probe delay measured with p-polarized extreme ultraviolet pulses at 26-eV photon energy. Dashed 
gray and red lines mark the position of the line profiles used to extract the transient peak positions in Fig. 2. (C) Pump-induced changes of the photocurrent 200 fs after 
photoexcitation at a pump photon energy of 2 eV with a pump fluence of 2 mJ/cm2. Gain and loss of photoelectrons are shown in red and blue, respectively. The boxes 
indicate the area of integration for the pump-probe traces displayed in Fig. 3.

Fig. 2. Transient band shifts after photoexcitation. Change in peak position of 
the WS2 valence band (A) and graphene -band (B) as a function of pump-probe 
delay together with exponential fits (thick lines). The lifetime of the WS2 shift in (A) 
is 1.2 ± 0.1 ps. The lifetime of the graphene shift in (B) is 1.7 ± 0.3 ps.
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number of ∼5 × 1012 holes/cm2 are transferred from WS2 to graphene 
with an exponential lifetime of 1.5 ± 0.2 ps.

DISCUSSION
From the findings in Figs. 2 to 4, the following microscopic picture 
for the ultrafast charge transfer in the WS2/graphene heterostruc-
ture emerges (Fig. 5). Photoexcitation of the WS2/graphene hetero-
structure at 2 eV dominantly populates the A-exciton in WS2 (Fig. 5A). 
Additional electronic excitations across the Dirac point in graphene 
as well as between WS2 and graphene bands are energetically possible 
but considerably less efficient. The photoexcited holes in the valence 
band of WS2 are refilled by electrons originating from the graphene 
-band on a time scale short compared to our temporal resolution 
(Fig. 5A). The photoexcited electrons in the conduction band of WS2 
have a lifetime of ∼1 ps (Fig. 5B). However, it takes ∼2 ps to refill 
the holes in the graphene -band (Fig. 5B). This indicates that, aside 
from direct electron transfer between the WS2 conduction band and the 
graphene -band, additional relaxation pathways—possibly via defect 
states (26)—need to be considered to understand the full dynamics.

In the transient state, the photoexcited electrons reside in the 
conduction band of WS2 while the photoexcited holes are located in 
the -band of graphene (Fig. 5C). This means that the WS2 layer is 
negatively charged and the graphene layer is positively charged. 
This accounts for the transient peak shifts (Fig. 2), the asymmetry of 
the graphene pump-probe signal (curves 2 and 3 of Fig. 3), the ab-
sence of holes in the valence band of WS2 (curve 4 Fig. 3), as well as 
the additional holes in the graphene -band (Fig. 4). The lifetime of 
this charge-separated state is ∼1 ps (curve 1 Fig. 3).

Similar charge-separated transient states have been observed in 
related van der Waals heterostructures made out of two direct-gap 
semiconductors with type II band alignment and staggered bandgap 
(27–32). After photoexcitation, the electrons and holes were found 
to rapidly move to the bottom of the conduction band and to the 
top of the valence band, respectively, that are located in different 
layers of the heterostructure (27–32).

In the case of our WS2/graphene heterostructure, the energeti-
cally most favorable location for both electrons and holes is at the 
Fermi level in the metallic graphene layer. Therefore, one would 
expect that both electrons and holes rapidly transfer to the graphene 
-band. However, our measurements clearly show that hole transfer 
(<200 fs) is much more efficient than electron transfer (∼1 ps). We 
attribute this to the relative energetic alignment of the WS2 and the 
graphene bands as revealed in Fig. 1A that offers a larger number of 
available final states for hole transfer compared to electron transfer 
as recently anticipated by (14, 15). In the present case, assuming a 
∼2 eV WS2 bandgap, the graphene Dirac point and equilibrium 
chemical potential are located ∼0.5 and ∼0.2 eV above the middle of 
the WS2 bandgap, respectively, breaking electron-hole symmetry. We 
find that the number of available final states for hole transfer is ∼6 times 
larger than for electron transfer (see the Supplementary Materials), 
which is why hole transfer is expected to be faster than electron transfer.

A complete microscopic picture of the observed ultrafast asym-
metric charge transfer should, however, also consider the overlap be-
tween the orbitals that constitute the A-exciton wave function in WS2 
and the graphene -band, respectively, different electron-electron 
and electron-phonon scattering channels including the constraints 
imposed by momentum, energy, spin, and pseudospin conservation, 
the influence of plasma oscillations (33), as well as the role of a 

Fig. 3. Energy- and momentum-resolved carrier dynamics. Pump-probe traces as a function of delay obtained by integrating the photocurrent over the area indicated 
by the boxes in Fig. 1C. The thick lines are exponential fits to the data. Curve (1) Transient carrier population in the conduction band of WS2. Curve (2) Pump-probe signal of the 
-band of graphene above the equilibrium chemical potential. Curve (3) Pump-probe signal of the -band of graphene below the equilibrium chemical potential. Curve (4) 
Net pump-probe signal in the valence band of WS2. The lifetimes are found to be 1.2 ± 0.1 ps in (1), 180 ± 20 fs (gain) and ∼2 ps (loss) in (2), and 1.8 ± 0.2 ps in (3).

Fig. 4. Transient hole density in graphene layer. Change of the number of holes 
in the -band as a function of pump-probe delay together with exponential fit 
yielding a lifetime of 1.5 ± 0.2 ps.
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possible displacive excitation of coherent phonon oscillations that 
might mediate the charge transfer (34, 35). Also, one might specu-
late whether the observed charge transfer state consists of charge 
transfer excitons or free electron-hole pairs (see the Supplementary 
Materials). Further theoretical investigations that go beyond the 
scope of the present paper are required to clarify these issues.

In summary, we have used tr-ARPES to study ultrafast interlayer 
charge transfer in an epitaxial WS2/graphene heterostructure. We 
found that, when excited at resonance to the A-exciton of WS2 at 2 eV, 
the photoexcited holes rapidly transfer into the graphene layer while 
the photoexcited electrons remain in the WS2 layer. We attributed 
this to the fact that the number of available final states for hole transfer 
is larger than for electron transfer. The lifetime of the charge-separated 
transient state was found to be ∼1 ps. In combination with spin-selective 
optical excitation using circularly polarized light (22–25), the ob-
served ultrafast charge transfer might be accompanied by spin trans-
fer. In this case, the investigated WS2/graphene heterostructure might 
be used for efficient optical spin injection into graphene resulting in 
novel optospintronic devices.

MATERIALS AND METHODS
Sample fabrication
The graphene samples were grown on commercial semiconducting 
6H-SiC(0001) wafers from SiCrystal GmbH. The N-doped wafers 

were on-axis with a miscut below 0.5°. The SiC substrate was hydrogen- 
etched to remove scratches and obtain regular flat terraces. The 
clean and atomically flat Si-terminated surface was then graphitized 
by annealing the sample in Ar atmosphere at 1300°C for 8 min (36). 
This way, we obtained a single carbon layer where every third car-
bon atom formed a covalent bond to the SiC substrate (37). This 
layer was then turned into completely sp2-hybridized quasi free- 
standing hole-doped graphene via hydrogen intercalation (38). 
These samples are referred to as graphene/H-SiC(0001). The whole 
process was carried out in a commercial Black Magic growth cham-
ber from Aixtron. The WS2 growth was carried out in a standard 
hot-wall reactor by low-pressure chemical vapor deposition (39, 40) 
using WO3 and S powders with a mass ratio of 1:100 as precursors. 
The WO3 and S powders were kept at 900 and 200°C, respectively. 
The WO3 powder was placed close to the substrate. Argon was used 
as carrier gas with a flow of 8 sccm. The pressure in the reactor was 
kept at 0.5 mbar. The samples were characterized with secondary 
electron microscopy, atomic force microscopy, Raman, and photo-
luminescence spectroscopy, as well as low-energy electron diffraction. 
These measurements revealed two different WS2 single-crystalline 
domains where either the K- or the K’-direction is aligned with 
the K-direction of the graphene layer. Domain side lengths varied 
between 300 and 700 nm, and the total WS2 coverage was approxi-
mated to ∼40%, suitable for the ARPES analysis.

High-resolution ARPES
The static ARPES experiments were performed with a hemispheri-
cal analyzer (SPECS PHOIBOS 150) using a charge-coupled device– 
detector system for two-dimensional detection of electron energy 
and momentum. Unpolarized, monochromatic He I radiation 
(21.2 eV) of a high-flux He discharge source (VG Scienta VUV5000) was 
used for all photoemission experiments. The energy and angular resolu-
tion in our experiments were better than 30 meV and 0.3° (corre-
sponding to 0.01    A ̊     −1  ), respectively. All experiments were conducted at 
room temperature. ARPES is an extremely surface- sensitive 
technique. To eject photoelectrons from both the WS2 and the graphene 
layer, samples with an incomplete WS2 coverage of ∼40% were used.

Tr-ARPES
The tr-ARPES setup was based on a 1-kHz Titanium:Sapphire 
amplifier (Coherent Legend Elite Duo). 2 mJ of output power was 
used for high harmonics generation in argon. The resulting extreme 
ultraviolet light passed through a grating monochromator producing 
100-fs probe pulses at 26-eV photon energy. 8mJ of amplifier output 
power was sent into an optical parametric amplifier (HE-TOPAS from 
Light Conversion). The signal beam at 1-eV photon energy was 
frequency-doubled in a beta barium borate crystal to obtain the 2-eV 
pump pulses. The tr-ARPES measurements were performed with a 
hemispherical analyzer (SPECS PHOIBOS 100). The overall energy 
and temporal resolution was 240 meV and 200 fs, respectively.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/20/eaay0761/DC1
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