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Introduction

In a survey conducted by the Federal Environment Agency of 
Austria, the operators of large sorting plants for lightweight 
packaging (LWP) waste in Austria confirmed that the technical 
potential for achieving the best sorting results has not been 
exploited and that there is an urgent need for modernization. 
Only 31–38 wt% of the output of LWP sorting plants are cur-
rently considered target fractions for mechanical or chemical 
recycling. The quality of polyethylene terephthalate (PET) sort-
ing is particularly relevant in Austria, as about 25% of all plastic 
waste accepted for mechanical recycling in Austria is PET pack-
aging waste. Furthermore, recyclates for food-contact applica-
tions are only allowed to be made of PET (UBA, 2021). The 
waste management industry faces additional pressure to improve 
sorting performance because of the proposal for a new regulation 
for packaging waste, which stipulates a recycled content of 65% 
by 2040 for single-use beverage bottles, which are often made of 
PET (EUR-Lex, 2022).

Sensor-based material flow monitoring and sensor-based 
quality control are already state of the art in many industries to 
guarantee consistently high output qualities. The food industry 
(Liu et al., 2017; Zeng et al., 2021) as well as the pharmaceutical 
industry (Botker et al., 2019) are examples of existing and 
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precise process monitoring applications. In the field of waste 
management, the interest in monitoring has increased in recent 
years, but the technology is not yet implemented in plants (Kroell 
et al., 2021, 2022a). Two of the inhibiting factors are the hetero-
geneity of waste and the complexity of the interrelationships 
between different sorting stages.

One relevant factor in sorting plants, which has been investi-
gated in the past, is high occupation density caused by high 
throughputs. This reduces the sorting performance of various 
sorting units, resulting in a reduced performance of the whole 
sorting plant (Kroell et al., 2022b; Kueppers et al., 2020a, 2020b). 
At the same time, high occupation densities inhibit the quality of 
sensor-based monitoring due to possible particle overlapping 
(Kroell et al., 2023). This leads to a special interest in determin-
ing the throughput using volume flow sensors, such as LiDAR 
sensors (Schwarzenbacher, 2022). Another focus is determining 
the material composition using sensors working in the near-infra-
red (NIR) range. Laboratory and pilot plant scale studies show 
that this enables not only the monitoring of the functionality of 
individual aggregates (e.g. Chen et al., 2023a; Kroell et al., 
2022b; Schloegl and Kueppers, 2022) but also allows an in-line 
quality control and process optimization to increase the quantity 
and quality of PET and other target fractions (Kueppers et al., 
2020a; Kroell et al., 2022a). Furthermore, the prediction of the 
purity at downstream measuring points is feasible in laboratory 
scale (Schloegl et al., 2023).

To investigate the scalability of previous studies, both addi-
tionally mounted sensors above conveyor belts (‘external sen-
sors’) and existing sensors in sensor-based sorters (SBS) 
(‘internal sensors’) – using sensor fusion of data from the visi-
ble light range (VIS) and NIR – are investigated in this study. 
The external sensors were LiDAR sensors and NIR sensors. 
Due to the relevance of the PET fraction, the focus of this study 
is on the behaviour of the PET material in the plant. For this 
purpose, the feasibility of different sensors at different posi-
tions in a LWP sorting plant were investigated and based on the 
results, a prediction model for the PET quality of the multi-
colour PET material flow was developed. In particular, the fol-
lowing research questions (RQ) have been investigated:

RQ1: Is it possible to monitor the effects of different bag opener 
settings on the throughput using LiDAR or NIR sensors?
RQ2: Can similar results concerning monitoring of throughput 
and composition be achieved using an existing SBS at the begin-
ning of the sorting line?
RQ3a: Is it possible to predict PET product quality and/or quantity, 
based on sensor data from the beginning of the sorting plant?
RQ3b: If so, which input data and which level of smoothing are 
particularly beneficial?

Materials and methods

To address these research questions, multiple sensors have been 
installed in a LWP sorting plant in Austria. The sensor data were 

generated over the course of 2 weeks and exported as m3 h−1 for 
the volume flow sensor and as classified pixels for both NIR sen-
sors and the SBS. Furthermore, additional information concern-
ing the plant operation was documented and included in the 
evaluation.

Materials

The material used for the trials was the designated input of the 
sorting plant. The material was not pretreated, dosed differently 
or otherwise manipulated in any way compared to normal plant 
operation. The input composition varies significantly depending 
on the district of origin, as there are different regulations (‘sys-
tems’) for waste separation in different regions (see Table 1). The 
main components in the input are bottles and other 3D objects 
made from PET, polyethylene (PE) or polypropylene (PP), poly-
styrene (PS) as well as beverage cartons (BC). Furthermore, there 
is 2D plastic packaging, metal packaging, other types of packag-
ing and non-packaging waste in different shares in the mixture.

In the first phase of the trials, one truckload full of material 
with known origin was used as input for each trial. In the second 
phase, the input material was partly recently delivered and used 
immediately and partly material that was already stored on the 
property. Therefore, the documentation of the origin of the mate-
rial at a certain time was not possible.

Experimental setup

The experimental setup consists of three external sensors which 
have been mounted over conveyor belts at different positions in 
the plant (see Figure 1). The first sensor (‘LiDAR’) is a volume 
flow sensor using LiDAR technology (Model TIM561-
2050101S80; SICK AG, Waldkirch, Germany) positioned at the 
end of the conveyor belt of the first manual sorting station for 
the separation of bulky material with a belt speed of approx. 
0.35 m s−1. This results in an average spatial resolution of 
approx. 9 mm × 23 mm. The material is not singled at this point, 
but already lower in fluctuations of grain size through to the 
prior manual separation of big objects and voluminous foils. 
The second sensor (‘NIR1’) is also an external sensor and is 
mounted over the acceleration belt of the first SBS unit in the 
plant, together with the corresponding halogen lights. This SBS 
unit is positioned directly after the ballistic separator in the 3D 
stream. The measured belt width is 1.99 m, and the belt speed is 
approx. 2.7 m s−1 and presented as a singled monolayer to the 
SBS unit. This sensor is a NIR sensor (Model G2-320; EVK DI 
Kerschhaggl GmbH, Raaba, Austria) with a spectral resolution 
of 212 px (≙3.1 nm per band), a spatial resolution of 312 px and 
operated at a framerate of 300 Hz. The third measuring point 
(‘SBS’) is the before mentioned SBS (Unisort PC 2000 R, RTT 
Steinert GmbH, Köln, Germany), which exports a data stream 
of fusioned data from the internal NIR and a VIS sensors. The 
fourth sensor (‘NIR2’) is another external NIR sensor of the 
same model and settings as described before. It is positioned 
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after multiple sorting steps over the acceleration belt of another 
SBS to create a PET stream. Again, a high material singulation, 
meaning almost no particles touching or overlapping according 
to Kroell at al. (2024), is observed at a belt speed of approx. 
1.1 m s−1. The belt width is 1.80 m and therefore slightly smaller 
than at NIR1.

Installation and setup of external sensors

For reliable data acquisition, the external sensors were conscien-

tiously prepared individually. The LiDAR sensor was calibrated 

after the installation to enable the conversion of the measured 
signal into metric units [m³ s−1]. For both external NIR sensors, a 

Table 1. Examples of collection systems in Lower Austria.

Name of collection system
Material

910 915 930 935 Recyclabe 
collection

Recyclable bottles made of plastic (e.g. PET or HDPE bottles) ✓ ✓ ✓ ✓ ✓
Other plastic packaging ✓ – ✓ – ✓
Other plastics (material-equivalent non-packaging) (✓) – – – ✓
Beverage carton ✓ ✓ ✓ ✓ ✓
Other material composites ✓ – ✓ – ✓
Metal packaging – – ✓ ✓ ✓
Other packaging materials ✓ – ✓ – ✓
Other non-packaging which is suitable for recycling – – – – ✓

✓: collected, (✓): collected jointly, –: not collected.
Data source: NÖ Umweltverbände, 2019.

Figure 1. Experimental setup for material flow monitoring: (a) simplified flow chart of sorting plant including internal and 
external sensors (grey). False colour image of NIR1 and NIR2 during plant operation; (b) corresponding reference spectra and 
chosen material classes of teach-in.
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teach-in including the most relevant plastic packaging materials 
was created manually (see Figure 1(b)). For this purpose, repre-
sentative pixels were selected from the raw data images of con-
scientiously chosen reference particles. The pre-processed NIR 
spectra (first derivative, normalized, smoothed) of each of these 
pixels thus result in an average spectrum. Several of such average 
spectra can be combined into one material class. For example, it 
was defined that both PET bottles and labels on PET bottles 
should be classified as ‘PET’, to reduce the influence of labels on 
the NIR classification (cf. Chen et al., 2023b, Schloegl et al., 
2022). Particular attention was devoted to ensuring that the teach-
ins for NIR1 and NIR2 produced results as similar as possible to 
enable comparability of the data.

In Table 2, a list of the resulting material classes of the created 
teach-ins for NIR1 and NIR2 is presented together with the list of 
material classes of the existing SBS. PET, PE, PP, PS and BC are 
material classes in both lists. It is important to consider that the 
chosen reference materials from the manufacturer of the machin-
ery as well as the classification algorithm and other factors like 
frame rate and spatial and spectral resolution differ between the 
external and internal NIR sensors. Therefore, the total number of 
pixels of an identical object will be different at NIR1 and SBS.

Experimental procedure

The data acquisition was divided in two phases. In both phases, 
the settings of the bag opener have been documented. The rota-
tion speed of the bag opener was set by selecting a number 
between 12 and 20. Setting 12 represents 3–4 rpm, whereas set-
ting 20 represents 7 rpm. Further settings investigated during the 
trials are 16 (5 rpm), 17 (6 rpm) and 18 (6 rpm).

In the first phase, the chosen bag opener settings were 12, 16 
and 20. In this phase, only material of one truckload at a time 
with known origin and weighted mass (between 6.8 and 8.1 t per 
truck load) was fed into the bag opener. This was done four times 
with varying order of the three settings. As the external NIR sen-
sor data were not available for that time period, only LiDAR and 
SBS data were investigated.

In the second phase, there was no interference with the plant 
operation at all. Therefore, the dominating settings in that time 
were 17 and 18. Of the total of 10 trial days, only at 4 days both 
the NIR1 and NIR2 data were available in addition to LiDAR and 
SBS data due to an unfortunate loss of data.

To enable the correlation of different measurement points, the 
transport times have been measured. To do this, material was fed 
into the emptied plant. One person was waiting at each measure-
ment point and screenshotting the time of an online atomic clock 
at the exact moment the first material passed. The resulting aver-
age transport times are as follows: Input-LiDAR: 69 s, LiDAR-
NIR1/SBS: 29 s and NIR1-NIR2: 77 s. The SBS had a shift in 
time of about 100 s compared to NIR1, as it is apparently not 
aligned with an atomic clock.

Statistical evaluation

Different data preparation steps were required for the different 
data sets. The data of the LiDAR sensor (maximum height and 
volume flow in m³ s−1) have a frequency of 15 fps, these were 
aggregated to 1 s, 5 s, 1 minute and 5 minutes values and con-
verted to m³ h−1 for the visualization. The SBS data are given as 
1 minute values and were aggregated to 5 minutes values in an 
additional data set. For NIR1 and NIR2, 10 values per second are 
given on average. They number of pixels per material class (e.g. 
PET) were aggregated to 1 s. The material-specific occupation 
density (MSOD) (see equation (2)) is calculated based on the 1 s 
values. The resulting 5 s, 1 minute and 5 minutes values of MSOD 
were calculated by using the average of 1 s values.

To exclude the data recorded during plant downtime, the 
LiDAR data with a time resolution of 5 s were used. The relevant 
criteria was constant phases of maximum height and volume 
flow in m³ s−1, thus the previous or following 7 values (≙35 s) 
staying within the current value ± 3.3% of the value range. For 
the aggregation of on–off values from 5 s to 1 minute and 5 min-
utes, the median in an interval was used (majority vote on or off). 
Based on this data, the NIR and SBS data were also filtered 
accordingly. Therefore, only data where the described method 

Table 2. Comparison of material classes of the external sensors (NIR1 and NIR2) and the internal sensor of the sensor-based 
sorter (SBS).

Material class Material NIR1 and NIR2 SBS (NIR + VIS)

PET Polyethylene terephthalate ✓ Sub-classes: clear, blue, green, 
other colours, blisters

PP Polypropylene ✓ ✓
PE Polyethylene ✓ ✓
PS Polystyrene ✓ ✓
BC Beverage carton ✓ ✓
PPC Paper, paperboard, cardboard ✓ –
Foils Mainly PE films ✓ –
NC Not classified ✓ –
PVC Polyvinyl chloride – ✓
Cellulose – ✓
Others – ✓

✓: used,–: not used.
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based on LiDAR data did not detect a stop were used in the fol-
lowing analysis.

The number of sorting personal for 2D and 3D was recorded 
in lists, typically per 8 hours shift, or more granular if changes 
happened during a shift. The records are then mapped to the 5 s, 
1 minute and 5 minutes data points at NIR1 timing.

The NIR and SBS data presented in this study are given as 
occupation density (pixel share of material on the conveyor belt) 
or MSOD (share of one material on the conveyor belt; see equa-
tion (1)), which is introduced by us. The benefit of this parameter 
compared to the common use of material shares (see equation 
(2)) is that MSOD combines the information of pixel-based mate-
rial shares (ca) and occupation density (OD). MSOD can be cal-
culated by multiplying both values (see equation (3)).
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The total amount of data for LiDAR and SBS is 9, 608 minutes, 
which is approximately 160 hours. The selection of data used to 
visualize the correlation of throughput and occupation density at 
bag opener settings 12-16-20 each cover approximately 90 min-
utes and therefore about 4.5 hours in total. For the ridge regres-
sion model, about 31 hours of training data (80%) and 7.5 hours 
of test data (20%) was used.

For the visualization of correlation plots the data within the 
99.5 percentile is presented. The reason for excluding extreme 
outliers is to improve readability for the majority of the data. For 
improved visualization of the violin plots, extreme outliers were 
excluded. In addition to filtering plant stops, values below 
12.6 m³ hour−1 for LiDAR and below 0.46 px% for SBS were 
excluded. All other outliers, especially those above the median, 
are visible as dots in the plot.

Results and discussion

The presented results are structured according to the research 
questions presented in section ‘Introduction’, regarding monitor-
ing the effects of different bag opener settings (RQ1), the exploit-
ability of SBS data at the beginning of a sorting line (RQ2) and 
creating a prediction model for the PET material flow (RQ3a, b).

Correlation of LiDAR and SBS data

The results presented in Figure 2 show a general dependency of 
chosen settings of bag opener and resulting throughput. The data 
of 2 days, in which all settings occurred, are visualized as violin 
plots (Figure 2(a) and (b)). Low rotation speeds (bale opener 

settings 12 ≙ 3–4 rpm) result on average in lower measured vol-
ume flows. The median volume flow at setting 20 (≙7 rpm) is 
1.94 times higher than at setting 12. The distribution of values 
within a setting does not correspond to a Gaussian distribution. 
This is likely caused by fluctuations of input composition, fluc-
tuations of input feed and fluctuations in residence time of dif-
ferent materials in the bag opener. The corresponding plots of 
occupation density measured by the SBS (transport time from 
LiDAR 29 s) show in general similar results. The exception 
occurs at setting 17 (≙6 rpm) where the median is lower than 
setting 16 (≙5 rpm) and differs from setting 18 although the 
rotation speed is in a similar range (≙6 rpm). Since the scatter of 
the values at 17 and 18 is greater than for other values, it is rea-
sonable to assume that the material-specific behaviour in the bag 
opener influences the resulting grain size distribution as well as 
the material at the conveyor belt.

In Figure 2(c) and (d), the correlation of volume flow and 
occupation density is presented. One point in the graphs repre-
sents 1 minute of data. As the volume flow increases, the occu-
pied area on the belt increases; thus, the pixel-based occupation 
density. One reason for the dispersion of values is the fact, that 
the ballistic separator is positioned between the LiDAR sensor 
and SBS. As the sorting performance of a ballistic separator 
depends on the throughput, the resulting material flow (through-
put and composition) at the SBS is not constant with different bag 
opener settings. In Figure 2(c), only results for input material of 
known origin is presented. By doing so, the effects of different 
bag opener settings for similar input material are visible. When 
plotting all data (see Figure 2(d)), the influence of the bag opener 
setting is not visible anymore. This range of results is again 
caused by fluctuations of input composition, fluctuations of input 
feed, fluctuations in residence time of different materials in the 
bag opener and the effects of the ballistic separator. Thus, no con-
clusive and generally applicable correlation formula between 
LiDAR and SBS data can be derived from the data. Nevertheless, 
there is an evident correlation within the same material. Therefore, 
the monitoring of variations within the same input material seems 
to be possible not only by using an external LiDAR sensor but 
also with existing internal sensors of the SBS.

Correlation of NIR1 and SBS data

To investigate the feasibility of using SBS for monitoring the 
material flow composition, the MSOD data of NIR1 and SBS are 
correlated in Figure 3. The data basis is 2291 of 1 minute values 
equivalent to about 38 hours. The results show differing behav-
iour for different materials. PET showed the most similar results 
due to the almost perfect alignment between the MSOD of inter-
nal and external NIR sensors (blue diagonal in the plots). For 
PET, PE and PP, the SBS data are higher on average, whereas for 
PPC and PS, the SBS is lower than die NIR1 data. BC shows an 
overestimation of lower values, whereas for NIR1-MSOD, val-
ues higher than 0.5, the corresponding SBS values are underesti-
mated. The best coefficient of determination (R²) is achieved for 
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Figure 2. Correlation of LiDAR and SBS data at different bag opener settings. (a) Volume flow on two reference days. (b) 
Occupation density on two reference days. (c) Correlation of similar input material. (d) Correlation of all data. Colour code of 
settings: black: 12 ≙ 3–4 rpm, red: 16 ≙ 5 rpm, orange: 17 ≙ 6 rpm, yellow: 18 ≙ 6 rpm, blue: 20 ≙ 7 rpm.
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Figure 3. Correlation of NIR1 and SBS MSOD data presented as hexbin plots including frequency distribution and fit 
function for different materials: (a) PET, (b) PE, (c) PP, (d) BC, (e) PPC and (f) PS. Presented data: 1 minute values, reduced to 
99.5 percentile of all values; Heatmap based on a logarithmic scale; Blue diagonal represents perfect correlation of the data; 
Non-equal axis to improve legibility; MSOD: material-specific occupation density.
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PET (R² = 0.69), the worst for PS (R² = 0.14). The good results for 
PET are most likely due to the fact that the SBS ejects PET; 
therefore, this material class must have had a high priority for the 
manufacturer when creating the internal teach-in of the SBS unit.

Since PE and PP are also materials commonly found in PET 
bottles – mainly as caps, sometimes also in the form of labels – 
these were also prioritized and possibly even weighted when cre-
ating the internal teach-in of the SBS unit. Detailed information 
about the teach-in from the manufacturer was not provided upon 
request. This is a fundamental problem when using data from 
existing SBS units. Through the temporary use of an external 
sensor with a known teach-in, conclusions can be drawn about 
the otherwise inaccessible teach-in of the SBS.

Prediction model

Various types of models were tested in preliminary studies for 
their suitability in predicting the PET stream at the end of the 
plant. For using a deep learning model, the number of available 
data points was not sufficient. The models tested more detailed 
and compared by root mean squared error (RMSE) included 
random forest (RMSE = 3.47 px%) and linear regression 
(RMSE = 3.11%). Ridge regression performed slightly better 
than linear regression and was therefore investigated further.

An occurring issue when using sensors that allow high tempo-
ral resolution is which degree of aggregation is suitable for prac-
tical use (cf. Kroell et al., 2023). If there are many data points per 
second, a lot of information is available, but within the data 
points there are high fluctuations. With too much smoothing, 
however, too much information is lost. Therefore, Figure 4 shows 
the comparison of the actually measured data (‘Test’, black) and 
the values predicted according to the ridge regression model 
(‘Pred’, blue) for different levels of data smoothing. The ridge 
regression model was used with regularization parameter α = 1 
and exhibited better performance than compared linear regres-
sion and random forest models. Neural network models were also 
tested but did not perform that well, most likely to the limited 
amount of data recorded – for larger observation periods they 
might be a good choice.

The best results with respect to coefficient of determination 
(R² = 0.67) and RMSE = 3.11 px% are for 1 minute smoothing. In 
general, it is difficult to achieve lower values for R² in waste sort-
ing plants, due to the high heterogeneity. The demands on accu-
racy are, therefore, lower than, for example, in the food or 
pharmaceutical industry. It is important to emphasize that the 
best results at 1 minute smoothing may be due to the limited 
amount of data available. The 31 hours of training and 7.5 hours 
of test data correspond to only 408 training and 93 test samples at 
5 minutes smoothing. If the data were recorded over a year 
instead of 10 days, the error values for the 5 minutes smoothing 
would most likely be better.

Regardless of the degree of smoothing, the trends of the test 
and prediction data are similar. The afternoon breaks, daily at 
15:00 (II), 17:00 and 19:00 are visible in all diagrams. 

Furthermore, overestimation (III) or underestimation (I) occurs 
in similar time slots for different levels of data smooting. There is 
a tendency for low MSOD test data values resulting in overesti-
mation, whereas higher MSOD test data values result in underes-
timation. Area IV shows particularly similar results of test data 
and prediction in all diagrams. It can be concluded that even a 
less favourable selection of the smoothing does not necessarily 
lead to problems in monitoring.

From the data presented in section ‘Statistical evaluation’, 
the hypothesis can be derived that the prediction of the PET 
flow at measurement point NIR3 based on the SBS data should 
work similarly as the prediction based on NIR1. This hypothe-
sis is confirmed when looking at the hexbin plots in Figure 5(a). 
In the top two plots, LiDAR data were also included in the 
training process to investigate whether this would improve the 
prediction model. The comparison to the plots without using the 
LiDAR data shows no benefit. The use of MSOD – which indi-
rectly covers the throughput by using the occupation density – 
seems to make the LiDAR obsolete for this application. The 
comparison of the RMSE values and R² score for the different 
models shows the best results for NIR1 + LiDAR (R² = 0.68, 
RMSE = 3.10 px%), followed by NIR1 (R² = 0.67), SBS 
(R² = 0.57) and SBS + LiDAR (R² = 0.54, RMSE = 3.72 px%). 
The same ranking of the models is obtained when evaluating 
the width of the 95% prediction interval, which was always 
around double the RSME value.

In all cases, the number of sorting personal was also consid-
ered as an input feature, increasing model accuracy, even though 
only a very limited number of shifts with different personal 
setup was observed. However, explaining the influence of these 
parameters proved to be difficult. It is negative at first sight (see 
Figure 5(b): ‘SP2D’ and ‘SP3D’), although we would expect it 
to be positive. More detailed analysis showed that the number of 
personal seem to act as a proxy for night shifts, where more 
personal was present during the recording of experimental data. 
Extracting the night shift as a separate parameter shows positive 
influence of sorting personal count, with larger negative influ-
ence of night shift (vs day shift).

The most relevant features of the ridge regression models 
of NIR1 and SBS (without LiDAR) are presented in Figure 
5(b) by comparing the linear coefficients. Comparability is 
given due to the application of a standard scaler before train-
ing the models. For both models, the most important feature is 
the MSOD of PET. Since the SBS has different colour catego-
ries for PET due to the VIS sensor, it can additionally be 
deduced that PET clear and blue are the most important col-
ours. However, this could simply be because these colours 
occur most frequently in PET bottles. For both models, the 
coefficient of PE is positive and of PS is negative. For PP, the 
coefficient is negative for lower levels of smoothing and posi-
tive for the highest level of smoothing. As stated before, for 
both models, the number of people in the manual sorting sta-
tions for 2D (‘SP2D’) and 3D (‘SP3D’) material have negative 
coefficients.
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Conclusion

To meet the target quotas for recycling, sorting plants urgently 

need to exploit their technical potential. One important tool for 

this is sensor-based material flow monitoring. Since past studies 

have shown that throughput fluctuations affect the quality of out-

put fractions, the effects of different bag opener settings were 

investigated. To do so, different types of sensors at the beginning 
of the plant were investigated (RQ1). As mounting external 

sensors can be cost-intensive, the results were further compared 
to the results based on data of existing sensors within a SBS 
(RQ2).

It was found that the resulting volume flow is not linearly 
related to the settings of the bag opener. In at least one area of the 
relation, an increased bag opener setting can even lead to a 
decreased volume flow. Nevertheless, when comparing the 
extreme values of setting 12 and setting 20, an increase in through-
put is measurable. The comparison of the resulting volume flow 
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Figure 4. Time series graph of prediction model for MSODPET at NIR2 based on NIR1 data using ridge regression for different 
levels of data smoothing: (a) 5 s, (b) 1 minute, (c) 5 minutes. Black: Test data, Blue: Prediction. Areas highlighted in grey: (I) 
Underestimation, (II) Plant shutdown during break – Overestimation, (III) Overestimation, (IV) Similar results; MSOD: material-
specific occupation density.
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Figure 5. Ridge regression prediction model: (a) comparison of different combinations of input data (NIR1/SBS, LiDAR, 
number of personnel) presented as hexbin plots including perfect correlation (orange diagonal), R² and RMSE values.  
(b) Coefficients of ridge regression based on NIR1 and SBS data (without LiDAR) for different levels of smoothing;  
MSOD: material-specific occupation density.
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(LiDAR) and the occupation density of SBS indicates that although 
there is a spread in the results, using SBS data is sufficient for a 
general estimation of the plant throughput.

The comparison of the first external NIR and SBS data taken 
at the same position in the plant showed an even better correla-
tion. When using SBS data, there is a risk that the requirements 
for the sorting task, and the material flow monitoring do not 
match. In the present study, there happened to be a good correla-
tion with respect to PET. However, the correlation is material 
dependent – the worst correlation was with PS. This means that 
usually the SBS monitors materials well it was targeted for, 
whereas an external NIR sensor gives a more complete picture of 
the material flow. For real-life implementations, the monitoring 
results of SBS data could possibly be improved by adapting the 
teach-in, if machine manufacturers allow access. A possible solu-
tion that would not impair the sorting result could be separate 
data processing for the two applications (sorting and monitoring). 
However, if either access to the data is not available or no SBS is 
positioned at a relevant position in the plant, external NIR sen-
sors provide a reliable data source for monitoring.

Based on the assessment of all available sensor data, different 
machine learning models for the prediction of the material flow at 
the end of the plant based on data at the beginning of the plant 
were evaluated. The aim was to predict the quality of the multi-
coloured PET stream, due to the relevance of the PET fraction for 
recycling (RQ3a). A new parameter was introduced for this pur-
pose: MSOD (px%). This value results from multiplying pixel-
based material share and occupation density. Thus, the composition 
and the throughput can be expressed simultaneously.

When comparing the types of models in preliminary studies, 
ridge regression emerged as the best model. This model was fur-
ther tested for smoothing at different levels (RQ3b), whereby the 
1 minute values appeared to be the best. However, the theory is 
that this is also due to the limited duration of the experiment 
(about 38.5 hours of data during plant operation). If monitored 
over the course of a year, the 5 minutes values could give better 
results, but it could also be that capturing faster changes in the 
material flow and sorting process keep the 1 minute average as 
the best alternative. The comparison of the different input feature 
sets from the sensors (NIR1/SBS plus optional LiDAR) found 
that using the LiDAR data had no positive effect. When compar-
ing NIR1 and SBS data only, NIR achieved better results 
(RMSE = 3.11 px%, R² = 0.67). Nevertheless, SBS data are also 
suitable (RSME = 3.59 px%, R² = 0.57) as in many applications 
there is a broader tolerance range, due to the high heterogeneity 
of waste.

In all cases, the number of sorting personal was also consid-
ered as an input feature, increasing model accuracy, even though 
only a very limited number of shifts with different personal setup 
was observed. Although an improvement in the PET stream 
would be expected with increasing numbers of people, the regres-
sion model coefficient was negative. More detailed analysis 
revealed that there were more people on night shifts. When com-
paring day shift to night shift, the coefficient was positive for the 

day and negative for the night. Therefore, sorting personal 
showed interesting challenges in feature selection.

In conclusion, it can be said that a model for predicting the 
material flow rather at the end of the plant based on data rather at 
the beginning of the plant has been successfully made. There is a 
great potential for the use of such a model, from the use directly 
in the plant operation to the modelling of different scenarios to 
determine the ideal conditions for an economic, as well as eco-
logical operation. For commercial implementation, it is neces-
sary to apply monitoring on a long-term basis in a plant for a 
comprehensive investigation of the resilience of the model.
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