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The Tavis-Cummings model is a paradigmatic central-mode model in which a set of two-level quantum
emitters (spins) are coupled to a collective cavity mode. Here we study the eigenstate spectrum, its localization
properties, and the effect on dynamics, focusing on the two-excitation sector relevant for nonlinear photonics.
These models admit two sources of disorder: in the coupling between the spins and the cavity, and in the energy
shifts of the individual spins. While this model was known to be exactly solvable in the limit of a homogeneous
coupling and inhomogeneous energy shifts, we establish here the solvability in the opposite limit of a homo-
geneous energy shift and inhomogeneous coupling, presenting the exact solution and corresponding conserved
quantities. We identify three different classes of eigenstates, exhibiting different degrees of multifractality and
semilocalization closely tied to the integrable points, and we study their stability to perturbations away from
these solvable points. The dynamics of the cavity occupation number away from equilibrium, exhibiting boson
bunching and a two-photon blockade, is explicitly related to the localization properties of the eigenstates, and it
illustrates how these models support a collective spin description despite the presence of disorder.
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I. INTRODUCTION

In recent years, cavity quantum electrodynamics (QED)
has emerged as a new platform for the quantum simulation
of light-matter interactions [1]. In such cavity setups, the
electromagnetic cavity mode is coherently coupled to a set
of quantum emitters behaving as pseudospins, allowing for
polaritons arising as a strong hybridization between the pho-
tonic mode of the electromagnetic field and the emitter modes.
Furthermore, the cavity-mediated interactions in these models
are highly tunable, allowing for systematic studies of, e.g.,
the role of disorder in a controlled way [2,3]. Motivated by
these experimental developments, there have been a wealth
of studies on the interplay between strong light-matter cou-
pling and disorder, specifically on the consequences on the
localization properties of the eigenstates [4–7]. Cavity mod-
els can exhibit “bright” polaritonic eigenstates with strong
light-matter hybridization and “dark” states with minimal en-
tanglement between the cavity and the emitters, and different
classes of states can have different localization properties that
respond differently to the presence of disorder, which is in turn
reflected in the dynamical properties of these models [8]. Ref-
erence [4] argued that dark states exhibit “semilocalization,”
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being localized on multiple noncontiguous sites. Bright and
dark states were also shown to exhibit multifractality, being
neither fully localized nor delocalized, in a single-excitation
setup described by arrowhead matrices [5].

However, the presence of disorder is not the only factor
that needs to be taken into account: the many-body dynamics
and eigenstate properties can be modified by integrability.
Various cavity models are either integrable or close to an in-
tegrable point, where the model can be exactly solved using a
Bethe ansatz, and the dynamics is constrained by an extensive
amount of conservation laws. Variants of the Tavis-Cummings
model, the main focus of this work, were originally shown
to be integrable by Gaudin [9], and later a set of conserved
charges were identified by Dukelsky et al. [10]. Such cavity
models exhibiting “one-to-all” interactions are part of a fam-
ily of integrable Richardson-Gaudin Hamiltonians [11–13].
Crucially, these models remain integrable in the presence of
disorder, and their eigenstates have been shown to exhibit
anomalous localization properties [14]. Indeed, the effect of
integrability was subsequently studied in Ref. [7], where it
was shown that integrability-breaking restores the ergodicity
of the eigenstates in the thermodynamic limit for a finite
density of excitations.

One paradigmatic model in cavity QED is the Tavis-
Cummings model [15,16], describing the interaction of N
pseudospins with a central bosonic mode under the rotating-
wave approximation [17]. Its Hamiltonian can be written as

ĤTC = � â†â +
N∑

i=1

εi

(
Ŝz

i + 1

2

)
+ 1√

N

N∑
i=1

γi(Ŝ
+
i â + Ŝ−

i â†),

(1)
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where â†(â) are the bosonic creation (annihilation) operators
for the cavity mode and Ŝα

i spin operators describing pseu-
dospin i. We will assume that these are spin-1/2 pseudospins,
representing two-level quantum emitters, but this is not a nec-
essary assumption. This model can be realized in both cavity
and circuit QED [3,8,18,19]. The first term gives the energy
of the bosonic mode and the second term that of the quantum
emitters (each with bare Zeeman energy εi). The final term
describes the inhomogeneous coupling between the bosonic
mode and the pseudospins with interactions strengths γi. Here
we have allowed for disorder in both the bare energies and
the couplings between the cavity mode and the pseudospins.
The Hamiltonian commutes with the total excitation number,
M = â†â + ∑N

i=1 Ŝ+
i Ŝ−

i , such that we can restrict ourselves to
sectors with a fixed number of excitations. For any sector with
a finite number of excitations, i.e., the number of excitations
does not scale with N , the factor 1/

√
N in the interaction term

is required to have a finite energy in the thermodynamic limit
of infinite system size N → ∞. In this way, this factor plays
the same role as the Kac factor in systems with long-range
interactions [20], an analogy that will be elaborated on in the
remainder of this work.

Theoretical studies of the model in the one excitation
sector, M = 1, have already been carried out in Ref. [4],
illustrating the multifractal structure of the eigenstates along
with their semilocalization properties. The dynamics in this
sector was also studied in Ref. [21], where the presence of
disorder gave rise to a variety of complex behaviors. How-
ever, nonlinear photonics requires extending the Hilbert space
to include multiple excitations [22]. Here, we work within
the two-excitation sector, M = 2, to study the localization
properties of the eigenstates and their effect on the dynamics.
While the model has long been known to be integrable for
homogeneous coupling strengths and inhomogeneous bare
energies, we show that the opposite limit is also integrable (in
the two-excitation sector). This exact solution is remarkably
transparent and allows us to identify three different classes of
eigenstates. These two integrable limits conspire to result in
multifractal eigenstates where the localization properties are
surprisingly robust to integrability-breaking perturbations.

The eigenstate properties are directly reflected in the dy-
namics, and we use the nearby integrable limit to present
exact results for the short-time dynamics of disordered Tavis-
Cummings models. We note that the structure of these cavity
models is closely related to central spin models, where a set
of noninteracting spins interact with a central spin, similar to
the cavity mode in these setups. Such central spin models
similarly support both bright and dark states [23–32], now
depending on the hybridization between the central spin and
the environment, and recent studies have shown that these also
exhibit the combination of Richardson-Gaudin integrability
and semilocalization and multifractality [33].

This work is structured as follows. In Sec. II we consider
the Tavis-Cummings Hamiltonian for two excitations in the
absence of disorder, highlighting the existence of three classes
of eigenstates. In Sec. III we present the exact solution for the
model in the presence of disorder in the interaction strengths,
reducing the diagonalization of the Hamiltonian to solving a
single nonlinear equation with different classes of solutions,

and we present the exact conserved charges. For interaction
strengths scaling as in Eq. (1), we show how the dynamics
are further constrained due to the approximate conservation
of permutation operators, and we derive the corresponding re-
laxation times in Sec. IV. For completeness, the exact solution
of the model for inhomogeneous bare energies is presented
in Sec. V. The localization properties of the three different
classes of eigenstates are discussed in Sec. VI, and these are
related to different examples of the dynamics of the cavity
mode occupation number in Sec. VII. Section VIII presents
our conclusions.

II. THE HOMOGENEOUS
TAVIS-CUMMINGS HAMILTONIAN

To understand the spectrum of the two-excitation Tavis-
Cummings Hamiltonian and distinguish different classes of
eigenstates, it is instructive to first consider the homogeneous
limit. In the absence of disorder, when all the bare energies
and coupling strengths are equal, the Tavis-Cummings Hamil-
tonian can be solved by introducing collective spin operators
Ŝα

tot = ∑N
i=1 Ŝα

i . The Hamiltonian (1) reduces to

ĤTC = � â†â + ε

(
Ŝz

tot + N

2

)
+ γ√

N
(â Ŝ+

tot + â†Ŝ−
tot ), (2)

where we have set εi = ε,∀i and γi = γ ,∀i. The Hamilto-
nian can now be expressed by introducing total spin states
|Stot, Sz

tot〉 = |S, MS〉, with total spin S and total spin projection
MS .

The restriction to the two-excitation sector requires that
there can only be up to two spin excitations, such that MS

can only take the values −N/2, −N/2 + 1, and −N/2 + 2 (in
what follows, we assume that N � 4). The Hamiltonian addi-
tionally conserves the total spin quantum number, which can
take a maximal value of S = N/2, such that the Hamiltonian
decomposes in three blocks with different total spin. Either
S = N/2 − 2, for which there is a single possible state

|0〉 ⊗ |N/2 − 2,−N/2 + 2〉 , (3)

or S = N/2 − 1, resulting in two states

|0〉 ⊗ |N/2 − 1,−N/2 + 2〉 ,

|1〉 ⊗ |N/2 − 1,−N/2 + 1〉 , (4)

or S = N/2, resulting in three states

|0〉 ⊗ |N/2,−N/2 + 2〉 ,

|1〉 ⊗ |N/2,−N/2 + 1〉 ,

|2〉 ⊗ |N/2,−N/2〉 . (5)

In this basis of multiplet states, the Hamiltonian takes the
form

Ĥ =

⎛
⎜⎜⎜⎜⎜⎜⎝

2ε 0 0 0 0 0
0 2ε γ 0 0 0
0 γ ε + � 0 0 0
0 0 0 2ε

√
2γ 0

0 0 0
√

2γ ε + �
√

2γ

0 0 0 0
√

2γ 2�

⎞
⎟⎟⎟⎟⎟⎟⎠

. (6)
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FIG. 1. Eigenspectrum of the clean and disordered Tavis-
Cummings Hamiltonian for two excitations. In the absence of
disorder, three classes of eigenstates can be observed resulting in
dark states (singlet states) and polaritons (doublet and triplet states).
For disordered systems (gray lines) the dark states and the doublet
polaritons split into bands of states, while the triplet polaritons re-
main isolated. Parameters: N = 40, εi ∈ [−0.1, 0.1], and γi ∈ [1, 2]
uniformly distributed for the disordered model, and ε = εi and γ 2 =
γ 2

i for the homogeneous model (a.u.).

Here we have taken the limit of N 	 1 in all matrix elements
and neglected subleading corrections in 1/N , which, however,
do not change the structure of this matrix.

This Hamiltonian clearly returns three classes of eigen-
states, corresponding to the three different blocks: the
singlet states from Eq. (3) return eigenstates |0〉 ⊗
|N/2 − 2,−N/2 + 2〉, where the spin degrees of freedom do
not hybridize with the cavity mode. These states act as dark
states. The doublet states from Eq. (4) hybridize states with
no photon in the cavity and with a single photon in the cavity.
We will refer to these states as doublet polaritons. Finally, the
triplet states (5) result in states that are a linear combination of
zero, one, or two photonic excitations, such that we will refer
to these as triplet polaritons. While in the literature the term
polaritons is usually reserved for the strong-coupling regime,
we will always refer to these states as polaritons for clarity
(also following Ref. [5]).

The degeneracy of these eigenvalues is given by the total
number of ways in which N spin-1/2 particles can be coupled
to total spin S. This number of ways follows from Catalan’s
triangle, resulting in a total degeneracy of N (N − 3)/2 for the
singlet state, a total degeneracy of (N − 1) for each of the
doublet states, and the triplet states are nondegenerate since
there is only a single way of coupling N spin-1/2 particles to
total spin S = N/2.

III. DISORDERED COUPLINGS

The eigenspectrum of the Tavis-Cummings model is illus-
trated in Fig. 1 for varying �, both in the absence and presence
of disorder. In the presence of disorder, the highly degenerate
dark states and the doublet polaritons split into bands of states,
with the number of states corresponding to the degeneracy in
the absence of disorder, whereas the triplet polaritons remain
isolated states. For sufficiently weak disorder strengths, the

different bands do not overlap, which we will take to be the
case in the remainder of this work.

In the following, we will show that the presence of weak
disorder in the coupling between the cavity mode and the
pseudospins indeed preserves the three classes of eigenstates.
In this limit, the Hamiltonian can be written as

ĤTC = � â†â + ε

N∑
i=1

(
Ŝz

i + 1

2

)
+ (â Ĝ+ + â†Ĝ−), (7)

with

Ĝ± = 1√
N

N∑
i=1

γiŜ
±
i =

N∑
i=1

giŜ
±
i . (8)

For convenience, we have defined gi = γi/
√

N . Since the
Hamiltonian commutes with the total excitation number M̂ =
â†â + ∑N

i=1 Ŝ+
i Ŝ−

i , we can set ε to zero without loss of
generality.

We first present an explicit construction of the eigenstates,
proving the exact solvability of the Tavis-Cummings model
(in the two-excitation sector) for disordered couplings and
in the absence of disorder in the bare energies. This exact
solution then also allows us to construct an extensive set
of conserved charges commuting with the Hamiltonian. The
integrability of this model was conjectured in Ref. [33], and
here we prove a limited version of this conjecture, showing
that the integrability holds if the model is restricted to the
two-excitation sector.

A. Dark states

In the presence of disordered coupling, the model still
allows exact dark states. These are eigenstates of the Hamil-
tonian (7) of the form |0〉 ⊗ |D〉, where the spin state satisfies

Ĝ− |D〉 = 0. (9)

These states are adiabatically connected to the singlet states
from Eq. (3), since in the limit of a homogeneous interaction
strength Ĝ− ∝ Ŝ−

tot, and they are well studied in the literature
on central mode models [23–32]. The total number of dark
states is N (N − 3)/2, and these states are annihilated by the
interaction part in the Hamiltonian, such that these are again
(highly degenerate) eigenstates of the Hamiltonian (7) with
eigenvalue 2ε, since by construction

[� â†â + (â Ĝ+ + â†Ĝ−)] |0〉 ⊗ |D〉 = 0. (10)

B. Polaritons

For the polaritons, the exact diagonalization of the Hamil-
tonian (7) can be reduced to solving a nonlinear equation for
the eigenvalues. In the spirit of integrability, we can consider
an ansatz for the polariton eigenstates with a single free pa-
rameter, in such a way that the eigenvalue equation reduces to
a nonlinear equation for this parameter.

Specifically, we consider an ansatz for the (unnormalized)
eigenstates of the form

|B(κ )〉 =
[

1 + â Ĝ+

κ + �
+ â†Ĝ−

κ − �

]
|1〉 ⊗ |φκ〉 , (11)
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where κ is a free variable and |φκ〉 is a wave function for the N
spin degrees of freedom with a single spin excitation, depen-
dent on κ . Acting with the Hamiltonian (7) on the ansatz (11),
it is straightforward to show that this state is an eigenstate with
eigenvalue κ + � provided

Ĥ (κ ) |φκ〉 ≡
[

Ĝ−Ĝ+

κ + �
+ 2

Ĝ+Ĝ−

κ − �

]
|φκ〉 = κ |φκ〉 . (12)

This equation is a self-consistent eigenvalue equation since
the spin Hamiltonian Ĥ (κ ) explicitly depends on the eigen-
value κ . Note that for a normalized state |φκ〉, the norm of
the polariton wave functions (11) can be calculated from the
Hellmann-Feynman theorem as

〈B(κ )|B(κ )〉 = 1 + 〈φκ |Ĝ−Ĝ+|φκ〉
(κ + �)2

+ 2
〈φκ |Ĝ+Ĝ−|φκ〉

(κ − �)2

= 1 − ∂κ〈Ĥ (κ )〉. (13)

Crucially, the Hamiltonian in Eq. (12) is integrable for
every choice of κ , and its eigenvalues and eigenstates can
be explicitly constructed. As shown in Appendix A, using
this exact solution the self-consistent eigenvalue equation can
be recast as a secular equation. Defining ḡ2 = ∑N

i=1 g2
i , �̃ =

�/2, a state |φκ〉 can be written as

|φκ〉 =
(

N∑
i=1

gi

λ2 − �̃2 − ḡ2 + 2g2
i

Ŝ+
i

)
|∅〉 , (14)

with |∅〉 = |↓, . . . ,↓〉. The eigenvalue equation for the po-
lariton energy E then reduces to solving the following
equation for λ = E − �̃ = κ + �̃:

λ − 3�̃

3λ − �̃
=

N∑
i=1

g2
i

λ2 − �̃2 − ḡ2 + 2g2
i

. (15)

Remarkably, different solutions to this equation can be
directly identified with either the doublet or triplet polaritons.
In Fig. 2 the structure of this equation is made explicit by
plotting both sides as a function of λ, and the intersections
between these curves correspond to the solutions of Eq. (15).

The left-hand side has a vertical asymptote at λ = �̃/3 and
a horizontal asymptote at 1/3, and is monotonically increasing
everywhere. The right-hand side is an even function of λ and
has a series of poles at

λ = ±
√

�̃2 + g2 − 2g2
i , i = 1, . . . , N, (16)

with each pair of poles corresponding to a coupling strength
gi. The function is monotonically decreasing (increasing) for
λ positive (negative) and goes to zero for |λ| → ∞. There
are two classes of solutions to these equations: the solutions
corresponding to the doublet states lie in between two poles,
leading to two sets of (N − 1) states. The three triplet states
correspond to the remaining isolated solutions to these equa-
tions away from the poles. Taking these together, we find
that the two curves generally have 2N + 1 intersections, ex-
hausting the available polariton Hilbert space. Note that for
a sufficiently asymmetric distribution of interaction strengths,
a pair of poles can vanish, but the secular equation will still
have 2N + 1 solutions, as discussed in Appendix C.

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
λ

−6

−4

−2

0

2

4

FIG. 2. Graphical illustration of the secular equation. Each inter-
section between the left-hand side (red line) and the right-hand side
(blue line) returns the eigenvalue of a polariton state, leading to two
classes of solutions: doublet polaritons (circles) and triplet polari-
tons (squares). Parameters: � = 1, ε = 0, N = 4, and g2

i = 1, . . . , 4
(a.u.).

We emphasize that, while diagonalizing the exact Hamil-
tonian rapidly becomes unfeasible for large system sizes, the
secular equation (15) can be efficiently solved for arbitrarily
large system sizes using, e.g., an intersection method, where
specific triplet or doublet states can be systematically targeted
since their relative position with respect to the poles is known.

In the limit where λ is far away from the poles, the secular
equation approximately reduces to a cubic equation

λ − 3�̃

3λ − �̃
≈ ḡ2

λ2 − �̃2 − ḡ2
, (17)

with three solutions and corresponding energies E = λ + �̄

given by

E =

⎧⎪⎨
⎪⎩

2�̃ − 2
√

�̃2 + ḡ2,

2�̃,

2�̃ + 2
√

�̃2 + ḡ2.

(18)

These eigenvalues now reduce to the eigenvalues for the triplet
states from Eq. (6).

We note that the secular equation (15) closely resembles
the dispersion equation within the random phase approxima-
tion (RPA), which aims to construct approximate particle-hole
excitations on top of a reference state [34]. This similarity
arises more generally within the theory of Richardson-Gaudin
integrability (see, e.g., Ref. [35]): for single-excitation states,
the Bethe equations typically reduce to the dispersion relation
within the Tamm-Dancoff approximation (TDA), which aims
to construct particlelike excitations on top of a reference state,
and the RPA can be seen as the two-excitation generalization
of the TDA [34].

C. Conservation laws

The conserved charges for the Hamiltonian (7) can be
constructed from those of the factorizable Richardson-Gaudin
Hamiltonians [9,11,13]. These conserved charges are easi-
est to represent in a block matrix representation, similar to
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Eq. (6), and they are of the form

Qj =

⎛
⎜⎜⎝

− 2
3 �

(
Q̃ j + Sz

j

)
G+(

Q̃ j + Sz
j/3

)
0(

Q̃ j + Sz
j/3

)
G− �

3

(
Q̃ j + 3Sz

j

) √
2
(
Q̃ j + Sz

j/3
)
G+

0
√

2
(
Q̃ j + Sz

j/3
)

4
3 �

(
Q̃ j − Sz

j

)
⎞
⎟⎟⎠,

(19)

where Q̃ j are operators acting on the spin degrees of freedom
as

Q̃ j = S+
j S−

j + S−
j S+

j

2

+
N∑

k �= j

(
g jgk

g2
j − g2

k

(S+
j S−

k + S−
j S+

k ) + 2g2
k

g2
j − g2

k

Sz
jS

z
k

)
.

(20)

That they commute with the Hamiltonian (7) for two excita-
tions can be verified by direct calculation, and this is shown
in Appendix B. The existence of these conserved quantities
guarantees the integrability of the model. We note that this
calculation is highly similar to a recent calculation of the con-
served charges in a spin-1 central spin model [33], a related
central mode model where a similar block matrix structure
appears. For this reason, we will defer from discussing these
conserved charges in more detail and refer the reader to
Ref. [33]. We only note that this previous work conjectured
the integrability of the Tavis-Cummings model with disor-
dered couplings (for an arbitrary number of excitations), and
the current work establishes its integrability in the limiting
case of two excitations. The integrability for a higher number
of excitations remains an open question. In both this work
and Ref. [33], integrability was established using an ansatz
for the eigenstates and the conserved charges, with the latter
explicitly dependent on the 3 × 3 block matrix representation
of both models, and it is unclear how these ansätze generalize
to higher excitation sectors and corresponding larger block
matrices.

IV. RELAXATION TIMES
FOR PERMUTATION SYMMETRY

The Bethe states in the previous derivation can be adiabati-
cally connected to collective spin states. This correspondence
suggests that, at least for not too strong disorder, the consid-
ered model can be described in terms of the collective spin
operators of the homogeneous model. Here we show that for
the Hamiltonian (1) such a description of the dynamics is
justified up to times scaling as t ∝ √

N in the absence of
disorder in the bare energies. More specifically, collective
spin states are indicative of an underlying spin permutation
symmetry, and we show that this permutation symmetry is
preserved up to relaxation times scaling as

√
N in the cur-

rent integrable model. This derivation builds on a similar
argument for systems with sufficiently long-range interactions
[36]. Such models similarly support a description in terms of
collective spin states in the presence of a nearby integrable
(but quasiclassical) limit [36–39]. These relaxation times then
present an additional similarity between the current model
and lattice systems with sufficiently long-range interactions.

In such systems, the presence of an integrable semiclassical
limit was recently argued to be crucial [39] for such a de-
scription, and here we show the stability of the collective spin
description near the integrable point.

In the homogeneous models all spin modes are identical,
i.e., the Hamiltonian is invariant under any permutation of the
spins. The homogeneous Hamiltonian commutes with permu-
tation operators P̂i j , permuting spins i and j, and, e.g., for
spin-1/2 we can write these permutations in terms of Pauli
matrices as

P̂i j = 1
2 (1i j + �σi · �σ j ). (21)

These operators are exactly conserved in the dynamics of the
homogeneous model, for which the eigenstates in terms of
collective spins are similarly eigenstates of the permutation
operators. While the permutation operators are no longer ex-
actly conserved in the inhomogeneous case, it is possible to
derive the inequality

| 〈P̂i j (t )〉 − 〈P̂i j (0)〉 | � 4
√

2
|γi − γ j |t√

N
(22)

for systems with homogeneous bare energies, indicating that
permutation symmetry is conserved up to a time scale τi j ∝√

N/|γi − γ j |. As such, for any initial state that satisfied this
permutation symmetry, the dynamics up until the minimal
time scale τi j can be accurately modeled using the collec-
tive spin operators, since these are exactly the operators that
do not take the states out of the initial symmetry sector. In
the case of homogeneous bare energies, |γi − γ j | scales (at
worst) as N−1/2, resulting in time scales τi j ∝ N1/2, indicating
that any such description becomes increasingly accurate with
increasing system size. Note that this is a lower bound: the
scaling as N−1/2 holds for the extremal values of γi and γ j ,
whereas the typical closest distance scales as N−3/2, indicating
much longer-lived conservations for the corresponding spin
permutation operator.

The proof is straightforward and follows a similar proof for
systems with long-range interactions from Ref. [36]. We have
that

d

dt
〈P̂i j (t )〉 = −i 〈[P̂i j, Ĥ ]〉 = −i 〈P̂i j (Ĥ − P̂i j Ĥ P̂i j )〉 , (23)

where we have used that P̂2
i j = 1. It follows that

| 〈P̂i j (t )〉 − 〈P̂i j (0)〉 | � t ||P̂i j (Ĥ − P̂i j Ĥ P̂i j )||
� t ||Ĥ − P̂i j Ĥ P̂i j ||, (24)

where we have bounded the expectation value in terms of the
operator norm and used that ||P̂i j || = 1. The operator P̂i j Ĥ P̂i j

is the original Hamiltonian with spins i and j exchanged, such
that we find

Ĥ − P̂i j Ĥ P̂i j = γi − γ j√
N

[(Ŝ+
i − Ŝ+

j )â + (Ŝ−
i − Ŝ−

j )â†]. (25)

While the operator norm of â and â† is in general unbounded,
here we can make use of the restriction to the two-excitation
subspace, for which 〈â†a〉 � 2 such that ||â|| = ||â†|| = √

2.
The operator norm of the above operator is bounded by the
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sum of the operator norms of each term, resulting in

||Ĥ − P̂i j Ĥ P̂i j || � 4
√

2
|γi − γ j |√

N
. (26)

Plugging this bound in Eq. (24), we obtain the proposed bound
from Eq. (22).

While the integrability of the model guarantees nonergod-
icity due to the presence of conservation laws, this result
further constrains the dynamics. For any initial state that is
fully symmetric in the spins, as is the case, e.g., for a state
with no spin excitations and two photonic excitations, the
dynamics can be restricted to the Dicke manifold, i.e., spin
states that are fully symmetric under spin exchange, up to a
time scale scaling as

√
N . This space is also known as the

totally symmetric subspace (TSS), and the role of the TSS
in spin dynamics has been the subject of active study [40].
Only after this relaxation time scale can the system move out
of the TSS, and we find that the TSS is increasingly stable
for increasing system sizes. In the thermodynamic limit, the
dynamics can hence be restricted to this subspace, similar
to the homogeneous limit (6). Furthermore, since all ma-
trix elements of the Hamiltonian are linear in the interaction
strengths, the matrix elements of the disordered Hamiltonian
in this restricted subspace will only depend on the average
interaction strength. The dynamics is expected to reduce to the
collective spin dynamics of the homogeneous model with the
appropriate averaged interaction strength. For more general
initial states, this emergent symmetry implies that the dynam-
ics in sectors with different permutation symmetry decouples
in the thermodynamic limit.

Note also that the above relaxation time only depends on
the restriction to the two-excitation sector by setting ||â|| =
||â†|| = √

2. For the n-excitation sector, in the above deriva-
tion the factor

√
2 only needs to be replaced by

√
n. In any

sector where the number of excitations does not scale with
system size, we hence expect relaxation times for the permu-
tation symmetry scaling as

√
N . If the number of excitations

M scales with N , i.e., M ∝ N , then the Kac factor in the
Hamiltonian (7) also needs to be modified to 1/N , i.e.,

ĤTC = � â†â + ε

N∑
i=1

(
Ŝz

i + 1

2

)
+ 1

N

N∑
i=1

γi(Ŝ
+
i â + Ŝ−

i â†).

(27)

Repeating the derivation above directly results in the bound

| 〈P̂i j (t )〉 − 〈P̂i j (0)〉 | � 4
√

M
|γi − γ j |t

N
∝ |γi − γ j | t√

N
,

(28)

again indicating that permutation symmetry is preserved up to
time scales scaling as

√
N . We obtain the general result that

permutation symmetry is preserved up to time scales scaling
as

√
N , irrespective of the number of excitations, provided

that the Hamiltonian is defined in such a way that energy is
finite. This argument fails for a disorder in the bare energies
εi, since then all obtained time scales would be O(1). In this
limit, however, it appears that integrability again stabilizes the
collective spin description.

In the context of long-range systems, we note that the
scaling with system size of the corresponding relaxation times
follows directly from the Kac factor fixing the extensivity
of the energy, similar to how the time scale in our context
requires the correct normalization of the interaction strengths.

V. DISORDERED BARE ENERGIES

For completeness, we reiterate the exact solution of the
Hamiltonian with homogeneous couplings and disorder in the
bare energies,

ĤTC = � â†â +
N∑

i=1

εi

(
Ŝz

i + 1

2

)
+ g

N∑
i=1

(â Ŝ+
i + â†Ŝ−

i ).

(29)

It is known that in this limit the model is integrable [10]
and can be solved using the Bethe ansatz [41] (see also
Refs. [42–45]). The eigenstates can then be written as Bethe
states, characterized by two variables E1 and E2:

|ψ (E1, E2)〉 = Ŝ†(E1)Ŝ†(E2) |∅〉 , (30)

expressed in terms of generalized raising operators

Ŝ†(Eα ) = a† − g
N∑

i=1

Ŝ+
i

εi − Eα

, (31)

acting on the vacuum state |∅〉 = |0〉 ⊗ |↓ · · · ↓〉. These states
are eigenstates of the partially homogeneous Hamiltonian
with total energy E = E1 + E2, provided the variables satisfy
the set of Bethe equations [42]:

� − E1 +
N∑

i=1

g2

E1 − εi
= 2g2

E1 − E2
, (32)

� − E2 +
N∑

i=1

g2

E2 − εi
= 2g2

E2 − E1
. (33)

The two variables E1,2 are also referred to as “quasienergies”
due to their role in the energy of the eigenstate they describe.

These equations have been well studied in the literature
[41,46–48]. For our results, it is relevant that there exist dif-
ferent classes of solutions, depending on the position of the
variables E1,2 with respect to the poles εi in the Bethe equa-
tions: either E1 and E2 are both far away from the poles, or
one variable is away from the poles and the other is “trapped”
between a pair of poles, or both variables are “trapped” be-
tween pairs of poles. Following our discussion for the limit of
inhomogeneous couplings, these solutions can be identified
with triplet polaritons, doublet polaritons, and singlet dark
states, respectively.

The Hamiltonian again supports an extensive set of con-
served quantities, one for each spin in the system, where now

Q̂ j = (� − ε j )Ŝ
z
j − g(Ŝ+

j â + Ŝ−
j â†)

− 2g2
N∑

k �= j

1

ε j − εk

[
1

2
(Ŝ+

j Ŝ−
k + Ŝ−

j Ŝ+
k ) + Ŝz

j Ŝ
z
k

]
. (34)

These form a set of mutually commuting conserved charges
satisfying [Ĥ , Q̂i] = [Q̂i, Q̂ j] = 0,∀i, j.
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VI. SEMILOCALIZATION AND MULTIFRACTALITY

The different classes of eigenstates do not just differ in that
they belong to different bands, but they also have different
localization properties. Eigenstates in disordered cavity mod-
els have recently gained attention because of their anomalous
localization properties, which in turn directly translate to a
lack of thermalization for a local perturbation [7]. For a single
excitation, dark state eigenstates were argued to be “semilo-
calized,” i.e., being localized on multiple noncontiguous sites,
in Ref. [4]. In a follow-up work, it was argued that the polari-
tons in such a model exhibit multifractality: the eigenstates
are extended, i.e., not localized, but yet nonergodic and not
fully delocalized [5]. Multifractality was similarly observed in
the integrable Tavis-Cummings model with a finite excitation
density [7], and arguably already appeared in earlier studies
of the (closely related) integrable Richardson model [14].
This multifractality was similarly observed in Ref. [33] for
an integrable central spin model where the central mode is a
spin-1 particle, where the dynamics of the central spin mode
can serve as a probe for the multifractality.

To probe the multifractality of a state |ψ〉, we consider the
q-dependent inverse participation ratio, defined as

P (q) =
D∑

n=1

| 〈n|ψ〉 |2q, (35)

where n are product states in the full (photonic and spin)
D-dimensional Hilbert space. The q-dependent IPR quanti-
fies the distribution of the components of an eigenstate in
a product state basis, with q acting as the equivalent of the
order in the Rényi entropies. For a delocalized eigenstate, all
coefficients scale as 1/

√
D, resulting in an IPR scaling with

dimension of the Hilbert space as D1−q. A change in this
scaling as q is varied is a signature of multifractality in the
eigenstate [49,50].

The different terms in this summation can be made ex-
plicit by labeling the basis states as |0〉 ≡ |2〉 ⊗ |∅〉, |i〉 ≡
|1〉 ⊗ Ŝ+

i |∅〉, and |i, j〉 ≡ |0〉 ⊗ Ŝ+
i Ŝ+

j |∅〉 and introducing a
corresponding notation for the eigenstate components. The
IPR then reads

P (q) = |ψ0|2q +
N∑

i=1

|ψi|2q +
N∑

i, j=1

|ψi, j |2q. (36)

In the following, we show that it is useful to consider the
different contributions to the IPR separately and introduce
“restricted” versions of the IPR, where the summations are
restricted to the sectors with a fixed number of photons.
Specifically, we write

P0(q) = |ψ0|2q (2-photon), (37)

P1(q) =
N∑

i=1

|ψi|2q (1-photon), (38)

P2(q) =
N∑

i, j=1

|ψi, j |2q (0-photon). (39)

The scaling of the full IPR will be determined by the scaling
of the largest term of these three.
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q

=
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12
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FIG. 3. Scaling of the IPR for the three different classes of eigen-
states in the different subsection of the Hilbert space for q = 0.125.
Gray dashed lines indicate best fits ∝ Nα . Parameters: � = 1, εi

uniformly distributed in [−0.1, 0.1], and gi uniformly distributed in
[1, 3]/

√
N (a.u.).

In Fig. 3 we present numerical results for these three com-
ponents as a function of system size N in the presence of
disorder in the couplings as well as (weak) disorder in the
bare energies. The disorder in the bare energies is chosen to
be sufficiently weak such that the different bands from Fig. 1
do not mix, allowing different states to be identified based on
their position in the spectrum. We consider a single disorder
realization, since the fluctuations over the different eigenstates
within the bands are smoothed by averaging the IPR within
each class of eigenstates. In this limit we find that all three
classes of states exhibit multifractality, with different scaling
exponents. These scaling exponents are numerically observed
to be identical to the exponents obtained in the integrable limit
with a homogeneous coupling in all sectors. For inhomoge-
neous couplings and homogeneous bare energies, care needs
to be taken. First of all, the dark states are exactly degenerate,
such that it is not meaningful to consider the localization
properties of a single dark state. Second, we observe that
the scaling exponents in the zero- and one-photon sector are
identical to the exponents in the presence of both sources of
disorder, but the single amplitude of the two-photon compo-
nent can have different scaling. However, this amplitude does
not contribute to the full IPR, such that the scaling of the total
IPR will be identical in both the two integrable limits and in
the nonintegrable case. The scaling of the IPR for the Bethe
states is derived in Appendix D, and we focus here on the
scaling away from these integrable limits.

Triplet polaritons. First focusing on the three triplet po-
lariton states, we observe the following scaling in the large-N
limit:

P0(q) = O(N2−2q ), (40)

P1(q) = O(N1−q ), (41)

P2(q) = O(1), (42)

independent of q. However, the different scaling of these con-
tributions indicate that the total IPR will exhibit a change in
scaling as q in varied, with either the zero-photon term being
dominant (q < 1) or the two-photon term being dominant
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(q > 1). The IPR for the triplet polaritons will then scale as

P (q) =
{

O(N2−2q ), 0 < q < 1,

O(1), q > 1.
(43)

This result has a direct interpretation: the total weight of the
triplet states within each photon sector is O(1), i.e., the prob-
ability of observing n photons in these eigenstates is O(1) for
all values of n, as quantified in the restricted IPRs for q = 1:

P0(q = 1) = P1(q = 1) = P2(q = 1) = O(1), (44)

but within each sector these states are fully delocalized. Recall
that a delocalized eigenstate in a Hilbert space of dimension
D results in an IPR scaling as D1−q for all values of q. The
one-photon states span a Hilbert space of dimension N , and
the delocalization in this Hilbert space leads to a scaling
N (1−q) in Eq. (41). The zero-photon states span a Hilbert space
of dimension N (N − 1)/2 = O(N2) and the delocalization in
this space leads to the scaling N2(1−q) in Eq. (40). The single
two-photon state has a weight O(1), leading to the observed
scaling from Eq. (42). While the states are delocalized within
the separate photon sectors, they are not delocalized within
the full Hilbert space due to the total O(1) weight of the states
within each sector. For full delocalization within the Hilbert
space, the states within each photon sector would not be nor-
malized [up to an O(1) factor] and the restricted IPRs would
include additional scaling factors. Delocalization in the full
Hilbert space would, e.g., predict that the total weight |ψ0|2
of the two-photon sector vanishes as the relative dimension
of this sector, i.e., O(N−2), to be contrasted with the observed
O(1) scaling. As such, it is the relative weights of the different
sectors that give rise to the change in scaling of the IPR as q
is varied, indicating multifractality.

Doublet polaritons. For the doublet polaritons, we find that

P2(q) = N−q, (45)

P1(q) =
{

O(N1−2q ), q < 1/2,

O(1), q � 1/2,
(46)

P0(q) =
{

O(N2−3q ), q < 1/2,

O(N1−q ), q � 1/2.
(47)

Remarkably, even within the subsections of the Hilbert space
with a fixed number of photons, the eigenstates exhibit multi-
fractality and are not fully delocalized. These scalings reflect
underlying semilocalization in the one-photon sector, i.e.,
there is an O(1) number of components dominating the scal-
ing for q > 1/2, whereas in the zero-photon sector an O(N )
number of states dominate. Interestingly, in the zero-photon
sector the eigenstates are hence localized within a vanishing
fraction of the Hilbert space [O(N ) components in an O(N2)
Hilbert space]. While the states in both the zero- and one-
photon sector are distributed over a vanishing fraction of the
Hilbert space, within the one-photon sector these are localized
on noncontiguous sites, whereas in the zero-photon sector
these are distributed over noncontiguous regions in the Hilbert
space (see Appendix C).

The IPR for the doublet polaritons reflects the scaling of
the dominant components in the restricted IPR, changing from
the scaling of the zero-photon sector to the scaling of the

one-photon sector as

P (q) =

⎧⎪⎨
⎪⎩

O(N2−3q ), 0 < q < 1/2,

O(N1−q ), 1/2 < q < 1,

O(1), q > 1.

(48)

Singlet dark states. The dark states similarly exhibit mul-
tifractality within each of the three different sectors, with the
restricted IPR scaling as

P2(q) = O(N−2q), (49)

P1(q) =
{

O(N1−3q ), q < 1/2,

O(N−q), q � 1/2,
(50)

P0(q) =
{

O(N2−4q ), q < 1/2,

O(1), q � 1/2.
(51)

Taking these results together, the scaling of the IPR follows
the zero-photon IPR, as could be expected for dark states:

P (q) =
{

O(N2−4q), 0 < q < 1/2,

O(1), q > 1/2.
(52)

These scalings now reflect semilocalization in both the zero-
and one-photon sector, where in both cases O(1) components
dominate the IPR scaling for q large enough.

All presented scalings can be clearly numerically observed
in Fig. 3, where the numerically obtained scaling exponents
are close to the theoretically predicted values. However, we
emphasize that these results are limited to weak disorder and
system sizes up to N = 200. While it is possible that these
scalings break down for larger system sizes, there is no indi-
cation of this happening in our numerics.

These scalings are analytically derived for the integrable
limit in Appendix D. In the same way that the different classes
of eigenstates can be connected to the relative position of the
Bethe root to the poles in the secular equation (15), these
different scalings can be directly related to the Bethe states.
This connection is detailed in Appendix D. Any Bethe root
that lies close to a pole will lead to large contributions in the
eigenstate component related to this pole and corresponding
semilocalization on the corresponding basis states. Different
localization properties are hence expected for states charac-
terized by a different relative position of the Bethe root to
the poles. These different scalings and the connection with
the pole structure can be visualized by considering the eigen-
state components within, e.g., the single-spin excitation basis
states. If the set of bare energies is ordered, these components
will be smooth functions of εi, with a possible divergence at
E1 and E2 if these lie in between two poles. This behavior is
illustrated in Fig. 4, and it is clear that the presence of (weak)
integrability-breaking terms does not change the multifractal
character of the eigenstates. For the triplet states, all compo-
nents exhibit the same scaling, where either one or two peaks
appear for the doublet and singlet states, respectively.

VII. DYNAMICS AND PHOTON BUNCHING

These localization properties directly translate to the dy-
namical behavior of initial states with a fixed photon number.
While it is customary to introduce leakage and describe the
dynamics in terms of open systems, we focus here on closed
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FIG. 4. Illustration of the one-photon wave-function components |ψi|2q for representative polariton (triplet and doublet) and dark (singlet)
states. For homogeneous couplings, these components are a smooth function of the corresponding bare energy εi, with different states
characterized by the number of poles where the amplitudes scale as |ψi|2q ∝ 1/(εi − Eα )2q. In the presence of disorder in the couplings,
this overall structure is preserved and in turn reflected in the IPR. Parameters: N = 100, � = 1, εi uniformly distributed in [−0.1, 0.1], and gi

uniformly distributed in [1, 2]/
√

N (a.u.).

system dynamics in order to keep the connection with the
previous results. In this sense, these dynamics is expected
to be reflective of the short-time dynamics of realistic cavity
models with dissipation, i.e., the dynamics on times shorter
than the dissipation time scale.

Since the restricted IPR indicated different eigenstate lo-
calization properties depending on the number of photons,
we consider the dynamics of the probability of observ-
ing a fixed number of photons in the cavity. In Fig. 5
we first consider an initial state with two photons, i.e.,
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Initial state |ψ(t = 0)〉 = |2〉 ⊗ |∅〉
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Initial state |ψ(t = 0)〉 = |1〉 ⊗ Ŝ†
i |∅〉

FIG. 5. Dynamics of the probability of observing n photons in
the cavity for an initial state with two photons (a) and an initial
state with one photon and a single cavity excitation (b). Parameters:
N = 40, gi uniformly distributed in [1, 3]/

√
N , and εi uniformly

distributed in [−0.2, 0.2] (a.u.).

|ψ (t = 0)〉 = |2〉 ⊗ |∅〉. The photon numbers exhibit co-
herent oscillations with near-perfect revivals and only a
slow dephasing. In the large-N limit, the initial state
only has a nonvanishing overlap with the triplet po-
laritons, following our previous discussion, such that
the dynamics can effectively be treated as a three-level
system. The period for revivals directly follows from
Eq. (18) as

T ≈ 2π/

√
(� − ε)2 + g2. (53)

At integer multiples of the period, the system is to good
approximation in a two-photon state, whereas at half-integer
multiples the system is close to a zero-photon state, reminis-
cent of the boson bunching in the Hong-Ou-Mandel effect
[51]. These coherent dynamics are now a direct consequence
of the multifractality of the triplet polaritons: for delocalized
eigenstates, all eigenstates would be involved in the dynam-
ics and all coherences would rapidly decay and thermalize,
but since the initial (product) state only has O(1) overlap
with the triplet polariton, the system behaves as a three-
level system with long-lived coherences. Following Eq. (43)
and the surrounding discussion, this O(1) overlap directly
relates to the change in IPR as q is varied and hence the
multifractality.

Second, we consider an initial state with a single photon
excitation and a single spin excitation, |ψ (t = 0)〉 = |1〉 ⊗
Ŝ†

i |∅〉. We first observe that there are again coherent oscil-
lations, now between the one-photon and the zero-photon
sector. These oscillations are now a direct consequence of the
semilocalization of the doublet states in the one-photon sector:
the initial state will have O(1) overlap with an O(1) number
of doublet polaritons, such that we can again restrict the dy-
namics to an O(1) number of doublet states. Additionally, the
initial state has a vanishing overlap with both the dark states
and the triplet polaritons: the former because of the vanishing
weight of the dark state in the one-photon sector, and the
latter because of the delocalization of the triplet polaritons in
the one-photon sector, leading to a vanishing overlap between
the initial (localized) state and the delocalized eigenstate in
this sector. Again, for purely delocalized eigenstates no such
coherent dynamics would be observed and the system would
rapidly thermalize.
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FIG. 6. Time-averaged probability of observing two photons in
the cavity for an initial state with n photons. Parameters: � = 1,
gi equally spaced in [1, 3]/

√
N , and εi uniformly distributed in

[−0.2, 0.2] (a.u.).

We emphasize that these results conform to the expected
cavity dynamics in the homogeneous limit, but here allow
for a direct interpretation in terms of the localization prop-
erties of the different classes of eigenstates: In the presence
of disorder, such coherent oscillations require nontrivial lo-
calization properties of the eigenstates within the different
n-photon sectors. The stability of the eigenstate localization
properties to disorder indicates a stability of the dynamics
of the homogeneous and integrable limits to the presence of
disorder.

The delocalization of the triplet polaritons within the one-
photon sector can also be directly observed in the vanishing
probability of observing two photons in the cavity in Fig. 5(b),
similar to the two-photon blockade [52–54]. The overlap
of the initial state with the triplet polaritons will scale as
O(N−1/2) due to the delocalization within the N-dimensional
one-photon Hilbert space. Since only these states have a non-
vanishing contribution to the probability of observing two
photons, the probability of observing a two-photon state scales
as O(N−1). Photon blockade can be attributed to the fact that
the states with appreciable two-photon character are delocal-
ized within each photon sector and thus two photons cannot be
observed unless they already exist in the initial state (restrict-
ing to the reasonable conditions where atoms can be excited
only locally).

This argument can be extended to probe the delocalization
properties more generally. The time-averaged probability of
observing two photons in the cavity for a generic initial state
will be due to the overlap of the initial state with the triplet
polaritons. For an initial state with two photon excitations, we
have already argued that this overlap is O(1), such that this
time-averaged probability will be O(1). For an initial state
with one photon excitation and a single spin excitation this
probability scales as O(N−1), and for an initial state with
zero photon excitations and two spin excitations this proba-
bility scales as O(N−2). These three different scales directly
reflect the delocalization within different subspaces, and they
are illustrated in Fig. 6. To avoid averaging, we consider a
so-called “picket-fence” model of evenly spaced interaction
strengths gi. The different scalings can be clearly observed,
relating the different scalings of the restricted IPRs for the
triplet polaritons to a physical observable.

VIII. CONCLUSION AND DISCUSSION

We considered the Tavis-Cummings model in the pres-
ence of disorder in both the bare energies and the interaction
strengths, focusing on the sector with two excitations. In the
absence of disorder in the bare energies but for disorder in
the interaction strengths, we derived an exact solution for the
eigenstates and eigenvalues of the model. The model supports
dark states, where the cavity mode does not hybridize with the
spins, and polariton states, where it does. The dark states are
known, and for the polaritons we show how the diagonaliza-
tion of the full Hamiltonian can be reduced to solving a single
secular equation. This equation can be solved numerically in
a straightforward way for arbitrarily large system sizes. Every
eigenvalue corresponds to a solution of this equation, and
we can identify different classes of eigenstates with different
localization properties.

The main advances of this work are that we (i) introduce a
new solvable limit of the disordered Tavis-Cummings model,
relevant for nonlinear photonics, presenting its exact solution
and conservation laws, (ii) strengthen the connection between
integrability and multifractality by analytically showing how
the two integrable limits of this model exhibit multifractality,
(iii) illustrate how this multifractality can be stable in the
presence of disorder away from these integrable limits, and
(iv) show how the multifractality can be better understood
by introducing a restricted version of the inverse participation
ratio, restricted to n-photon sectors, which is in turn reflected
in the dynamics of the photonic mode and is apparent in
photon bunching and the two-photon blockade.

These different results indicate that, despite the presence
of the disorder, the Hamiltonian can be effectively described
in terms of collective spin operators. Such collective spin
dynamics is expected for identical spins and naturally appears
in models with sufficiently long-range interactions [36–39].
While the spins in our setup are not identical due to the
disorder, we showed for the new integrable limit that they
can be treated as such up until relaxation time scales scaling
as

√
N , with N the number of spin modes, provided that

the energy is bounded in the limit N → ∞. Remarkably, the
numerical results on the dynamics indicate that such a descrip-
tion remains accurate even in the presence of disordered bare
energies. It is expected that these results are largely insensitive
to the specific choice of disorder, provided the disorder does
not lead to significant mixing between the different bands. It
would be interesting to study the appearance of resonances
and hybridization between different classes of states for strong
disorder away from integrability. More generally, it would
be interesting to further investigate when collective spin de-
scriptions hold in the presence of disorder for cavity models
and clarify the role of integrability, following similar studies
for systems with long-range interactions [39]. Quasiconserved
charges have been observed in disordered models close to
Richardson-Gaudin integrability, in cavity models with all-to-
all interactions [55], and in anisotropic central spin models
[29], with the latter also shown to support persistent dark
states, such that it is a natural follow-up to relate these results
to the current work.

The accessibility of exact eigenstates and eigenen-
ergies has led to various studies of the dynamics in
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Richardson-Gaudin models [56–62], and this work opens up
avenues to further study the dynamics in disordered Tavis-
Cummings models. A direct extension of this work is to
consider open systems, where a variety of methods have
been developed to simulate cavity dynamics [63–70]. Here
we only note that the model with inhomogeneous interaction
strengths remains solvable if we choose � to be complex,
leading to non-Hermitian and hence dissipative dynamics,
since the calculation of the eigenstates did not depend on
� being real. The dynamics generated by a non-Hermitian
Richardson-Gaudin Hamiltonian can be directly studied, as
done, e.g., in Refs. [71,72], with only minimal modifications
of the presented framework. An additional extension is to
consider the model with an arbitrary number of excitations,
where it is expected that many of the results presented in this
work hold more generally.
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APPENDIX A: ONE-EXCITATION BETHE ANSATZ

In this Appendix, we briefly review some aspects
of integrable factorizable Richardson-Gaudin Hamiltonians
[11–13,73–83]. A more complete overview can be found in
Sec. 3 of Ref. [33]. The family of the integrable factorizable
Hamiltonians can be written as

Ĥ (α) = 1 + α

2
Ĝ+Ĝ− + 1 − α

2
Ĝ−Ĝ+

= α

N∑
i=1

g2
i Ŝ

z
i + 1

2

N∑
i, j=1

gig j (Ŝ
+
i Ŝ−

j + Ŝ−
i Ŝ+

j ), (A1)

where Ĝ± = ∑N
i=1 g jŜ

±
j . We will be mostly interested in

the solutions within the spin-1/2, one-excitation sector (i.e.,
the Hilbert space spanned by the basis Ŝ†

i |∅〉, i = 1, . . . , N).
Within this sector, the eigenstates can be written as Bethe
states:

|ν〉 = Ĝ+(ν)|∅〉, with Ĝ+(ν) =
N∑

i=1

gi

g2
i − ν

Ŝ+
i , (A2)

with eigenvalue

(α − 1)

[
ν − 1

2

N∑
i=1

g2
i

]
, (A3)

provided the Bethe equation

α − 1

2
− 1

2

N∑
j=1

g2
j

g2
j − ν

= 0 (A4)

is satisfied. The derivation of this result is particularly simple
in the one-excitation case and included here in order to be
self-contained.

Applying the Hamiltonian (A1) to the state (A2) and using
the fact that G− |∅〉 = 0 gives

Ĥ (α) |ν〉 = [Ĥ (α), Ĝ+(ν)] |∅〉 + (1 − α)

2

N∑
i=1

g2
i |ν〉 . (A5)

We will now focus on finding the commutator presented above
and begin by using the SU(2) commutation relations of the
spin operators to calculate

[Ĝ+, Ĝ+(ν)] = 0, [Ĝ−, Ĝ+(ν)] = −2
N∑

i=1

g2
i

g2
i − ν

Ŝz
i .

(A6)
The commutator in (A5) can now be rewritten as

[Ĥ (α), Ĝ+(ν)] = −
N∑

i=1

g2
i

g2
i − ν

(
2Ĝ+Ŝz

i + (1 − α)
[
Ŝz

i , Ĝ+])

= −
N∑

i=1

g2
i

g2
i − ν

(
2Ĝ+Ŝz

i + (1 − α)giŜ
+
i

)
.

(A7)

Applying this result to the vacuum state, substituting the defi-
nition of Ĝ+, and relabeling dummy variables in summations,
we end up with the result

[Ĥ (α), Ĝ+(ν)] |∅〉
= (α − 1)

νgi

g2
i − ν

S+
i |∅〉

+
N∑

i=1

gi

⎛
⎝−

N∑
j=1

g2
j

g2
j − ν

+ (α − 1)

⎞
⎠Ŝ+

i |∅〉 . (A8)

Using the definition of |ν〉, our initial equation (A5) becomes

Ĥ (α)|ν〉 = (α − 1)

(
ν − 1

2

N∑
i=1

g2
i

)
|ν〉

+
N∑

i=1

gi

⎛
⎝−

N∑
j=1

g2
j

g2
j − ν

+ (α − 1)

⎞
⎠Ŝ+

i |∅〉.

(A9)

For |ν〉 to be an eigenstate of the Hamiltonian, we require
Ĥ (α) |ν〉 = E |ν〉, where E is the eigenvalue of the eigen-
states. Imposing this on the above expression, we obtain the
correct Bethe equation along with the expected eigenvalue for
our initial state.

APPENDIX B: DERIVATION
OF THE CONSERVED CHARGES

In this Appendix, we explicitly derive the commutation re-
lations of the conserved charges. The derivation is analogous
to a similar derivation for the conserved charges of a spin-1
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central spin model as presented in Ref. [33]. These conserved
charges are again constructed by using the properties of the
integrable Richardson-Gaudin models (A1), where Ĥ (α) has
conserved charges

Q̂ j (α) = αŜz
j + Q̃ j, (B1)

with Q̃ j defined in Eq. (20) in the main text. These charges
satisfy

[Ĥ (α), Q̂ j (α)] = [Q̂ j (α), Q̂k (α)] = 0 (B2)

for all j, k = 1, . . . , L. The conserved charges from the main
text are given in block matrix representation by

Q̂ j =

⎛
⎜⎜⎝

− 2
3�

(
Q̃ j + Ŝz

j

)
Ĝ+(

Q̃ j + Ŝz
j/3

)
0(

Q̃ j + Ŝz
j/3

)
Ĝ− �

3

(
Q̃ j + 3Ŝz

j

) √
2
(
Q̃ j + Ŝz

j/3
)
Ĝ+

0
√

2Ĝ−(
Q̃ j + Ŝz

j/3
)

4
3�

(
Q̃ j − Ŝz

j

)
⎞
⎟⎟⎠,

where the different blocks correspond to different photon number. The Tavis-Cummings Hamiltonian can similarly be repre-
sented as a block-diagonal matrix

Ĥ =
⎛
⎝ 0 Ĝ+ 0

Ĝ− �
√

2Ĝ+

0
√

2Ĝ− 2�

⎞
⎠. (B3)

Using only these block matrix representations, the commutator of the Hamiltonian with these charges can be evaluated as

[Ĥ , Q̂ j] =

⎛
⎜⎜⎝

0 2
3 �

(
Ĝ+( − Q̃ j + Ŝz

j

) + (
Q̃ j + Ŝz

j

)
Ĝ+)

0
2
3 �

(( − Q̃ j + Ŝz
j

)
Ĝ− + (

Q̃ j + Ŝz
j

)
Ĝ−) [

Q̃ j + Ŝz
j/3, Ĝ−Ĝ+ + 2Ĝ+Ĝ−]

4
√

2
3 �

(
Ĝ+(

Q̃ j − Ŝz
j

) − (
Q̃ j + Ŝz

j )Ĝ
+)

0 4
√

2
3 �

((
Q̃ j − Ŝz

j

)
Ĝ− − Ĝ−(

Q̃ j + Ŝz
j

))
0

⎞
⎟⎟⎠,

(B4)

where we have not yet made use of any properties of the
operators. The commutator on the diagonal vanishes since
Q̃ j + Ŝz

j/3 = Q̂ j (α = 1/3) is exactly a conserved charge for

Ĥ (α = 1/3) ∝ Ĝ−Ĝ+ + 2Ĝ+Ĝ−. The off-diagonal elements
vanish because of the identity

Ĝ+(
Q̃ j − Ŝz

j

) = (
Q̃ j + Ŝz

j

)
Ĝ+, (B5)

which can be checked either from direct calculation or by
noting that Ĝ+Ĥ (α = −1) = Ĥ (α = 1)Ĝ+. This identity re-
lates the eigenstates of Ĥ (α = −1) and Ĥ (α = 1), as also
discussed in Refs. [28,33], and since the conserved charges
share a common set of eigenstates with these Hamiltonians,
this identity should also hold on the level of the conserved
charges, and we can rewrite the above equation as

Ĝ+Q̂ j (α = −1) = Q̂ j (α = 1)Ĝ+. (B6)

Since all matrix elements of the commutator vanish in the
block matrix representation, we hence find that the Hamilto-
nian commutes with all proposed conserved charges.

APPENDIX C: SECULAR EQUATION
WITH VANISHING POLES

The pole structure of the secular equation (15),

λ − 3�̃

3λ − �̃
=

N∑
i=1

g2
i

λ2 − �̃2 − ḡ2 + 2g2
i

, (C1)

can change abruptly if the inhomogeneous interaction
strengths are strongly asymmetrically distributed. Here ḡ2 =∑N

i=1 g2
i and �̃ = �/2. It is now possible for a pair of poles

to vanish whenever

2g2
i − ḡ2 − �̃2 � 0, (C2)

which can be rewritten as

g2
i � �̃2 +

N∑
j �=i

g2
j . (C3)

−15 −10 −5 0 5 10 15
λ

−2

−1

0

1

2

3

4

FIG. 7. Graphical illustration of the secular equation in the case
in which a pair of poles vanishes. Each intersection between the
left-hand side (red line) and the right-hand side (blue line) returns
the eigenvalue of a polariton state, leading to different classes of
solutions. Parameters: � = 1, ε = 0, N = 5, and g2

i ∈ [2, 4, 6, 8, 32]
(a.u.).
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This situation occurs whenever a single gi is sufficiently large
compared to the remaining interaction strengths. This equa-
tion can clearly only be satisfied for a single gi, such that, in
addition to the discussion of the main text, the only additional
case that needs to be considered is the one where a single pair
of poles vanishes.

Both sides of the resulting secular equation are plotted in
Fig. 7. There are again 2N + 1 intersections between both
sides, indicating 2N + 1 solutions, such that we obtain the
correct number of states. While the total number of solutions
remains the same, the direct identification between solutions
to the secular equation and eigenstates in the homogeneous
limit now breaks down. The pole structure results in 2N − 4
solutions in between pairs of poles (marked by circles), and
there are five additional solutions. The triplet polariton solu-
tions can again be identified near the vertical asymptote of
the left-hand side and for large λ (as marked by squares),
but two additional solutions now appear in the middle inter-
val (marked by crosses). These additional solutions always
appear, since the right-hand side of Eq. (C1) lies above the
horizontal asymptote of the right-hand side for λ around zero.

Let us focus on the center interval where the two additional
poles appear. The number of intersections will be determined
by the behavior of the right-hand side for λ → 0. In the case
from the main text, no poles vanish and it directly follows
that for λ → 0 the right-hand side will always be negative
and hence below the horizontal asymptote 1/3 of the left-hand
side, such that there are no additional intersections with the
left-hand side. If a pole vanishes, then for λ → 0 the right-
hand side can be shown to be larger than 1 and hence above
the horizontal asymptote 1/3, introducing two additional in-
tersections.

That the right-hand side is always larger than 1 for λ = 0
can be directly checked. Assuming that the pole correspond-
ing to g1 vanishes, the right-hand side for λ = 0 can be
written as

g2
1

g2
1 − ρ2

−
N∑

i=2

g2
i

g2
i − g2

1 − ρ2
, (C4)

where ρ2 = �̃2 + ∑N
j=2 g2

j such that g2
1 � ρ2 (in order for

the pole to vanish) and g2
1 � g2

i . For g2
1 → ∞ this expression

approaches 1, and for g2
1 → ρ2 from above this expression

diverges to +∞. The derivative with respect to g2
1 can easily

be checked to be negative for all values of g2
1 in between these

two limits, such that this expression is monotonous between
these limits.

APPENDIX D: IPR SCALINGS FROM THE BETHE ANSATZ

The multifractality scalings can be directly obtained from
the Bethe state (30) and reflect the different positions of the
solutions with respect to the poles. From Eq. (30) we have
that

ψ̃0 =
√

2, (D1)

ψ̃i = − g

εi − E1
− g

εi − E2
, (D2)

ψ̃i, j = g2

(εi − E1)(ε j − E2)
+ g2

(εi − E2)(ε j − E1)
, (D3)

where ψ̃ equals ψ up to a global normalization factor, since
the Bethe states are unnormalized.

We can now identify different scaling behaviors depending
on the relative positions of the variables E1,2 with respect
to the poles εi, i = 1, . . . , N , in the same way that the rel-
ative position of the root to the secular equation (15) with
respect to the poles gi, i = 1, . . . , N allowed us to distin-
guish different classes of eigenstates. The derivations for both
integrable limits are highly similar, but since the IPR can-
not be defined for the degenerate dark states in the limit of
homogeneous bare energies, we first focus on the limit of
homogeneous interaction strength and inhomogeneous bare
energies.

Triplet polaritons. Consider a situation in which the two
Bethe roots E1,2 are a distance O(1) away from all poles
εi, i = 1, . . . , N . In this scenario, all terms 1/(εi − Eα ) will
be O(1), such that the scaling of the amplitudes is purely set
by the scaling of the factor g = O(N−1/2). In this scenario, we
find that

|ψ̃0|2q = O(1), |ψ̃i|2q = O(N−q ), |ψ̃i, j |2 = O(N−2q ),

which holds ∀i, j, such that summing over the appropriate
number of terms in the restricted IPRs returns the obtained
(ergodic) scalings

P0(q) ∝ |ψ̃0|2q = O(1),

P1(q) ∝
∑

i

|ψ̃i|2q = O(N ) × O(N−q) = O(N1−q ),

P2(q) ∝
∑
i, j

|ψ̃i, j |2q = O(N2) × O(N−2q) = O(N2−2q ).

Each first term in a product is the number of components,
and the second term is the scaling of the individual com-
ponents. Crucially, we find that P0(q = 1) = P1(q = 1) =
P2(q = 1) = O(1), such that ψ̃ and ψ have the same scaling.
These results then reproduce the observed scalings from the
main text.

Doublet polaritons. In this case, a single Bethe root, e.g.,
E1, lies in between two poles, where the typical distance
between two poles scales as O(N−1), and the other pole is
again a distance O(1) away from all poles. The summations
appearing in the (restricted) IPR now need to be separated
in the contributions close to the poles, where 1/(εi − Eα ) =
O(N ), and the contributions further from the poles, following
a similar argument in Ref. [5].

For |ψ̃i|2, an O(1) number of components will have con-
tributions O(N ) due to the proximity of the Bethe root to the
pole, whereas the remaining O(N ) terms can again be treated
as contributing a scaling O(N−1). In the same way, the zero-
photon terms |ψ̃i, j | will have O(N ) terms where E1 is close to
the pole εi or ε j , and these terms individually scale as O(1),
whereas the remaining O(N2) terms scale again as O(N−2).
The terms scaling as O(N ) in |ψ̃i|2 will dominate the norm,
combined with the O(N ) terms scaling as O(1) in |ψ̃i, j |2, such
that the total norm scales as O(N ) and |ψ |2 = O(N−1)|ψ̃ |2.
Rescaling all components by the appropriate normalization
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factor, the restricted IPRs follow as

P0(q) = 1 × O(N−q) = O(N−q), (D4)

P1(q) = O(1) × O(1) + O(N ) × O(N−2q)

= O(1) + O(N1−2q ), (D5)

P2(q) = O(N ) × O(N−q) + O(N2) × O(N−3q )

= O(N1−q ) + O(N2−3q ), (D6)

where each first term in a product is again the number of com-
ponents, and the second term is the scaling of the individual
components. These results reproduce the observed scalings
from the main text.

Singlet dark states. For the dark states, both Bethe roots
are close to a pole. The crucial difference with the dou-
ble polaritons is now that there are components ψ̃i, j where,
e.g., εi is close to E1 and ε j is close to E2, such that these
components will dominate the wave function (and give rise
to semilocalization). In this case, |ψ̃ i, j|2 = O(N2). There
will be O(N ) remaining components |ψ̃i, j | = O(1), where a
single Bethe root is close to a pole, and O(N2) components
|ψ̃i, j | = O(N−2), where no Bethe root is close to a pole. The
remaining components behave identical to the doublet polari-
ton case: there are O(1) terms |ψ̃i|2 = O(N ) and O(N ) terms
|ψ̃i|2 = O(N−1), and |ψ̃0|2 = O(1). Crucially, the norm now
scales differently because of the additional terms in |ψ̃i, j |2,
and |ψ̃ |2 = O(N−2)|ψ |2.

Introducing this rescaling, the resulting restricted IPRs
follow as

P0(q) = 1 × O(N−2q) = O(N−2q), (D7)

P1(q) = O(1) × O(N−q) + O(N ) × O(N−3q )

= O(N−q ) + O(N1−3q ), (D8)

P0(q) = O(1) × O(1) + O(N ) × O(N−2q )

+O(N2) × O(N−4q )

= O(1) + O(N1−2q ) + O(N2−4q )

= O(1) + O(N2−4q ), (D9)

returning the scaling from the main text.
The numerically obtained IPRs in this integrable limit are

illustrated in Fig. 8 for all classes of eigenstates, and are
visually indistinguishable from the result in the presence of
disordered interaction strengths.

These results can be contrasted with the IPR scaling in
the opposite integrable limit, where the bare energies are
homogeneous and the interaction strengths are disordered.
Since the dark singlet states are exactly degenerate, any linear
combination of dark states would return a dark state, such that
it is not meaningful to consider the localization properties of
dark states. We will only focus on the IPR for the triplet and
doublet polaritons. The scaling again follows from the relative
position of the roots to the poles of the secular equation (15).
The components of the unnormalized eigenstates follow from
Eq. (11) as

ψ̃0 = 1

κ − �

N∑
i=1

g2
i

λ2 − �̃2 − ḡ2 + 2g2
i

= 1

3λ − �̃
, (D10)
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FIG. 8. Scaling of the IPR for the three different classes of eigen-
states in the different subsection of the Hilbert space for q = 0.125
and an integrable model with disordered bare energies. Gray dashed
lines indicate best fits ∝ Nα . Parameters: � = 1, g = 2/

√
N , and εi

uniformly distributed in [−0.1, 0.1] (a.u.).

ψ̃i = gi

λ2 − �̃2 − ḡ2 + 2g2
i

, (D11)

ψ̃i, j = 1

κ + �

gig j

λ2 − �̃2 − ḡ2 + 2g2
i

+ (i ↔ j). (D12)

In ψ̃0 we have used the secular equation (15). For the triplet
polaritons, λ is O(1) removed from the poles, and we find that
|ψ̃0|2 = O(1), |ψ̃i|2 = O(N−1), and |ψ̃i, j |2 = O(N−2) due to
the scaling of g2

i = O(N−1). These scalings are identical to
the opposite integrable limit and hence result in the same
expression for the restricted IPRs:

P0(q) = O(1),

P1(q) = O(N ) × O(N−q ) = O(N1−q ),

P2(q) = O(N2) × O(N−2q) = O(N2−2q ).

For the doublet polariton, the root is close to the poles, and the
distance to the closest pole is again on the order of the spacing
between two nearest poles, which now scales, however, as
O(N−2). Plugging in this scaling, the number O(1) compo-
nents |ψ̃i|2 close to the pole scale as O(N3) and the remaining
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FIG. 9. Scaling of the IPR for the polaritons in the different sub-
sections of the Hilbert space for q = 0.125 and an integrable model
with disordered interaction strengths. Gray dashed lines indicate best
fits ∝ Nα . Parameters: � = 1, εi = 0, and gi uniformly distributed in
[1, 3]/

√
N (a.u.).
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O(N ) components scale as O(N ). Similarly, for |ψ̃i, j |2 there
are O(N ) components close to the pole scaling as O(N2), and
the remaining O(N2) components are O(1). The total norm
hence scales as O(N3), and a rescaling of these components
by these factors results in a restricted IPR,

P0(q) = 1 × O(N−3q ) = O(N−3q ), (D13)
P1(q) = O(1) × O(1) + O(N ) × O(N−2q)

= O(1) + O(N1−2q ), (D14)

P2(q) = O(N ) × O(N−q) + O(N2) × O(N−3q )

= O(N1−q ) + O(N2−3q ), (D15)

The numerically obtained IPR is shown in Fig. 9 for the
doublet and triplet polaritons, and it is clear that only P0(q)
differs, scaling as N−3q as opposed to N−q in the other dis-
cussed cases.
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[53] A. Imamoḡlu, H. Schmidt, G. Woods, and M. Deutsch, Strongly
interacting photons in a nonlinear cavity, Phys. Rev. Lett. 79,
1467 (1997).

[54] E. Zubizarreta Casalengua, J. C. López Carreño, F. P. Laussy,
and E. d. Valle, Conventional and unconventional photon statis-
tics, Laser Photon. Rev. 14, 1900279 (2020).

[55] G. Bentsen, I.-D. Potirniche, V. B. Bulchandani, T. Scaffidi, X.
Cao, X.-L. Qi, M. Schleier-Smith, and E. Altman, Integrable
and chaotic dynamics of spins coupled to an optical cavity,
Phys. Rev. X 9, 041011 (2019).

[56] M. Bortz and J. Stolze, Exact dynamics in the inhomogeneous
central-spin model, Phys. Rev. B 76, 014304 (2007).

[57] A. Faribault, P. Calabrese, and J.-S. Caux, Quantum quenches
from integrability: the fermionic pairing model, J. Stat. Mech.
(2009) P03018.

[58] M. S. Foster, M. Dzero, V. Gurarie, and E. A. Yuzbashyan,
Quantum quench in a p + ip superfluid: Winding numbers and
topological states far from equilibrium, Phys. Rev. B 88, 104511
(2013).

[59] A. Faribault and D. Schuricht, Integrability-based analysis of
the hyperfine-interaction-induced decoherence in quantum dots,
Phys. Rev. Lett. 110, 040405 (2013).

[60] P. W. Claeys, S. De Baerdemacker, O. E. Araby, and J.-S. Caux,
Spin polarization through floquet resonances in a driven central
spin model, Phys. Rev. Lett. 121, 080401 (2018).

[61] T. Villazon, P. W. Claeys, A. Polkovnikov, and A. Chandran,
Shortcuts to dynamic polarization, Phys. Rev. B 103, 075118
(2021).

[62] J. Marino, M. Eckstein, M. S. Foster, and A. M. Rey, Dynam-
ical phase transitions in the collisionless pre-thermal states of
isolated quantum systems: theory and experiments, Rep. Prog.
Phys. 85, 116001 (2022).

[63] J. Schachenmayer, A. Pikovski, and A. M. Rey, Many-body
quantum spin dynamics with Monte Carlo trajectories on a
discrete phase space, Phys. Rev. X 5, 011022 (2015).

[64] J. Jin, A. Biella, O. Viyuela, L. Mazza, J. Keeling, R. Fazio,
and D. Rossini, Cluster mean-field approach to the steady-state
phase diagram of dissipative spin systems, Phys. Rev. X 6,
031011 (2016).

[65] B. Zhu, J. Marino, N. Y. Yao, M. D. Lukin, and E. A. Demler,
Dicke time crystals in driven-dissipative quantum many-body
systems, New J. Phys. 21, 073028 (2019).

[66] H. Weimer, A. Kshetrimayum, and R. Orús, Simulation meth-
ods for open quantum many-body systems, Rev. Mod. Phys. 93,
015008 (2021).

[67] V. Link, K. Müller, R. G. Lena, K. Luoma, F. Damanet, W. T.
Strunz, and A. J. Daley, Non-Markovian quantum dynamics in

033716-16

https://doi.org/10.1038/s41598-020-73015-1
https://doi.org/10.1103/PhysRevB.101.155145
https://doi.org/10.1103/PhysRevB.105.L121404
https://doi.org/10.1088/1751-8121/ad043a
https://doi.org/10.21468/SciPostPhys.15.1.030
https://doi.org/10.1103/PhysRevC.86.044332
https://doi.org/10.1088/1751-8121/aaf9db
https://arxiv.org/abs/2307.04802
https://doi.org/10.1103/RevModPhys.95.035002
https://arxiv.org/abs/2309.12504
https://doi.org/10.1103/PhysRevB.108.054301
https://doi.org/10.1088/1742-5468/2007/06/P06013
https://doi.org/10.1103/PhysRevB.82.092203
https://doi.org/10.1088/1751-8113/47/40/405204
https://doi.org/10.1134/S004057791610010X
https://doi.org/10.1088/1751-8113/41/47/475202
https://doi.org/10.1103/PhysRevB.83.235124
https://doi.org/10.1103/PhysRevB.86.195101
https://doi.org/10.1103/PhysRevB.91.155102
https://doi.org/10.1007/BF01325284
https://doi.org/10.1103/PhysRevLett.84.3690
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.39.691
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1002/lpor.201900279
https://doi.org/10.1103/PhysRevX.9.041011
https://doi.org/10.1103/PhysRevB.76.014304
https://doi.org/10.1088/1742-5468/2009/03/P03018
https://doi.org/10.1103/PhysRevB.88.104511
https://doi.org/10.1103/PhysRevLett.110.040405
https://doi.org/10.1103/PhysRevLett.121.080401
https://doi.org/10.1103/PhysRevB.103.075118
https://doi.org/10.1088/1361-6633/ac906c
https://doi.org/10.1103/PhysRevX.5.011022
https://doi.org/10.1103/PhysRevX.6.031011
https://doi.org/10.1088/1367-2630/ab2afe
https://doi.org/10.1103/RevModPhys.93.015008


INTEGRABILITY, MULTIFRACTALITY, AND TWO-PHOTON … PHYSICAL REVIEW A 109, 033716 (2024)

strongly coupled multimode cavities conditioned on continuous
measurement, PRX Quantum 3, 020348 (2022).

[68] J. Huber, A. M. Rey, and P. Rabl, Realistic simulations of spin
squeezing and cooperative coupling effects in large ensembles
of interacting two-level systems, Phys. Rev. A 105, 013716
(2022).

[69] H. Hosseinabadi, D. E. Chang, and J. Marino, Nonequilibrium
Dyson equations for strongly coupled light and matter: spin
glass formation in multi-mode cavity QED, arXiv:2312.11624
[cond-mat.dis-nn].

[70] H. Hosseinabadi, D. E. Chang, and J. Marino, Dynamics of spin
glass formation under tunable fluctuations in frustrated cavity
QED experiments, arXiv:2311.05682 [cond-mat.dis-nn].

[71] D. A. Rowlands and A. Lamacraft, Noisy spins and the
Richardson-Gaudin model, Phys. Rev. Lett. 120, 090401
(2018).

[72] P. W. Claeys and A. Lamacraft, Dissipative dynamics in open
XXZ Richardson-Gaudin models, Phys. Rev. Res. 4, 013033
(2022).

[73] S. M. A. Rombouts, J. Dukelsky, and G. Ortiz, Quantum phase
diagram of the integrable px + ipy fermionic superfluid, Phys.
Rev. B 82, 224510 (2010).

[74] I. Lukyanenko, P. S. Isaac, and J. Links, An integrable case of
the p + ip pairing Hamiltonian interacting with its environment,
J. Phys. A 49, 084001 (2016).

[75] N. M. Bogolyubov, Algebraic Bethe ansatz and the Tavis-
Cummings model, J. Math. Sci. 100, 2051 (2000).

[76] T. Skrypnyk, Integrable quantum spin chains, non-skew sym-
metric r-matrices and quasigraded lie algebras, J. Geom. Phys.
57, 53 (2006).

[77] T. Skrypnyk, Generalized gaudin systems in a magnetic field
and non-skew-symmetric r-matrices, J. Phys. A 40, 13337
(2007).

[78] T. Skrypnyk, Non-skew-symmetric classical r-matrices, al-
gebraic Bethe ansatz, and Bardeen–Cooper–Schrieffer–type
integrable systems, J. Math. Phys. 50, 033504 (2009).

[79] T. Skrypnyk, Non-skew-symmetric classical r-matrices and in-
tegrable cases of the reduced BCS model, J. Phys. A 42, 472004
(2009).

[80] I. Lukyanenko, P. S. Isaac, and J. Links, On the boundaries
of quantum integrability for the spin-1/2 Richardson–Gaudin
system, Nucl. Phys. B 886, 364 (2014).

[81] E. Iyoda, H. Katsura, and T. Sagawa, Effective dimension, level
statistics, and integrability of Sachdev-Ye-Kitaev-like models,
Phys. Rev. D 98, 086020 (2018).

[82] J. Dukelsky, C. Esebbag, and P. Schuck, Class of exactly solv-
able pairing models, Phys. Rev. Lett. 87, 066403 (2001).

[83] M. Van Raemdonck, S. De Baerdemacker, and D. Van Neck,
Exact solution of the px + ipy pairing Hamiltonian by deform-
ing the pairing algebra, Phys. Rev. B 89, 155136 (2014).

033716-17

https://doi.org/10.1103/PRXQuantum.3.020348
https://doi.org/10.1103/PhysRevA.105.013716
https://arxiv.org/abs/2312.11624
https://arxiv.org/abs/2311.05682
https://doi.org/10.1103/PhysRevLett.120.090401
https://doi.org/10.1103/PhysRevResearch.4.013033
https://doi.org/10.1103/PhysRevB.82.224510
https://doi.org/10.1088/1751-8113/49/8/084001
https://doi.org/10.1007/BF02675727
https://doi.org/10.1016/j.geomphys.2006.02.002
https://doi.org/10.1088/1751-8113/40/44/014
https://doi.org/10.1063/1.3072912
https://doi.org/10.1088/1751-8113/42/47/472004
https://doi.org/10.1016/j.nuclphysb.2014.06.018
https://doi.org/10.1103/PhysRevD.98.086020
https://doi.org/10.1103/PhysRevLett.87.066403
https://doi.org/10.1103/PhysRevB.89.155136

