
R E S E A R CH A R T I C L E

Range-separated density functional theory using
multiresolution analysis and quantum computing

Nicolas Poirier1,2 | Jakob S. Kottmann3 | Alán Aspuru-Guzik4,5,6,7 |

Luc Mongeau1 | Alireza Najafi-Yazdi1,2

1Department of Mechanical Engineering,

McGill University, Montreal, Quebec, Canada

2Anyon Systems Inc., Dorval, Quebec, Canada

3Institute for Computer Science, University of

Augsburg, Augsburg, Germany

4Chemical Physics Theory Group, Department

of Chemistry, University of Toronto, Toronto,

Ontario, Canada

5Department of Computer Science, University

of Toronto, Toronto, Ontario, Canada

6Vector Institute for Artificial Intelligence,

Toronto, Ontario, Canada

7Canadian Institute for Advanced Research

(CIFAR), Toronto, Ontario, Canada

Correspondence

Nicolas Poirier and Alireza Najafi-Yazdi,

Department of Mechanical Engineering, McGill

University, Montreal, QC, H3A 0C3, Canada.

Email: nicolas.poirier2@mail.mcgill.ca and

alireza.najafiyazdi@mcgill.ca

Funding information

Mitacs, Grant/Award Number: IT26988;

Google; U.S. Department of Energy,

Grant/Award Number: DE-SC0019374;

Natural Sciences and Engineering Research

Council of Canada, Grant/Award Number:

RGPIN-2016-05003; Vadasz Scholars

Program; Canada Industrial Research Chairs

Program; Canada 150 Research Chairs

Program; Anders G. Frøseth

Abstract

Quantum computers are expected to outperform classical computers for specific

problems in quantum chemistry. Such calculations remain expensive, but costs can

be lowered through the partition of the molecular system. In the present study,

partition was achieved with range-separated density functional theory (RS-DFT). The

use of RS-DFT reduces both the basis set size and the active space size dependence

of the ground state energy in comparison with the use of wave function theory

(WFT) alone. The utilization of pair natural orbitals (PNOs) in place of canonical

molecular orbitals (MOs) results in more compact qubit Hamiltonians. To test this

strategy, a basis-set independent framework, known as multiresolution analysis

(MRA), was employed to generate PNOs. Tests were conducted with the variational

quantum eigensolver for a number of molecules. The results show that the proposed

approach reduces the number of qubits needed to reach a target energy accuracy.
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1 | INTRODUCTION

Since the introduction of quantum computing by Feynman,1 a number

of quantum algorithms have been developed to reduce the computa-

tional cost of specific problems.2–5 One of these problems is the

calculation of the ground state energy of molecular systems.6 So far,

only a few instances of this problem are suited for noisy intermediate-

scale quantum (NISQ) computers.7 This limitation is due to the intrinsic

noise and errors of NISQ devices. In order for additional problem

instances to benefit from a quantum advantage, there must be a sharing

of the computational load between NISQ computers and classical com-

puters. Embedding techniques have been developed to partition the

molecules involved in the electronic structure problem.8–12 One such

approach is range-separated density functional theory (RS-DFT),8,13

where a portion of the molecular system is treated with a variational

quantum algorithm (VQA) 14,15 while the remainder is treated with
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Kohn-Sham density functional theory (DFT).16 In the present study,

strategies that improve the accuracy of RS-DFT when combined with

the variational quantum eigensolver (VQE) 17,18 are explored. Pair natu-

ral orbitals (PNOs) 19–21 and multiresolution analysis (MRA) were used

to improve the compactness of the qubit Hamiltonian.22

The Kohn-Sham DFT method is a core component of RS-DFT. In

Kohn-Sham DFT, the solution accuracy depends on an effective one-

electron potential. This potential in turn depends on a functional of

the electron density. But the needed functional is not exact.23 One

challenge is that the potential term which accounts for electron

exchange often does not decay as required with position.24 This issue

is addressed in range-separated DFT through the partition of the two-

electron Coulomb repulsion operator into the sum of long-range and

short-range terms based on the interelectronic distance. At long

range, static correlation is predominant. Dynamic correlation is more

important at short range. The dynamic correlation corresponds to the

correlated motion of the electrons due to the Coulomb repulsion,

whereas the static correlation is the correlated motion of the elec-

trons caused by the presence of nearly-degenerate configurations.25

The static correlation is important, for example, when a molecule is

dissociated into fragments.26 As DFT can be inaccurate for static cor-

relation, it is used to handle the short-range term. The long-range

term is handled with a wave function theory (WFT) method, here the

VQE. The separation between short-range and long-range terms

depends on a range-separation parameter. From the perspective of

WFT and quantum computing, the use of range separation diminishes

the impact of two factors on the accuracy of ground state energy esti-

mates. These factors are the basis set size and the active space size.

The decreased impact is due to a lowering of the limit at a singularity

in the long-range electron repulsion potential. This lower limit leads to

the disappearance of the electron cusp in the wave function.27

The performance of both embedded DFT and VQE depends on

the strategy for the generation of molecular orbitals (MOs). Typically,

the MOs used in VQE calculations are canonical orbitals that diagonal-

ize the Fock matrix. However, these orbitals are suboptimal for the

recovery of the correlation between electron pairs, unless all the gen-

erated MOs are included in the active space. A better recovery of the

correlation is achieved with a truncated set of pair natural orbitals

(PNOs).19–21 Both canonical orbitals and PNOs can be generated

through a linear combination of atomic orbitals (LCAO). This approach

leads to a compact representation of the MOs, but it is costly for large

systems if a high precision is needed. The LCAO method is also prone

to basis set superposition errors.22 One alternative method, known as

multiresolution analysis (MRA), provides systematic accuracy improve-

ments through the efficient representation of MOs on a real-space

grid.22 The generation of PNOs with MRA was adopted for the pre-

sent study because MRA-PNOs represent the most accurate orbitals

for the chosen level of theory, in this case Møller-Plesset (MP2) per-

turbation theory.28,29 Additionally, the basis set independence of the

MRA approach facilitates the study of the behavior of RS-DFT.

One major advantage of employing MRA and PNOs on a quantum

computer is that fewer qubits are needed to reach a target accuracy for

a given number of electrons. This was demonstrated in Kottmann

et al.,30 where it was shown that MRA-PNOs could be used to simulate

the umbrella reaction of ammonia with only 12 to 18 qubits. The equiv-

alent simulation with canonical LCAO orbitals would require 50 to

100 qubits to reach the same accuracy. A similar approach involving

Daubechies wavelets has also been implemented by Hong et al.31

To the knowledge of the authors, the embedded DFT and

MRA-PNO methods have not yet been utilized simultaneously. The

present study combines these two approaches with the overall goal

of extending the range of molecular systems which could benefit

from a quantum advantage for the calculation of the ground state

energy. More specifically, the objective is to increase the accuracy

of ground state energy estimates for a limited amount of quantum

resources. The overall objective includes three specific aims. One

aim is to show that pair natural orbitals can provide a greater accu-

racy than canonical orbitals for the same number of qubits

(i.e., active space size). Another aim is to identify if there are

instances where range separation with pair natural orbitals can out-

perform WFT as well as Kohn-Sham DFT. The final aim is to show

that it is beneficial to employ range separation to treat the long-

range interactions with the VQE and the short-range ones with

DFT. This approach, if successful, could broaden the range of prac-

tical chemistry problems that could benefit from the availability of

larger NISQ computers. The results illustrate the combined effects

of multiple methods—namely, range-separated DFT, pair natural

orbitals, and the VQE—on benchmark systems.

The next section of this paper describes the theoretical frame-

work for the use of MRA-PNOs with range-separated DFT in the con-

text of quantum computing. The theory section includes a brief

overview of range-separated DFT and MRA-PNOs. This section also

includes a description of the range-separated active space Hamilto-

nian and an introduction to the VQE. In the methodology section, the

implementation details of the range-separated calculations are pre-

sented. In the following section, results that involve molecules which

range in size from H2 to H2O are provided and interpreted. Final

remarks are included in the last section of the paper.

2 | THEORY

2.1 | Range-separated density functional theory

Range-separated DFT can be used to approximate the ground state

energy of molecular systems. The Hamiltonian which describes these

systems is

Ĥ¼ T̂þ V̂neþ V̂ee, ð1Þ

where T̂ is the kinetic energy operator, V̂ne is the nuclear-electron

Coulomb attraction energy operator, and V̂ee is the electron-electron

Coulomb repulsion operator. The ground state energy, E0 , of the

Hamiltonian can be obtained with the help of a two-step minimization

formula 23

E0 ¼ min
ρ

min
Ψ!ρ

hΨjT̂þ V̂eejΨiþ
ð
vneðrÞρðrÞdr

� �
, ð2Þ
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where ρ is the electron density, Ψ is an N-electron antisymmetric

wave function, vneðrÞ is the nuclear-electron potential, and r denotes

the three-dimensional spatial coordinates of an electron. The inner

minimization procedure corresponds to Levy's constrained-search for-

mula for a density functional,32

F½ρ� ¼ min
Ψ!ρ

hΨjT̂þ V̂eejΨi
n o

: ð3Þ

This functional could be employed using uniquely the DFT approach, but

the idea behind range separation is to separate the electron repulsion

potential into the sum of a long-range term and a short-range term. The

former term is assigned to a wave function theory (WFT) solver since this

term mostly involves static correlation. The latter term is allocated to a

DFT solver because this term mostly involves dynamic correlation. The

electronic repulsion operator is separated as follows:

V̂ee ¼ V̂
lr,μ

ee þ V̂
sr,μ

ee , ð4Þ

where lr and sr indicate long-range and short-range, respectively, and

μ≥0 is a range-separation parameter.13 When μ is zero, the long-

range term vanishes, while the short-range term becomes zero when

μ approaches infinity.

Insertion of the range-separated terms into the constrained search

formula yields the following equation for the ground-state energy:13

E0 ¼ min
Ψ

hΨjT̂þ V̂
lr,μ
ee jΨiþEsr,μH ½ρðΨÞ�þEsr,μxc ½ρðΨÞ�

h

þ
ð
vneðrÞρðΨÞdr

�
,

ð5Þ

where Esr,μH ½ρ� and Esr,μxc ½ρ� are the short-range Hartree and exchange-

correlation energy functionals, respectively. The former functional

corresponds to

Esr,μH ½ρ� ¼1
2

ð
ρðrÞρðr0Þvsr,μee ðr,r0Þdrdr0, ð6Þ

where the short-range electronic repulsion potential is defined as

vsr,μee ðr,r0Þ¼ fðμ,r,r0Þ
jr� r0j : ð7Þ

The image of the range-separation function fðμ,r,r0Þ is over a span

from 0 to 1. The upper limit of 1 is obtained when μ is 0 and the lower

limit of 0 is reached as μ approaches infinity. One example of a range-

separation function is the Yukawa potential.33,34 The long-range elec-

tronic repulsion potential is defined as 13

vlr,μee ðr,r0Þ¼ veeðr,r0Þ�vsr,μee ðr,r0Þ¼1� fðμ,r,r0Þ
jr� r0j , ð8Þ

where vee is the electronic repulsion potential.

Equation (5) for the ground-state energy would be exact and inde-

pendent of μ if the exact short-range exchange-correlation functional

was available. However, in practice, the ground state energy varies

with μ. When μ is 0, V̂
lr,μ

ee vanishes and the Kohn-Sham DFT equations

are recovered.16 On the other hand, the short-range terms vanish and

the WFT equations are recovered when μ approaches infinity.

2.2 | Orbital generation with multiresolution
analysis

Unlike with the LCAO methodology, MRA-PNOs are generated using

a basis-set-independent black-box procedure. The resulting PNOs

correspond to the best possible PNOs for the size of the truncated

orbital space. The use of MRA to generate the PNOs eliminates basis

set effects in the analysis. The utilization of MRA-PNOs in lieu of

canonical orbitals also leads to a reduction of the number of qubits

needed to reach a target accuracy.30

Before the generation of the PNOs, occupied MOs are con-

structed using a self-consistent field method (e.g., Kohn-Sham DFT).

The occupied MOs ϕi are obtained iteratively using the Lippmann–

Schwinger integral equation 22,35

ϕiðrÞ¼�2
ð
Gαðr,r0ÞV̂ðr0Þϕiðr0Þdr0, ð9Þ

where Gαðr,r0Þ is the three-dimensional bound-state Helmholtz (BSH)

Green's function and V̂ðrÞ is the potential energy operator. The

Green's function is defined as

Gαðr,r0Þ¼ expð�αjr� r0jÞ
4πjr� r0j , ð10Þ

where α¼ ffiffiffiffiffiffiffiffiffiffi�2εi
p

and εi is the eigenvalue that is associated with ϕi. A

more detailed overview of MRA is provided by Harrison et al.,22 who

were the first to develop a strategy for solving the Kohn-Sham DFT

equations with MRA. A review of MRA in the context of quantum

chemistry was also written by Bischoff.36

After the generation of the occupied MOs, PNOs are constructed

using second-order Møller-Plesset (MP2) perturbation theory.28 Each

PNO is associated with a pair of occupied MOs. The importance of

each PNO in the MP2 solution is quantified by an occupation number.

These occupation numbers are later used to select the active space. It

is important to note that the number of PNOs generated, which is

known as the rank, is not fixed.29 Along with the occupied MOs, the

PNOs constitute the basis functions to approximate the multi-

determinant wave function of Equation (5). The PNOs for different

occupied MO pairs are not orthogonal, however. They are therefore

orthonormalized using a Cholesky decomposition.30,37

2.3 | Range-separated active space Hamiltonian

To create a second-quantized Hamiltonian, only systems with singlet

spin symmetry were considered. For such systems, the Hamiltonian is

expressed as 25

POIRIER ET AL. 1989
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Ĥ¼Ω0þ
X
pq

ΩpqÊpqþ1
2

X
pqrs

Ωpqrsêpqrs, ð11Þ

where Ω0, Ωpq, and Ωpqrs are constants. As for the operators Êpq and

êpqrs, they correspond to

Êpq ¼
X

σ � ",#f g
â†pσâqσ ð12Þ

and

êpqrs ¼ ÊpqÊrs� Êpsδqr , ð13Þ

respectively, where â†pσ is a fermionic creation operator and âqσ is a

fermionic annihilation operator. The index, σ, indicates whether

a molecular spin-orbital involves a spin-up (") or a spin-down (#) elec-
tron. The indices p and q are used to identify MOs.

The calculation of the ground state energy of the system Hamilto-

nian is prohibitively expensive for systems containing more than one

dozen electrons. Additional constraints must therefore be imposed for

larger systems in order to reduce the computational cost. In the pre-

sent study, the set of all MOs was divided into active and inactive

spaces. The active space contains both occupied and virtual MOs. The

active orbitals were utilized to generate additional configurations in

the multi-determinant wave function. The remaining occupied MOs

form the inactive space and are present in every configuration. Active

MOs are labelled u, v, x, or y. Inactive MOs are labelled i, j, k, or l. Gen-

eral MOs are labelled p, q, r, or s.25 Labels A and I refer to the active

and inactive spaces, respectively.

The system Hamiltonian is modified through both the inclusion of

an active space and the separation of the electron repulsion operator.

The Hamiltonian is the superposition of three separate terms:

Ĥ¼ Ĥ
lr
I þ Ĥ

lr
Aþ Ĥ

sr
, ð14Þ

where Ĥ
lr

I is the inactive long-range Hamiltonian, Ĥ
lr

A is the active

long-range Hamiltonian, and Ĥ
sr
is the short-range Hamiltonian. The

derivation of each of these terms is found in the works of

Hedegård et al. 38 and Rossmannek et al.8

For systems with singlet spin symmetry, the Hamiltonian may be

simplified. For example, the inactive long-range Hamiltonian is

Ĥ
lr

I ¼
X
i

hiiþ f I,lrii

� �
þVnn , ð15Þ

where hpq are one-electron integrals that take into account the kinetic

energy and the nuclear-electron Coulomb attraction energy. The inte-

grals are defined as

hpq ¼hϕpðrÞj �1
2
r2þvneðrÞ

� �
jϕqðrÞi: ð16Þ

The entries f I,lrii of the long-range inactive Fock matrix correspond to

f I,lrpq ¼ hpqþ
X
i

2glrpqii�glrpiqi

� �
, ð17Þ

where glrpqrs is a long-range two-electron integral

glrpqrs ¼hϕpðrÞϕrðr0Þjvlreeðr,r0ÞjϕqðrÞϕsðr0Þi: ð18Þ

The long-range electron repulsion potential vlreeðr,r0Þ must be replaced

by vsreeðr,r0Þ or veeðr,r0Þ in order to obtain the short-range two-electron

integral, gsrpqrs, or the standard two-electron integral, gpqrs, respectively.

It should be noted that the inactive long-range Hamiltonian is applied to

a fixed portion of the wave function during the calculation. This is not

the case for the active long-range Hamiltonian, which corresponds to

Ĥ
lr

A ¼
X
uv

f I,lruv Êuv þ
1
2

X
uvxy

glruvxy êuvxy: ð19Þ

The implementation of the short-range Hamiltonian Ĥ
sr
presents

some challenges. One of them is that the short-range Hartree-

exchange-correlation energy, EsrHxc, is nonlinear with respect to the

one-electron reduced density matrix (1-RDM), where a 1-RDM entry

is defined as 39

Dpq ¼hΨjÊpqjΨi: ð20Þ

The nonlinearity can be expressed as the following inequality:

EsrHxc ρref þΔρ
	 


≠ EsrHxc ρref
	 
þEsrHxc Δρ½ �, ð21Þ

where the change in electron density is ΔρðrÞ, and the reference den-

sity is ρrefðrÞ. The electron density is obtained from the 1-RDM as

ρ¼
X
pq

ϕpðrÞϕqðrÞDpq: ð22Þ

The inequality of Equation (21) poses a challenge since the Hamilto-

nian must be linear. As a solution, Pedersen 39 developed a technique

for linearizing the DFT portion of the Hamiltonian. The consequence

of this linearization is that the Hamiltonian must be updated itera-

tively during the calculation.

The short-range Hamiltonian is then divided into a state-averaged

term Ĥ
sr
SA and an active term Ĥ

sr
A . The state-averaged term depends on

the 1-RDM of the previously completed iteration ðiÞ, but its expecta-

tion value remains constant during the ongoing iteration ðiþ1Þ. The
expectation value of the active term varies during each iteration. The

state-averaged term is

Ĥ
sr

SA ¼
X
i

jI,srii �
X
uv

1
2
jA,ðiÞ,sruv þvsrxc,uv½ρðiÞ�

� �
DA,ðiÞ
uv

� �
þEsrxc½ρðiÞ�, ð23Þ

where

jðiÞ,srpq ¼
X
rs

gsrpqrsD
ðiÞ
rs ð24Þ

1990 POIRIER ET AL.
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and

vsrxc,pq½ρðiÞ� ¼ hϕpjvsrxc½ρðiÞ�jϕqi: ð25Þ

The variables DðiÞ
rs and ρðiÞ correspond to the 1-RDM and the electron

density of the latest completed iteration, respectively. The active

short-range Hamiltonian is

Ĥ
sr

A ¼
X
uv

jI,sruv þ jA,ðiÞ,sruv þvsrxc,uv½ρðiÞ�
� �

Êuv
h i

: ð26Þ

All operators in the long-range and short-range Hamiltonians are

only applied to active MOs. These Hamiltonians are summed and the

results are rearranged to match the form of Equation (11). The result

is the following equation:

Ĥ¼Ω0þ
X
uv

Ωuv Êuv þ1
2

X
uvxy

Ωuvxy êuvxy , ð27Þ

where

Ω0 ¼
P
i

hiiþ f I,lrii þ jI,srii

� �
�P

uv

1
2
jA,ðiÞ,sruv þvsrxc,uv½ρðiÞ�

� �
DA,ðiÞ
uv

� �

þEsrxc½ρðiÞ�þVnn,

ð28Þ

Ωuv ¼ f I,lruv þ jI,sruv þ jA,ðiÞ,sruv þvsrxc,uv½ρðiÞ�, ð29Þ

and

Ωuvxy ¼ glruvxy: ð30Þ

During each iteration, the ground state energy and the 1-RDM for the

Hamiltonian are computed with a WFT method such as the VQE.17

The Hamiltonian is updated using the latest computed 1-RDM at the

start of each iteration. The process is repeated until the termination

criterion, such as the maximum energy difference, is met.8,38 It is also

important to note that the final wave function must be an N-electron

wave function, where N is the number of electrons in the system. This

constraint can be enforced in the WFT algorithm.

2.4 | Variational quantum eigensolver

Almost a decade ago, Peruzzo, McClean, et al. introduced the VQE

algorithm.17 This algorithm approximates the ground state energy

of a Hamiltonian. It leverages the combined computational power

of quantum and classical computers. It is therefore a hybrid

algorithm. In the VQE, the quantum computer measures the expec-

tation value of a qubit Hamiltonian

hĤi¼ hΨðθÞjĤjΨðθÞi, ð31Þ

where jΨðθÞi is a parameterized quantum state and θ is a set of

parameters. The quantum state is generated through the application

of a parameterized unitary ansatz, UðθÞ, to an initial state, jΨiniti, which

results in

jΨðθÞi¼UðθÞjΨiniti: ð32Þ

The classical computer, on the other hand, is utilized to minimize

the expectation value of the Hamiltonian. This is achieved

through the variation of the quantum state parameters with an

optimization algorithm. During each iteration, the classical com-

puter receives the expectation value from the quantum computer

before generating a new ansatz with updated parameters.

This process is repeated until convergence is obtained. The opti-

mal expectation value represents an approximation of the ground

state energy 17

E0 ≈ min
θ

hΨðθÞjĤjΨðθÞi: ð33Þ

In the present work, two ansätze were evaluated. First, the

separable pair ansatz (SPA) was used.40 The SPA is a classically tracta-

ble ansatz which was employed as a benchmark. The SPA ansatz

produces a separable pair wave function

jΨSPi¼
YN=2
k¼1

jΨki, ð34Þ

where N is the number of electrons and jΨki is an electron pair

function. A pair function corresponds to

jΨki¼
X
m

ckmjϕk
m" i�jϕk

m# i, ð35Þ

where ckm is a real coefficient and jϕk
m" i is the qubit representing a

spin-up molecular spin-orbital (MSO).30

The second ansatz is the k-UpCCGSD ansatz. The acronym

UpCCGSD stands for unitary coupled-cluster with generalized

single and paired double excitations.41 Unlike the separable pair

ansatz, it is classically intractable except for small systems that

require less than 100 qubits. The use of paired double excitations

(i.e., with spin-orbitals from the same spatial orbital) leads to

shallower circuits than for unpaired double excitations. The use of

generalized excitations in lieu of non-generalized excitations

results in improved accuracy. The generalized excitations do not

restrict the annihilation operators to occupied orbitals and the

creation operators to virtual orbitals.41

Although the MOs are commonly held constant in the VQE, it is

possible to allow them to vary.42–44 An orbital optimization approach

can be beneficial when static correlation is important. Orbitals can

be optimized through the application of the unitary operator eκ̂ .

The result is the state

jΨðθ,κÞi¼ eκ̂ jΨðθÞi, ð36Þ

where κ are the orbital rotation parameters and the corresponding

operator is

POIRIER ET AL. 1991
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κ̂¼
X
pq

κpqðÊpq� ÊqpÞ: ð37Þ

The orbital rotation parameters are determined by solving the follow-

ing Newton-Raphson equation on a classical computer

Hκ¼�g, ð38Þ

where H and g are the electronic Hessian and gradients, respectively.

Both H and g depend on the two-electron reduced density matrix

(2-RDM) of jΨðθÞi. The 2-RDM is obtained by executing the VQE on a

quantum computer. The VQE must be executed each time accurate

estimates of H and g are necessary. These new estimates are

needed because the Newton-Raphson equation, Equation (38), is

solved iteratively.43 The estimation of the 2-RDM of state jΨðθÞi is a bot-

tleneck in the orbital optimization procedure. It has a worst-case cost

that scales as OðM4Þ, whereM is the number of spatial MOs. Techniques

have been developed to obtain the 2-RDM at a lower cost. Some of these

techniques involve the enforcement of N-representability conditions,45

the partitioning of operators,46–51 the use of classical shadows,52 or

the utilization of more efficient fermion-to-qubit mappings.53 The

need for the 2-RDM in other quantum algorithms should help acceler-

ate research in the reduction of 2-RDM estimation costs. For instance,

the 2-RDM can be employed to mitigate errors 45 or to evaluate

properties such as energy gradients and multipole moments.51,54

3 | METHODOLOGY

The computational techniques outlined in the theory section required

the tools from multiple software packages. One of these was

MADNESS,55 which is utilized to generate occupied MOs as well as

PNOs using MRA. The MADNESS code has been modified in several

ways for this project. These modifications include the addition of

functions that enable the application of a long-range exchange opera-

tor. Functions that facilitate the use of range-separated functionals

were also added. The Yukawa potential 33,34 was adopted to perform

the range separation

vsr,μee ðr,r0Þ¼ fYukðμ,r,r0Þ
jr� r0j ¼ expð�μjr� r0jÞ

jr� r0j : ð39Þ

This is because MADNESS relies on the BSH Green's function, shown

in Equation (10), to obtain MOs. The similarity between the BSH

Green's function and the Yukawa potential made the latter convenient

to implement in MADNESS. One important drawback of using the

Yukawa potential is that short exchange-correlation potentials are

sometimes only available for erf-based range separation

vsr,μerfee ðr,r0Þ¼ ferfðμerf,r,r0Þ
jr� r0j ¼1�erfðμerfjr� r0jÞ

jr� r0j , ð40Þ

where erf is the error function and μerf is a specific range separation

parameter. In Libxc,56 the functional library that was used for this

project, only short-range correlation functionals which are separated

using the error function are provided. The range-separation parameter

must, therefore, be converted when employing these functionals.

The proposed conversion factor is

μerf ≈0:5μ: ð41Þ

The derivation of the conversion factor is provided in the supplemen-

tary material. The conversion was needed for the short-range LYP

correlation functional.57 The available short-range B88 exchange

functional 58 relied on the Yukawa potential. Both functionals were

utilized to conduct the range-separated calculations.

The Tequila package 59 was used to generate the ansatz 60 and the

quantum circuit. It was also employed to apply the Jordan-Wigner

transformation, 61,62 execute the VQE, and compute the 1-RDM. In the

VQE, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) 63–66 optimizer

was employed along with the Qulacs 67 quantum computer simulator.

The other functions that were needed for this project were implemented

in a private repository. They will soon be added to the official Tequila

main code branch. These include functions to compute range-separated

integrals, to generate the active space Hamiltonian of Equation (11), and

to iteratively improve the 1-RDM. Canonical LCAO orbitals were also

generated with PySCF 68,69 in order to compare the performance of

MRA-PNOs and canonical LCAO MOs. Some of the calculations used

the full configuration interaction (FCI) solver or the orbital optimization

solver. Both solvers are available in PySCF. Reference energies were

computed with Psi4 unless otherwise specified. 70

The active MOs were selected based on two factors. The first

was the occupation numbers of the PNOs. The second was the

relationship between each PNO and an occupied MO pair. The PNO

with the highest occupation number was first selected. The related

MO pair was also added to the active space. The PNO with the next

highest occupation number along with the associated MO pair was

then selected. This process was repeated until the desired number of

active MOs was reached.

4 | RESULTS AND DISCUSSION

4.1 | Influence of range-separation parameter

In order to understand the impacts of the active space size and the

range-separation parameter on the performance of the range-

separated VQE, the energy of a few molecules at their equilibrium

geometries was computed. These molecules are LiH, BH, BeH2, and

H2O. Their equilibrium geometries are provided in the supplementary

material. Plots of the relation between the range-separated energy

and the range-separation parameter are shown in Figure 1. The range-

separated energy was obtained by utilizing MRA-PNOs in complete

active space configuration interaction (CASCI) calculations. The

resulting energy was compared to the DFT energy and a reference

ab initio value. The notations CAS(N,M) and CASCI(N,M) indicate that

N electrons and M spatial MOs are in the active space.

1992 POIRIER ET AL.
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As expected, the range-separated energy as μ!0 tends towards

the DFT energy, as shown in Figure 1. On the other hand, the range-

separated curves converged to the WFT solution for the chosen

active space as μ!∞. At equilibrium, the optimal point along the

range-separated curve occurred at μ between 1 a.u. and 10 a.u if the

energy as μ!0 was not considered. This is due to the reduced impact

of the basis set size as μ is decreased. The reduction in basis set size

dependence is caused by a singularity in the long-range electron

repulsion potential, which occurs at jr� r0j!0. The decrease of μ

leads to a lower limit at the singularity and, therefore, the disappear-

ance of the electron cusp in the wave function.27 The elimination of

the cusp is an incentive for the use of potentials at a smaller μ. It leads

to wave functions that can be accurately described with a smaller

basis set and a smaller active space. The impact of μ on the active

space size dependence can be seen in Figure 1C. For μ<1 a.u., the

choice of active space has virtually no effect on the energy.

One challenge with range-separated approaches is that the choice

of a range-separation parameter is not trivial. The optimal parameter

depends on a multitude of factors. A lowering of μ results in a

decrease in the basis set size and the active space size dependence of the

ground state energy. This in turn leads to a reduction in computational

cost. Conversely, the accuracy of the short-range exchange-correlation

functional decreases as μ is lowered except, possibly, as μ approaches

0. This is because of the way the functionals are constructed.

(A) (B)

(C) (D)

F IGURE 1 The energy of (A) LiH, (B) BH, (C) BeH2, and (D) H2O as a function of the range-separation parameter for multiple active spaces.
The range-separated results are compared to the Kohn-Shan DFT energy at the basis set limit and to a reference energy that approximates the
exact energy at the basis set limit. For all calculations involving DFT, the short-range B88 exchange 58 and the short-range LYP correlation 57

functionals were utilized. For (A) LiH, the reference is the FCI energy in the cc-pCVQZ basis.71 For (B) BH, it is the CISDTQ energy in the cc-
pCTVZ basis.71 For (C) BeH2, it is the icMRCI+Q energy in the aug-cc-pV5Z basis, where icMRCI+Q stands for the internally contracted
multireference configuration interaction method with Langhoff and Davidson corrections.72 For (D) H2O, it is the extrapolated coupled cluster
(CCSD(T)) energy, where the cc-pCV5Z and cc-pCV6Z bases were used for the extrapolation.25 The vertical dashed line indicates the range-
separation parameter of 5.0 a.u. that was selected for the other PES calculations.

POIRIER ET AL. 1993
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One strategy for constructing the functional involves taking the

asymptotic expansion of the exchange-correlation energy as μ !∞. The

range-separated functional is then generated by interpolating

between the expansion as μ !∞ and a density functional approxima-

tion (e.g., B88) at μ!0.73 Therefore, if μ is too small, the errors intro-

duced by the approximate range-separated functional outweigh the cost

benefits caused by the disappearance of the electron cusp. Upon added

computational resources, if available, μ can be increased to reduce the

errors caused by the functional. In the present work, a range-separation

parameter of 5.0 a.u. was selected since it appeared to provide a suitable

balance between basis set dependence and functional accuracy.

4.2 | Impact of molecular geometry

The potential energy surfaces (PESs) of H2, LiH, BH, BeH2, and H2O

were investigated in order to determine the accuracy of the

range-separated approach for multiple geometries. The curves

were obtained through the symmetric variation of the bond distances,

while the equilibrium bond angles remained constant. The PESs of

BeH2 and H2O are shown in Figure 2.

The maximum absolute error (MAX) and the non-parallelity error

(NPE) with respect to the reference energy were computed to quan-

tify the potential benefits of range separation. The NPE corresponds

to the difference between the maximum and minimum errors along

the PES.41 The MAX and NPE for the PESs of the analyzed molecules

are shown in Figure 3. Tables listing the MAX and NPE for these PESs

are also provided in the supplementary material.

In general, the use of range separation leads to a reduction in abso-

lute errors compared to the use of WFT alone. The range-separated

solver is not always able to outperform DFT. Near the equilibrium

geometry, DFT outperforms range-separation and WFT due to its

smaller basis set size dependence. The accuracy of DFT decreases for

H2 and BeH2 at larger bond distances. This is due to the inability of the

exchange-correlation functional to properly describe static correlation.

For H2 and BeH2, range separation results in a more consistent

improvement in accuracy compared to the use of only DFT with

the BLYP functional. For the other examined molecules, the BLYP

functional remains more accurate even at large bond distances for

the chosen active space sizes.

4.3 | Accuracy of the ansatz

Another factor which has an influence on the energy accuracy is the

choice of ansatz in the VQE solver. The PESs for H2, LiH, BH, and BeH2

were obtained using the SPA ansatz to determine the impact of this

factor. Dissociation curves computed with the SPA and UpCCGSD

ansatz for BeH2 are shown in Figure 4.

The MAX and NPE errors were computed in order to quantify the

magnitude of the improvements brought by range separation with

one specific ansatz. The MAX and NPE for the PESs of the examined

molecules are shown in Figure 5. Tables listing the MAX and NPE for

these PESs are also provided in the supplementary material.

Overall, these results show that, even when employing the VQE,

the use of range separation provides an increase in accuracy. This

increase in accuracy is due to the ability of short-range DFT to handle

dynamical correlation. For most molecules and ansätze, the VQE also

provides results which are similar in accuracy to those obtained with a

CASCI solver. As expected, this is the case for H2 when employing the

(A) (B)

F IGURE 2 The energy of (A) BeH2 and (B) H2O as their bonds are symmetrically stretched. The range-separated results are compared to the
Kohn-Shan DFT energy at the basis set limit and to a reference energy that approximates the exact energy at the basis set limit. For all
calculations involving DFT, the short-range B88 exchange 58 and the short-range LYP correlation 57 functionals were utilized. For (A) BeH2, the
reference is the icMRCI+Q energy in the aug-cc-pV5Z basis.72 For (B) H2O, it is the sum of the relative icMRCI+Q energy 74 and the
extrapolated coupled cluster (CCSD(T)) energy at equilibrium.25 For the relative energy, the aug-cc-pV5Z and aug-cc-pV6Z bases were used for
the extrapolation, whereas the cc-pCV5Z and cc-pCV6Z bases were used for the absolute energy.

1994 POIRIER ET AL.
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SPA ansatz.76 The SPA can also recover most of the correlation for

LiH since there is only one occupied active MO from which PNO pairs

are generated. The other occupied MO remains frozen. The SPA also

performs well for BH. However, the shortcomings of the SPA ansatz

become apparent for BeH2as it struggles to recover the static correla-

tion for large bond distances in that case. This is to be expected since

the SPA ansatz only creates entanglement between PNOs that are

associated with the same occupied MO. A well-constructed classically

intractable ansatz, which generates more entanglement, should out-

perform the SPA ansatz. This is the case for the UpCCGSD ansatz,

although it fails to recover some of the correlation for bond distances

near 2.75 Å.

4.4 | Impact of orbitals

The method chosen for the generation of basis orbitals was found to

impact the accuracy of range-separated calculations. Although the

main focus of this work was MRA-PNOs, results obtained with PNOs

were compared to other results determined with canonical orbitals.

This clarified the distinction between the improvements brought by

range separation and those brought by PNOs. These PNOs were

obtained with MRA, following the approach of Reference 29, in

order to avoid effects caused by the utilization of predetermined

basis sets. The canonical orbitals were computed with predeter-

mined LCAO basis sets. This approach was chosen because the gen-

eration of virtual canonical orbitals with an adaptive basis is not

trivial. The lowest of these orbitals tend to be diffuse and have an

energy which is close to zero. This is a consequence of the MRA

orbital optimization procedure, which favors orbitals with low ener-

gies. Similar orbitals also appear if diffuse functions are included in

(A) (B)

F IGURE 3 The maximum absolute error (MAX) and the non-parallelity error (NPE), with respect to the reference energy, for the PESs of
multiple molecules. The range-separated results were obtained with a CASCI solver. For all calculations involving DFT, the short-range B88
exchange 58 and the short-range LYP correlation 57 functionals were utilized. For H2, the reference is the non-relativistic ab initio limit.75 For LiH,
it is the FCI energy in the cc-pCVQZ basis.71 For BH, the reference is the CISDTQ energy in the cc-pCTVZ basis.71 For BeH2, it is the icMRCI+Q
energy in the aug-cc-pV5Z basis.72 For H2O, it is the sum of the relative icMRCI+Q energy 74 and the extrapolated coupled cluster (CCSD(T))
energy at equilibrium.25 For the relative energy, the aug-cc-pV5Z and aug-cc-pV6Z bases were used for the extrapolation, whereas the cc-pCV5Z
and cc-pCV6Z bases were used for the absolute energy.

F IGURE 4 The energy of BeH2 as it is symmetrically stretched.
The energy was computed with the VQE and either the SPA or the
UpCCGSD ansatz. The VQE calculations were conducted at μ¼5:0 a.
u. and μ!∞. The SPA energy is compared to the CASCI energy at
μ¼5:0 a.u. and to a reference energy that approximates the exact
energy at the basis set limit. This reference is the icMRCI+Q energy
in the aug-cc-pV5Z basis.72 For all calculations involving DFT, the
short-range B88 exchange 58 and the short-range LYP correlation 57

functionals were utilized. With the exception of the icMRCI+Q
energy, an active space containing 4 MOs and 4 electrons was used.

POIRIER ET AL. 1995
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LCAO basis sets (e.g., aug-cc-pVXZ 77). Non-augmented basis

sets were selected to avoid this issue and to provide a fair compari-

son between PNOs and canonical MOs. This comparison is shown in

Figure 6, where the energy of BeH2 and H2O at equilibrium is shown

as a function of the range-separation parameter. Two LCAO basis

sets, 6-31G 78 and cc-pVTZ,79 were selected for the comparison. For

both molecules, the 6-31G basis set led to the formation of 13 MOs

while the cc-pVTZ basis set led to the generation of 58 MOs. The

MO with the lowest orbital energy was frozen for both MRA-PNOs

and canonical MOs. The remaining MOs with the lowest orbital

(A) (B)

F IGURE 5 The maximum absolute error (MAX) and the non-parallelity error (NPE), with respect to the reference energy, for the PESs of
multiple molecules. The range-separated results were obtained with a CASCI solver as well as the SPA and UpCCGSD ansatz. For H2, the
reference is the nonrelative ab initio limit.75 For LiH, it is the FCI energy in the cc-pCVQZ basis.71 For BH, the reference is the CISDTQ energy in
the cc-pCTVZ basis.71 For BeH2, it is the icMRCI+Q energy in the aug-cc-pV5Z basis.72

(A) (B)

F IGURE 6 The energy of (A) BeH2 and (B) H2O at their equilibrium geometries as a function of the range-separation parameter. The range-

separated energy was calculated with a CASCI solver and either MRA-PNOs or canonical LCAO MOs. The range-separated energy is compared to
a reference energy that approximates the exact energy at the basis set limit. For (A) BeH2, the reference energy was the icMRCI+Q energy in the
aug-cc-pV5Z basis.72 For (B) H2O, it was the extrapolated coupled cluster (CCSD(T)) energy, where the cc-pCV5Z and cc-pCV6Z bases were used
for the extrapolation.25 For all calculations involving DFT, the short-range B88 exchange 58 and the short-range LYP correlation 57 functionals
were utilized. With the exception of the reference energies, the active space for (A) BeH2 contained 4 MOs and 4 electrons while the active
space for H2O had 8 MOs and 8 electrons. The vertical dashed line indicates the range-separation parameter of 5.0 a.u. that was selected for the
other PES calculations.
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energies were selected for the active space of the canonical MOs. A

comparison between the errors associated with the canonical and

PNO approaches, at μ¼5:0 a.u., is also provided in the supplemen-

tary material.

As shown in Figure 6, the energy obtained with canonical orbitals

in the cc-pVTZ basis nearly coincides with the MRA-PNO energy for

smaller range-separation parameters (i.e., near DFT-only). This is

because the energy in this range of μ does not depend on the virtual

orbitals in the active space. Conversely, the energy does depends on

the overall basis set size. The quality of the occupied Kohn-Sham

orbitals increases from 6-31G to cc-pVTZ, where the latter yields

results similar to the MRA representation, which can be assumed to

represent the basis set limit.22 The quality of the MOs in the active

space has a greater importance as μ tends to infinity (i.e., near WFT-

only). This results in greater errors for the canonical orbitals in both

LCAO basis sets.

These comparisons indicate that, given a certain number of qubits

(i.e., a certain active space size), MRA-PNOs can provide more accu-

rate results than canonical LCAO MOs. This is partly because PNOs

are generated such that they enable a compact representation of the

molecular system. As a result, a greater portion of the dynamical

correlation is included in the active space. It must be noted that the

generation of orthonormal PNOs constitutes a bottleneck in the

MRA-PNO approach. Alternatively, PNOs could be generated using

the LCAO method. But the utilization of MRA enables the construc-

tion of PNOs at the basis set limit. This eliminates the need to worry

about possible artifacts from the use of predetermined basis sets.

Observed effects can instead be explained by the choice of surrogate

model, in this case MP2, and the number of requested orbitals.

Pragmatically, it is safe to assume that PNOs obtained with MRA

have a similar accuracy to PNOs obtained with basis sets between

aug-cc-pVTZ and aug-cc-pVQZ.29

It can also be beneficial to re-optimize the orbitals between VQE

iterations following the procedure described by Equations (36)–(38).

This is shown in Figure 7A, which contains dissociation curves for

BeH2. To quantify the accuracy of orbital optimization, the MAX and

NPE errors for BeH2 are also shown in Figure 7B. Tables listing the

MAX and NPE for these PESs are shown in the supplementary

material.

As shown in Figure 7, orbital optimization leads to smaller errors

as the bond distance is increased. This is due to the multi-

configurational nature of the wave function for BeH2 near dissocia-

tion. But orbital optimization cannot fully compensate for the error

caused by the SPA ansatz at a bond distance of 2.75 Å. The use of an

ansatz with greater entanglement generation is needed to reduce the

error at that bond distance. The utilization of range separation also

leads to a reduction in absolute errors over the entire PES when com-

pared to the non-separated energy curves.

5 | CONCLUSIONS

The objective of this study was to increase the accuracy of molecular

ground state energy estimates given a limited amount of quantum

resources. The proposed approach could broaden the range of

practical chemistry problems amenable to larger NISQ computers.

(A) (B)

F IGURE 7 (A) The energy of BeH2 as a function of bond distance as the molecule is symmetrically stretched. The energy was computed with
the VQE and the SPA ansatz with either unoptimized (MRA-PNO) or optimized (Opt SPA) orbitals. The VQE calculations were conducted at
μ¼5:0 a.u. and μ!∞. The SPA energy is compared to the CASCI energy at μ¼5:0 a.u. and to a reference energy that approximates the exact
energy at the basis set limit. This reference is the icMRCI+Q energy in the aug-cc-pV5Z basis.72 For all calculations involving DFT, the short-
range B88 exchange 58 and the short-range LYP correlation 57 functionals were utilized. (B) The maximum absolute error (MAX) and the non-

parallelity error (NPE) of the PESs with respect to the reference energy. With the exception of the reference energy, an active space containing
4 MOs and 4 electrons was used.
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Two possible pathways were explored in order to establish a protocol.

The first pathway is the treatment of different portions of the molecu-

lar system with different theoretical frameworks. The second pathway

is the judicious choice of MOs for the description of the wave

function. The chosen strategy combined the separation of short- and

long-range interactions with range-separated DFT, the use of PNOs in

the active space, and the approximation of the ground state wave

function with the VQE.

The treatment of short-range interactions with a DFT solver and

of large-range interactions with a WFT solver provided multiple bene-

fits for the molecules considered. For instance, the utilization of DFT

led to smaller basis set size and active space size requirements. This is

because DFT recovers most of the dynamical correlation with a one-

electron potential. But certain DFT functionals, such as BLYP, were

inaccurate when molecules like H2 and BeH2 were near dissociation.

The utilization of WFT to treat long-range interactions in these cases

resulted in a better recovery of the static correlation. Overall, the

range-separated DFT approach was more accurate than only WFT

given the same number of qubits. It was also found to be more accu-

rate than the Kohn-Sham DFT approach in some cases.

It was observed that the utilization of PNOs, in lieu of canonical

MOs, improved the accuracy of range-separated DFT calculations.

This is partly because the generated PNOs provided a compact repre-

sentation of the molecular system. This results in the inclusion of a

larger portion of the dynamical correlation in the active space. One

additional advantage of the MRA-PNO approach is that MRA is a

basis-set free approach. Errors due to the selection of a specific LCAO

basis set are therefore excluded from the energy calculations. Further-

more, the generation of occupation numbers during the construction

of the PNOs results in a more systematic selection of the active space.

The PNOs may not necessarily form the best MOs, however. For

instance, it may be beneficial to iteratively optimize the MOs during

the VQE calculation when an ansatz, such as SPA, is utilized. This is

the case for BeH2 when the bond distances exceed 2.5 Å. But an

ansatz that generates more entanglement, such as the UpCCGSD

ansatz, provides a relatively accurate representation of the wave func-

tion without the need for further optimization of the PNOs. Yet, even

the UpCCGSD ansatz is unable to recover some of the correlation

that CASCI recovers for BeH2 at bond distances of 2.75 Å. A more

accurate ansatz is needed to recover this correlation.76

Although the proposed protocols were successful in the reduction

of quantum resource requirements, additional work is needed to

improve their reliability. One important source of error is the approxi-

mate nature of the range-separated DFT functionals. The develop-

ment of more accurate functionals could lead to a reduction of the

optimal range-separation parameter. This would result in a decrease

of both the active space size dependence and the amount of quantum

resources needed. One possible solution to improve the functional

accuracy is to include the on-top pair density as suggested by Hapka

et al.80 Another area of interest is the selection of the optimal range-

separation parameter. This selection depends on multiple factors, such

as the choice of functional and the amount of quantum resource avail-

able. Lastly, alternative methods for the generation of orbitals may be

better suited than those used in the present study.81,82 In some

instances, it may be beneficial to generate more accurate orbitals. In

other cases, it might be preferable to accelerate their generation even

at the cost of reduced accuracy.
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