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Abstract—Robot-assisted minimally invasive surgery requires
accurate segmentation for surgical instruments in order to guide
surgical robots on tracking the target instruments. Nevertheless,
it is difficult to perform surgical-instrument semantic segmenta-
tion in unknown scenes with extremely insufficient intra-scene
surgical data, despite of the attempts for general semantic
segmentation tasks. To address this issue, we propose a cross-
scene semantic segmentation approach for medical surgical
instruments using structural similarity based partial activation
networks in this paper. The proposed approach includes a
main branch for multi-level feature extraction, a segmentation
head global consistency, and a structural similarity based loss
function to provide high-level information acquisition, which
improves the generalisation performance for the cross-scene
segmentation task. Then, the experimental results in cross-
scene surgical-instrument semantic segmentation cases show the
effectiveness of the proposed approach compared with state-of-
the-art semantic segmentation ones, using the newly established
endoscopic simulation dataset.
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I. INTRODUCTION

RECENT progress has witnessed the effectiveness of
semantic segmentation for surgical instruments in robot-

assisted minimally invasive surgery, through mining visual
information in surgical scenes [1], [2]. As a critical proce-
dure in surgical-robot control, these instruments’ segmentation
aims to separate the instruments’ foreground from the organ
background, which can be applied to instrument tracking and
pose estimation tasks [3], [4]. In addition to these tasks, the
masks generated by the segmentation process also contribute
to workflow analysis and process optimisation for surgical
applications, for the purpose of reducing the workload of
doctors and improving surgical safety [5], [6].

Within the solutions to surgical-instrument semantic
segmentation, deep learning based approaches make the
segmentation robust and adaptive, through refining target
information on data resources [7], [8]. Most of the approaches
employ U-Net frameworks containing Convolutional Neural
Networks (CNNs) [9], focusing on improving the seg-
mentation’s accuracy and response speed in complex
surgical environments (e. g., occlusion, motion artefacts, blood
stains, and smoke). To this end, the networks consider
improvements on lightweight operations [1], [10], [11], novel
attention modules [12], [13], [14], multi-scale or multi-level
fusion [2], [5], [15], and prior knowledge [16], [17]. In addi-
tion, the inclusion of a Swin Transformer [18] also improves
the performance of semantic segmentation for surgical instru-
ments, benefiting from its strong generalisation ability [19].

Further, on the aspect of data preparation, the past
organised Medical Image Computing and Computer Assisted
Intervention (MICCAI) sub-challenges on surgical-instrument
segmentation provide high-quality labelled images of endo-
scopic procedures, in order to meet the requirements
for large-scale fine-grained labelled surgical instrument
data [20], [21], [22]. Considering the challenge on the
lack of large-scale finely-annotated datasets, computer-
generated data [23], [24] and cross-domain segmentation
networks [25], [26] have been employed to alleviate training
issues, arising from the scarcity of the finely-annotated data.
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In spite of these achievements, two deficiencies still exist in
current research on semantic segmentation for surgical instru-
ments. First, conventional approaches on surgical-instrument
segmentation fail to sufficiently model cross-scene surgical-
instruments segmentation on generalisation and adaptation,
especially when confronting unfamiliar or unknown surgical
scenarios divergent from their training environments. Second,
conventional surgical-instrument segmentation models fail to
jointly consider local nuances, global context, and structure
information, which may lead to incomplete representation of
the intricate details of surgical instruments especially in the
cross-scene cases. In this regard, we propose a Structural
Similarity based Partial Activation Network (SSPAN)1 in
cross-scene semantic segmentation for medical surgical instru-
ments, intended to make up the deficiencies on exploring the
connection between simulated and real-world surgical scenes,
and designing partial activation networks with Structural
SIMilarity (SSIM) [27] for the cross-scene cases, in order
to jointly fuse local and global features, while focusing on
structure information.

The proposed approach consists of three modules: First,
the main branch contains a multi-sub-branch architecture for
extracting pixel-level and region-level image features, in order
to jointly construct local and global representations. Then, the
segmentation head improves global consistency through intro-
ducing a partial attention mechanism, based on both of these
representations, while retaining local specificity. This can help
to alleviate variability (e. g., texture, size, and shape) between
target instruments from the same class in different scenes.
Finally, to further improve the generalisation ability, a loss
function based on structural similarity is designed to consider
both low-level and high-level information for the cross-scene
segmentation. In comparison with related surgical-instrument
segmentation works, the proposed approach focuses on cross-
scene cases, through considering structural similarity based
partial activation networks.

The contributions of this work are shown as follows:
• We propose a novel approach of SSPAN in cross-scene

semantic segmentation for medical surgical instruments.
• Within the proposed SSPAN approach, we design a

multi-branch structure and partial attention mechanism
to jointly extract and fuse local and global feature
information.

• Within the proposed SSPAN approach, we also design an
SSIM-based loss function for cross-scene learning.

The remainder of this paper is organised as follows.
Section II presents related work. The specific methodology
of the proposed approach is then presented in Section III.
Finally, Sections IV and V present the experiments, analysis,
and conclusion.

II. RELATED WORK

A. Learning-Based Surgical Instrument Segmentation

Learning-based surgical instrument segmentation aims at
constructing segmentation models with the knowledge from

1https://github.com/Li71226006/SSPAN

collected data in surgical cases, due to the excellent adaptive
capability [5], [6], [9].

Recent efforts have concentrated on fusing features across
varying scales and hierarchical levels, as well as applying
diverse attention mechanisms [28], [29], to enhance the mod-
els’ representational capacity. Cerón et al. [30] proposed a
method that aggregates multi-scale semantic information by
fusing feature maps from the last four blocks of ResNet-101,
augmented with multiple attention modules to boost represen-
tational strength and segmentation accuracy. Yang et al. [31]
employed a residual path for contextual feature fusion and
integrated a non-local attention block in the bottleneck
layer, introducing dual attention modules to suppress irrele-
vant features and improve local feature representation, while
Shen et al. [32] utilised both spatial and channel attention
mechanisms to merge semantic insights from various levels,
capturing extensive contextual details and thus improving
segmentation precision. Furthermore, Qin et al. [33] employed
a multi-angle feature aggregation approach, enhancing the
model’s robustness to directional variations in instruments by
aligning features across different rotational angles.

Further research on cross-scene medical surgical instrument
segmentation primarily addresses the performance degradation
of models caused by domain shift between different surgical
scenarios, for the purpose of improving models’ generalisation
for binary segmentation tasks in similar scenes. This can be
tackled through various techniques such as style transforma-
tion [25], prototype learning [26], and incorporating prior
knowledge [34]. Note that these works require sufficient real-
world surgical data in training the models.

B. Surgical-Instrument Datasets

Conventional surgical-instrument datasets for semantic seg-
mentation tasks contain fine-grained labelled data collected
in real-world surgical scenes. For example, for the endo-
scopic surgical-instrument datasets, a series of MICCAI
sub-challenges (EndoVis 2015 [20], EndoVis 2017 [21], and
EndoVis 2019 [35]) present available visual data derived
from endoscopic surgical videos. These datasets are labelled
with rigid surgical or robotic-surgical instruments, and contain
complex environmental factors (e. g., smoke, blood stains,
motion artifacts, and occlusions).

Considering the limitations on diversity and adaptation for
real-world data [36], simulation-supervised image synthesis
has been investigated in surgical-instrument segmentation, pri-
marily using computer simulators of dV-Trainer [37], RobotiX
mentor [38], and Asynchronous Multi-Body Framework
(AMBF) [39] to generate images of simulated surgical instru-
ments. Due to the style discrepancies between the synthetic
and real-world data, the style-transfer technique of CycleGAN
is employed to convert synthesized images into more lifelike
data [23], while Colleoni et al. [40] introduced attention
mechanisms into the CycleGAN to better focus on domain-
specific features.

III. METHODOLOGY

We propose the SSPAN approach in cross-scene semantic
segmentation for surgical instruments, as shown in Fig. 1, with
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Fig. 1. Diagram of the network for the proposed approach, including a main branch performing processing based on the ResNet-101 backbone, and a
segmentation head using the input feature maps from the main branch.

Fig. 2. Description for the five modules of DROPOUT, FUSE, LG,
CONVm×m, and POOL in the network diagram, where m indicates the
convolutional kernel size.

Fig. 2 introducing the six modules appearing in Fig. 1. As a
two-branch structure, the proposed SSPAN contains a main
branch designed for integrating pixel-level and region-level
features, in order to jointly extract global and local semantic
information. In addition to the main branch, a segmentation
head is developed based on partial attention mechanisms,
including region partitioning and self-attention mechanisms
applied to the feature map.

A. Main Branch

The main branch serves to enhance the network’s rep-
resentational and generalisation capabilities by enabling the
model to learn feature representations at different granularities
through pixel-level and region-level tasks. It also provides
the segmentation head with image features from multiple
hierarchical levels.

Note that an arbitrary input image Xin(Hin × Win × Cin)

contains Cin channels, with the height Hin and the width Win.
Then, the image is processed by the ResNet-101 backbone to
extract its feature maps M1(H×W ×C1) and M2(H×W ×C2)

from the last two blocks of ResNet-101 containing C1 and
C2 convolutional channels, respectively, with the height H and

the width W [41], [42]. The two blocks’ outputs can help to
prevent supervision vanishing and reduce internal redundancy
within the model, which ultimately enhances the model’s
generalisation ability [43], [44].

To jointly extract local and global information, the main
branch contains two sub-branches to extract pixel-level and
region-level information. The pixel sub-branch utilises the
CONVm×m and DROPOUT modules (with C3 and K channels,
respectively) to obtain the pixel-level feature map P(H × W ×
K) written as

P = Softmax(DROPOUT(CONV3×3(M2))), (1)

performing a Softmax operation on the K segmentation
classes, where CONVm×m and DROPOUT represent the dif-
ferent operational modules as in Fig. 2 with a Rectified Linear
Unit (ReLU) activation and Batch Normalisation (BN), where
m is the kernel size.

In addition to CONVm×m and DROPOUT modules, the
region sub-branch additionally employs the POOL module to
divide the feature map into non-overlapping regions, obtaining
the region-level feature map R(K×S×S) with the division size
S in adaptive pooling. As a crucial component of the POOL
module, adaptive average pooling divides the input feature
map into predefined regions and performs averaging within
each to yield regional representations. These representations
are subsequently normalised to a range between 0 and 1
through a sigmoid function.

In this sub-branch, semantic features F(H × W × C4) and
semantic information I(H ×W ×K) (with C4 and K channels,
respectively) are obtained through

R = POOL(DROPOUT(CONV3×3(M1)
︸ ︷︷ ︸

F

)

︸ ︷︷ ︸

I

), (2)

where the POOL module in Fig. 2 employs a sigmoidal
function with an adaptive average-pooling operator.
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B. Segmentation Head

The segmentation head first divides the feature maps gener-
ated by the main branch into non-overlapping regions in a fixed
quantity. Then, it implements the partial attention mechanism
through facilitating feature interaction, fusion, and attention
calculation within these regions. This process allows for joint
consideration of local specificity and global consistency, so as
to enhance the model’s generalisation performance.

In order to represent local specificity, the segmentation head
employs a patch-split strategy to divide F and I into non-
overlapping regions Fp(h×w×C4×Np) and Ip(h×w×K×Np),
where Np = S2 represents the total number of the regions,
with the size of h = H

S and w = W
S .

Afterwards, akin to OCRNet in class-feature correlation
calculation [45], the weighted class-feature affinity matrix F(i)

l
of the ith region (i = 0, 1, . . . , Np−1) can be obtained through

F(i)
l = (R̂(i)e�

C4
) � (Softmax(Î(i)

p )�F̂(i)
p ), (3)

where the ith region’s reshaped feature maps of I(i)(h×w×K)

and F(i)(h × w × C4) can be represented as Î(i)
p (N × K) and

F̂(i)
p (N × C4), where N = hw. Then, a Softmax operator is

performed across the K segmentation classes for each row of
Î(i)

p . Within Eq. (3), we also utilise the region-level feature map
R as the weights to enhance the class-relevant features, while
weakening the irrelevant features for each region, with ‘�’
indicating element-wise multiplication. Hence, R is reshaped
as R̂(K × Np), and R̂(i)(K × 1) contains the weights of the
i-th region. By duplicating R̂(i) along the column direction, we
transform it into a shape of K × C4 using the column vector
eC4 = [1, 1, . . . , 1]�.

Afterwards, the weighted class-feature affinity matrix
Fl(K×C4×Np) can be obtained using F(i)

l s. Further, in order to
improve the generalisation of local regions for each class, we
employ the Local Gather (LG) module (see Fig. 2) to enable
information interchange across different regions [42], [46].
This is achieved by performing 1 × 1 convolution on the
Np regions. Then, the convolution results are passed through
a ReLU activation combined with Fl. Then, the feature
map is fed to a linear operation with C4 nodes on the C4
channels, resulting in outputting the feature map FLG(K ×
C4 × Np). The residual structure and linear transformation are
incorporated, aiming at facilitating gradient propagation and
strengthening the association between classes and features.
Using the LG module’s output FLG, we fuse different local
regions through the FUSE module (see Fig. 2) and obtain
global features Fg(K × C4). The FUSE module also includes
1 × 1 convolution on the Np regions with 1 channel and
a ReLU activation, as employed in [47], [48]. This design
merges multiple channels into one, using an activation function
for nonlinear integration of weighted features, for the purpose
of enhancing representation and complexity management in
the fused feature map.

For the ith patch, we feed the obtained F̂(i)
p (N × C4),

F(i)
LG(K × C4) (from the ith patch in FLG(K × C4 × Np)),

and Fg(K × C4) to three linear mappings Wp(·), WLG(·), and
Wg(·) (each with C5 nodes) on the C4 channels, respectively.

This leads to calculating the ith patch’s enhanced feature maps
represented as

F(i)
s = Softmax

(

Wp

(

F̂(i)
p

)

WLG

(

F(i)
LG

)�)

Wg
(

Fg
)

, (4)

considering the non-local structure in [49], with the Softmax
performing across the K classes. Hence, we obtain the
reshaped enhanced features F̂s(N × C5 × Np) and its non-
reshaped form Fs(h × w × C5 × Np).

The aforementioned process constitutes the partial attention
mechanism, through segmenting the feature map into fixed-
size non-overlapping regions. Then, the target is to improve
intra-region and inter-region feature interactions (via the LG
module), fusion (via the FUSE module), and attention mech-
anisms (employing non-local structures), in order to achieve
global consistency and local specificity.

Then, we perform CONV1×1 (with C4 channels) for Fs

across its C5 channels, and obtain

Fo1(h × w × C4 × Np) = CONV1×1(Fs) + Fp, (5)

and reshape it into Fo2(H × W × C4).
When further performing CONV3×3 (with C4 channels)

across the channels, we form Fo3(H × W × C4) as

Fo3 = CONV3×3
(

Concat(CONV3×3(Fo2), M1)
)

, (6)

where the Concat(·) indicates concatenation on the channels.
Finally, we employ the DROPOUT module with K channels

to acquire the output of the segmentation head as

Xout(H × W × K) = Softmax(DROPOUT(Fo3)). (7)

Note that Equations (5) and (6) pertain to feature fusion
operations, where features are either added or concatenated
to enhance feature representation. Equation (7) introduces a
DROPOUT module, designed to improve models’ robustness
against overfitting.

C. Loss Function

The loss function L of the network can be divided into main
loss Lmain and segmentation loss Lseg, aiming at guiding the
main branch to extract and fuse local and global information,
and assisting the segmentation head to better segment the
target, respectively, forming the loss function as

L = Lmain + Lseg. (8)

The main loss Lmain can be further divided into two terms:
The pixel-level loss function utilises Cross Entropy (CE) loss,
while the region-level loss function considers Focal Loss (FL)
shown as

Lmain = lpixel + lregion. (9)

Note that the one-hot ground-truth segmentation annotation
of an image is represented as Y(Hin × Win × K). Meanwhile,
we perform up-sampling for the feature map P(H × W × K)

using linear interpolation, leading to Q(Hin × Win × K). We
thereby calculate

lpixel = − λ1

HinWin

Hin
∑

j1=1

Win
∑

j2=1

K
∑

k=1

Yj1j2k log Qj1j2k, (10)
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where the weight λ1 = 0.4, while Yj1j2k and Qj1j2k correspond
to the (j1, j2, k)th elements of Y and Q, respectively.

For the region-level term, we reshape Y and perform
adaptive average-pooling on each region, resulting in Z(K ×
S × S). Then, using the region-level feature map R with
Softmax processing, we further obtain its annotation-related
representation R′(K×S×S) with the corresponding (k′, s1, s2)-
element R′

k′s1s2
= Rk′s1s2 when the corresponding element

Zk′s1s2 = 1 (from Z), otherwise equal to 1−Rk′s1s2 . Therefore,
the region-level loss is shown as

lregion = −λ2

S2

K
∑

k′=1

S
∑

s1=1

S
∑

s2=1

(1 − R′
k′s1s2

)γ log R′
k′s1s2

, (11)

where the weight λ2 = 1, and γ = 2 is used to adjust the
balance between positive and negative elements.

For the segmentation loss Lseg, we set a joint form of

Lseg = lSSIM + lCE, (12)

using an SSIM-loss term lSSIM and a CE-loss term lCE.
The SSIM is commonly used as a loss function and

evaluation metric in image reconstruction tasks [50], [51]. It
measures the structural similarity between images, taking three
aspects of luminance, contrast, and structure into account on
image quality, resulting in general representation of structural
features [52], [53].

In contrast to these works, this paper extends SSIM for use
in the loss function of multi-class semantic segmentation tasks,
considering to capture structure information through fitting
statistics [54], shown as

lSSIM = 1 − 1

K

K
∑

j=1

D(j)
MSSIM, (13)

where D(j)
MSSIM refers to the mean structural similarity between

the prediction Xout(H ×W ×K) and the ground truth Y(Hin ×
Win × K) on the jth segmentation class.

In this way, we first perform up-sampling (using linear
interpolation) and then normalisation (using Softmax on the
K segmentation classes) on Xout, leading to the transformed
prediction X̃out(Hin × Win × K). We go on splitting X̃out and
Y into Nr regions using a 11 × 11 sliding window with the
stride of 1. Then, we obtain the mean structural similarity

D(j)
MSSIM = 1

Nr

Nr
∑

j=1

(

2μ
j
xμ

j
y + τ1

)(

2σ
j
xy + τ2

)

(

(μ
j
x)2 + (μ

j
y)2 + τ1

)(

(σ
j
x)2 + (σ

j
y)2 + τ2

) , (14)

where μ
j
x and (σ

j
x)

2 correspond to the mean and standard
deviation of X̃out, respectively, while μ

j
y and (σ

j
y)

2 are the
mean and standard deviation of Y, respectively. σ

j
xy indicates

the covariance between X̃out and Y. We also set the biases
τ1 = 10−4 and τ2 = 0.03.

In addition to lSSIM , the CE loss lCE is included in Lseg,
using X̃out and Y. For the inference step, we use X̃out as the
segmentation output for an arbitrary test sample, to achieve its
final semantic-segmentation prediction.

Fig. 3. The laparoscopic surgical-simulation platform for the simulation
dataset, with the right part showing the components, while the left part is
showing the ways of standing.

Fig. 4. Six basic challenging scenarios considered in the endoscopic simu-
lation dataset, including (a) category imbalance, (b) illumination imbalance,
(c) motion artifacts, (d) occlusion, (e) smoke, and (f) blood stains.

IV. EXPERIMENTS

A. Data Preparation

The Simulation Dataset: The Artificial Laparoscopic
Instrument Dataset (ALID)2 is a fine-grained labelled dataset
built by us, using a simulated operating table at different sur-
gical stations. More specifically, we have used the BELLYSIM

laparoscopic simulation training system [60], for the purpose
of simulating multi-station clinical training in thoracoscopy
and laparoscopy in an artificial-pneumoperitoneum form.

As shown in Fig. 3, the laparoscopic simulation training
system consists of trocars, a 30-degree focusable endoscope,
and a pneumoperitoneum morphology experimental platform.
In addition to these, the system also contains three types
of rigid surgical instruments (scissors, grasping forceps, and
detachment forceps), consistent with clinical specifications.
Due to the fact that endoscopic surgical instruments usually
have different insertion points, two stations have been designed
in order to simulate different orientations of the surgical
instruments in real-world cases.

Then, considering the influence from complex surgical
environment for instruments’ segmentation, we take into
account multiple challenging scenarios frequently arising in
laparoscopic surgery when acquiring the data. As can be
seen from Fig. 4 and Table I, the ALID dataset contains
1 250 images with the size of 1080 × 1920 pixels, involving
six scenarios of occlusion, illumination imbalance, category
imbalance, smoke, motion artefacts, and blood stains, also
including their pair-wise combinations. In addition, we define
the segmentation target as both of the shaft and manipulator for

2https://github.com/Li71226006/ALID
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TABLE I
THE PAIR-WISE COMBINATIONS OF THE SCENARIO CATEGORIES FOR THE SIMULATION DATASET, WITH

CORRESPONDING NUMBERS OF IMAGE SAMPLES FOR EACH PAIR

a surgical instrument used in building the dataset. As for the
annotation, we employ the Efficient Interactive Segmentation
(EISeg) toolbox to obtain the surgical-instrument masks by
labellers [61], considering the inclusion of review and revision
by the annotators and experts, in order to further ensure correct
annotations.

The Real-World Datasets: We set the EndoVis 2015 and
EndoVis 2017 datasets (from MICCAI EndoVis Challenge
2015 and 2017, respectively) [20], [21] as the real-world
datasets in the experiments. The EndoVis 2015 dataset con-
tains 300 surgical pictures of rigid surgical instruments from
in-vivo environments, with the image size of 480×640 pixels,
160 of which are used for training and 140 for testing. The
segmentation target is the shafts and manipulators of the
instruments. The EndoVis 2017 dataset is built on endoscopic
surgery, acquired by a DA VINCI XI surgical system. It
contains 3 000 images with a resolution of 1080×1920 pixels,
1 800 of the images are used for training and 1 200 for testing.
The segmentation target is the shafts, articulated wrists, and
claspers of surgical instruments.

In order to facilitate the process, the size of EndoVis 2017
and ALID has been scaled down to 512 × 768 pixels. The
articulated parts in EndoVis 2017 have been used as the manip-
ulators of surgical instruments in order to harmonise the
classes. Afterwards, for the validation procedures, we perform
training on ALID and test on the test sets of the EndoVis 2015
and EndoVis 2017 datasets, in accordance with the setups in
the EndoVis challenges. In addition, for the approaches with
strong generalisation capabilities for the cross-scene cases, we
also perform intra-scene training, and perform testing on the
same test sets of the two real-world datasets as in the cross-
scene cases, which is designed to provide segmentation’s upper
bounds for these approach.

B. Experimental Setups

Training Details: Within the training procedures, we
employ a ‘poly’ learning rate policy [62], with the initial learn-
ing rates set as {0.0001, 0.001, 0.002, 0.005, 0.01, 0.02, 0.1},
for the total loss function L. The learning rates are also
multiplied by (1 − niter

nmax
)0.9, with niter and niter indicating the

current and maximum numbers of iteration. The optimiser is
chosen as Stochastic Gradient Descent (SGD) [63], with a
momentum 0.9 and a weight decay of 10−4. The batch size is
set to 4. The numbers of channels C1 to C5 are set to 2 048,
1 024, 256, 512, and 256, respectively. The region-number

parameter S = 4, resulting in Np = 16, and the feature maps’
size is set as H = Hin

8 and W = Win
8 . All the training samples

are enhanced by random horizontal and vertical flipping for
each epoch.

Evaluation Indicators: In order to measure the simi-
larity between predicted and ground-truth segmentation, the
Jaccard index (noted as ‘J’; or equivalently Intersection over
Union (IoU)) and the Dice score (noted as ‘Dice’) are used
in performance evaluation for the semantic segmentation
approaches. Higher Jaccard-index results and Dice scores
indicate better performance, represented as

J = TP

TP + FP + FN
, (15)

Dice = 2TP

2TP + FP + FN
, (16)

where TP, FP, and FN represent true-positive, false-positive,
and false-negative subsets of pixels, respectively. Note that we
aim to separately segment both of the shaft and manipulator for
a surgical instrument, which leads to multi-class segmentation
tasks in the experiments [64]. For each class, we calculate
the J and Dice coefficients. To obtain a comprehensive metric
evaluation, we use a macro-average, which means averaging
the metrics across all class.

C. Experimental Results

Comparison with Existing Approaches: First, in order
to show the performance of the proposed approach for
the cross-scene cases, we present the experimental results
on the EndoVis 2015 and EndoVis 2017 datasets in
Table II, in terms of the J and Dice indicators for the
multi-class segmentation. Note that for the cross-scene
case, the models are trained and tested on the ALID
dataset and the test set of each real-world dataset, respec-
tively. The compared semantic segmentation approaches
include U-Net [9], Attention-guided LightWeight Network
(LWANet) [11], Residual Attention U-Net (RAUNet) [56],
Refined Attention Segmentation Network (RASNet) [57], Swin
Transformer [19], ISNet [58], DeeplabV3+ [59] and Partial
Class Activation Attention (PCAA) [42], considering ResNet
[65], MobileNetV2 [55], and UperNet [66] as the backbone
networks. For the experimental results on the EndoVis 2015
and EndoVis 2017 datasets, the proposed SSPAN achieves the
best results when using both of the indicators (J = 56.0% &
Dice = 67.9% for EndoVis 2015, and J = 65.5% & Dice =
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TABLE II
CROSS-SCENE SEMANTIC-SEGMENTATION RESULTS IN TERMS OF JACCARD INDEX (J; %) AND DICE SCORE (Dice; %) AS INDICATORS ON THE

ENDOVIS 2015 AND ENDOVIS 2017 DATASETS, USING THE PROPOSED AND STATE-OF-THE-ART APPROACHES. NOTE THAT THE INDICATORS IN THE

BRACKETS REFER TO THE INTRA-SCENE CASES AS THE UPPER BOUNDS FOR THE TEST SETS OF THE TWO REAL-WORLD DATASETS

Fig. 5. Performance demonstration for the proposed and well-performed
compared approaches, in terms of the gap of the Jaccard index (J) indicator
between cross-scene and intra-dataset cases, with the horizontal and vertical
axis representing the gaps when testing on the EndoVis 2015 and EndoVis
2017 datasets, respectively.

77.1% for EndoVis 2017). It is also observed from the upper-
bound results that the proposed SSPAN obtains similar results
for the intra-scene cases (J = 77.2% & Dice = 86.2% for
EndoVis 2015, and J = 90.9% & Dice = 95.1% for EndoVis
2017), compared with the well-performed PCAA approaches.
This strongly shows the cross-scene segmentation performance
for the proposed SSPAN, in view of the gaps between the
SSPAN and compared approaches in the cross-scene cases.

Then, for the sake of investigating generalisation ability of
these approaches, we also present intra-scene results when
training and testing on two real-world datasets in Table II
without involving the ALID data (noted as ‘cross-scene J
or Dice (intra-scene J or Dice)’), showing the gaps between
cross-scene and intra-scene cases in Fig. 5. The gaps in the
indicator J are presented in the figure for EndoVis 2015 (hor-
izontal) and EndoVis 2017 (vertical) datasets, with the points
corresponding to Swin Transformer, ISNet with ResNet-50

(noted as ‘ISNet-50’), ISNet with ResNet-101 (noted as
‘ISNet-101’), DeeplabV3+, PCAA with ResNet-50 (noted as
‘PCAA-50’), PCAA with ResNet-101 (noted as ‘PCAA-101’),
and the proposed SSPAN (noted as ‘Proposed’). The results
indicate that our proposed SSPAN achieves strong generalisa-
tion performance compared with the other approaches.

We further demonstrate the visulisation of the segmentation
examples from the test sets of the EndoVis 2015 and EndoVis
2017 datasets in Fig. 6, when using Swin Transformer, ISNet-
50, ISNet-101, DeeplabV3+, PCAA-50, PCAA-101, and our
proposed SSPAN. The examples show that although the
proposed approach yields better segmentation performance
in separating foreground surgical instruments from the back-
grounds, although not well-performing on distinguishing shafts
and manipulators in the instruments.

To analyse class-wise performance, we present the confu-
sion matrix for SSPAN alongside the foreground J and Dice
coefficients, compared with the PCAA-101 model due to its
performance from Table II, as shown in Fig. 7. The results
indicate that it is not dominant for the proposed SSPAN to
classify shafts and manipulators in the foreground areas. Then,
we showcase samples from three datasets along with their
annotations. Fig. 8 illustrates that, in the ALID dataset, there
is a pronounced color distinction between the shaft and the
manipulator, marked by an evident visual boundary. However,
in real surgical datasets, the color differentiation between the
shaft and effector can be subtle or even absent. Fig. 6 reveals
that under such conditions, the model finds it challenging
to distinguish between the shaft and the manipulator. To
investigate binary segmentation, we consolidate the three-class
predictive confusion matrices into a binary format by consid-
ering the shaft and manipulator as a single foreground class,
resulting in calculating the foreground J and Dice coefficients.
As depicted in Table III, SSPAN outperforms PCAA-101
on these foreground evaluation metrics, indicating SSPAN’s
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Fig. 6. Visualisation of cross-scene semantic segmentation results on Endovis 2015 (ALID → EndoVis 2015) and Endovis 2017 (ALID → EndoVis 2017)
datasets. (a) Input images without segmentation, (b) corresponding ground truth, and (c) to (i) segmentation results obtained using Swin Transformer, ISNet-50,
ISNet-101, DeeplabV3+, PCAA-50, PCAA-101, and the proposed SSPAN method, where the masks in red and green correspond to the segmentation for the
shafts and manipulators, respectively.

Fig. 7. The cross-scene three-class confusion matrices for SSPAN and PCAA-
101 on the EndoVis 2015 (ALID → EndoVis 2015) and EndoVis 2017 (ALID
→ EndoVis 2017), where (a) and (b) depict the cross-scene segmentation
performance of SSPAN on EndoVis 2015 and EndoVis 2017, respectively,
while (c) and (d) represent the cross-scene segmentation performance of
PCAA-101 on EndoVis 2015 and EndoVis 2017, respectively.

superior ability to distinguish foreground from background. In
addition, when making comparison on time complexity, the
proposed SSPAN leads to similar training time and inference

Fig. 8. Samples and annotated images from three datasets of (a) ALID
without annotation, (b) EndoVis 2015 without annotation, (c) EndoVis 2017
without annotation, (d) ALID with annotation, (e) EndoVis 2015 with
annotation, and (f) EndoVis 2017 with annotation, respectively.

speed compared with PCAA-101 in the same condition of the
experiments.

Quantitative Analysis: Following the performance com-
parison, we first aim to investigate the effectiveness of the
proposed loss function. Within the segmentation loss Lseg,
we consider the inclusion of CE loss (noted as ‘CE’), SSIM
loss (noted as ‘SSIM’), and Dice Loss (DL) [56]. In this
regard, we show the loss-term combinations of CE, CE &
Dice (CE+Dice), CE & Dice & SSIM (CE+Dice+SSIM),
and the proposed CE & SSIM (CE+SSIM) in Table III, using
the J and Dice indicators. It is seen from the table that the
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TABLE III
CROSS-SCENE SEMANTIC SEGMENTATION RESULTS FOR THE

FOREGROUND OF SSPAN AND PCAA-101 IN TERMS OF JACCARD INDEX

(J; %) AND DICE SCORE (Dice; %), ON THE ENDOVIS 2015
AND ENDOVIS 2017 DATASETS

TABLE IV
SEGMENTATION-PERFORMANCE COMPARISON WHEN CONSIDERING

DIFFERENT LOSS-FUNCTION COMBINATIONS FOR THE PROPOSED

APPROACH ON THE ENDOVIS 2015 AND ENDOVIS 2017 DATASETS, IN

TERMS OF JACCARD INDEX (J; %) AND DICE SCORE

(DICE; %) AS INDICATORS

proposed CE & SSIM loss-term setup outperforms the other
combinations on the EndoVis 2015 dataset, and the results on
the EndoVis 2017 dataset also demonstrate the effectiveness
for the inclusion of the SSIM loss. The results indicate that the
SSIM loss in the proposed SSPAN contributes to better cross-
scene segmentation performance for surgical instruments.

Finally, we also investigate the influence of the region-
number parameter S and different convolutional kernel size m
(for all the CONVm×m modules with m > 1) on the segmenta-
tion performance. These experiments aim to show the detailed
design for the partial attention mechanism and the network’s
architecture. Table V shows the J and Dice results when
considering different parametric combinations of (S, m) for the
proposed SSPAN, using the ranges of {2, 4, 8} and {3, 5, 7}
for the two parameters, respectively. It can be drawn from
the table that the combination of (S, m) = (4, 3) in the
proposed approach corresponds to the best performance. This
implies that the proposed SSPAN has to choose a slightly small
kernel size, while considering to set a suitable number of the
regions.

V. CONCLUSION

In this paper, we proposed a cross-scene semantic segmenta-
tion approach for medical surgical instruments using Structural
Similarity based Partial Activation Networks (SSPAN). The
proposed approach contained the modules of a main branch,
a segmentation head, and a loss function, with regard to
learning multi-level information and improving global con-
sistency for the cross-scene segmentation task. Experimental
results for cross-scene surgical cases indicated that the
proposed approach outperformed state-of-the-art ones when

TABLE V
SEGMENTATION PERFORMANCE WHEN CONSIDERING DIFFERENT

SELECTIONS OF THE REGION-NUMBER PARAMETER S AND THE

CONVOLUTIONAL KERNEL SIZE m IN THE CONVm×m , FOR THE

PROPOSED APPROACH ON THE ENDOVIS 2015 AND ENDOVIS 2017
DATASETS, IN TERMS OF JACCARD INDEX (J; %) AND DICE SCORE

(DICE; %) AS INDICATORS

using different segmentation indicators, in view of the better
generalisation performance.

In relation to the proposed approach for the cross-scene
semantic segmentation task, our further works may focus on
two aspects as follows. First, domain adaptive segmentation for
surgical instruments can be investigated when providing suffi-
cient unlabelled intra-scene real-world data [67], on the basis
of unsupervised domain adaptation. Furthermore, the works
in this paper also show the possibility to perform surgical-
instrument segmentation in few-shot cases with synthesised
scenes for training sets.
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