
Journal Pre-proof

The End is the Beginning is the End: The closed-loop learning analytics framework

Michael Sailer, Manuel Ninaus, Stefan E. Huber, Elisabeth Bauer, Samuel Greiff

PII: S0747-5632(24)00173-0

DOI: https://doi.org/10.1016/j.chb.2024.108305

Reference: CHB 108305

To appear in: Computers in Human Behavior

Received Date: 2 December 2023

Revised Date: 29 March 2024

Accepted Date: 16 May 2024

Please cite this article as: Sailer M., Ninaus M., Huber S.E., Bauer E. & Greiff S., The End is the
Beginning is the End: The closed-loop learning analytics framework, Computers in Human Behavior,
https://doi.org/10.1016/j.chb.2024.108305.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Ltd.

https://doi.org/10.1016/j.chb.2024.108305
https://doi.org/10.1016/j.chb.2024.108305


 

 

The End is the Beginning is the End: The closed-loop learning analytics framework 

Michael Sailer1*, Manuel Ninaus2,3*, Stefan E. Huber2*, Elisabeth Bauer4*, & Samuel 

Greiff5 

  

1Learning Analytics and Educational Data Mining, University of Augsburg, Augsburg, 

Germany 

2Department of Psychology, University of Graz, Graz, Austria 

3LEAD Graduate School & Research Network, University of Tübingen, Tübingen, 

Germany 

4TUM School of Social Sciences and Technology, Technical University of Munich, 

Munich, Germany 

5Department of Behavioural and Cognitive Sciences, University of Luxembourg, 

Luxembourg 

*These authors contributed equally to the manuscript. 

 

 

 

Author Note 

The authors have no conflicts of interest to declare. 

Correspondence concerning this article should be addressed to Manuel Ninaus, Universitätsplatz 

2, 8010 Graz, Austria, manuel.ninaus@uni-graz.at 

 

 

Jo
urn

al 
Pre-

pro
of

mailto:manuel.ninaus@uni-graz.at


Credit Author Statement 

 

Michael Sailer: Conceptualization, Investigation, Methodology, Project administration, 

Supervision, Writing – original draft, Writing – review & editing 

 

Manuel Ninaus: Conceptualization, Investigation, Methodology, Project administration, 

Supervision, Writing – original draft, Writing – review & editing 

 

Stefan Huber: Investigation, Methodology, Writing – original draft, Writing – review & editing 

 

Elisabeth Bauer: Investigation, Methodology, Writing – original draft, Writing – review & 

editing 

 

Samuel Greiff: Validation, Writing – review & editing 

 

 

Declaration of generative AI in scientific writing 

During the preparation of this work the authors used ChatGPT 4.0 for suggestions on wording 

and rephrasing. After using this tool/service, the authors reviewed and edited the content as 

needed and take full responsibility for the content of the publication. 

 
Jo

urn
al 

Pre-
pro

of



Abstract 

This article provides a comprehensive review of current practices and methodologies within the 

field of learning analytics, structured around a dedicated closed-loop framework. This 

framework effectively integrates various aspects of learning analytics into a cohesive framework, 

emphasizing the interplay between data collection, processing and analysis, as well as adaptivity 

and personalization, all connected by the learners involved and underpinned by educational and 

psychological theory. In reviewing each step of the closed loop, the article delves into the 

advancements in data collection, exploring how technological progress has expanded data 

collection methods, particularly focusing on the potential of multimodal data acquisition and 

how theory can inform this step. The processing and analysis step is thoroughly reviewed, 

highlighting a range of methods including machine learning and AI, and discussing the critical 

balance between prediction accuracy and interpretability. The adaptivity and personalization step 

examines the current state of research, underscoring significant gaps and the necessity for theory-

informed, personalized learning interventions. Overall, the article underscores the importance of 

interdisciplinarity in learning analytics, advocating for the integration of insights from various 

fields to address challenges such as ethical data usage and the creation of quality learning 

experiences. This framework and review aim to guide future research and practice in learning 

analytics, promoting the development of effective, learner-centric educational environments 

driven by balancing data-driven insights and theoretical understanding. 

 

Keywords: learning analytics, multimodal, artificial intelligence, education, adaptivity, 

personalization 
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1.  The End is the Beginning is the End: The Closed-Loop Learning Analytics Framework 

Learning analytics (LA) refers to the “measurement, collection, analysis and reporting of 

data about learners and their contexts, for purposes of understanding and optimizing learning and 

the environments in which it occurs” (Long & Siemens, 2011). To achieve these aims, the field 

of LA applies methods and theories from data science, education, psychology, and instructional 

design (Gašević et al., 2015). In this article, we will introduce a framework that integrates 

different perspectives and foci in LA research, aiming to conceptualize new directions and to 

provide a holistic view of this interdisciplinary field of research. 

The genesis of LA was marked by excitement over massive open online courses 

(MOOCs), with initial research heavily focused on data-driven approaches to pattern detection in 

learners' log data, mainly to predict learning outcomes. However, this approach, while beneficial 

in specific contexts (Alonso-Fernández et al., 2019), faced challenges in generalization and 

raised ethical and privacy concerns (Drachsler, 2018). The field's early enthusiasm has since 

matured into a more balanced view, recognizing the need for a nuanced approach that 

harmonizes technological advancements with ethical and theoretical considerations. 

Currently, LA is navigating a landscape marked by technological innovations, such as 

wearables, advanced machine learning techniques (e.g., Ninaus & Sailer, 2022; Ouhaichi et al., 

2023), and large language models (e.g., Kasneci et al., 2023), as well as a renewed emphasis on 

educational and psychological theory that has traditionally rather been neglected in the field of 

LA and yet builds the cornerstone of learning in the fields of education and psychology. This 

shift signifies a movement from a predominantly data-driven focus to a more holistic approach 

that values theoretical grounding and the thoughtful design of learning environments. 
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Our proposed closed-loop framework reflects these contemporary developments. The 

loop encapsulates the journey from data collection, processing and analysis to the design of 

adaptive and personalized learning environments. All of these steps are interconnected by the 

learners, who are the source of data collection in adaptive and personalized learning 

environments. Similar closed-loop systems are known from other feedback-rich systems such as 

bio-/neurofeedback (e.g., Ninaus et al., 2013), brain-computer interfaces (e.g., Kober et al., 

2018), and AI-supported learning systems (Ninaus & Sailer, 2022). Furthermore, a similar loop 

for learning analytics has also already been discussed by Clow (2012), which has recently been 

used to discuss the role of generative AI in LA (Yan et al., 2024). The current Closed-Loop 

Learning Analytics Framework builds upon these systems/frameworks and, in addition, 

emphasizes the use of educational and psychological theory in the steps of applying LA as well 

as using data in deepening our understanding of learning processes (see also Wong et al., 2019 

for educational theory development using iterative loops). Our Closed-Loop Learning Analytics 

Framework aims to bridge the gap between practical application and theoretical advancement, 

highlighting the symbiotic relationship between data-driven insights and educational as well as 

psychological theory in a largely iterative process. A visualization of the closed-loop system, 

which is inspired by Ninaus and Sailer (2022), is shown in Figure 1.  
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Figure 1. Closed-Loop Learning Analytics Framework with the Steps (1) Data Collection, (2) 

Data Processing and Analysis, and (3) Adaptivity and Personalization That are Connected by 

the Learners as the Source of Data Collection and the Recipients of Personalized Learning 

Environments. All Components are Intertwined by Educational and Psychological Theory. 

 

In giving an overview of the existing literature and developing an overarching 

framework, we contribute to the ongoing discourse in LA, by offering a conceptualization that 

captures the essence of its interdisciplinary nature and addresses the current challenges and 

opportunities within the field. 

 

2. The Closed-Loop Learning Analytics Framework and Review of the Literature 

Learning is a complex phenomenon influenced by physiological processes, personal 

dispositions, social interactions, environmental aspects, and organizational constraints. Learning 

that takes place in digital environments leaves behind ‘digital traces’ (Giannakos & Cukurova, 
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2023) stemming from the interaction of the learner with the digital environment. Data relevant 

for the learning process, however, can also come from, for instance, wearable sensors, video 

cameras, audio recording devices, or from conventional questionnaires and tests (e.g., Di Mitri et 

al., 2018; Gray & Bergner, 2022; Nebel & Ninaus, 2019; Samuelsen et al., 2019). LA aims to 

utilize these data to make inferences about underlying processes, with the primary goal to better 

understand and ideally to support learning. In other words, LA aims to measure learning and 

related processes to better describe, understand, predict – and in an optimal scenario – optimize 

learning (Gray & Bergner, 2022). Therefore, the foundation of every LA system rests upon the 

collection of data, which constitutes the first step of our closed-loop framework (see 2.1). The 

second step involves processing and analyzing this data to extract meaningful insights. This stage 

delves into the methodologies employed in transforming raw data into actionable knowledge (see 

2.2). The third step of our closed-loop framework revolves around the application of these 

insights. It explores how adaptivity and personalization, grounded in data-driven understanding, 

can enhance the learning experience, tailoring it to individual needs and preferences (see 2.3). 

The closed loop is interconnected by the learners. Learners are the recipients of 

personalized learning experiences (see 2.3) as well as the sources for data collection (see 2.1), 

closing our proposed loop. As educational and psychological theory can inform, guide, and 

interconnect all steps described in the closed-loop system, it is set in the center of our loop.  

In addition to introducing and specifying the closed-loop framework as displayed in 

Figure 1, we explore current trends and the state of research on LA, as guided by the Closed-

Loop Learning Analytics Framework within a narrative review. Our review is informed by a 

diverse body of literature spanning psychology, education, and data science, selected to illustrate 

key themes and insights within each component of our framework. By providing this overview, 
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we will focus on evidence from systematic reviews and meta-analyses that refer to different steps 

of our closed loop and supplement these by single empirical studies of particular relevance for 

the understanding of the closed-loop framework. Our review is structured to first present a broad 

spectrum of approaches within each section, followed by a focused discussion on the prevailing 

trends and innovations that are shaping the future of LA. This approach allows us to provide a 

comprehensive overview of the field, highlighting interdisciplinary contributions, and suggesting 

directions for future inquiry. While our literature search was not systematic as such, the 

examples chosen are representative of broader trends and debates within and across contributing 

disciplines. As our framework focusses on learning processes in digital learning environments, 

we also adopt this perspective for our narrative review.  

2.1. Data Collection 

This section delves into the diverse methodologies and tools employed in the collection 

of learning-related data. We begin by exploring a range of approaches, from traditional methods 

like questionnaires and tests to recently emerging techniques involving digital trace data and 

sensor-based collection. Subsequently, we shift our focus to current trends, particularly those that 

are redefining the efficiency, scope, and ethical considerations of data collection in educational 

settings. 

Acquiring data during learning or in learning environments has become easier over the 

years due to technological developments in the field of wearable sensors, Internet of Things, and 

the general digitalization of learning. Importantly, though, the connection between the acquired 

data and the actual learning process and learning-related states, such as emotion or motivation, is 

not always straightforward. In fact, mostly we are interested in latent variables or – more 

specifically – learning constructs (e.g., Gray & Bergner, 2022), such as student attitudes (e.g., 
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Leifheit et al., 2020; Suárez et al., 2019), affect (e.g., Cloude et al., 2022; Ninaus, Greipl, et al., 

2019; Pekrun et al., 2017), or (changes in) abilities and skills (e.g., Tsarava et al., 2022). These 

variables cannot always be directly observed but need to be inferred from metrics that are in fact 

directly observable (i.e., from manifest indicators; e.g. Borsboom et al., 2003). The scores on a 

test or the ratings on a questionnaire, for instance, are directly observable and therefore might act 

as measurements for a specific variable or construct that is latent and is not directly observable. 

In the following paragraphs, we will provide a short overview of frequently used data sources 

and modalities used in LA research and address their specific advantages and disadvantages (for 

a more comprehensive account see, e.g., Samuelsen et al., 2019). In their entity, they relate to the 

step “Data Collection” in the close-loop framework (cf. Figure 1). 

An overview of different data collection approaches sorted by their degree of 

obtrusiveness is summarized in Figure 2.  
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Figure 2: Zoomed-in Section of the Closed-Loop Learning Analytics Framework Including an 

Exemplary Overview of Steps in the Framework Classified by Their Degree of Obtrusiveness 

(Data Collection), Transparency (Data Processing and Analysis), and Task Modification 

(Adaptivity and Personalization) 
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2.1.1 Approaches for Data Collection in Learning Analytics Research 

Self-report questionnaires and tests have the benefit of being reliable and valid – if 

they are psychometrically evaluated and have been carefully validated. That is, in the case of 

evaluated tests and questionnaires, psychometric properties, such as reliability and validity, are 

known beforehand and these instruments have been shown to serve the purpose they were 

developed for in many respects. They usually target a clearly defined latent construct with good 

theoretical grounding. However, self-report measures can be biased because of demand effects 

(e.g., Bernecker & Ninaus, 2021) or by inaccurate recall (Parry et al., 2021) and memory effects, 

such as recency (Freeman et al., 1999). Furthermore, self-report measures or other assessments 

that are somewhat separated from the learning process itself can disrupt the learner and thereby 

disturb the subjective experience in question and learning experience in general. Self-report 

questionnaires and tests can also only provide a rough estimate of the actual (dynamic; e.g., 

affective) processes involved in learning due to their lack of a usually low sampling frequency 

(Nebel & Ninaus, 2019). Further, research indicates that response tendencies can make it even 

more difficult to gather reliable information. Even as little as 5% of data, such as missing values 

and response biases, can markedly change the underlying structure of factors (Arias et al., 2023). 

Yet, reliable and valid questionnaires are vital for assessing rather stable learner variables, such 

as personality traits (Matcha, Gašević, et al., 2020).  

For other data sources, such as digital traces or trace data, which are mostly 

automatically recorded from a learner when interacting with a digital learning environment, such 

as page visits, click patterns, or time spent in a learning management system – metrics often 

referred to as clickstream data – are usually higher in their sampling frequency and learners do 
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not need to be probed (see also Shute & Ventura, 2013 for the related concept of stealth 

assessment). However, these data are not that easily linked to a specific (latent) construct and 

theoretical integration often becomes challenging or even impossible. For instance, while regular 

visits to the course material in an online course can be used to predict students’ achievement 

performance (e.g., Li et al., 2020), this metric might not be a high-quality measure of the ability 

one is supposed to learn in the course. That is, one of the main challenges of using trace data is to 

draw clear inferences and provide explanations (for a more comprehensive account on this issue 

see Gray & Bergner, 2022). Further, trace data are often context specific, meaning, for instance, 

that one or several metrics in some course A of a learning management system are indicative for 

student engagement, whereas these metrics might not be indicative for engagement in some other 

course B. In this context, the specific behavioral components reflected in the trace data that 

constitute student engagement are contingent upon the unique structure or demands of each 

course (Motz et al., 2019). Consequently, in order to establish more valid metrics for a latent 

learning construct, theory-guided and deliberated decisions are necessary to guide the selection 

of metrics and learning constructs relevant for a given learning process. In the context of 

educational technologies, this entails deliberately designing data collection tools and, 

consequently, the trace data they acquire to closely conform to the learning process and the 

related learning construct(s) (Gray & Bergner, 2022), which is no trivial endeavor and thus 

barely done. 

Data coming from wearables or biometric devices can provide information about the 

environment, such as temperature, location, humidity, but also rather personal information of 

human behavior (Di Mitri et al., 2018). While the use of wearables to monitor physical activity 

(e.g., smartwatches, fitness trackers, etc.; for a review see Gal et al., 2018) including the use of 
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biometrics (e.g., heart rate monitoring) has become quite common in today’s society, the use of 

such data to record and optimize learning activities is still relatively uncommon in educational 

contexts (Fortenbacher et al., 2019), particularly regarding real-time personalization of learning 

tasks (see also Section 2.3). Importantly though, physiological data from biometric devices can 

carry highly relevant information for learning and provide indicators for learning (e.g., Di Mitri 

et al., 2018; Nebel & Ninaus, 2019; Ochoa, 2022; Schneider et al., 2015) with high sampling 

rates allowing for capturing dynamic changes during the learning process. Such measures can be 

used, for instance, for dynamic difficulty adjustments as demonstrated by Ninaus, Tsarava et al. 

(2019), where learners’ heart rate was used for adapting the difficulty in a game-based 

emergency simulation in real-time. In another study by Giannakos et al. (2020), physiological 

data captured from a wrist-worn wearable was successfully used to predict users learning 

experience. 

The acquisition of electrodermal activity (EDA) and heart rate variability (HRV) is a 

common approach in LA research, for instance, to investigate self-regulated learner engagement 

(e.g., Wiedbusch, Dever, et al., 2023). For instance, a study by Gao et al. (2020) investigated the 

use of EDA metrics to capture cognitive, behavioral, and emotional engagement in learners. The 

results indicated that these engagement levels during class instruction could be detected with 

79% accuracy using 12 EDA metrics along with other physiological measures. However, 

collecting EDA and HRV data poses challenges due to the intrusiveness of the instrumentation 

required. While devices like smartwatches offer unobtrusive data collection, more sophisticated 

instruments provide greater accuracy (e.g., Henrie et al., 2015). Considerations for 

environmental conditions (e.g., temperature in the room) and individual physiological and 

lifestyle differences further complicate data collection. In addition, the unobtrusiveness of data 
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collection is also entangled with data privacy concerns and transparency requirements, which are 

discussed comprehensively by Drachsler (2018) as well as Drachsler & Greller (2016). Despite 

these challenges, EDA and HRV metrics offer fine-grained data on learning relevant states and 

high-quality sensors used to acquire these data have become more affordable over recent years. 

Another relevant source of physiological data is the organ in which learning is actually 

happening – the human brain. The most common device to acquire neurofunctional activity is 

the electroencephalogram (EEG), which non-invasively records the electrical activity of the 

brain. Functional near-infrared spectroscopy (fNIRS) measures hemodynamic changes in the 

blood flow of the brain (Ferrari & Quaresima, 2012) and thus utilizes a slower brain signal as 

compared to EEG (for a review see Ninaus, Kober, Friedrich, Dunwell, et al., 2014). There are 

other devices to measure brain activity, such as functional magnetic resonance imaging or 

Magnetoencephalography, but these measures are hardly applicable for naturalistic learning 

scenarios or educational settings. Consequently, while providing crucial information about the 

learning process and underlying mechanism, such as the coupling of cognition and emotion in 

game-based learning (e.g., Greipl, Klein, et al., 2021), they are barely used in the field of LA 

research. EEG and fNIRS are more popular in the field of LA (e.g., Gao et al., 2020; Giannakos 

et al., 2019; Mills et al., 2017; Ninaus, Kober, Friedrich, Neuper, et al., 2014; Witte et al., 2015) 

as they are better suited to be used in naturalistic learning settings also due to recent 

advancement in wearable or portable neuroimaging devices (Zhan et al., 2023). For instance, 

Mills and colleagues (2017) used a portable 24-channel EEG headset to collect brain activity of 

learners while they were learning with an intelligent tutoring system to predict different levels of 

cognitive load. Nevertheless, bringing neuroscientific devices into naturalistic learning settings, 

for instance, the classroom, comes with many challenges such as preparation time for EEG caps 
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or NIRS probe sets, artifacts produced by movements or other electrical devices (for a review see 

Janssen et al., 2021).  

Data from eye tracking devices are another important factor in LA research and are 

easier to acquire than using neuroimaging devices. Metrics derived from professional eye 

trackers, such as micro-saccades, fixations, or pupil dilation can be indicative, for instance, of 

learners cognitive load when playing a serious game (e.g., Appel et al., 2021) or changes in gaze 

direction can provide helpful measures for attention patterns when learning from videos 

(Srivastava et al., 2021). Importantly, recent studies demonstrated that for certain scenarios 

webcam-based eye tracking might be sufficient to detect learning constructs relevant to the 

learning process (Hutt et al., 2023; Khosravi et al., 2022). For instance, Hutt and colleagues 

(2023) could predict mind wandering using gaze measurements derived from a conventional 

webcam during an online reading comprehension task. 

Video data of learners can provide us with, among other things, information on learners 

affective states by detecting facial expressions (Cloude et al., 2022; Frenzel et al., 2024; Ninaus, 

Greipl, et al., 2019) or other bodily expressions (Greipl, Bernecker, et al., 2021; Riemer et al., 

2017). Video or image data can also be used to capture data from the context of where or under 

which circumstances learning occurs (e.g., presence/absence of other learners and their 

interaction). For instance, Vuorenmaa and colleagues (2023) used videotaped sessions of 

secondary school students while performing collaborative physics tasks to investigate social 

interaction processes beneficial for learning in small groups. 

Text data, for instance, coming from text-based (or transcribed) conversations with a 

virtual agent or other learners, are another important data source. Large quantities of text-based 

data can be analyzed using text mining and natural language processing. Which can provide very 
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basic descriptive information, such as the number of words, words per sentences, but also more 

complex information on semantic content or sentiment of a text (Allen et al., 2022; Dowell & 

Kovanović, 2022). The latter, was, for instance, used in detecting affective states of learners in 

MOOCs (Chaplot et al., 2015; Dalipi et al., 2021). Moreover, text data can also constitute the 

learning product of a learner, such as scientific argumentation, and thereby provide a measure for 

learning outcomes (e.g., Bauer et al., 2022). With the rise of Large Language Models (LLMs) 

and artificial intelligence (AI) in education (Kasneci et al., 2023) new use cases will emerge 

improving eventually on current methodologies (e.g., automatic transcription of video/audio 

data; see Yan et al., 2024). 

2.1.2 Current Trends - Harnessing New Technologies and Multimodal Approaches 

Each of the mentioned data sources and metrics have their own advantages and 

disadvantages and should be carefully selected keeping the goal of the specific investigation in 

mind. In an optimal case, selection should be based on educational and psychological theory to 

increase the overlap between the actual measures and the construct of interest, usually learning in 

one way or the other. However, this is not always feasible, and measures are selected based on 

availability and legitimate practical considerations such as time and monetary constraints. 

Importantly, single metrics or single data sources usually provide only a partial and noisy 

picture of learners’ actions and the underlying (learning) processes. This is further exacerbated 

by incomplete or missing data (e.g., due to failing sensors or other technical difficulties). Having 

data available from multiple sources can partly overcome these issues (e.g., Bosch, 2015; Di 

Mitri et al., 2018), because the signal-to-noise ratio can be improved when different metrics that 

tap into the same construct, at least to some extent, are employed (i.e., multimodal measurement 

of the same construct). As such, joy or frustration during learning may be inferred from facial 
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expressions captured with a webcam (e.g., Cloude et al., 2022; Ninaus, Greipl, et al., 2019) but 

also from self-report measures (e.g., Bosch, 2015; Wortha et al., 2019). 

Further, when relying on a single type of source or even a single metric, the complex, 

multidimensional process of learning is oversimplified and data may be misinterpreted because 

of, among other things, missing contextual information such as where and under which 

circumstances learning occurred (Ochoa, 2022; Selwyn, 2019; Wiedbusch, Dever, et al., 2023). 

To capture the multidimensional nature of learning, modern LA approaches make use of data 

from different sources to obtain a more holistic understanding of learning processes (Molenaar et 

al., 2023; Spikol et al., 2017). These “multimodal data” have become more prominent in general 

and in LA field in particular (see multimodal learning analytics; Blikstein, 2013). Crucially, 

different data sources can provide unique and complementary perspectives on learning 

constructs. A combination of sources and metrics is commonly referred to as “fusion” or 

integration of such data and can increase the probability to measure the latent construct of 

interest or different aspects thereof. 

For instance, Giannakos and colleagues (2019) demonstrated that click-stream data alone 

are predictive of learning performance. However, integrating various other data sources, such as 

eye-tracking, EEG, videos of learners' faces, and wristband data (e.g., heart rate, EDA), could 

significantly improve learning performance prediction. Importantly, data from different sources 

might also be interpreted in different directions when considered separately, but only the 

combination of multiple data sources might allow for clear conclusions regarding a latent 

construct that tells us something about learning and its underlying process. As such, Taub et al. 

(2017) found that analyzing data from multiple sources together rather than analyzing data 

sources separately produced different results in a game-based learning scenario. This 
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demonstrates the complementary role different data sources can have to better understand the 

learning process and predict learning outcomes (see also Section 2.2). Further, combining 

multiple data sources seems to be particularly relevant when measuring multidimensional 

constructs, such as flow or engagement, because such constructs can influence learning in 

various ways (e.g., Papamitsiou et al., 2020; Wiedbusch, Dever, et al., 2023). 

Unimodal traces can sometimes be enough to measure the desired learning construct. 

Most often, to increase accuracy and prediction rates, multiple unimodal traces need to be fused 

together (e.g., Ochoa, 2022). However, the fusion of data from various sources is no trivial task. 

For instance, in collaborative learning scenarios gaze direction from individuals needs to be 

fused together in order to be able to detect when two or more learners at the same time intersect 

inside a given area of interest (see Ochoa, 2022). Furthermore, if EEG data are supposed to be 

fused together with heart rate, EDA or fNIRS, it needs to be considered that these different 

signals have different latencies. For instance, fNIRS – a signal relying on hemodynamic changes 

in the brain – is substantially slower in showing a reaction to a stimulus (hemodynamic response 

peaks at around 4-6 seconds after a given stimuli; Huettel et al., 2009) than EEG, which responds 

more or less immediate to a stimulus because the electrical brain activity is being measured. 

Furthermore, the collection of data from multiple sources also needs to consider the 

varying sampling frequencies and thus the temporal alignment of multimodal data. For instance, 

suggested sampling frequencies for EDA (i.e., 200-400 Hz; Braithwaite et al., 2013) or HRV 

(i.e., 500 Hz; Berntson et al., 1997), which vary however due to their respective use-case (e.g., 

Bent & Dunn, 2021), are vastly different to conventional video data or even self-reports, which 

provide one data point every other minute or – more likely – every half an hour or hour. In this 

context, another crucial temporal aspect has to be considered – the temporal granularity 
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difference between metrics of the same data source (Azevedo & Gašević, 2019). For instance, 

comparing more fine-grained (e.g., fixation durations) with aggregated data of the same source 

(e.g., heatmaps) strongly influences which learning construct can or should be investigated (e.g., 

shifts of attention in a single moment vs. overall attentional investment into a learning task).  

Effectively, the selection of data sources and metrics should be informed by educational 

and psychological theory with the aim to obtain a level of accuracy that is acceptable for the 

purpose at hand. This, of course, differs substantially, for instance when the intention is to 

provide individual feedback (high accuracy required) or when to investigate group differences 

(low accuracy might be acceptable). This implies, for instance, that when one is interested in 

student dropout across semesters compared to attention processes in a specific learning task, 

different data sources and metrics are employed. That is, comparing or fusing together different 

data sources comes with different challenges but can be supported by theory-guided decisions as 

to which data sources should be acquired in the first place avoiding data-fishing approaches. For 

instance, cognitive load theory, which is a theory of human cognitive architecture to design 

instructional procedures (Sweller, 2024) and related research (e.g., Ayres et al., 2021; O. Chen et 

al., 2023; Vanneste et al., 2021) offer manifold and helpful discussions on how to validly collect 

data on facets of learners’ cognitive load and how to combine those measures of data collection.  

 Further, a theory-guided selection of data to be acquired also facilitates the next step in 

our Closed-Loop Learning Analytics Framework - data processing and analysis. 

 

2.2 Data Processing and Analysis 

In this section, we examine the critical phase of processing and analyzing the collected 

data with relation to the source it derives from and the measures employed. After an overview of 

various data processing techniques and analytical strategies, we highlight how advancements in 
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areas such as machine learning and big data analytics are transforming the way educational data 

is interpreted and utilized. 

A thorough understanding of the collected data and their relation to underlying learning 

processes can be considered a necessary prerequisite for successful adaptiveness of digital 

learning environments enabling optimal, personalized learning experiences (Ehlenz et al., 2022). 

In this context, data processing and analysis comprise all steps required to identify patterns in the 

recorded data that are relevant for the learning process. Data processing and analysis thus 

provide the methodological link between the underlying, collected data (see Section 2.1) and 

their successful utilization in adaptive learning systems (see Section 2.3). 

Manual processing of possibly highly granular, temporally dense data from numerous 

sources is at least difficult, in certain cases, impossible at all. Therefore, LA makes extensive use 

of computational data science approaches employing frequently machine learning or statistical 

learning methods (Aldowah et al., 2019; Alonso-Fernández et al., 2019; Baker & Siemens, 2022; 

Banihashem et al., 2023; Bond et al., 2023; X. Chen et al., 2020; Du et al., 2021; Hilbert et al., 

2021; Namoun & Alshanqiti, 2020; Romero & Ventura, 2020). Thus, large methodological 

overlaps exist with other research communities such as artificial intelligence in education 

(AIED), educational data mining (EDM), or user modeling, adaptation and personalization 

(UMAP) (Giannakos & Cukurova, 2023). 

A few examples may illustrate the heterogeneity of data and methodological approaches 

regarding data processing and analysis in the framework of LA. 

1. In a study by Appel et al. (2021), multiple metrics of eye tracking data (i.e., pupil 

diameter, blinks, fixations, microsaccades) were utilized in conjunction with random 

forest classification to train participant-specific classifiers for distinguishing between 
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low and high cognitive load using data from an N-back task. The weighted 

predictions from these classifiers were then applied to different participants playing a 

simulation game. This cross-task and cross-participant classification algorithm 

successfully predicted whether participants were playing a more or less difficult level 

of the simulation game.  

2. Recently, Martin et al. (2023) used computational grounded theory (Nelson, 2020) for 

evaluating written student argumentations about the plausibility of competing 

chemical reactions. Using pre-trained LLMs in conjunction with deep neural 

networks, the authors obtained a machine-human score agreement with an accuracy of 

87%. 

3. Multimodal video analysis via convolutional neural network classification was used 

by Ocak et al. (2023) to analyze children’s computational thinking as captured in 

visible modes of interaction. The high agreement between human and machine 

assessment obtained by the authors indicated that the computational approach could 

act as an additional quality assurance measure in such analyses. 

4. Ouyang et al. (2023) employed hidden Markov modeling in conjunction with lag 

sequential analysis and frequent sequence mining to analyze collaborative knowledge 

construction (CKC) on the basis of audio recordings of group discussions. The results 

could reveal insights into both the multilevel characteristics and the dynamics of 

CKC. The authors concluded that the computational approach used to classify learner 

behavior into different CKC states could enable future automated learning systems to 

provide personalized scaffolding opportunities based on the detected patterns. 

2.2.1 Approaches for Data Processing and Analysis in Learning Analytics Research 
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The given examples illustrate that many computational approaches exist in the framework 

of LA and they are difficult to subsume under a common set of categories. In fact, to structure 

the multitude of methods, different taxonomies have been suggested. A broad but widely-

accepted one in statistical learning distinguishes between supervised and unsupervised 

algorithms (James et al., 2021). 

Supervised algorithms aim to establish a functional relationship between a set of input 

variables (also known as covariates, features, or predictors) and a corresponding set of output 

variables (also known as target, response, or dependent variables) (Hilbert et al., 2021). The goal 

of establishing that functional relationship can be to accurately predict responses for future 

observations of inputs (prediction) or to better understand the relationship between the response 

and the predictors (inference) (James et al., 2021). The first three examples above (Appel et al., 

2021; Martin et al., 2023; Ocak et al., 2023) employed supervised algorithms. Generally, 

supervised algorithms comprise a wide range of methods including classical statistical methods 

like linear or logistic regression, regularized regression such as LASSO or ridge regression, 

support vector machines, decision trees and random forests, or artificial neural networks (Hilbert 

et al., 2021). For a more comprehensive overview, see, for instance, James et al. (2021). 

Supervised algorithms can be further decomposed into classifiers, regressors, and latent 

knowledge estimation (Baker & Siemens, 2022). Classifiers aim for categorizing each 

observation into one of several given, distinct categories. That means the output variable is 

qualitative (or categorical). A random forest (e.g., Appel et al., 2021) is an example of a 

classifier. For regressors, the target variable is quantitative (or continuous; i.e., it can be modeled 

by a real number). Linear regression is an example of a regressor. Latent knowledge estimation 

is a special subtype of classifiers (Baker & Siemens, 2022). 
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In contrast to supervised algorithms, unsupervised algorithms deal with data in which no 

output variables are available for a given set of input variables. The goal of unsupervised 

algorithms is to identify relationships or structures among input variables. By aiming for 

identifying distinct multilevel and dynamic patterns of CKC in audio data (Ouyang et al., 2023), 

the fourth example given above belonged to this category. Unsupervised algorithms are also 

known as structure discovery algorithms. Typical approaches in LA belonging to this class of 

algorithms include clustering, latent profile or latent class analysis, correlational or factor 

analysis, domain structure discovery, and network analysis (Baker & Siemens, 2022). These 

methods can detect patterns of typical learner characteristics and learning process characteristics, 

with studies using, for example, latent profile analysis (e.g., Nickl et al., 2022; Radkowitsch et 

al., 2023) or epistemic network analysis (e.g., Omarchevska et al., 2022; Shaffer, 2017). 

Variations of structure discovery methods with the goal to discover relationships between 

variables in very large datasets are known as relationship mining and represent historically a core 

category of EDM research (Baker & Yacef, 2009). According to Baker and Siemens (2022), 

relationship mining comprises typically four types: association rule mining (i.e., a method 

aiming to discover interesting relations between variables in large data sets), sequential pattern 

mining (i.e., a method specialized in identifying patterns in sequential data), correlation mining 

(i.e., a method for clustering relationships between variables rather than observations), and 

causal data mining (i.e., a method employing causal machine learning algorithms aiming for the 

identification of causal networks in data). 

Between supervised and unsupervised algorithms, semi-supervised algorithms deal with 

data in which only a fraction of input variables is associated with corresponding output variables 

whereas the remaining fraction is not (James et al., 2021). Also situated in between supervised 
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and unsupervised algorithms is another machine learning paradigm known as reinforcement 

learning dealing with sequential decision-making problems under the constraint of limited 

feedback (Van Otterlo & Wiering, 2012). 

Besides machine learning algorithms, also classical statistical methods (e.g., descriptive 

statistics, analysis of variance) are frequently employed in LA (Du et al., 2021). The distinction 

between classical statistical methods and machine learning algorithms is, however, not clear-cut. 

For instance, ordinary-least-squares regression is usually subsumed under supervised algorithms 

whereas it also represents a classical statistical method. The same holds for correlational 

analyses. 

Another methodology in LA, however, outside the scope of supervised and unsupervised 

algorithms, is discovery with models, which – in its simplest variant – involves two main phases 

(Hershkovitz et al., 2013). In a first phase, a model of some psychological construct or latent 

variable (e.g., boredom, confusion or self-regulative behavior) is obtained, typically using some 

prediction method (Baker & Siemens, 2022). In a second phase, this model is then used as a 

component in another analysis. For example, it is investigated which elements in a learning 

system are associated most with the development of boredom, whereas boredom is detected 

based on the model previously obtained. As outlined by Baker and Siemens (2022), discovery 

with models might also involve hierarchical structures of models, i.e., a model could be 

composed of other models which in turn could be composed of other models and so on. 

Another methodology commonly employed in LA is distillation of data for human 

judgment, also known as visualization (Baker & Siemens, 2022). The focus of visualization is on 

comprehensibility of patterns associated with the learning process. Visualization comprises, for 

instance, learning curves (i.e., depicting performance as a function of time; Peddycord-Liu et al., 
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2018) or illustrations of the classroom layout (Holstein et al., 2017). For instance, visualizing 

student grading history over school years was used to identify common patterns among 

successful and unsuccessful students (Bowers, 2010). The identified patterns were discussed to 

be utilized for providing timely support for students at risk of dropping out of school. 

To summarize, data analysis in the framework of LA can draw on specialized methods 

from a broad arsenal of possibilities. Which of the various methods is used, depends, however, 

also on the goal of a study. If a study’s goal is prediction, then supervised algorithms are the 

dominant option (Namoun & Alshanqiti, 2020). 

To some extent, the exact choice of methods, however, also depends on contextual factors 

or the topic of investigation. Whereas in a systematic review generally aiming for the prediction 

of student performance (Namoun & Alshanqiti, 2020) support vector machines were found to be 

employed only in 2 of 62 studies, the same method turned out as the matter of choice in a review 

specifically focusing on the use of LA in programming courses (Omer et al., 2023). Generally, 

machine learning algorithms (support vector machines, K-nearest neighbor, naïve Bayes, 

decision trees and random forest, deep learning) appeared more dominant compared to classical 

statistical analyses (correlation, regression) in the latter (Omer et al., 2023) than in Namoun and 

Alshanqiti’s systematic review (2020). 

While the prediction of performance has been the most prolific theme in LA research, 

other upcoming directions comprise the identification and monitoring of students’ learning 

progress, and utilizing analytic results for providing feedback or modeling of the learning 

process (Du et al., 2021). Given this diversity in epistemic goals, it is unsurprising that basically 

the full spectrum of computational approaches outlined above has been utilized in LA research. 

According to the review provided by Du et al. (2021), most studies were either of a descriptive 
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or a predictive kind. Whereas classical statistical methods (45%), visualization (24%) and 

clustering (15%) were the most popular methods in descriptive studies, regression (79%) and 

decision trees (14%) were most commonly employed in the predictive ones (Du et al., 2021). 

The exact numbers may fluctuate, depending also on the specific focus of the considered review 

(Tepgec & Ifenthaler, 2022). The most prominent classes of data analytical methods in other, 

partially more specialized reviews (Aldowah et al., 2019; Alonso-Fernández et al., 2019; Tepgec 

& Ifenthaler, 2022; Viberg et al., 2018), however, comprise also a mixture of regression and 

classification approaches for supervised algorithms, and clustering, correlational and other 

classical statistical analyses for unsupervised algorithms, besides various visualization 

techniques. To a somewhat lesser extent, also the use of discovery with models, different 

relationship mining approaches, and various implementations of reinforcement learning 

algorithms are noted (Aldowah et al., 2019; Tepgec & Ifenthaler, 2022; Viberg et al., 2018). 

2.2.2 Current Trends - Embracing Diversity in Methods and AI in Learning Analytics  

Some trends seem to be emerging over the last decade. Banihashem et al. (2023) note that 

most studies used multiple data analytic approaches at various levels of their investigation. For 

instance, supervised algorithms were used for prediction, whereas visualization techniques were 

used at a descriptive level. Furthermore, combining advanced cluster analysis with different 

forms of sequence analysis was utilized for detection of cognitive and metacognitive processes 

from log data (Azevedo & Gašević, 2019). More generally, clustering and using both supervised 

and unsupervised algorithms has been noted as “an interesting way to drive our understanding 

forward of how to extract meaningful information from log data on learners’ strategic actions 

and the temporal development thereof” (Molenaar et al., 2023, p. 5). Adding in analysis of video 
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data might give further insight or support automatization with advancements in video AI 

analytics (Duan et al., 2020). 

This is in line with statistical authorities advocating the use of a plurality of methods for 

various reasons. As Wilcox (2022), points out, no method is always the best. Which method 

performs well depends on the situation. Specifically, on the underlying educational and 

psychological theory, type of collected data (see Section 2.1), as well as goals for optimizing 

learning (see Section 2.3). Furthermore, different methods can give different perspectives on the 

underlying data, and if used and interpreted carefully together, their combination may lead to 

deeper and better understanding of the processes generating those data. 

James et al. (2021) note that there is always a trade-off between prediction accuracy and 

model interpretability. If, under some circumstances, prediction accuracy might be the entire 

purpose of using an algorithm, the choice might naturally fall towards a highly flexible approach 

like deep learning. However, the recent trend towards more interpretable and understandable 

methods (Hilbert et al., 2021) might suggest at least the accompanying use of more traditional, 

less flexible approaches like regression or complementing deep learning by techniques like 

network dissection (Zhou et al., 2019) allowing the human user some insight into the inner 

workings of the computational model. It should be noted though, that (full) transparency to 

human insight may not be a prerequisite for AI systems to be able to promote human 

understanding (Krenn et al., 2022). Ninaus and Sailer (2022) pointed out, interpretability and 

understandability are especially relevant for LA, because in that case, they are primary research 

goals. For example, consider LA researchers aiming for a better understanding which individual 

aspects of some intervention positively or negatively affect learning. To some extent, this 
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underlies also the emphasis put on the use of causal models (Kitto et al., 2023) to bridge the gap 

between mere data processing and educational theory (Giannakos & Cukurova, 2023). 

Even if prediction per se is the goal, the risk of overfitting – especially in the case of the 

most flexible approaches (James et al., 2021) – might advocate rather the use and comparison of 

various approaches varying in flexibility. Wagenmakers et al. (2021) also suggest the assessment 

of various plausible alternative statistical methods to gauge the extent to which a statistical 

conclusion is either fragile or sturdy, i.e., to assess the robustness of a certain result. 

The trend towards multiple quantitative method approaches may be complemented 

further by an increase in mixed method studies, i.e., the combination of quantitative and 

qualitative approaches in one study. According to the review on LA in higher education provided 

by Viberg et al. (2018), only 17% of studies used a mixed method approach in 2012, the portion 

of studies doing so stabilized at about 30% in the following years. In a more recent review 

provided by Zhu et al. (2022), focusing, however, specifically on LA studies in the framework of 

MOOCs, a notable fraction of 37% of studies employing mixed methods were obtained. As 

pointed out already in one of this section’s introductory examples (Martin et al., 2023), 

approaches such as computational grounded theory (Nelson, 2020) might leverage the potential 

of AI, and specifically machine learning and natural language processing, for scaling up 

qualitative research methods to the analysis of large-scale data (Tschisgale et al., 2023). This 

may in consequence open up perspectives for the inclusion of textual data (both in written and 

spoken form) in the step of pattern identification in LA. 

Finally, complementing multi-method studies by including multiple input data streams 

opens the possibility of capturing the learning process in a comprehensive and holistic way. For 

instance, Giannakos et al. (2019) found that including additional data streams besides traditional 
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log-data could reduce the error rate in predicting learning performance by more than 30%. Such 

encouraging findings provide a strong rationale to go beyond focusing merely on log data by 

including other data such as eye tracking, wearable cameras, gesture-recognition systems, facial 

expression analysis infrared-imaging and biosensors (Crescenzi‐Lanna, 2020; Emerson et al., 

2020) resulting in the emerging field of multimodal LA (MMLA). Informing LA by combining 

the information contained in two or more data streams holds the promise for a deeper 

understanding of the learning process (Sharma & Giannakos, 2020; Taub et al., 2017). The latter 

may form the basis for the development of digital, adaptive learning environments capable of 

detecting detrimental or beneficial learning behavior and of providing timely and appropriate 

support enabling individualized learning that builds on various sources of data and model input 

(Ehlenz et al., 2022; Emerson et al., 2020). By allowing data recording in a temporal and 

unobtrusive manner and facilitating dynamical analyses to model how multimodal processes may 

be intertwined, MMLA considerably extends earlier capabilities to interpret cognitive, affective 

and social processes underlying learning. By providing thus a both flexible and comprehensive 

methodological lens on learning, MMLA is seen to provide substantial potential to inform and 

extend on our current theoretical understanding of learning (Giannakos & Cukurova, 2023). 

However, multi-method, multimodal studies also pose new challenges both for data 

recording and analysis (see also Section 2.1). One is the necessary alignment of different data 

streams with different degrees of granularity (Molenaar et al., 2023; see also Section 2.1.2). 

Synchronization and analysis of various data streams become even more challenging when it is 

the goal to study collaborative learning including data streams from several learners (Järvenoja et 

al., 2018). In such cases, further analytic approaches like recurrence quantification analysis, time 

series analysis, or hierarchical (linear) models have been utilized but there is unused potential 
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that remains to be further elaborated upon (Cloude et al., 2020, 2022; Dindar et al., 2019; 

Wiedbusch, Lester, et al., 2023). 

Another challenge is the integrated identification and utilization of patterns distributed 

over several data streams. One reported way of dealing with this issue (Molenaar et al., 2023) is 

the use of process mining techniques allowing to combine information from various data streams 

(Taub et al., 2021). Theoretically grounding identified event traces is preferable to mere data-

driven approaches. For instance, in the study of Taub et al. (2021), a theory-driven approach, 

based on information processing theory (Winne, 2017) and the model of affective dynamics 

(D’Mello & Graesser, 2012), resulted in a detailed account of self-regulated learning processes 

that could not be obtained from frequency measures alone. Another example is the FLoRa 

project in which algorithms were validated by first training a multimodal data-driven process 

library on the basis of a theory-driven process library (Fan et al., 2022). As already outlined 

above to some extent, advances in natural language processing and generative AI are foreseen to 

facilitate especially so far typical steps of manual coding in the analysis of video, audio, and 

textual data (Molenaar et al., 2023). Besides supporting analyses of such, beforehand less clearly 

structured data, generative AI will extend illustrative, explanatory and interactive capabilities of 

LA (Yan et al., 2024). Further, generative AI will allow to extend the arsenal of automatically 

processed data beyond so far mainly utilized log and physiological data. The identified patterns 

within the combination of different data streams could then be forwarded to intelligent tutor 

systems such as MetaTutor (e.g., Azevedo et al., 2010). Moreover, retrieval-augmented 

generation (Lewis et al., 2020), could be utilized to link generative AI with complementary 

course material and learning theory to proactively support learners with additional resources or 

suggestions for learning strategies based on their current learning characteristics and 
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performance (Yan et al., 2024). Hence, as outlined further by Yan et al. (2024), generative AI 

will especially open various new avenues regarding adaptivity and personalization to which we 

will turn next. 

An overview of different data processing and analysis approaches sorted by their degree 

of interpretability is summarized in Figure 2.  

 

2.3. Adaptivity and Personalization  

Insights gleaned from data analysis can be applied to create adaptive and personalized 

learning experiences as outlined in Figure 1. We begin with revisiting different approaches to 

adaptivity and personalization, considering both theoretical underpinnings and practical 

implementations. Subsequently, we focus on trends and developments in data-driven and 

personalized teaching and learning. 

2.3.1 Approaches for Adaptivity and Personalization in Learning Analytics Research  

Especially in its early years, the field of LA was sparked and driven by the massive 

interest in MOOCs and the large amounts of educational data generated therein (Gašević et al., 

2015), resulting in a research focus on detecting patterns in educational data (e.g., to predict 

performance, engagement, or dropout rates; e.g., Leitner et al., 2017). However, this research 

was repeatedly criticized for neglecting educational and psychological theories and evidence 

from prior research and, consequently, characterized as offering only limited theoretical 

advancements as well as limited implications for practice given its often ad-hoc nature without 

close ties to theoretical consideration and specific use cases (e.g., Gašević et al., 2015; Nistor et 

al., 2015; Viberg et al., 2018). Currently, there is still a large portion of LA research that is 

neither focused on learning outcomes nor on learning interventions (Motz et al., 2023). Yet, 
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more recent reviews suggest that research in the LA and related fields increasingly addresses 

matters of data-based personalized learning and adaptive instruction (Baker, 2023; Bond et al., 

2023; Drugova et al., 2023; Du et al., 2021).  

Personalized learning broadly refers to the data-based adjustment of any aspect of 

instructional practice to relevant characteristics of a specific learner, usually with the aim to 

provide optimal support to the learner (Bernacki et al., 2021; Tetzlaff et al., 2021). Personalizing 

learning requires (a) assessing the relevant learner characteristics and (b) deciding on potential 

interventions in light of the specific situation of the learner (Plass & Pawar, 2020; Tetzlaff et al., 

2021). In an analog classroom, these tasks are usually considered the teacher’s responsibility. 

However, also the students can take over agency for their learning by involving in self-

assessment, internal feedback, and self-regulated learning (Andrade, 2019; Nicol, 2021; 

Zimmerman, 2002). In technology-enhanced learning environments, the assessment and the 

decision-making about interventions can be augmented or automated by means of data-based 

adaptivity. Adaptive educational technologies assess learner variables to accommodate users’ 

specific needs with the goal of enhancing learning outcomes (Plass & Pawar, 2020). Reviews 

indicate that personalized learning that is supported by adaptive educational technologies can 

facilitate students’ learning (Aleven, McLaughlin, et al., 2016; Bernacki et al., 2021; Ninaus & 

Nebel, 2021) – at least in the short-term, since research on long-term effects is widely missing, 

which is – given that the field has now existed for long over a decade – surprising and a relevant 

gap that needs to be closed rather urgently. 

For the purpose of automated adaptation, educational technologies need to integrate 

recorded and preprocessed data (e.g., detected patterns) into a learner model, which denotes the 

technologies’ assessment and representation of a learner – especially their learning prerequisites, 
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learning processes, and predicted learning outcomes – to which the learning experience is 

adapted (Conati et al., 2018; Plass & Pawar, 2020). As described in the previous sections, there 

exist a multitude of data sources (see Section 2.1) and methods (see Section 2.2) that can be 

exploited to create learner models; however, not all are equally relevant for every personalized 

learning experience. To create meaningful learner models that allow adaptive educational 

technologies to purposefully address learners’ needs, educational and psychological theories and 

evidence from prior research can be key to identify leverage points that offer high potential for 

advancing learning in a given context (e.g., Bauer et al., 2023; Van Der Graaf et al., 2023; 

Wiedbusch et al., 2021). Such leverage points can be found when focusing on why and in which 

regard learners struggle in a learning task. For example, in a learning scenario using peer 

feedback, learners’ mindful processing of the feedback received by their peers might be limited 

through the complexity of the feedback message and low confidence in peers’ competence 

(Berndt et al., 2018, 2022; Bolzer et al., 2015; Huisman et al., 2020; Patchan & Schunn, 2015), 

which may be addressed by providing targeted learner support (Alemdag & Yildirim, 2022; 

Bauer et al., 2023).  

Although educational and psychological theories and research can offer ideas for specific 

learning scenarios, attempts to integrate such insights into systematic theoretical approaches of 

personalized learning still leave a lot of unresolved questions regarding on which basis to adapt 

which support in order to increase specific outcomes. One of the most systematic approaches 

consists of research on aptitude treatment interactions (ATI; Cronbach, 1957), that is, assessing 

interindividual differences in relevant learning prerequisites (aptitudes) to form groups of 

learners and testing whether interventions (treatments) yield different effects for these groups. 

This research resulted in insights, such as the expertise reversal effect (Kalyuga, 2007), which 

Jo
urn

al 
Pre-

pro
of



highlights that interventions that offer positive effects for novice learners can have negative 

effects on advanced learners. However, overall, ATI research is considered as not having 

achieved robust results that could be translated into generalizable approaches for personalized 

learning (Plass & Pawar, 2020; Tetzlaff et al., 2021; Tobias, 1989). A different approach can be 

found in the research on intelligent tutoring systems (ITS). These computer-based learning 

environments help students master knowledge and skills through step-by-step guidance of 

students’ task processing (Aleven, McLaren, et al., 2016; Graesser et al., 2018; Koedinger & 

Corbett, 2005). Different reviews and meta-analyses reported that ITS outperform large-group 

instruction and can even achieve effects similar to human tutoring (Ma et al., 2014; Steenbergen-

Hu & Cooper, 2014; VanLehn, 2011).  

Researchers have considered a range of reasons potentially explaining the low robustness 

of ATI findings, especially compared to the larger effects of ITS (see Tetzlaff et al., 2021). One 

factor that is increasingly acknowledged is the versatile nature of some learner variables that, 

accordingly, cannot be reliably assessed with single-time measures. Therefore, different 

researchers have suggested to consider different timeframes for updating learner models and 

adapting learning experiences (Plass & Pawar, 2020; Tetzlaff et al., 2021): A macro-level 

strategy, as researched in ATI, can be employed to make adjustments based on learner variables 

and measures that are rather stable and relate to the wider learning context (Plass & Pawar, 

2020). For example, macro-level adaptivity can adjust to aggregated measures of learner 

variables – such as prior knowledge (e.g., based on data from prior learning activities) or learning 

performance as an aggregate of recent learning behavior and outcomes (e.g., Nickl et al., 2022) – 

or to rather stable learner characteristics, such as learners’ personality or general preferences 

(Rivers, 2021). Thereby, an adaptive learning environment can, for example, draw on overall 
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performance measures (Bodily & Verbert, 2017) or suggest further resources and learning 

directions (Santos et al., 2014; Sevarac et al., 2012). In contrast, by adopting a micro-level 

strategy, real-time measurements of versatile learner variables, such as current learning behavior, 

can be used to monitor, adjust, and support the ongoing learning task (Plass & Pawar, 2020). 

Micro-level adaptivity can be found in many ITS and is particularly relevant for real-time 

learning support that adapts to learners needs during task processing.  

There is a range of options for implementing adaptive learning support. In this article, we 

suggest distinguishing between three broad categories of learning support, namely, monitoring 

tools, instructional support, and task adjustment. The implementation of these types of learning 

support can further vary, depending on the decision-making agent – namely, teacher, learner, or 

the technology – that controls the activation, selection, and degree of the support. The adaptive 

educational technology further varies regarding the degree of automation versus human control 

in making assessments and deciding on interventions. For example, Molenaar (2022) suggested 

six levels of automation in the context of personalized teaching and learning, ranging from no 

technology support (teacher only), over varying degrees of shared responsibilities between the 

teacher and the technology, to fully automated personalization through technology. Besides these 

implementations of adaptive learning support, more general interventions, for example targeting 

learners' accessibility across learners and regions might be in focus of LA as well (Yan et al., 

2024). However, and in line with our focus on fostering learning processes, we will focus on 

differentiating monitoring tools, instructional support, and task adjustment.  

2.3.2. Current Trends - Matching Educational Technologies and Theoretical Approaches 

Educational technology can facilitate teachers’ or learners’ monitoring and assessment of 

selected learner variables. We characterize such tools that summarize and present generated 
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analytics about learner variables to facilitate teachers’ or learners’ monitoring as monitoring 

tools. This requires adaptive interfaces that visualize the LA generated by educational 

technologies. A popular type of monitoring tools are dashboards, which are customizable control 

panels that visualize LA generated by educational technologies in real time (e.g., traces of 

learning activities; Jivet et al., 2017; Sahin & Ifenthaler, 2021; Verbert et al., 2013). There are 

various educational technologies that can generate the data, such as tablets, online learning 

environments, virtual and mixed reality environments, or educational robots.  

Teacher dashboards visualize analytics on relevant learner variables to facilitate 

teachers’ monitoring and assessment, and ultimately, their decision-making about potential 

educational interventions. Knoop-van Campen et al. (2023) empirically investigated how a 

lesson overview dashboard showing real-time data of learners’ performance influences teaching 

behaviors: They found that teachers using a dashboard rather gave feedback on learners’ task 

processing instead of only giving feedback on the correctness of a task solution; this effect was 

especially pronounced for low-ability students. Moreover, Xhakaj et al. (2017) found that a 

teacher dashboard influences teachers’ knowledge about their students, their lesson-planning, 

and the content that teachers’ cover in class in a positive way. Many dashboards visualize rather 

summative learner metrics (e.g., learning progress, time on task, or error rates). But there are also 

attempts to consider theories of teaching and learning in dashboard designs: For example, the 

design of the teacher dashboard MetaDash is based on theoretical models and empirical evidence 

of self-regulated learning, aiming to support teachers’ monitoring of students’ self-regulated 

learning by visualizing relevant behavioral and process data of students (Wiedbusch et al., 2021). 

Besides teacher dashboards, some researchers also explored the use of smart glasses as mixed-

reality teacher monitoring tools that show LA embedded within teachers’ view of the 
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classroom (e.g., alerting teachers to students that need help; Holstein et al., 2018). Although the 

majority of such technologies focuses on facilitating monitoring and assessment, educational 

technologies can also suggest potential interventions. For example, in the context of classroom 

orchestration, teachers might receive advice on how to pair students for collaborative learning 

tasks (Lawrence et al., 2023). Such types of support maintain the teachers’ autonomy in deciding 

which intervention is best suited or whether intervening is necessary at all (see Molenaar, 2022). 

Learners can as well benefit from monitoring tools to enhance their awareness of their own 

learning prerequisites and processes (e.g., learning time and progress).  

Student facing learning dashboards offer learners a visual overview of variables, such 

as their learning activities and outcomes (Jivet et al., 2017). For example, Kim et al. (2016) 

developed a dashboard for an online statistics course at a Korean university and tested its effect 

in comparison to a control group. They found that students who had access to a learning 

dashboard achieved higher final scores compared to those who did not. Sedrakyan et al. (2017) 

evaluated student-facing learning dashboards of affective states and found that students’ 

awareness about their emotions during learning activities based on the visualization 

interpretation varied depending on previous knowledge on visualization techniques; generally, 

simpler visualizations resulted in better outcomes than more complex techniques. A systematic 

review of student-facing dashboards by Bodily & Verbert (2017) found that the majority of 

learning dashboards focuses on data visualizations (see also Verbert et al., 2013), although there 

are also few recommender systems (e.g., recommending further learning resources to students; 

Santos et al., 2014). The authors also reviewed the effects of learning dashboards on cognitive 

and behavioral learning outcomes and found mixed results, which they attributed to insufficient 

usability testing (Bodily & Verbert, 2017). Jivet et al. (2017) argue that especially learners with 
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low self-regulation skills might experience challenges in using learning dashboards effectively 

and that dashboards often lack alignment with educational and psychological theory. However, 

more systematic research on the effects of learning dashboards on learners' cognitive outcomes 

as well as their non-cognitive outcomes is needed, as studies often only refer to affective 

outcomes in their evaluations (Valle et al., 2021). Besides learning dashboards, data can also be 

recorded, analyzed, and visualized using tangible awareness tools. For example, the CUBE, a 

cube-shaped tangible device with a screen at each side, can analyze and visualize learners’ 

speaking time in small group discussions (Papadopoulos, 2019). It was argued that student facing 

monitoring tools represent powerful metacognitive resources for learners, triggering them to 

reason about their learning activities and outcomes (Charleer et al., 2016; Jivet et al., 2017). 

However, a systematic review of LA dashboards by Matcha et al. (2020) found that LA 

dashboards are rarely grounded in educational and psychological theory and often have 

significant limitations in how their evaluation was conducted and reported (e.g., lack of 

alignment between intended outcomes and measured variables; Valle et al., 2021). Thus, there is 

a need for further research extending the current state of theory-informed design of monitoring 

tools for teachers and learners (Baek & Doleck, 2023; Crompton et al., 2020; Jivet et al., 2017; 

Sahin & Ifenthaler, 2021; Wong et al., 2019): Promising candidates for theoretically grounded 

directions are self-regulated learning (Butler & Winne, 1995; Zimmerman, 2002), self-

assessment (Andrade, 2019), internal feedback (Nicol, 2021), productive failure (Kapur & 

Rummel, 2012), and help-seeking (Aleven et al., 2003).  

Besides students and teachers, technology itself can act as the agent in personalizing 

learning (i.e., adaptivity) – which can, however, again be regulated by human agents (i.e., 

adaptability; G. Fischer, 2001; Kucirkova et al., 2021; Plass & Pawar, 2020). Technology-based 
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adaptivity is oftentimes used for automatic adaptive instructional support, that is, support 

measures that provide additional instruction besides the instruction that guides the core learning 

task.  

Feedback is a typical instructional support measure that informs learners about their 

current state of performance (feed back) in relation to the learning goals (feed up) and highlights 

ways for the learner to move forward (feed forward), such as further resources or specific options 

for improving the previously shown performance (Hattie & Timperley, 2007; Wisniewski et al., 

2020). Instructional feedback is different from the internal feedback generated by learners 

(which can be supported by monitoring and awareness tools) in that it provides instructional 

information to facilitate learners’ task processing and performance. In a review of meta-analyses, 

Hattie & Timperley (2007), found that instructional feedback has medium to large effects on 

students’ learning outcomes; however, the effect sizes varied considerably, which is why they 

discussed the quality of feedback as an essential factor and  emphasized the role of personalized 

feedback that provides adaptive information tailored to a learner’s needs. However, in online 

learning environments, there are various ways of how feedback is implemented (Bimba et al., 

2017; Hattie & Timperley, 2007; Narciss et al., 2014; Wisniewski et al., 2020): non-adaptive 

feedback, such as presenting the correct response upon learners’ submission of answers, is 

particularly easy to implement but does not provide any personalized information (e.g., Attali, 

2015); simple adaptive feedback, such as providing an adaptive response whether the response 

was correct or incorrect (e.g., Stark et al., 2011), provides a summative assessment and, thus, 

provides little more information compared to monitoring tools; elaborated adaptive feedback 

provides not only information about the correctness of the solution but also involves a formative 

assessment of the learners’ task processing. However, elaborated adaptive feedback often 
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requires a more detailed analysis of learners’ task processing and outcomes to identify, at what 

point or in which regard learners’ task processing was flawed; this requires insight into learners’ 

task processing and performance, for example, by analyzing learners’ written responses. Zhu et 

al. (2017, 2020) used natural language processing for a formative feedback system integrated 

into an online science curriculum module on climate change and found that the feedback guided 

students’ revisions of their solutions and improved their written scientific argumentation. 

Similarly, Sailer et al. (2022) used natural language processing to analyze learners’ written 

responses in a simulation-based learning environment facilitating pre-service teachers’ 

diagnostic reasoning and found a positive effect of the adaptive compared to static feedback on 

learners’ quality in justifying their judgments.  

Besides feedback, another prominent type of instructional support is scaffolding, that is, 

additional instruction that is given besides the instruction for the core learning task and provides 

guiding structures for task processing without which learners would not be able to achieve the 

same performance (Belland, 2014; Tabak & Kyza, 2018; Wood et al., 1976). Compared to 

feedback, which is more focused on evaluating learners’ previous performance, scaffolding is 

more focused on providing instruction in how to optimize moving forward already during the 

task processing. There are several different types of scaffolding (e.g., Chernikova et al., 2020): 

For example, worked examples and modeling examples (Renkl, 2014; Van Gog & Rummel, 

2010) exemplify how to solve a task; prompts and hints (e.g., cognitive and metacognitive 

prompts; Berthold et al., 2007; Quintana et al., 2004) give a more direct instruction regarding 

what aspects or steps of the task the learners might pay specific attention to; scripts and roles (F. 

Fischer et al., 2013; e.g., collaboration scripts; Vogel et al., 2017) guide the responsibilities and 

steps of task processing in further detail; moreover, reflection phases (Mamede & Schmidt, 
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2017) facilitate learners’ assessment about their current performance (i.e., internal feedback) as 

well as their goal-setting, planning, and monitoring (i.e., self-regulation). Brush & Saye (2002) 

suggested to distinguish hard and soft scaffolding. Hard scaffolds are static supports that can be 

anticipated and planned in advance based upon typical learner difficulties with a task; as 

indicated by a meta-analysis, such non-adaptive scaffolding achieves medium-sized positive 

effects on cognitive outcomes in STEM education (Belland et al., 2017). By comparison, soft 

scaffolds provide dynamic, situation-specific help with the learning task and process (i.e., 

adaptive scaffolding). The relevance of adaptive scaffolding is highlighted by results from a 

meta-analysis indicating that different types of scaffolds are more or less effective for different 

types of learners, namely, worked examples were not effective for learners with high knowledge 

who benefitted most from reflection phases (Chernikova et al., 2020). The phenomenon that 

scaffolds can start to hinder learners’ task processing and outcomes as their skill and autonomy 

increases was described as expertise reversal effect (Kalyuga et al., 2003). This effect is one of 

the reasons why several researchers have highlighted the role of fading as an integral part of 

scaffolding: Once learners become capable of doing a task on their own, the additional support 

structures should be gradually reduced and finally removed to further facilitate learners’ 

autonomous task processing (Belland, 2014; Pea, 2004). Thus, similar to feedback, adaptivity 

also plays an important role for high-quality scaffolding, which is increasingly addressed in 

research. For example, Lim et al. (2023; see also van der Graaf et al., 2023 Van Der Graaf et al., 

2023) investigated the effects of adaptive scaffolds in an online learning environment with 

reading and writing tasks and found a positive effect on SRL activities in the learning process. 

Radkowitsch et al. (2021) investigated adaptive collaboration scripts in an agent-based 
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simulation in medical education and found positive effects on learners’ collaboration activities 

and perceived competence.  

Besides adapting instructional support to facilitate learners’ performance of a learning 

task, educational technology can also automatically adjust the learning task itself. Automatic 

task adjustment consists in adaptations of instructions guiding the core learning task as well as 

adaptations of the task selection and learning paths, learning materials, or forms of interaction 

with the learning materials and the learning environment.  

Examples can be found especially in ITS that personalize task selection and learning 

paths for individual students (besides providing adaptive instructional support; Graesser et al., 

2018; Koedinger & Corbett, 2005). Most ITS focus on cognitive tutoring in learning domains 

with computationally well-defined problems (e.g., mathematics, physics, information 

technology; Anderson et al., 1995; Graesser et al., 2018). ITS are informed by theory and 

evidence from domain-specific education and from cognitive sciences (e.g., ACT-R, Anderson et 

al., 1997; knowledge space theory, Falmagne et al., 1990). The most common approach to 

designing ITS is a cognitive task analysis combined with cognitive modeling of learners: 

Cognitive task analysis aims to understand the knowledge, skills, and strategies required for 

performing well in a task domain (Anderson & Schunn, 2000); cognitive modeling of learners 

aims to generate a detailed description of the knowledge involved in learners’ performance in a 

given task domain (e.g., strategies, problem-solving principles, knowledge of how to apply 

problem-solving principles to a specific problem; Aleven et al., 2010). More recent approaches 

have replaced cognitive modeling with example-tracing, that is, the author of the tutoring system 

demonstrates examples of problem-solving steps to generate an initial behavior graph that 

subsequently can be modified and annotated (Aleven, McLaren, et al., 2016). The task analysis 
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and cognitive or example-based analysis are used to create a system in which learners’ 

performance is used to constantly update the underlying adaptive learner model that the system 

creates and stores for the individual learner (Corbett, 2000), for example, to automatically select 

subsequent learning tasks. One of the most widely used tutoring systems is ALEKS (i.e., 

Assessment and Learning in Knowledge Spaces), which assesses students’ current state of 

knowledge to personalize learning paths for the subjects of mathematics, chemistry, and statistics 

in secondary and post-secondary education (Falmagne et al., 2013). A meta-analysis found that 

the effectiveness of ALEKS is comparable with traditional classroom instruction, suggesting that 

the system can help teaching and learning, for example, by assisting classroom instruction or 

supporting students’ homework (Fang et al., 2019). Besides focusing on cognitive support, some 

ITS have explored targeting other learner variables. For example, the approach of context 

personalization aims to spark situational interest by incorporating students’ out-of-school 

interests into the learning tasks (e.g., mathematics tasks); a study by Bernacki & Walkington 

(2018) found that, compared to a non-personalized learning group, high school students in the 

personalized learning group reported higher situational interest as well as individual interest in 

mathematics and achieved higher exam performance. Other ITS have targeted learners’ self-

regulation, however, using adaptive instructional support (i.e., feedback and scaffolding) instead 

of task adjustment (e.g., Aleven et al., 2010; Azevedo et al., 2022).  

In addition to task selection for personalizing students’ learning paths, ITS have explored 

adjusting the forms of interactions with the learning environment by making use of 

conversational agents and chatbots. A prominent example is AutoTutor, which aims to simulate a 

human tutor (including an animated conversational agent) by engaging in a written conversation 

with the learner; AutoTutor was found to be effective in helping students learn science, 
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technology, and other technical subject matters by interactively discussing questions and 

problems that require reasoning and explanations (Graesser, 2016; Graesser et al., 2005, 2012). 

Besides adapting to learners’ cognitive activities and task-related content of written responses, 

some versions of the system explored adapting to affective reactions in learners’ written 

responses, such as confusion, frustration, and boredom (D’mello & Graesser, 2012). Pedagogical 

conversational agents are considered a rising approach to learning and teaching (Alemdag, 2023; 

Schlimbach et al., 2022; Wollny et al., 2021). Especially with the rise of LLMs as accessible, for 

example, via ChatGPT (OpenAI, 2023), this development is increasingly gathering pace and 

might result in massive advancements in adaptive educational technologies (Kasneci et al., 

2023). For example, the LLM GPT-3 was used as a pedagogical conversational agent to guide 

children’s question-asking and spark their curiosity through curiosity-prompting cues for asking 

more and more profound questions (Abdelghani et al., 2022). However, despite the great 

opportunities offered by generative AI and LLMs, challenges and potential risks – such as 

ensuring ethics and data protection which is complicated through the opaque nature of deep 

learning algorithms – need to be handled with caution (Bauer et al., 2023; Conati et al., 2018; 

Drachsler & Greller, 2016; Kasneci et al., 2023).  

Besides tutoring systems, adaptive task adjustment was also suggested as useful for other 

learning environments, such as digital simulations. Simulations are simplified but valid 

representations of natural, social or artificial systems, which include features that learners can 

manipulate (e.g., to approximate practice; Heitzmann et al., 2019; Sauvé et al., 2007). Designing 

simulations allows balancing authenticity and difficulty of the learning task (Codreanu et al., 

2020), for example, by simplifying the simulated cases or situations, which is an example for 

adjusting learning materials and interactions with the learning materials. To systematize this 
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form of task adjustments in simulations, a set of representational features has been suggested that 

can guide designing and adjusting (as well as sequencing, i.e., personalizing task selection and 

learning paths) simulated cases or situations – which has been characterized as representational 

scaffolding in simulations (F. Fischer et al., 2022). The representational features – namely, 

informational complexity, typicality, agency, and situation dynamics – and related scaffolds are 

grounded in educational and psychological theory (e.g., case-based reasoning, dual processing, 

complex problem-solving, cognitive load theory; Kolodner, 1992; Norman et al., 2007; Papa, 

2016; Stadler et al., 2019; Sweller, 2010). However, the concept of representational scaffolding 

in simulations is a novel approach that is yet to be investigated by research. Nevertheless, as for 

ITS, using data-based analytics for task adjustments bears great potential for leveraging the 

effectiveness of the simulation-based approach for teaching and learning.  

An overview of different adaptivity and personalization approaches sorted by their degree 

of task modification is summarized in Figure 2.  

3. Discussion 

3.1 Summary 

The Closed-Loop Learning Analytics Framework, encompassing data collection, 

processing and analysis, and adaptivity and personalization, provides a comprehensive 

framework for understanding and enhancing the learning process. This framework not only aids 

in identifying research gaps and trends but also underscores the intricate interplay between 

technological innovation and educational as well as psychological theory in advancing the field 

of LA. Specifically, our review along the steps of our closed-loop framework shows significant 

advancements that have been made, particularly in data acquisition and processing. However, it 

also shows research gaps and lack of theoretical embedding in personalization of learning and a 
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general lack of focus on learning processes and optimization of learning from an instructional 

design perspective, although suitable educational and psychological theories exist (see Section 

2.3).  

For the single steps of our closed-loop framework, the results of our review can be 

summarized as follows: The evolution of technology has significantly expanded the potential for 

data acquisition in LA. Contemporary methods go beyond traditional tools like questionnaires, 

embracing digital trace data, sensor-based collection, and biometrics. This technological 

advancement offers potential, especially when considering the combination of various data 

sources. Multimodal data acquisition has emerged as a particularly promising approach 

(Blikstein, 2013), aligning well with the complexity of the learning process. By integrating data 

from diverse sources, researchers can capture a more nuanced and holistic understanding of 

learners' interactions, behaviors, and cognitive states.  

The field of LA has witnessed the development of a wide range of data processing and 

analytical methods, each with its unique advantages and challenges. Techniques such as 

supervised and unsupervised algorithms, relationship mining, and visualization have been 

employed to derive meaningful insights from complex datasets. The use of machine learning and 

AI technologies stands out as a significant trend (Kasneci et al., 2023), offering substantial 

potential for both current and future research. However, this advancement requires a critical 

balance between accuracy and interpretability (Giannakos & Cukurova, 2023; Hilbert et al., 

2021). The diversity in methods reflects the varied nature of learning data and the need for 

tailored approaches to understand and predict learning behaviors and outcomes. 

Adaptivity and personalization in LA have been identified as areas with significant 

research gaps, yet they hold many possibilities for enhancing learning experiences. The field has 
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begun to explore various ways to adapt learning content, support, and environments based on 

individual learner needs, drawing on existing theories in psychology and education. However, a 

key question remains: What specific aspects of learning are we adapting to, and what exactly are 

we adapting, both on a micro and on a macro level – learning tools and environments, 

instructional methods, or learning tasks? (Bernacki et al., 2021). The concept of personalized 

learning involves tailoring instructional practices to the unique characteristics of each learner. 

This process entails both assessing relevant learner attributes (e.g., indicators for relevant 

cognitive, metacognitive, motivational-affective learner variables) and deciding on appropriate 

interventions (e.g., monitoring tools, instructional support, task adjustments). While educational 

and psychological theories offer some guidance, there is still a dire need for systematic 

approaches and robust frameworks to effectively implement personalized learning. The potential 

for real-time, dynamic adaptation presents both challenges and opportunities in creating more 

responsive and effective learning environments (Kasneci et al., 2023). 

3.2 The Missing Link: Theory as a Core Connection 

Learning has always been an area that has not only been driven by applied research in the 

classroom, but also by solid theories of learning and instruction closely related to educational 

and psychological knowledge on the underlying processes of learning, its antecedents, and its 

consequences. Educational and psychological theories act as a crucial connecting link across the 

various steps in LA – from data acquisition and processing to adaptivity and personalization. 

Educational and psychological theories not only provide coherence and direction to the research 

process (Crompton et al., 2020), but also balance the necessity of interpretability with the 

precision but also the dangers of purely data-driven insights. While we acknowledge that theories 

need to develop as new use cases and methods of data curation emerge, the theoretical 
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embedding of LA has been underdeveloped leaving the field to some extent in a state of 

atheoretical fragmentation. A clear and dedicated focus on educational and psychological theory 

in applications of LA (see Figure 1) offers the chance to expand existing and develop new 

theories based on the advances that LA offer to the field of education and psychology and vice 

versa – theory expansions and developments that the fields are also in need of (Eronen & 

Bringmann, 2021; Renkl, 2023). 

As described in the different steps in our closed-loop framework (see Section 2.1 - 2.3) 

and highlighted in reviews (e.g., Wong et al., 2019), there are certain psychological and 

educational theories that are being applied in LA research. Of these studies, many stem from the 

self-regulated learning context (Wong et al., 2019). In line with this focus, concepts of cognition, 

metacognition, and motivation/affect are in focus. From our perspective, cognitive theories, such 

as cognitive load theory (Sweller, 2024), offer valuable starting points for LA (O. Chen et al., 

2023). In addition, theories with a focus on learning activities and learner products that are 

approximations for cognitive processes (e.g., ICAP model; Chi & Wylie, 2014) can inform 

decision making in different steps outlined in the closed loop. What is more, holistic approaches 

can benefit from combining different foci (e.g., cognition and affect) on aspects of learning as 

shown in the study by Taub et al. (2021) that is based on information processing theory (Winnie, 

2017) and the model of affective dynamics (D’Mello & Grasser, 2012). Especially for 

personalization and adaptivity, instructional theories can obviously have a merit when designing 

instructional support (e.g., Belland, 2014; Hattie & Timperley, 2007).Theories serve as a 

navigational tool, guiding the orchestration of different stages in the LA process, which is vital 

for ensuring that each step aligns with the overarching educational goals and theoretical 

constructs. 
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On a more specific level, the current trend in LA research often oscillates between 

theory-driven and data-driven methodologies and sometimes does not clearly distinguish 

between micro- and macroadaptivity. While data-driven approaches offer granular insights and 

novel patterns, they sometimes lack the grounding in educational and psychological theory, 

leading to limited generalizability and practical implications beyond the actual context they are 

applied to (e.g., Gašević et al., 2015; Nistor et al., 2015; Viberg et al., 2018). In addition, a 

strong focus on educational and psychological theory might also enhance application of open 

science practices, such as preregistrations, in learning analytics research.  

Placing theory at the center of the LA process – as done in our closed-loop – allows for 

'loops within the loop'. This central positioning enables theory to bridge the gap between data 

collection, analysis, and application. It helps in conducting micro-level explorations within and 

between single steps while maintaining a cohesive macro-level perspective. The “loops within 

the loop” approach, wherein both application and theory development are considered, can be 

instrumental. By iteratively aligning practice with theory and vice versa, LA can evolve more 

consistently. This approach allows for continuous, fine-grained refinement of both theoretical 

frameworks and practical applications, leading to more robust and effective learning 

interventions. 

Theoretical embedding, if adequately considered in advance, has strong implications for 

various steps in the loop as outlined in Figure 1. For instance, in data collection, the choice of 

what to measure (and what not to measure) should be guided by theoretical considerations. This 

is also in line with approaches emphasizing the measurement of relevant variables only, instead 

of all-in approaches for data collection (Drachsler, 2018). In fact, implicit assumptions and 

theories will guide data collection in any case, but making the underlying theoretical ideas and 

Jo
urn

al 
Pre-

pro
of



assumptions more explicit will be fundamental in establishing a strong link between educational 

and psychological theory and data-driven methodology. Further, theory-orientation in the 

operationalization of constructs can help to ensure generalizability that depends less on specific 

measures and manifest indicators. Similarly, in data processing and analysis, the selection of 

models and analysis techniques should align with theoretical requirements and the context of the 

study. In adaptivity and personalization interventions should be in line with established theories, 

considering the nuances of educational and psychological theory (Crompton et al., 2020) for the 

design of monitoring tools, instructional support, and task adjustments. 

In conclusion, theory in LA acts as a critical link, ensuring that each step of the process is 

thoughtfully considered and aligned with educational objectives. By firmly rooting LA in 

educational and psychological theory, researchers can address existing challenges more 

effectively and pave the way for future innovations. 

3.3 Generative AI as a Chance and Challenge in Learning Analytics 

The advent of Generative AI, particularly LLMs, presents both significant opportunities 

and challenges in the realm of LA. These models have the potential to revolutionize how we 

approach learner models, formative assessment, and the development of advanced learning 

environments (see Kasneci et al., 2023). However, the effective application of these technologies 

hinges on the integration of solid theoretical foundations to guide their deployment and ensure 

meaningful learning experiences. 

Generative AI has the potential to enable sophisticated learner models that can analyze 

and adapt to individual learning processes. They offer a promising avenue for conducting 

formative assessments in educational settings, processing and interpreting large volumes of 

textual data to provide immediate and contextually relevant feedback. This capability makes 

Jo
urn

al 
Pre-

pro
of



LLMs a valuable tool for educators, facilitating continuous, adaptive feedback without the 

constraints of traditional methods (see Kasneci et al., 2023). Furthermore, the integration of 

LLMs into LA could lead to more interactive and adaptive learning experiences, ranging from 

personalized content delivery to intelligent tutoring systems (for a more comprehensive 

discussion on opportunities of generative AI in LA see Yan et al., 2024). However, the quality 

and effectiveness of these opportunities depend significantly on their alignment with educational 

objectives and theory. 

Despite their potential, LLMs face challenges, particularly regarding transparency in their 

decision-making processes. This “black box” nature can impede understanding and trust in AI-

driven learning tools. Moreover, the widespread availability of LLMs raises questions about the 

quality of learning opportunities they provide. Without a clear theoretical rationale, there's a risk 

of developing data-driven applications that do not effectively address learners' needs or fail to 

optimize learning processes. The theoretical grounding is essential for ensuring that adaptivity 

aligns with educational theories and pedagogical principles. 

An emerging direction in the field is the development of alternative AI systems that 

require less computational power while performing equally well. For example, Rombach et al. 

(2022) present a viable solution for overcoming some of the limitations of current LLMs, 

particularly in terms of resource accessibility and efficiency. Such advancements could lead to 

more sustainable and accessible AI applications in LA, broadening the potential for their use in 

diverse educational settings. 

In conclusion, while generative AI offers remarkable opportunities for advancing LA, its 

successful implementation requires careful consideration of both technological capabilities and 

theoretical underpinnings. The exploration of alternative, less resource-intensive AI systems 
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opens new possibilities for creating effective, efficient, and accessible LA tools, further 

enhancing the field's potential to transform educational practices. 

3.4 Conclusion 

The exploration of LA from the perspective of the Closed-Loop Learning Analytics 

Framework outlined in this article underscores the field's complex and multifaceted nature. In 

reviewing approaches and trends in data collection, processing, analysis, and adaptivity, we 

emphasize the essential role of tenable educational and psychological theories as the backbone of 

LA research. However, to fully realize the potential of LA, embracing interdisciplinarity emerges 

as a crucial condition. 

Interdisciplinarity in LA transcends the integration of data science, education, and 

psychology. It necessitates incorporating perspectives from diverse fields such as law, 

technology, and ethics to address the multifarious challenges and opportunities presented by 

advanced data technologies. Particularly with the advent of generative AI, such as LLMs, the 

interplay between technology and pedagogy becomes even more intricate. This complexity 

demands a broader, more inclusive approach to decision-making processes. These approaches 

should balance the efficiency and insights offered by AI systems with the nuanced understanding 

and ethical oversight provided by human expertise (Huber et al., 2024; Ninaus & Sailer, 2022). 

Such hybrid models could pave the way for more responsible, context-aware, and learner-

centered applications of LA. 

In conclusion, the future of LA lies in its ability to harmoniously blend data-driven 

insights with theoretical grounding and interdisciplinary perspectives. As we continue to 

navigate the evolving landscape of digital learning, a commitment to ethical principles, privacy 

considerations, and interdisciplinary collaboration will be instrumental in shaping learning 
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environments that are not only effective and adaptive but also respectful of the diverse needs and 

rights of learners. 
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Highlights 

• Introduces the Closed-Loop Learning Analytics Framework 

• Emphasizes integration of multimodal data for deeper learning insights 

• Reviews advancements in data collection, processing, and personalization 

• Emphasizes the impact of AI on adaptive and personalized learning experiences 

• Stresses the role of educational and psychological theory for learning analytics 
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