
Rainfall Estimation with

Opportunistic Sensors

Kumulative Dissertation zur Erlangung des Doktorgrades

an der Fakultät für Angewandte Informatik

der Universität Augsburg

vorgelegt von

Maximilian Martin Graf

2024



Erstes Gutachten: Prof. Dr. Harald Kunstmann

Zweites Gutachten: Prof. Dr. Christoph Beck

Tag der mündlichen Prüfung: 15.05.2024



”In investigating the possibility of using millimeter waves for satellite communication and earth-

based radio relay, we find that attenuation by rain is the chief cause of unreliability. But much is

yet to be learned about the spatial and temporal behavior of rainfall.” (Hogg, 1968)





Abstract

Precipitation can impact human security significantly, and its accurate estimation in time and

space is vital for various applications, including water management decisions and flash flood fore-

casting. Traditional observation systems like rain gauges, weather radars, and satellite instruments

have individual limitations in capturing precipitation accurately and are not available in all regions

of the world. Opportunistic rainfall sensors (OS) like commercial microwave links (CMLs) and

personal weather stations (PWS) can provide additional rainfall information, and their numbers

have surpassed the ones from traditional sensors. However, dealing with the heterogeneous quality

of OS-derived precipitation information remains a scientific problem and limits their use in hydro-

logic applications. To address this gap, this thesis aims to develop methods for quality control,

processing, and spatial reconstruction of OS data. First, data from 4000 CMLs in Germany, which

are part of the cellular backhaul network, were used to derive rainfall information based on the

attenuation of their microwave signal. CML processing methods were developed and optimized,

leading to rainfall estimates with good quality when compared to a rain gauge-adjusted weather

radar product used as a reference. To improve CML processing further, a novel method for the

crucial step of rain event detection was developed using a convolutional neural network. This

method improved the rainfall estimation significantly by reducing falsely classified rainfall by over

50%. With a similar performance for new CMLs and time periods, the method proved its ability

to generalize to previously unseen data. CMLs may experience a total loss of signal due to high

attenuation during heavy rainfall. These so-called blackouts were investigated using three years of

CML and 20 years of weather radar data. Overall, only around one percent of rainfall was missed

due to blackouts in the CML data. However, blackouts have to be considered in applications us-

ing CML rainfall estimates, as this one percent consisted of the most intense events. Surprisingly,

longer CMLs had more blackouts, despite having a higher dynamic range to compensate for more

attenuation that is caused by their length. PWS are another source of opportunistically sensed

rainfall information. Data from around 20,000 PWS were evaluated individually and in combi-

nation with CML and rain gauge data in Germany. Filtering and interpolation methods were

developed for these datasets, and the resulting rainfall maps were evaluated against three refer-

ence datasets covering different spatial and temporal scales. The OS-based products performed

similarly well as operational radar products of the DWD, especially on local and regional scales

with hourly resolution, and surpassed the quality of products using conventional rain gauges. In

conclusion, this thesis demonstrates the development and evaluation of methods for filtering, pro-

cessing, and combining CML and PWS data. The evaluation of the OS-based rainfall estimates

proves that a quality similar to that of operational rainfall products can be achieved.
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Zusammenfassung

Niederschlag kann die Sicherheit und das Wohlbefinden der Menschen erheblich beeinflussen, we-

shalb eine genaue Erfassung in Raum und Zeit beispielsweise für wasserwirtschaftliche Entschei-

dungen oder Sturzflutvorhersagen unerlässlich ist. Herkömmliche Beobachtungssysteme wie Nieder-

schlagsmesser, Wetterradare und Satellitenbeobachtungen haben individuelle Nachteile und sind

teilweise nicht in allen Regionen der Welt verfügbar. Opportunistische Niederschlagssensoren (OS)

wie beispielsweise kommerzielle Richtfunkstrecken und private Wetterstationen bieten zusätzliche

Niederschlagsinformationen liefern, und ihre Zahl hat die traditioneller Messgeräte überholt. Der

Umgang mit der heterogenen Qualität von aus OS abgeleiteten Niederschlagsschätzungen stellt je-

doch ein wissenschaftliches Problem dar und schränkt ihren Einsatz in hydrologischen Anwendun-

gen ein. Ziel dieser Arbeit ist es, robuste Niederschlagsdaten aus OS zu gewinnen. Hierzu wurden

Methoden zur Qualitätskontrolle, Verarbeitung und räumlichen Rekonstruktion von OS-Daten

entwickelt. Daten von 4000 kommerziellen Richtfunkstrecken (CMLs) in Deutschland, die Teil

des Mobilfunknetzes sind, wurden verwendet, um Niederschlagsinformationen auf der Grundlage

der Dämpfung ihres Mikrowellensignals abzuleiten. Dafür wurden CML-Prozessierungsmethoden

wurden entwickelt und optimiert und die daraus resultierenden Niderschlagsschätzungen zeigten

eine gute Qualität im Vergleich zu einem mit Niederschlagsmessern angeeichten Wetterradarpro-

dukt, das als Referenz verwendet wurde. Um die CML-Prozessierung weiter zu verbessern, wurde

eine neuartige Methode für den wichtigen Schritt der Detektion von Niederschlagsereignissen in

CML-Zeitreihen unter Verwendung eines neuronalen Netzes entwickelt. Diese Methode verbesserte

die Niederschlagsschätzung erheblich, da die Zahl der falsch klassifizierten Niederschläge um über

50% reduziert wurde. Für neue betrachtete Zeiträume und CMLs konnten mit dieser Meth-

ode ähnlich gute Ergebnisse erzielt werden. Dies unterstreicht die Robustheit der Methode zur

Verallgemeinerung auf unbekannte Daten. Ein bisher nicht berücksichtigtes Phänomen ist der

vollständige Signalverlust eines CMLs durch sehr hohe Dämpfung bei sehr starkem Niederschlag.

Diese sogenannten Blackouts wurden an drei Jahren CML- und 20 Jahren Wetterradardaten

analysiert. Insgesamt wurde durch Blackouts nur ein Prozent der Niederschläge in den CML-

Niederschlagsdaten nicht erfasst. Für die Verwendung dieser Daten in hydrologischen Anwendun-

gen sind Blackouts jedoch äußerst relevant, da dieses eine Prozent aus den intensivsten Ereignissen

besteht. Überraschenderweise wurden für längere CMLs mehr Blackouts beobachtet, obwohl diese

mit einem größeren Dynamikbereich ausgestattet sind, um die längenbedingt größere Dämpfung

auszugleichen. Eine weitere Quelle für opportunistisch erfasste Niederschlagsdaten sind Private

Wetterstationen (PWS). Daten von rund 20,000 PWSs wurden individuell und in Kombination mit

Daten von CMLs und Niederschlagsmessern in Deutschland ausgewertet. Für die PWS und CML
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Datensätze wurden Filter- und Interpolationsmethoden entwickelt, und die daraus resultierenden

Niederschlagskarten wurden anhand von drei Referenzdatensätzen auf unterschiedlichen räum-

lichen und zeitlichen Skalen evaluiert. Die OS-basierten Produkte erzielten dabei insbesondere auf

lokaler und regionaler Skala mit stündlicher Auflösung ähnlich gute Metriken ab wie operationelle

Radarprodukte des DWDs und übertrafen die Qualität der Produkte die herkömmliche Nieder-

schlagsmesser nutzen. Zusammenfassend zeigt diese Arbeit die Entwicklung und Evaluierung

von Methoden zur Filterung, Prozessierung und Kombination von CML- und PWS-Daten. Die

Auswertung der so erzeigten OS-basierten Niederschlagsinformationen zeigt, dass eine Qualität

ähnlich der von operationellen Niederschlagsprodukten erreicht werden kann.
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Chapter 1

Introduction

1.1 The importance of precipitation and its measurement

Water is essential for mankind and its global distribution is determined by the hydrological cycle.

Precipitation is a key variable in the hydrological cycle and its excess, or absence, can lead to

extreme events like floods (Merz et al., 2021) or droughts (Blauhut et al., 2022). Even moderate

precipitation events determine human activities on a daily basis. A variety of applications rely

on accurate quantitative precipitation estimates to support decision making for example in flood

forecasting, civil protection, agriculture, and urban planning. Further, climatological analysis and

the validation of earth system models rely on observational data. Therefore, the correct estima-

tion of precipitation is highly relevant, especially in the context of climate change which likely is

responsible for an increase in the occurrence of heavy precipitation events (Calvin et al., 2023).

However, accurately estimating precipitation is not a trivial task due to its highly stochastic char-

acter. Its non-stationarity is reflected in its high variability in both space and time. A variety of

devices have been developed to measure precipitation. The most commonly used ones are bucket-

type rain gauges, disdrometers, weather radars, and active or passive sensors on satellites. While

each of these devices has specific advantages justifying their usage, their individual disadvantages

can lead to uncertainties in their precipitation estimates which propagate into products and ap-

plications using their data.

An even greater issue for applications requiring accurate precipitation information is the lack of

dense hydrometeorological measurement networks in many regions of the world. The United Na-

tions has emphasized the need for climate observation systems to provide sufficient information

for early warning systems which are not accessible for one-third of the world’s population, mainly

in the least developed countries (UNFCCC, 2022). A prominent example of such early warning

systems are flood forecasts which highly depend on the available precipitation information.

Rainfall estimates from opportunistic sensors (OS) offer a presently scarcely exploited source of

rainfall information. OS can potentially be used to both reduce measurement uncertainties of
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Chapter 1. Introduction

traditional precipitation sensors through merged products and improve the coverage in regions

with sparse observation density. OS are devices that are not intended to deliver high-quality

observations of rainfall or other meteorological variables and sometimes do not even measure

these parameters directly. OS can be found in everyday products. Examples of direct OS include

temperature or pressure sensors used in smartphones, while indirect measurements can be found

in infrared-based rainfall sensors utilized for car windshield wipers. OS are often associated with

the Internet of Things and their number is increasing with global connectivity. The main scientific

limitation of using OS data is their heterogeneous quality. This thesis aims to prove that certain

OS can provide high-quality rainfall estimates.

1.2 Traditional precipitation sensors: A brief overview

Rain gauges

Rain gauges are the oldest and most common form of precipitation measurement. They con-

sist of an orifice of a defined size above a measurement unit quantifying the collected amount of

precipitation. While early instruments were operated with a height scale to read the amount of

precipitation called accumulation gauges, nowadays, mostly tipping-bucket, weighing, and optical

gauges are used.

The first evidence of the use of rain gauges can be dated back to the fourth century BC in India

and the second century BC in Palestine (Strangeways, 2010). The longest consistent time series

from rain gauge rainfall observation is around 300 years long (e.g. Prohom et al., 2016). To date,

rain gauges are one of the major sources of rainfall information and the worldwide number of

professionally operated rain gauges is around 250,000 (Kidd et al., 2017). They are used to adjust

weather radar and satellite products and their information is assimilated into weather and hydro-

logical model systems.

The main advantages of rain gauges are their comparatively low cost, easy setup, and mainte-

nance. Rain gauges measure precipitation at the point scale and depending on the device, their

accuracy and temporal resolution can be very high. The lack of spatial representativeness is their

major drawback. The combined area of all rain gauges used within global rain gauge-based rainfall

datasets (e.g. GPCC) is smaller than the area of a football pitch. Other uncertainties in precipi-

tation observation from rain gauges stem from underestimation due to wind drift and under-catch

of snow for unheated rain gauges (Sevruk, 2006).

The global distribution of rain gauges is varying in space and over time. Data sparse regions are

Africa, South America, and parts of Asia, especially in deserts and mountain ranges (Lorenz and

Kunstmann, 2012). After a steady increase in the number of rain gauges in the 20th century, their

number has decreased mainly in North America and Europe since the turn of the millennium.

Another challenge is that even when rain gauges are present, data availability is often restrained

by national data protection regulations. This is true for example in West African countries and

it takes researchers great effort to get access to such data (Bliefernicht et al., 2021).
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1.2. Traditional precipitation sensors: A brief overview

Disdrometers

Similar to a rain gauge, a disdrometer measures precipitation at the point scale. Precipitation is

measured indirectly via the size and vertical velocity of hydrometeors. Therefore, a disdrometer

is the main instrument to characterize drop size distribution (DSD). Typically, the drop sizes

are counted in bins of increasing width. Invented by Joss and Waldvogel (1967), disdrometers

nowadays use optical measurements like lasers or cameras, or acoustic measurements from the

impact of raindrops to record the individual hydrometeors within the sampling volume. Some

disdrometers are able to automatically distinguish between rain, snow, hail, or graupel. A common

application of disdrometer data is to fit the Z-R relation of a weather radar to the local rainfall

climatology derived from the DSD (Sheppard and Joe, 1994; Uijlenhoet et al., 2003). Their

high accuracy and precise technical complexity make disdrometers an expensive instrument in

comparison to rain gauges. That is the main reason why only a few countries (e.g. Canada,

Germany, and Great Britain) have operational disdrometer networks (Pickering et al., 2019).

Weather radar

The first efforts to derive precipitation estimates from radar echos were made in the 1930s and

1940s. The measurement principle is that a part of a pulsed radar beam gets reflected back to the

radiating source by hydrometeors. By measuring that backscatter and the travel time, a rainfall

estimate at a certain distance is obtained. Marshall and Palmer (1948) developed the Z–R relation

Z = aRb (1.1)

where Z is the radar reflectivity (mm6m−3), R is the rain rate (mmh−1) and the parameters a

and b depend on the drop size distribution.

Weather radars can capture the spatio-temporal characteristics of precipitation by using a scan

pattern with a sub-kilometer and sub-hourly resolution. However, their data is still not used as

widely as one could expect in hydrological applications mainly because of errors and uncertainties

(Berne and Krajewski, 2013): Weather radars measure precipitation indirectly and thus can suffer

from ground clutter, beam blockage, and their measurement high above the ground. Their main

source of uncertainty however stems from the Z-R relation, as the drop size distribution varies with

local climate but also within each individual rainfall event. The uncertainties of radar estimates

and their potential usage in hydrological applications are summarised in a detailed review by

Villarini and Krajewski (2010). These uncertainties can lead to low correlations between weather

radar data and precipitation measurements on the ground, especially at sub-hourly resolutions

(Bárdossy and Pegram, 2017). Efforts have been made to reduce errors and uncertainties for

example by using polarimetric radar data, facilitating horizontal and vertical polarized radar

beams allowing for example a hydrometeor classification. Nevertheless, a study by Schleiss et al.

(2020) has shown that weather radar products, polarimetric as well as gauge-adjusted ones, still

tend to underestimate heavy precipitation. This is especially true when considering the sub-pixel

variability for heavy, short-duration events (Peleg et al., 2018).
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Satellites

Rainfall can also be observed from space with active and passive sensors on earth-observation

satellites. The major advantage of these measurements is that they can cover the whole planet,

delivering rainfall estimates over areas where no ground-based observation networks are estab-

lished. While satellite rainfall products, in general, have the drawback of low spatial resolution,

specific sensors, and products have individual advantages and disadvantages.

Geostationary satellites with an orbit of 36,000 km continuously observe one region of the earth

and can therefore provide a high temporal sampling rate. However, they typically use visible or

infrared channels to estimate rainfall based on cloud height and temperature with sophisticated

highly parameterized algorithms.

Satellites with low earth or polar orbit can provide a higher spatial resolution of up to 0.1 de-

gree and some are equipped with active microwave sensors which deliver more accurate rainfall

estimates. However, their typical revisit times are in the order of hours to days. Many satellite

products combine data from geostationary and low-earth orbit satellites to combine their advan-

tages (Kidd et al., 2021). Still, merged multi-satellite products have a latency of several hours.

For example, the Integrated Multi-satellite Retrievals (IMERG) early run of the Global Precipita-

tion Measurement Mission (GPM) has a latency of 6 hours, while potentially missing or severely

misjudging rainfall events and dynamics on scales below the revisit time of the low earth satel-

lites (Huffman et al., 2015). Further potential error sources are the employed retrieval algorithms

which rely on several calibration and correction stages (Adler et al., 2001; Maggioni et al., 2016).

Combination of rainfall sensors

Data from these four sensors are merged into precipitation products by national meteorological

services and research institutions. A common combination is the adjustment of weather radar

data with rain gauges. The German Weather Service (DWD) operates RADOLAN (Radar Online

Adjustment), a radar-based quantitative precipitation estimation that combines the data from

17 weather radars and more than 1000 rain gauges to various products (Bartels et al., 2004;

Winterrath et al., 2018). Two of these products which are repeatedly used as references in this

thesis are RADOLAN-RW, a real-time product with an hourly resolution used for example for

operational flood forecasting, and RADKLIM-YW, a climatologically corrected version issued once

a year. Other common combinations consist of satellite and rain gauge measurements (e.g. GPM)

or disdrometer measurements which are used for the fitting of the Z-R relation of weather radars.
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1.3 Opportunistic rainfall sensing: State of the art

Opportunistic sensing and crowd sourcing

Opportunistic sensing is a fairly new approach to gathering meteorological information from de-

vices that are not intended to deliver high-quality observations in a scientific context. These

devices, whether they measure meteorological variables like temperature, pressure, or rainfall di-

rectly or indirectly, will here be called opportunistic sensors (OS). Liberman and Messer (2014)

were the first to use the term opportunistic sensor in the context of rainfall measurements with

commercial microwave links. OS are often connected to the internet which gives the opportunity

for real-time data transfer. Data from some OS are crowd-sourced which describes the idea of

outsourcing observations to the crowd (Howe, 2006). Examples of crowd-sourced data are the col-

lection of meteorological variables from private weather stations (de Vos et al., 2020), smartphones

(Guo et al., 2019; Hintz et al., 2019; Madaus and Mass, 2017; Overeem et al., 2013b), connected

vehicles (Mahoney and O’Sullivan, 2013; Rabiei et al., 2013) or from social media posts (de Vas-

concelos et al., 2016). A summary of crowd-sourced meteorological data is given by Zheng et al.

(2018). For other OS, typically the ones that are operated by the private sector, data streams from

the sensors to researchers have to be established. Depending on the sensor type and company this

can be cumbersome work (Chwala et al., 2016) or related to costs (Andersson et al., 2022).

For rainfall, the feasibility and potential of the following OS were tested: The potential to use the

attenuation of CML signals for rainfall estimation has been a research topic for over 15 years (e.g.

Messer et al., 2006). Similarly, the rainfall-induced attenuation along satellite-earth connections

for TV reception was exploited (Barthès and Mallet, 2013; Mercier et al., 2015). Rainfall data

from private weather stations was analyzed in several studies (e.g. de Vos et al., 2020; Bárdossy

et al., 2021). Binary rainfall information was derived from windshield wiper frequencies as they

are regulated by the optical rainfall sensor of a car (Mahoney and O’Sullivan, 2013; Rabiei et al.,

2013). Finally, camera footage of rain was used to derive rainfall estimates (Allamano et al., 2015;

Jiang et al., 2019). In the future, the number of potential OS will increase with the growing

number of devices connected to the Internet of Things (Balsamo et al., 2018; McCabe et al., 2017;

Tauro et al., 2018). A first study on multiple OS for the hydrometeorological monitoring for the

city of Amsterdam by de Vos et al. (2020) showed their combined potential for applications like

the tracking of a frontal system and the observation of urban heat island effects. Within this

thesis, data from two OS are analyzed, namely from commercial microwave links (CMLs) and

private weather stations (PWSs). In the following two sections, a description and the state of the

art for rainfall estimation from CMLs and PWSs will be given.

Commercial Microwave Links

CMLs are part of the global communication infrastructure and constitute large parts of the cellu-

lar backhaul network. They use highly directional antennas to transmit data within a line of sight

with frequencies typically ranging from 7 to 90 GHz over a few hundred meters to tens of kilome-

ters. They consist of a transmitter and a receiver using radio waves in the microwave frequency
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range to transmit data. Applications using similar technology and frequencies are communication

between satellites and base stations, wireless local area networks, and other short-range commu-

nication devices.

Precipitation affects the propagation of microwave transmission used e.g. by CMLs through scat-

tering and absorption. The fraction of attenuation from scattering and absorption due to raindrops

depends heavily on the rain rate. Other hydrometeors have different influences: Dry snow causes

far less scattering and absorption than rainfall, while semi-solid hydrometeors like melting snow

or hail result in heavily increased attenuation (Paulson and Al-Mreri, 2011).

The history of microwave link communication started in the 1940s when the usage of radio fre-

quencies between 3 and 30 GHz (centimeter waves) for radio communication. The relation be-

tween rainfall and attenuation of microwave radiation was already a research subject considered

in conferences like the ”Meteorological factors in radio-wave propagation” (Physical Society and

Royal Meteorological Society, 1947). In the following decades, the usage of centimeter wave bands

increased with refined manufacturing processes of radio hardware in the 1960s and to avoid inter-

ference, the usage of higher frequencies (millimeter waves, 30 - 300 GHz) bands was investigated.

These frequencies have wavelengths more similar to the size of raindrops which therefore cause

more attenuation. Engineers saw rainfall as a main challenge for the usage of higher frequency

bands and expected that a better knowledge of the spatio-temporal properties of rainfall would be

necessary to overcome outages due to rainfall (Hogg, 1968). One decade later, Atlas and Ulbrich

(1977) chose a different perspective by using microwave links to measure precipitation for the first

time and formulated the k-R relation:

k = aRb (1.2)

This relation links the specific attenuation of a microwave beam k in dB/km to a rain rate R in

mm/h. The parameters a and b depend on the CMLs frequency and polarization and only to a

minor extent on the raindrop temperature and DSD. For frequencies in the range of 20 to 40 GHz,

the parameter b is nearly 1. This results in an almost linear relation between rain rate and at-

tenuation. Until the early 2000s, several microwave link experiments for rainfall observation were

conducted (e.g. Upton et al., 2005). At the same time, cellular networks grow by the large-scale

deployment of CMLs. These were and still are operated mainly with frequencies of 10 to 40 GHz

which offer the possibility of information transfer over tens of kilometers. The growing demand

for bandwidth has led to the increased deployment of CMLs with frequencies of around 80 GHz

in the fifth generation of cellular networks (5G) during the last few years. These frequencies are

more sensitive to rainfall and their lengths are accordingly shorter (¡¡ 5 km).

The usage of CMLs, and therefore the opportunistic usage of data from cellular networks for

rainfall estimation, was first suggested independently by Messer et al. (2006) and Leijnse et al.

(2007). Both showed that the world’s 4 million CMLs (Ericsson, 2016) could be used for rainfall

estimation. This was the starting point of the research topic of CML-based rainfall estimation. A

schematic representation of a CML and the attenuation caused by rainfall is shown in Fig. 1.1.
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Figure 1.1: Schematic representation of a CML.

The main motivation for CML-based research stems from the large number of potential rainfall

sensors from which a variety of hydrological and meteorological applications could benefit.

The state-of-the-art on the way toward reliable CML-derived rainfall estimates and the existing

research gaps can be categorized into individual steps:

(a) Data acquisition

The acquisition of CML data is more a technical than a scientific task. Researchers depend

on cellular network operators to either provide them with a dataset or grant them direct ac-

cess to measured signal levels from their network. In order to estimate rainfall, information

on the signal strength, as well as metadata of the CMLs properties like frequency, length,

and polarization are necessary.

Commonly, CML data is acquired by researchers in two different types which define require-

ments for the retrieval of rainfall information. The first one comprises minimal and maximal

signal levels (min-max sampling) over a certain time period which network operators store

internally for network monitoring. This min-max sampled data often has a temporal reso-

lution of 15 minutes. This type of CML data was used for rainfall estimation e.g. in the

Netherlands (Overeem et al., 2013a) and in Sri Lanka (Overeem et al., 2021) where network

operators provided researchers with historical datasets.

The second option is the instantaneous measurement of transmitted and received signal

levels (TSL and RSL). The sampling rate can vary between 10 Hz and 15 minutes. Instanta-

neously sampled data can be retrieved by installing data loggers directly at CML antennas

(Chwala et al., 2012), by a simple network management protocol based within the networks

operators IP network containing the CMLs (Chwala et al., 2016), or by data sampling by

the operator itself. Such systems have the ability to pol data with high temporal frequency

in near real-time.
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Ericsson, the DWD, and researchers from KIT set up such a system recently, where Ericsson

delivers attenuation data from thousands of CMLs with a 10 s resolution once per minute.

This development took more than 10 years, which highlights the cumbersome task of CML

data acquisition for rainfall estimation. After more than 15 years of CML-based research,

there are still only a few public CML datasets available (Andersson et al., 2022; Špačková

et al., 2021). The main reasons are the long process of getting data in the first place and

because network providers often are restrictive with the geographic locations of the CMLs

in their network.

Both min-max and instantaneously measured signal levels are expressed in dBm which re-

lates to the power P where 0 dBZ = 1mW . Typically, signal levels are quantized which leads

to uncertainty, especially during light rain with such an intensity that it causes attenuation

in the magnitude of the quantization.

(b) Quality control

Rainfall is not the only source of disturbance of a CML’s signal. Refraction or reflection caus-

ing multi-path propagation of the signal can lead to signal fluctuations (Upton et al., 2005).

A largely unexplored source of signal fluctuations is caused by meteorological variables like

wind, temperature, or solar radiation, which can influence the CML beam or its antennas.

The alignment of two opposing antennas on freestanding masts can be disturbed by wind.

Ericsson (2021) analyzed data from 500 E-band CMLs from which a third showed mast

sways. They also reported a complete loss of signal due to mast sway for individual CMLs.

Temperature and solar radiation can influence the CML electronics in the transmitting and

receiving antenna (Chwala and Kunstmann, 2019), but no quantitative investigation in the

context of CML rainfall estimation has been conducted so far. Other sources of disturbance

can be found in human activity (temporally) blocking the line of sight of a CML for example

by a construction crane or by growing vegetation. Fluctuations compared by water vapor

and oxygen which have absorption bands within the typical CML frequencies are typically

minor compared to attenuation caused by rainfall (Uijlenhoet et al., 2018).

These disturbances have to be considered when using CMLs for rainfall estimation. Due

to different data acquisition systems, network configurations, and sampling strategies, each

CML dataset has been filtered individually. Overeem et al. (2013a) for example presented

a filter based on the spatial correlation of precipitation events of CMLs which suited their

dense CML network located in the Netherlands. This would not be possible for mountain-

ous regions where orographic effects can interrupt the spatial correlation of rainfall. For

accurate CML-derived rainfall estimates and their future use in (operational) applications,

robust filters have to be developed (Chwala and Kunstmann, 2019).

Besides such specifically developed filters, other CML processing steps that are described

hereafter are related to quality control or to fluctuations of the signal not caused directly
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by rain. The rain event detection and baseline estimation are to a certain degree able to

remove fluctuations from other sources than rain and the uncertainty of CML-derived rainfall

estimates due to wet antenna attenuation is often considered a non-rain disturbance of the

signal and mitigated with specific compensation methods.

(c) Rain event detection

Independent of being instantaneously or min-max sampled, each attenuation time series has

to be classified in rainy and dry periods. This step is necessary because only then a baseline

of the dry signal level can be extrapolated for each rainy period in order to calculate the

attenuation caused by rainfall. Two major concepts for this task were developed, the near-

by-link approach and time series-based approaches.

The near-by-link approach considers a period as wet when the time series of neighboring

CMLs correlate during a signal increase (Overeem et al., 2011). This approach worked better

with 15-minute min-max data than with 15-minute instantaneously sampled data (de Vos

et al., 2019b). It was used for CML studies in the Netherlands (Overeem et al., 2013a),

Brazil (Rios Gaona et al., 2018) and Sri Lanka (Overeem et al., 2021).

A variety of time series-based methods using individual TRSL time series to classify wet and

dry periods were developed. A simple yet practicable method used a threshold to separate

the rolling standard deviation of TRSL in wet and dry periods (Schleiss and Berne, 2010).

Recent studies still used this method (e.g. Kim and Kwon, 2018; Fencl et al., 2020). Other

approaches developed for the detection of rainy periods are a Markov switching model (Wang

et al., 2012), Fourier transformations on a rolling window of TRSL (Chwala et al., 2012),

random forest classifiers and Gaussian factor graphs (Kaufmann and Rieckermann, 2011),

decision trees (Cherkassky et al., 2014), and a Multilayer Perceptron (Dordević et al., 2014).

Another approach that classified 15-minute min-max data and a time series-based approach

used a Long Short-Term Memory network (Habi and Messer, 2018).

The classification between wet and dry periods can also rely on meteorological data. Schip

et al. (2017) proposed the use of rainfall products from the geostationary satellite Meteosat

for this task which could show its biggest potential in regions with a lack of radar data and

a limited number of traditional ground-based observations.

A main challenge for the development of rain event detection methods is the trade-off between

being too liberal and too conservative (Chwala and Kunstmann, 2019). More liberal methods

are able to detect more low-intensity events close to the detection limit of the CML but

also easily mistake small fluctuations from other sources than rainfall for rainfall. Vice

versa, conservative methods reduce this error at the cost of detecting fewer low-intensity

events. This trade-off was not analyzed in the evaluation of previous rain event detection

methods. Additionally, with a growing number of CMLs in datasets, this trade-off has to be

automatically optimized for many CMLs with various properties and error sources.
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(d) Baseline estimation

For each detected rainy period a baseline of the CMLs’ signal has to be estimated to derive

the rain-induced attenuation. There is no possibility to measure the baseline directly, which

leads to a remaining uncertainty in all baseline estimation methods. Most commonly, a

constant baseline based on the last or an average of the last TRSL values before the rain

event is assumed. This is reasonable and fairly accurate, especially for CMLs which show

stable signal levels over long periods. A few different approaches were proposed to determine

the baseline during rain events, for example, a local smoothing with daily quasi-periodicity

(Reller et al., 2011), a low-pass filter modeling the baseline (Fenicia et al., 2012) or a simple

rolling mean over TRSL (Ostrometzky and Messer, 2018).

(e) Wet antenna attenuation

Water droplets on the radome of CML antennas cause attenuation of the CML’s signal.

The droplets can be caused by rain, melting snow covering the radome, or dew. This effect

is called wet antenna attenuation (WAA) and can result in a large uncertainty of rainfall

estimates when it is not compensated for (Chwala and Kunstmann, 2019; Pastorek et al.,

2022). The most promising way to investigate WAA for a single CML is to set up an exper-

iment where the antennas’ properties (hydrophobic or hydrophilic radome material, radome

thickness, age, etc.), as well as environmental parameters, can be measured. Moroder et al.

(2019) set up such an experiment and developed a model based on the dynamic antenna

parameters reflectivity, efficiency, and directivity with a full-wave simulation (Moroder et al.,

2020). This setup allowed for the measurement of the WAA contribution through a continu-

ous recording of the CML antenna properties and parameters. Tiede et al. (2023) continued

these experiments and was able to record previously unknown temporal dynamics by com-

paring WAA and camera footage of the antennas. They found delayed wetting events as

well as cases of strong decrease of WAA during rainfall events due to the sudden wash-off of

large drops.

However, in reality, a CML network is equipped with a variety of hardware with varying

antenna properties and the ambient atmospheric conditions are mostly unknown. There-

fore, methods to compensate for WAA are often simple and use parameterizations. The

simplest models subtract a fixed quantity from the attenuation during rain events (Overeem

et al., 2016a; Schleiss et al., 2013). Others consider a wetting and drying dynamic over time

(Kharadly and Ross, 2001; Valtr et al., 2019), antenna properties like radome thickness, and

the dependency between WAA and the rain rate (Leijnse et al., 2008; Pastorek et al., 2022).

The question of which compensation method with which parameters should be used lacks a

large-scale analysis to date.

The effect of dew and melting snow on WAA is not investigated in detail. As dew typically

forms continuously over several hours the resulting attenuation will typically not be classified

as a rain event from a rain event detection method. Melting snow on antennas on the other

hand can cause significant attenuation in a short period adding up to the problem of strong

attenuation of melting hydrometeors in winter.
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(f) Rainfall retrieval from attenuation

When for each detected rain event the attenuation above baseline level is calculated and

compensated for WAA, it can be used to derive the path-averaged rain rate via the k-

R relation (Eq. 1.2). The parameters a and b can either be derived from a local rainfall

climatology using e.g. a disdrometer, or, as they are more dependent on the CMLs frequency

and length, it is also possible, and common practice, to use universal values from an ITU

recommendation (ITU-R, 2005).

(g) Spatial reconstruction and merging

Since rainfall can be highly variable in space and time, high-resolution rainfall maps with a

high spatiotemporal resolution are the best source of rainfall information for many hydrolog-

ical applications. Rainfall fields can be spatially reconstructed from path-averaged rainfall

information derived from CMLs. Well-known interpolation techniques like inverse distance

weighting (IDW) and Kriging (e.g. Overeem et al., 2016b) were used, considering each CML

observation as a synthetic point observation at its center. The geometrical property of CML

rainfall estimates was considered in several studies using the stochastic reconstruction ap-

proach Random Mixing (Haese et al., 2017), tomographic algorithms (D’Amico et al., 2016;

Zinevich et al., 2010) or an iterative IDW approach (Goldshtein et al., 2009; Eshel et al.,

2021).

CML-derived rainfall information was also used to derive combined rainfall products from

the combination with rain gauges (Fencl et al., 2017) and weather radar (Liberman et al.,

2014; Trömel et al., 2014). When merging CML rainfall estimates with other rainfall prod-

ucts, CMLs can offer two advantages. First, they outnumber rain gauges both in regions

with high hydrometeorological observation coverage like in Europe, and even more so in

regions like West Africa, South America, or parts of Asia with a limited number of rainfall

observations. Second, they also fill the gap in spatial representativeness between the point-

wise observation of rain gauges and spatial integrated measurements from weather radar or

satellite observations.

(h) Application

Parallel to the development of processing methods, CML-derived rainfall estimates were used

in a number of hydrological applications. In most cases, hydrological models were used to

compare rainfall input from CMLs to rain gauges. Fencl et al. (2013) conducted such a com-

parison with an urban rainfall-runoff model. They found an increased performance of the

model with the CML rainfall input, albeit some underestimation was caused by smoothed

rainfall maxima. Smiatek et al. (2017) and Cazzaniga et al. (2022) conducted a similar com-

parison using (semi-)distributed hydrological models for two catchments in Germany and

Italy, respectively. While in the German case, a better spatial representation of CMLs com-

pared to rain gauges led to an improved hydrograph, in the Italian case the CML networks’

layout was unfavorable, and rain gauge data produced a better runoff. The influence of CML

positioning and length were investigated with an urban rainfall-runoff model by Pastorek

et al. (2019) with the result that shorter CMLs within the catchment boundary lead to
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better runoff prediction than CMLs reaching over the catchment boundaries. CML-derived

rainfall estimates were also tested as input for rainfall nowcasting (Imhoff et al., 2020).

Personal Weather Stations

Personal weather stations (PWSs) are privately owned weather stations. People buy them out

of interest in meteorology or to supply their smart homes with meteorological data. PWSs can

consist of indoor and outdoor units measuring for example temperature, pressure, humidity, or

CO2 concentration and can be acquired from different manufacturers. Often a complementing

rain gauge, typically tipping bucket-style, can be purchased. Compared to instruments of na-

tional meteorological services or research institutions, PWSs are low-cost sensors with acquisition

costs from 50 to 500 Euros. In the following, the term PWS will only refer to personal weather

stations which measure rainfall. As PWS, in contrast to CMLs, measure rainfall directly, there

are fewer processing steps required to evaluate or use PWS data in applications:

(a) Data acquisition

The focus here is set on PWS which are connected to the internet. A variety of companies

are offering such PWS (e.g. Netatmo, Sainlogic, Ecowitt, Dostmann). Netatmo operates

a website where users can upload their data automatically when their PWS is connected

to the internet via WLAN. Their own upload enables the use of the data of others in

exchange (e.g. https://weathermap.netatmo.com). The download is possible via an API

that has currently no restrictions on the number of SQL calls. Weather Underground is a

platform where PWS data from different PWS manufacturers can be uploaded to (https://

www.wunderground.com/wundermap). Similar to Netamo their weather maps can be viewed

online and data access is also possible via an API, but limited to ten SQL calls per minute

and 500 per day. Users can upgrade to a business plan allowing more access. Companies like

Netatmo sell their data to researchers to researchers and meteorological services. Depending

on negotiations this allows researchers to publish PWS data. de Vos et al. (2019a) were the

first to publish a larger PWS dataset for the Amsterdam region. EUMETNET released a

dataset containing data of PWSs for the whole of Europe for 2020 from Met Office WOW

and Netatmo to support the development of PWS quality control tools (Met Office and

Netatmo, 2021). Access to this dataset is, however, restricted at the moment.

(b) Quality control

Compared to other variables like temperature or pressure, the quality of PWS rainfall mea-

surements is even more sensitive to the care of their owners. An important step in the setup

of a PWS is the choice of location. The distance to buildings and vegetation will in most

cases not meet the standards for the setup of rain gauges defined by the World Meteorolog-

ical Organisation (WMO). The manual for the setup of Netatmos’ rain gauges suggests for

example a setup height of 0.5 to 1.5 m and a distance of either 3 m or a distance equal to

the height of the next building or tree (Netatmo, 2022) which is only half of the distance

the WMO recommends. Additionally, careful calibration and regular checks of whether the

orifice and tipping bucket are free and functioning are necessary to obtain accurate data.
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1.4. Research questions

For the quality control of PWS, de Vos et al. (2019a) defined three filters that remove faulty

zeroes, high influx, and station outliers as well as a bias correction. The filters and bias cor-

rection are based on the comparison among spatially close CMLs. While removing around

12 % of the data, a Pearson correlation of 0.58 compared to a gauge-adjusted radar product

was achieved. Bárdossy et al. (2021) used data from DWD rain gauges as a primary network

to filter PWS data (secondary network). Their filters were based on rank statistics between

the two networks and consisted of an indicator correlation filter, a bias correction, and an

event-based filter. Their results showed that thorough quality control becomes more impor-

tant for shorter temporal aggregations of PWS data. Some error sources like battery failures

or inconsistent Wi-Fi connections are not easily detectable and therefore lead to faulty time

series.

(c) Evaluation and application

Besides studies focusing on the quality control of PWSs, several studies evaluated or applied

PWS data using manual quality checks or routines developed for well-maintained rain gauges.

Chen et al. (2018) investigated the trustworthiness of PWSs in the USA for a small urban

area. Golroudbary et al. (2018) analyzed the difference between PWSs located in urban

and rural areas in the Netherlands. Dordević et al. (2014) investigated the ability of PWSs

to capture heavy and local rainfall events for an urban area near Katowice in Poland and

concluded that information from PWSs can be very useful for observing local extremes. In

an experimental application Mapiam et al. (2022) used PWSs to adjust radar data from one

weather radar in Thailand with a bias correction and found improved results compared to

the usage of a sparse traditional rain gauge dataset.

1.4 Research questions

The potential of CMLs and PWSs for rainfall estimation has been shown for various regions. A

common limitation of almost all previous studies is that they were based on data from a few OS

and often covered short time periods. The methods used to process CML data were like-wise

developed on such small datasets. Only Overeem et al. (2016b) conducted a large-scale analysis

that covered 2.5 years of 15-minute sampled min-max data from 2044 CMLs in the Netherlands.

Nevertheless, their study was limited to a certain extent: They compared CML-derived rainfall

maps with a gridded reference without evaluating the performance of individual CMLs. They

also used a heavily parameterized processing routine which still is subject to optimization (Wolff

et al., 2022). In order to provide reliable rainfall maps from CMLs, robust and generally applicable

processing methods have to be developed and tested (Uijlenhoet et al., 2018). The fact that many

methods were developed with only a few CMLs leaves the question open whether these methods

are robust and transferable to new CMLs and new regions. This thesis could build on a growing

dataset of more than 4000 CMLs covering Germany with a temporal resolution of one minute.

This dataset fits the challenge of testing and developing a robust processing routine. Hence, the

testing and optimization of processing methods with this dataset led to the first research question:

1. How do state-of-the-art processing methods perform, and how can they be optimized to

provide high-quality CML rainfall estimates?
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Within the processing of CML data, rain event detection is the single most important step. It

defines the periods for which a baseline is calculated and subsequently when rain rates are derived

from attenuation with respect to that baseline. Equally important, it also serves as a filter

to remove fluctuations caused by other factors than rain. The main challenge is to distinguish

between noise and signal fluctuations caused by rain. A wrong classification can lead to an over- or

underestimation of the rainfall amount. The two most prominent rain event detection algorithms

feature critical limitations. The near-by-link approach depends on CML network density, which

may be highly variable (e.g. Overeem et al., 2016a)). The rolling standard deviation method

(Schleiss and Berne, 2010)) and similarly other time series-based methods are limited in their

ability to adapt to differences in the amount of signal fluctuation and do not consider the signal

pattern. Improved results could be expected from a method that evaluates the specific patterns

in the CML time series such as a machine learning technique for pattern recognition. This leads

to the second research question:

2. Can an artificial neural network for rain event detection improve CML-derived rainfall

estimates?

Besides the improvement of processing methods for CML data, the actual limitations given by the

properties of the CML network and its individual CMLs have to be understood to interpret the

derived rainfall estimates correctly. One of the limitations is that heavy rainfall can cause the total

loss of signal, here called a blackout. Because of such blackouts, CML rainfall estimates might

miss peak rainfall intensities. For hydrological applications like flood forecasting or extreme values

statistics, heavy rainfall events are of the highest relevance. Hence, the third research question is

formulated to quantify the potential error caused by blackouts:

3. How many blackouts from heavy rainfall can be observed in CML data and how does

this affect rainfall estimation?

In contrast to CMLs, PWSs measure rainfall directly. Nevertheless, they are prone to a variety

of errors which have to be considered in a filtering routine to ensure data quality (de Vos et al.,

2019a). An evaluation of their performance over large spatial and temporal scales is missing to

date. Furthermore, no combination of two OS has been conducted so far. To evaluate the quality

of rainfall maps from combined CML and PWS data the fourth question is raised:

4. How good is the performance of PWS and combined CML and PWS rainfall estimates

considering various spatial scales in a large-scale evaluation?

The overall goal of this thesis is to generate rainfall products from two types of opportunistic

sensors and to achieve a quality comparable to rainfall products from traditional rainfall obser-

vation. To reach this goal, methods for quality control, processing, and combination of CML and
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PWS data have to be developed and limitations have to be investigated. To answer the research

questions above and to evaluate the performance of the proposed methods, large-scale evaluations

of OS-derived rainfall products will be conducted.

1.5 Outline

This thesis consists of four peer-reviewed articles answering the research questions and is struc-

tured as follows:

Chapter 1: Introduction. This chapter gives an overview of traditional and opportunistic

rainfall sensors and motivates the research questions of this thesis.

Chapter 2: Rainfall estimation from a German-wide commercial microwave link net-

work: Optimized processing and validation for one year of data (Graf et al., 2020a).

The first article can be seen as an introduction to precipitation estimation with CMLs. It presents

a CML data set with 4000 CMLs in Germany which is also used in the subsequent chapters. This

dataset was used for the development and optimization of CML processing methods. For one year

of data, both path-averaged rainfall estimates, as well as IDW-interpolated rainfall maps from

CMLs, were computed. These results were evaluated with a gauge-adjusted radar product from

the DWD over a period of one year. The CML rainfall estimates achieved good agreement with

the reference dataset except for the winter months. The results of this article serve as a benchmark

for subsequent developments and analyses.

Chapter 3: Rain event detection in commercial microwave link attenuation data us-

ing convolutional neural networks (Polz et al., 2020). The second article describes one of

these developments. It presents the use of convolutional neural networks (CNNs) for the detection

of rain events by classifying the fluctuations in the CML signals that are caused by precipitation.

This is a crucial step for further precipitation estimation and is at the same time challenging,

because of factors other than rain which can cause attenuation or signal fluctuations. This classi-

fication further serves as part of the quality control, as fluctuations caused by other factors than

rain are not classified as wet periods. The main focus of the classification was to minimize the

trade-off between false wet and missed wet prediction. Compared to the previously used classifi-

cation method, the CNN-based method showed a significant improvement.

Chapter 4: Missing rainfall extremes in CML data due to total loss of signal (Polz

et al., 2023b). This analysis deals with failures of CMLs that can be caused by complete sig-

nal attenuation during extremely heavy rainfall, called blackouts. Their occurrence was analyzed

using three years of CML data from Germany as well as 20 years of synthetic CML data derived

from a weather radar product. It was found that for yearly rainfall sums, around one percent

was missing due to blackouts. Surprisingly, the outages were found particularly in longer CMLs,
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despite network operators providing them with higher signal strength. From the comparison of

CML and synthetic blackouts, it was found that there are 8.5 times more blackouts in the CML

data. These findings have implications both for CML precipitation estimation and CML network

planning which are discussed.

Chapter 5: Rainfall estimates from opportunistic sensors in Germany across spatio-

temporal scales (Graf et al., 2021b). The previous approach of deriving rainfall maps from

CMLs was extended by the usage of PWS in the fourth article. Data from 4000 CMLs and more

than 20,000 PWSs were combined for the first time. The main challenges were to ensure the OS

data quality and the correct combination of their spatial representativeness for interpolation. Two

filters and a bias correction, based on rank statistics between the OS and automated rain gauge

from the DWD, ensured the OS data quality. For the combination of OS, a Kriging framework

was developed, which incorporates the CMLs’ integral characteristic and the uncertainty of OS

measurements. The results of a two-year evaluation showed that the combination of CMLs and

PWSs was able to outperform the DWDs’ measurement network of rain gauges and provided re-

sults similar to the ones from two weather radar products on regional and local scales.

Chapter 6: Summary and synthesis. The main objective of this thesis was to derive high-

quality precipitation estimates from CML and PWS. The contribution of the individual articles

to this overall objective is summarized and discussed in this chapter. The overall framework of

this thesis is given in Figure 1.2. It shows the chapters consisting of the publications as well as

the overlap of the underlying data and the progressive development and usage of methods in this

thesis. Finally, key results and combined innovations connect the chapters and lead to the main

outcome of this thesis.

1.6 Innovation of the thesis

The main innovations of this thesis are:

• The first large-scale analysis of country-wide CML data for rainfall estimation in Germany

which facilitates a fast parallel workflow on HPC infrastructure.

• The improvement of existing CML processing methods and the development of filtering

routines.

• The development of a CNN-based rain event detection which significantly improves the

rainfall estimates on large scales.

• The quantification of missing values in CML rainfall estimates due to rainfall-induced black-

outs both from CML and radar-based synthetic CML data.

• The development of a framework for quality control and the combination of CML and PWS

data with an emphasis on their specific errors and geometrical characteristics.

• The first combined rainfall estimates from CML and PWS data with a country-wide, multi-

year evaluation.
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Figure 1.2: Framework, key results and combined innovation of this thesis
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1.7 Contribution of the author to the different articles

Chapter 1 and Chapter 6 were written by Maximilian Graf.

Chapter 2: Rainfall estimation from a German-wide commercial microwave link

network: Optimized processing and validation for one year of data

Graf, M., Chwala, C., Polz, J., and Kunstmann, H.: Rainfall estimation from a German-wide

commercial microwave link network: optimized processing and validation for 1 year of data, Hy-

drol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020, 2020.

The concept of this study was designed by Maximilian Graf, Christian Chwala, and Harald Kunst-

mann. Maximilian Graf and Christian Chwala designed the analysis and Maximilian Graf carried

it out with contributions from Christian Chwala and Julius Polz. Christian Chwala set up the

data acquisition to provide the raw CML data. Maximilian Graf further prepared the CML data

and set up a parallelized processing routine which sped up the process of method development.

The optimization of the individual processing steps was conducted by Maximilian Graf. He also

evaluated the results against a reference CML-wise and map-based. The results were presented by

Maximilian Graf and were discussed with all co-authors. The code both for the CML processing

and the evaluation was developed by Maximilian Graf with contributions from Christian Chwala

and Julius Polz. All figures were prepared by Maximilian Graf. The manuscript was written by

Maximilian Graf with contributions from and discussions with all co-authors.

Chapter 3: Rain event detection in commercial microwave link attenuation data us-

ing convolutional neural networks

Polz, J., Chwala, C., Graf, M., and Kunstmann, H.: Rain event detection in commercial mi-

crowave link attenuation data using convolutional neural networks, Atmos. Meas. Tech., 13,

3835–3853, https://doi.org/10.5194/amt-13-3835-2020, 2020

Julius Polz, Christian Chwala, and Harald Kunstmann designed the study layout and Julius Polz

carried it out with contributions from Christian Chwala and Maximilian Graf. Christian Chwala

set up the data acquisition to provide the raw CML data. Maximilian Graf provided pre-processed

CML data for the training and validation including the quality filter from Chapter 2. Julius Polz

developed the CNN-based rain event detection model and trained and validated this model. Max-

imilian Graf provided the data of the reference rain event detection which was used by Julius Polz

to evaluate the CNN-based model. Maximilian Graf also used the CNN-based rain event detection

to derive CML rainfall estimates with this new method. The code was developed by Julius Polz

with the contributions of Christian Chwala and Maximilian Graf. All figures were prepared by

Julius Polz. Julius Polz prepared the manuscript with contributions from all co-authors.
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Chapter 4: Missing rainfall extremes in commercial microwave link data due to total

loss of signal

Polz, J., Graf, M., Chwala, C.: Missing rainfall extremes in commercial microwave link data due

to total loss of signal, ESS, 10(2), e2022EA002456. https://doi.org/10.1029/2022EA002456,

2023. (Julius Polz and Maximilian Graf share the first authorship)

Julius Polz, Maximilian Graf, and Christian Chwala designed the study layout. Julius Polz and

Maximilian Graf carried out the analysis in equal parts with contributions from Christian Chwala.

The data was provided and prepared by all authors. In general, Julius Polz conducted all analyses

related to the synthetic CML data based on RADKLIM-YW and Maximilian Graf conducted

all analyses related to the observed CML data with respective contributions and discussion with

Christian Chwala. Accordingly, Figures 1 and 2 were prepared by Maximilian Graf who provided

CML-based statistics and developed a blackout gap detection algorithm while Figures 3 and 4 were

prepared by Julius Polz who provided synthetic CML-based statistics and compared the blackout

frequency in real and synthetic CML observation. Figures 5 and 6 were prepared by Maximilian

Graf and Julius Polz. Christian Chwala contributed and discussed various stages of the analysis.

Accompanying example software of the blackout gap detection algorithm and example data were

prepared and published by Maximilian Graf within the python software package pycomlink. Julius

Polz and Maximilian Graf prepared the manuscript with contributions and discussions of Chris-

tian Chwala. Finally, Julius Polz and Maximilian Graf share the authorship of this publication

with equal contributions.

Chapter 5: Rainfall estimates from opportunistic sensors in Germany across spatio-

temporal scales

Graf, M., El Hachem, A., Eisele, M., Seidel, J., Chwala, C., Kunstmann, H., Bárdossy, A:. Rain-

fall estimates from opportunistic sensors in Germany across spatio-temporal scales, J. Hydrol.

Reg. Stud., 37, 100883. https://doi.org/10.1016/j.ejrh.2021.100883, 2021

Maximilian Graf initiated the cooperation behind this article and conceptualized the study to-

gether with Jochen Seidel, Christian Chwala, Harald Kunstmann, and András Bárdossy. Maxim-

ilian Graf, Abbas El Hachem, Micha Eisele, and András Bárdossy developed the methodology and

software and carried out the analysis. The CML data and the reference data from the DWD were

prepared by Maximilian Graf. The PWS data was prepared by Micha Eisele. The filtering routine

for PWS data and CML-derived rain rates was taken from Bárdossy et al. (2021) and applied by

Abbas El Hachem. András Bárdossy and Micha Eisele developed the interpolation framework.

Maximilian Graf and András Bárdossy conducted and analyzed the leave-one-out cross-validation

and created and evaluated the rainfall products on different scales and for high-intensity rainfall.

Maximilian Graf managed the data flow between the different authors. All figures were prepared

by Maximilian Graf, except for Figure 2 which was prepared by Abbas El Hachem and Micha

Eisele. Maximilian Graf wrote the manuscript with contributions from and discussions with all

co-authors.
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1.8 Further articles

Besides the four articles described above, the author of this thesis contributed to three peer-

reviewed articles, two peer-reviewed conference proceedings, and two non-peer-reviewed articles

during the time of his doctorate. These articles have a varying degree of thematic overlap with

the topic of this thesis and are presented in the following section.

Peer reviewed articles

The author contributed to two peer-reviewed articles in the context of land surface-atmosphere

interaction, more precisely, to the soil moisture precipitation feedback in Graf et al. (2021a) (a)

and Arnault et al. (2021) (b). Both articles focused on the use of coupled hydrological and

atmospheric models. Nevertheless, a thematic overlap between their simulation-derived results

and the conclusions from this thesis can be drawn: accurate rainfall estimates are crucial for the

development and validation of weather and climate models. The author also contributed to Graf

et al. (2023) (c) and Polz et al. (2023a) (d) which are conference proceedings for the International

Conference of Acoustics, Speech and Signal Processing 2023 and cover topics closely related to

this thesis. The first one (c) used the findings on blackouts from Polz et al. (2023b) and analyzed

three different ways to mitigate blackout gaps. The approach to use the all-time minimum of

RSL observed at each CML to fill its blackout gaps proved to be the best method. The rainfall

estimates were improved with this approach compared to no and to other mitigation measures.

The second conference contribution (d) focused on anomalies in raw CML attenuation data. Four

experts (from the author list) manually flagged CML time series which then were processed and

compared to a reference. Agreement between experts varied quite strongly but rainfall estimates

were improved nevertheless. Finally, the author contributed to the first ever published CML-based

rainfall maps in Africa (Djibo et al., 2023a) in (e). A CML processing routine close to the one

in Chapter 2 was used on more than 100 CMLs covering Ouagadougou, the capital of Burkina

Faso. As ground-based reference data was scarce, with only one rain gauge with daily resolution

available in the city, also satellite data was used. The CML rainfall maps with a resolution of five

minutes matched the daily sums of the rain gauge and their temporal correctness could be verified

with sub-hourly satellite data.

(a) Is the soil moisture precipitation feedback enhanced by heterogeneity and dry

soils? A comparative study

Graf, M., Arnault, J., Fersch, B., & Kunstmann, H. (2021). Is the soil moisture precipita-

tion feedback enhanced by heterogeneity and dry soils? A comparative study. Hydrological

Processes, 35(9), e14332. https://doi.org/10.1002/hyp.14332

Abstract: The interaction between the land surface and the atmosphere is a crucial driver of

atmospheric processes. Soil moisture and precipitation are key components in this feedback.
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Both variables are intertwined in a cycle, that is, the soil moisture–precipitation feedback

for which involved processes and interactions are still discussed. In this study the soil mois-

ture–precipitation feedback is compared for the sempiternal humid Ammer catchment in

Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa dur-

ing the warm season, using precipitation datasets from the Climate Hazards Group InfraRed

Precipitation with Station data (CHIRPS), from the German Weather Service (REGNIE)

and simulation datasets from the Weather Research and Forecasting (WRF) model and the

hydrologically enhanced WRF-Hydro model. WRF and WRF-Hydro differ by their repre-

sentation of terrestrial water flow. With this setup we want to investigate the strength,

sign and variables involved in the soil moisture–precipitation feedback for these two regions.

The normalized model spread between the two simulation results shows linkages between

precipitation variability and diagnostic variables surface fluxes, moisture flux convergence

above the surface and convective available potential energy in both study regions. The soil

moisture–precipitation feedback is evaluated with a classification of soil moisture spatial het-

erogeneity based on the strength of the soil moisture gradients. This allows us to assess the

impact of soil moisture anomalies on surface fluxes, moisture flux convergence, convective

available potential energy and precipitation. In both regions the amount of precipitation

generally increases with soil moisture spatial heterogeneity. For the Ammer region the soil

moisture–precipitation feedback has a weak negative sign with more rain near drier patches

while it has a positive signal for the Sissili region with more rain over wetter patches. At least

for the observed moderate soil moisture values and the spatial scale of the Ammer region,

the spatial variability of soil moisture is more important for surface-atmosphere interactions

than the actual soil moisture content. Overall, we found that soil moisture heterogeneity

can greatly affect the soil moisture–precipitation feedback.

(b) Lateral terrestrial water flow contribution to summer precipitation at continen-

tal scale – A comparison between Europe and West Africa with WRF-Hydro-tag

ensembles

Arnault, J., Fersch, B., Rummler, T., Zhang, Z., Quenum, G. M., Wei, J., Graf, M.,

Laux, P., & Kunstmann, H. (2021). Lateral terrestrial water flow contribution to summer

precipitation at continental scale – A comparison between Europe and West Africa with

WRF-Hydro-tag ensembles. Hydrological Processes, 35(5), e14183. https://doi.org/10.

1002/hyp.14183

Abstract: It is well accepted that summer precipitation can be altered by soil moisture con-

dition. Coupled land surface – atmospheric models have been routinely used to quantify

soil moisture – precipitation feedback processes. However, most of the land surface models

(LSMs) assume a vertical soil water transport and neglect lateral terrestrial water flow at

the surface and in the subsurface, which potentially reduces the realism of the simulated

soil moisture – precipitation feedback. In this study, the contribution of lateral terrestrial

water flow to summer precipitation is assessed in two different climatic regions, Europe and
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West Africa, for the period June–September 2008. A version of the coupled atmospheric-

hydrological model WRF-Hydro with an option to tag and trace land surface evaporation

in the modelled atmosphere, named WRF-Hydro-tag, is employed. An ensemble of 30 sim-

ulations with terrestrial routing and 30 simulations without terrestrial routing is generated

with random realizations of turbulent energy with the stochastic kinetic energy backscatter

scheme, for both Europe and West Africa. The ensemble size allows to extract random noise

from continental-scale averaged modelled precipitation. It is found that lateral terrestrial

water flow increases the relative contribution of land surface evaporation to precipitation

by 3.6% in Europe and 5.6% in West Africa, which enhances a positive soil moisture – pre-

cipitation feedback and generates more uncertainty in modelled precipitation, as diagnosed

by a slight increase in normalized ensemble spread. This study demonstrates the small but

non-negligible contribution of lateral terrestrial water flow to precipitation at continental

scale.

(c) Potential and limitations of filling gaps in commercial microwave link data stem-

ming from complete loss of signal during heavy rainfall

Graf, M., Blettner, N., Polz, J., Chwala, C. (2023). Potential and Limitations of Fill-

ing Gaps in Commercial Microwave Link Data Stemming From Complete Loss of Signal

During Heavy Rainfall. 2023 IEEE International Conference on Acoustics, Speech, and Sig-

nal Processing Workshops (ICASSPW), 1–5. https://doi.org/10.1109/ICASSPW59220.

2023.10193696

Rainfall estimates from commercial microwave links (CML) can be impaired by the total

loss of signal during heavy rainfall events. This implies that the highest rainfall intensities

may not be observed by CMLs during these so-called blackouts. As CML rainfall estima-

tion approaches an operational state, this issue has to be studied and potential mitigation

strategies have to be developed. Therefore, we investigate three methods that fill blackout

gaps detected by a filter established in previous work. The methods we developed consisted

of a linear and a cubic interpolation as well as the infilling of the values at the detection

limit of each CML. In general, the linear interpolation was underestimated and the cubic

interpolation overestimated rainfall intensities compared to a reference. The physically mo-

tivated infilling at the detection limit performed best. In conclusion, blackout gaps should

be mitigated with one proposed method to improve the quality of rainfall estimates derived

from CMLs.

(d) Expert flagging of commercial microwave link signal anomalies: Effect on rain-

fall estimation and ambiguity of flagging

Polz, J., Glawion, L., Graf, M., Blettner, N., Lasota, E., Schmidt, L., Kunstmann, H.,

Chwala, C. (2023). Expert Flagging of Commercial Microwave Link Signal Anomalies: Effect

on Rainfall Estimation and Ambiguity of Flagging. 2023 IEEE International Conference on

Acoustics, Speech, and Signal Processing Workshops (ICASSPW), 1–5. https://doi.org/

10.1109/ICASSPW59220.2023.10193654.

Accurate detection of signal anomalies in the attenuation time-series from commercial mi-

crowave links (CMLs) is crucial for high quality rainfall estimates. Example causes of such
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anomalies include dew or ice on the antenna and multi-path propagation. In a first effort to

catalog examples of CML signal anomalies, four experts flagged suspicious segments in the

time-series of 20 CMLs in Germany. The results show that the agreement between experts

depends on the definition of the anomaly class. Removing the flagged anomalies increased

the Pearson correlation coefficient between CML and radar rainfall estimates from 0.61 to

0.70 and reduced the BIAS by 40%. An implication of our study is that expert uncertainty

is an important factor for the quality control of environmental sensor data.

(e) High-resolution rainfall maps from commercial microwave links for a data-

scarce region in West Africa

Djibo, M., Chwala, C., Graf, M., Polz, J., Kunstmann, H., Francoius, Z. (2023). High-

resolution rainfall maps from commercial microwave links for a data-scarce region in West

Africa. Journal of Hydrometeorology, 1(aop). https://doi.org/10.1175/JHM-D-23-0015.

1.

We present high-resolution rainfall maps from commercial microwave link (CML) data in

the city of Ouagadougou, Burkina Faso. Rainfall was quantified based on data from 100

CMLs along unique paths and interpolated to achieve rainfall maps with a 5-minute tem-

poral and 0.55km spatial resolution for the monsoon season of 2020. Established processing

methods were combined with newly developed filtering methods, minimizing the loss of data

availability. The rainfall maps were analyzed qualitatively both at a five-minute and ag-

gregated daily scale. We observed high spatio-temporal variability on the five-minute scale

which cannot be captured with any existing measurement infrastructure in West Africa.

For the quantitative evaluation only one rain gauge with a daily resolution was available.

Comparing the gauge data with the corresponding CML rainfall map pixel showed a high

agreement with a Pearson correlation coefficient of over 0.95 and an underestimation of the

CML rainfall maps of around ten percent. Because the CMLs closest to the gauge have the

largest influence on the map pixel at the gauge location, we thinned out the CML network

around the rain gauge synthetically in several steps and repeated the interpolation. The

performance of these rainfall maps dropped only when a radius of 5 km was reached and

around half of all CMLs were removed. We further compared ERA5 and GPM-IMERG data

to the rain gauge and found that they show much lower correlation than data from the CML

rainfall maps. This clearly highlights the large benefit that CML data can provide in the

data scarce but densely populated African cities.

Non-peer reviewed articles

Two additional non-peer-reviewed articles closely related to this thesis were published with con-

tributions from the author in German. In Graf et al. (2021c), given in (f), the general principle of

CML-based rainfall estimation is described. Additionally, results from the country-wide evalua-

tion of these rainfall estimates in Germany are presented. The second article in (g) from Bárdossy

et al. (2022) is an application using OS-derived rainfall for analysis of the Ahrtal flooding in July
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2021. The main result was that OS rainfall products from PWSs and CMLs lead almost twice the

areal precipitation compared to rain gauge and radar products. It also featured the first results

from hydrological simulations with LARSIM, the operational product of the state agency for the

environment of Rhineland-Palatinate, using OS rainfall data as input and comparing it to tradi-

tional rainfall products as input. The combination of rain gauges and PWSs as input thereby led

to almost 50% more discharge at the gauge Altenahr than RADOLAN-RW as input.

(f) Regenmessung im Mobilfunknetz

Graf, M., Polz, J., & Chwala, C. (2021). Regenmessung im Mobilfunknetz. Physik in

unserer Zeit, 52(2), 88–93. https://doi.org/10.1002/piuz.202001602

Abstract: Das möglichst exakte Erfassen des Niederschlags ist ein grundlegender Bestandteil

der Klima- und Umweltforschung sowie für verschiedene Anwendungen, beispielsweise in der

Landwirtschaft. Eine neue Art der Niederschlagsmessung ermöglicht das Mobilfunknetz

in Deutschland mittels Richtfunkstrecken (Commercial Microwave Link, CML). Der große

Vorteil dieser Methode liegt in der potenziell weltweit nutzbaren Infrastruktur. Die Qualität

der Niederschlagserfassung mit etwa 4000 CML in Deutschland weist eine hohe Überein-

stimmung mit dem offiziellen Messnetz des Deutschen Wetterdienstes auf.

(g) Verbesserung der Abschätzung von Gebietsniederschlägen mittels opportunistis-

cher Niederschlagsmessungen am Beispiel des Ahr-Hochwassers im Juli 2021

Bardossy, A., Seidel, J., Eisele, M., El Hachem, A, Kunstmann, H., Chwala, C., Graf, M.,

Demut, N., Gerlach, N. (2022) Verbesserung der Abschätzung von Gebietsniederschlägen

mittels opportunistischer Niederschlagsmessungen am Beispiel des Ahr-Hochwassers im Juli

2021. Projektbericht HW 66. 2022, 208-214

Abstract: Am 14. und 15. Juli 2021 haben sich infolge starker und langanhaltender Nieder-

schläge in mehreren Flusseinzugsgebieten imWesten Deutschlands katastrophale Hochwasser

ereignet. Besonders betroffen war das Ahrtal, wo zahlreiche Todesopfer zu beklagen waren

und große Schäden entstanden (LfU, 2022). Am durch das Hochwasser zerstörten Ahr-Pegel

Altenahr (Einzugsgebiet 746 km²) lag der anhand von Hochwassermarken rekonstruierte

Höchststand am 15. Juli gegen 2:00 Uhr bei etwa 10 m. Der bis dahin höchste gemessene

Wert im Messzeitraum von 1946 bis 2020 betrug 3,71 m. Auch an weiteren Pegeln an der Ahr

kam es zu Ausfällen. Die Ursachen für die Unsicherheiten in der Abschätzung der Maximal-

abflüsse an den ausgefallenen Pegeln sind vielfältig. Die Pegel Müsch/Ahr, Altenahr/Ahr

und Kreuzberg/Sahrbach im Ahr-Einzugsgebiet (Abb. 4) wurden während des Hochwasser-

ereignisses zerstört, Verklausungen an Brückendurchlässen sowie der Zusammenbruch von

Brücken führten zum Rückstau der Wassermassen bzw. zu vermuteten Schwallwellen. Des

Weiteren war der aus Stationsmessdaten abgeschätzte Gebietsniederschlag nach derzeitiger

Einschätzung mindestens 15 % zu niedrig, jener aus den Radarprodukten sogar bis etwa

30 %. Zur Ermittlung der Maximalabflüsse an den Pegeln im Ahr-Einzugsgebiet wurden
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im Landesamt für Umwelt in Rheinland-Pfalz (LfU RLP) verschiedene Ansätze verfolgt,

u. a. wurde das Hochwasser mit dem Wasserhaushaltsmodell LARSIM (LEG, 2021) mit

unterschiedlichen, nachträglich erstellten Niederschlagsprodukten (u. a. unter Verwendung

von privaten Wetterstationen) und mit unterschiedlichen Modelleinstellungen nachgerech-

net. Die Herleitung der Scheitelabflüsse ist derzeit noch Gegenstand von Untersuchungen,

nach vorläufigen Berechnungen wird der Maximalabfluss am Pegel Altenahr auf 750 bis 1.000

m³/s geschätzt (Berkler et al., 2022)
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Rainfall estimation from a German-wide

commercial microwave link network:

Optimized processing and validation for

one year of data (Graf et al., 2020a)

Graf, M., Chwala, C., Polz, J., and Kunstmann, H.: Rainfall estimation from a German-wide

commercial microwave link network: optimized processing and validation for 1 year of data, Hydrol.

Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020, 2020.

License: CC BY.

Abstract

Rainfall is one of the most important environmental variables. However, it is a challenge to

measure it accurately over space and time. During the last decade commercial microwave links

(CMLs), operated by mobile network providers, have proven to be an additional source of rain-

fall information to complement traditional rainfall measurements. In this study we present the

processing and evaluation of a German-wide data set of CMLs. This data set was acquired from

around 4000 CMLs distributed across Germany with a temporal resolution of one minute. The

analyzed period of one year spans from September 2017 to August 2018. We compare and adjust

existing processing schemes on this large CML data set. For the crucial step of detecting rain

events in the raw attenuation time series, we are able to reduce the amount of miss-classification.

This was achieved by a new approach to determine the threshold, which separates a rolling win-

dow standard deviation of the CMLs signal into wet and dry periods. For the compensation of

wet antenna attenuation, we compare a time-dependent model with a rain-rate-dependent model

and show that the rain-rate-dependent model performs better for our data set. As precipitation

reference, we use RADOLAN-RW, a gridded gauge-adjusted hourly radar product of the German

Meteorological Service (DWD), from which we derive the path-averaged rain rates along each CML

path. Our data processing is able to handle CML data across different landscapes and seasons

27

https://doi.org/10.5194/hess-24-2931-2020


Chapter 2. German-wide CML rainfall estimation

very well. For hourly, monthly and seasonal rainfall sums we found a good agreement between

CML-derived rainfall and the reference, except for the winter season with non-liquid precipitation.

We discuss performance measures for different subset criteria and show, that CML derived rainfall

maps are comparable to the reference. This analysis shows that opportunistic sensing with CMLs

yields rainfall information with a good agreement to gauge-adjusted radar data during periods

without non-liquid precipitation.

2.1 Introduction

Measuring precipitation accurately over space and time is challenging due to its high spatiotem-

poral variability. It is a crucial component of the water cycle and knowledge of the spatiotemporal

distribution of precipitation is an important quantity in many applications across meteorology,

hydrology, agriculture, and climate research.

Typically, precipitation is measured by rain gauges, ground-based weather radars or spaceborne

microwave sensors. Rain gauges measure precipitation at the point scale. Errors can be caused

for example by wind, solid precipitation or evaporation losses (Sevruk, 2006). The main disad-

vantage of rain gauges is their lack of spatial representativeness. Weather radars overcome this

spatial constraint, but are affected by other error sources. They do not directly measure rainfall,

but estimate it from related observed quantities, typically via the Z-R relation, which links the

radar reflectivity ”Z” to the rain rate ”R”. This relation, however, depends on the rain drop

size distribution (DSD), resulting in significant uncertainties. Dual-polarization weather radars

reduce these uncertainties, but still struggle with the DSD-dependence of the rain rate estimation

(Berne and Krajewski, 2013). Additional error sources can stem from the measurement high above

ground, from beam blockage or ground clutter effects.

Satellites can observe large parts of the earth, but their spatial and temporal coverage also has

limits. Geostationary satellites can provide a high temporal sampling rate of a specific part of the

earth. However rain rate estimates show large uncertainties because they have to be derived from

measurements of visible and infra red channels, which were not meant for this purpose. Satellites

in Low Earth orbits typically use dedicated sensors for rainfall estimation (microwave radiometers

and radars), but their revisiting times are constraint by their orbits. Typical revisit times are

in the order of hours to days. As a result, even merged multi-satellite products have a latency

of several hours, e.g. the Integrated Multi-satellite Retrievals (IMERG) early run of the Global

Precipitation Measurement Mission (GPM) has a latency of 6 hours, while it is limited to a spatial

resolution of 0.1 degrees. The employed retrieval algorithms are highly sophisticated and several

calibration and correction stages are potential error sources (Maggioni et al., 2016).

Additional rainfall information, for example derived from commercial microwave links (CMLs)

maintained by cellular network providers, can be used to compare and complement existing rain-

fall data sets (Messer et al., 2006). In regions with sparse observation networks, they might even

provide unique rainfall information.
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The idea to derive rainfall estimates via the opportunistic usage of attenuation data from CML

networks emerged over a decade ago independently in Israel (Messer et al., 2006) and the Nether-

lands (Leijnse et al., 2007). The main research foci in the first decade of dedicated CML research

were the development of processing schemes for the rainfall retrieval and the reconstruction of

rainfall fields. The first challenge for rainfall estimation from CML data is to distinguish between

fluctuations of the raw attenuation data during rainy and dry periods. This was addressed by

different approaches which either compared neighbouring CMLs using the spatial correlation of

rainfall (Overeem et al., 2016a) or which focused on analyzing the time series of individual CMLs

(Chwala et al., 2012; Polz et al., 2020; Schleiss and Berne, 2010; Wang et al., 2012). Another

challenge is to estimate and correct the effect of wet antenna attenuation. This effect stems from

the attenuation caused by water droplets on the covers of CML antennas, which leads to rainfall

overestimation (Fencl et al., 2019; Leijnse et al., 2008; Schleiss et al., 2013).

Since many hydrological applications require spatial rainfall information, several approaches have

been developed for the generation of rainfall maps from the path-integrated CML measure-

ments. Kriging was successfully applied to produce countrywide rainfall maps for the Netherlands

(Overeem et al., 2016b), representing CML rainfall estimates as synthetic point observation at the

center of each CML path. More sophisticated methods can account for the path-integrated nature

of the CML observations, using an iterative inverse distance weighting approach (Goldshtein et al.,

2009), stochastic reconstruction (Haese et al., 2017) or tomographic algorithms (D’Amico et al.,

2016; Zinevich et al., 2010).

CML-derived rainfall products were also used to derive combined rainfall products from various

sources (Fencl et al., 2017; Liberman et al., 2014; Trömel et al., 2014). In parallel, first hydro-

logical applications were tested. CML-derived rainfall was used as model input for hydrologic

modelling studies for urban drainage modeling with synthetic (Fencl et al., 2013) and real world

data (Stransky et al., 2018) or on run-off modeling in natural catchments (Brauer et al., 2016;

Smiatek et al., 2017).

With the exception of the research carried out in the Netherlands, where more than two years of

data from a country-wide CML network were analyzed (Overeem et al., 2016b), CML processing

methods have only been tested on small data sets. We advance the state of the art by performing

an analysis of rainfall estimates derived from a German-wide network of close to 4000 CMLs. In

this study one CML is counted as the link along one path with typically two sub-links, for the

communication in both directions. The temporal resolution of the data set is one minute and the

analyzed period is one year from September 2017 until August 2018. The network covers various

landscapes from the North German Plain to the Alps in the south, which feature individual pre-

cipitation regimes.

The objectives of this study are (1) to compare and adjust selected existing CML data processing

schemes for the classification of wet and dry periods and for the compensation of wet antenna

attenuation and (2) to validate the derived rain rates with an established rainfall product, namely
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RADOLAN-RW, both on the country-wide scale of Germany.

2.2 Data

2.2.1 Reference data set

The Radar-Online-Aneichung data set (RADOLAN-RW) of the German Weather Service (DWD)

is a radar-based and gauge adjusted precipitation data set. We use data from the archived real-

time product RADOLAN-RW as reference data set throughout this work (DWD, 2019). It is

a compiled radar composite from 17 dual-polarization weather radars operated by DWD and

adjusted by more than 1000 rain gauges in Germany and 200 rain gauges from surrounding coun-

tries. RADOLAN-RW does not use dual-pol information, though. It is based on the reflectivity

observations in horizontal polarization from each radar site, which are available in real-time every

five minutes. This data is then used to compile a national composite of reflectivities, from which

rain rates are derived. For the hourly rainfall information of the RADOLAN-RW product, the na-

tional composite of 5-minute radar rain rates is then aggregated and adjusted with the hourly rain

gauge observations. A weighted mixture of additive and multiplicative corrections is applied. The

rain gauges used for the adjustment have a spatial density of approximately one gauge per 300 km2.

The gridded data set RADOLAN-RW has a spatial resolution of 1 km, covering Germany with

900 by 900 grid cells. The temporal resolution is one hour and the rainfall values are given with

a quantization of 0.1 mm. RADOLAN-RW is available with a lag time of around 15 minutes.

Detailed information on the RADOLAN processing and products is availabel from DWD (Bartels

et al., 2004; Winterrath et al., 2012).

Kneis and Heistermann (2009) and Meissner et al. (2012) compared RADOLAN-RW products to

gauge-based data sets for small catchments and found differences in daily, area averaged precipi-

tation sums of up to 50 percent, especially for the winter season. Nevertheless, no data set with

comparable temporal and spatial resolution, as well as extensive quality control is available.

In order to compare the path integrated rainfall estimates from CMLs and the gridded RADOLAN-

RW product, RADOLAN-RW rain rates are resampled along the individual CML paths. For each

CML, the weighted average of all intersecting RADOLAN-RW grid cells is calculated, with the

weights being the lengths of the intersecting CML path in each cell. As result, one time series of the

hourly rain rate is generated from RADOLAN-RW for each CML. The temporal availability of this

reference is 100 percent but we excluded the CML and RADOLAN-RW pairs in the evaluation,

when CML data is not available. We chose the RADOLAN-RW product, because it provides

both a high temporal and spatial resolution for entire Germany. This resolution is the basis for a

good evaluation of the path-averaged rain rates derived from CMLs. The rain gauge adjustments,

while not perfect, assures that the RADOLAN-RW rainfall estimates have an increased accuracy

compared to a radar-only data set.
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2.2. Data

2.2.2 Commercial microwave link data

We present data of 3904 CMLs operated by Ericsson in Germany. Their distribution over Germany

is shown in Fig. 2.1. The CMLs are distributed country-wide over all landscapes in Germany,

ranging from the North German Plain to the Alps in the south. The uneven distribution, with

large gaps in the north east can be explained by the fact that we only access one subset of all in-

stalled CMLs, the Ericsson MINI-LINK Traffic Node systems operated for one cell phone provider.

CML data is retrieved with a real-time data acquisition system which we operate in cooperation

with Ericsson (Chwala et al., 2016). Every minute, the current transmitted signal level (TSL) and

received signal level (RSL) are requested from more than 4000 CMLs for both ends of each CML.

The data is then immediately sent to and stored at our server. For the complete processing chain

presented in this work, we used this 1-minute instantaneous data of TSL and RSL for the period

from September 2017 to August 2018 for 3904 CMLs to derive rain rates with a temporal resolu-

tion of 1 minute. For comparison with the reference data, the 1-minute data is then aggregated.

Due to missing, unclear or corrupted metadata we could not use all CML data. Furthermore, we

only used data of one sub-link per CML. There was no specific criterion for selecting the sub-link.

We simply used the pair of TSL and RSL that came first in our listing.

The available power resolution is 1 dB for TSL and 0.3 (with occasional jumps of 0.4 dB) for

RSL. The TSL is constant for 25 percent of the CMLs. An Automatic Transmit Power Control

(ATCP), which is able to increase TSL by several dB to prevent blackouts due to heavy attenu-

ation, is active at 75 percent of the CMLs. While the length of the CMLs ranges between a few

hundred meters to almost 30 km, most CMLs have a length of 5 to 10 km. They are operated

with frequencies ranging from 10 to 40 GHz, depending on their length. Figure 2.2 shows the

distributions of path lengths and frequencies. For shorter CMLs higher frequencies are used.

To derive rainfall from CMLs, we used the difference between TSL and RSL, the transmitted

minus received signal level (TRSL). An example of a TRSL time series is shown in Fig. 2.3a). To

compare the rain rate derived from CMLs with the reference rain rate, we resampled it from a

minutely to an hourly resolution after the processing

In our CML data set 2.2 percent are missing time steps due to outages of the data acquisition

systems. Additionally, 1.2 percent of the raw data show missing values (Nan) and 0.1 percent

show default fill values (e.g. -99.9 or 255.0) of the CML hardware, which we excluded from the

analysis. In order to increase the data availability, we linearly interpolated gaps in raw TRSL

time series which were up to five minutes long. This increased the data availability by 0.5 percent.

On the one hand, these gaps can be the result of missing time steps and missing values but we

also found cases where we suspect very high rainfall to be the reason for short blackouts of a CML.

The size of the complete CML data set is approximately 100 GB in memory. The data set is

continuously extended by the operational data acquisition, allowing also the possibility of near-

realtime rainfall estimation.
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Figure 2.1: Map of the distribution of 3904 CMLs over Germany. © OpenStreetMap contributors

2019. Distributed under a Creative Commons BY-SA License.

Table 2.1: Adopted confusion matrix

reference

wet dry

C
M
L wet true wet (TP) false wet (FP)

dry missed wet (FN) true dry (TN)

2.3 Methods

2.3.1 Performance measures

To evaluate the performance of the CML-derived rain rates against the reference data set, we

used several measures which we calculated on an hourly basis. We defined a confusion matrix

according to Tab. 2.1 where wet and dry refer to hours with and without rain, respectively. The

Matthew’s correlation coefficient (MCC) summarizes the four values of the confusion matrix in a

single measure (2.1) and is typically used as measure of binary classification in machine learning.

This measure is accounting for the skewed ratio of wet and dry events. It is high only if the

classifier is performing well on both classes.

MCC =
TP ∗ TN− FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.1)
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Figure 2.2: Scatterplot of the length against the microwave frequency of 3904 CMLs including the

distribution of length and frequency.

The mean detection error (MDE) (2.2) is introduced as a further binary measure focusing on the

miss-classification of rain events.

MDE =

FN
n(wet) +

FP
n(dry)

2
(2.2)

It is calculated as the average of missed wet and false wet rates of the contingency table from Tab.

2.1.

The linear correlation between CML-derived rainfall and the reference is expressed by the Pearson

correlation coefficient (PCC). The coefficient of variation (CV) in (2.3) gives the distribution of

CML rainfall around the reference expressed by the ratio of residual standard deviation and mean

reference rainfall,

CV =
std

∑
(RCML − Rreference)

Rreference

(2.3)

where RCML and Rreference are hourly rain rates of the respective data set. Furthermore, we

computed the mean absolute error (MAE) and the root mean squared error (RMSE) to measure

the accuracy of the CML rainfall estimates. The relative bias is given as

bias =
(RCML − Rreference)

Rreference

(2.4)

Often, in studies comparing CML derived rainfall and radar data, a threshold is used as a lower

boundary for rainfall. The performance measures, summarized in Tab. 2.2, were calculated with

different subset criteria or thresholds. This gives insight on how CML derived rainfall compares
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to the reference for different rain rates and on how the large number of data points without rain

influence the performance measures. Another reason for listing the performance measures with

several thresholds is the increased comparability with other studies on CML rainfall estimation,

which do not uniformly use the same threshold, see e.g. Table A1 in de Vos et al. (2019b).

Therefore, we defined a selection of subset criteria and thresholds and show performance measures

for data without any thresholds (none), for the data set with RCML and Rreference < 0.1 mm/h

set to 0 mm/h, for two thresholds where at least RCML or Rreference must be > 0 and >= 0.1

mm/h and two thresholds where Rreference must be >= 0.1 and >= 1 mm.

2.3.2 From raw signal to rain rate

As CMLs are an opportunistic sensing system rather than part of a dedicated measurement sys-

tem, data processing has to be done with care. Most of the CML research groups developed

their own methods tailored to their needs and data sets. Overviews of these methods are sum-

marized by Chwala and Kunstmann (2019), Messer and Sendik (2015) and Uijlenhoet et al. (2018).

The size of our data set is a challenge itself. As TRSL can be attenuated by rain or other sources,

described in Sect. 2.3.2.1 and only raw TSL and RSL data is provided, the large size of the data

set is of advantage but also a challenge. Developing and evaluating methods was significantly

sped up by the use of an automated processing workflow, which we implemented as a parallelized

workflow on a HPC system using the Python packages xarray and dask for data processing and

visual exploration. The major challenges which arose from the processing of raw TRSL data into

rain rates and the selected methods from literature are described in the following sections. We use

parameters in this processing which are either based on literature, modified from the literature or

which we developed in this study. An overview of all used parameters is given in Appendix 2.A1.

2.3.2.1 Erratic behavior

Rainfall is not the only source of attenuation of microwave radio along a CML path. Additional

attenuation can be caused by atmospheric constituents like water vapor or oxygen, but also by

refraction, reflection or multi-path propagation of the beam (Upton et al., 2005). In particular,

refraction, reflection and multi-path propagation can lead to strong attenuation in the same mag-

nitude as from rain. CMLs that exhibit such behavior have to be omitted due to their noisiness.

We excluded erratic CML data which was extremely noisy or which showed drifts and jumps

from our analysis on a monthly basis. To deal with this erratic data, we applied the following

sanity checks: We exclude individual CMLs if 1) the five hour moving window standard deviation

exceeds the threshold 2.0 for more then ten percent of a month, which typically is the case for

CMLs with either a strong diurnal cycle or very noisy periods during a month, or if 2) a one hour

moving window standard deviation exceeds the threshold 0.8 more than 33 percent of the time in

a month. This filter is based on the approach for detecting rain events in TRSL time series from

Schleiss and Berne (2010), which we also use later on in our processing. For the filter, a fairly

high threshold was used, which should only be exceeded for fluctuations stemming from real rain

events. The reasoning of our filter is, that if the threshold is exceeded too often, here 33 percent
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Figure 2.3: Processing steps from the TRSL to rain rate. a) The TRSL is the difference of TSL

- RSL, the raw transmitted and received signal level of a CML. b) The RSD (rolling standard

deviation) of the TRSL with an exemplary threshold shows the resulting wet and dry periods.

c) The Attenuation is the difference between the baseline and the TRSL during wet periods. d)

The derived rain rate is resampled to an hourly scale in order to compare it to the reference

RADOLAN-RW.

of the time per month, the CML data shows an unreasonably high amount of strong fluctuation.

In total, the two sanity checks removed 1.1 percent from our CML data set. Together with the

missing values that remain after interpolating data gaps of maximum five minutes in the TRSL

time series, 4.2 percent of our data set are not available or not used for processing.

Jumps in data are mainly caused by single default values in the TSL which are described in Sect.

2.2.2. When we removed these default values, we are able to remove the jumps. TRSL can drift

and fluctuate on daily and yearly scale (Chwala and Kunstmann, 2019). We could neglect the

influence of these drifts in our analysis, because we dynamically derived a baseline for each rain

event, as explained in Sect. 2.3.2.2. We also excluded CMLs having a constant TRSL over a whole

month.

2.3.2.2 Rain event detection and baseline estimation

The TRSL during dry periods can fluctuate over time due to ambient conditions as mentioned in

the previous section. Rainfall produces additional attenuation on top of the dry fluctuation. In

order to calculate the attenuation from rainfall, a baseline level of TRSL during each rain event

has to be determined. We derived the baseline from the precedent dry period. During the rain

event, this baseline was held constant, as no additional information on the evolution of the baseline

level is available. The crucial step for deriving the baseline is to separate the TRSL time series

into wet and dry periods, because only then the correct reference level before a rain event is used.
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By subtracting the baseline from TRSL, we derived the attenuation caused by rainfall which is

shown in Fig. 2.3c).

The separation of wet and dry periods is essential, because the errors made in this step will impact

the performance of rainfall estimation. Missing rain events will result in rainfall underestimation.

False detection of rain events will lead to overestimation. The task of detecting rain events in the

TRSL time series is simple for strong rain events, but challenging when the attenuation from rain

is approaching the same order of magnitude as the fluctuation of TRSL data during dry conditions.

There are two essential concepts to detect rain events. One compares the TRSL of a certain CML

to neighbouring CMLs (Overeem et al., 2016a) and the other investigates the time series of each

CML separately (Chwala et al., 2012; Schleiss and Berne, 2010; Wang et al., 2012). We choose

the latter one and used a rolling standard deviation (RSD) with a centered moving window of 60

minutes length as a measure for the fluctuation of TRSL as proposed by Schleiss and Berne (2010).

It is assumed that RSD is high during wet periods and low during dry periods. Therefore, an ad-

equate threshold can be defined, which differentiates the RSD time series in wet and dry periods.

An example of an RSD time series and a threshold is shown in Fig. 2.3b) where all data points

with RSD values above the threshold are considered as wet.

Schleiss and Berne (2010) proposed the use of a RSD threshold derived from rainfall climatology

e.g. from nearby rain gauges. For our data set we assumed that it is raining 5 percent of all min-

utes in Germany, as proposed by Schleiss and Berne (2010) for their CMLs in France. Therefore,

we used the 95 percent quantile of RSD as a threshold, assuming that the 5 percent of highest

fluctuation of the TRSL time series refer to the 5 percent of rainy periods. We refer to this thresh-

old as the climatologic threshold. We compared it to two new definitions of thresholds. We are

aware that this threshold does not reflect the real climatology at each CML location, nevertheless

this method is a rather robust and a simple approach which provides a first rain event detection.

For the first new definition, we derived the optimal threshold for each CML based on our reference

data for the month of May 2018. We used the same approach as for the climatologic threshold,

but for each CML we tested a range of possible thresholds and calculated the binary measure

MCC for each. For each CML we picked the threshold which produced the highest MCC in May

2018 and used it over the whole analysis period.

The second new definition to derive a threshold is based on the quantiles of the RSD, similarly

to the climatologic threshold describe above. However, we propose to not focus on the fraction

of rainy periods for finding the optimal threshold, since a rainfall climatology is likely not valid

for individual years and not easily transferable to different locations. We took the 80th quantile

of the RSD of each CML, which can be interpreted as a measure of the strength of the TRSL

fluctuation during dry periods, and multiplied it by a constant factor to derive the individual

threshold. The 80th quantile can be assumed to be more robust against missclassification than

the climatologic threshold, because this quantile represents the general notion of each TRSL time
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series to fluctuate, rather than the percentage of time in which it is raining. We chose the 80th

quantile, since it is very unlikely that it is raining more than 20 percent of the time in a month in

Germany.

To find the right factor, we selected the month of May 2018 and fitted a linear regression between

the optimal threshold for each CML and the 80th quantile. The optimal threshold was derived

beforehand with a MCC optimization from the reference. We then used this factor for all other

months in our analysis. Additional, we found it to be similar for all months of the analyzed period.

2.3.2.3 Wet antenna attenuation

Wet antenna attenuation is the attenuation caused by water on the cover of a CML antenna. With

this additional attenuation, the derived rain rate overestimates the true rain rate (Schleiss et al.,

2013; Zinevich et al., 2010). The estimation of WAA is complex, as it is influenced by partially

unknown factors, e.g. the material of the antenna cover. van Leth et al. (2018) found differences in

WAA magnitude and temporal dynamics due to different sizes and shapes of the water droplets on

hydrophobic and normal antenna cover materials. Another unknown factor for the determination

of WAA is the information whether both, one or none of the antennas of a CML is wetted during

a rain event. We selected and compared two parametric WAA correction schemes which do not

rely on the use of auxiliary data like near-by rain gauges.

Schleiss et al. (2013) measured the magnitude and dynamics of WAA with one CML in Switzerland

and derived a time-dependent WAA model. In this model, WAA increases at the beginning of a

rain event to a defined maximum in a defined amount of time. From the end of the rain event on,

WAA decreases again, as the wetted antenna is drying off. We ran this scheme with the proposed

2.3 dB of maximal WAA for both antennas together. This is also similar to the WAA correction

value of 2.15 dB, which Overeem et al. (2016b) derived over a 12-day period in their data set. For

τ , which determines the increase rate with time we chose 15 minutes. The decrease of WAA after

a rain event is not explicitly modelled, because this WAA scheme is only applied for time steps,

which are considered wet from the rain event detection, which has to be carried out in a previous

step.

Leijnse et al. (2008) proposed a physical approach where the WAA depends on the microwave

frequency, the antenna cover properties (thickness and refractive index) and the rain rate. A ho-

mogeneous water film is assumed on the antenna, with its thickness having a power law dependence

on the rain rate. Higher rain rates cause a thicker water film and hence higher WAA. A factor γ

scales the thickness of the water film on the cover and a factor δ determines the non-linearity of

the relation between rain rate and water film thickness. We adjusted the thickness of the antenna

cover to 4.1 mm which we measured from one antenna provided by Ericsson. We are aware of the

fact, that antenna covers have different thicknesses. But since we do not have this information

for the actual antennas that are used by the CMLs of our data, we use this value, as the best

one available. We further adjusted γ to 1.47E-5 and δ to 0.36 in such a way, that the increase

of WAA with rain rates is less steep for small rain rates compared to the originally proposed
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parameters. The original set of parameters suppressed small rain events too much because the

WAA compensation attributed all attenuation in the TRSL to WAA. For strong rain events (>10

mm/h), the maximum WAA that is reached with our set of parameters is in the same range as

the 2.3 dB used as maximum in the approach of Schleiss et al. (2013).

We want to note that several recent methods quantifying the WAA were developed using auxiliary

information such as rain gauge data. This is the reason we did not consider these approaches, as

we wanted our CML data processing to be as applicable to new regions as possible. The transfer-

ability of WAA estimation methods remains an open scientific question, though.

Fencl et al. (2019) quantified the influence of WAA for eight very short (length < 500 m) CMLs

using cumulative distribution functions from attenuation and rain gauge data. Their approach is

not applicable to new CMLs as it requires calibration for each individual CML based on the local

rainfall and attenuation statistics. Ostrometzky et al. (2018) used a rain gauge to estimate the

WAA of an E-band CML. They calculated both the (dry, constant during rain events) baseline

and the theoretical attenuation using rain gauge data and attributed the residual attenuation

as WAA. Moroder et al. (2020) developed a model based on the dynamic antenna parameters

reflectivity, efficiency and directivity based on a full-wave simulation and applied it on a dedicated

experimental setup with CML antennas (Moroder et al., 2019). To apply this method it is required

to continuously collect the individual properties of the CML antennas, which might only be possible

in future CML hardware generations.

2.3.2.4 Derivation of rain rates

The estimation technique of rainfall from the WAA-corrected attenuation is based on the well

known relation between specific path attenuation k in dB/km and rain rate R in mm/h

k = aRb (2.5)

with a and b being constants depending on the frequency and polarization of the microwave

radiation (Atlas and Ulbrich, 1977). In the currently most commonly used CML frequency range

between 15 GHz and 40 GHz, the constants only show a low dependence on the rain drop size

distribution. Using the k-R relation, rain rates can be derived from the path integrated attenuation

measurements that CMLs provide as shown in Fig. 2.3 d). We used values for a and b according

to ITU-R (2005) which show good agreement with calculations from disdrometer data in southern

Germany (Chwala and Kunstmann, 2019, Fig. 3).

2.4 Results and Discussion

2.4.1 Comparison of rain event detection schemes

The separation of wet and dry periods has a crucial impact on the accuracy of the rainfall estima-

tion. We compared an approach from Schleiss and Berne (2010) to three modifications on their

success in classifying wet and dry events as explained in Sect. 2.3.2.2.
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Figure 2.4: Mean detection error (MDE) and Matthews correlation coefficient (MCC) for three

rain event detection schemes for the whole analysis period.

The climatologic approach by Schleiss and Berne (2010) worked well for CMLs with moderate

noise and when the fraction of times with rainfall over the analyzed periods did correspond to the

climatological value. The median MDE was 0.33 and the median MCC of 0.43. The distribution

of MDE and MCC values from all CMLs of this climatologic threshold were compared with the

performance of the two extensions, displayed in Fig. 2.4.

When we optimized the threshold for each CML for May 2018 and then applied these thresholds

for the whole period, the performance increased with a median MDE of 0.32 and median MCC

of 0.46. The better performance of MDE and MCC values highlights the importance of a specific

threshold for each individual CML, accounting for their individual notion to fluctuate. The range

of MDE and MCC values is wider than with the climatologic threshold, though. The wider range

of MDE and MCC values, however, indicates that there is also a need for adjusting the individual

thresholds over the course of the year.

The 80th quantile-based method had the lowest median MDE with 0.27 and highest median MCC

with 0.47. Therefore it miss-classified the least wet and dry periods compared to the other meth-

ods.

The threshold, which is based on the 80th quantile, is independent from climatology and depends

on the individual notion of a CML to fluctuate. Although the factor used to scale the threshold

was derived from comparison to the reference data set as described in Sect. 2.3.2.2, it was stable

over all seasons and for CMLs in different regions of Germany. Validating the scaling factor with

other CML data sets could be a promising method for data scarce regions, as no external infor-

mation is needed.
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For single months, the MDE was below 0.20 as shown in Tab. 2.2, which still leaves room for

an improvement of this rain event detection method. Enhancements could be achieved by adding

information of nearby CMLs, if available. Also data from geostationary satellite could be used.

Schip et al. (2017) found improvements of the rain event detection when using rainfall information

from Meteosat Second Generation (MSG) satellite, which carries the Spinning Enhanced Visible

and InfraRed Imager (SEVIRI) instrument.

All further processing, presented in the next sections, uses the method based on the 80th quantile.

2.4.2 Performance of wet antenna attenuation schemes

Two WAA schemes are tested and adopted for the present CML data set. Both are compared to

uncorrected CML data and the reference in Fig. 2.5. Without a correction scheme, the CML-

derived rainfall overestimated the reference rainfall by a factor of two when considering mean

hourly rain rates, as displayed in Fig. 2.5a).

The correction by Schleiss et al. (2013) produced comparable mean hourly rain rates with re-

gard to the reference data set. Despite its apparent usefulness to compensate for WAA, this

scheme worked well only for stronger rain events. The mean detection error is higher than for

the uncorrected data set, because small rain events are suppressed completely throughout the

year. The discrepancy can also be a result of the path length of 7.6 km in our data set which

is four times the length of the CML Schleiss et al. (2013) used. This might have an impact,

since shorter CMLs have a higher likeliness that both antennas get wet. Furthermore, the type

of antenna and antenna cover impacts the wetting during rain, as discussed in section Sect. 2.3.2.3.

With the method of Leijnse et al. (2008) the overestimation of the rain rate was also compensated

well. It incorporates physical antenna characteristics and, what is more important, depends on

the rain rate. The higher the rain rate, the higher the WAA compensation. This leads to less

suppression of small events. The MDE is close to the uncorrected data sets and the PCC is higher,

as displayed in 2.5b) and c). Recent results from Fencl et al. (2019) also favor a dynamic, rain

intensity depended WAA model, instead of a constant value for WAA compensation. Therefore,

the scheme from Leijnse et al. (2008) is used for the evaluation of the CML-derived rain rates in

the following sections.

Both methods are parameterized, neglecting known and unknown interactions between WAA and

external factors like temperature, humidity, radiation and wind. Current research aims to close

this knowledge gap, but the feasibility for large scale networks like the one presented in this study

is going to be a challenge as only TSL and RSL are available. A possible solution is the WAA

model based on the reflectivityy, efficiency and directivity of the antenna proposed by Moroder

et al. (2020), which would have to be measured by future CML hardware. Another approach

could be to extend the analysis with meteorological model reanalysis products to be able to better

understand WAA behavior in relation to meteorologic parameters like wind, air temperature,

humidity and solar radiation.
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Figure 2.5: WAA compensation schemes compared on their influence on the a) mean hourly rain

rate, b) the correlation between the derived rain rates and the reference and c) the mean detection

error between the derived rain rates and the reference.

2.4.3 Evaluation of CML derived rainfall

Path-averaged rainfall information obtained from almost 4000 CMLs is evaluated against a refer-

ence data set, RADOLAN-RW. In Fig. 2.6 we show scatter density plots of path averaged hourly

rain rates, daily rainfall sums and seasonal sums of each CML with the respective performance

measures. Furthermore, scatter density plots of hourly, path-averaged rain rates and rain rates

from interpolated rainfall maps are compared for each month in Fig. 2.8 and Fig. 2.9.

Looking at the differences between the seasons in 2.6, it is evident, that CMLs are prone to pro-

duce significant rainfall overestimation during the cold season (DJF). This can be attributed to

precipitation events with melting snow, occurring mainly from November to March. Melting snow

can potentially cause as much as four times higher attenuation than a comparable amount of liquid

precipitation (Paulson and Al-Mreri, 2011). Snow, ice and their melt water on the covers of the

antennas can also cause additional attenuation. A decrease of the seasonal performance measures
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Figure 2.6: Seasonal scatter density plots of CML-derived rainfall and path-averaged RADOLAN-

RW data for hourly, a) - d), daily, e) - h) and seasonal, i) - l) aggregations with respective

performance metrics calculated from all available data pairs.

also reflects this effect, as the lowest values for PCC and highest for CV, MAE, RMSE, BIAS and

MDE are found for DJF. The largest overestimation occurs at low rain rates of the reference. At

higher reference rain rates, which most likely are those stemming from liquid precipitation, there

is far less overestimation. In spring (MAM) and fall (SON), overestimation by CML rainfall is still

visible, but less frequent. This can be explained by the fact, that in the Central German Upland

and the Alps, snowfall can occur from October to April. Best agreement between CML-derived

rainfall and RADOLAN-RW is found for summer (JJA) months.

The temporal aggregation to daily rainfall sums and the respective performance measures are

shown in 2.6e)-h). The general relation between CML derived rainfall and the reference is similar

on both the hourly and daily scale. The BIAS is identical for the daily aggregation. The RMSE

and MAE are higher due to the higher rain sums. The overestimation during the winter month is

unchanged.

The accumulated rainfall sums of individual CMLs are compared against the reference rainfall

accumulation for each season in Fig 2.6i) - l). The overestimation of the CML derived rainfall

sums in DJF, and partly SON and MAM, can again be attributed to the presence of non-liquid

precipitation. This overestimation is larger for higher rainfall sums. This could be the result
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Table 2.2: Monthly performance measures between path averaged, hourly CML-derived rainfall

and RADOLAN-RW as reference for subset criteria and thresholds.
subset criteria

(mm)

2017 2018

mean Sept Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

PCC

(-)

none 0.62 0.78 0.73 0.46 0.36 0.43 0.27 0.45 0.74 0.85 0.81 0.79 0.81

light rain to 0 0.62 0.78 0.73 0.46 0.36 0.43 0.27 0.45 0.74 0.85 0.81 0.79 0.81

cml or ref > 0 0.58 0.74 0.68 0.38 0.28 0.35 0.20 0.37 0.71 0.83 0.80 0.78 0.79

cml or ref >= 0.1 0.54 0.70 0.64 0.34 0.23 0.31 0.13 0.32 0.68 0.81 0.78 0.76 0.77

ref >= 0.1 0.58 0.73 0.71 0.38 0.28 0.35 0.22 0.39 0.73 0.82 0.79 0.80 0.80

ref >= 1 0.51 0.65 0.64 0.32 0.17 0.27 0.12 027 0.67 0.75 0.73 0.73 0.74

CV

(-)

none 7.01 3.80 4.40 6.09 11.4 7.62 18.5 6.82 5.20 3.98 5.17 5.88 5.33

light rain to 0 7.19 3.88 4.51 6.23 11.64 7.75 18.28 7.06 5.33 4.03 5.23 5.96 5.40

cml or ref > 0 3.03 1.73 2.00 2.96 5.59 3.85 6.82 3.09 2.19 1.60 2.04 2.36 2.10

cml or ref >= 0.1 2.42 1.40 1.64 2.51 4.78 3.35 5.19 2.53 1.67 1.18 1.50 1.71 1.54

ref >= 0.1 1.69 1.05 1.06 1.92 3.61 2.67 3.25 1.90 1.11 0.88 1.01 0.96 0.92

ref >= 1 1.11 0.73 0.69 1.24 2.27 1.73 2.18 1.14 0.70 0.63 0.72 0.67 0.65

MAE

(mm/h)

none 0.08 0.08 0.08 0.11 0.17 0.17 0.05 0.07 0.05 0.06 0.06 0.05 0.05

light rain to 0 0.08 0.08 0.07 0.11 0.17 0.16 0.05 0.07 0.05 0.05 0.05 0.05 0.05

cml or ref > 0 0.41 0.38 0.36 0.46 0.71 0.64 0.37 0.35 0.30 0.34 0.36 0.33 0.33

cml or ref >= 0.1 0.64 0.58 0.53 0.64 0.97 0.86 0.66 0.53 0.49 0.61 0.64 0.60 0.58

ref >= 0.1 0.72 0.64 0.57 0.70 1.02 0.91 0.68 0.55 0.54 0.73 0.83 0.74 0.69

ref >= 1 1.40 1.16 1.05 1.40 2.02 1.73 1.73 1.25 1.09 1.30 1.51 1.39 1.22

RMSE

(mm/h)

none 0.48 0.34 0.33 0.56 1.08 0.94 0.46 0.41 0.29 0.36 0.35 0.32 0.30

light rain to 0 0.48 0.35 0.33 0.56 1.08 0.94 0.46 0.41 0.29 0.34 0.35 0.32 0.30

cml or ref > 0 1.06 0.75 0.71 1.16 2.18 1.84 1.25 0.90 0.68 0.84 0.89 0.78 0.75

cml or ref >= 0.1 1.34 0.94 0.87 1.38 2.58 2.14 1.70 1.12 0.90 1.14 1.22 1.08 1.02

ref >= 0.1 1.45 1.01 0.90 1.47 2.66 2.22 1.68 1.15 0.96 1.33 1.52 1.31 1.18

ref >= 1 2.33 1.59 1.43 2.36 4.02 3.33 3.48 1.97 1.61 1.99 2.32 2.04 1.78

BIAS

(%)

none 30 20 34 11 79 39 67 7 21 0 10 30 35

light rain to 0 29 20 34 11 80 40 67 7 20 -2 8 27 32

cml or ref > 0 30 20 34 11 79 39 67 7 21 0 10 30 35

cml or ref >= 0.1 29 20 33 11 80 40 67 7 20 -2 8 27 32

ref >= 0.1 -4 -1 -1 -15 36 14 -6 -20 -10 -16 -15 -13 -3

ref >= 1 -9 -4 -9 -24 22 2 -16 -21 -12 -15 -17 -13 -5

MDE none 0.23 0.20 0.19 0.24 0.27 0.23 0.35 0.29 0.22 0.19 0.19 0.22 0.17

of more extensive snowfall in the mountainous parts of Germany, which are also the areas with

highest precipitation year round. Rainfall sums close to zero can be the result from the quality

control that we have applied. Periods with missing data in CML time series are consequently

not counted in the reference rainfall data set. Therefore, the rainfall sums in Fig. 2.6 are not

representative for the rainfall sum over Germany for the shown period. The PCC for the four

seasons shown in Fig. 2.6i)-l) range from 0.42 in MAM to 0.57 in JJA.

2.4.4 Performance measures for different subset criteria

Tab. 2.2 gives an overview of monthly performance measures for different subsets of CML-derived

and path-averaged reference rainfall. In the following, we will discuss the effects of the different

subset criteria and then compare our results to previous CML rainfall estimation studies.

For all subset criteria, best performance measures are found during late spring, summer and early

fall. Highest PCC values are reached when all data pairs, including true dry events, are used to
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Table 2.3: Comparison of the performance measures to similar CML validation studies (only

link-based comparisons) with respective thresholds
Study and Dataset Comparison Threshold Bias (%) CV (-) PCC (-)

de Vos et al. (2019b)

Average of 1451 CMLs over

7 months (18 Feb–16 Oct 2016),

15 min instantaneously sampled

Link-based comparison

with gauge-adjusted radar,

15 min

CML or ref > 0 mm 23 3.43 0.52

Rios Gaona et al. (2015)

Average of 1514 CMLs over

12 rainy days (June to September

2011), min-max sampled

CML-based comparison

with gauge-adjusted ref,

15 min

CML or ref > 0.1 mm -13 1.44 0.66

This study

Average of 3904 CMLs over

one year (September 2017 -

August 2018), one min

instantaneously sampled

CML-based comparison with

gauge-adjusted radar, hourly

CML or ref > 0 mm 30 3.03 0.58

CML or ref >= 0.1 mm 19 2.42 0.54

calculate the measures. When very light rain (< 0.1 mm/h) is set to zero on an hourly basis,

the performance measures stay very similar, with the exception of CV and BIAS, which show a

slight increase in performance. This means that, even when very small rain rates < 0.1 mm are

produced, they do not change rainfall sums too much.

When either RCML or Rreference have to exceed 0 mm/h, the performance measures are worse

than with all data, because all 0 mm/h pairs are removed. When the same subset criterion is set

to 0.1 mm/h, a good agreement in the range of very small rain rates below 0.1 mm/h between

both data becomes apparent, because the performance measures get worse without them.

To examine the performance of the CML derived rainfall during rain events detected by the refer-

ence, two thresholds are selected, where the reference must be above 0.1 and 1 mm/h, respectively,

for the period to be considered rainy. With these thresholds, all false wet classifications are re-

moved before the calculation of the performance measures. The PCC with this thresholds is still

high for the non-winter months. The CV is reduced, while MAE and RMSE are higher due to

higher mean rain rates. The biggest differences can be observed in the bias, where the influence

of false wet detection and the overestimation of CMLs over 0.1 and 1 mm/h reduce the bias.

Therefore, when discussing these performance measures in relation to previous studies on CML

rainfall estimation, the selection of the threshold is of great importance. de Vos et al. (2019b)

showed a collection of dutch CML-studies in Table A1. In Tab. 2.3 we compare our performance

measures to those of studies from de Vos et al. (2019b) table which are similar to our study.

’Similar’ in this context means considering the size and temporal aggregation of the CML data set

as well as the use of radar data as a reference for path-averaged (link-based) rain rates from CMLs.

The performance measures from our results with the respective thresholds are in the same range

as the performance measures from de Vos et al. (2019b) and Rios Gaona et al. (2015). The results

thus should not be compared in a purely quantitative way, because both use different sampling

strategies and span different time periods.
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Figure 2.7: Accumulated rainfall for a 48 hour showcase from 12.05.2018 until 14.05.2018 for a)

RADOLAN-RW and b) CML-derived rainfall. CML-derived rainfall is interpolated using a simple

inverse distance weighting interpolation. A coverage mask of 30 km around CMLs is used.

2.4.5 Rainfall maps

Interpolated rainfall maps of CML-derived rainfall compared to RADOLAN-RW are shown in Fig.

2.7, Fig. 2.8 and Fig. 2.9. The respective CML maps have been derived using inverse distance

weighting (IDW) with the RADOLAN-RW grid as target grid and on an hourly basis. Each CML

rainfall value is represented as one synthetic point observation at the center of the CML path.

For each pixel of the interpolated rainfall field the nearest 12 synthetic CML observation points

are taken into account. Weights decrease with the distance d in km, according to d−2. After

the interpolation, we masked out grid cells further away than 30 km from a CML path, for each

individual time step. Hence, hourly rainfall maps derived from CMLs are only produced for areas

with data coverage. We applied the same mask to the reference data set on an hourly basis to

increase the comparability between both data sets. For the aggregated rainfall maps, we summed

up the interpolated, individually masked, hourly rainfall fields.

As an example, Fig. 2.7 shows 48 hours of accumulated rainfall in May 2018. The general

distribution of CML-derived rainfall reproduces the pattern of the reference very well and the

rainfall sums of both data sets are similar. Individual features of the RADOLAN-RW rainfall

field are, however, missed due to the limited coverage by CMLs in certain regions. A video of

this 48 hour showcase with hourly time steps is published alongside this study (Graf et al., 2020b).

A qualitative comparison of monthly aggregation of the hourly rainfall maps is shown in Fig. 2.8

and Fig. 2.9. The CML-derived rainfall fields resemble the general patterns of the RADOLAN-

RW rainfall fields. Summer months show a better agreement than winter months. This is a direct
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Figure 2.8: Monthly aggregations of hourly rainfall maps from CMLs compared to RADOLAN-

RW from September 2017 until February 2018. For each month two scatter density plots are

shown, one for pixel-by-pixel comparison of the hourly maps (map-based comparison), and one

for the comparison of the hourly path-averaged rainfall along the individual CMLs (link-based

comparison).
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Figure 2.9: Monthly aggregations of hourly rainfall maps from CMLs compared to RADOLAN-

RW from March until August 2018. For each month two scatter density plots are shown, one for

pixel-by-pixel comparison of the hourly maps (map-based comparison), and one for the comparison

of the hourly path-averaged rainfall along the individual CMLs (link-based comparison).
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result of the decreased performance of CML-derived rain rates during the winter season, explained

in Sect. 2.4.3. Strong overestimation is also visible year round for a few individual CMLs, for

which the filtering of erratic behavior was not successful.

A quantitative comparison of the CML-derived rainfall maps to the reference is shown in the third

column of Fig. 2.8 and Fig. 2.9. For these scatter density plots we used all hourly pixel values

of the respective month within the 30 km coverage mask. During the winter month, CMLs show

strong overestimation. This is a direct result of non-liquid precipitation as described in Sect.

2.4.3. From May to August 2018 the reference shows very high rain intensities between 50 and

100 mm/h, which are not produced by the CML rainfall maps. This can be attributed to several

reasons. First, CML-derived rainfall, which serves as basis for the interpolation, is path-averaged,

with a typical path length in the range of 3-15 km. This means, that the rainfall estimation

of a single CML represents an average of several RADOLAN-RW grid cells which smoothes out

the extremes. Second, due to the interpolation, rainfall maxima in the CML rainfall maps can

only occur at the synthetic observation points at the center of each CML. Third, rainfall is only

observed along the path of CMLs and even with almost 4000 CMLs across Germany, the spatial

variation of rainfall cannot be fully resolved. In particular in summer, small convective rainfall

events might not intersect with CML paths and hence cannot appear in the CML-derived IDW

interpolated rainfall fields.

Considering this, the effect of different coverage ranges around the CMLs has to be taken into

account. For the map based comparison in Fig. 2.8 and Fig. 2.9 we tested several distances

from 10 to 50 km. For the presented results we choose 30 km as a trade off between minimizing

the uncertainty of the spatial interpolation and the goal to reach country wide coverage with the

produced rainfall maps. van de Beek et al. (2012) found an averaged range of around 30 km for

summer semi-variograms of 30 years of hourly rain gauge data in the Netherlands, which can be

used to justify/enforce our choice. With a 10 km coverage range, the performance measures are

better than the ones for 30 km, which are shown in Fig. 2.8 and Fig. 2.9. Monthly PCC values

show an increase of around 0.05 and the bias is reduced by 3 to 5 percent. Nevertheless, with

a coverage of 10 km around the CMLs, coverage gaps emerge not only in the north-eastern part

of Germany, but also in the south eastern part. Vice versa, with a 50 km coverage range, the

country wide coverage is almost given, while the performance measures are worse compared to 30

km (PCC shows a decrease between 0.03 and 0.05). Overall, the difference of the performance

measures of the 10 and 50 km coverage mask is limited in most parts of Germany by the high

density of CMLs, which already lead to an almost full coverage with the 10 km mask.

In order to highlight the differences between a map-based and link-based comparison Fig. 2.8

and Fig. 2.9 also show hourly link-based scatter density plots for each month. The differences

in the performances measures for the warm months support the qualitative impression, that the

map-based comparison perform worse. The interpolation is prone to introduce an underestima-

tion for areas which are more distant to the CML observations. During the winter months, this

underestimation compensates the overestimation of the individual CMLs which is due to wet snow

and ice covered antennas. Hence, because the two errors compensate each other by chance, this
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results in slightly better map-based performance measures compared to the link-based measures

for the winter months. Nevertheless, rainfall estimation with CMLs for months with non-liquid

precipitation is considerably worse than for summer months in all spatial and temporal aggrega-

tions.

The derivation of spatial information from the estimated path-averaged rain rates could be im-

proved by applying more sophisticated techniques as described in Sect. 2.1. We have already

carried out several experiments using Kriging, to test one of these potential improvements over

IDW. We followed the approach of Overeem et al. (2016b) and adjusted the semivariogram pa-

rameters on a monthly basis based on the values from van de Beek et al. (2012). We also tried

fixed semivariogram parameters and parameters estimated from the individual CML rainfall esti-

mates for each hour. In conclusion, we, however, only found marginal or no improvements of the

performance metrics of the CML rainfall maps. Combined with the drawback of Kriging that the

required computation time is significantly increased (approximately 10 to 100 times slower than

IDW, depending e.g. on the number of neighboring points used by a moving kriging window), we

thus decided to keep using the simple, yet robust and fast IDW interpolation. Furthermore, it is

important to note that the errors in rain rate estimation for each CML contribute most to the

uncertainty of CML-derived rainfall maps (Rios Gaona et al., 2015). Hence, within the scope of

this work, we focused on improving the rainfall estimation at the individual CMLs.

Taking into account that we compare to a reference data set derived from 17 C-band weather

radars combined with more than 1000 rain gauges, the similarity with the CML-derived maps,

which solely stem from the opportunistic usage of attenuation data, is remarkable.

2.5 Conclusion

German wide rainfall estimates derived from CML data compared well with RADOLAN-RW, a

hourly gridded gauge-adjusted radar product of the DWD. The methods used to process the CML

data showed promising results over one year and several thousand CMLs across all landscapes in

Germany, except for the winter season.

We presented the data processing of almost 4000 CMLs with a temporal resolution of one minute

from September 2017 until August 2018. We developed a parallelized processing work flow, which

could handle the size of this large data set. This workflow enabled us to test and compare different

processing methods over a large spatiotemporal scale.

A crucial processing step is the rain event detection from the TRSL, the raw attenuation data

recorded for each CML. We used a scheme from (Schleiss and Berne, 2010) which uses the 60

minute rolling standard deviation RSD and a threshold. We derived this threshold from a fixed

multiple of the 80th quantile of the RSD distribution of each TRSL. Compared to the original

threshold using the 95th quantile, which is based on rainfall climatology, the 80th quantile reflects

the general notion of each CML’s TRSL to fluctuate. We were able to reduce the amount of
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miss-classification of wet and dry events, reaching a yearly mean MDE of 0.27, with an average of

the MDE for summer months below 0.20. Potential approaches for further decreasing the amount

of miss-classifications could be the use of additional data sets. For example, cloud cover infor-

mation from geostationary satellites could be employed to reduce false wet classification, by, as a

first simple approach, defining periods without clouds as dry. Another opportunity would be, to

additionally implement algorithms exploiting information of neighboring CMLs.

For the compensation of WAA, the attenuation caused by water droplets on the cover of CML

antennas, we compared and adjusted two approaches from literature. In order to evaluate WAA

compensation approaches, we used the reference data set. We were able to reduce the overestima-

tion caused by WAA, while maintaining the detection of small rain events, using an adjustment

of the approach introduced by Leijnse et al. (2008). The compensation of WAA without an eval-

uation with a reference data set is not feasible with the CML data set we use.

Compared to the reference data set RADOLAN-RW, the CML-derived rainfall performs well for

periods with only liquid precipitation. For winter months, the performance of CML-derived rain-

fall is limited. Melting snow and snowy or icy antenna covers can cause additional attenuation

resulting in overestimation of precipitation, while dry snow cannot be measured at the frequencies

and the TRSL quantizations the CMLs in our data set use. We found high correlations for hourly,

monthly and seasonal rainfall sums between CML-derived rainfall and the reference. To increase

the comparability of our analysis with existing and future studies on CML rainfall estimation we

calculated all performance metrics for different subset criteria, e.g. requiring that either CML or

reference rainfall is larger than 0 mm.

We found the performance measures of this study to be in accordance with similar CML studies,

although the comparability is limited due to differences of the CML and reference data sets. CML-

derived rainfall maps calculated with a simple, yet robust inverse distance weighting interpolation

showed the plausibility of CMLs as an stand-alone rainfall measurement system.

With the analysis presented in this study, the need for reference data sets in the processing routine

of CML data is reduced, so that the opportunistic sensing of country-wide rainfall with CMLs

is at a point, where it should be transferable to (reference) data scarce regions. Especially in

Africa, where water availability and management are critical, this task should be challenged as

Doumounia et al. (2014) did already. The high temporal resolution of the presented data set

can be used in future studies, e.g. for urban water management. In addition, CML derived

rainfall can also complement other rainfall data sets, e.g. to improve the radar data adjustment in

RADOLAN in regions with high CML density and regions, like mountain ranges, where radar data

is often compromised. Thus, CMLs can contribute substantially to improve the spatiotemporal

estimations of rainfall.
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Code availability

Code used for the processing of CML data can be found in the Python package pycomlink (py-

comlink, 2021).

Data availability

CML data was provided by Ericsson Germany and is not publicly available. RADOLAN-RW is

publicly available through the Climate Data Center of the German Weather Service
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Appendix A

Table 2.A1: Comprehensive overview of used parameters, a short description and their reference

from literature if applicable. Parameters with enumeration in parentheses are not used in the final

processing.
description parameter value source

parameters used in final processing routine

1. Erratic behavior of CMLs (section 3.2.1)

1.1 sanity check to remove CMLs 5 hour RSD >2 for this study

with strong duirnal cycle or which at lest 10% per month

have noisy periods

1.2 sanity check to remove CMLs 1 hour RSD >0.8 for this study

with high fluctuation over large at least 33% per month

parts of or the complete month

2. Rain event detection (section 3.2.2)

2.1 RSD window length 60 min Schleiss and Berne (2010)

2.2 scaled q80 threshold 1.12 * 80% quantile of RSD this study

3. WAA compensation (section 3.2.3)

3.1 thickness of antenna cover 4.1 cm measured from one antenna cover

3.2 scale for water film thickness γ 1.47E-5 modified after Leijnse et al. (2008)

3.3 factor for the relation between 0.36 modified after Leijnse et al. (2008)

parameters used in alternative processing steps

(2.3) climatologic threshold 95% quantile of RSD Schleiss and Berne (2010)

(3.4) time for WAA to reach maximum τ 15 min Schleiss et al. (2013)

(3.5) maximal value of WAA 2.3 dB Schleiss et al. (2013)
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Rain event detection in commercial

microwave link attenuation data using

convolutional neural networks (Polz

et al., 2020)

Polz, J., Chwala, C., Graf, M., and Kunstmann, H.: Rain event detection in commercial microwave

link attenuation data using convolutional neural networks, Atmos. Meas. Tech., 13, 3835–3853,

https://doi.org/10.5194/amt-13-3835-2020, 2020.

License: CC BY

Abstract

Quantitative precipitation estimation with commercial microwave links (CMLs) is a technique

developed to supplement weather radar and rain gauge observations. It is exploiting the relation

between the attenuation of CML signal levels and the integrated rain rate along a CML path.

The opportunistic nature of this method requires a sophisticated data processing using robust

methods. In this study we focus on the processing step of rain event detection in the signal level

time series of the CMLs, which we treat as a binary classification problem. This processing step

is particularly challenging, because even when there is no rain the signal level can show large

fluctuations similar to that during rainy periods. False classifications can have a high impact

on falsely estimated rainfall amounts. We analyze the performance of a convolutional neural

network (CNN), which is trained to detect rainfall specific attenuation patterns in CML signal

levels, using data from 3904 CMLs in Germany. The CNN consists of a feature extraction and a

classification part with, in total, 20 layers of neurons and 1.4 × 105 trainable parameters. With

a structure, inspired by the visual cortex of mammals, CNNs use local connections of neurons

to recognize patterns independent of their location in the time-series. We test the CNNs ability

to generalize to CMLs and time periods outside the training data. Our CNN is trained on four

months of data from 800 randomly selected CMLs and validated on two different months of data,
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once for all CMLs and once for the 3104 CMLs not included in the training. No CMLs are

excluded from the analysis. As a reference data set we use the gauge adjusted radar product

RADOLAN-RW provided by the German meteorological service (DWD). The model predictions

and the reference data are compared on an hourly basis. Model performance is compared to a

state of the art reference method, which uses the rolling standard deviation of the CML signal

level time series as a detection criteria. Our results show that within the analyzed period of

April to September 2018, the CNN generalizes well to the validation CMLs and time periods.

A receiver operating characteristic (ROC) analysis shows that the CNN is outperforming the

reference method, detecting on average 76% of all rainy and 97% of all non-rainy periods. From

all periods with a reference rain rate larger than 0.6 mmh−1, more than 90% were detected. We

also show that the improved event detection leads to a significant reduction of falsely estimated

rainfall by up to 51%. At the same time, the quality of the correctly estimated rainfall is kept

at the same level in regard to the Pearson correlation with the radar rainfall. In conclusion, we

find that CNNs are a robust and promising tool to detect rainfall induced attenuation patterns in

CML signal levels from a large CML data set covering entire Germany.

3.1 Introduction

Rainfall is the major driver of the hydrologic cycle. Accurate rainfall observations are fundamental

for understanding, modeling and predicting relevant hydrological phenomena, e.g. flooding. Data

from commercial microwave link (CML) networks have proven to provide valuable rainfall infor-

mation. Given the high spatio-temporal variability of rainfall, they are a welcome complement

to support traditional observations with rain gauges and weather radars; particularly in regions

where radar is hampered by beam blockage or ground clutter. In regions with sparse rainfall

observation networks, like in developing countries, CMLs might even be the only source of small

scale rainfall information.

Since the work of Messer et al. (2006) and Leijnse et al. (2007) more than a decade ago, several

research groups have shown the potential of CML data for hydrometeorological usage. Prominent

examples are the countrywide evaluations in the Netherlands (Overeem et al., 2016b) and Ger-

many (Graf et al., 2020a), which demonstrated that CML-derived rainfall information corresponds

well with gauge-adjusted radar rainfall products, except for the cold season with solid precipita-

tion. CML-derived rainfall information was also successfully used for river runoff simulations in

a pre-alpine catchment in Germany (Smiatek et al., 2017) and for pipe flow simulation in a small

urban catchment in Czech Republic (Pastorek et al., 2019). A further important step was the

first analysis of CML-derived rain rates in a developing country, carried out by Doumounia et al.

(2014), with data from Burkina Faso.

In general, the number of CMLs available for research has increased significantly over the last

years and researchers from several countries have gained access to CML attenuation data. Cur-

rently, data from 4000 CMLs over Germany is recorded continuously with a temporal resolution

of one minute via a real-time data acquisition system (Chwala et al., 2016). The number of ex-
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isting CMLs over Germany is 30 times higher (Bundesnetzagentur, 2017), amounting to 130.000

registered CMLs. Consequently, it is envisaged to increase the number of CMLs included in the

data acquisition.

With this large number of CMLs available in Germany and with new data being retrieved contin-

uously, there is a need for optimized and robust processing of these big data sets. Several studies

address the details of the processing steps which are required for deriving rainfall information from

CMLs. These steps involve, e.g. the detection of rain events in noisy raw data, the filtering of

artifacts, correcting for bias due to wet antenna attenuation (WAA) and the spatial reconstruction

of rainfall fields. Uijlenhoet et al. (2018) give a general overview of the required processing steps

and the existing methods and Chwala and Kunstmann (2019) discuss and summarize the related

current challenges.

3.1.1 On the importance of rain event detection

The first of these processing steps, called rain event detection, is the separation of rainy (wet) and

non-rainy (dry) periods. A static signal level baseline to derive attenuation that can be attributed

to rainfall has proven to be ineffective due to e.g. daily or annual cycles and unexpected jumps in

the time series like for CML B in Fig. 3.1. Therefore, after the rain events are localized correctly,

an event specific attenuation baseline can be determined and actual rain rates can be derived via

the k-R power law which relates specific attenuation k in dB km−1 to rain rate R in mm h−1.

Detecting rain events is challenging, because CML signal levels can show high fluctuations, even

when there is no rain, e.g. due to multi-path propagation (e.g. Chwala and Kunstmann, 2019, Fig.

6). Therefore, the main difficulty is to distinguish between noise and signal fluctuations caused by

rain along the CML path. As seen in Fig. 3.1, the differences in noise levels can vary significantly,

depending on the CML that is used. When looking at the magnitude of these fluctuations, we can

see that a misclassification of wet and dry periods can easily lead to a large over- or underestimation

of rainfall. These missed or falsely estimated quantities are often overlooked in scatter density

comparisons of rainfall products like Figure 3.9 a) and b) below, which shows our own results.

But when absolute amounts are compared, they represent an obvious issue with up to 30% of the

total CML rainfall that can be attributed to false positives. As these misclassifications generate

a bias different from the bias corrected in later processing steps like the WAA correction it is

important to optimize the rain event detection as an isolated processing step first and to optimize

subsequent processing steps afterwards.

3.1.2 State of the art

So far, several methods for rain event detection with CMLs have been proposed. The main dif-

ference that divides these methods into two groups, is the type of CML data that can be used

to estimate rainfall. Depending on the available data acquisition, CML signal levels are either

instantaneously sampled at a rate ranging from a few seconds up to 15 minutes or they are stored

as 15-minute minimum and maximum values derived from a high instantaneous sampling rate in

the background. In almost all cases only one of the two sampling strategies is available due to
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Figure 3.1: Three example signal level (TRSL) time series that illustrate the high variability

in data quality when comparing different CMLs. The blue shaded periods indicate where the

radar reference show rainfall along the CML paths. The challenge is to identify these periods

by analysing the time series. Note that each attenuation event that is falsely classified as wet,

will produce false rain rate estimates, which will lead to overestimation. The histograms show

that for some CMLs the wet periods can be easily separated from the dry periods and for others

the distribution of TRSL values is nearly identical for both classes. Fig. 3.2 below will show an

example of how different detection methods deal with the challenging time series of CML C.

the type of data management through the network provider. The resulting rain event detection

methods are highly optimized for one kind of sampling strategy and therefore in general incom-

patible with the other kind.

The following methods were developed for instantaneous measurements: Schleiss and Berne (2010)

introduced a threshold for the rolling standard deviation (RSTD) of the attenuation time-series

as a criteria to detect rain events. Despite being one of the first methods that were developed, a

large part the method is still the most commonly used within the CML research community, as

it was used in very recent studies from different working groups such as Kim and Kwon (2018),

Graf et al. (2020a) or Fencl et al. (2020). Chwala et al. (2012) introduced Fourier transformations

on a rolling window of CML signal levels to detect the pattern of rain events in the frequency

domain. Wang et al. (2012) used a Markov switching model, which was calibrated and validated

for a single CML test site. Kaufmann and Rieckermann (2011) have shown the applicability of

random forest classifiers and Gaussian factor graphs and validated their approach using 14 CMLs.

Dordević et al. (2014) used a simple Multilayer Perceptron (MLP) which was trained and validated
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on a single CML. Ostrometzky and Messer (2018) proposed a simple rolling mean approach to

determine a dynamic baseline, also validated on a single CML. Most of these studies are based on

a comparably low and sometimes pre-selected amount of CMLs ranging from one to a maximum

of 50 devices, a number that is likely much larger in a possible operational setting.

As a detection scheme for 15 minute min/max sampled data with a 10 Hz background sampling

rate Overeem et al. (2011) introduced the ’nearby link approach’. A period is considered wet if

the increase of CML specific attenuation correlates with the attenuation pattern of nearby CMLs.

They concluded that this is only applicable for dense CML networks with a high data availability.

Later, they conducted the first evaluation of a rain event detection method on data from 2044

CMLs on a country scale Overeem et al. (2016b). Very recently the same approach was used in

de Vos et al. (2019b), showing that this approach works better in combination with min/max

sampling than with 15 minute instantaneous sampling. Habi and Messer (2018) tested the per-

formance of Long Short-Term Memory (LSTM) networks to classify rainy periods from 15 minute

min/max values of CML signal levels for 34 CMLs.

All rain event detection methods have to make a similar trade-off: A liberal detection of wet peri-

ods is more likely to recognize even small rain rates, while it will produce more false alarms during

dry periods. On the other hand, a conservative detection will accurately classify dry periods, but

is more likely to miss small rain events. One can address this by two means. First, by increasing

detection rates on both wet and dry periods as much as possible and therefore decreasing the

impact of the trade-off. Second, by allowing the flexibility to easily adjust the model towards

liberal or conservative detection, e.g. by only changing a single parameter.

In conclusion, until now, there have been few studies analyzing the performance of rain event

detection methods on large data sets. Overeem et al. (2016b) tested the nearby link approach

using 2044 CMLs distributed over the Netherlands with a temporal coverage of 2.5 years of data.

Graf et al. (2020a) extended the RSTD method and applied it to one year of data from 3904

CMLs to set a benchmark performance on the same data set used in this study. By optimizing

thresholds for individual CMLs the full potential of the RSTD method for one year of data was

explored, yielding good results for the warm season with liquid precipitation. While the RSTD

method is simple to implement and has only two parameters (window length and threshold) to

optimize, it is limited to measuring the amount of fluctuations, rather than the specific pattern.

More room for optimization is expected using a data driven approach, such as machine learning

techniques for pattern recognition.

3.1.3 Data driven optimization through deep learning

Deep learning is a rapidly evolving field that is becoming increasingly popular in the earth system

sciences. A large field of application is remote sensing using artificial neural networks for image

recognition (Zhu et al., 2017). Deep learning is also an established method in time-series classi-

fication (Ismail Fawaz et al., 2019). In both studies, convolutional neural networks (CNNs) are

considered one of the leading neural network architectures for image and time-series classification.
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CNNs are inspired by the visual cortex of mammals and they are designed to recognize objects

or patterns, regardless of their location in images or time-series (Fukushima, 1980). They are

characterized by local connections of neurons, shared weights and a large number of layers of

neurons, involving pooling layers (LeCun et al., 2015). CNNs with one dimensional input data

(1D-CNNs) have already been used for time-series classification, e.g. for classifying environmental

sounds (Piczak, 2015). This makes 1D-CNNs a promising candidate for the task of rain event

detection in CML signal levels.

3.1.4 Research gap and objectives

Due to the opportunistic use of CMLs, the variety of signal fluctuations and possible occurrences

of errors naturally increase in a CML data set with its size. Separating rainy from non-rainy

periods is therefore a crucial step for rainfall estimation from CMLs. Although applicable on a

large scale, recently applied methods still struggle with falsely estimated rainfall as can be seen

in the evaluations from Graf et al. (2020a) and de Vos et al. (2019b). Despite the amount of

proposed methods, this processing step has not yet been investigated in detail using a large and

diverse CML data set, especially for data driven approaches. Given their promising results in

other applications, the usage of artificial neural networks (ANNs) for rain event detection in the

CML attenuation time-series on a large scale provides a promising opportunity. It has been proven

that in many cases ANNs allow for high-performance, fast and robust processing of a variety of

suitable data sets. What is missing is a proof that they are applicable to a large and diverse CML

data set. The question is, does a high variability of frequency, length and spatial distribution of

the analyzed CMLs or a high variability of rain rates and event duration for a large amount of

analyzed periods affect the performance of ANNs in this specific case or not? Additionally, the

effect of rain event detection performance on the estimated rain rates has yet to be investigated.

The objective of this study is to evaluate the performance of 1D-CNNs to detect rainfall induced

attenuation patterns in instantaneously measured CML signal levels and to investigate the effect

of an improved temporal event localization on the CML-derived rainfall amounts. Furthermore,

we test the CNNs ability to generalize to new CMLs and future time periods in order to provide a

validated open source model, that can be used on other data sets. To provide the CML community

with comprehensible results, we compare the CNN to the method of Schleiss and Berne (2010),

which we consider state-of-the-art due to the amount of recent applications. We aim to provide

a high statistical robustness of the derived performance measures by using the, to date, largest

available CML data set consisting of data from 3904 CMLs distributed over entire Germany.

3.2 Methods

The following definition of rain event detection with CMLs is the basis of our methodology: Rain

event detection is a binary classification problem. Given a time window Xt,w,i of CML signal data,

where t is the starting time, w is the window length and i is the index specifying a unique CML

path, we have to decide if there is attenuation caused by rain (wet) or not (dry). A time window

is assigned the label 1 if it is wet or 0 if it is dry. The available information to do this classification
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depends on the used data acquisition and on which information is provided by the CML network

operator. In the following, we describe how a CNN can be used as a binary classifier to succeed

in this task.

3.2.1 Data set

We use a CML data set that has been collected in cooperation with Ericsson Germany through

our custom CML data acquisition system Chwala et al. (2016). It covers 3904 CMLs across entire

Germany. The CML path length ranges from 0.1 km to more than 30 km, with an average of

around 7 km. CML frequencies range from 10 to 40 GHz. The acquired data consists of two

sub-links per CML, transmitting their signal in opposite directions along the CML path. For

each sub-link a received signal level (RSL) and a transmitted signal level (TSL) is recorded at a

temporal resolution of 1 minute and a power resolution of 0.3 dB for RSL and 1.0 dB for TSL. The

recorded period used in this study starts in April 2018 and ends in September 2018, to focus on

the periods which are dominated by liquid precipitation, where CMLs perform better than during

the cold season (Graf et al., 2020a). The data is available at 97.1% of all time steps and gaps are

mainly due to outages of the data acquisition system.

As reference data we use the gauge adjusted radar product RADOLAN-RW provided by the

German meteorological service (DWD). It has a spatial resolution of 1x1 km, covering entire

Germany on 900x900 grid cells. The temporal resolution is 60 minutes and the resolution for the

rain amount is 0.1 mm (Winterrath et al., 2012). To compare to this reference, the window length

w is set to 60 minutes and therefore w is omitted in the notation below. Along each CML i, the

path-averaged mean hourly rain rate Rt,i is generated from the reference, using the weighted sum

Rt,i =

∑
k lk,irk,t
li

, (3.1)

where k is indexing the RADOLAN grid cells intersected by the path of i. The rain rate of each

grid cell is rk,t. Furthermore, lk,i is the length of the intersect of k and i and li is the total length

of i. A time window Xt,i is considered wet if Rt,i ≥ 0.1 mm h−1 and dry otherwise.

3.2.2 Pre-processing

Before training and testing an artificial neural network, the raw time-series data has to be pre-

processed. We do this to sample time windows of a fixed size, which are normalized and labelled

according to the reference.

First, the full data set, consisting of all available CMLs, is split into three subsets. One subset

is used for training the CNN (TRG), one is used for validation and to optimize model hyper-

parameters (VALAPR) and one is used for testing only (VALSEP). The data set TRG consists

of data from 800 randomly chosen CMLs in the period from May to August 2018. VALAPR

covers the remaining 3104 CMLs during April 2018 and VALSEP consists of data from all 3904

CMLs during September 2018. We used this splitting routine to avoid information leakage from

the training to the validation data. There can be a high correlation of signal levels between CMLs

59



Chapter 3. CNN based rain event detection

that are situated close to each other (Overeem et al., 2011). Therefore, the measurements con-

tained in VALAPR or VALSEP can not be taken from the same time range as for TRG. Using

only 20% of all available CMLs for training allows us to analyze the CNNs generalization to the

remaining CMLs in the validation data set. No CMLs were excluded from this analysis.

For each of the two sub-links of a CML, we compute a transmitted minus received signal level

(TRSL). Within one TRSL time-series, randomly occurring gaps of up to five minutes of missing

data are linearly interpolated to be consistent with with the preprocessing used in Graf et al.

(2020a). We assume that the temporal variability of rainfall is not high enough such that entire

rain events can be hidden in such short gaps. The next step is to normalize the data. Normal-

ization of training and validation data is a commonly used procedure in deep learning to enhance

the model performance. We perform the normalization as a pre-processing step and outside the

CNN. After testing various normalization techniques it turned out that the best performance of

the CNN can be achieved by subtracting the median of all available data from the preceding 72

hours from each time step. In rare cases of larger gaps in the data acquisition, we set a lower limit

for the data availability to 120 minutes.

The set of starting time-stamps of the hourly reference data set is denoted Trad. For each CML

i and each starting time t ∈ Trad a sample of data X̄t,i is composed from 60+k minutes of TRSL

from the two sub-links starting at t − k. The first k minutes serve as a reference to previous

behaviour of the same CML and the last 60 minutes are the period Xt,i that has to be classified.

To investigate the impact of adding this additional information, we compare multiple setups with

k ranging from 0 to 240 minutes. The results are given in Sect. 3. An example TRSL over a

period of two weeks is shown in Fig. 3.2 (a).

After interpolating short gaps, as described above, we exclude all samples with missing values from

the analysis. Since we loose up to five hours of data whenever there is a gap, the interpolation

routine increases the number of available samples from 75% to 94%.

To train the CNN we have to balance the wet and dry classes in the data set (Hoens and Chawla,

2013). The under-sampling approach to achieve an equalized (50:50) class ratio is to randomly

discard samples of the majority class, i.e. dry samples. This approach is chosen since we assume

that dry periods mostly consist of redundant samples with only small fluctuations. Later, we check

that there is no loss in performance by evaluating the unbalanced data. The initial percentage of

wet samples is between 5-10%. We perform the balancing on TRG and VALAPR. The balanced

version of VALAPR is denoted VALAPRB. VALAPR and VALSEP are kept as unbalanced data

sets for validation. TRG already denotes the balanced data, since the original unbalanced training

data set is not used in the analysis. In total, the number of samples is 2.3×105 for TRG, 3.9×105

for VALAPRB, 2.2× 106 for VALAPR and 2.8× 106 for VALSEP.
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Figure 3.2: Performance of the CNN and the reference methods for the noisy example CML time-

series from Fig. 3.1. a) shows the normalized TRSL time-series and b) is the radar reference.

Predictions from the CNN (e) yield an MCC of 0.74. Predictions through σopt (c) and σq80 (d),

which are very similar in this case, both yield MCCs of 0.28. Note that the TRSL and RSTD

time series of sub-link 2 are almost identical to those of sub-link 1 and are shown in light grey.

3.2.3 Neural Network

CNNs especially apply to time-series classification when patterns have to be recognized in longer

sequences of data but the location of the occurring patterns is variable. They are therefore suit-

able classifiers for sensor data like the TRSL from CMLs. The expected advantage of the CNN

over the reference method is that it is able to recognize the rainfall specific patterns, rather than

just the amount of fluctuations. Like other neural network architectures they consist of a series

of layers of neurons (Fig. 3.3). The first layer receives the input data and the last layer serves as

an output for a prediction. The hidden layers in between are organized in two functional parts.

The first part consists of a series of convolution and pooling layers and is used to extract features

from the raw model input. Earlier convolution layers identify simple patterns in the data, which

are used to identify more complex patterns in subsequent layers. The second part consists of fully

connected layers of neurons and is used to classify the input based on the features extracted by

the convolutional part.

Before a CNN can be used as a classifier, it has to be trained on data in a supervised learning
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Figure 3.3: Graphical illustration of the CNNs architecture for k = 120. The Input shows one

sample X̄t,i of data consisting of 180 minutes of TRSL from the two sub-links of one CML.

Convolutional and pooling layers reduce the input dimension from 180 to 2, while a total of 192

features are extracted. Numbers below convolutional layers are the layer output dimensions, i.e.

input dimension times the number of filters. The size of the local patch in a convolutional layer

is 3. Based on the extracted features, the fully connected layers predict a class, which is stored in

the output layer.

process. All layers have a set of trainable parameters, so called weights, which are optimized during

the training process according to a learning rule. To be able to monitor the model performance,

a test data set is evaluated regularly during the training process. Training is stopped before the

model starts to over-fit, i.e. the performance on the test data set either stagnates or drops, while

it still rises for the training data.

3.2.3.1 Network architecture

We use a 1D-CNN, which has the same structure as the basic 2D-CNN, with alternating convolu-

tional and pooling layers followed by fully connected layers. The only difference is that the input

data of the convolutional layers is one dimensional. The specific architecture and parameteriza-

tion was optimized experimentally. To give an intuitive description of our CNN, we follow the

approach provided in (LeCun et al., 2015, p. 439):

The convolutional part of the CNN consists of four blocks of two convolutional layers followed by

a max pooling layer and one block of one convolutional and one average pooling layer (see Fig.

3.3). Convolutional layers extract feature maps by passing local patches (3x1) of input from the

preceding layer through a set of filters followed by a rectified linear unit. Each filter creates a

different feature map. The pooling layer then combines semantically similar features by taking

the maximum (resp. average) within one local patch. This way, the dimension of the input is
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gradually reduced while, at the same time, the number of extracted features increases.

The fully connected part of the CNN consists of two layers with 64 neurons each and an output

layer with one neuron. Its output is a prediction between zero and one, that can be interpreted

as the likeliness for the input sample to be wet or dry. To avoid over-fitting to the training data

two dropout layers are added, one after each fully connected layer, with a dropout ratio of 0.4

(Srivastava et al., 2014).

We implement the CNN in a Python framework using the Keras (version 2.3.1) backend for Ten-

sorflow (version 2.1.0) (Chollet, 2022; Developers, 2022). For the model architecture, type, number

and order of layers has to be chosen. There are several hyper-parameters that can be specified

in the model setup. Each layer has a number of hyper-parameters that can be adjusted, e.g.

the size of the local patch or the number of filters in a convolutional layer. We optimized all

hyper-parameters iteratively by evaluating the performance of several reasonable configurations

on the test data set VALAPRB, and by choosing the model with the best performance metrics

(see 3.2.4). Depending on the length of the input time-series, which varies with k, the number of

convolutional layers is different, i.e. k < 60 we omit the last two convolution layers. We trained

one model for each value of k and one extra model, that additionally receives the CML meta-data

consisting of the length and the frequency of both channels through parallel fully connected layers

and an add-layer before the fully connected part. For k set to 120 minutes the final CNN consists

of 20 functional layers with a total of 140,033 trainable parameters. The organization of those

layers is shown in the network graph in Fig. 3.3. For all model versions, the detailed model and

training specifications, all hyper parameters and the weights of the trained CNN can be retrieved

from the code example at https://github.com/jpolz/cnn_cml_wet-dry_example.

3.2.3.2 Training setup

CNNs are feed-forward neural networks, which are trained by a supervised learning algorithm

(Goodfellow et al., 2016). Batches of samples are passed through the network and the outputs are

compared to the reference labels. After each batch a loss function is computed and the weights are

updated according to a learning rule. Here, the learning rule is stochastic gradient descent with

binary cross-entropy as a loss function and an initial learning rate of 0.008 (Bottou et al., 2018).

The training data set TRG consists of 7 batches with 104 samples each and the validation data

set is VALAPRB. One training epoch is finished when the whole data set is used once. After each

epoch the training and validation data sets are evaluated to compute the training and validation

loss and the learning rate is decreased slightly.

The training is stopped if the validation loss does not equal or surpass an earlier minimal value for

50 epochs (stopping criterion). Afterwards the model which achieves the best validation Matthews

correlation (see MCC below) is selected from all versions, that existed after the individual training

epochs (model selection criterion). This model is then used for classification on the validation data

sets.
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3.2.4 Validation

Our CNN is a probabilistic classifier. The raw model output Ȳt,i is on a continuous scale from 0

to 1 (see Fig. 3.4), representing the estimated likeliness that a sample X̄t,i is wet. A threshold

τ ∈ [0, 1] is then set to decide whether a sample is wet or not, leading to the prediction rule

Ỹt,i =

{
1, if Ȳt,i > τ

0, otherwise
(3.2)

Classification results, in the form of true positives (TP), false positives (FP), false negatives (FN)

and true negatives (TN) are compared to the reference in a confusion matrix, shown in Table

3.B1, which is the basis for computing further metrics. The normalized version of the confusion

matrix consists of the occurrence rates of TP, FP, FN and TN samples, defined as

TPR =
TP

TP + FN
, (3.3)

FPR =
FP

FP + TN
, (3.4)

FNR =
FN

TP + FN
, (3.5)

and

TNR =
TN

FP + TN
. (3.6)

As a first metric for validation we use the accuracy score, defined as

ACC =
TP + TN

total population
∈ [0, 1]. (3.7)

It is a measure for the percentage of correct classifications being made. It is dependent on the class

balance of the data set. The balance of wet and dry samples in the data set is directly related to

the regional and seasonal climatology. Therefore, this metric is not climatologically independent.

The second metric we use is the Matthews correlation coefficient (MCC), also known as ϕ-

coefficient, which is a commonly used metric for binary classification (Baldi et al., 2000). It

is acknowledging the possibly skewed ratio of the wet and dry periods and is high only if the

classifier is performing good on both of those classes. It is defined as

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
∈ [−1, 1], (3.8)

where an MCC of 0 represents random guessing and an MCC of 1 represents a perfect classifi-

cation. A strong correlation is given at values above 0.25 (Akoglu, 2018). The advantage of the

MCC is, that it is a single number which we use to optimize the threshold for the CNN.

The third metric we use is the receiver operating characteristic (ROC), defined by the pair

(FPR, TPR) ∈ [0, 1] × [0, 1] (Fawcett, 2006). The domain of the ROC is called ROC space.

The point (0,1) represents a perfect classifier, while the [(0,0),(1,1)] diagonal represents random

guessing. The ROC is independent of the ratio of wet and dry periods and therefore a climatolog-

ically independent measure for the classifier’s performance on rain event detection. Each τ ∈ [0, 1]
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leads to a ROC resulting in a ROC curve γ ⊂ [0, 1]× [0, 1] (e.g. Fig. 3.6). The performance of a

classifier for different values of τ is measured by the area

AUC =

1∫
0

γdτ ∈ [0, 1] (3.9)

under the ROC curve. Since changing τ directly influences the prediction rule (Eq. 3.2), it can

be adjusted causing the model to classify in a conservative (below [(0,1),(1,0)] diagonal in ROC

space) or liberal (above diagonal) manner. We can therefore address the trade-off between true

wet and true dry predictions as mentioned in the introduction. This way, the AUC becomes a

measure of the flexibility of a classifier, i.e. the ability to show good performance with a more

conservative or liberal threshold τ . The main purpose of the ROC is that we use it to compare

different methods, e.g. different values of k, independent from a fixed threshold, by considering

the ROC curve and the AUC.

3.2.5 Reference method

The reference method is a modification of Schleiss and Berne (2010) which is to date the most

commonly used method to separate wet and dry periods as reviewed in the introduction. It is

based on the following assumption: The standard deviation values of fixed-size windows of TRSL

is bounded during dry periods, whereas it exceeds this boundary during wet periods and therefore

allows for distinguishing the two classes. This assumption has proven to give good results on our

data set, however there are known drawbacks. The method is limited to measuring the amount

of signal fluctuations and there are multiple effects that can cause high signal fluctuations during

dry periods, e.g. like for CML C in Fig. 3.1. Some of the factors are known, like multi-path

propagation, but others are unknown and still need to be investigated.

The method is applied by computing a rolling standard deviation of the TRSL time-series. The

normalization step is not necessary for this method. The window length is 60 minutes and the

standard deviation value is written to the timestamp in the center of this window. A period

Xt,i is considered wet if at least one standard deviation value on one or both sub-links exceeds a

threshold σ.

We compare two different thresholds σ, which are computed individually for each CML. The first

one, denoted σ80, is the 80th percentile of the 60-minute rolling standard deviation of one month

for a certain CML multiplied by a scaling factor which is constant for all CMLs. In our case,

the threshold is computed for VALAPR in April and VALSEP in September. The scaling factor

of 1.12 is adopted from Graf et al. (2020a). The second one, denoted σopt, is optimized against

the reference by maximizing the MCC. We computed it for April 2018 and then reapplied it to

September 2018 to test its transferability to future time periods. To derive ROC curves, we applied

a scaling factor τσ to each of the standard deviation thresholds. In the following we will refer to

σ80 and σopt as both the resulting detection method and the threshold.
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3.2.6 Rain rate estimation

In the same way as the rolling standard deviation, the CNN can be used in a rolling window

approach, classifying the timestamp t as wet or dry by using the sample with starting timestamp

t− 30 as model input. With the resulting rain event detection information from either the CNN

or the two reference methods, rain rates are estimated in several steps. We use the exact same

processing scheme as described in Graf et al. (2020a), which we refer the reader to for all the

technical details. This processing includes erratic treatment of CMLs and WAA compensation to

derive rain rates with a temporal resolution of one minute. For each detected rain event a constant

baseline of the TRSL is calculated from the preceding dry period. The attenuation above this

baseline level is attributed to rain but also to WAA. The WAA is compensated depending on the

rain rate using a method modified after Leijnse et al. (2008). The remaining specific attenuation

k is used to derive the path averaged rain rate R using the k − R relation from Eq. 3.10. The

constants a and b are taken from ITU-R (2005).

k = aRb (3.10)

For the CMLs used in this study this relation is close to linear, i.e. b is close to one. For a compari-

son to RADOLAN-RW the one minute rain rates are then aggregated by taking the hourly average.

Only from this analysis data from 45 CMLs (1.1 %) is discarded due to substantially erratic signal

levels to be able to follow the same procedure as in Graf et al. (2020a). Additionally, we justify

this procedure with the following observation: For the rain event detection we want periods of

erratic behavior to be included in both training and validation data, since also CMLs that are not

discarded by the erratic treatment can show periods of erratic behavior, such as CML C from Fig.

3.1. Each erratic training and validation sample contributes to the final statistics as one sample

and the erratic CMLs do not distort the analysis. This is very different for the rainfall amount,

since erratic links are prone to a very high overestimation of the final rain rates even when a low

amount of time periods is detected wet. Since erratic CMLs are a small fraction of the available

CMLs and they can be detected automatically, we decided to exclude their bias when analyzing

the contribution of false positives to absolute rainfall amounts. An example of such a time series

can be found in Fig. 3.A2.

3.3 Results

During training on TRG, the performance of the CNN was evaluated on VALAPRB after each

epoch. The resulting graphs of loss, ACC, TPR and TNR during the training process are shown

in Fig. 3.7. For all three variables the performance on TRG and VALAPRB were similar across all

epochs with slightly higher performance on TRG. The threshold τ was optimized using VALAPR,

by maximizing the MCC, with resulting values of τ shown in Tab. 3.B3. The results from that

table and the ROC curves in Fig. 3.6 c) show that in general the performance of the CNN is

increasing with higher values of k, but the performance gain was insignificant for raising the value

higher than 120 minutes or adding meta data as model input. We therefore decided to set k = 120

and not to use added meta data for evaluating further results and comparing them to the reference
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Figure 3.4: Raw CNN predictions on VALAPRB, coloured according to the reference.

methods.

Fig. 3.4 shows the distribution of the CNNs predictions on VALAPRB. The threshold τ is set to

0.82. The final number of training epochs was 248 and the model from epoch 212 was selected (see

Fig. 3.7 (a)). On one Nvidia Titan Xp GPU the training time was 30 minutes. Classifying 3904

samples, i.e. a one minute time-step for all CMLs, took 20ms which can be considered extremely

fast allowing for a real-time application of the method. For further verification, we repeated the

training multiple times with a different randomization (selection of CMLs and balancing) of TRG

and VALAPRB but no significant changes in performance could be observed.

We evaluated the performance of the CNN and both reference methods using the unbalanced data

sets VALAPR and VALSEP. The complete list of the achieved performance metrics is presented

in Table 3.B2. Applying the threshold τ to the CNN predictions yielded TPRs of 0.74 (VALAPR)

and 0.77 (VALSEP) and TNRs of 0.97 (VALAPR and VALSEP) (see also Fig. 3.A1). On average,

only 3% of the dry periods were falsely classified as wet and 24% of the wet periods were missed.

With a scaling factor τσq80
of 1.12, σq80 achieved a balanced TPR and TNR with a value of around

0.79 for both rates in April and September. σopt on the other hand achieved similar TNRs than

the CNN but at the cost of lower TPRs.

For both data sets, the CNN’s ROC showed a higher TPR for any fixed FPR than the reference

methods (see Fig. 3.6). As a consequence, the AUC was largest for the CNN. On VALAPR,

σopt yielded a better ROC than σq80, but only for low FPR values. On VALSEP σq80 achieved a

better ROC than σopt. The ROC curves of the CNN and σq80 had a very similar convex shape.

Compared to the other two curves the ROC curve of σopt showed a higher asymmetry. The CNN
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achieved the highest ACC and MCC scores with an average of 0.95 and 0.69 on both data sets.

While σopt has the second highest ACC and MCC scores, the area below the ROC curve is lowest

for both data sets.

We compare the ACC on detecting samples with a specific RADOLAN-RW rain rate of x < Rt,i <

x + 0.1 in Fig. 3.5. From all rain events where Rt,i ≥ 0.6 mm 90.4% were correctly detected by

the CNN. On the other hand around 38.9% of all rain events with Rt,i < 0.6 mm were missed.

All three methods have a lower ACC, the lower the rain rate is. While σq80 shows an ACC for

wet periods of different rain intensities, that is very similar to that of the CNN, σopt misses more

small events. On the other hand σq80 is producing more false wet classifications than the CNN or

σopt.

The MCC was computed individually for each CML and each validation data set. Figure 3.8

shows scatter density plots comparing the individual MCC scores of the CNN and σopt. The

CNN’s MCC on VALAPR is higher for 95.9% of all CMLs and on VALSEP it is higher for 96.7%

of all CMLs.

We focus our analysis on hourly rainfall rates from all non-erratic CMLs in September 2018. The

resulting rain rates using either the CNN or the σq80 detection scheme are shown in Fig. 3.9. For

both methods the distribution of false positive and false negative samples is centered around 0.1

mmh−1 and the distribution of true positives is centered around 1 mmh−1. While the percentage

of CML derived rainfall estimated during false positive events is 29.9% for σq80, it is significantly

less for the CNN (see Fig. 3.9 d) and f). This constitutes a reduction of 51% of falsely estimated

rainfall for the month of September 2018. At the same time the amount of missed rainfall is

reduced by 27.5%. The amount of rainfall in the true positive category could therefore be raised

by 4.7%. The Pearson correlation for the hourly rainfall estimates between radar and CMLs is

0.83 using σq80 and 0.84 using the CNN.

3.4 Discussion

3.4.1 Performance

We evaluate the performance of the CNN to detect rain events by two means. First, we compare it

to the performance of a reference method. Second, we estimate if the model is performing in a near

optimal state or if we expect that a higher performance could be achieved. The comparison to the

results of previous studies, e.g. Overeem et al. (2016a), is difficult since the overall performance

is depending on the distribution of the intensity of rain events (see Fig. 3.5) and since there is a

large variability of performance between the CMLs (see Fig. 3.8).

Since the results on both validation data sets are very similar (see Table 3.B2) we further focus

on VALSEP, which was not used to optimize the model hyper-parameters. With an ACC of 0.95

and an MCC of 0.69 the correlation between the CNN predictions and the reference data set

RADOLAN-RW can be considered as very high. A TPR of 0.74 might not appear very good at
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Figure 3.5: Each bar shows the ACC score on samples from a) VALAPR and b) VALSEP, grouped

by the reference rain rate. An ACC of 0.5 represents random guessing.

first sight, but considering that the detection accuracy for samples with a rain rate of smaller than

0.6 mmh−1 is only 0.61, we actually achieve an accuracy of over 0.9 for all rain rates higher than

0.6 mmh−1.

The CNN and the reference method σopt have a similar ACC value. At the same time the CNN’s

MCC is higher, despite the fact that σopt is MCC optimized for each CML. The high ACC of σopt

is due to the high TNR and the fact that 95% of all samples are negative (dry). At a similar ACC

and TNR we could increase the TPR, or rain event detection rate, by 0.13. This constitutes a

major improvement by the CNN. As shown in Fig. 3.8 the improvement is higher for CMLs with

lower MCC, making the whole CML data set more balanced in performance and therefore more

trustworthy for quantitative precipitation estimation. The CNNs distribution of MCC values of

individual CMLs is the same in April and September, while performance drops for σopt. The

CNN’s improvement in ACC and MCC over σq80 was even higher with 0.17 and 0.32. While the

TPR of σq80 is slightly higher than the TPR of the CNN, the TNR is much lower for σq80. Thus

the CNN shows substantial improvement in correctly classifying dry periods.

While the RSTD method can be set up to either have a high TPR (σq80) or a high TNR (σopt),

the ROC curves show that CNN achieves both rates at the same time. Thus, the CNN shows a

better overall performance than the reference methods and therefore improves on the trade-off as

mentioned above. This observation is illustrated by the example in Fig. 3.2, which shows a very

noisy CML time-series that produces a high amount of false positives for the reference method,

while the CNN does not attribute these fluctuations to rainfall.

All three methods have limitations to detect events with rain rates smaller than 0.3mm. This is

likely due to the detection limit of CMLs in our data set which is in the same range. The detection

limit depends on frequency, length and signal quantization of a CML. For example, at a frequency
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of <20 GHz and at a length of <10 km a path averaged rain rate of 1 mm h−1 creates a maximum

of 1 dB of attenuation (Chwala and Kunstmann, 2019, Fig. 7). In some cases the quantization

(0.3dB for RSL and 1dB for TSL) might therefore not allow for a detectable signal.

Differences in the performance on VALAPR and VALSEP can be traced back to a different dis-

tribution of occurring rain rates. While in April 35.5% of all events are in the critical range from

0.1mm to 0.3mm, there are only 32% in September. In both data sets the performance on higher

rain rates (> 1.6 mm) and dry periods is almost identical. Therefore the loss of performance in

April is due to the slightly worse performance of the CNN on smaller rain rates which occur more

often in VALAPR than in VALSEP.

It should not be expected that the rain events detected through CMLs and the events detected by

the radar coincide completely. Both methods produce artifacts that are mistaken as rainfall, or

they miss events due to their detection limits. From all false classifications that the CNN makes

on VALSEP there are 50% with a raw model output between 0.2 and 0.8. Here the CNN does

not give a certain prediction. This is due to very similar signal patterns in noisy dry periods and

small rain rates. The other 50% of those samples are, according to the CNN, very likely to belong

to the falsely predicted class. Despite this being an issue for many CMLs about 10% have a ROC

of (> 0.97, < 0.1) and correlate very well with the RADOLAN reference. Therefore, we expect

that less errors could be made when training with a perfect reference data set, but there would

still be errors due to artifacts or insensitivity in CML measurements.

Despite those errors, which occur mostly for small rain rates, the correlation of wet and dry periods

between RADOLAN-RW and our CML data set is very high. The performance boost in rain

event detection gained through the CNN is very promising for future applications in quantitative

precipitation estimation with CMLs.

3.4.2 Robustness

The CNNs ability to generalize to previously unknown CMLs is very high. As seen in the train-

ing results the learning curves for both training and validation show a similar dynamic (see Fig.

3.7). As expected the training data showed better performance, but the validation was close at

all epochs.

Only 20% of all available CMLs were used for training. The remaining 80% were only used to

prevent the model from over-fitting to the training data, to choose the model architecture and to

optimize the single parameter τ . Thus no information about the validation data was given directly

to the model. The resulting model architecture and hyper-parameters are not specific enough to

store this information. The high performance in ACC, MCC and ROC on data set VALAPR,

together with the learning curves in Fig. 3.7), therefore prove that the CNN was able to recognize

the attenuation pattern in the signal levels of a large number of previously unknown CMLs.

The stability of the CNNs performance for future time periods is analyzed using the results on
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VALSEP. While the training was done with TRG including the period of May to August 2018,

the performance in September was similar. Compared to the results on VALAPR the CNN shows

even higher performance on VALSEP, which can be explained by the lower percentage of samples

with small rain rates in September, which are challenging to classify (see Fig. 3.5 a)). When

we compare the CNNs accuracy per rain rate between VALAPR and VALSEP, we see that there

are no major differences in the individual scores. Therefore the method can be considered as

very stable throughout the analyzed time period, while differences in overall performance mostly

stem from different distributions of the occurring rain rates. The reference method σopt, which

was optimized in April, loses performance in September, where it is outperformed by the adap-

tive method σq80. The bootstrapping in Fig. 3.6 shows that all three methods perform almost

equally well on small random subsets of the validation data. The CNN shows the lowest variability.

As a measure for the flexibility of a classifier we adopted the ROC analysis in Sect. 3.2.4. A model

is called flexible if it has a high area below its ROC curve and if the curve is axis-symmetric with

respect to the [(0,1),(1,0)] diagonal of the ROC space. As observed both the CNN and σq80 show

a symmetrical ROC curve. Therefore they perform almost equally well with a liberal or conser-

vative threshold with a slight tendency to the conservative side. On the other hand σopt shows a

skewed performance, with a strong tendency to the conservative side. The area AUC below the

ROC curve was highest for the CNN, making it the most flexible classifier. We can adjust τ for

a ROC of either (0.03, 0.7) or (0.3, 0.94) and a smooth, concave transition in between (see Fig. 3.6).

We conclude that within the analyzed period the CNN shows a temporally stable performance,

with a good generalization to previously unknown CMLs. The σopt method performs well only

if it is re-calibrated for different months and to individual CMLs, while σq80 is by definition an

adaptive method. Even with re-calibration or adaption, the reference methods are outperformed

by the CNN.

Figure 3.6: Receiver Operating Characteristic curves on VALAPR a) and VALSEP b). Fine lines

are generated by 200 random selections (bootstrapping) of 1% of the samples and account for the

variability of the model performance during a random short period (∼ eight hours) of data. The

performances of the CNN for different values of k and the added meta data are shown in c) and

the AUC values are given in Table 3.B3
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Figure 3.7: Statistics of variables that were monitored during the training process.

3.4.3 Impact of the detection scheme on the derived rainfall amounts

The difference between the scatter density plots in Fig. 3.9 a) and b) seems to be quite low at

first sight. What this representation of the data is not stressing enough is the amount of rainfall

generated by false positives. But they are an issue that is clearly visible from Fig. 3.9 c)-h).

Considering that the amount of rainfall estimated during time periods falsely classified as wet can

be reduced by 51.0% and that the amount of rainfall from missed events can be reduced by 27.4%,

the CNN shows a major improvement over the reference method. The 4.1% of additional rainfall

in the correctly classified wet periods stem from time periods that were originally harder to clas-

sify, i.e. from small rain events, and it should be expected, that the correlation between CML and

radar rainfall drops. Instead, the Pearson correlation coefficient increased slightly showing that

the quality of the estimated hourly rainfall could be improved. We omitted the same analysis for

a comparison of the CNN and σopt for which, based on the ROC values in Fig 3.6, we anticipate a

similar result, but with a higher pronunciation of missed rain events instead of the strong impact

of false positives.

Overall, we could observe that the improvement in rain event detection has a considerable effect

72



3.5. Conclusion

Figure 3.8: Scatter density plots of the MCC achieved by the CNN and σopt on data from individual

CMLs. Both methods are MCC optimized for the unbalanced data from VALAPR, while the CNN

keeps the optimized performance in September, the performance of σopt drops.

on the amount of over- or under estimation through falsely detected or missed rain events. The

improvement on the trade-off between false positives and false negatives directly translates to the

impact of their respective rainfall amounts. This is shown by the false positive and false negative

distributions in Fig. 3.9 c)-f) which are centered around the same value, but are different in their

amount depending on the used detection method.

3.5 Conclusion

In this study, we explore the performance and robustness of 1D-CNNs for rain event detection in

CML attenuation time-series using a large and diverse data set, acquired from 3904 CMLs dis-

tributed over entire Germany. We prove that, compared to a reference method, we can minimize

the trade-off between false wet and missed wet predictions. While the reference method needs to be

adjusted for different months of the analyzed period to provide optimal results, the trained CNN

generalizes very well to CMLs and time periods not included in the training data. On average,

76% of all wet and 97% of all dry periods were detected by the CNN. For rain rates higher than 0.6

mmh−1 more than 90% were correctly detected. This underlines the strong agreement between

rain events that can be detected in the CML time-series and rain events in the RADOLAN-RW

data set.

In future work, we plan to investigate the potential of using reference data with higher temporal

resolution to improve the temporal localization of the rain events. Data with higher temporal

resolution will, however, magnify the uncertainties that arise due to the different spatial and

temporal coverage of the different rainfall observation techniques. In order to address these uncer-

tainties, it will be important to further explore the relationship between weather radar and CML

derived rainfall products. In the study presented here, we focused on the optimization of rain
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Figure 3.9: Scatter density comparison between hourly CML and radar rain rate estimates derived

from a) σq80 and b) the CNN. On the left hand side the amount of FP, TP and FN hours with

a specific rain rate are compared for c) σq80, e) the CNN and g) their difference). On the right

hand side the amount of rainfall these hours contribute are shown for d) σq80, f) the CNN and h)

their difference. The rain rates for false positives and true positives are estimated by the CML,

while the rain rates for false negatives are taken from the reference.

event detection as an isolated processing step, which provides the basis for a successful rain rate

estimation. All subsequent processing steps, including WAA correction, k-R relation and spatial

interpolation, have an effect on the CML derived rain rate, that can also lead to over or under-

estimation. While 29.9% of the estimated rainfall through the reference method can be attributed

to false positive classifications, the CNN reduces this amount by up to 51% and, at the same time,

improves on true positive and false negatives. We anticipate, that this improvement will lead to

new insights into other effects that may disturb the quality of this opportunistic sensing approach.

Our study shows that using data driven methods like CNNs in combination with the good cov-

erage of the highly developed weather radar network in Germany can lead to robust CML data

processing. We anticipate that this robustness enhances the chance that we can transfer process-

ing methods to data from other CML networks, particularly in developing countries like Burkina

Faso, where rainfall information is still scarce despite its high importance to the local population

(Gosset et al., 2016).
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Code availability

Interactive code to build the CNN and an example evaluation using the trained CNN are avail-

able at https://github.com/jpolz/cnn_cml_wet-dry_example. CML data was provided by

Ericsson Germany and is not publicly available in its full extent. RADOLAN-RW is publicly

available through the Climate Data Center of the German Weather Service (DWD) https://

opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/radolan/. We include

a small example data set with modified CML locations, the trained model weights and the pre-

processed RADOLAN-RW reference data together with the interactive code at https://github.

com/jpolz/cnn_cml_wet-dry_example.
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Chapter 3. CNN based rain event detection

Appendix A: Additional Figures

Fig. 3.A1; Fig. 3.A2

Figure 3.A1: Normalized confusion matrices of VALAPR (top) and VALSEP (bottom).

Figure 3.A2: Time series of a CML that is considered as erratic and is removed by the simple

filter for erratic CML data introduced in Graf et al. (2020a). There are no time periods, where a

reasonable rainfall estimation would be possible.
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Appendix B: Additional Table

Table 3.B1: Confusion matrix
reference

wet dry

p
re

d
ic
ti
o
n wet True wet (TP): #{ detected wet| reference wet} False wet (FP): #{ detected wet| reference dry}

dry Missed wet (FN): #{ detected dry| reference wet} True dry (TN): #{ detected dry| reference dry}

Table 3.B2: Performance metrics of rain event detection methods on VALAPR and VALSEP
Method TPR TNR ACC MCC AUC

V
A
L
A
P
R

CNN 0.74 0.97 0.95 0.69 0.94

σq80 0.79 0.79 0.79 0.38 0.85

σopt 0.61 0.95 0.91 0.52 0.83

V
A
L
S
E
P

CNN 0.77 0.97 0.96 0.69 0.96

σq80 0.82 0.78 0.78 0.35 0.87

σopt 0.63 0.92 0.90 0.44 0.84

Table 3.B3: Number of training epochs, MCC optimized threshold and resulting metrics for

different values of k, evaluated on VALAPR.

Method k Training epochs Threshold τ TPR TNR ACC MCC AUC

CNN 0 269 0.77 0.53 0.97 0.93 0.55 0.86

15 158 0.78 0.59 0.97 0.94 0.60 0.88

30 274 0.79 0.64 0.97 0.94 0.64 0.91

45 271 0.79 0.67 0.97 0.94 0.66 0.92

60 128 0.84 0.71 0.97 0.95 0.68 0.93

120 212 0.85 0.72 0.97 0.95 0.69 0.94

180 211 0.86 0.72 0.97 0.95 0.69 0.94

240 170 0.84 0.73 0.97 0.95 0.69 0.94

CNN+Meta 180 321 0.79 0.70 0.97 0.95 0.68 0.93

σq80 - - - 0.79 0.79 0.79 0.38 0.85

σopt - - - 0.61 0.95 0.91 0.51 0.83
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Chapter 4

Missing rainfall extremes in commercial

microwave link data due to total loss of

signal (Polz et al., 2023b)

Polz, J., Graf, M. (shared first authorship), Chwala, C.: Missing rainfall extremes in commercial

microwave link data due to total loss of signal, ESS, 10(2), e2022EA002456. https://doi.org/

10.1029/2022EA002456, 2023

License: CC BY-NC

Abstract

An important aspect of rainfall estimation is to accurately capture extreme events. Commercial

microwave links (CMLs) can complement weather radar and rain gauge data by estimating path-

averaged rainfall intensities near ground. Our aim with this paper was to investigate attenuation

induced total loss of signal (blackout) in the CML data. This effect can occur during heavy rain

events and leads to missing extreme values. We analyzed three years of attenuation data from 4000

CMLs in Germany and compared it to a weather radar derived attenuation climatology covering

20 years. We observed that the average CML experiences 8.5 times more blackouts than we would

have expected from the radar derived climatology. Blackouts did occur more often for longer CMLs

(e.g. > 10 km) despite their increased dynamic range. Therefore, both the hydrometeorological

community and network providers can consider our analysis to develop mitigation measures.

Plain Language Summary

Commercial microwave links (CMLs) are used to transmit information between towers of cellphone

networks. If there is rainfall along the transmission path, the signal level is attenuated. By

comparing the transmitted and received signal levels, the average rainfall intensity along the path

can be estimated. If the attenuation is too strong, no signal is received, no information can be

transmitted and no rainfall estimate is available. This is unfavorable both for network stability
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Chapter 4. CML blackout analysis

and rainfall estimation. In this study, we investigated the frequency of such blackouts in Germany.

How many blackouts per year are observed in a three year CML dataset covering around 4000 link

paths and how many are expected from 20 years of weather radar data? We observed that the

average CML experiences 8.5 times more blackouts than we would have expected from the radar

derived climatology. Blackouts did occur more often for long CMLs, which was an unexpected

finding. While only one percent of the annual rainfall amount is missed during blackouts, the

probability that a blackout occurs was very high for high rain rates. Both, the hydrometeorological

community and network providers can consider our analysis to develop mitigation measures.

4.1 Introduction

Microwave radiation is attenuated by hydrometeors through scattering and absorption processes.

For raindrops an advantageous relationship between specific attenuation k in dB/km and rainfall

rate R in mmh−1 exists. This power law known as the k-R relation is close to linear at frequencies

between 20 and 35 GHz (Chwala and Kunstmann, 2019). Commercial microwave links (CMLs)

use frequencies from 7 to 80 GHz and thus can be used to derive path averaged rainfall intensities

by comparing transmitted and received signal levels (TSL and RSL) (Uijlenhoet et al., 2018). In

theory, the k-R relation is valid for arbitrary rainfall intensities occurring in the underlying drop

size distribution simulations. In practice, the measurement of high attenuation values at a given

transmitted signal level has an upper bound when the signal cannot be distinguished from the

receiver’s background noise.

CML rainfall estimates were derived for many countries around the globe, e.g. the Netherlands

(Overeem et al., 2016b), Sri Lanka (Overeem et al., 2021), Burkina Faso (Doumounia et al., 2014)

and Germany (Graf et al., 2020a). CML-derived rainfall information can be used for applications

like streamflow prediction, urban drainage modeling, agricultural purposes and rainfall nowcast-

ing (Fencl et al., 2013; Brauer et al., 2016; Stransky et al., 2018; Imhoff et al., 2020). Especially

for flash flood prediction, precise precipitation maxima are of great importance (Cristiano et al.,

2017). While rainfall estimates from weather radars are known to underestimate high intensi-

ties (Schleiss et al., 2020), rain gauges lack spatial representativeness (Sevruk, 2006). CMLs can

fill this information gap by estimating path averaged intensities at path lengths of a few kilometres.

Recent studies on the quality of CML rainfall estimates suggest a good agreement with radar

and rain gauge estimates (Graf et al., 2021b; Overeem et al., 2021). However, missing periods

in the signal level time series might be excluded e.g. when comparing CML time series against

a path-averaged radar reference or rain gauges. Such periods can occur due to hardware failure,

maintenance or outages in the data acquisition. Additionally, network providers usually design

the hardware in such a way that transmission outages due to high attenuation (blackouts) are

allowed to occur for a certain amount of time per year. The International Telecommunication

Union (ITU) recommends a minimum availability of 99.99% which would allow up to 52 minutes

of total loss of signal per year (ITU-R, 2017).
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Figure 4.1: a)-d) show TSL and RSL time series during blackout gaps from four CMLs. Rainfall

intensities are derived from RADKLIM-YW along the CML’s paths. e) gives the minimal and

maximal TSL and RSL values of all 3904 CMLs for the analysed period of three years. f) shows

the distribution of the dynamic range directly calculated from CML signal levels with Equation

4.1.

Rainfall is the prevalent reason for CML signal attenuation. Hence, the amount of missing data is

in a close relationship with the local rainfall climatology. Because of blackouts rainfall estimates

from CMLs miss peak intensities, an error which propagates to further applications. Figure 4.1

shows examples of such blackouts in CML attenuation time series and the rainfall intensity ac-

cording to a weather radar reference. To date, it is unclear to what extent rain events are missed

due to blackouts.

Our aim is to answer two questions related to CML blackouts using a country-wide CML network

in Germany. The first question is how many blackouts each CML is experiencing in practice and

how this affects rainfall estimates. The second question is how much blackout time is expected

considering 20 years of high-resolution weather radar rainfall climatology and how this expectation

compares to the results derived from the CML data.

4.2 Data and Methods

Our analysis was based on observed blackouts within CML data collected in Germany and a

comparison to the expected frequency derived from weather radar climatology (Sec. 4.2.1). We

detected gaps in CML data that are assumed to be caused by attenuation (Sec. 4.2.2) and derived

path integrated attenuation values from path averaged weather radar rain rates (Sec. 4.2.3). Note

that all calculations were repeated for each CML individually.
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4.2.1 Data

CML data has been collected in cooperation with Ericsson Germany. The data acquisition system

described by (Chwala et al., 2016) has been used to record three years of instantaneously measured

RSL and TSL of 3904 CMLs distributed over Germany (2018 to 2020). The temporal resolution is

one minute and the power resolution is 0.3 or 0.4 dBm for RSL and 1 dBm for TSL. 25% of the

CMLs have a constant TSL value (e.g. Figure 4.1b). The other 75% use an automatic transmit

power control (ATPC), which can increase TSL if RSL decreases due to attenuation (e.g. Figure

4.1a,c,d). The CML path lengths range from 0.1 to 30 kilometers with frequencies from 7 to 40

GHz as shown in Figure 4.2d). In the context of rainfall estimation, CMLs are characterized by

two main features. First, the signal level sensitivity to rainfall, see e.g. Fig. 7 in Chwala and

Kunstmann (2019), which depends on the frequency, polarization and path length. Second, the

dynamic range of the signal level Drange, i.e. the difference between clear sky attenuation and

maximum measurable attenuation. The communication along a CML requires (de-)modulation of

information onto the carrier frequency. Different modulation schemes are used. In case of increased

attenuation along their path, the CMLs switch to more simple modulation. This decreases the

usable bandwidth but increases the robustness against transmission errors stemming from the

lower signal-to-noise ratio during attenuation events (Bao et al., 2015). If the RSL is too low,

i.e. close to the noise floor of the receiver, the error rate for demodulation becomes too large and

communication is cut off. Datasheets of CML hardware (e.g. from Ericsson (2012)) guarantee a

certain error rate at defined low RSL values rather than a fixed lower RSL limit where this cutoff

happens. Therefore, we need to estimate the empirical Drange of each CML as

Drange = TSLmax −RSLmin − TSLmin +RSLmax. (4.1)

We removed TSL and RSL outliers outside the intervals [-20 dBm, 50 dBm] and [-99 dBm, 0

dBm] respectively. TSLmax and RSLmin were the highest (lowest) values which occurred during

heavy attenuation events representing the strongest observed attenuation event for each single

CML (see Fig 4.1a)- d) as examples). Contrarily, we can assume that TSLmin and RSLmax are

occurring frequently during clear sky conditions. To account for individual outliers we removed

values for TSLmin and RSLmax when they occurred less often than approximately one hour in

total during the three years, i.e. using the 99.995% quantile. Without this filter Drange would

be overestimated for about half of all CMLs because there are individual rarely occurring high

RSLmax or low TSLmin values.

With the potentially abrupt onset of heavy rainfall causing a complete loss of signal, RSLmin

may have been undersampled by the 1-minute instantaneous data sampling. Therefore, the de-

rived Drange can be assumed to be the minimal dynamic range a CML has.

As reference we used RADKLIM-YW (Winterrath et al., 2018) from the German Meteorological

Service (DWD) which we linearly interpolated from a 5- to a 1-minute resolution to match the

CML resolution. RADKLIM-YW is a gauge-adjusted, climatologically corrected radar product

with a temporal resolution of five minutes and a spatial resolution of 1 km. The underlying

radar precipitation scans have been carried out every five minutes. Therefore, the radar rainfall
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intensities can be considered to be instantaneous measurements without temporal averaging. The

product is composed of 17 weather radars and adjusted by more than 1000 rain gauges with ad-

ditive and multiplicative corrections. The climatological correction accounts for range-dependent

underestimation and radar spokes caused by beam blockage, among others. RADKLIM-YW was

considered the best and highest resolved rainfall reference for this analysis and was available from

2001 to 2020. Following Graf et al. (2020a) we derived the path averaged rain rate R for each

CML as the sum of radar grid cell rainfall intensities ri weighted by their lengths of intersection

li with a given CML path of total length L as described by Eq. 4.2.

R =
1

L

∑
i

rili (4.2)

To be able to investigate a potential temperature dependence of observed blackouts we used the 2

meter temperature from the ERA5 analysis dataset provided by the European Centre for Medium-

Range Weather Forecasts Muñoz-Sabater et al. (2021). The temporal resolution is instantaneous

at a one hour frequency and the spatial resolution is 9 kilometers. Similar to Eq. 4.2 an average

along the CML path was computed by a weighted sum of ERA5-land grid cells intersected by the

CML path.

4.2.2 Detecting blackouts in CML data

Gaps in CML signal level time series can have various causes. In this analysis we were interested

in gaps caused by strong attenuation during heavy rainfall and therefore excluded periods which

could be attributed to one of the following causes. Gaps longer than 24 hours were assumed not to

be caused by heavy rain events. When more than 400 CMLs exhibited a gap at the same time, we

excluded this time step. The reasoning behind this value is that we assumed a partial or complete

outage of our data acquisition system which polls the data in several batches of 400 to 500 CMLs

every minute. Gaps occurring during a period where a seven-day rolling mean of the RSL was

below -60 dBm were removed. This was done, because we can assume that there is a long-term

transmission disturbance, i.e. partial beam blockage due to a growing tree or due to ice cover on

the antenna during consecutive winter days with temperatures below freezing point, since none of

the CMLs in our dataset has a 3-year median RSL below -60 dBm. That is, all our CMLs have

their long-term baseline RSL level during clear sky conditions above -60 dBm. Around 0.2% of

all RSL values are removed from the analysis by filtering data acquisition gaps and long term

transmission disturbances.

The actual detection of blackout gaps is done with the remaining CML data based on the following

rule. A gap is defined as a blackout gap if either the last valid RSL before, the first valid RSL

after this gap, or both values were below -65 dBm. Examples of such automatically detected

gaps are shown in Figure 4.1a-d). The median RSL levels within our dataset are well above

-65 dBm. Therefore, we chose this threshold to select only events with attenuation typical of

heavy rain events. The thresholds we chose for filtering the data and detecting the blackout gaps

proved to be robust when applied to our dataset where the CML hardware and data acquisition
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are homogeneous Chwala et al. (2016). However, they might need adjustment if our method is

applied for CML datasets with different characteristics.

We grouped observed blackouts into reference rainfall intensity bins and computed the average

amount of observed blackout minutes nobs per year for each CML. In addition, nobs was normalized

by applying the factor

favail =
#{ minutes in observation period}
#{ minutes with valid observations}

(4.3)

for each CML to account for missing time steps in the CML data.

4.2.3 Deriving a blackout climatology from radar data

In theory, a blackout due to heavy rainfall should be expected whenever the path integrated

attenuation (PIA) exceeds the CML’s dynamic rangeDrange. We estimated a blackout climatology

using 20 years of instantaneous radar measurements. A radar derived PIA was calculated by

individually applying the k-R relation to the rain rate ri of the i-th radar grid cell intersected

by a CML path. This procedure was chosen over applying the k-R relation to the path averaged

rain rate to minimize errors due to the spatial variability of rainfall along the path as explored by

Berne and Uijlenhoet (2007). Hence, we calculated

PIA =
1

L

∑
i

arbi li + waa (4.4)

using coefficients a and b, derived from the ITU recommendation ITU-R (2005), which depend on

the CMLs frequency and polarization. The intersection length of CML path and radar grid cell

i is denoted li. Additionally, a constant waa =3 dB accounting for the wet antenna attenuation

(WAA) caused by rain drops on the cover of the CML antennas was added (van Leth et al.,

2018). We chose a value similar to Leijnse et al. (2008); Schleiss et al. (2013). We assumed a high

constant value which is reasonable for peak rainfall intensities. Whenever PIA was larger than

Drange, the CML was expected to show a blackout gap. Thus, we derived the cumulative number

of expected blackout minutes nexp(Drange) as the average number of timestamps per year where

PIA> Drange multiplied by five due to the radar’s instantaneous sampling rate of five minutes.

We applied Eq. 4.3 to nexp according to the radar availability along CML paths. Due to RSLmin

undersampling, Drange might be higher in reality than estimated. In turn, nexp should be lower

than estimated, i.e. we would expect nobs to be smaller than nexp.

4.3 Results

4.3.1 CML signal levels and dynamic ranges

The distribution of TSLmin and TSLmax is defined by hardware configuration. The distribution

of RSLmin and RSLmax depends on TSL, path length and path loss. The spread of observed

RSLmax is lower than the spread of observed RSLmin. The distribution of the dynamic range

estimate is shown in Figure 4.1f). The observed Drange was on average 40.5 dB with a minimum

of 15.2 dB and a maximum of 74.3 dB.
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Figure 4.2: a) shows the distribution of the reference rainfall intensities in green. For each bin

the fraction of gaps in the CMLs RSL time series and the fraction of the detected blackout gaps

are shown in light and dark blue. b) and c) show the same for the longest (> 10.5 km) and

shortest (< 4.0 km) quartile of all CMLs, respectively. Note that gaps that were attributed to,

e.g. failure of the data acquisition, have been removed as described in Sec. 2.1 for a), b) and

c). d) shows the maximal rainfall intensity derived from the CMLs estimated with the rainfall

retrieval methodology from Graf et al. (2020a) and Polz et al. (2020). e) shows the respective

maximal attenuation observed at each CML during the analysed three years.
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4.3.2 Observed CML blackout gaps

Figure 4.2a) shows a histogram of path-averaged radar rainfall intensities. The higher the path-

averaged rainfall intensity the less frequently it occurred. For each bin the fraction of CML data

gaps which were detected as blackout gaps are shown (dark blue). In addition, the fraction of all

gaps that have not been detected as blackout are shown (light blue). Note that gaps that were

attributed to, e.g. failure of the data acquisition, have been removed as described in Sec. 4.2.1.

The fraction of gaps is increasing quickly until 50 mmh−1 and then less steep up to 125 mmh−1.

For very high intensities above 125 mmh−1 the sample size was less than 50 minutes per bin.

Therefore, the fraction of all gaps, including detected blackout gaps, was becoming sensitive to

the occurrence of individual events and hence the statistics were less robust. Overall, around 95%

of the gaps during rainfall in the radar reference were detected as blackout gaps. This fraction

varied for the highest observed rainfall intensities due to the small sample size. Based on the statis-

tics from Figure 4.2a), CMLs missed on average 1% of the yearly rainfall sum during blackout gaps.

The quartile of long CMLs, i.e. longer than 10.5 km, in 4.2b) showed a higher fraction of (blackout)

gaps. Additionally, path-averaged rainfall intensities are lower on average as longer paths average

out peak intensities. The quartile of short CMLs , i.e. shorter than 4.0 km, shows fewer (blackout)

gaps and higher rainfall intensities. This pattern is also visible in 4.2d) and e) where the maximum

instantaneous rainfall intensity and attenuation from each CMLs observations are shown. While

the maximum attenuation increased with length, the maximum observed path-averaged rainfall

intensity decreased. The maximum observed rainfall intensity from CMLs with 600 mmh−1 (and

several events above 250 mmh−1 all beyond the figures colorscale) is well above the maximum

intensity of the path averaged reference product. Overall, shorter CMLs show fewer blackouts

during heavy rainfall.

4.3.3 Expected blackout gaps derived from radar based attenuation cli-

matology

Expected PIA values along each CML path were derived using Equation 4.4 and 20 years of

RADKLIM-YW data. Figure 4.3 shows path-averaged rain rate and PIA percentiles of the full

20-year dataset corresponding to the highest 60, five or one minutes per year and the 20-year

maximum for individual CMLs (i.e. 60 minutes per year corresponds to the highest 0.011415526

percent in the data). The expected PIA was increasing with CML length, while the path averaged

rain rate was decreasing. The five-minute PIA exceedance level (see Figure 4.3 second column)

was between 10 dB (1st percentile), occurring mostly for shorter CMLs, and 53 dB (99th per-

centile), occurring mostly for longer CMLs. On average, a path-average rain rate of 42.8 mmh−1

and a PIA of 32.7 dB were exceeded for five minutes per year and a path-averaged rain rate of

17.9 mmh−1 and a PIA of 13.5 dB were exceeded for 60 minutes per year.

The decrease of path-averaged rain rate exceedance levels with CML length was similar for all

frequency bins, while the increase of PIA was higher for higher frequencies. For all frequencies,

the respective de- or increase was higher for more extreme values, i.e. comparing the 20 year
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Figure 4.3: Rainfall and attenuation climatology for individual CMLs based on 20 years of

RADKLIM-YW. The exceeded path-averaged rain rate and PIA along each CML path of a given

length and frequency for at least 60, five and one minutes per year and the maximum rain rate

occurring once in 20 years are shown in the four columns. The top two rows show rain rate and

PIA (same color scale) as length against frequency scatterplots. Below, the same rain rate and

PIA exceedance levels are compared to the CML length data points are shown for six frequency

bins. The respective linear regression lines are shown with values for slope (S), correlation (C)

and p-value (P).
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maximum to 60 minutes per year, while the correlation was decreasing. The p-value was close to

zero in all cases showing very high statistical significance.

Using the expected PIA values and our estimates of Drange we calculated nexp which is shown

in the second column of Figure 4.4). The majority of Drange was between 30dB and 50dB with

higher values for longer CMLs (Figure 4.4 first column). Even though Drange was increasing with

length, nexp was also increasing with length.

4.3.4 Comparison of observed and expected blackouts

Drange and the number of observed (nobs) and expected nexp blackout minutes per year are shown

in Figure 4.4 for the individual CMLs length and frequencies and shown for each length in six

frequency bins. Drange was increasing with CML length for all frequency bins except for 5 GHz

to 10 GHz. We observed that nexp and nobs increased with CML length. However, nexp showed

a smaller slope than nobs. The correlation between length and nobs was low, but significant. The

slope was strictly positive and increasing with higher frequencies, though.

Longer CMLs missed a higher percentage of of high rainfall intensities than shorter CMLs (see

Figure 4.2b) and c). According to nexp a 99.99% availability margin (as recommended by the ITU

which is less than 60 minutes of blackouts per year) should have been observed for all CMLs. In

practice, i.e. for nobs, the 99.99% margin (60 minutes) was exceeded for the longest CMLs in each

frequency band. We found this to be true throughout all frequency bins except 5 GHz to 15 GHz.

In Figure 4.5, nexp is directly compared to nobs. The mean of nobs was 6 times higher than

the mean of nexp. The 99th percentiles of nobs and nexp were 207.2 and 17.5 minutes. Higher

values are considered as outliers. On average nobs was twelve times higher than nexp for all CMLs

where nexp > 0 and 8.5 times higher if outliers were excluded. Taking the median instead of the

mean, the value is 4.6 independent of outliers included or not. The average nobs for CMLs where

nexp = 0 was 19.4 minutes and the median was 3.2 minutes. 95.0% of all CMLs showed more

observed blackout minutes than expected, i.e. nobs

nexp
> 1. For 47.6% of the CMLs we observed

more than five times more blackouts than expected and for 22.8% we observed more than 10 times

more blackouts. A linear regression excluding outliers shows an additive increase of 11 minutes

and a multiplicative increase of a factor 2. However, the correlation of 0.29 was low.

4.4 Discussion

4.4.1 Effects of CML length on blackout gaps and network design

The result that short CMLs have a lower likeliness to experience a blackout gap than longer

CMLs was unexpected, because we expected the dynamic range to increase with CML length to

account for the increasing PIA. Our empirical dynamic range estimates indeed show an increase

with length, but it is not sufficient to compensate the even larger increase of PIA. Also, the path-

averaging effect results in lower peak intensities of the path-averaged rain rates which decreases

the attenuation per kilometer of CML length.
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Figure 4.4: In the three columns Drange (left), nobs (middle) and nexp (right) are compared

for each CML. The top row shows the respective variable on the color scale of a length against

frequency scatterplot. Below, the three variables are shown against the CMLs length for six

different frequency bins. A linear regression line and its values for slope (S), correlation (C) and

p-value (P) is given for each of the scatter plots.
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Figure 4.5: The observed number of blackout minutes per CML shown is compared to the number

of expected blackout minutes in the scatter density plot, where the dashed black line corresponds

to a 1:1 relation and the solid black line corresponds to a 5:1 relation. The orange line shows the

best linear regression fit with a slope of 2.0 and a correlation (C) of 0.29. Outliers above the 99th

percentile, i.e. nobs > 207.2 or nexp > 17.5, are excluded from the linear regression.

Figure 4.6: a) and b) show the observed and expected number of blackouts per day and month

between 2018 and 2020. c) shows the mean 2 meter temperature along all CMLs derived from

ERA-5-land. d) shows the observed number of blackout minutes per CML per 3 hours compared

to the average ERA5-land 2 meter temperature along the link path during the same period. The

red line in c) and d) indicates the 4°C threshold below which mixed type precipitation is more

likely. 17.7% of all observed blackouts occurred below this threshold.

90



4.4. Discussion

We found this difference between short and long CMLs in both our CML dataset and our radar-

based attenuation climatology. Since observed and expected blackouts are based on independent

methodological assumptions, we are confident that the effect is real. One potential explanation is

that the path-averaging effect of peak intensities is overestimated during planning of the CMLs

availability, so that longer CMLs experience more PIA than expected.

Our findings show potential to improve planning for future CML installations. Most prominently,

our results suggest to increase the dynamic range of long CMLs. ITU recommends that the actual

path length is multiplied by a so-called distance factor when calculating long-term statistics of

rain attenuation (ITU-R, 2021). This factor significantly reduces the effective length (which is

used for the calculation of path attenuation exceedance levels from rain rate exceedance statistic)

of longer CMLs, e.g. the factor is approximately 0.5 for a 10 km CML with 20 GHz. Our findings,

that longer CMLs experience more blackouts then shorter ones, suggest that this reduction of

effective length of a CML for the calculation of path attenuation statistics is too strong, resulting

in longer CMLs being planned with a too low Drange. Our radar-based exceedance probability

can be used to estimate the potential increase of blackouts with CML length on the one hand.

The total number of blackouts should be expected to be much higher on the other hand, which

requires an additional increase of the dynamic range for all CMLs. As the ITU-recommended

99.99% availability was satisfied in most cases, this recommendation may be more urgent for

hydrometeorological applications than network stability.

4.4.2 Implications of blackouts on CML rainfall estimation

Previous studies which compared CML rainfall information against reference data, naturally con-

sidered blackouts as missing values and little attention was payed to their implication on CML

rainfall estimation. Our results confirmed that their impact on annual precipitation sums is in

fact low with around 1% .

However, blackout gaps do impact CML-derived rainfall maps on shorter time scales and extreme

value statistics in general, because extreme values are lost. The importance of this effect is illus-

trated by Figure 4.2 which shows the occurrence of blackouts during certain radar rainfall rates.

The probability of a blackout at path-averaged rainfall intensities beyond 100 mmh−1 is higher

than 40%. To interpret such maximum observable path-averaged rainfall rates the path-averaging

effect of the CML observation needs to be taken into account, which is different from point-like

observations.

Since we observed that shorter CMLs have a much lower probability of blackout gaps, there cannot

be a general conclusion about the capability of a CML network to capture rainfall extremes. We

suggest several possibilities to deal with blackouts associated with higher rainfall estimates. For

applications requiring estimates of rainfall maxima with high temporal resolution, only short

CMLs could be used. Another solution could be to fill RSL during detected blackout gaps with

the minimal observable RSL value. Although the true maxima cannot be recovered, this could be a

91



Chapter 4. CML blackout analysis

reasonable first step to reduce the considerable underestimation of high rain rates in CML-derived

rainfall maps.

4.4.3 Underestimation of blackouts through radar-based attenuation

climatology

Our results also have potential implications for radar rainfall estimates. We observed that the av-

erage CML experienced 8.5 times more blackouts than expected from the radar-based climatology.

The underestimation occurs even though our dynamic range estimate is lower than in reality due

to undersampling of RSLmin and the consideration of 3dB WAA. Although false positive blackout

detection can not be excluded with certainty, manual checks of the blackout gap detection (see

Graf et al. (2022a)) confirmed the correct magnitude of observed blackouts for the vast majority

of CMLs.

Therefore, there is evidence that radar-derived path-averaged rain rates and the related PIA could

underestimate extreme values. This is supported by studies reporting that gauge-adjusted radar

products often underestimate heavy rainfall (e.g. Schleiss et al. (2020)). This underestimation

could be explained by the different spatial integration characteristic of CML and radar. Another

reason for the underestimation are effects that occur in combination with rainfall, e.g. hail, that

may lead to unexpected high attenuation values, but they may not lead to high weather radar

rainfall estimates due to quality control and attenuation of the radar signal.

Melting hydrometeors like wet snow or sleet cause attenuation of CML signal larger than their

rainfall equivalent (e.g.Tjelta and Bacon (2010)). We tested whether this effect influenced the

number of observed blackouts by comparing blackout occurrences to the temperature along the

CML paths derived from ERA5-land. Figure 4.6 shows the three-year time series of daily and

monthly observed and expected blackouts with the daily mean temperature from ERA5 as well as

a scatter density comparison of temperature and observed blackouts occurring in 3-hour periods.

Similar to van Leth et al. (2018) we assumed that almost all precipitation above 4°C is liquid. We

found that 17.7% of all observed blackouts occurred below 4°C, while the majority was centered

around 20 degrees. This shows that the contribution of melting hydrometeors at temperatures

below 4°C is not high enough to fully explain the underestimation of blackouts through weather

radar data. It could also be observed that, as expected, blackouts rarely occur at negative tem-

peratures. We conclude that despite the high spatial and temporal resolution, the weather radar

data is not sufficient to fully explain CML blackouts.

4.5 Conclusions

During extreme heavy rain events, CMLs may experience blackouts, i.e., complete loss of signal.

Our objectives were to determine the impact on rainfall estimation, the occurrence of blackouts

in a country-wide network of 3904 CMLs and to determine if these numbers were consistent

with the theoretical number of occurrences of blackouts derived from a 20-year climatology of a

high-resolution weather radar product. On average, CMLs experienced 20 minutes of blackout
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per year and the average CML experienced 8.5 times more blackouts than the radar climatology

suggested. Shorter CMLs showed fewer blackouts in both the observed and theoretically derived

data. Although the amount of rainfall missed was small compared to annual sums, the observed

probability of blackouts during path-averaged radar rainfall intensities beyond 100 mmh−1 was

more than 40%, which impacts CML rainfall estimates of individual heavy rainfall events on short

timescales. Especially surprising was the increase of blackouts with CML length. Therefore, we

suggest that the CML research community should be aware of this limitation and the proposed

mitigation measures. Finally, this study fills a knowledge gap on the distribution of blackouts in

CML data and weather radar derived attenuation climatology which can be considered in future

CML infrastructure planning.
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Abstract

Study Region: The study region is Germany and two sub-regions in Germany, i.e. the state of

Rhineland-Palatinate and the city of Reutlingen.

Study Focus: Opportunistic rainfall sensors, namely personal weather stations and commercial

microwave links, together with rain gauge data from the German Weather Service, were used in

different combinations to derive rainfall maps with a geostatistical interpolation framework for

Germany. This kriging type framework considered the uncertainty of opportunistic sensors and

the line structure of commercial microwave links. The resulting rainfall maps were compared to

two gauge-adjusted radar products and evaluated to three reference gauge datasets in the respec-

tive study regions on both a daily and hourly basis.

New Hydrological Insights for the Region: The interpolated rainfall products from opportunistic

sensors provided good agreement to the reference rain gauges. The dataset combinations including

information from the opportunistic sensors performed best. The addition of rain gauges from the

German Weather Service did not consistently lead to an improvement of the interpolated rainfall

maps. On the country-wide, daily scale the interpolated rainfall maps performed well, but the
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gauge-adjusted radar products were closer to the reference. For the regional and local scale in

Rhineland-Palatinate and Reutlingen with an hourly resolution, the interpolated rainfall maps

outperformed the interpolated product from DWD rain gauges and showed a similar agreement

to the reference as the radar products.

5.1 Introduction

The reliable measurement of rainfall is crucial for monitoring and understanding the hydrologic

cycle and climate variability. It delivers important information for water-resource management,

agriculture, urban planning, as well as for weather, climate, and hydrological modelling. Several

measurement devices for rainfall observations were developed in the past. While rain gauges of

different types are used since the nineteenth century, weather radar observations are operated for

the past decades. The spatial and temporal coverage of such measurement networks are unevenly

distributed over the globe. Compared to other regions, the rain gauges and weather radars in Ger-

many form a dense observation network (Lorenz and Kunstmann, 2012). Still, depending on the

spatial and temporal scale of a rainfall event, rainfall estimates can still be uncertain. For example,

small convective events can be underestimated by weather radars or even missed completely by a

network of rain gauges. The respective disadvantages of the individual measurement systems are

the reason behind potentially uncertain estimates of the spatio-temporal distribution of rainfall

(Cristiano et al., 2017). Quantitative precipitation estimates (QPE) from weather radars suffer

from an uncertain Z-R relationship, beam blockage and ground clutter amongst others (Berne and

Krajewski, 2013). Rain gauges can underestimate rainfall due to wind but more importantly the

spatial and temporal variability of rainfall is not fully captured by point observations (Pollock

et al., 2018).

New opportunities of measuring meteorological data are emerging with the increasing number

and availability of opportunistic sensors in the last years (Zheng et al., 2018). Clark et al. (2018)

used humidity, temperature and air pressure from personal weather stations (PWSs) to track the

path of a hailstorm. The same variables from PWSs together with air pressure, temperature, and

radiation from cell phones as well as rainfall estimates from commercial microwave links (CMLs)

were used to examine a frontal system and the urban heat island effect over Amsterdam (de Vos

et al., 2020).

Various different opportunistic rainfall sensors have already been investigated: the attenuation

along satellite TV link path due to rainfall was exploited (Barthès and Mallet, 2013; Mercier

et al., 2015). Windshield wiper frequency regulated by the optical rainfall sensor of a car were

used to derive binary rainfall information (Mahoney and O’Sullivan, 2013; Rabiei et al., 2013).

Rainfall estimates were derived from camera footage of rain (Allamano et al., 2015; Jiang et al.,

2019). With the emerging 5G network and the growing number of devices connected to the Inter-

net of Things, the number of potential sensors will further increase (Balsamo et al., 2018; McCabe

et al., 2017; Tauro et al., 2018). In this study we use rainfall data from PWSs and commercial
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microwave links (CMLs).

The nearly linear relationship between rainfall and the attenuation of microwave link signals op-

erating with frequencies between 10 and 40 GHz is known for several decades (Atlas and Ulbrich,

1977). With the growth of modern telecommunication infrastructure, for which CMLs provide a

large portion of the backhaul network, an increasing number of microwave links became available

and CMLs were introduced as opportunistic rainfall sensor almost 15 years ago (Messer et al.,

2006; Leijnse et al., 2007). Deriving rainfall estimates from CMLs can be challenging because of

several issues. Erratic signal behavior due to refraction, reflection, or multipath propagation as

well as unknown relation to meteorologic variables cause fluctuation of the signal (Upton et al.,

2005; van Leth et al., 2018). Likewise, wet CML antennas can cause additional attenuation during

and also after rainfall events until they are dry again (Fencl et al., 2019). Rainfall estimates from

CMLs were derived for diverse regions in the world mainly in Europe (e.g. Andersson et al., 2017;

Fencl et al., 2017; Overeem et al., 2016b; Roversi et al., 2020; van de Beek et al., 2020), but also

for other countries as for example Israel (Ostrometzky and Messer, 2018), Brasil (Rios Gaona

et al., 2018), West Africa (Doumounia et al., 2014) and, China (Song et al., 2020). An overview

of the background and challenges in rainfall estimation from CMLs was given by Chwala and

Kunstmann (2019) and Uijlenhoet et al. (2018), respectively. Rainfall maps were derived from

CMLs, often neglecting the path-integrated nature of the estimated rain rate but rather using

the center of each CML as a theoretical point measurement (Graf et al., 2020a; Overeem et al.,

2016b). Some dedicated mapping algorithms were introduced but not analyzed on a larger scale

(Liberman et al., 2014; van de Beek et al., 2020; Haese et al., 2017)

The potential and challenges using rainfall data from PWSs were first shown by de Vos et al.

(2017). PWSs also provide other meteorological information (Bell et al., 2013; Jenkins, 2014), but

for our study, from here on, PWSs will only refer to personal weather stations measuring rainfall.

PWSs are rain gauges which are set up by individual citizens. Data from PWSs are prone to

numerous error sources ranging from calibration issues to poor maintenance and unfavourable po-

sitioning. Therefore, a thorough quality check of PWSs data is necessary. An intrinsic approach

using information of neighboring PWSs was tested in the Netherlands (de Vos et al., 2019a). The

Norwegian Meteorological Institute deployed an automatic data quality control for their meteoro-

logical station data which is supplemented by opportunistic data e.g. for temperature (B̊aserud

et al., 2020). Another approach presented by Bárdossy et al. (2021) used data from a trustworthy

primary network and a geostatistical method combined with rank statistics. This approach is also

used in our study to remove and bias correct suspicious PWSs and CML data with modifications

of the filtering approach to account for the line characteristic of the CML data.

This study aims to provide 1) a large scale evaluation of rainfall estimates from two types of

opportunistic rainfall sensors, 2) a geostatistical interpolation framework and 3) a related perfor-

mance analysis of the derived rainfall maps using data from opportunistic sensors, official rain

gauges and various combinations of these datasets. The performance analysis is carried out on

different spatial and temporal scales. The interpolation framework takes the specific character-

istics and uncertainties of the sensors into account and combines rainfall information from point

97



Chapter 5. OS rainfall across spatio-temporal scales

Figure 5.1: Availability of PWS and CML data for the years 2018 and 2019 before and after the

processing and filtering.

and line sources with individual weights. These sensors are official rain gauges from the German

Meteorological Service (DWD), PWSs data obtained from Netatmo, and CML data obtained from

Ericsson, in Germany. The question we raise is, how accurate can opportunistic sensors measure

rainfall on a country wide, regional, and local scale? Specifically: in Germany, the federal state

of Rhineland-Palatinate, and the city of Reutlingen, respectively?

5.2 Study region and data

5.2.1 Study region

The study region is Germany and our analysis was carried out on a national scale for the whole of

Germany with 357,386 km2, on a regional scale for the state of Rhineland-Palatinate with 19,847

km2 and on a local scale for the city of Reutlingen with 87 km2. Rainfall in Germany is falling

year-round with a peak during the summer months. The driest regions are located in the northeast

with mean rainfall amounts of 450 mma−1 year. Highest rainfall amounts occur in the Central

German Uplands with over 1,000 mma−1 and in the Alps with up to 2,000 mma−1. Rainfall in

the northern part of Germany is mostly influenced by synoptic driven processes while convective

events become more frequent southwards. Rhineland-Palatinate is situated in the mid-west of

Germany with yearly rainfall amounts between 500 and 800 mm between the Rhine Valley and

the low mountain ranges of Taunus and Hunsrück. The city of Reutlingen is located in the south-

western state of Baden-Wuerttemberg approximately 30 km south of the state capital Stuttgart.

The density of hydro-meteorologic measurements over Germany, and therefore also for Rhineland-

Palatinate and Reutlingen, is high compared to most other parts of the world (Lorenz and Kun-

stmann, 2012). The German Weather Service (DWD) operates a weather radar network and

roughly 2,000 rain gauges with daily and hourly temporal resolution. Several state agencies and
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private companies additionally operate hundreds of rain gauges, which are partly used in rainfall

products of the DWD. The continuous measurement of precipitation in Germany started more

than a hundred of years ago with many gauge locations being sampled for multiple decades (Hell-

mann, 1907). Therefore, the measurement of precipitation with additional opportunistic sensors

and the generation of interpolated products from these sensors would not seem to be of primary

importance in Germany.

Yet, the spatio-temporal variability of rainfall cannot be captured completely with common prod-

ucts derived from rain gauges and weather radars. This is especially the case for short duration

and high intensity rainfall which can cause flash floods (Berne et al., 2004; Emmanuel et al., 2012;

Ochoa-Rodriguez et al., 2015). A striking example is the devastating flash flood in the city of

Braunsbach in 2016. In a 10 km radius around Braunsbach, only one rain gauge with a daily

resolution is located. Radar data underestimated the rainfall measured from the rain gauge by 30

percent, therefore it is uncertain whether the radar measurements of the peak rainfall several kilo-

meters away from the gauge was estimated correctly (Bronstert et al., 2018). With the increasing

density of opportunistic sensor networks, like the ones used in this study, the probability that such

sensors detect small scale events and their variability is also increasing. We use the opportunity

of having several independent rain gauge networks in Germany to evaluate the rainfall maps de-

rived from opportunistic rainfall sensors with our mapping approach on three different scales: On

the country-wide scale for the whole of Germany, on the regional scale for Rhineland-Palatinate

and on the local scale for Reutlingen. We expect the higher network density of the opportunistic

sensors to be beneficial especially on the regional and local scale.

5.2.2 Opportunistic rainfall data

We use two types of opportunistic rainfall data, namely PWS data from the Netatmo network

(https://weathermap.netatmo.com) and CML data from Ericsson. Netatmo is a company selling

PWSs among other smart-home devices. Their basic PWS system (which provides measurements

of temperature, humidity, air pressure) can be extended with an unheated tipping bucket gauge

for rainfall measurement. These rain gauges have a collecting area of 125 cm2 and a temporal

resolution of five minutes. de Vos et al. (2019a) gives further technical details to Netatmo PWSs.

If the owner agrees, data from the PWSs is uploaded to Netatmo’s weather map. Data is then

available via an API in temporal resolutions down to five minutes. The used dataset consists of

all freely available PWSs data from Netatmo in Germany in 2018 and 2019. Fig. 5.1 shows their

continuously growing number of up to 15,000 by the end of our study period. The reason for the

decreasing numbers during winter was not investigated. A possible explanation could be battery

failure due to cold temperatures. The spatial distribution of PWSs in Germany follows roughly

the population density with most PWSs situated in urban areas as for example shown in the map

in Fig. 5.4.

CML data are typically not publicly available but need to be provided by telecommunication

providers. We receive data from 3,904 CMLs from Ericsson in Germany via a near-real time data

acquisition system (Chwala et al., 2016). The CML lengths range from 0.3 to 30 km and their
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frequencies from 10 to 40 GHz. The spatial distribution of CMLs is highly unbalanced throughout

Germany. We currently only have access to a subset of CMLs which is only a small part of the

more than 100,000 CMLs installed in Germany (Bundesnetzagentur, 2017). The distribution of

the CMLs in this subset is not representative for the general distribution of CMLs in Germany.

More information on the characteristics of this CML dataset are available from Graf et al. (2020a).

The analyzed periods are the summer season from April to October 2018 and 2019 as shown in

Fig. 5.1. For previous years, the availability of PWSs was significantly lower and our country-

wide data acquisition for CMLs in Germany started in August 2017. We excluded months with

high probability of snow, since performance for both sensors decreases in winter. PWSs are not

heated and CML suffer from snow and ice on their antennas as well as from large uncertainties of

the relation between attenuation and snow and melting snow. Melting sown for example causes

a many times higher attenuation than rain resulting in large overestimation of the precipitation

event. An overview of all used datasets and their respective usage is given in Tab. 5.1.

5.2.3 Gauge and radar data

We use two different gauge datasets operated by the DWD. The first gauge dataset consists of

968 automatic pluviometers. We use the hourly and quality checked data from these rain gauges

(referred to as DWDauto from here onwards) in the interpolation framework (Sec. 5.3.3). The

second gauge dataset (referred to as DWDman) consists of 1,062 manual rain gauges with a daily

resolution. The collection diameter is 200 cm2 and the gauges are heated. This dataset is used

as a reference for the country-wide evaluation as it is independent of the DWDauto data. Both

DWD gauge datasets have a density of roughly one gauge per 300 km2. A network of 169 hourly

rain gauges in Rhineland-Palatinate is used for the evaluation on a higher temporal resolution.

These gauges are operated by the State Agrometeorological Agency of Rhineland-Palatinate. This

dataset has a spatial density of roughly one gauge per 100 km2. For the evaluation on the local

scale we use hourly data from ten rain gauges situated in the city of Reutlingen. The OTT plu-

viometers form a dense network of one gauge per 9 km2.

We use two radar datasets in this study, namely, RADOLAN-RW and RADKLIM-YW provided

by the DWD. RADOLAN-RW is a near-real time product with an hourly resolution. It is up-

dated with 30 minutes lag time. The gridded dataset covers Germany with 900 by 900 grid cells

with a 1 km resolution. It is a composite of 17 weather radars adjusted via a weighted combina-

tion of additive and multiplicative corrections from the DWDauto gauge network (Bartels et al.,

2004; Winterrath et al., 2012). RADKLIM-YW is based on the same radar and gauge data as

RADOLAN-RW but undergoes climatological adjustments, accounting for e.g. range-dependent

underestimation and radar spokes due to beam blockage (Winterrath et al., 2018). The adjust-

ments are carried out with hourly data (RADKLIM-RW), but are also applied to the 5-minute

data (RADKLIM-YW) which we use here. The performance of radar and rain gauge products

from the DWD were already analysed. While especially during winter and in small catchments

the differences in daily, areal rainfall could exceed 50% (Kneis and Heistermann, 2009; Meissner

et al., 2012), the mean yearly rainfall sums of DWD rain gauges and radar products compare well
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(Kreklow et al., 2019).

Table 5.1: Overview of used datasets: a) input data for the interpolation framework, b) radar

datasets used for comparison, and c) reference rain gauge datasets used for the evaluation

Name Number of sensors Resolution Operator

a) Rain gauge and opportunistic data used in the interpolation framework

DWDauto 968 hourly DWD

(filtered) PWSs 10,500 - 16,200 hourly private/Netatmo

(filtered) CMLs 3,150 - 3,600 hourly Ericsson

b) Radar datasets used for comparison

RADOLAN-RW 900x900 grid hourly DWD

RADKLIM-YW 1,100x900 grid hourly DWD

c) Reference gauge datasets

DWDman 1,062 daily DWD

RLP 169 hourly State Agrometeorological

Agency Rhineland-Palatinate

RT 10 hourly City of Reutlingen

5.3 Methods

5.3.1 CML and PWS data preparation and processing

CML data cannot be converted to a rainfall estimate directly. Several processing steps are re-

quired to obtain rain rates from raw CML data. We use the processing routine described in Graf

et al. (2020a) with the exception of the classification of wet and dry periods where we use an

improved method presented by Polz et al. (2020): First, CMLs with erratic data (e.g. from drifts,

jumps or high levels of noise) are removed from the dataset using two filters based on monthly

statistics of the CML raw data. Data gaps shorter than 5 minutes are interpolated linearly. Then,

wet and dry periods are classified by a convolutional neural network trained to that specific task.

For each identified rain event the baseline of the signal is derived from the precedent dry period.

Using this event-specific baseline, attenuation values are calculated which are then corrected for

the additional attenuation caused by raindrops on the CML antennas. From the final rain-induced

attenuation the rain rate can be calculated using the k − R relation, where k is the specific path

attenuation (in dBkm−1) and R is the rain rate (in mmh−1). A detailed description of these steps

as well as a large scale analysis can be found in Graf et al. (2020a). We chose the new classification

of wet and dry periods from Polz et al. (2020) because it reduces the false-positive rate (FPR)

while keeping the false-negative rate (FNR) constant which is shown along with an evaluation of

the combination of both methods for one month for the whole of Germany in Fig. 9 of Polz et al.

(2020). All introduced CML processing routines can be found in the software package pycomlink

(2021). The resulting data consists of rain rates averaged along the CMLs path with one minute

temporal resolution. This data is then aggregated to an hourly resolution except for hours with

gaps longer than 5 minutes which were not interpolated in the first step.
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The reason for the five-minute interpolation, besides rare connection problems of the data acquisi-

tion system, is the engineering requirements of the CML network. For each CML the combination

of a given path length with a microwave frequency is chosen so that, on average, the path at-

tenuation due to heavy rain leads to a complete signal loss at the receiver only for some minutes

per year. Because the choice of the frequency and the path length are constrained - only certain

frequency bands are available, high frequencies are desired to allow more bandwidth, and path

length is determined by the locations of CML towers - the maximum rain rate before signal loss

is different for all CMLs. It can be as low as 40 mmh−1 but also above 150 mmh−1 e.g. for very

short CMLs (1 km or shorter) or for short CMLs (< 5 km) with low frequencies (< 20 GHz).

Therefore, for heavy rainfalls some CMLs do not provide accurate rainfall information.

The PWS data have been acquired via the Netatmo API in time steps of variable length of typically

5 minutes and aggregated to hourly resolution. Additional information regarding the Netatmo

data acquisition can be found in de Vos et al. (2020). Compared to the hourly data of the Netatmo

API, which accepts up to eleven missing five-minute values, we have removed all hours with more

than one missing five minute value.

5.3.2 Indicator correlation filter, event based filter and bias correction

The filtering and bias correction approach introduced by Bárdossy et al. (2021) was the basis for

filtering and bias correcting the PWS data in this study. The CML data was also treated with

this approach even though they already were pre-processed with pycomlink which removed the

worst performing CMLs from the dataset. Problems we still encountered in the CML derived rain

rates were strong overestimation of melting snow (evident in April and October) and other false

positive events caused by attenuation which is not induced by rain which rather liberal filtering

of pycomlink did not remove.

The main assumption behind the indicator correlation filter is that the specific PWS or CML

values might be wrong but their ranks are correct, especially for the most intense events. Us-

ing a reference network such as the DWDauto rain gauges, which are installed according to the

WMO guidelines, the dependence between the nearest neighboring stations is investigated. For

each location, the correlation value of the indicator series between the pairs of DWDauto-PWS or

DWDauto-CML is compared to the values between the DWDauto stations for similar separation

distances and time periods. Hereby, information on how precipitation varies in space is acquired

and PWS or CML locations with unreliable observations for high precipitation intensities are

identified. For the CML data we used an extended version of the indicator correlation filter to

account for the geometric line structure of the CMLs which is described in Appendix 5.6.2 while

the basic principle of the filter was unchanged.

The indicator correlation filter is applied on a yearly basis for all hourly PWS and CML data.

Figure 5.2 shows the results for the year 2019. After applying the filter, around 92% of the PWSs

and of the CMLs remained. The number of PWSs in Fig. 5.2 refers to the overall number of

PWSs providing data during 2019 while Fig. 5.1 shows the availability of PWS measurements at
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Figure 5.2: Indicator correlations for 1h temporal resolution and a quantiles level of 0.99 between

the PWS and CML networks and the nearest DWDauto (the reference network in this case) stations

before (left) and after (right) applying the filter for the year 2019. The orange dots refer to the

indicator correlation between the DWDauto network stations.

each point in time which causes the different values.

Even though the order of the values is assumed to be correct, the PWS and CML values remaining

after the indicator correlation filter might have an unknown bias. The bias varies individually for

each location and each observation. Therefore, the real precipitation amounts need to be esti-

mated. This is done for the observed hourly data. For this purpose, the precipitation distribution

functions of the DWDauto stations are used. For a target location and a given time step, using

the observed quantiles (PWS or CML), the corresponding DWDauto quantiles are derived and

the corresponding precipitation amount is interpolated. Through this procedure the possible bias

available at the PWS and CML locations is reduced. The resulting time series are used further

on in this study. A more detailed description of both the indicator correlation filter and bias

correction for the CML data can be found in Appendix 5.6.2.

While the indicator correlation filter removes opportunistic sensors for a whole year some remaining

sensors can suffer from erratic measurements for individual events. Possible reasons can be low

battery or clogged funnels for PWSs as well as outages in the data acquisition or attenuation

induced by other sources than rain for CMLs. We applied an event based filter after the bias

correction which uses the variogram of the next 30 DWDauto stations to cross-validate each sensor

in order to remove faulty values. If a sensors’ rainfall value differs too much from the value

estimated by the variogram of the 30 stations (here three times the kriging standard deviation)

it was rejected. In order to preserve higher rainfall values and to focus more on discarding false

zeros, this filter used the square root of the rainfall sum. This was the only modification of the

event based filter which first was shown in Bárdossy et al. (2021). Overall, this filter removed

around 0.6% of the PWS data and 1.5% of the CML data.
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5.3.3 Geostatistical interpolation framework

We developed a geostatistical interpolation framework which allows a combination of different

data sources and their specific features and geometric properties. Let {x1, . . . , xn} be the locations

of the DWDauto observation points, {y1, . . . , ym} the locations of the PWSs (after filtering) and

{L1, . . . , Lk} be the line segments of the CMLs (after filtering). The estimation of the precipitation

amounts Z at a given location x∗ is done by a combined kriging approach in which both the

increased uncertainty of the PWS and CML based precipitation is taken into account, and the

CML’s line structure is considered by using a block kriging type approach. The estimation is

obtained in the form

Z(x∗) =

n∑
i=1

λiZ(xi) +

m∑
i=1

αiZ(yi) +

k∑
i=1

βiZ(Li) (5.1)

With the additional condition of unbiasedness

n∑
i=1

λi +

m∑
i=1

αi +

k∑
i=1

βi = 1 (5.2)

The weights wT = (λ1, . . . , λn, α1, . . . , αm, β1, . . . , βk, µ) can be obtained by solving the linear

equation system

Aw = c (5.3)

µ is the Lagrange multiplier introduced to ensure the fulfilment of the unbiasedness condition

(5.2).
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γ̄(Lk, x1) . . . γ̄(Lk, xn) γ̄(Lk, y1) . . . γ̄(Lk, ym) γ̄(Lk, L1) . . . γ̄(Lk, Lk) + εL 1

1 . . . 1 1 . . . 1 1 . . . 1 0


(5.4)

and the right hand side of the equation is

cT = (γ(x∗, x1), . . . , γ(x
∗, xn), γ(x

∗, y1), . . . , γ(x
∗, ym), γ̄(x∗, L1), . . . , γ̄(x

∗, Lk), 1) (5.5)

Here for any pair of points, γ(xi, yj) is the variogram value corresponding to the vector xi − yj .

The combination of a point and a line segment requires a mean variogram value over the segment

γ̄(xi, Lj) =
1

|Lj |

∫
Lj

γ(xi, u) du (5.6)

and for the consideration of pairs of line segments Li and Lj one has to calculate the corresponding

mean value:

γ̄(Li, Lj) =
1

|Li||Lj |

∫
Li

∫
Lj

γ(u, v) du dv (5.7)
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The εy and the εL values in the diagonal of the matrix represent the uncertainty of measurements

of the PWSs and the CMLs respectively. In our approach we selected a 10 % error. Experimental

variograms were calculated for each one hour time step using the DWDauto only and the filtered

bias corrected PWS data only. The variograms were subsequently normalized, and a k-means

clustering algorithm was used to divide them into 4 different groups. Theoretical variograms were

fitted to each center of the cluster. The fitted variograms differed mainly in the range which was

between 12.5 and 40.0 km. The variograms based on the DWDauto data showed no nugget effect,

while the PWS based variograms had a nugget of about 10 %. This was the reason why the ε was

selected as 10 % of the sill. The consideration of the length and orientation of the line segments

is fully respected in this equation. If one would replace each line segment with its central point

(as done e.g. in Overeem et al., 2016a) the weights would be significantly different (see 5.A1 for

an example). All combinations of datasets and the respective interpolated products are given in

Tab. 5.2

Table 5.2: Interpolated rainfall products and their input data

Abbreviation Input data

DWDint DWDauto

PWSint PWS

CMLint CML

DWD CMLint DWDauto, CML

DWD PWSint DWDauto, PWS

PWS CMLint PWS, CML

DWD PWS CMLint DWDauto, PWS, CML

5.4 Results and Discussion

5.4.1 Cross validation of the interpolated rainfall products

A leave one out cross validation is used to compare the performance between the interpolated

products among each other at the location of the DWDauto stations for temporal aggregations

between one hour and 30 days. For the cross validation the target stations were removed for the

whole procedure, the filtering, the assessment of the distribution function and for the interpo-

lation of the precipitation amounts. This allows us to evaluate the performance of the different

interpolation products at the location of each DWDauto independently. As diagnostic measures,

the Pearson’s correlation coefficient (PCC), the coefficient of variation (CV) and the Kling-Gupta

efficiency (KGE) as well as the false positive (FPR) and false negative rate (FPR) are used. Their

definitions can be found in Appendix 5.6.3. Because DWDauto was also used in four of the seven

interpolation products, the validation was carried out as a leave-one-out cross validation. The

results are shown in Fig. 5.3 a) to c) for all DWDauto stations as validation stations and in d)

to f) for a selection of ten percent of DWDauto stations defined by the density of opportunistic

sensors in close vicinity which we call selected validation stations from here on.
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Figure 5.3: Performance measures of the cross validation from the interpolation framework for

different temporal aggregations. a) to c) show PCC, CV and KGE for all country-wide DWDauto

validation stations and d) to f) show PCC, CV and KGE for validation stations with more than

80 PWSs or CMLs in 20 km vicinity which have data available for the whole analysed period.

Those are the 10 percent of the validation stations which are surrounded by the most opportunistic

sensors.

Two groups of interpolation products are visible for all measures and both selections of stations.

This distinction was larger for the selected validation stations. One group contained PWSint and

the other combinations with PWSs, whereas the other group contained DWDint, CMLint and their

combination. PWSint and the other combinations with PWSs performed better for all three per-

formance measures. The interpolated products with opportunistic sensors had higher performance

measures for the selected validation stations. DWDint showed the worst performance for both all

and selected validation stations. The performance of opportunistic sensors increased when only

validations stations surrounded by many PWSs and CMLs were considered. We think that the

heterogeneous distribution of opportunistic sensor networks of CMLs and PWSs shown in the

map in Fig. 5.4 is the reason for this better performance. DWDauto with its more homogeneous

distribution performed similar between both validation station sets.

With increasing temporal aggregation the performance of all interpolated products increased. The

difference between all and selected validation stations was highest at short aggregations of one to

12 hours for PCC and KGE. For the aggregations over days, they were similar. This emphasizes
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the influence of quality and amount of sampling points when interpolating rainfall on sub-daily

temporal scales.

Overall, the combinations with PWSs had the highest performance values while the interpola-

tion product which used all three possible datasets (DWD PWS CMLint) was not the overall best

performing one, even though it contained the highest number of sampling points. A potential

explanation is that DWDint measurements are considered more reliable and hence have a higher

weight in the block kriging, however their spatial density is the lowest on average. We conclude

that the large number and the accuracy of the opportunistic sensors lead to a better interpolation.

The block kriging approach in the interpolation framework accounts for the integral characteristic

of the CMLs. The comparison to kriging with the center of each CML as point measurement

(CML pointint) done in the same manner as in Fig. 5.3 shows a higher PCC for the block kriging

approach (see Fig. 5.A2). For temporal aggregations, of one and two hours CML pointint leads to

higher KGE values. With the variance directly affecting KGE values, we assume that the reduced

variance in CMLint of block kriging is the reason for the lower KGE values.

5.4.2 Performance of interpolated rainfall products compared to gauge

datasets on different scales

The performance of the interpolated datasets is analyzed for the whole of Germany, a regional,

and a local subset with different, independent reference datasets. Additionally, two radar datasets

from the DWD are compared analogously to the reference data.

5.4.2.1 Country-wide, daily scale for Germany

For the country-wide scale we used data from manual rain gauges with a daily resolution from the

DWD (DWDman). The interpolated rainfall maps and radar product values for this evaluation are

taken at the respective grid cell of the locations of DMDman gauges. An overview of the DWDman

gauges, PWSs locations and CMLs is given in the map of Fig. 5.4 together with results of the

evaluation for this scale.

In general, the radar products match the reference data better than the interpolated products.

They have slightly higher PCC and KGE as well as a lower FPR. The comparison is not quite

fair, though. The radar products are based on measurements directly at each reference station’s

location while the interpolated rainfall fields have to rely on observation at a certain distance, a

distance that varies from hundreds of meters to tens of kilometers in the north-eastern part of

Germany. Nevertheless, the performance measures of the interpolated products are good. Looking

at the two radar products, RADKLIM-YW outperformed RADOLAN-RW except for FPR. This

leads to the assumption that the climatological adjustments of RADKLIM-YW, e.g. seasonal

correction of range dependent underestimation, improve this radar product not only for longer

aggregations times, from which the climatological corrections are derived, but also on a daily scale.
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Figure 5.4: Map of Germany with DWDman gauges (reference), PWS locations and CML paths,

boxplots of performance measures for the seven interpolated products as well as RADOLAN-RW

and RADKLIM-YW against the reference. The vertical dashed line separates the interpolated

products which are based on a single data set from the combined products and the double dashed

line separates the radar products. On the right, scatter density plots of daily PWS-CML and

RADOLAN-RW rainfall sums are compared to the reference

Among the interpolated products, the ones including PWSs compared better to the reference than

the others. The worst performance was obtained by the CMLint. These results are in accordance

with the cross validation. The scatter density plots show all daily rainfall values for PWS CMLint

and RADOLAN-RW against DWDman. The number of missed rainy days (false negative rate:

FNR) from the reference, visible along the x-axis in Fig. 5.4, was lower for the interpolated prod-

uct than for the radar product.

The performance of PWSint and the other combinations with PWSs is better compared to the

DWDauto product. The reason for this is the high spatial density resulting from the high number

of OS. This is true even though the OS are heterogeneously distributed in contrast to the more

homogeneously distributed DWDman. This means that hydrological modeling studies, which often

use data from rain gauge networks, can benefit from rainfall information derived from opportunis-

tic sensors. Requirements for such applications are the availability of opportunists sensors, the

acquisition of their data and a thorough quality control.

Similar to the cross validation, the subset of DWDman surrounded by the densest opportunistic

network were examined separately (see 5.A3). The results differ only slightly from the country-

wide analysis of Fig. 5.4. The range of the individual performance measures are more narrow

and PWSint and CMLint have a small improvement, similar to what was observed for the daily

aggregation results of the cross validation. This means that the density of opportunistic sensors

is sufficient for rainfall mapping in almost all parts of Germany except for the north-eastern part
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of Germany.

5.4.2.2 Regional, hourly scale for Rhineland-Palatinate

As reference on a regional scale 169 rain gauges with an hourly resolution operated by the

State Agrometeorological Agency of Rhineland-Palatinate (RLP) are used. An overview of the

Rhineland-Palatinate gauges, PWS locations and CMLs is given in the map of Fig. 5.5 together

with results of the evaluation for this scale. For the PCC all interpolated products with oppor-

tunistic sensors outperformed the DWDint product. PWSint and the other combinations with

PWSs performed almost as good as the radar products. The combination PWS CMLint reached

marginally higher PCC values than PWSint. CMLint has the highest (negative) bias. This can

be caused for example by the integral character of the CML underestimating the highest rainfall

events and the heterogeneous distribution of the CMLs. The FPR (not shown in the plot for the

evaluation at this scale) of all products is 5 times smaller than FNR, with the best performance

for PWSint and PWS CMLint. RADOLAN-RW shows more over- and underestimation of the

highest hourly rainfall events which can be seen in the scatter plot. The PWS CMLint product

underestimates the highest rainfall events, which could be caused by a combination of the effect

of the integral character of the CML measurement and the smoothing of the field caused by the

10 % nugget that is used in Kriging to represents the uncertainty of the opportunistic sensors.

Moreover, despite the thorough PWSs quality check, there could still be some stations that were

not filtered and that recorded false zeros for the intense events affecting the performance of the

interpolation products.

The biggest difference to the country-wide DWDman reference evaluation is that the comparison to

RLP is based on hourly data. On this temporal resolution, rainfall shows more variability than on

a daily scale. Hence, on the hourly scale all interpolated and radar products have lower values for

PCC and KGE. Nevertheless, the agreement of the best performing interpolation products with

the reference data is high. It can be assumed that for all regions with similar distribution and

density of opportunistic sensors in Germany, similar results as for Rhineland-Palatinate could be

achieved. That means, opportunistic sensors can provide rainfall estimates with a good quality for

most parts of Germany, with the exception of north-eastern regions where their network density

is low.

5.4.2.3 Local, hourly scale for the city of Reutlingen

Ten rain gauges operated by the city of Reutlingen (RT) are used to evaluate the performance

of the interpolated products and radar datasets on local scale with a temporal resolution of one

hour. An overview of the RT gauges, PWS locations and CMLs is given in the map of Fig. 5.6

together with results of the evaluation for this scale. The network of 10 rain gauges in and around

Reutlingen has a significantly higher density than the previous gauge datasets used as reference.

On this small scale, the high number of PWSs in this urban area becomes apparent, with around

thirty stations in Reutlingen. PWSint and the combinations with PWSs compared best to the ref-
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Figure 5.5: Map of Rhineland-Palatinate and surroundings with Rhineland-Palatinate gauges

(reference), PWS locations and CML paths, boxplots of performance measures for the seven inter-

polated products as well as RADOLAN-RW and RADKLIM-YW against the reference. Dashed

lines are similar to Fig. 5.4. On the right, scatter density plots of hourly PWS CMLint and

RADOLAN-RW rain sums are compared to the reference.

erence with a high PCC. CMLint and combinations reproduce the reference rainfall values slightly

better than DWDint. DWDint as well as the radar products show a positive bias. The reason

could be the large distance of the next rain gauge which is also used to adjust the radar products.

The next rain gauges on this local scale are more than 15 km away and not located in the area

shown by Fig. 5.6. This could make a difference in the rather complex terrain at the border of the

Swabian Alps. For the OS products the bias is almost zero. For the most intense events shown in

the scatter plot of PWS CMLint the opportunistic sensors are underestimated by the interpolated

product. Upon closer inspection all reference rainfall points above 20 mm were from an event on

the 12th of June 2018 lasting 3 hours. While some of the PWSs resembled the reference gauges

rainfall almost perfectly, others underestimated this event by a factor of ten. The two CMLs also

underestimated the peak rainfall due to a complete loss of signal for a total of 12 and 21 minutes,

respectively. We currently do not interpolate or fill gaps of this size in our processing. The rainfall

sum of the hour with this data gap is treated as missing value. Hence, the one hour with the peak

rainfall sum is missing from the CML data. This rainfall event is an interesting opportunity to

study the ability and required processing steps to measure intense events with PWSs and CMLs

in the future. First steps in this direction could be the improvement of the event based filter for

PWS or filling CML outages caused by rain with the maximum of measurable rainfall at this CML.

Apart from the city of Reutlingen, there are few cities which operate such a dense and high quality

network of rain gauges. Only with such a dense network of conventional rain gauges, we were able

to evaluate the performance of opportunistic sensors on such a small scale. The opportunistic

sensors show very good results in estimating rainfall on this local scale, therefore we conclude
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Figure 5.6: Map of Reutlingen with Reutlingen gauges (reference), PWS locations and CML paths,

boxplots of performance measures for the seven interpolated products as well as RADOLAN-RW

and RADKLIM-YW against the reference. Dashed lines are similar to Fig. 5.4. On the right,

scatter density plots of hourly PWS CMLint and RADOLAN-RW rain sums are compared to the

reference.

that rainfall information from PWSs and CMLs are highly valuable for the rainfall estimation

in other urban areas with few or no conventional rain gauges. This opens the possibility to use

opportunistic rainfall sensors for applications in urban hydrology for all cities with a similar sensor

density.

5.4.3 Performance for high intensity rainfall

We investigated the potential of opportunistic sensors in capturing the most intense rain events

with the leave one out cross validation results. We performed the same analysis as in Sec. 5.4.1

but only considered rain events above the 0.99 quantile level of each aggregation interval. The

results in Fig. 5.7 show PCC, Spearman’s rank correlation coefficient (SCC) and CV. The SCC

defined in Appendix 5.6.3 is used here because it credits the skewed distribution of rainfall. For

the PCC and CV the results are similar to the cross validation results for all rain events. PWSint

and combinations with PWSs performed best, while the combination with CML was the over-

all best. CMLint also outperformed DWDint for these two measures. Considering the SCC, the

best results were obtained from PWSint without further combination. Both CML and DWD data

could not add further information to increase the SCC. One reason for this might be the increased

distance between CML and especially DWD sensors opposed by the high density of PWSs. For

the SCC, DWD and CML performed similarly for one hour while DWD reaches higher values for

aggregations between two and 120 hours.

For an analysis of the performance of the interpolated products and radar datasets for high in-
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Figure 5.7: Performance measures of the cross validation for the 0.99 quantile of rain events for

each temporal aggregation.

tensity rainfall for the regional and local scale we show the SCC hourly rainfall sums in Fig. 5.8.

The German-wide scale is not shown as it is only available with a daily temporal resolution and

an hourly evaluation for the whole of Germany is already covered by Fig. 5.7.

The three individual interpolated products show similar results, on both scales. As in Fig. 5.7,

PWSint shows the overall highest SCC while DWDint reaches slightly higher values than CMLint.

The combined interpolated products show a similar SCC as the radar products, except for DWD-

CMLint. This again highlights the potential of exploiting dense opportunistic sensor networks

on both regional and urban scales for hydrometeorologic purposes. For the radar products, the

climatological adjustment seems to increase the SCC marginally.

The lower SCC values for CMLint on both scales could be caused by several reasons. One reason for

this is the engineering requirements of the CML network which allows an outage of the systems

during the strongest rainfall events for some minutes. This results in a maximum rain rate

before signal loss between 40 mmh−1 and more than 150 mmh−1, depending on the exact CML

configuration (length, frequency, transmit power, antenna gain). Thus, for heavy rainfalls, CMLs

do not always provide accurate rainfall information. Consequently, the rank correlation for high

rain intensities is decreased for CMLs. Another reason is the integral character of the CMLs

measurement which gives the path-averaged rain rate independently of the distribution of rain

rates along the CMLs path. This leads to an underestimation of the highest rain rates along the

path. Finally, the effect of the classification of rainy and dry periods in the CMLs processing has

to be considered. Every wrong classification which can be caused by non-rain induced attenuation,

multi-path propagation or others, will influence the FPR and FNR which ultimately have a large

influence on the SCC. Considering all this, the hourly SCC of CMLint is still close to the one of

the conventional rain gauge product DWDint.
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Figure 5.8: Spearman’s rank correlation coefficient of interpolated products and radar products

against the hourly references of Rhineland-Palatinate (regional scale), and Reutlingen (local scale).

5.4.4 Rain event example in Rhineland-Palatinate

To illustrate the interpolation framework results for the different datasets we show an example for

several interpolated rainfall maps from different combinations and RADOLAN-RW in Rhineland-

Palatinate in Fig. 5.9. On 12 July 2019 at 12:00 several rain cells are visible for all interpolation

products and RADOLAN-RW. For some regions, the DWDauto network misses rainfall because

the station density is too sparse. This can be seen in the map showing the opportunistic sensors

and DWDauto stations locations. For DWDint the underlying structure of the network is clearly

visible. In comparison, PWS CMLint shows more variability in the rainfall field and with most

features related to several opportunistic sensors. The opportunistic sensors miss the most intense

feature measured by the DWDauto gauges in the north of Rhineland-Palatine, while PWSint has

the highest intensities further south. We presume that the increased variability due to the larger

number of measurements should be closer to the true spatio-temporal distribution of rainfall. Most

features and structures detected by RADOLAN-RW are visible in PWS CMLint, while the radar

product produces higher rainfall values. It seems that more (opportunistic) sensors lead to higher

spatial variability in the interpolated rainfall fields, which could potentially improve hydrological

applications.

5.5 Conclusion

The study region of Germany with two sub-regions, namely the state of Rhineland-Palatinate and

the city of Reutlingen, are hydrometeorologically well monitored compared to most locations in

the world and therefore provide a suitable testing ground to evaluate opportunistic rainfall sen-

sors. In this study, we demonstrate the use of two different types of such opportunistic sensors.
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Figure 5.9: Rainfall example maps for one hour accumulated rainfall at 12.07.2019 12:00 CET for

three different interpolation products, a radar product and their differences between each other.

We obtain rainfall fields, using a geostatistic interpolation framework incorporating block kriging,

from point information of PWSs and line information of CMLs. Seven combinations of CML,

PWS and official hourly rain gauge data from the DWD are evaluated for three different reference

datasets in the respective study regions. Two radar products from the DWD were evaluated in the

same manner as the interpolated datasets to further quantify the performance of the interpolated

rainfall maps.

Both PWS and CML data come with individual drawbacks, e.g. unfavorable locations of PWSs

or erratic fluctuations in the raw CML data. After the respective data retrieval and the rainfall

estimation for the CMLs, both datasets are filtered with an indicator correlation and event based

method and are bias corrected. Only then, they are used in different combinations with and

without hourly rain gauge data from the DWD for interpolation. While the presented indicator

correlation filter approach relies on a primary station network, the data from this network could

potentially come from another period as the rain rates are compared and adjusted only by their
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distribution functions. Besides very high rainfall events, i.e. with return periods of several years,

the rainfall distribution for individual years as used in this study might not change this distribu-

tion too much. Hence, this approach could be usable for opportunistic sensors in areas where the

number of rain gauges was reduced over the last decades because only their distribution function

is needed. To use the indicator correlation filter, event based filter and the bias correction for data

with higher temporal resolution than one hour, upcoming issues like the increasing number of zero

precipitation events and the filtering of small-scaled extreme events which were not observed by the

primary network (i.e. DWD gauges), have to be addressed. Potential solutions could be the usage

of advection vectors or the mutual filtering of PWS and CML where one opportunistic sensor can

serve as primary network for the other and vice versa. In this study, reliable CMLs were identified

using the indicator correlation and event based filter and their values were corrected using the bias

correction method. These methods accounted for the line characteristic of the CMLs measurement.

A cross validation shows the ability of CMLs and especially PWSs for rainfall mapping. This is

true for hourly as well as for multi-day aggregations. The opportunistic sensors are able to pro-

duce reasonable rainfall maps with increased spatial variability compared to rainfall maps derived

from conventional rain gauge data. These rainfall maps were evaluated country-wide for Germany

with independent daily gauge data as reference and for Rhineland-Palatinate and Reutlingen with

hourly gauge data as reference. To set the results of the evaluation in a perspective we used the

official gauge adjusted radar datasets RADOLAN-RW and RADKLIM-YW from the DWD.

On the country-wide daily scale the radar products had a better agreement with the reference

than the interpolated products. For the two sub-regions with an hourly resolution, the interpo-

lated products performed similarly good as the radar products. The high number of opportunistic

sensors might be the most import reason for this. Differences between the interpolated and radar

products can be found especially for the highest rainfall amounts. Overall, interpolations incorpo-

rating PWS data performed best while the usage of CMLs resulted in better performance metrics

as product from hourly DWD rain gauges. Similar results were found for the most intense rain

events with the exception of CMLs which performed worse than the DWD product for temporal

aggregations of several hours.

The results show the accuracy and increased spatial variability of rainfall maps from opportunistic

sensors, especially on smaller spatial and temporal scales. Numerous hydrometeorological appli-

cations can potentially benefit from this information. The quick data availability could be used

to access real-time rainfall information. Applications in urban hydrology could therefore benefit

both from the potential real-time accessibility and the often dense opportunistic sensor network

in this urban areas. Nevertheless, some of the presented methods, e.g. the indicator correlation

filter, cannot readily be used for real-time applications but rather provide a baseline for such de-

velopments. Another opportunity is the combination with traditional gauge or radar datasets to

derive a further improved joint product that leverages the individual advantages of all individual

sensors.
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5.6 Appendices

5.6.1 Additional Figures

Fig. 5.A1; Fig. 5.A2; Fig. 5.A3

Figure 5.A1: Different weights wT for points (pti) and line segments (cmli) depending on their

length and orientation for estimating the precipitation amount at a given location u0. If the

center of the CMLs in each of these four examples (a-d) were assumed to be point information,

the weights of all points would be equal (here: 0.25). However, if the length and orientation of

the CMLs are taken into account, different weights are obtained.
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Figure 5.A2: Performance measures of the cross validation results from the interpolation frame-

work for different temporal aggregations. Here CMLint and CML pointint are shown. For

CML pointint the points at the center of each CML were used as point information in the in-

terpolation framework. a) to c) show PCC, CV and KGE for country-wide validation stations and

d) to f) show PCC, CV and KGE for validation stations with more than 80 PWSs or CMLs in 20

km vicinity. Those are the 10 percent of the validation station which are surrounded by the most

opportunistic sensors.

5.6.2 Consideration of the CML length for the indicator correlation

filter and bias correction

It is well known that the length, area or volume of an observation or measurement has an effect

on the statistical properties of this observation. This so-called support effect has been intensively

studied in geostatistics, mainly for mining applications. There are several approaches which can

be used to calculate the change of variance as a function of the support size and the variogramm.

Block Kriging, as applied in this paper is also taking the support size into account.

The different lengths of the CMLs have to be taken into account for the application of the indicator

correlation filter and the bias correction. The classical geostatistical formulas cannot be used, as

we consider the distribution of the values and not only their variances. Therefore, the following

simulation based approach is considered.

The indicator correlation between the CML and a primary station is partly influenced by the

orientation and the length of the CML. As the indicator correlation is independent of the marginal
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Figure 5.A3: Map of Germany with a subset of DWDman gauges (reference), PWS locations

and CML paths, boxplots of performance measures for the seven interpolated products as well

as RADOLAN-RW and RADKLIM-YW against the reference, and scatter density plots of daily

PWS-CML and RADOLAN-RW rain sum compared to the reference. The subset of DWDman

gauges compromises the 10 % of gauges which are surrounded by the most opportunistic sensors.

distribution only the dependence structure is of importance.

It is assumed that the spatial dependence of precipitation follows a normal copula. This is a

frequent assumption, however not often stated explicitly.

This means that precipitation Z(x, t) can be obtained from the realization of a spatially stationary

normal process Y (x, t) by a transformation:

Z(x, t) = F−1
x (Φ(Y (x, t)))

where Fx() is the distribution function of precipitation for location x and Φ() is the distribution

function of the standard normal distribution.

Z(L, t) =
1

|L|

∫
L

Z(y, t) dy

From the point observations the spatial correlation function of the indicators can be calculated.

This can be transformed to a correlation function of a normal Y CY (h). With this correlation

function realizations of Y can be simulated, and with the local distributions Fy() realizations of

Z(x, t) and Z(L, t) can be derived. Thereafter, the indicator correlations, and the distribution

functions FL() of Z(L, t) can be calculated. These distribution function can also be used for bias

correction of the CMLs.

For the indicator correlations a good approximation can be obtained by replacing the line L by a

specific point u, such that:

CI(x, L) = CI(x, u)
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Figure 5.B1: Comparison of uncorrected and bias corrected hourly PWS and CML rain rates.

where

d(x, u) = d(x, L) =
1

L

∫
L

d(x, y) dy

This means that for the indicator correlation filter which for CMLs with a primary network the

CMLs have to be considered as d(x, L) and not as the central point along its path L.

The same assumption can be used for the bias correction. To calculate the distribution of Z(L, t) as

a first step the distribution functions of the precipitation observations at the primary observations

are interpolated for each point y of the line L. (In practice L is discretized to a few points.) This

is done the same way as for the PWSs. Using these simulations the line averages can be calculated

as follows:

Z(L, t) =
1

|L|

∫
L

Z(y, t) dy =
1

|L|

∫
L

F−1
y (Φ(Y (y, t))) dy

So a Monte Carlo simulation of Y can be used to obtain the distribution function of Z(L, t). Due

to the averaging procedure this distribution is different from the point distributions. For example,

the probability of high values is reduced. Fig. 5.B1 shows the result of the bias correction for

hourly rain rates.

5.6.3 Diagnostic values considered in this study

Here all used diagnostic values are described. The values which are evaluated (e.g. interpolated

values from DWD PWS CMLint) are denoted as pred while the values from the references are

denoted as ref . std refers to the standard deviation.
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Pearson’s correlation coefficient (PCC)

PCC =

∑n
i=1(predi − pred)(refi − ref)√∑n
i=1(predi − pred)2(refi − ref)2

Coefficient of variation (CV)

CV =
std

∑
(pred− ref)

ref

Kling-Gupta efficiency (KGE)

KGE = 1−
√

(r − 1)2 + (α− 1)2) + (β − 1)2)

where

α =
std(pred))

std(ref))

and

β =
pred

ref

Spearman’s rank correlation coefficient

SCC = 1− 6
∑

d2i
n(n2 − 1)

where

di = rg(predi)− rg(obsi)

and n is the number of considered time steps.

Bias

bias =
(pred− ref)

ref
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Synthesis

6.1 Summary

Rainfall affects many different aspects of human security. Estimating rainfall accurately in space

and time is crucial for applications ranging from long-term water management decisions to short-

term flash flood forecasting. However, traditional measurement systems such as rain gauges,

weather radars, and satellite instruments are not always sufficient to capture rainfall accurately

because of their individual limitations. Additionally, rain gauges and especially weather radars

are not distributed evenly across the land surface. OS, such as CMLs and PWSs, can serve as

additional sources of rainfall information. The number of these sensors has grown rapidly over

the last decades exceeding that of traditional sensors many times over. The inconsistent quality

of OS-derived rainfall estimates is a major scientific challenge and one of the main reasons why

there is no widespread use of OS data in hydrological applications. To bridge this gap, this thesis

aims to derive rainfall estimates from OS in a quality similar to operational rainfall products.

Therefore, methods for quality control, rainfall estimation, and the merging of different sensors

into one product were developed.

CMLs, which are a part of the cellular backhaul network, can be used to derive rainfall informa-

tion through the relationship between rainfall and the attenuation of their microwave signal. In

Chapter 2: Rainfall estimation from a German-wide commercial microwave link network: Opti-

mized processing and validation for one year of data (Graf et al., 2020a) more than 4000 CMLs

in Germany were used to develop, optimize and evaluate a range of CML processing methods

over one year. Two filters removing erratic CMLs were developed and for the crucial processing

step of rain event detection, an existing method was extended using a rolling standard deviation

approach with a threshold dynamically adjusting to each CMLs behavior. This led to a reduc-

tion of misclassified time steps. To compensate for the wet antenna attenuation, a comparison

and optimization of existing methods was conducted, which revealed that a rain-rate-dependent

model performed best. All processing steps were combined in a parallelized, flexible processing

framework, which was integrated into the open software package pycomlink (Chwala et al., 2022).

Overall, this framework was able to provide rainfall estimates in good quality throughout Ger-
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many for all seasons when compared to a reference, except for the winter season with non-liquid

precipitation. As a reference, the rain gauge-adjusted weather radar product RADOLAN-RW

from the Germany Weather Service (DWD) was chosen. To increase the comparability of the

results to other studies, the evaluation was conducted for various subsets of rainfall intensities.

Additionally, the first CML-derived rainfall maps covering Germany were produced using IDW

interpolation.

While this large-scale evaluation of CMLs overall provided good results, some individual CMLs

still showed large over- or underestimation. This motivated the further development of CML

processing methods like in Chapter 3: Rain event detection in commercial microwave link at-

tenuation data using convolutional neural networks (Polz et al., 2020). A convolutional neural

network was trained to detect the patterns in the CML time series that were caused by rain. The

model was trained with 800 CMLs over four months and validated using two different months

for all 4000 CMLs. While increasing the amount of true negative classifications significantly, the

number of true positive classifications only decreased slightly compared to the reference methods.

By showing a similar performance for new CMLs and time periods the model could prove its

ability to generalize to previously unseen data. When incorporating this rain event detection in

the previously developed processing chain, a reduction of the amount of falsely classified rainfall

by over 50% was shown. The CNN model proved to be a robust method for rain event detection

for CML attenuation data.

Besides the improvement of CML processing steps, limitations of the CML attenuation observa-

tions have to be considered. Chapter 4: Missing rainfall extremes in commercial microwave

link data due to total loss of signal (Polz et al., 2023b) investigated such a drawback which has

implications on the usage of CML rainfall estimates in hydrological applications. CMLs can ex-

perience the total loss of signal caused by the strong attenuation of high rainfall intensities which

ultimately leads to missing rainfall information. These so-called blackouts were investigated with

three years of CML-based attenuation data and compared to a 20-year weather radar-based atten-

uation climatology. About 1% of rainfall was missing in the CML rainfall data due to blackouts.

The number of blackouts observed from CML data exceeded the climatologically expected values

by a magnitude which is explained by radar underestimation, high attenuation from hail or wet

snow, and the difference in sampling volume. An unexpected finding was that blackouts occurred

more often for longer CMLs despite the fact that these CMLs have a higher dynamic range to

compensate for higher path-integrated attenuation. Both researchers and network providers can

benefit from these findings by considering blackouts in CML rainfall estimation and network plan-

ning.

PWSs are another source of opportunistically sensed rainfall information. They are investigated

in combination with CMLs and rain gauges in Chapter 5: Rainfall estimates from opportunistic

sensors in Germany across spatio-temporal scale (Graf et al., 2021b). Data from around 20,000

PWSs were combined with 4,000 CMLs and 1,000 rain gauges from DWD to a total of seven rain-

fall products. The CML rainfall estimates were derived with the processing methods developed

in this thesis. The data quality of the rainfall estimates from both OS was further ensured by a

122



6.2. Answers to the research questions

set of filters previously used for PWSs and now extended for the usage with CMLs. The three

datasets were combined by an interpolation framework accounting for the geometric properties

of the CMLs which also considered the uncertainty of the two opportunistic sensors. The seven

products were evaluated against three rain gauge datasets with different spatial scales and daily

and hourly resolutions. Overall, products consisting of OS performed better than the ones con-

taining DWD rain gauges. When OS-based and two radar products were compared against three

rain gauge-based references, the OS-based products performed worse on a country-wide scale with

a daily resolution but reached a similar performance as the radar products on a local and regional

scale with an hourly resolution.

Overall, this thesis shows the development of methods for filtering, processing, and combining CML

and PWS data. These developments were evaluated on large scales in Germany against different

reference datasets. It could be proven that CML and PWS rainfall estimates and combined rainfall

products can reach a similar quality as operational rainfall products.

6.2 Answers to the research questions

1. How do state-of-the-art processing methods perform, and how can they be optimized to

provide high-quality CML rainfall estimates?

In Graf et al. (2020a) it was proven that it is possible to obtain rainfall estimates of good quality

from CMLs throughout Germany with a single optimized processing routine. An important finding

was that each CML needed an individual threshold for the rain event detection. This was solved

by an adaptive threshold. Erratic CMLs were filtered out from the analysis in a similar manner

and several methods for the compensation for wet antenna attenuation were compared to find the

best one. As a result, the optimized processing routine provided CML rainfall estimates which

compared well to the gauge-adjusted radar product used as a reference with Pearson’s correlation

coefficients of 0.75 to 0.85 at an hourly resolution. The CMLs performed similarly in all regions of

Germany in spring, summer, and fall. During winter months, a strong overestimation was found

which was likely caused by melting snow, which leads to significantly more attenuation than its

rainfall equivalent. For the other seasons, a good agreement between the CML-derived rainfall

sums and the reference was found for hourly, monthly, and seasonal aggregations. This one-year

analysis proved the applicability of CMLs for rainfall estimation on a country-wide scale. Addi-

tionally, using a simple IDW interpolation scheme, country-wide rainfall maps could be shown.

These maps showed plausible rainfall patterns and qualitatively compared well to the reference.

Nevertheless, they also showed limitations caused by individual CMLs which under- or overes-

timated rainfall systematically and therefore motivated further improvements of the processing

routine.

2. Can an artificial neural network for rain event detection improve CML derived rainfall

estimates?
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The reliable detection of rain events is an important CML processing step, as it defines the pe-

riods for which rainfall is estimated. Nevertheless, available methods are limited by either their

need for neighboring observations and auxiliary data or do not consider signal patterns. Using a

data-driven approach, Polz et al. (2020) overcame these limitations. The trained model was able

to classify individual CML time series without the need for auxiliary or reference data. It showed

a high success rate at separating actual rainfall patterns from noise. The CNN-based model was

trained on a temporal and spatial subset of the available CML data but could classify data from

new CMLs and time periods similarly well. This implies the robustness of the developed method.

The quality of the rainfall estimates using the CNN rain event detection method combined with

the processing framework of Graf et al. (2020a) led to an increase in the quality of rainfall estimates

compared to previous methods and provided evidence that the CNN event detection improves the

quality of CML rainfall estimates.

3. How many blackouts from heavy rainfall can be observed in CML data and how does

this affect rainfall estimation?

Around 1% of yearly rainfall was missed by blackouts from an average of 20 minutes of missing

signal at each CML. This loss of signal of a CML due to heavy rainfall is a consequence of CML

network planning and predefined receiver capacity. The CML rainfall community did not consider

this effect at all until Polz et al. (2023b) showed the influence of blackouts on rainfall estimates

over three years of CML and 20 years of synthetic CML data derived from weather radar data in

Germany. The number of blackout minutes per year depended heavily on the length of the CML

in both real and synthetic CML data: The longer the CML, the more blackouts occurred. In the

comparison of real and synthetic data, it was observed that the real CML data had around 8.5

times more blackouts than expected from synthetic data. When considering the effect on rain-

fall estimation, it was found that around 1 % of yearly rainfall was missed by the CMLs due to

blackouts. Despite this marginal underestimation, it is highly relevant for the hydrometeorological

community as this 1 % contains the most intense rainfall events.

4. How good is the performance of PWS and combined CML and PWS rainfall estimates

considering various spatial scales in a large-scale evaluation?

Rainfall maps from PWSs and from combinations of PWSs and CMLs reached a quality similar

to that of gauge-adjusted radar products on a regional (the state of Rhineland-Palatinate) and

local (the city of Reutlingen) scale. To achieve this, robust quality control was imperative, as

the data quality of PWSs relied on the correct setup and maintenance of private users, while

rainfall estimates from individual CMLs suffered from fluctuations caused by factors other than

rain that were not filtered by processing steps from previous chapters. Additionally, the fact

that PWSs measure rainfall at the point scale and CMLs as path integral had to be taken into

account during the spatial reconstruction of rainfall fields. Therefore, a filtering and bias correction

routine, as well as a spatial reconstruction approach were developed in Graf et al. (2021b). As

a result, German-wide rainfall maps with a resolution of one hour and 1 km could be evaluated
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against different reference datasets on three spatial scales. On the country-wide scale with a daily

resolution, operational gauge-adjusted radar products from DWD showed a better performance

than OS-derived rainfall maps due to missing coverage in some parts and the advantage of the

radar to measure over the whole of Germany. For both the regional and local scale with an hourly

resolution, the OS-derived products achieved similar good performance measures as the operational

radar products. PWSs, with their large number, contributed more to the good performance than

CMLs which still outperformed the network of automated rain gauges from DWD. In conclusion,

OS data could be used to derive rainfall products with high quality, especially on finer scales.

6.3 Rainfall estimation with opportunistic sensors: Discus-

sion and conclusions

This thesis has shown that CMLs and PWS can offer robust rainfall estimates. Therefore, they

offer the possibility to either increase the density of existing observation networks or deliver unique

rainfall information in previously unobserved regions. The latter is more relevant for CMLs as

they are available in most inhabited areas of the world, while PWSs can be found more frequently

in developed countries. The main challenge in deriving robust rainfall information from OS lies

in understanding and ensuring data quality and the improvement of processing routines. Two

large-scale evaluations of CML and combined CML and PWS-derived rainfall estimates using

five different reference datasets covering various scales gave evidence of reliable, high-quality OS-

based rainfall estimates derived using methods developed in this thesis. This section discusses the

methods used and the main findings to draw conclusions about the advantages and limitations of

rainfall estimation with OS.

With the development of an appropriate processing routine, it could be shown that CMLs can

provide robust rainfall estimates throughout the whole of Germany for one year in Chapter 2.

One of the main goals for the development and optimization of this processing routine for CML

rainfall estimation was to be independent, both of reference data and of the density of the CML

network. This means that an individual time series of a CML without nearby reference data had

to be sufficient to derive rainfall information from attenuation data. Such a situation is typical

for regions like West Africa where CML data is available in an otherwise data-scarce environment.

In the case when reference data is available, independently processed CMLs can provide rainfall

estimates which are typically denser than the ones from a network of traditional ground observa-

tions. Additionally, due to individual network topology and the issues related to deriving CML

attenuation data in the first place, one can not expect a certain density of a CML network which

is necessary for processing methods like the ”nearby link approach” published in the software

package RAINLINK (e.g. Overeem et al., 2016a).

This motivated the goal of an independent processing routine which was achieved in Chapter 2

and 3 and led to a good quality of the CML rainfall estimates. However, the usage of information

from nearby CMLs or rainfall information from other sensors can certainly be of an advantage.

This was shown, for example, in the indicator correlation filter and bias correction in Chapter
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5, which compared CML and PWS data against DWD rain gauge data, further improving the

quality of the OS rainfall estimates. Another possible application, where the use of additional

rainfall information for the CML processing might be beneficial, can be found in the adjustment

of weather radar data using CML data. The radar data can be used as a rain event classifier

resulting in CML rainfall values for the adjustment only during periods where the radar observes

rain.

The first step to derive high-quality CML rainfall estimates in an independent manner was to

remove erratic CML data. Fluctuations not caused by rainfall were considered as the main source

of false rainfall estimates in Chapter 2. Not filtering these anomalies decreased the performance

of CML rainfall estimates due to overestimation and was especially noticeable through positive

outliers in interpolated rainfall maps. A limitation of the developed filters is that they removed

CMLs on a monthly basis and thus potentially removed more data than necessary, but at the

same time, the filters are easy to apply and do not have a large computational demand.

The processing step of rain event detection is necessary for rainfall estimation in general, but can

also remove erratic periods by not classifying them as rain. The method from Schleiss and Berne

(2010) proved to be robust when combined with a dynamic threshold that was automatically

adjusted by the general amount of fluctuation of each CML. Without this dynamical threshold,

it would have been necessary to run one global optimization for all CMLs. A resulting global

threshold used for each CML would have been too conservative for CMLs with very stable signal

levels, resulting in missing small events, while for more noisy CMLs, too many false positive rain

events would have been detected.

The finding that a better WAA compensation was achieved by methods using the rainfall intensity

as a parameter was further reinforced by Pastorek et al. (2022) who compared five different meth-

ods and reached the same conclusion. Nevertheless, WAA remains a source of uncertainty as all

methods are highly parameterized and the actual processes are not fully understood. Results from

WAA-CML experiments observing multiple variables of the antenna and transmission properties

are set up to better understand this phenomenon, but their results suggest even more chaotic

behavior as Tiede et al. (2023) showed recently. It remains an open challenge to use information

derived from such experiments to improve existing WAA models.

The comparison of CML rainfall estimates with the rain gauge adjusted weather radar prod-

uct RADOLAN-RW along the CML paths generally showed good agreement, except for winter

months. The weighted averaging of the radar reference along the CML paths’ was an important

methodological step. Only with such a direct comparison the advantages of radar data as a ref-

erence can be fully used and CMLs can be evaluated individually. This was not considered in the

only other country-wide study conducted prior to the work from Chapter 2 in the Netherlands

(Overeem et al., 2016b). Also, previous CML studies often only considered one or a maximum

of two (Overeem et al., 2016b) subset criteria when evaluating CML rainfall estimates against a

reference (e.g. reference ≥ 0.1 mm, CML or reference ≥ 1 mm, ..). de Vos et al. (2019b) crit-

icized the fact that different subset criteria were chosen by authors, which ultimately limits the
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comparability between studies. Therefore, hourly CML and reference rainfall estimates were com-

pared for five different subset criteria which resulted in remarkably different performance metrics,

especially for the bias. This allowed for a better quantitative comparison to other studies which

in turn showed the high quality of the results produced in Chapter 2. Recently, Wolff et al.

(2022) followed our example and evaluated their CML rainfall estimates from a Dutch dataset

using almost the same subset criteria. For future studies, it would be desirable to have common

evaluation criteria, albeit the comparability between different methods will always be limited by

the sampling strategies of different CML data acquisitions which have a direct influence on the

design of these processing methods.

With a baseline for the whole processing chain provided in Chapter 2, the focus in Chapter 3

was set on a single processing step, the rain event detection which separates a CML time series in

rainy and dry periods. The data-driven method was able to outperform the reference method from

Chapter 2 and significantly increased the true negative rate while keeping the true positive rate

almost constant. One reason for this success was the consideration of the imbalance in the model’s

training process, which was caused by the fact that rainfall in Germany only occurs between 5

and 10% of the time. Without manually balancing the number of wet and dry training samples

equally, the CNN model would have classified too many wet samples as dry. The improvement

of the classification method had a direct influence on the resulting rainfall estimates. It led to

a reduction of the rainfall amount caused by time steps falsely classified wet by more than half

and reduced the rainfall amount from missed events by more than a quarter. For rain rates above

1 mm/h the difference between the CNN-based classification and the dynamic threshold from

Chapter 2 was small, as the signal of strong rain events is easier to detect, independently of the

used method. For rain rates below 0.5 mm/h, the performance of the CNN-based method was

better. Still, both methods performed worse than for higher rain rates as the detection limit of

each CML was reached. These detection limits depend on the TSL and RSL quantization, length,

and frequency of each CML. The CNN performed better in this range because it could differentiate

between the patterns caused by rain and the ones caused by other factors.

An important step in gaining confidence in the robustness of the CNN was to test its ability to

correctly classify previously unknown CMLs and time periods. The ability of data-driven meth-

ods to interpret unseen data or predict results not present in the training data is subject to a

long-term discussion in hydrological sciences (Klemeš, 1983; Todini, 2007). But there are many

use cases for various problems that prove the ability of deep learning methods like long short-term

memory (LSTM) networks and CNNs to deal with this issue (e.g. Reichstein et al., 2019; Frame

et al., 2022) and extrapolate to e.g. previously unprecedented maxima. With the presented rain

event detection method it could be shown that for previously unseen CMLs and new periods, only

minor differences in performance were found compared to the performance of the model with the

training data. These differences could be explained by the different distribution of rain rates in

the respective datasets, where a larger amount of small rain rates near the detection limit of the

CMLs in a given month resulted in a decreased performance of the model. Hence, the trust in the

model was further strengthened. Another advantage of the CNN-based classification is its prob-

abilistic nature. By altering the threshold for the probability of a time step to be rainy, a rather
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conservative or liberal behavior of the classification can be chosen, depending on the intended use.

The development of the CNN, which included iterative training and validation, was computed on

a Nvidia Titan Xp GPU. The final training took 30 minutes on that GPU. In direct comparison to

the dynamic threshold method from Chapter 2, the CNN method increased the processing time

for the rain event detection by a factor of ten, which was not a big issue when it was incorporated

into the parallelized workflow developed in Chapter 2. The processing steps from Chapter 2,

often together with the rain event detection method from Chapter 3, were used in the subsequent

chapter of this thesis, by publications of our CML group (e.g. Blettner et al. (2022, 2023); Djibo

et al. (2023b); Wagner et al. (2023)) and also by others e.g. Bubniak et al. (2022) using pycomlink.

A behavior not considered in Chapters 2 and 3 was the absence of some of the more intense

rainfall peaks observed in the radar reference. The reason for this was that only times steps where

both CML and radar observations were available were evaluated. In a detailed analysis of indi-

vidual events, it was later found, that heavy rainfall can lead to a total loss of signal and hence

missing values in the CML rainfall series. This effect was investigated in detail in Chapter 4,

which focused on the technical ability of CMLs to observe heavy rainfall rather than on improving

the CML processing as in the previous chapters. Understanding this limitation is essential when

using CMLs as rainfall sensors for hydrological applications, as the most intense rainfall events

often have the most impact.

In most CML rainfall studies, blackouts were treated as missing values and therefore excluded from

the evaluation (Chapters 2 and 3 of this thesis, but also e.g. by Andersson et al. (2017); Fencl

et al. (2014); Overeem et al. (2013a), or Wolff et al. (2022). Based on the results from Chapter 4,

it can be concluded that on the one hand, the influence of blackouts on annual precipitation with

around 1% is, in fact, neglectable, but on the other hand, this 1% consisted of the highest rainfall

intensities. The surprising fact that there were 8.5 times more blackout minutes in the CML data

than expected from the radar could not be explained completely with the available data. This

difference was considered as an underestimation by radar which can be caused by several reasons:

The different spatial integration characteristics of CML and radar could lead to different obser-

vations of heavy rainfall events, similar to the underestimation of rainfall extremes from radar in

comparison to rain gauges (Peleg et al., 2018). For example, the average CML in the dataset has

a length of 7 km which was compared to around 10 radar pixels covering 10 km2 of radar data

along its path. For the longer CMLs in the dataset, this area increased to over 30 km2. Also,

Radar products, even gauge-adjusted or polarimetric ones are reportedly prone to underestimate

high rainfall intensities (Schleiss et al., 2020). An open question is how hydrometeors like hail lead

to unexpected high attenuation of the CML signal while melting snow could be ruled out as the

reason for the underestimation based on the analysis of the ambient temperature during blackouts.

From the perspective of mobile network operators, rainfall is just an unwanted source of attenua-

tion, which has to be considered in network planning. The ITU recommends that a CML should

be available for more than 99.9 % per year and gives instructions on how to calculate maximal

rainfall intensities for given temporal aggregations and return periods from rain gauge data as
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the basis for the CMLs’ layout (ITU-R, 2017). While this 99.9 % availability was met by almost

all CMLs in our dataset, from a hydrometeorologists point of view, a larger dynamic range for

all and especially longer CMLs would be desirable. The finding that longer CMLs suffered more

often from blackouts can either be interpreted as a shortcoming of the suggested calculations for

planning the layout of CMLs from the ITU or as a miscalculation in the actual planning done by

the mobile network operator.

The results of this chapter have an influence on the future development, application, and eval-

uation of the methods presented in Chapters 2 and 3 of this thesis. The mitigation approach

proposed in Chapter 4 which estimates a minimum rain rate during blackouts based on their

highest measured attenuation, was investigated in Graf et al. (2023). It led to an overall improve-

ment of rainfall estimates compared to no mitigation measures and to a more consistent time

series of CML-derived rainfall estimates for evaluation. The information of a minimum rainfall

amount could also be used by probabilistic methods like the stochastic reconstruction approach

random mixing (Hörning and Haese, 2021) that could use this information as a constraint in the

spatial reconstruction of rainfall maps.

PWSs are another type of OS that have not been evaluated quantitatively on a large until Chap-

ter 5 combined data from PWS, CMLs, and rain gauges for a two-year period covering Germany

to generate high-resolution rainfall maps. In addition to the CML processing developed in Chap-

ters 2 and 3, a three-step filtering and bias correction routine and an interpolation framework

were developed. By evaluating the rainfall maps on three spatial and two temporal scales over

two years it was found that the combination of CML and PWS data was able to reach similar

high quality as rain gauged-adjusted weather radar products from DWD in Germany.

Compared to the filtering methods from Chapter 2, which were developed to work without ref-

erence data and achieved good results on the comparison to reference data on a link path base,

rain gauge data was used for the filtering routine in this case. The reason for this was that for

CMLs erratic fluctuations from individual CMLs and during short periods were not filtered by

the previous methods which sometimes resulted in sharp outliers in the hourly rainfall maps. We,

therefore, used an additional filtering routine first developed for PWSs in Bárdossy et al. (2021)

and adopted it to account for the line characteristic of the CML rainfall estimates. This was

an important step as the statistical properties of a measurement change with the sampling vol-

ume. While for PWS the filtering and bias correction was necessary due to non-conform setup or

calibration, for CMLs the bias correction served as an adjustment of the parameterized steps of

the CML processing, mainly WAA compensation, for each individual CML. A limitation of these

proposed methods for quality control is that it is limited to an area with a fairly dense network

of reference observations.

One of the main reasons for the good performance of OS and especially PWS-based rainfall maps

and one of their major advantages, in general, is their vast number. After filtering out unreliable

OS, between 14,000 and 18,000 individual sensors were available. This number is a magnitude

higher than the number of rain gauge stations operated by the DWD. After combining these
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three sensor types in the seven possible combinations, it was interesting to find that the best

performance was not achieved by the combination of all three sensors, but by PWS and the com-

binations with either CML or DWD rain gauges. It might be that the rain gauges from DWD,

being the most reliable sensors and therefore receiving the highest weight in the interpolation

framework, lack the spatial density to improve the overall performance. Therefore, the weights of

the rain gauges might not be justified and thus, similar to the OS, an uncertainty factor based on

the relation between sill and nugget could be considered to derive variograms from the rain gauges.

For the generation of rainfall maps, previous CML studies often used the center of a CML as point

information for IDW or kriging, which does not give justice to the sampling volume of a CML.

Other methods like random mixing (Haese et al., 2017) or tomographic reconstruction (D’Amico

et al., 2016) are computationally demanding or highly underdetermined. To overcome these limi-

tations, a combination of ordinary and block kriging was developed which is able to consider the

line characteristic of the CMLs in the block kriging type approach and which accounts for the

uncertainty of individual sensors.

While radar products showed a better performance than OS products in the evaluation on the

country-wide scale with a daily resolution, the OS products performed similarly well on the re-

gional and local scale with an hourly resolution. A reason for the worse performance of OS on

the country-wide scale was that especially in the northeastern part of Germany the OS density is

quite low. An interpolated product from DWDauto, despite being the most precise measurement

device, achieved the worst performance caused by its limited spatial representativeness on the

regional and local scale. As a consequence, applications like hydrological modeling which often

rely on traditional rain gauge datasets as input could benefit from the use of OS which can deliver

more accurate rainfall estimates and have an increased spatial variability which is considered a

main driver for hydrological modeling (Cristiano et al., 2017).

One of the main limitations of the two OS considered here is that non-liquid precipitation cannot

be measured accurately. For PWSs, this is because they are not heated. The readings therefore

either can be misplaced in time when snow melts in the orifice of the device or underestimate

the true precipitation amount due to wind removing snow from the orifice. For CMLs, the k −R

relation for solid and mixed-type precipitation is different from the one for rainfall. While dry

snow leads to almost no attenuation, melting snow, hail, or sleet cause very strong attenuation

and therefore overestimation of these events. This was the main reason why only months without

solid precipitation were analyzed in Chapters 3 and 5.

As the article of Chapter 5 was published before the work for Chapter 4 was conducted, black-

outs were not considered. Therefore, the underestimation of CMLs, both for the three different

scales, as well as for the consideration of high-intensity rainfall, can be partly attributed to the

occurrence of blackouts. In the performance analysis for high-intensity rainfall, only rain events

above the 0.99 quantile level were considered. This corresponded well to the 1% of missing rainfall

due to blackouts. Considering this and that the CMLs correlation to the reference for high-

intensity rainfall is only slightly worse than that of the DWD rain gauges, the uncertainty of the
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CML rainfall estimates is partly compensated by their larger number. In summary, it could be

shown that reliable rainfall estimates can be derived from the combination of CML and PWS data.

The key to products of such quality was the development of methods for filtering, processing,

and combining CML and PWS data. This summarizes the main findings of this thesis. CMLs

and PWS can be used alone or in combination with traditional rainfall observations in any region

where they are available. This was proved by first-of-its-kind evaluations across Germany which

were able to show the high quality of OS rainfall products can achieve. Overall it can be concluded

that CMLs and PWSs can be used to obtain rainfall products with a quality similar to operational

gauge-adjusted weather radar products when their data is treated with care.

6.4 Outlook

Applications of the developed methods

This thesis mainly built on data from 4000 CMLs and 20,000 PWSs to develop and evaluate

new methods for filtering, processing, and interpolating these OS. These datasets are among the

largest of their kind, hence certain robustness of the methods can be assumed. Additionally, other

datasets are already used to further evaluate these methods covering a region around Gothenburg

with the openMRG dataset from Andersson et al. (2022) and in Burkina Faso within the BMBF-

funded project AgRAIN (https://www.agrain.eoc.dlr.de/).

The openMRG dataset is used for a comparison of different CML processing frameworks within

the EU Cost Action OPENSENSE which started in 2021 (https://opensenseaction.eu/). This

project consists of OS experts, stakeholders, and national meteorological services from over 30

countries with a focus on the opportunistic sensing of rainfall. The first results of the compari-

son between the approach developed in this thesis and the nearby link approach from Overeem

et al. (2016a) further confirm the robustness of these methods. Other activities of OPENSENSE

that use methods and knowledge from this thesis include the definition of data formats and

standards, a training school on Software and methods on data processing from opportunistic

rainfall sensors (https://indico.scc.kit.edu/event/3645/), the comparison of merging tech-

niques of OS and traditional rainfall sensors, and the preparation of dissemination material

(https://www.youtube.com/watch?v=yJXft_V1ky4).

In AgRAIN, 300 CMLs in Ouagadougou, the capital of Burkina Faso, were processed successfully

with the routine developed in Chapter 2 resulting in 5-minute rainfall maps over the city. The

only adaption needed was to filter out spikes (strong positive outliers at individual time steps)

and steps (sudden change in the baseline of a CML) which are likely caused by the local data

acquisition system. The validation of the CML rainfall maps is rather difficult with just one rain

gauge with a daily resolution available in Ouagadougou, a situation typical for this region of the

world. The aggregated rainfall maps correlated highly (>0.95) with the rain gauges’ values on

a daily basis. The timing of rainfall in the CML rainfall maps matched the timing of GPM-

IMERG products which have a 30-minute resolution. These results were published recently in
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Djibo et al. (2023b) an animated example of a rain event with a 5-minute resolution can be found

here: https://zenodo.org/record/8032918.

In a further application the rain event detection methods from Chapter 2 and 3 are combined

with MSG SEVIRI satellite data. Rainfall probabilities from MSG SEVIRIS and the rain event

detection methods are combined in such a way that highly likely classifications from each of the

three rain event detection methods are trusted most. Overall, this leads to a slight increase

of the MCC compared to a radar reference, but more importantly, the classification for CMLs

with problematic signal time series, i.e., strong fluctuations during wet and dry periods, could be

improved significantly. A pre-print summarizing this combination of rain event detection methods

and results is currently under review (Wagner et al., 2023).

Future improvements of filtering and processing methods

CML and PWS data are on the verge of being used operationally in different hydrometeorological

applications as robust methods like the ones developed in this thesis are used to ensure their data

quality. Nevertheless, quality issues are still encountered when checking individual rain events.

Therefore, such methods have to be tested and improved continuously as OS data will always be

more challenging to handle than data from traditional rainfall sensors. All filtering and process-

ing steps can potentially be improved by combining information from CML and PWS data, or

by using traditional rainfall observations For instance, the filters relying on a primary network

of trustworthy rain gauges (indicator correlation filter, on-event filter, and bias correction from

Chapter 5) could be tested with CML rainfall estimates instead of rain gauge data from DWD.

Another possibility would be the classification of rain events in CML time series with the help of

nearby PWSs. Further improvements could be achieved when focusing on OS processing on very

short time scales i.e. sub-hourly scales. This will require an adjustment of filters to incorporate

advection and to account for zero-inflated problems which increase with temporal resolution. To

use these filters in real-time applications, some of the developed methods e.g. the indicator cor-

relation filter must be modified. Here again, the mutual use of CMLs and PWSs as primary and

secondary networks could be a possible solution due to their timely availability.

Another pathway to improve OS rainfall estimates is the use of multivariate meteorological in-

formation. This information could stem from OS, like PWSs themselves, but also from station

or remote sensing data. As an example, local convective events could be investigated by using

temperature and air pressure data of the PWSs to detect so-called cold pools (temperature drops

and air pressure spikes due to heavy rainfall). For CMLs, a relation between erratic signal fluc-

tuations and a range of meteorological parameters was already noted (Chwala and Kunstmann,

2019) but these influences are yet to be quantified. Examples are the influence of temperature and

radiation from the sun on the antenna as well as oscillations of cellular towers due to wind. With

a better knowledge of the interactions between CML signal strength and meteorological variables,

the number of false-positive rainfall estimates could be reduced.
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CMLs used in weather radar adjustment

The opportunity to combine OS with traditional rainfall sensors like rain gauges or weather radars

should be investigated in more detail. First experiments were already conducted to combine CML-

derived rainfall information with rain gauges (Fencl et al., 2017) and weather radar (Liberman

et al., 2014; Trömel et al., 2014). The vast number of OS and the fact that CMLs and PWSs

provide rainfall information on the ground offer great potential in the adjustment and validation

of weather radar and satellite measurements.

National weather services from France, Sweden, Norway, and Germany are in the early phases of

using OS operationally. A first analysis from Mapiam et al. (2022) showed that a bias correction

using PWSs could increase the performance of the weather radar data compared to using opera-

tional rain gauges alone. Further, improved joint products can leverage the individual advantages

of OS through their vast number, spatial representation, and timely availability. On a larger scale,

a pre-print from Overeem et al. (2023) showed that PWS are able to reduce the underestimation

of a pan-European weather radar product over one year.

A further advantage of CMLs and PWS is their potential to deliver rainfall estimates in near-real

time as shown by Chwala et al. (2016) for CMLs and by a number of websites presenting real-

time PWS data (e.g. Netatmo or weather underground). This allows for timely merging with

weather radar data and hence, faster access to rainfall information valuable in flood warnings

especially in small catchments. The first steps towards operationalization of a CML and rain

gauge-adjusted weather radar were undertaken in Germany within the BMBF project HoWa-

innovativ which could show the improvement through the adjustment radar rainfall fields with

CMLs. An operationalized merging routine is being developed in the successor project HoWa-

PRO right now and the evaluation of the results is underway (https://www.wasser.sachsen.

de/howa-pro.html). A case study for the severe flooding in the Arhtal, Germany in 2021 could

already show that a CML-adjusted radar product outperforms a gauge-adjusted radar product.

This shows that the main goal of this thesis was reached. OS now overcome the phase where

their potential has to be proven and reach a degree of trustworthiness, with respect to their actual

limitations, that was only given to traditional rainfall observations before. When treated with

care, opportunistically sensed rainfall data from CMLs and PWSs can be used successfully in

real-world applications.
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A. Bárdossy, J. Seidel, and A. El Hachem. The use of personal weather station observations to

improve precipitation estimation and interpolation. Hydrology and Earth System Sciences, 25

(2), Feb. 2021. doi: https://doi.org/10.5194/hess-25-583-2021.
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Rodŕıguez-Fernández, E. Zsoter, C. Buontempo, and J.-N. Thépaut. ERA5-Land: a state-of-

the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9), Sept.

2021. doi: 10.5194/essd-13-4349-2021.

145

http://catalogue.ceda.ac.uk/uuid/37d6ea7956a74af0bef827b94e0fb602
http://catalogue.ceda.ac.uk/uuid/37d6ea7956a74af0bef827b94e0fb602


Bibliography

Netatmo. Smart Home Weather Station and accessories - Smart Rain Gauge –

Physical installation and precautions | Netatmo Helpcenter, 2022. URL https:

//helpcenter.netatmo.com/en-us/smart-home-weather-station-and-accessories/

setup-installation/smart-rain-gauge-physical-installation-and-precautions. [last

access: 21.07.2022].

S. Ochoa-Rodriguez, L.-P. Wang, A. Gires, R. D. Pina, R. Reinoso-Rondinel, G. Bruni, A. Ichiba,

S. Gaitan, E. Cristiano, J. van Assel, S. Kroll, D. Murlà-Tuyls, B. Tisserand, D. Schertzer,
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Gespräche zu jeder Uhrzeit und zu jedem Thema und für Motivationsschübe, wenn sie nötig waren.
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