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Fig. 1: Qualitative comparison of our efficient models. Even though our models are significantly faster, nearly no quality
degradation can be observed. Small differences are highlighted with black arrows.

Abstract—Utilizing transformer architectures for semantic seg-
mentation of high-resolution images is hindered by the attention’s
quadratic computational complexity in the number of tokens.
A solution to this challenge involves decreasing the number of
tokens through token merging, which has exhibited remarkable
enhancements in inference speed, training efficiency, and memory
utilization for image classification tasks. In this paper, we explore
various token merging strategies within the framework of the
Segformer architecture and perform experiments on multiple
semantic segmentation and human pose estimation datasets.
Notably, without model re-training, we, for example, achieve an
inference acceleration of 61% on the Cityscapes dataset while
maintaining the mIoU performance. Consequently, this paper
facilitates the deployment of transformer-based architectures on
resource-constrained devices and in real-time applications.
Index Terms—computer vision, semantic segmentation, human
pose estimation

I. INTRODUCTION

Nowadays, real-life images, e.g. captured with mobile phone
cameras, are of high resolution. However, most computer
vision applications still work with low resolution images due
to the high computational cost. Especially vision transformers
(ViT) [1] struggle with the quadratic complexity of the self-
attention mechanism in high resolutions images. Consequently,
most ViT based architectures perform a significant downsam-
pling of the input image resolution. While this might not be a
huge problem for tasks like image classification, it is a major
drawback for dense pixel tasks like semantic segmentation,
monocular depth estimation or human pose estimation. As a
result, modern architectures like Segformer [2] have been de-
veloped to handle higher resolution images. While Segformer
is based on the vision transformer architecture, it introduces
an efficient attention mechanism to reduce the computational
burden of the attention mechanism. Thus, it is a relatively
efficient but still powerful architecture for dense pixel tasks
that, in contrast to purely convolutional architectures, still
makes use of the global receptive field of the attention
mechanism. However, for real-life applications, even more

efficient architectures are needed to deal with high resolutions
and to enable real-time computations on edge-devices. Thus,
we adjust the recently proposed token merging [3] strategy,
introduced for increasing the efficiency of vision transformers
in image classification, to the Segformer architecture. Even
though it is not straightforward to apply token merging out-of-
the-box due to the frequent use of convolutions in Segformer,
we adjust the algorithm for this architecture and, as a result, we
introduce the refined Segformer++ architecture. Our method
can be applied not only at inference time without the need to
re-train the model, but also to enhance the efficiency of the
training process.

The main contributions of this paper are:
• We show how to adapt the token merging strategy to trans-

formers specialized in dense pixel tasks like Segformer.
• We present the Segformer++ architecture that makes opti-

mal use of token merging in each stage of the Segformer.
• We evaluate the token merging strategy on multiple se-

mantic segmentation and human pose estimation tasks and
discuss the performance-speedup tradeoffs.

II. RELATED WORK

In dense pixel tasks like semantic segmentation and human
pose estimation, an essential architectural requirement is the
ability to work with high resolution images to ensure that small
details in the images can be detected, and precise predictions
can be made. This usually comes with a high computational
cost. Thus, a suitable trade-off between computational cost
and performance has to be found. A common strategy used
in dense pixel tasks is to make use of a hierarchical pyramid
structure by combining the feature maps of different stages for
the final predictions [4]–[6]. In contrast, [7]–[9] use multiple
different branches with different feature map resolutions in
parallel. Although high quality results can be obtained with
this method, the computational complexity is higher compared
to pyramid networks. Therefore, transformer based approaches



usually rely on the pyramid structure.

In [10] the transformer architecture is introduced and [1] first
applies it to image processing. While the attention mechanism
ensures a global receptive field, the quadratic complexity of
the self-attention mechanism makes it hard to apply the plain
transformer architecture to high resolution images. Therefore,
many architectures have been proposed that reduce the com-
putational complexity of the attention mechanism. In [11]–
[13] the authors propose a hierarchical transformer architecture
and reduce the computational complexity by using a shifted
window attention mechanism. However, a major drawback of
these methods is the loss of the global receptive field. In [14]
a hierarchical structure is introduced together with an efficient
attention mechanism that still features a global receptive field
while significantly reducing the computational cost and in [2]
these ideas are incorporated into the Segformer architecture.
Nevertheless, further innovations are needed to make com-
putations on high resolution images feasible. Therefore, in
this paper we explore a strategy to speed up the Segformer
architecture by merging similar tokens, thus making a step
towards applying transformer based architectures in real-time
applications and on edge devices.

Since the quadratic cost of the attention mechanism is a
major drawback of the transformer architecture, a lot of
research, mostly in the context of image classification, has
been done to reduce the effective number of tokens. In [15]–
[17] token pruning strategies are explored. In token pruning,
unimportant and redundant tokens in the input sequence are
detected and simply removed, which, however, leads to losing
their information. To prevent this information loss, [18]–
[20] combine similar tokens instead. In [3] a token merging
strategy is introduced. The authors present an efficient way
to calculate similarity scores between tokens and merge them
based on these scores. This way, token merging can be used
with any trained transformer without the need to re-train the
model. Consequently, the efficiency of the ViT architecture is
significantly increased for image classification tasks. However,
it is not straightforward how to apply this strategy to dense
pixel tasks. Especially the hierarchical structure and the use
of convolutional layers in the Segformer architecture make it
hard to apply the token merging strategy directly. We adjust the
token merging algorithm to the Segformer architecture and use
a similar approach as in [21], where the algorithm is adapted
to the Stable Diffusion architecture.

Most similar to our approach is the work of [22], where a
token pruning strategy for the Segformer architecture is im-
plemented. Unlike our Segformer++, they introduce additional
learnable parameters, necessitating retraining of their model.
We will show the superior performance of our approach in the
experiments section.

III. METHODS

A. Segformer Architecture

The Segformer architecture, introduced in [2], consists of
a transformer encoder called MixTransformer (MiT) and a

lightweight convolutional decoder. In contrast to the standard
ViT, the MiT introduces some core modifications to increase
the efficiency for dense prediction tasks. In this section we
discuss these modifications.

While the standard ViT extracts non-overlapping patches of
size 16 × 16 pixels, the MiT extracts smaller overlapping
patches of size 7 × 7 pixels. This way, more fine grained
information in the images can be captured, which is crucial
for dense prediction tasks. However, this modification also
increases the number of tokens, thus, raising the computational
burden. Therefore, two additional modifications are introduced
to reduce the computational cost of the attention: The pyramid
structure and a efficient attention mechanism.

The MiT model employs a pyramid structure to compute
multiscale features across four stages Each stage generates
a feature map of dimensions H

2i+1 × W
2i+1 × Di with i ∈

{1, 2, 3, 4}. H , W , and Di are the image’s height, image’s
width and the number of channels after each stage i. To obtain
the pyramid structure, the feature map resolution is reduced
by a 3×3 convolution with stride 2 in each stage. Ultimately,
the 4 feature maps undergo further processing by the decoder
to yield the final predictions.

In the standard self-attention mechanism, the dimension of
query Q, key K and value V is N × D, where N is
the number of tokens and D is the embedding dimension
of the tokens. To reduce the number of tokens, Segformer
implements the Spatial Reduction Attention from [14]. This
reduction is realized by applying a 2D convolution with stride
R to the keys and values before the attention mechanism. We
note that before the application of this convolution, K and
V of shape Ni × Di (with Ni = H

2i+1 · W
2i+1 ) are reshaped

to H
2i+1 × W

2i+1 ×Di and after the convolution the tokens are
flattened again. Consequently, the shape of K and V is reduced
to Ni

R2 ×Di with the stride R being called the reduction factor.

In traditional ViTs, a MLP block consisting of 2 fully con-
nected layers (FFNs) is used after the attention block to
process the tokens in the channel dimension. In contrast to that,
the MiT introduces an additional 3× 3 convolutional layer to
include spatial information as MLP = FFN (Conv (FFN(x))).

To conclude, the modifications increase the efficiency of the
Segformer by reducing the number of tokens. The implemen-
tation of these modifications relies heavily on convolutional
layers and the 2D structure of the tokens, thus, preventing the
application of vanilla token merging.

B. Token Merging Strategies

In [3] a token merging strategy is introduced. It decreases
the computational complexity of the attention mechanism by
gradually reducing the number of tokens at runtime. In contrast
to previous methods, the tokens are not pruned, but similar
tokens are merged instead. This way, great performance on
the ImageNet classification tasks can be achieved with huge
efficiency gains. An important advantage of token merging
is that existing models do not have to be re-trained. In this
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Fig. 2: Visualization of efficient attention mechanisms

section, we describe the core ideas of token merging and how
we adapt it for dense pixel tasks.

The core idea of the original token merging paper [3] is to
merge a fixed number r̃ of the most similar tokens in each
layer, thus, iteratively reducing the number of token further
with each layer. The parameter r̃ is called the reduction
quantity and a larger r̃ results in a higher speedup but also
larger performance losses. To merge similar tokens, Bipartite
Soft Matching is used. Therefore, the tokens are split into two
groups A and B and the similarity score between each token
in group A and each token in group B is calculated as

similarity(A,B) = A ·BT . (1)

Using these similarity scores, the r̃ most similar tokens are
merged from group B into group A.

While this strategy works well for image classification tasks,
it is not directly applicable to dense pixel tasks. Because the
number of tokens is iteratively reduced in each layer, the 2D
structure of the tokens is lost. However, this structure is pivotal
in dense pixel tasks and building blocks like pyramid structures
and convolutional layers rely on it. In [21] the token merging
strategy is adapted to the Stable Diffusion architecture. They
preserve the 2D structure by adjusting the algorithm such
that the tokens are merged before the attention computation
and directly unmerged afterwards. However, since this method
does not iteratively increase the number of merged tokens, a
more aggressive merging approach is necessary. Thus, instead
of the reduction quantity r̃, a reduction rate r is used. This
rate denotes the percentage of merged tokens, e.g. r = 0.5
corresponds to merging 50% of the token, reducing the token
number by the factor λ = 1

1−r = 2.

Similar to [21], we repeatedly merge and unmerge the tokens
in Segformer++. Merging is computed via averaging and
unmerging is done by copying a token to all positions that
were merged into it. Since the number of tokens in dense pixel
tasks is usually significantly higher than in [21], we combine
token merging with Segformer’s Spatial Reduction Attention.
This strategy is illustrated in Figure 2d.

We regard token merging as a smart merging strategy, since it
is able to detect similar tokens. This way it is likely that small
objects do not vanish as a result of the merging process. In
contrast to that, we additionally introduce a simple merging
strategy denoted as 2D Neighbor Merging that only merges

neighboring tokens. Before the attention computation, we just
perform the Spatial Reduction for keys and values, while the
number of queries is reduced by a 2D average pooling layer
with stride 2 and pooling kernel 2, resulting in a 75% reduction
in the number of queries. This is illustrated in Figure 2c.
Comparing Segformer++ to 2D Neighbor Merging enables us
to understand the effects of different merging strategies.

C. Segformer++

In Segformer++ we combine token merging with the hierar-
chical pyramid structure and the efficient attention mechanism
of the Segformer architecture. Our architecture is identical to
the original Segformer architecture, except for the attention
where we apply token merging after the Spatial Reduction
mechanism and unmerge the tokens after the attention. This is
illustrated in Figure 2d. Hence, the original weights published
in [2] can be used, but a significant speedup is obtained.

Due to the hierarchical nature of the Segformer architecture,
the computational cost varies significantly between the dif-
ferent stages. Therefore, instead of always applying the same
reduction rate r, we define a different rate in each stage i.
Moreover, we use a different reduction rate in the merging of
the queries than in the merging of the keys and values. This is
illustrated in Figure 3 where the reduction rate for the queries
is denoted as rqi and for the keys and values as r(kv)i .

We conduct multiple experiments to find the optimal rates for
each stage. By using different reduction rates per stage and
treating the queries differently than the keys and values, sig-
nificantly better performance-speedup tradeoffs are achieved.
We note that the optimal values for rqi and r(kv)i depend
on the image resolution. As the majority of our experiments
utilize images from the Cityscapes dataset with a resolution
of 1024 × 1024 pixels, we optimize the rates accordingly.
As a result, we define two model variants with different
performance-speedup tradeoffs: The Segformer++HQ model
achieves a good speedup with nearly no performance loss,
while the Segformer++fast model achieves a huge speedup with
small performance losses. The reduction rates for these models
are given in Table I.

D. Computational Complexities

In this section, we compare the computational complexities of
the different attention mechanisms discussed in this paper.
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Fig. 3: Different reduction
rates rqi and r(kv)i

Segformer++HQ Segformer++fast

Stage i rqi r(kv)i rqi r(kv)i
1 0 0.6 0 0.9
2 0 0.6 0 0.9
3 0.8 0 0.9 0
4 0.8 0 0.9 0

TABLE I: Optimal reduction
rates

Given queries Q, keys K and values V of shape N ×D, the
vanilla attention mechanism can be computed as

attn(Q, K, V) = softmax

(
QKT

√
D

)
V (2)

and, consequently, has a computational complexity of

O(N2D). (3)

In dense pixel tasks, the number of tokens N is usually very
high, thus, the main goal of efficient attention mechanisms is
to reduce this number.

In Figure 2a the Spatial Reduction Attention used in the
Segformer architecture [2] is depicted. Before the attention
computation, the number of keys and values is reduced by
a 2D convolution with stride R such that their new shape is
N
R2 ×D. Since the shape of the queries is left unchanged, the
computational complexity of the attention computation is

O

(
N2

R2
D

)
. (4)

As a result, the computational burden is reduced by the factor
R2. We note that the computation of the strided convolution
is negligible as it scales linearly in the number of tokens.

In [21], token merging is adapted to the Stable Diffusion
architecture as shown in Figure 2b. The token number is
reduced by the factor

λ =
1

1− r
(5)

before the attention, resulting in the shape N
λ ×D for queries,

keys and values. Consequently, the computational complexity
of the attention computation is O(N

2

λ2 D). However, the token
merging algorithm comes not for free due to the similarity
score calculation in Equation 1. If we assume that group A
and B are of equal size, the computation scales as O(N

2

4 D). It
is worth noting that, in practice, the group sizes are not equal,
resulting in an even lower complexity. Adding this overhead,
the computational complexity is

O(
N2

λ2
D) +O(

N2

4
D) = O((λ−2 + 0.25)N2D) (6)

and the computational expenses are reduced by the factor(
λ−2 + 0.25

)−1
.

In our proposed Segformer++ architecture, we combine the
token merging strategy with the Spatial Reduction Attention
as illustrated in Figure 2d. First, the number of keys and values
is reduced by a strided convolution to the shape N

R2 × D

while the queries are left unchanged. Next, token merging is
applied to further reduce the number of tokens, resulting in
the shape N

λ(kv)R2 ×D for keys and values and N
λq

×D for the
queries. We note that it is necessary to apply the token merging
twice, since the queries cannot be treated similarly to the keys
and values anymore. Thus, the complexity of the similarity
score computation in Equation 1 is O

(
N2

4 D
)

for the queries

and O
(

N2

4R4D
)

for the keys and values. Based on the now
reduced number of tokens, the computational complexity of
the attention computation scales as O( N2

λ(kv)λqR2D) and the
overall computational complexity can be expressed as

O

(
N2

λ(kv)λqR2
D

)
+O

(
N2

4
D

)
+O

(
N2

4R4
D

)
= O

((
1

λ(kv)λqR2
+ 0.25

1 +R4

R4

)
N2D

)
.

(7)

Thus, the computational cost is reduced by the factor(
1

λ(kv)λqR2 + 0.25 1+R4

R4

)−1

.

In conclusion, we see that Segformer++ is able to achieve
superior speedups in theory. We show in our experiments, that
this strategy not only significantly reduces the computational
burden, but also maintains the performance very well.

IV. EXPERIMENTS

We conduct multiple experiments to evaluate the performance
of the proposed Segformer++ architecture. Our main focus is
on semantic segmentation, but we also include some human
pose estimation experiments to prove that our architecture can
be used as a general purpose method for dense pixel tasks.

A. Experimental setup

The semantic segmentation experiments are conducted on the
Cityscapes dataset [23] and the ADE20K dataset [24], while
the human pose estimation results are calculated on the MS
COCO dataset [25] and the Jumping Broadcast Dataset (JBD)
[26]. Special focus is given to Cityscapes and JBD due to their
relatively high image resolutions, allowing for insights relevant
to high-resolution scenarios. For Cityscapes we use crops of
size 1024× 1024 pixels and the JBD is evaluated using crops
of size 640 × 480 pixels. Although the images in ADE20K
and MS COCO are not high resolution, we include the results
to demonstrate the effectiveness of our method across diverse
datasets. We note that efficiency measures on these datasets
are not very insightful due to the low resolution.

In addition to standard performance metrics, we particularly
focus on model efficiency, defining the speedup as

speedup =
torig

tmod
. (8)

Thus, it is the rate of the inference time of the original model
torig to the inference time of the modified model tmod. We
measure the inference time using random tensors of a specific
resolution. This way, we are also able to report speedup values
for very high resolution data, even though no such datasets are
publicly available. Furthermore, we also report the speed and



memory resources during training on real data. To ensure a
fair comparison, we train and evaluate each model on a single
A100 GPU. As main performance metrics, we use the Percent-
age of Correct Keypoints (PCK) for human pose estimation
and the mean Intersection over Union (mIoU) for semantic
segmentation. Additionally, we define the mIoUsmall metric
on the Cityscapes dataset to specifically assess segmentation
performance on small object classes. Thus, we see whether
merging has a detrimental impact on small objects. The classes
used for the mIoUsmall computation are Fence, Pole, Traffic
Light, Traffic Sign.

Two variants of the Segformer++ architecture are tested: The
Segformer++HQ model that enables a good speedup with
nearly no performance loss, and the Segformer++fast model
that enables a huge speedup at a small performance loss.
Additionally, we always evaluate a model utilizing the 2D
Neighbor Merging strategy for comparison. Unless otherwise
stated, all model variants are based on the Segformer-B5
architecture, which is the largest available Segformer model.

All models are implemented in PyTorch [27], and the MM-
segmentation [28] and MMpose [29] libraries are used for
training and evaluation. Our code is publicly available at
https://kiedani.github.io/MIPR2024/.

B. Inference for Semantic Segmentation

Our merging strategies offer the advantage of being applicable
without requiring model re-training. Thus, in this section,
we assess these strategies solely during inference. We utilize
official weights from [2] for the Segformer-B2 and our trained
weights (see Section IV-C) for the Segformer-B5 model.

Segformer-B5
Method mIoU ↑ mIoUsmall ↑ FPS ↑ Speedup ↑

Segformer (original) 82.39 72.97 14.75 1.00
Segformer++HQ (ours) 82.31 72.93 23.68 1.61
Segformer++fast (ours) 82.04 72.72 28.66 1.94
2D Neighbor Merging 81.96 72.24 28.08 1.90

Downsampling 77.31 65.03 96.08 6.51
Segformer-B2

Method mIoU ↑ mIoUsmall ↑ FPS ↑ Speedup ↑
Segformer (original) 81.08 71.97 36.92

Segformer++HQ (ours) 81.03 71.83 56.29 1.52
Segformer++fast (ours) 80.62 71.53 71.98 1.95
2D Neighbor Merging 80.38 71.02 67.86 1.84

Downsampling 75.87 63.89 243.15 6.59
Segformer (pruning) [22] 80.03* - - -

TABLE II: Semantic segmentation inference on Cityscapes.
The large Segformer-B5 models use batch size 8 and the
smaller Segformer-B2 models use batch size 16. The * indi-
cates that the results are taken from the original paper instead
of our own experiments.

In the upper part of Table II we show the results for the
Cityscapes dataset. The Segformer++HQ model is 61% faster
while maintaining a consistent mIoU performance. Moreover,
with only a slight performance loss, the Segformer++fast model
is 94% faster, and thus, is nearly twice as fast as the original
Segformer model. Even though the 2D Neighbor Merging
achieves a similar mIoU performance as the Segformer++fast

model, we see differences in the mIoUsmall metric. Conse-
quently, we conclude that a smart token merging strategy is in
fact able to better maintain the information of small objects.
We also provide some segmentation results in Figure 1 to

visualize the performance of our Segformer++ models. The
segmentation maps are nearly indistinguishable, even though
the inference time is significantly reduced. Since the number
of tokens can also simply be reduced by downsampling the
image, we compare our models to this strategy, too. We choose
a resolution of H

2 × W
2 to achieve a similar token reduction

as for the queries in 2D Neighbor Merging. As expected, this
strategy results in a significant performance loss, especially in
the mIoUsmall metric.

We also provide results computed with the smaller Segformer-
B2 model in the lower part of Table II. These results are similar
to the results of the larger Segformer-B5 model. We addition-
ally include the results of [22] in the table to compare our
merging strategies to their token pruning approach. However,
it becomes pretty clear that our method is superior to the token
pruning approach, especially since their approach requires an
additional re-training of the model.

C. Training for Semantic Segmentation

Additionally, to inference time only usage, it is also possible
to apply our strategies during training and, thus, to reduce the
computational cost and the memory resources. Thus, larger
models can be trained on less expensive hardware and in
shorter time, which is especially interesting for small research
labs and practitioners.

Cityscapes
Method mIoU ↑ mIoUsmall ↑ Steps/s ↑ Memory (GB) ↓

Segformer (original) 82.39 72.97 0.80 48.30
Segformer++HQ (ours) 82.19 72.77 1.12 33.95
Segformer++fast (ours) 81.77 72.39 1.24 30.50
2D Neighbor Merging 82.38 72.81 1.30 31.10

Downsampling 79.24 67.75 2.36 10.00
ADE20K

Method mIoU ↑ mIoUsmall ↑ Steps/s ↑ Memory (GB) ↓
Segformer (original) 49.72 - 1.17 33.68

Segformer++HQ (ours) 49.77 - 1.34 29.18
Segformer++fast (ours) 49.10 - 1.40 28.04
2D Neighbor Merging 49.35 - 1.47 27.17

Downsampling 46.71 - 2.21 12.41

TABLE III: Semantic segmentation training on Cityscapes and
ADE20K. Computed with Segformer-B5 using a batch size of
4 for Cityscapes and 8 for ADE20K.

In Table III we show the results on the Cityscapes dataset. The
Segformer++ models achieve good speedups and a significant
memory reduction, while maintaining very good performance
on the mIoU as well as the mIoUsmall metric. Moreover, 2D
Neighbor Merging slightly outperforms all other models. Thus,
it seems like the 2D Neighbor Merging model is able to learn
how to deal with small objects during training, even though it
could not handle these as well in the inference only setting.
Furthermore, by evaluating the results on the ADE20K dataset
in the lower part of Table III, we find that Segformer++ slightly
outperforms the 2D Neighbor Merging strategy. Consequently,
both strategies proposed in this paper are able to achieve
very good performance values during training. Since the
Segformer++HQ model even slightly outperforms the original
Segformer model on the ADE20K dataset, we think that our
method can be always used as a drop-in replacement for the
original Segformer model.

In conclusion, our strategies all yield very good performance
values and the differences between the models are minimal.



As a result, we provide fast and high performing models that
can be easily finetuned on private datasets using less expensive
hardware, making it a very valuable tool for researchers and
practitioners interested in efficiency.

D. Training on Human Pose Estimation

Even though the Segformer architecture is mainly designed for
semantic segmentation tasks, it is straight forward to apply it
to other dense pixel tasks. Therefore, we train our models
for human pose estimation in this section. We perform our
experiments using a Top-Down approach given ground truth
bounding boxes. Our model is now adjusted such that it pre-
dicts heatmaps instead of segmentation maps. Consequently,
we set the output dimension to the number of keypoints.

Jumping Broadcast Dataset
Method PCK@0.1 ↑ PCK@0.05 ↑ Steps/s ↑ Memory (GB) ↓

Segformer (original) 95.20 90.65 1.10 40.00
Segformer++HQ (ours) 95.18 90.51 1.31 35.95
Segformer++fast (ours) 94.58 89.87 1.37 34.58
2D Neighbor Merging 95.17 90.16 1.40 33.37

MS COCO
Method PCK@0.1 ↑ PCK@0.05 ↑ Steps/s ↑ Memory (GB) ↓

Segformer (original) 95.16 87.61 2.33 13.54
Segformer++HQ (ours) 94.97 87.35 2.27 13.12
Segformer++fast (ours) 95.02 87.37 2.30 12.92
2D Neighbor Merging 94.98 87.36 2.88 12.27

TABLE IV: Human Pose Estimation training. Results com-
puted with Segformer-B5 and batch size 16.

The results on the Jumping Broadcast Dataset in Table IV
show, that both the Segformer++HQ and the 2D Neighbor
Merging strategy achieve nearly the same performance as
the original Segformer model. The Segformer++HQ model,
however, slightly outperforms the 2D Neighbor Merging
on the PCK@0.05 metric due to the better handling of
small objects. All models achieve excellent results on JBD.

Segformer++HQ Segformer++fast 2D Neighbor Merging

Fig. 4: Example predictions on
JBD. The ground truth is visu-
alized in black.

Moreover, the models also
yield great results on the
MS COCO dataset, thus,
validating the results of the
segmentation experiments
for human pose estimation
tasks. We illustrate some
example predictions in
Figure 4 to visualize the
performance of our models.
Similar to the semantic segmentation visualization, the
predictions are nearly indistinguishable, even though the
inference time is significantly reduced.

In conclusion, all strategies achieve very good performance
values with the Segformer++HQ model slightly outperforming
the other models on small details. Thus, we prove that our
models can easily be used as drop-in replacements for other
dense pixel tasks as human pose estimation.

E. Inference Speed for Different Resolutions

While the resolution of Cityscapes and JBD is relatively
high compared to other publicly available datasets, it is still
way lower than the resolution images captured with modern
smartphone cameras. Since there are no public datasets to
evaluate the performance of our models on such high res-
olution images we cannot report corresponding performance

metrics. However, we are confident that the trends observed
in the previous experiments also hold for higher resolution
images. Nevertheless, we can discuss the speedups achieved
on higher resolution data by using random tensors of different
resolutions as input to the models. We note that neither
the reduction rate nor the computational complexity of the
matching process are dependent on the input content. Thus,
the speedups achieved on random tensors are representative
for real data as well.

Method 512x512 640x640 1024x1024 2048x1024 3840x2160
Segformer++HQ (ours) 1.18 1.32 1.61 2.04 2.66
Segformer++fast (ours) 1.27 1.45 1.94 2.75 4.31
2D Neighbor Merging 1.38 1.50 1.90 2.39 3.23

TABLE V: Speedups achieved using random generated tensor
of various sizes. All speedups are relative to the original
Segformer model. The results are computed with Segformer-
B5 and the optimal batch size for each resolution is used.

In Table V we show the speedup values achieved by our
models on different input resolutions. The 2D Neighbor Merg-
ing strategy is very efficient for lower resolutions, but it is
outperformed by our Segformer++ models on higher resolution
data. This is since the pooling in 2D Neighbor Merging is only
applied to the queries as illustrated in 2c, while the token
merging in our Segformer++ models is also applied to the
keys and values. It is not possible to define the best model
for all resolutions, but the Segformer++ models especially
efficient on high resolution data. Conclusively, Segformer++
is a valuable tool for speeding up the calculations on high
resolution data.

V. CONCLUSION AND OUTLOOK

In this paper, we combine the Segformer architecture with
token merging strategies. We propose the Segformer++ archi-
tecture and the 2D Neighbor Merging strategy that are both
able to significantly reduce the computational burden of the
attention mechanism. We show that significant speedups can
be achieved while maintaining high performance values. The
models are especially well suited for high resolution data,
where remarkable speedups can be achieved.

The Segformer++ as well as the 2D Neighbor Merging
strategy achieve very good performance values and it is not
clear which strategy is superior. However, as Segformer++ is
able to achieve slightly better performance values on small
objects in the inference only setting, we think that using this
architecture is the best choice in most cases. Consequently, it
is a valuable tool for researchers and practitioners interested
in efficient and high performance dense pixel tasks on high
resolution data. Our strategy enables training powerful models
on less expensive hardware and makes running such models
on embedded devices feasible.

Even though we concentrate on the Segformer architecture
in this paper, our strategies can easily be extended to other
transformer architectures that both use convolutional layers
and the attention mechanism. We hope that our work enables
other researchers to increase the efficiency of their models and,
thus, make them more accessible to a broader audience.
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