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For a long time the biggest challenges in modeling cellular signal

transduction networks has been the inference of crucial pathway

components and the qualitative description of their interactions.

As a result of the emergence of powerful high-throughput

experiments, it is now possible to measure data of high temporal

and spatial resolution and to analyze signaling dynamics

quantitatively. In addition, this increase of high-quality data is the

basis for a better understanding of model limitations and their

influence on the predictive power of models. We review

established approaches in signal transduction network modeling

with a focus on ordinary differential equation models as well as

related developments in model calibration. As central aspects of

the calibration process we discuss possibilities of model

adaptation based on data-driven parameter optimization and the

concomitant objective of reducing model uncertainties.
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Introduction
Cellular decision making is governed by a complex inter-

play of signal transduction and gene regulation networks.

The genome is well-researched and provides a comprehen-

sive list of network components that contribute to this

interplay. In addition large scale transcriptome and prote-

ome data characterizing the abundance of each of these

components is available. However due to the complexity of

the possible interactions and crosstalk between different

signaling pathways, purely experimental approaches are

limited in depicting the functional behavior emerging from

those signaling networks. In recent years computational

models have been used to help describe signaling networks

and their behavior more quantitatively [1–3].

Building and calibrating computational models is a chal-

lenging task in itself. Many aspects of signaling networks,
                      
such as the possible interactions between the parts/pro-

teins/nodes in the network are not well described or dis-

cussed controversially in literature. Depending on the

biological context, signaling networks can rewire and

change their function. Therefore a computational scientist

has to rely on well curated literature as well as experimental

data acquired in the particular biological context of the

study to complete two tasks: firstly, obtaining the appro-

priate network structure, and secondly, calibrating model

parameters such as the strength of protein–protein inter-

actions or protein abundances to the biological context of

interest. Depending on the biological question and on the

available data, different mathematical models can be

employed, each with particular strengths and weaknesses

[4]. Given the chosen model structure and calibration, the

next step is to validate the model with further experimental

data and/or literature. If the model does not perform well,

assumptions, model structure and parameterization have to

be revised. Otherwise, it is important to analyze the degree

to which the model is constrained by the available data/

literature and the extent to which model predictions can be

trusted. If the model is insufficiently constrained or pre-

dications are uncertain, experimental design techniques

can be used to plan additional experiments that will

provide new data with optimal information content.

Figure 1 illustrates how these fundamental tasks are re-

peated until the biological questions can be answered with

sufficient statistical support.

We will review model calibration and uncertainty analysis

approaches used for the modeling of signaling networks.

Modeling strategies for signaling networks
The spectrum of modeling approaches for signaling net-

works covers a broad range of abstraction levels. The

choice of a particular model-class is often predetermined

by the system’s complexity, by the type and quality of

available biological knowledge and by the particular

biological question that should be addressed.

For integrating information of larger signal transduction

networks, in particular in cases where detailed mechanistic

data on the pathway components is missing, logic-based

models are powerful approaches [5,6]. In various recent

attempts, fragmentary qualitative knowledge of regulatory

interactions was successfully integrated using Boolean

modeling, leading to predictive mathematical models suit-

able for network analysis and even to simulation of

the network dynamics [7–9]. Despite these advances in

Boolean network modeling, the predictive power of those
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Figure 1
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Model calibration for cell signaling networks. (a) Depending on the available data and prior knowledge, the signaling pathway can be translated

into mathematical models with different abstraction levels. The corresponding model classes range from undirected interaction graphs over

direction-specific logical models to quantitative ODE models. (b) Time resolved quantitative data allows for a strong interlinking of the signaling

dynamics and their mathematical representation in the model. A carful choice of the objective function is critical for a successful fitting result. (c)

The quality of the model fit and hence model predictions can be affected by structural and practical non-identifiabilities due to limitations in the

model wiring or the data. A variety of numerical approaches for the analysis of model uncertainties are available, that is, Markov-chain Monte

Carlo (MCMC) sampling of the posterior distribution or likelihood based methods. (d) Uncertainties in model parameters lead to ill-defined model

predictions. These, however, may give rise to dynamic ranges where additional experimental validation would significantly improve model

calibration.
models is intrinsically limited because it casts biology into a

binary format. For a more adequate rendering of biological

behavior, signaling networks and their underlying reactions

can be translated into algebraic equations describing pro-

tein concentration over time and space. In this setting,

mechanistic models consisting of ordinary differential

equations (ODE) are often used. They rely on quantitative

data but, if applied successfully, produce realistic predic-

tions of the system’s dynamics [10]. In the context of signal-

transduction networks, mechanistic modeling provides

powerful tools for the analysis of regulatory motifs govern-

ing the relationship between stimuli and responses such as

feedback mechanisms, cycle and cascade motifs or spatial

gradients and their effects on location-specific signaling [3].

If signaling is directly influenced by random fluctuations in

molecular numbers or due to the underlying discreteness of

some of the subsystems, stochastic effects need to be

considered explicitly. Over the last decades addressing this
                                                  
aspect contributed to the development of multiple exact,

approximate and hybrid stochastic simulation methods

[11], which were successfully used to model experimental

data [12].

We will focus on model calibration techniques that are

used in conjunction with mechanistic models. Box 1 gives

a short primer on the mathematics behind this type of

model.

Model calibration by parameter estimation
Many models, in particular mechanistic models, will

contain parameters which values are unknown. These

parameters will introduce uncertainty in the model be-

havior and thus have to be calibrated. Estimating un-

known parameters is essential for determining if a model

appropriately fits the available experimental data and is in

line with prior knowledge. In some cases the model
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Box 2 Mathematical concepts in parameter estimation

Model output: yi(u)

Corresponding experimental observation: yd
i

Residual: r i ðuÞ ¼ yd
i �y i ðuÞ

Sum-of-squared-residuals: SSRðuÞ ¼
P

i r i ðuÞ2

Standard deviation of experimental observation: si

Weighted sum-of-squared-residuals: WSSRðuÞ ¼
P

i
r i ðuÞ2

si
2

Measurement noise model: si(u)

Likelihood for normally distributed measurements:

LðuÞ ¼
Q

i
1

si ðuÞ
ffiffiffiffiffi
2p
p e�ðr i ðuÞ2=2si ðuÞ2Þ

Prior probability distribution for jth parameter: P(uj)

Posterior probability distribution: P ð̃ujyd Þ / LðuÞ�
Q

j Pðuj Þ

Box 1 Introduction to mechanistic modeling

Network dynamics in space and time can conveniently be modeled

by ordinary or partial differential equations [58]. We will briefly

introduce the former approach here using a simple binding reaction:

A + B$ C. The reaction is governed by five parameters, the

association rate kon, the dissociation rate koff and the initial

concentrations A0, B0 and C0. Assuming a well-mixed environment,

spatial distribution can be neglected and mass action kinetics define

the reaction flux of the forward v1 ¼ kon�A�B and backward

v2 ¼ koff �C reactions. The ODE for the concentration dynamics of

this system are:

d

dt
A ¼ �kon�A�B þ koff �C with Aðt ¼ 0Þ ¼ A0

d

dt
B ¼ �kon�A�B þ koff �C with Bðt ¼ 0Þ ¼ B0

d

dt
C ¼ þkon�A�B�koff �C with Cðt ¼ 0Þ ¼ C0

The general structure of this type of model is ðd=dtÞx ¼ N �vðx ; uÞ with

initial conditions x(t = 0) = f0(u). Here, x are modeled species such as

proteins, u model parameters such as reaction rates or initial

concentrations, N is the stoichiometric Matrix and v are the reaction

rate equations such as mass action kinetics, Hill or Michaelis–Menten

kinetics. The above equation system can be solved using standard

numerical solver packages, a range of specialized software for signaling

networks [59–61] and commercial tools such as the SimBiology toolbox

for MATLAB (The Mathworks Inc., Natick MA, USA).
wiring can be encoded in terms of the model parameters.

Therefore the optimal network wiring can be inferred as

well. For instance, in an ODE model binding affinities

encode reactions of proteins binding to each other. Only if

the association rate between two proteins is larger than

zero is there an effective link in the network between the

two. Here we will deal with the generic problem of

finding a set of parameters that lead to the best agreement

of model and data. Box 2 highlights some of the related

mathematical concepts.

For estimating unknown parameters, an objective func-

tion that is dependent on the unknown parameters can

be formulated. It ensures that the model is calibrated to

all data simultaneously. The set of parameters that

minimizes the objective function provides the best

possible fit of model and data and can be found using

numerical procedures. A simple and commonly used

objective function is the sum-of-squared-residuals. A

residual is the difference between a model output and

its corresponding experimentally observed value. Model

outputs can for instance be concentrations  of proteins at

a particular point in time, or sums or ratios of those

concentrations. In general, every observable quantity

described by the model can be an output, however for

signaling models the experimentally accessible outputs

are often limited.
                      
By weighting the residuals by the standard deviation of a

measurement, a slightly more advanced objective func-

tion also takes the quality of experimental data into

account. This approach facilitates the use of more general

measurement noise models. The noise models can be

determined by independent methods [13] or by a joint

estimation together with the signaling model [14��]. As-

suming normally distributed measurements sum-of-

squared-residuals objective functions are special cases of

a much more general type of objective function called

likelihood. For cases where the appropriate probability

distribution of the measurements is unknown or multiple

objectives have to be optimized simultaneously the meth-

od of moments and set-based methods have their respec-

tive advantages [15–17]. Here, we concentrate on the

likelihood, which is the conditional probability of the

experimental data given the model parameters [18]. The

optimal parameter values can be ascertained by maximi-

zation of the likelihood, which is referred to as maximum-

likelihood estimation. For practical reasons the objective

function is chosen to be minus the logarithm of the likeli-

hood so that the resulting objective function can again be

minimized. As the amount of appropriately selected data

increases, the maximum-likelihood estimator of the pa-

rameters converges to the true parameter values [19]. In

addition, no other asymptotically unbiased estimator has

lower asymptotic mean squared error. The likelihood also

provides the most general way of dealing with measure-

ment noise models. When the distribution of the measure-

ment noise is different from normal (e.g. log-normal),

distribution parameters (e.g. the variance) can be estimated

together with the remaining model parameters [14��].

Prior knowledge from literature can provide important

additional information to calibrate a model properly. It

can come in many different forms, such as previously

reported parameter values and their estimation uncertain-

ties, known facts about protein concentrations at a certain

point in time or general plausibility assumptions on the

model dynamics. Following Bayes’ theorem, combining
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the likelihood with the prior probability distribution yields

the posterior probability distribution. Like in maximum-

likelihood estimation, the maximum a posteriori probabili-

ty estimate of the parameters can be determined.

As opposed to studying the mean behavior of the signaling

network, one might be interested in creating and calibrat-

ing signaling networks across heterogeneous populations.

Modeling signaling networks of heterogeneous popula-

tions such as single cells or different cancer cell lines is

an especially challenging task. One mathematical concept

to deal with this is known as mixed-effect modeling [20]. It

can potentially be used with different types of signaling

models but is especially useful for mechanistic models.

Mixed-effect modeling distinguishes between fixed

effects and random effects. The former affects all instances

of a signaling model in the same way. The latter introduces

a certain amount of randomness across different instances

of the signaling model that follows a particular distribution

assumption. Technically, independent instances of the

original model are initialized, with individual parameters

for the random effects. The random effect parameters are

then constrained by assuming a certain distribution of their

values. The distribution constraint is added to the objec-

tive function similar to prior knowledge. As an example,

assuming that the biochemical properties are conserved

across the population, the reaction rate constants might be

modeled as fixed effects. Total protein concentrations on

the other hand could fluctuate across the population. They

could be modeled as random effects following a log-normal

distribution. Mixed-effect modeling is not often applied in

modeling of signaling networks but has a very strong

foundation in pharmacokinetic modeling [21].

Parameter estimation by numerical
optimization
After the objective function has been specified, numerical

optimization algorithms are applied to minimize the

objective function. For signaling networks this can how-

ever be a difficult task. All of the discussed models are

non-linear and may contain a large number of unknown

parameters. At the same time, the available prior knowl-

edge and experimental data is often limited. As a result,

the objective function can have multiple (local) minima,

for illustration see the parameter estimation landscape in

Figure 1b. In the remainder of this section we will focus

on the task of finding a set of parameters that minimizes

the objective function. The implications of multiple

minima on model uncertainty will be discussed in the

next section.

Analytical solutions of this optimization problem are not

feasible and numerical solvers that iteratively refine solu-

tions are applied. The corresponding numerical methods

can be subdivided into deterministic approaches, stochas-

tic approaches or hybrid approaches. Benchmark proper-

ties of all of these methods are how quickly they converge
                                                  
to a solution and how reliably the best solutions can be

obtained if the method is repeated multiple times.

Starting with an initial guess of the parameters, determin-

istic approaches make use of derivative information to

iteratively reduce the value of the objective function. The

simplest approach is known as gradient descent method.

It uses only first order derivatives but has poor conver-

gence. The well-known Newton’s method makes use of

second order derivatives as well, thus improving conver-

gence [22]. In many scenarios it is advantageous to be able

to switch between gradient decent and Newton’s method.

Examples are the Levenberg–Marquardt algorithm or

more recently published trust-region approaches [23].

For non-linear models, one fundamental limitation of

deterministic approaches is that they can get stuck in

local minima. Therefore, these approaches have to be

combined with stochastic elements, such as multiple

starts from randomized initial parameters. For the calcu-

lation of the derivatives of the objective function with

respect to the parameters finite difference approximation

should not be used, because it leads to inaccurate deri-

vatives and poor estimation performance. The methods of

choice for derivative calculation are the sensitivity equa-

tions [14��] or complex step methods [24].

Stochastic approaches apply heuristic search strategies to

find solutions. They are designed to circumvent conver-

gence to local minima. Popular tools in this category

include genetic algorithm, differential evolution or parti-

cle swarm optimization. Methods in this class of algo-

rithms typically do not make use of derivative

information. This simplifies their implementation but

comes at the cost of considerable convergence disadvan-

tages [14��]. Finally, hybrid algorithms have been pro-

posed. They initially make use of stochastic algorithms

before switching over to deterministic strategies; as, for

instance, in the case of the scatter search algorithm [25].

All of the optimization methods mentioned above are

limited to continuous optimization variables. More gen-

eral approaches such as the software suite MEIGO [26�]
can also account for discrete variables.

A quality control for model fitting has been devised that is

based on the analysis of the recurrence of multiple

independent runs of parameter estimation [14��]. In this

quality control, using two benchmark signaling networks

of different complexity, a deterministic multi-start trust

region method outperformed all other tested optimization

methods by orders of magnitude.

Uncertainty in model calibration and
prediction
The previous two sections discussed strategies and chal-

lenges for finding the so-called best model fit and the

corresponding set of optimal parameter values. If model

behavior will be simulated, it is important to determine
                     



                                                           147
how much uncertainty is contained in the model predic-

tion.

Experimental uncertainties are propagated to uncertain-

ties in the estimated parameters, which in turn are propa-

gated to the model predictions. Depending on the

amount and quality of the experimental data as well as

of the prior assumptions, the set of optimal parameters

might not be uniquely defined [27��]. Besides the possi-

ble existence of local minima, structural non-identifia-

bility can arise. It indicates that due to the structure of the

model, there may be infinitely many sets of parameters

that fit the data equally well. Various different methods

are available to detect structural non-identifiability for

signaling networks [28]. Some model parameters, al-

though structurally identifiable, might still be practically

non-identifiable. This means that there is a unique set of

best fit parameters but the parameters can still not be

estimated with finite uncertainty and are hence still

undetermined [29].

Uncertainty in parameter estimates is usually quantified

in terms of confidence intervals. For signaling models and

non-linear models in general, asymptotic confidence

intervals based on the Fischer information matrix are

not reliable [29]. A method that is based on likelihood

profiles has been proposed. By using this method, both

structural and practical non-identifiability may be deter-

mined and confidence intervals can be calculated [29].

Alternatively, Bootstrap or Monte Carlo methods can be

used to sample from the likelihood or the posterior

probability distribution [30,31,32��]. The reliability of

bootstrapping-based confidence intervals in the presence

of non-identifiabilities was recently studied [33]. Uncer-

tainty in model predictions can also be quantified directly,

without the need to quantify uncertainty in model pa-

rameters first [34,35]. The results of uncertainty analyses

can be used to design novel experiments tailored to

reduce specific uncertainties in the model calibration

[36,37].

A complementary approach for the further reduction of

uncertainties in model calibration is termed optimal

experimental design. It involves the systematic adapta-

tion of experimental protocols in order to restrict the

range of possible parameter values [38]. This concept

extends several qualitative aspects of thorough experi-

mental planning, such as the minimization of sources of

technical variability due to inhomogeneity of the experi-

mental units, or the determination of the number of

reasonable replications that reveal the system’s intrinsic

variability [39]. Optimal experimental design comprises a

number of numerical optimization methodologies

designed to minimize properties of the parameter covari-

ance matrix, which describes the uncertainty region in the

parameter space close to a particular solution of the

dynamical system. A recent example of how this theory
                      
can be successfully applied in a cell signaling context can

be found elsewhere [40�].

Conclusion
Building useful models of signaling networks on the

cellular level is a challenging task considering the high

degree of complexity inherent to these pathways and the

limitations of experimental techniques. The key steps

consist of the inference of the core signal transmitters and

modulators; a careful choice of the level of detail that will

be considered in the model; the translation of presumed

physical interactions into a mathematical model; the

acquisition of highly resolved quantitative data as read-

outs for the signaling dynamics; and, as we discussed in

this review, the calibration of the model to maximize its

predictive power. A proper balance between those steps is

essential, otherwise a poor fitting result could disqualify a

particular model unnecessarily [41]. At the same time, a

well-balanced setup should restrict regions in the param-

eter space where the model behavior is insensitive to

changes of the parameter values [42].

As opposed to the deterministic ODE models discussed

here, the methodology for other models such as partial

differential equation, stochastic [43] or agent-based mod-

els [44] is less well established. Stochasticity of the model

output is a considerable problem for many of the com-

monly used methods that are based on objective func-

tions. A trivial but computationally expensive solution is

to average over many independent stochastic model

simulations. There is a growing amount of literature on

the use of Bayesian approaches for the inference of

stochastic models [45�]. To circumvent the aforemen-

tioned issues related to computational cost, several recent

attempts try to approximate stochastic models [46,45�,46–
49]. Instead of taking the full distribution of the measured

population into account, these methods use only lower-

order moments and thereby sacrifice some of the under-

lying information. However, it was shown that in some

cases already mean and variance are sufficient for param-

eter inference even if the measured distributions are not

well determined by the lower-order moments [46,50]. In

addition to the simultaneous inference of the model

parameters and their confidence bounds, Bayesian meth-

ods allow for the dissection of intrinsic, extrinsic and

technical noise [51,52].

When hybrid models or large multi-scale models [53–56]

are considered, reliable model calibration gets even more

complicated [4]. A recent study showed that currently

available methods do not perform better than random in

these settings [57]. We conclude that there is a large body

of well-established methods for medium-scale mechanis-

tic modeling of signaling networks.
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