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ABSTRACT

Motivation: Modeling of dynamical systems using ordinary differential

equations is a popular approach in the field of Systems Biology. The

amount of experimental data that are used to build and calibrate these

models is often limited. In this setting, the model parameters may not

be uniquely determinable. Structural or a priori identifiability is a prop-

erty of the system equations that indicates whether, in principle, the

unknown model parameters can be determined from the available

data.

Results: We performed a case study using three current approaches

for structural identifiability analysis for an application from cell biology.

The approaches are conceptually different and are developed inde-

pendently. The results of the three approaches are in agreement. We

discuss strength and weaknesses of each of them and illustrate how

they can be applied to real world problems.

Availability and implementation: For application of the approaches

to further applications, code representations (DAISY, Mathematica

and MATLAB) for benchmark model and data are provided on the

authors webpage.

Contact: andreas.raue@fdm.uni-freiburg.de

1 INTRODUCTION

The dynamics of cellular processes such as signal transduction

pathways can be described by models consisting of ordinary dif-

ferential equations (ODEs). We used a model of IL13-induced

JAK/STAT signaling (Raia et al., 2011) to present a comprehen-

sive comparison of three approaches for structural identifiability

analysis. Mathematically, such dynamical models can be charac-

terized by the ODE

_xðtÞ ¼ fðxðtÞ, uðtÞ, hÞ with xð0Þ ¼ x0 ¼ gðhÞ ð1Þ

In this case, the vector of state variables xðtÞ describes

the dynamics of 15 molecular components involved in the

JAK/STAT signaling pathway (for details see equation (3)).

The function uðtÞ represents possibly time-dependent

experimental treatments; in this case it represents a constant

treatment with the cytokine IL13. The vector h contains all par-

ameters of the dynamical model, such as the reaction rate con-

stants. For a specific cell type or biological context, the

parameters h are often not available from literature and have

to be estimated from experimental data. The initial concentra-

tions x0 can be known or unknown; in the latter case they have

to be estimated from experimental data as well. Each possible

measurement is mathematically represented by a functional

mapping

yðtÞ ¼ hðxðtÞ, uðtÞ, hÞ ð2Þ

that might include additional parameters and thus increase the

dimension of h, such as scaling parameter for relative data

obtained by immunoblotting in our case.
The inference problem of concern is the determination of the

model parameters h from the measurements y and inputs u

described by Equation (2). In general, this may not be possible.

Structural or a priori identifiability (Bellman and Astrom, 1970) is

a property of the systems (1) and (2) that guarantees that the

unknown model parameters can, in principle, be determined

from generic input and output functions of the model,

provided they satisfy certain minimal conditions called ‘persist-

ence of excitation’ [for a broad introduction and classical

approaches Walter (1987)]. Structural identifiability is a

prerequisite and necessary condition for any estimation procedure

to render the recovery of h from input–output measurements as a

well-posed problem and to return meaningful results about h.

Well-known approaches to structural identifiability analysis

often have problems with the realistically sized models

(Karlsson et al., 2012; Sedoglavic, 2002), but there are approaches

that can handle them.
Let us consider a simple model for the illustration of structural

identifiability. The model describes a transition between two

components

_x1ðtÞ ¼ ��1x1
_x2ðtÞ ¼ þ�1x1

�

We assume that x1ð0Þ ¼ �2 and x2ð0Þ ¼ 0, and only the measure-

ment y1ðtÞ ¼ �3 x2ðtÞ, are available. In this case, we can solve for*To whom correspondence should be addressed.
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x2ðtÞ analytically and substitute into the measurement equation.

The result

y1ðtÞ ¼ �3 �2 expð��1 tÞ � ðexpð�1 tÞ � 1Þ

shows that �3 and �2 are structurally non-identifiable. �1 and only

the product of �3 and �2 are structurally identifiable. Such redun-

dant parameterization can be detected directly for very simple

examples. For analysis of realistic models, one has to resort to

more sophisticated approaches.
We compared three current conceptually different approaches

for identifiability analysis using the model and data of Raia et al.

(2011) as case study. In particular, we compared the Differential

Algebra Identifiability of Systems (DAISY) approach proposed

by Saccomani et al. (2003), the Exact Arithmetic Rank (EAR)

approach implemented by Karlsson et al. (2012) and the Profile

Likelihood (PL) approach proposed by Raue et al. (2009). The

results of all three approaches are in good agreement; however,

each approach has specific strength and weaknesses that will be

discussed.

2 METHODS

Approaches for identifiability analysis can be classified according to sev-

eral criteria. The main difference is between a priori versus data-based

type approaches. A priori approaches can be applied irrespective of which

input functions are used and before the availability of experimental data.

Data-based type approaches can be applied if actual experimental

data are available or can be simulated under reasonable assumptions.

Some a priori approaches allow to test global identifiability, a property

holding for all possible parameter values, i.e. independently of the

actual parameter value. Other approaches allow to test local identifiabil-

ity, holding around a point in the parameter space. Some data-based

approaches also allow for conclusions about practical non-identifiability

(Raue et al., 2009) that is caused by limited quality of experimental

data. The classification of the three approaches investigated is shown in

Table 1.

2.1 DAISY approach

This approach implements a differential algebra algorithm to perform a

global parameter identifiability analysis for dynamic models described by

polynomial or rational equations (Bellu et al., 2007). The basic idea is that

of manipulating algebraic differential equations as polynomials depend-

ing also on derivatives of the variable. Ritt’s algorithm permits to elim-

inate the non-observed state variables x from the system of equations

and to find the input–output relation of the system: a set of polynomial

differential equations involving only the variables u and y, thus

describing all input–output pairs satisfying (1) and (2). The input–

output relation is linearly parameterized by certain algebraic functions

of the unknown parameters called the exhaustive summary, which can be

easily extracted. These functions lead to a system of algebraic non-

linear equations in the unknown �. By applying a computer algebra al-

gorithm, i.e. the Buchberger algorithm, it is possible to check whether

there is one or multiple solutions and hence distinguish between global, or

local identifiability or non-identifiability of the original dynamic system.

An additional advantage of using this computer algebra tool is that

it does not require expertise on mathematical modeling by the

experimenter.

2.2 EAR approach

This approach is based on applying the inverse function theorem to the

system of algebraic equations relating higher order derivatives of the

output y with respect to time at the initial time with the initial state

and parameters (Pohjanpalo (1978). Using a differential algebra ap-

proach, an upper bound of the order of differentiation can be given,

resulting in a non-linear algebraic system of equations in the parameters.

The rank of the Jacobian matrix for this system of equations gives infor-

mation about its solvability, and in case of a rank-deficient matrix, a

more detailed analysis of the Jacobian provides information about

which parameters are involved in relations rendering the system non-

identifiable. The EAR method provides means to efficiently compute

the generic rank of the Jacobian matrix to return a conclusive result if

the system is structurally identifiable. It considers local identifiability but

around a generic point, i.e. the computations are carried out for a

random specialization of the unknown parameters, and initial state to

integer values and a random input in terms of a truncated integer coef-

ficient power series. Local structural identifiability is an almost every-

where property by definition, i.e. it holds everywhere apart from

possibly on a set of measure zero. The EAR approach is based on a

method for local algebraic observability (Sedoglavic, 2002). The EAR

analysis is implemented as a fully automatic Mathematica function.

The user simply inputs the equations and gets the answer. Based on the

EAR identifiability analysis, it is also possible to find minimal sets of

outputs giving identifiability (Anguelova et al., 2012).

2.3 PL approach

This approach checks for non-identifiability by posing a parameter esti-

mation problem using real or simulated data. The central idea is that non-

identifiability manifests as a flat manifold in the parameter space of the

estimation problem, e.g. the likelihood function. A profile can be calcu-

lated for each parameter �i individually by repeated optimization of all

parameters f�jj8j ¼ ig for a series of fixed values of the parameter �i. A

flat profile indicates a structurally non-identifiable parameter. For detect-

ing structural non-identifiability, simulated data are sufficient. In case

real experimental data are available, practical non-identifiability can

also be detected and confidence intervals for the parameter estimates

can be calculated. The traces in parameter space that correspond to the

profiles can be used to analyze the reason for non-identifiability and point

to missing experimental information and interrelated parameters. It was

demonstrated in a study by Raue et al. (2010) that the approach facilitates

an iterative experimental design strategy and Kreutz et al. (2012)

Table 1. Classification of the investigated approaches

Approach Identifiability Scope Type Runtime Main reference

DAISY Structural Global A priori �120min Saccomani et al. (2003)

EAR Structural Local (around a generic point) A priori �30 s Karlsson et al. (2012)

PL Structural and practical Local (region covered by profile) Data-based �30min Raue et al. (2009)

Note: ‘Runtime’ refers to one complete analysis for the case of Raia et al. (2011) using a standard desktop computer.
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extended the approach to detect non-observability of the dynamics dir-

ectly. The approach was applied to biological data in Bachmann et al.

(2011) and Becker et al. (2010).

2.4 Equations of benchmark model

In the following, we describe the equations of the IL13-Induced JAK/

STAT signaling model (Raia et al., 2011) that correspond to Equations

(1) and (2). These equations determine the structural identifiability of the

model parameters. The ODE system determining the time evolution of

the state variables is given by

_x1ðtÞ ¼ ��1c1 u1 x1 � �5x1 þ �6x2
_x2ðtÞ ¼ þ�5x1 � �6x2
_x3ðtÞ ¼ þ�1c1 u1 x1 � �2x3x7
_x4ðtÞ ¼ þ�2x3x7 � �3x4
_x5ðtÞ ¼ þ�3x4 � �4x5
_x6ðtÞ ¼ ��7x3x6=ð1þ �13x14Þ�

��7x4x6=ð1þ �13x14Þ þ c2 �8x7
_x7ðtÞ ¼ þ�7x3x6=ð1þ �13x14Þþ

þ�7x4x6=ð1þ �13x14Þ � c2 �8x7
_x8ðtÞ ¼ ��9x8x7 þ c2 �10x9
_x9ðtÞ ¼ þ�9x8x7 � c2 �10x9
_x10ðtÞ ¼ þ�11x9
_x11ðtÞ ¼ ��12c1 u1 x11
_x12ðtÞ ¼ þ�12c1 u1 x11
_x13ðtÞ ¼ þ�14x10=ð�15 þ x10Þ � �16x13
_x14ðtÞ ¼ þ�17x9

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3Þ

where x is the 14D state vector, the dot denotes the time derivative, u1 is

an input functions and c1, 2 are constants. The initial conditions of the

state variables are

xð0Þ ¼ ½1:3, �23, 0, 0, 0, 2:8, 0, 165, 0, 0, 0:34, 0, 0, 0� ð4Þ

the values are given in units of molecules per cell (�1000). The set of

measurement equations is defined by the following equation

y1ðtÞ ¼ x1 þ x3 þ x4
y2ðtÞ ¼ �18ðx3 þ x4 þ x5 þ x12Þ
y3ðtÞ ¼ �19ðx4 þ x5Þ
y4ðtÞ ¼ �20x7
y5ðtÞ ¼ �21x10
y6ðtÞ ¼ �22x14
y7ðtÞ ¼ x13
y8ðtÞ ¼ x9:

8>>>>>>>>>><
>>>>>>>>>>:

ð5Þ

The components x, u and c of Equation (3) and y of Equation (5) are

described in Table 2. The model Equations (3–5) contain 23 unknown

parameters h that are described in Table 3. They need to be determined

from the available measurements given in Equation (5).

3 RESULTS

We present results on the identifiability for the benchmark

model (Raia et al., 2011) using the three approaches described

in the Section 2: the Differential Algebra Identifiability of

Systems (DAISY) approach proposed by Bellu et al. (2007);

EAR approach implemented by Karlsson et al. (2012) and the

PL approach proposed by Raue et al. (2009). For the last

approach, we also use the original data of Raia et al. (2011).

The application of the three approaches for identifiability

analysis will be described in detail. In summary, all three

approaches consistently classify five parameters as structurally

non-identifiable: �11, �15, �17, �21, �22.

3.1 DAISY approach

The differential-algebra-based approach provides a direct check

of global identifiability of the above model, showing the non-

identifiability of some model parameters. The approach suggests

a reduction of the model to minimal form so that fundamental

system theoretic properties, such as accessibility, hold and the

model is more suitable for further mathematical investigations.

Thus, before checking model identifiability from the designed

experiment, it is convenient to check its minimality. In this

case, just by visual inspection, it is easy to see that some of the

14 model equations defining the model are redundant.
In particular, the equations for x6, x8, x11 are the same as those

for x7, x9, x12 with the opposite sign. For example, from the

eighth and ninth equations, one obtains _x9 ¼ � _x8. By integrat-

ing and using the known initial conditions, one arrives at

x9 ¼ �x8 þ 165, thus eliminating one differential equation.

Same procedure is followed for x7, x12. Finally, x14 can be ex-

pressed as x14 ¼ x10�17=�11, and the last equation is also redun-

dant. The model can then be rewritten in a simplified form

involving only 10 state variables. This is done not only for the

sake of mathematical simplification, but also to satisfy some

important structural property, such as minimality and accessibil-

ity (Saccomani et al., 2003). This is important, because the

lack of minimality of the model may lead to spurious non-

identifiability results for some parameters that may not occur

in a minimal model. Also, if the model has two or more differ-

ential equations dependent on each other, as in this case, the

model would not be accessible, making more difficult the iden-

tifiability check of the model from the given initial conditions.
One thus arrives at the following simplified 10D model:

_x1ðtÞ ¼ ��1x1c1 u1 � �5x1 þ �6x2
_x2ðtÞ ¼ �5x1 � �6x2
_x3ðtÞ ¼ �1c1 u1x1 � �2x3ð�x6 þ 2:8Þ
_x4ðtÞ ¼ �2x3ð�x6 þ 2:8Þ � �3x4
_x5ðtÞ ¼ �3x4 � �4x5
_x6ðtÞ ¼ ��7x3x6=ð1þ �13x13Þ�

�7x4x6=ð1þ �13x13Þ þ �8ð�x6 þ 2:8Þc2
_x8ðtÞ ¼ ��9x8ð�x6 þ 2:8Þ þ �10ð�x8 þ 165Þc2
_x10ðtÞ ¼ �11ð�x8 þ 165Þ
_x11ðtÞ ¼ ��12c1 u1x11
_x13ðtÞ ¼ x10�14=ð�15 þ x10Þ � �16x13

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð6Þ

with the corresponding initial conditions given in Equation (4).
To check global identifiability of this simplified 10D model

with DAISY, the user has to write in the input file the ordered

list of the output and state variables, the list of the unknown

parameters, the model equations and the known initial condi-

tions. Later in the text, the results will be illustrated. For explan-

ations of the technical terms, one may consult Bellu et al. (2007).
DAISY automatically ranks the input, output, state variables

and their derivatives, starts the pseudodivision algorithm, i.e. the

Ritt algorithm, and calculates the characteristic set of the model.

This is a minimal set of differential polynomials, which provides

an equivalent description of the model. The subset made of the

first eight (i.e. the number of model outputs) differential polyno-

mials does not depend on the state variable x and provides the

so-called input–output relation of the model. In particular, these

involve higher derivatives of the input and output signals.
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Table 2. List of mathematical variables, their biological short names and their meaning

x1 Rec Receptor for IL-13

x2 Rec_i Internalized receptor for IL-13

x3 IL13_Rec IL-13 receptor complex

x4 p_IL13_Rec Phosphorylated IL-13 receptor complex

x5 p_IL13_Rec_i Internalized phosphorylated IL-13 receptor complex

x6 JAK2 Janus kinase 2

x7 pJAK2 Phosphorylated Janus kinase 2

x8 STAT5 Signal Transducer and Activate of Transcription 5

x9 pSTAT5 phosphorylated Signal Transducer and Activate of Transcription 5

x10 SOCS3Mrna Suppressor of cytokine signaling 3 mRNA

x11 DecoyR Decoy receptor for IL-13

x12 IL13_DecoyR Il-13 decoy receptor complex

x13 SOCS3 Suppressor of cytokine signaling 3 protein

x14 CD274Mrna Cluster of Differentiation 274 mRNA

c1 Conversion factor from ng/ml to molecules per cell (�1000) with value 2.265

c2 SHP1 Constant intracellular concentration of protein tyrosine phosphatase SHP-1 with value 91 molecules

per cell (�1000)

u1 IL13 Constant extracellular concentration of Interleukine-13 0, 4, 20, 80 ng/ml

y1 RecSurf_obs IL-13 receptor at cell membrane

y2 IL13_cell_obs IL-13 at cell membrane or intracellular

y3 pIL4Ra_obs Phosphorylated IL-13 receptor at membrane or intracellular

y4 pJAK2_obs Phosphorylated Janus kinase 2

y5 SOCS3mRNA_obs Suppressor of cytokine signaling 3mRNA

y6 CD274mRNA_obs Cluster of Differentiation 274 mRNA

y7 SOCS3_obs Suppressor of cytokine signaling 3 protein

y8 pSTAT5_obs phosphorylated Signal Transducer and Activate of Transcription 5

Table 3. List of model parameters, their biological short names, identifiability and confidence intervals

Biological short name Identifiability MLE point Likelihood-based confidence interval

�1 Kon_IL13Rec Identifiable –3.087 ½�3:261, � 2:882�

�2 Rec_phosphorylation Identifiable –1.185 ½�1:383, � 0:946�
�3 pRec_intern Practically non-identifiable þ2.236 ½þ0:037, þ1�

�4 pRec_degradation Practically non-identifiable þ1.268 ½�0:203, þ1�

�5 Rec_intern Identifiable –0.995 ½�1:193, � 0:783�

�6 Rec_recycle Identifiable –2.225 ½�2:700, � 1:920�
�7 JAK2_phosphorylation Identifiable þ0.172 ½�0:067, þ 0:442�

�8 pJAK2_dephosphorylation Identifiable –2.788 ½�3:283, � 2:352�

�9 STAT5_phosphorylation Identifiable –1.678 ½�1:835, � 1:472�

�10 pSTAT5_dephosphorylation Identifiable –3.568 ½�3:777, � 3:393�
�11 SOCS3mRNA_production Structurally non-identifiable –1.260 ½�1, þ1�

�12 DecoyR_binding Practically non-identifiable –5.000 ½�1, � 4:131�

�13 JAK2_p_inhibition Identifiable –2.042 ½�2:483, � 1:552�
�15 SOCS3_accumulation Structurally non-identifiable þ2.059 ½�1, þ1�

�14 SOCS3_translation Practically non-identifiable þ1.081 ½þ0:392, þ1�

�16 SOCS3_degradation Practically non-identifiable –1.442 ½�1, þ1�

�17 CD274mRNA_production Structurally non-identifiable –1.786 ½�1, þ1�

�18 scale_IL13_cell_obs Identifiable þ1.259 ½þ1:083, þ 1:416�

�19 scale_pIL4Ra_obs Practically non-identifiable þ3.000 ½þ1:491, þ1�

�20 scale_pJAK2_obs Identifiable –0.026 ½�0:143, þ 0:145�

�21 scale_SOCS3mRNA_obs Structurally non-identifiable þ0.194 ½�1, þ1�

�22 scale_CD274mRNA_obs Structurally non-identifiable –1.965 ½�1, þ1�

�23 init_Rec_i Identifiable þ1.384 [þ1.156, þ1.766]

Note: Parameter values are given on a log10-scale and are allowed to vary between �5 and þ3.
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To speed up the algorithm, it may be advisable to add derivatives

of the actual output functions to the system equations. This is

legitimate, as Ritt algorithm is based on differentiation, besides

the usual algebraic operations.
After a suitable normalization, the input–output polynomials

can be rendered monic, and their coefficients provide a set of

rational functions of the unknown parameter h, which form the

so-called exhaustive summary of the model.
Identifiability is tested by checking injectivity of the exhaustive

summary with respect to the parameter h. We should, in prin-

ciple, calculate the range set of these functions. This could be

done in symbolic language evaluating them at a symbolic par-

ameter value. In practice, but only to speed up the process, in-

stead of choosing a symbolic parameter value, we can use a set

of randomly chosen numerical points in the range set. Solution

of these algebraic equations is done by computing a Grobner

basis, by applying the Buchberger algorithm. The results show

that all the parameters are uniquely identifiable except for

�11, �15, �17, �21 and �22, which have an infinite number of solu-

tions. Thus, the model is non-identifiable.
The analysis actually provides some hint on how to simplify

the model to make it globally identifiable. For example, by as-

signing known values to parameters �21 and �22, the model would

become globally identifiable.

Further information about DAISY and instructions on

how to obtain it can be found at: http://www.dei.unipd.

it/wdyn/?IDsezione¼4364.

3.2 EAR approach

The identifiability of a dynamic model is closely related to the

properties of the Jacobian matrix containing the derivatives of

signals assumed to be measured (i.e. model outputs) and their

time derivatives, with respect to the parameters. Furthermore,

structural identifiability is a generic property of the symbolic

form of the system and measurement equations, and hence it is

sufficient to analyze this property for a specific (generic) point in

parameter space. In the EAR approach, this is utilized using

exact modular integer arithmetics for fast computations, i.e.

the specialization of parameter values to random integers only

serves the purpose of fast computation of structural properties

and has nothing to do with biological feasibility. The direct ap-

proach of first deriving the entries of the Jacobian matrix in

symbolic form, inserting integer values and then computing the

matrix rank is not feasible for anything but very small systems,

because of extensive swell of the size of symbolic expressions.

Instead, it can be shown that the numerical values of the entries

of the Jacobian matrix can be computed efficiently by computing

power series solutions to the original ODEs augmented by their

corresponding parametric sensitivity differential equations, fol-

lowed by insertion into the output sensitivity expressions the

obtained truncated power series solutions of the state and state

sensitivities. To prevent the need for computation with rational

numbers and the inherent swell in size of numerators and de-

nominators, all computations are carried out modulo a large

prime. To summarize, the above approach is based on exact

(modular) arithmetics for obtaining the entries in the Jacobian

as well as for the subsequent rank computation; hence, the name

EAR. It is implemented in terms of a fully documented

Mathematica application and is completely automatic once a

specific system description has been provided.
Here is an outline of the steps of the algorithm

(1) Identifiability is a generic property of the symbolic form of

the system and measurement equations. Therefore, any

generic point can be analyzed. First, specializations of par-

ameters and initial conditions are generated.

(2) Specialize inputs to truncated random integer coefficient

power series.

(3) Truncated power series solutions of x, @x
@xð0Þ and

@x
@� are com-

puted, using the system and sensitivity system equations.

(4) The power series are inserted in the expressions for the

derivatives of the outputs with respect to the initial state

and with respect to the parameters

d

dxð0Þ
y ¼

d

dxð0Þ
h ¼

@h

@x

@x

@xð0Þ
ð7Þ

d

d�
y ¼

d

d�
h ¼

@h

@x

@x

@�
þ
@h

@�
ð8Þ

resulting in power series representations of the output sen-

sitivity derivatives.

(5) Identification of the coefficients of the truncated power

series of the output derivatives with the coefficients of a

general Taylor expansion of the output sensitivity deriva-

tives gives the higher order time-derivatives of the output

sensitivity derivatives, i.e. the entries of the specialized

Jacobian matrix.

(6) Calculate the rank.

(7) If the matrix is rank-deficient, the non-identifiable param-

eters are found using the fact that removing the corres-

ponding columns from the matrix do not change the rank.

The analysis using the Mathematica package is fully auto-

matic. Further information about the package and instructions

on how to obtain it can be found at: http://www.fcc.chalmers.se/

sys/products/identifiabilityanalysis.
Included in the package is, apart from the identifiability test

demonstrated above, also functionality for automatically finding

minimal sets of output expressions that guarantee a structurally

identifiable model. This functionality is described in Anguelova

et al. (2012).

3.3 PL approach

The PL approach determines the identifiability of the model par-

ametersbyposingaparameter estimationproblem.Here,weuse the

original data ofRaia et al. (2011) and investigate both the structural

andpractical identifiability of themodel parameters. For parameter

estimation, maximum likelihood estimation (MLE) is applied. The

likelihood LðhÞ describes the probability of the data given certain

parameter values h. The MLE fit of the dynamic model to the ex-

perimental data forMedB-1 cell is shown in Figure 1, and theMLE

parameter values are given in Table 3. Likelihood profiles were

calculated as described in Raue et al. (2009) by

PLð�iÞ ¼ max
j¼i
½Lð�jÞ� ð9Þ

1444

since
-
<inlinemediaobject><imageobject><imagedata fileref=
<inlinemediaobject><imageobject><imagedata fileref=
<inlinemediaobject><imageobject><imagedata fileref=
<inlinemediaobject><imageobject><imagedata fileref=
<inlinemediaobject><imageobject><imagedata fileref=
<inlinemediaobject><imageobject><imagedata fileref=
http://www.dei.unipd.it/wdyn/?IDsezione=4364
http://www.dei.unipd.it/wdyn/?IDsezione=4364
http://www.dei.unipd.it/wdyn/?IDsezione=4364
,
,
,
due to
very 
,
Exact Arithmetic Rank (
)
<inlinemediaobject><imageobject><imagedata fileref=
<inlinemediaobject><imageobject><imagedata fileref=
.r.t.
.r.t.
,
es
http://www.fcc.chalmers.se/sys/products/identifiabilityanalysis
http://www.fcc.chalmers.se/sys/products/identifiabilityanalysis
rofile 
ikelihood
Maximum 
Likelihood 
Estimation 
<inlinemediaobject><imageobject><imagedata fileref=
<inlinemediaobject><imageobject><imagedata fileref=


where for each fixed value of parameter �i, all other parameters

�j ¼ �i are reoptimized. Figure 2 shows the results of the analysis.

A perfectly flat profile indicates a structural non-identifiable

parameter. Perfectly flat profiles reveal the five structural non-

identifiable parameters. The change of the parameters �j along a

profile of a structurally non-identifiable parameter �i can be used

to determine functionally related groups between the structurally

non-identifiable parameters (Fig. 3). Here, the five structurally

non-identifiable parameters are functionally related in two

groups. In the first group,

�17 �
1

�22

indicates that the concentration scale of CD274 mRNA (x14) is

not fixed by measurements. In the second group,

�15 �
1

�21
and �15 � �11

indicates that the concentration scale of SOCS3 mRNA (x10) is

not fixed by measurements. Using this information, two new

experiments that determine the respective concentration scales

can be used to resolve these structural non-identifiabilities.

The likelihood profiles can also be used to assess practical

identifiability and to calculate confidence intervals of the

model parameters. A threshold in the likelihood, measured

from the MLE point, can be used to compute likelihood-based

confidence intervals [for details on the statistics, see in Raue et al.

(2009)]. Profiles that have a unique minimum, but do not cross

the confidence threshold, reveal six practically non-identifiable

parameters: �3, �4, �12, �14, �16 and �19. The likelihood profiles

can also be used to design experiment that resolve practical non-

identifiabilities [for an illustrative example, see Raue et al.

(2010)]. The remaining parameters are both structurally and

practically identifiable, and have finite confidence intervals; see

Table 3 for values.
The PL approach is implemented in the freely available

MATLAB software packages Data2Dynamics (Raue et al.,

2013) and PottersWheel (Maiwald and Timmer, 2008). For the

Data2Dynamics software packages, the Raia et al. (2011) model

and data are included in the software as an example application.

The software package is open source and freely available on the

Web site: https://bitbucket.org/d2d-development/d2d-software.

4 DISCUSSION

The results of all three approaches are in good agreement for the

benchmark application considered here. Five of 23 parameters

are consistently classified as structurally non-identifiable. The

procedure to reproduce and interpret the results obtained by

each of the three approaches was presented and can serve as

reference for further application.

The strength of the DAISY approach is to check for global

identifiability, i.e. it checks the uniqueness of the parameter so-

lution. Thus, it is able to distinguish between global and local

identifiability. Being based on differential algebra methods,

DAISY can directly deal only with polynomial or rational func-

tions f and h. However, the method can be generalized to deal

with some non-polynomial functions, e.g. exponential functions.

Although the program is usually very fast, in the order of few

seconds, for complex models the algorithm may not successfully

Fig. 1. Fit of the dynamic model given in Section 2.4 to the original data of Raia et al. (2011) for lymphoma-derived MedB-1 cells. The cells were treated

with four different doses of IL-13. The data were obtained by Immunoblot and qRT-PCR measurements. Some measurements are on a relative

concentration scale given in arbitrary units [au] and some on an absolute concentration scale [abs] that corresponds to molecules per cell (�1000)
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terminate because of a lack of memory of the system. In most

cases, however, it is possible to simplify the calculations required

by the algorithm by eliminating redundant model equations by

hand. This was done for the benchmark application considered

here.
The main advantage of the EAR approach is that it is fast and

can handle large and complex systems. The system analyzed in

this article is considered small and simple for this approach.

Systems on the scale of 100 states and 100 parameters can be

handled. One limitation of the EAR approach is that it requires

the vector valued functions f, g and h to be rational functions of

their arguments. This limitation is not as restrictive as it may first

sound, however, as it can be shown that any function, which in

itself is the solution to an equation such as (1), can be handled

through an extended state space approach (Lindskog 1996).

Even if-statements can be closely approximated using rational

functions.
The strength of the PL approach is that it does not pose any

restrictions on the algebraic form of the model equations. Even

non-algebraic constructs such as if-statements or constraints on

the parameters or model dynamics can be handled. It also allows

for statements on practical identifiability and confidence inter-

vals. Besides the structurally non-identifiable parameters, six par-

ameters are practically non-identifiable considering the data

available from Raia et al. (2011). However, owing to the under-

lying parameter estimation problem, issues such as local minima

have to be handled with care. In such case, it might be necessary

to repeat profile calculations for multiple minima detected in the

objective function to enhance robustness of the results (Raue

et al., 2013).

Fig. 2. Likelihood profiles for all 23 model parameters. The parameters are allowed to vary between �5 and þ3 on a log10-scale. The MLE point is

indicated by asterisks. The red dashed line corresponds to a threshold that indicates a 95% confidence level. The points of pass-over of profile and

threshold determine likelihood-based confidence intervals. Perfectly flat profiles reveal five structural non-identifiable parameters:

CD274mRNA_production, SOCS3_accumulation, SOCS3mRNA_production, scale_CD274mRNA_obs and scale_SOCS3mRNA_obs. In addition,

profiles that have a unique minimum but do not cross the confidence threshold reveal six practically non-identifiable parameters: DecoyR_binding,

SOCS3_degradation, SOCS3_translation, pRec_degradation, pRec_intern and scale_pIL4Ra_obs. The remaining parameters are both structurally and

practically identifiable and have finite confidence intervals
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5 CONCLUSION

The presented approaches allow for comparable and reliable
conclusions about structural identifiability and can readily be
used in Systems Biology applications. Software implementation

of all approaches is freely available. It is important and good
practice to double check results with different, but comparable,

approaches. Here, we provide a case study that can serve as
reference and hand-on guide to apply and interpret the results

of three current approaches to structural identifiability analysis.
The results of identifiability analysis can be helpful to provide

guidelines on how to simplify the model structure or design
additional experiments that enhance the predictive power of a

mathematical model.
All three approaches examined in this paper are useful for real

application examples. in many cases, all three approaches work

equally well, but in some cases one of the three is preferred. If the
system is very large and/or if the analysis must be fast, then EAR

is the preferred approach. If it is of importance to get truly global
identifiability, DAISY is the preferred approach. If practical

identifiability is important, or if the equations include nonra-
tional expressions like if-statements, then PL should be used.

Using combinations of approaches can sometimes give the
strengths of all approaches to the analysis.
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