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Efficient treatment of relativistic effects with periodic density functional methods: Energies,
gradients, and stress tensors
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The implementation of an efficient self-consistent field (SCF) method including both scalar-relativistic effects
and spin-orbit interaction in density functional theory (DFT) is presented. We make use of Gaussian-type orbitals
and all integrals are evaluated in real space. Our implementation supports density functional approximations up
to the level of meta-generalized gradient approximations for SCF energies and gradients. The latter can be used
to compute the stress tensor and consequently allow us to optimize the cell structure. Considering spin-orbit
interaction requires the extension of the standard procedures to a two-component formalism and a noncollinear
approach for open-shell systems. Here, we implemented both the canonical and the Scalmani-Frisch noncollinear
DFT formalisms, with hybrid and range-separated hybrid functionals being presently restricted to SCF energies.
We demonstrate both efficiency and relevance of spin-orbit effects for the electronic structure of discrete systems
and systems periodic in one to three dimensions.
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I. INTRODUCTION

Modern physics, chemistry, and materials science rely on
the theories of quantum mechanics and of special relativ-
ity. Particularly for systems that include elements with high
nuclear charge, the interplay between both theories is cru-
cial [1–13]. The occurring relativistic effects can be divided
into two categories, scalar-relativistic (spin-independent) and
spin-dependent relativistic effects. The most prominent scalar-
relativistic effects are described by the energy-momentum (or
p4) and the Darwin terms. The dominating spin-dependent
relativistic effect is the interaction between the electron’s spin
and its orbital momentum. For lighter elements, this correc-
tion is of negligible or small size and can be treated efficiently
with spin-orbit perturbation theory based on the Pauli Hamil-
tonian [2]. However, for heavy d and p elements, such as
platinum, gold, and lead [9,14–16], it is of comparable size
as scalar-relativistic effects and thus becomes relevant. Here,
more sophisticated spin-orbit perturbation approaches (e.g.,
Refs. [17–20]) or a variational two-component ansatz treating
both relativistic effects on an equal footing are needed.

Spin-dependent relativistic effects are important for solids,
surface science, and low-dimensional systems [21–23]. They
are exploited in the field of spin-dependent quantum transport
for magnetoresistive effects [24–32], for magnetic excitations
such as skyrmions [33] caused by the Dzyaloshinskii-Moriya
interaction [34,35], and they may lead to spin-polarized sur-
face states of topological insulators [36,37].
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Both scalar-relativistic and spin-orbit effects are efficiently
modeled by effective core potentials (ECPs) [1,38,39]. Here,
the core electrons are replaced with pseudopotentials, which
are fitted to high-level relativistic theories. This way, only the
one-electron potential operator is directly affected. Therefore,
scalar-relativistic effects can be incorporated at essentially
no computational burden, as the electron-electron interaction
operators are unaffected. However, the description of spin-
orbit coupling requires a generalization of the framework. Due
to the breakdown of spin symmetry and the complex form
of the spin-orbit pseudopotentials or operators, a so-called
two-component (2c) formalism employing complex algebra
in real space is needed, which leads to an increase of the
computational demands [40–50].

Offering relatively low computational costs combined with
good accuracy, density functional theory (DFT) is one of
the most important computational tools concerning electronic
structure theory. For periodic systems, scalar DFT approaches
for energies and gradients are widely available in both
plane-wave and Gaussian-type orbital (GTO) codes [51–61].
TURBOMOLE [61–65], for instance, includes an efficient and
stable program to perform these kinds of calculations for
atomic, molecular, and periodic systems, employing GTOs
and fast multipole approximations combined with density fit-
ting to ensure time efficiency. However, the functionalities
to include spin-orbit interaction for periodic systems are still
missing in many program suites, preventing the simulation
of promising relativistic systems. Especially open-shell sys-
tems require further modifications. That is, a noncollinear
formulation of the exchange-correlation potential is needed
[40–50]. Moreover, for open-shell systems time-reversal sym-
metry is artificially broken even in the absence of external
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fields as a result of the variational optimization in the
single-determinant Kohn-Sham (KS) ansatz [66]. In con-
trast, time-reversal symmetry is well preserved even with a
single-determinant KS ansatz for closed-shell systems. The
Kramers’ theorem can therefore be exploited in these closed-
shell cases, considerably simplifying the evaluation of the
semilocal exchange-correlation potential.

Recently, a GTO-based noncollinear 2c DFT implemen-
tation for periodic systems and self-consistent field (SCF)
energies was presented by the group of Erba in the CRYSTAL23
package [50,67–69]. Density functional approximations up
to the level of (hybrid) generalized gradient approximations
(GGAs) are considered in their work. However, a corre-
sponding implementation of 2c energy gradients has not been
presented prior to the original submission of our work (cf.
Refs. [70,71,72]). Additionally, meta-generalized gradient ap-
proximations (mGGAs) may be superior to GGAs in terms
of accuracy [73–86]. Formally, mGGAs require the inclusion
of the current density in the kinetic energy density [87–89]
for spin-orbit coupling [45] and electromagnetic properties
in general [78,90–101,102]. Note that this also applies to the
introduction of spin-orbit effects within perturbation theory
and linear response methods [93,96]. The impact of the cur-
rent density in spin-orbit coupling calculations depends on
the specific functional and the respective enhancement factors.
Here, tests for molecular systems have shown that TASK [77]
and the Minnesota functionals such as M06-L [103], M06
[104], or M06-2X [104] are very sensitive to the inclusion of
the current density, while TPSS [105] and related functionals
are rather insensitive [45,78,91–97,106].

Our work aims to further fill this gap by introducing a
2c formalism to enable simulations of systems with periodic
boundary conditions in DFT up to the level of mGGAs includ-
ing relativistic effects for energies, band structures, energy
gradients, and the stress tensor to allow for structure opti-
mizations. For this purpose, existing functionalities for the
relativistic treatment of discrete systems with a 2c formalism
[43–45] will be introduced into TURBOMOLE’s module RIPER
[107–113] for periodic electronic structure calculations.

II. THEORY AND IMPLEMENTATION

In this section, we extend the 2c DFT formalism of Arm-
bruster et al. [43,44] to periodic systems [107–111] and also
consider the noncollinear approach of Scalmani and Frisch
[47,48,114] as an alternative to the canonical DFT formalism.
Furthermore, the computational demands are assessed and
compared to standard one-component (1c) procedures.

A. Two-component SCF formalism

The 2c DFT formalism for periodic systems is based on
the quasirelativistic Hamiltonian in the Born-Oppenheimer
approximation

H �L =
n∑

i=1

[
σ0h0,�L

i + �σ · �h SO,�L
i

] + V �L
ee + V �L

NN (1)

for a unit cell (UC) �L and n electrons. The terms in the
Hamiltonian include an effective spin-orbit (SO) operator

�σ · �h SO,�L
i , that consists of the standard (2 × 2) Pauli matrices

σu (u = x, y, z) and the vector operator �h SO,�L
i , which depends

on the orbital momentum and parameters fitted to results of,
e.g., a relativistic four-component (4c) treatment [1,38,39].

Hence, the operators �h SO,�L
i lead to antisymmetric integrals in

real space. Further, a spin-independent one-particle Hamilto-

nian h0,�L
i that describes the kinetic energy of the electrons

and their potential energy in the field of the nuclei is in-
cluded. σ0 is the identity matrix. V �L

ee and V �L
NN represent the

electron-electron interaction and the repulsion of the nuclei.
Additionally, Grimme’s DFT dispersion corrections can be
handled like the nuclear repulsion operator [115,116]. We

stress that the presence of the spin-orbit operator �σ · �h SO,�L
i

causes the spin not to be a conserved quantity anymore, i.e.,
the spin is not a “good” quantum number.

The orbital wave functions �ψi
�k thus have to be adjusted.

Due to the translational symmetry of solids, they are a linear
combination of Bloch functions

φ
�k
μ(�r) = 1√

NUC

∑
�L

ei�k·�Lξ
�L
μ (�r) (2)

that are expanded in terms of real-valued GTO basis functions

ξ
�L
μ (�r) = ξμ(�r − �Rμ − �L), (3)

centered at the atomic position �Rμ in direct lattice cell �L over
all NUC unit cells. The wave functions are so-called 2c spinors

�ψi
�k (�r) =

⎛
⎝ψα,�k

i (�r)

ψ
β,�k
i (�r)

⎞
⎠ =

∑
μ

⎛
⎝cα,�k

μi

cβ,�k
μi

⎞
⎠φ

�k
μ(�r) (4)

with the spin indices α and β, and complex coefficients cσ,�k
μi .

The spinors depend on the wave vector �k within the unit cell
in reciprocal space, called the first Brillouin zone (FBZ), and
the band index i.

Using this basis-set expansion, the generalized Kohn-Sham
(GKS) equations become(

Fαα,�k Fαβ,�k

Fβα,�k Fββ,�k

)(
Cα,�k

Cβ,�k

)
=

(
S�k 0
0 S�k

)(
Cα,�k

Cβ,�k

)
ε

�k (5)

with doubled dimension compared to the standard Kohn-
Sham formulation. Here, F is the Kohn-Sham-Fock matrix,
Cσ,�k is the matrix of the spinor coefficients cσ,�k

μi , and ε
�k is

the diagonal matrix of the spinor eigenvalues εσ,�k
i . These

Roothaan-Hall–type equations can be solved for each �k point
separately in the FBZ. Both the overlap matrix between the
GTOs

S�k
μν =

∑
�L

ei�k·�LS �L
μν (6)

with

S �L
μν = S�0�L

μν =
∫

ξ
�0
μ(�r)ξ �L

ν (�r)d3r (7)
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and the Kohn-Sham-Fock matrix

F �k
μν =

∑
�L

ei�k·�LF �L
μν (8)

are obtained via a Fourier transformation of the real-space
matrices. Following Eq. (1), the Kohn-Sham-Fock matrix
components are [43]

Fαα,�L
μν = T �L

μν + J �L
μν + hSO,z,�L

μν + X αα,�L
μν , (9)

Fαβ,�L
μν = hSO,x,�L

μν − ihSO,y,�L
μν + X αβ,�L

μν , (10)

Fββ,�L
μν = T �L

μν + J �L
μν − hSO,z,�L

μν + X ββ,�L
μν , (11)

consisting of the kinetic energy matrix elements T �L
μν , the

Coulomb matrix elements J �L
μν , the exchange-correlation (XC)

matrix elements X σσ ′,�L
μν (with σ and σ ′ being the spin indices),

and the spin-orbit matrix elements hSO,u,�L
μν (u = x, y, z). Thus,

the total energy reads as

ESCF = ET + EJ + ESO + EXC + ENN (12)

with the nuclear repulsion term ENN. Note that the scalar ECP
contribution h0,�L

μν is included in the kinetic energy matrix (see
below). For open-shell systems without space-inversion sym-
metry, the Kohn-Sham equations generally need to be solved
for +�k and −�k explicitly [50].

In this 2c formalism, the general density matrix reads as

ρ(�r, �r ′) = 1

VFBZ

n∑
i=1

∫ ε
�k
i <εF

FBZ

�ψi
�k (�r)

( �ψi
�k (�r ′)

)†
d3k

=
(

ραα (�r, �r ′) ραβ (�r, �r ′)

ρβα (�r, �r ′) ρββ (�r, �r ′)

)
. (13)

It involves an integral over the FBZ, VFBZ denotes the volume
of the FBZ, and εF is the Fermi level. The density matrix not
only contains the particle contribution

ρp(�r, �r ′) = Tr[ρ(�r, �r ′)] =
∑

�L
Tr[ρ�L(�r, �r ′)], (14)

but also the spin-vector contribution

�ρm(�r, �r ′) = Tr[�σρ(�r, �r ′)] =
∑

�L
Tr[�σρ

�L(�r, �r ′)] (15)

in terms of NUC unit-cell contributions associated with the
lattice vectors �L [cf. Eqs. (2) and (3)]. For easy handling
within the program structure, the density matrix ρ(�r, �r ′) is
divided into the four spin contributions according to

ρσσ ′
(�r, �r ′) =

∑
�L

ρσσ ′,�L(�r, �r ′), (16)

ρσσ ′,�L(�r, �r ′) =
∑
μν

∑
�L ′

ξ
�L
μ (�r)Dσσ ′,�L�L ′

μν ξ
�L ′
ν (�r ′). (17)

Thus, the electron density ρσσ ′
(�r) can be obtained from the

atomic-orbital (AO) real-space density matrix

Dσσ ′,�L�L ′
μν = 1

VFBZ

n∑
i=1

∫ ε
�k
i <εF

FBZ
ei�k·[�L−�L ′](cσ,�k

μi c∗σ ′,�k
νi

)
d3k.

(18)

We also define the shorthand notation Dσσ ′,�L
μν = Dσσ ′,�L�0

μν with

Dσσ ′,�L
μν = 1

VFBZ

n∑
i=1

∫ ε
�k
i <εF

FBZ
ei�k·�L(

cσ,�k
μi c∗σ ′,�k

νi

)
d3k. (19)

Note that the AO density matrix is a complex quantity in the 2c
formalism and consists of eight blocks, i.e., four real and four
imaginary spin blocks. The particle density ρp(�r) = ρp(�r, �r)
relates to the electron number n via∫

ρp(�r) d3r = n, (20)

while the spin-vector density or spin-magnetization vector
�ρm(�r) = �ρm(�r, �r) is related to the expectation value of the
system’s spin according to

〈�S〉 = 1

2

∫
�ρm(�r) d3r. (21)

In the absence of spin-orbit coupling, this is simply half the
number of unpaired or spin-polarized electrons. In terms
of AO density matrices, the electron number and the spin
expectation value make use of Re(Dαα,�L

μν ) + Re(Dββ,�L
μν ),

and Re(Dαβ,�L
μν ) + Re(Dβα,�L

μν ), Im(Dαβ,�L
μν ) − Im(Dβα,�L

μν ),

Re(Dαα,�L
μν ) − Re(Dββ,�L

μν ), respectively.
Evaluation of the kinetic term

T �L
μν =

∫
ξ

�0
μ(�r)

[
−∇2

2
+ V ECP

sr (�r)

]
ξ

�L
ν (�r) d3r, (22)

that also includes scalar-relativistic energy corrections, em-
ploying the ECPs V ECP

sr , needs no further modification
compared to the 1c case, i.e., the elements T �L

μν form a 1c
matrix. Therefore, the respective energy is obtained as

ET =
∑
μν

∑
�L

Tr
[
T �L

μνσ0D�L
νμ

]

=
∑
μν

∑
�L

T �L
μν

[
Re

(
Dαα,�L

νμ

) + Re
(
Dββ,�L

νμ

)]
, (23)

where D�L
νμ denotes the (2 × 2) AO density matrix made up of

the four complex spin contributions Dσσ ′,�L
νμ [cf. Eq. (19)].

Evaluation of the Coulomb interaction

J �L
μν =

∫
ξ

�0
μ(�r)

ρp(�r ′) − ρN(�r ′)
|�r − �r ′| ξ

�L
ν (�r) d3r d3r′ (24)

utilizes a hierarchical scheme and density fitting [107] with
the particle density ρp(�r) and the charge distribution ρN(�r).
The latter is also written as a sum of UC contributions accord-
ing to

ρN(�r) =
∑

�L
ρ

�L
N(�r), (25)

ρ
�L
N(�r) =

∑
I

Zeff
I δ(�r − �RI − �L), (26)

with the effective charges Zeff
I and positions �RI of the nuclei I

in the reference cell. The 2c implementation of J �L
μν is straight-

forward based on the 1c Kohn-Sham scheme, as the Coulomb
interaction is independent of the spin and only depends on
the particle density. The elements J �L

μν hence form a 1c matrix.
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We refer to Refs. [107,109] for details on the construction of
the Coulomb matrix and the corresponding energy. Here, we
just state that the Coulomb integrals are split into a crystal
near field (CNF) and a crystal far field (CFF), yielding the
following two contributions to the Coulomb energy:

EJ = EJ,CNF + EJ,CFF. (27)

As the first new terms compared to the 1c formalism, the

spin-orbit ECP (SO-ECP) terms hSO,x,�L
μν , hSO,y,�L

μν , and hSO,z,�L
μν

are taken into account. They read as

hSO,�L
μν =

⎛
⎝ hSO,z,�L

μν hSO,x,�L
μν − ihSO,y,�L

μν

hSO,x,�L
μν + ihSO,y,�L

μν −hSO,z,�L
μν

⎞
⎠

=
∫

ξ
�0
μ(�r)V ECP

SO (�r)ξ �L
ν (�r) d3r (28)

with the effective spin-orbit potential V ECP
SO (�r). The associated

spin-orbit energy is obtained as

ESO =
∑
μν

∑
�L

Tr
[
hSO,�L

μν D�L
νμ

]
. (29)

Here, the antisymmetric linear combinations of the AO
density matrices are needed, i.e., Im(Dαβ,�L

νμ ) + Im(Dβα,�L
νμ ),

Re(Dαβ,�L
νμ ) − Re(Dβα,�L

νμ ), and Im(Dαα,�L
νμ ) − Im(Dββ,�L

νμ ) for the
spin-orbit x, y, and z components, respectively. These density
matrices also give rise to a spin-current density contribution
[45]. In contrast, ESO does not depend explicitly on the parti-
cle current density.

The final term, that has to be considered, involves the
exchange-correlation matrices Xσσ ′

. We will first discuss
the semilocal or “pure” (i.e., nonhybrid) contributions and
then describe the generalization to include Fock exchange.
The semilocal XC matrices not only depend on the particle-
number density ρp but also on the spin-vector density or
spin-magnetization vector �ρm. In the noncollinear Kramers-
unrestricted (KU) formalism, the XC potential operator of the
local spin density approximation is given by

V XC[ρp(�r), �ρm(�r)] = δEXC

δρp(�r)
σ0 +

∑
u={x,y,z}

δEXC

δρm,u(�r)
σu

= δEXC

δρp(�r)
σ0 + δEXC

δ|�ρm(�r)|
�ρm(�r) · �σ
|�ρm(�r)| . (30)

It is based on the exchange-correlation energy as a functional
of the particle density and the norm of the spin-vector density

EXC = EXC[ρp(�r), |�ρm(�r)|] = EXC[ρ↑,↓(�r)], (31)

ρ↑,↓(�r) = 1
2 [ρp(�r) ± |�ρm(�r)|]. (32)

More generally, the semilocal XC energy for a given density
functional approximation f XC reads as

EXC =
∫

UC
f XC[ρ↑,↓(�r), γ↑↑,↑↓,↓↓(�r), τ↑,↓(�r)] d3r, (33)

using the auxiliary variable γσσ ′ = 1
4 ( �∇ρσ ) · ( �∇ρσ ′ ) with

σ, σ ′ ∈ {↑,↓} and the kinetic energy density τ for mGGAs.
The kinetic energy density may be defined analogously to the

electron density as

τ(�r, �r ′) = 1

VFBZ

n∑
i=1

∫ ε
�k
i <εF

FBZ

( �∇ �ψi
�k (�r)

)( �∇ �ψi
�k (�r ′)

)†
d3k.

(34)

The particle kinetic energy density and the spin contributions
then follow as

τp(�r) = Tr[τ(�r)] = Tr[τ(�r, �r)], (35)

�τm(�r) = Tr[�στ(�r)] = Tr[�στ(�r, �r)], (36)

which allow to construct τ↑,↓(�r) analogously to Eq. (32). We
note that the current density correction for τ(�r, �r ′) is presently
neglected in RIPER, while we have implemented it for molec-
ular systems [45]. Therefore, only the real and symmetric
parts of the spin magnetization in direct space are used for
the semilocal XC contribution in RIPER, i.e.,

ρx
m(�r) = ραβ (�r) + ρβα (�r), (37)

ρy
m(�r) = i(ραβ (�r) − ρβα (�r)), (38)

ρz
m(�r) = ραα (�r) − ρββ (�r). (39)

In terms of AO density matrices, we need the symmet-
ric linear combinations Re(Dαβ,�L

νμ ) + Re(Dβα,�L
νμ ), Im(Dαβ,�L

νμ ) −
Im(Dβα,�L

νμ ), and Re(Dαα,�L
νμ ) − Re(Dββ,�L

νμ ) for the noncollinear
x, y, and z components.

For an implementation with real AO basis functions, it is
advantageous to directly calculate the semilocal exchange-
correlation potential in a matrix representation as

X �L
μν =

∫
ξ

�0
μ(�r)V XC(�r)ξ �L

ν (�r)d3r (40)

by differentiation of the exchange-correlation energy with
respect to the corresponding AO density matrices [117]. Thus,
the quantities for the 2c formalism follow as

X 0,�L
μν =

∫
1

2

[
∂ f XC

∂ρ↑
+ ∂ f XC

∂ρ↓

]
ξ

�0
μ(�r) ξ

�L
ν (�r) d3r

−
∫

1

2

[
2
∂ f XC

∂γ↑↑
�∇ρ↑ + 2

∂ f XC

∂γ↓↓
�∇ρ↓

+ ∂ f XC

∂γ↑↓
( �∇ρ↑ + �∇ρ↓)

]

· [{ �∇ξ
�0
μ(�r)

}
ξ

�L
ν (�r) + ξ

�0
μ(�r)

{ �∇ξ
�L
ν (�r)

}]
d3r

+
∫

1

2

[
∂ f XC

∂τ↑
+ ∂ f XC

∂τ↓

][ �∇ξ
�0
μ(�r)

] · [ �∇ξ
�L
ν (�r)

]
d3r

(41)

for the scalar contribution, which is multiplied with σ0, and

X u,�L
μν = ρu

m

|�ρm|
{ ∫

1

2

[
∂ f XC

∂ρ↑
− ∂ f XC

∂ρ↓

]
ξ

�0
μ(�r) ξ

�L
ν (�r) d3r

−
∫

1

2

[
2
∂ f XC

∂γ↑↑
�∇ρ↑ − 2

∂ f XC

∂γ↓↓
�∇ρ↓
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− ∂ f XC

∂γ↑↓
( �∇ρ↑ − �∇ρ↓)

]

· [{ �∇ξ
�0
μ(�r)

}
ξ

�L
ν (�r) + ξ

�0
μ(�r)

{ �∇ξ
�L
ν (�r)

}]
d3r

+
∫

1

2

[
∂ f XC

∂τ↑
− ∂ f XC

∂τ↓

][ �∇ξ
�0
μ(�r)

] · [ �∇ξ
�L
ν (�r)

]
d3r

}
(42)

for the spin contributions with u ∈ {x, y, z}. The four spin
blocks for the Kohn-Sham-Fock equations [cf. Eqs. (9)–(11)]
can be evaluated from Eqs. (41) and (42) according to

X αα,�L
μν = 1

2

(
X 0,�L

μν + X z,�L
μν

)
, (43)

X ββ,�L
μν = 1

2

(
X 0,�L

μν − X z,�L
μν

)
, (44)

X αβ,�L
μν = 1

2

(
X x,�L

μν − iX y,�L
μν

)
, (45)

X βα,�L
μν = 1

2

(
X x,�L

μν − iX y,�L
μν

)∗
. (46)

We note that this form is a well-established approximation
in relativistic quantum mechanics [49]. The evaluation of
the exchange-correlation matrix blocks uses numerical inte-
gration on a grid and the hierarchical scheme presented in
Ref. [108]. Details on the underlying molecular 2c implemen-
tation can be found in Refs. [43–45].

Equations (41) and (42) correspond to the canonical non-
collinear formalism [40,42]. An alternative approach with a
local magnetic torque was presented by Scalmani and Frisch
(SF) [47] for molecules and later extended to periodic systems
in Ref. [48]. This approach is numerically slightly more stable
than the canonical ansatz [49]. The following generalizations
are used for the extension of the unrestricted Kohn-Sham
(UKS) framework to the GKS picture:

γ SF
↑↑,↓↓ = 1

4
[ �∇ρp · �∇ρp + �∇�ρm � �∇�ρm] ± f∇

2
�, (47)

� =
√

( �∇ρp · �∇ �ρm) ◦ ( �∇ρp · �∇ �ρm), (48)

γ SF
↑↓ = 1

4
[ �∇ρp · �∇ρp − �∇�ρm � �∇�ρm], (49)

f∇ = sgn([ �∇ρp · �∇ �ρm] ◦ �ρm), (50)

τ SF
↑,↓ = 1

2
τp ± fτ

2
|�τm|, (51)

fτ = sgn(�τm ◦ �ρm). (52)

Here, sgn is the signum function and ◦ indicates a scalar
product of spin components, while the center dot (·) refers to
the scalar product in real space. Simultaneous scalar products
are denoted with � according to

�∇�ρm � �∇�ρm =
∑

u∈{x,y,z}

( �∇ρu
m

) · ( �∇ρu
m

)
. (53)

The densities ρSF
↑ and ρSF

↓ are the same as for the canonical
ansatz [47], i.e., ρ↑ and ρ↓ of Eq. (32). The semilocal XC
potential is again obtained via derivatives with respect to the
AO density matrices [114], and this results in the scalar XC

contribution

X SF,0,�L
μν =

∫
1

2

[
∂ f XC

∂ρSF
↑

+ ∂ f XC

∂ρSF
↓

]
ξ

�0
μ(�r) ξ

�L
ν (�r) d3r

−
∫

1

2

[
∂ f XC

∂γ SF
↑↑

+ ∂ f XC

∂γ SF
↓↓

+ ∂ f XC

∂γ SF
↑↓

]
�∇ρp

· [{ �∇ξ
�0
μ(�r)

}
ξ

�L
ν (�r) + ξ

�0
μ(�r)

{ �∇ξ
�L
ν (�r)

}]
d3r

−
∫ [

∂ f XC

∂γ SF
↑↑

− ∂ f XC

∂γ SF
↓↓

]
f∇
2

( �∇ρp · �∇ �ρm) ◦ �∇�ρm

�

· [{ �∇ξ
�0
μ(�r)

}
ξ

�L
ν (�r) + ξ

�0
μ(�r)

{ �∇ξ
�L
ν (�r)

}]
d3r

+
∫

1

2

[
∂ f XC

∂τ SF
↑

+ ∂ f XC

∂τ SF
↓

][ �∇ξ
�0
μ(�r)

] · [ �∇ξ
�L
ν (�r)

]
d3r

(54)

and the three spin-orbit contributions

X SF,u,�L
μν = ρu

m

|�ρm|
∫

1

2

[
∂ f XC

∂ρSF
↑

− ∂ f XC

∂ρSF
↓

]
ξ

�0
μ(�r) ξ

�L
ν (�r) d3r

−
∫

1

2

[
∂ f XC

∂γ SF
↑↑

+ ∂ f XC

∂γ SF
↓↓

− ∂ f XC

∂γ SF
↑↓

]
�∇ρu

m

· [{ �∇ξ
�0
μ(�r)

}
ξ

�L
ν (�r) + ξ

�0
μ(�r)

{ �∇ξ
�L
ν (�r)

}]
d3r

−
∫ [

∂ f XC

∂γ SF
↑↑

− ∂ f XC

∂γ SF
↓↓

]
f∇
2

( �∇ρp · �∇ρu
m) �∇ρp

�

· [{ �∇ξ
�0
μ(�r)

}
ξ

�L
ν (�r) + ξ

�0
μ(�r)

{ �∇ξ
�L
ν (�r)

}]
d3r

+
∫ [

∂ f XC

∂τ SF
↑

−∂ f XC

∂τ SF
↓

]
fτ
2

τ u
m

|�τm|
[ �∇ξ

�0
μ(�r)

]·[ �∇ξ
�L
ν (�r)

]
d3r.

(55)

The denominator including � is detrimental for some applica-
tions as noted in Ref. [114]. That is, another transformation is
used for regions with a small magnetization length, i.e., spatial
regions with |�ρm(�r)| < 10−12 in atomic units. The expressions
for this modified Scalmani-Frisch (mSF) formalism read as

ρmSF
↑↑,↓↓ = 1

2
[ρp ± ρs], (56)

ρs = 1

3

[
ρx

m + ρy
m + ρz

m

]
, (57)

γ mSF
↑↑,↓↓ = 1

4
[ �∇ρp · �∇ρp + �∇�ρm � �∇�ρm] ± f∇

2
�s, (58)

�s = �∇ρp · �∇ρs, (59)

γ mSF
↑↓ = 1

4
[ �∇ρp · �∇ρp − �∇�ρm � �∇�ρm], (60)

τmSF
↑,↓ = 1

2
τp ± fτ

2
τs, (61)

τs = 1

3

[
τ x

m + τ y
m + τ z

m

]
. (62)
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This leads to the semilocal XC potential matrices

X mSF,0,�L
μν =

∫
1

2

[
∂ f XC

∂ρmSF
↑

+ ∂ f XC

∂ρmSF
↓

]
ξ

�0
μ(�r) ξ

�L
ν (�r) d3r

−
∫

1

2

[
∂ f XC

∂γ mSF
↑↑

+ ∂ f XC

∂γ mSF
↓↓

+ ∂ f XC

∂γ mSF
↑↓

]
�∇ρp

· [{ �∇ξ
�0
μ(�r)

}
ξ

�L
ν (�r) + ξ

�0
μ(�r)

{ �∇ξ
�L
ν (�r)

}]
d3r

−
∫ [

∂ f XC

∂γ mSF
↑↑

− ∂ f XC

∂γ mSF
↓↓

]
f∇
2

�∇ρs

· [{ �∇ξ
�0
μ(�r)

}
ξ

�L
ν (�r) + ξ

�0
μ(�r)

{ �∇ξ
�L
ν (�r)

}]
d3r

+
∫

1

2

[
∂ f XC

∂τmSF
↑

+ ∂ f XC

∂τmSF
↓

][ �∇ξ
�0
μ(�r)

] · [ �∇ξ
�L
ν (�r)

]
d3r

(63)

and

X mSF,u,�L
μν =

∫
1

6

[
∂ f XC

∂ρmSF
↑

− ∂ f XC

∂ρmSF
↓

]
ξ

�0
μ(�r) ξ

�L
ν (�r) d3r

−
∫

1

2

[
∂ f XC

∂γ mSF
↑↑

+ ∂ f XC

∂γ mSF
↓↓

− ∂ f XC

∂γ mSF
↑↓

]
�∇ρu

m

· [{ �∇ξ
�0
μ(�r)

}
ξ

�L
ν (�r) + ξ

�0
μ(�r)

{ �∇ξ
�L
ν (�r)

}]
d3r

−
∫ [

∂ f XC

∂γ mSF
↑↑

− ∂ f XC

∂γ mSF
↓↓

]
f∇
6

�∇ρp

· [{ �∇ξ
�0
μ(�r)

}
ξ

�L
ν (�r) + ξ

�0
μ(�r)

{ �∇ξ
�L
ν (�r)

}]
d3r

+
∫ [

∂ f XC

∂τmSF
↑

− ∂ f XC

∂τmSF
↓

]
fτ
6

[ �∇ξ
�0
μ(�r)

]·[ �∇ξ
�L
ν (�r)

]
d3r.

(64)

The noncollinear formalism is needed for open-shell sys-
tems. For closed-shell systems, the real and symmetric parts
of the spin-vector density matrix vanish due to Kramers’ the-
orem, i.e., Re(Dαβ,�L

νμ ) + Re(Dβα,�L
νμ ), Im(Dαβ,�L

νμ ) − Im(Dβα,�L
νμ ),

and Re(Dαα,�L
νμ ) − Re(Dββ,�L

νμ ) are zero. Further, time-reversal
symmetry holds. Therefore, the general or unrestricted 2c
formalism can be reduced to a Kramers-restricted (KR) frame-
work and the semilocal XC potential can be evaluated as done
in the 1c formalism.

Hybrid density functionals [73,81,118] include a portion
of nonlocal Fock exchange. Thus, the exchange-correlation
matrix becomes

Xσσ ′ = Xσσ ′
C + (1 − a)Xσσ ′

X + aKσσ ′
(65)

with Xσσ ′
C and Xσσ ′

X denoting the semilocal DFT correla-
tion and exchange contributions discussed so far, and a
is the mixing parameter. The Fock exchange matrix Kσσ ′

reads as

Kσσ ′,�L�L ′
μν =

∑
λκ

∑
�M �N

Dσσ ′, �M �N
λκ

∫∫ [
ξ

�L
μ (�r) ξ

�N
κ (�r ′)

× 1

|�r − �r ′| ξ
�M

λ (�r) ξ
�L ′
ν (�r ′)

]
d3r d3r′ (66)

with �L, �L ′, �M, �N referring to lattice vectors. For range-
separated hybrid functionals, the two-electron interaction
operator is replaced with an effective operator [119–122]. The
respective 2c complex form reads as [48]

K �L�L ′ =
(

Kαα Kαβ

Kβα Kββ

)�L�L ′

(67)

using all blocks of the 2c complex AO density matrix, i.e.,
the particle and spin density contributions Re(Dαα, �M �N

νμ ) +
Re(Dββ, �M �N

νμ ), Re(Dαβ, �M �N
νμ ) + Re(Dβα, �M �N

νμ ), Im(Dαβ, �M �N
νμ ) −

Im(Dβα, �M �N
νμ ), Re(Dαα, �M �N

νμ ) − Re(Dββ, �M �N
νμ ), as well as

Im(Dαα, �M �N
νμ ) + Im(Dββ, �M �N

νμ ), Im(Dαβ, �M �N
νμ ) + Im(Dβα, �M �N

νμ ),

Re(Dαβ, �M �N
νμ ) − Re(Dβα, �M �N

νμ ), and Im(Dαα, �M �N
νμ ) − Im(Dββ, �M �N

νμ ).
The latter four linear combinations are related to the particle
current density and the three spin-current densities [50].
Thus, Fock exchange naturally includes the current density
in the formalism and also features a local magnetic torque as
discussed in Ref. [50]. However, the semilocal DFT exchange
and correlation parts still do not explicitly depend on the
current density.

Based on the eight linear combinations above, the 2c Fock
exchange can be evaluated straightforwardly as discussed in
Ref. [48]. In this spirit, we extended the implementation of
Ref. [112], making use of a minimum image convention or
the truncated Coulomb interaction to the 2c formalism.

For closed-shell Kramers-restricted systems, the spin den-
sity and particle current density contributions vanish also for
the Fock exchange. However, the spin-current density con-
tributions, i.e., the three linear combinations Im(Dαβ, �M �N

νμ ) +
Im(Dβα, �M �N

νμ ), Re(Dαβ, �M �N
νμ ) − Re(Dβα, �M �N

νμ ), and Im(Dαα, �M �N
νμ ) −

Im(Dββ, �M �N
νμ ), are not necessarily zero. Thus, the 2c formu-

lation of the Fock exchange still requires changes of the
underlying 1c code for Kramers-restricted calculations.

B. Two-component energy gradients

Energy gradients are required to optimize coordinates of
atoms in the unit cell and to optimize the corresponding lattice
vectors based on the stress tensor [110,123–127]. Here, we
neglect Fock exchange and only consider semilocal or “pure”
density functional approximations. The derivative of the SCF
energy with respect to a nuclear displacement reads as

E I,λ
SCF = E I,λ

T + E I,λ
J + E I,λ

SO + E I,λ
XC + E I,λ

NN, (68)

where the superscript {I, λ} indicates that we move the
nucleus I in the reference cell �L = �0 along the Cartesian
direction λ. For the positions R�L

I = R�0
I + �L holds. Note that

derivatives are generally formed in the limit of a vanishing
perturbation [128,129]. The nuclear repulsion term E I,λ

NN asso-
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ciated with V �L
NN is trivial and the same as in the nonrelativistic

limit and the 1c methodology. According to Pulay, none of
the derivatives include a response of the density matrix [130].
This finding holds for both DFT and Hartree-Fock theory
based on converged 1c or 2c SCF procedures [131]. Instead of
such an explicit response, the energy-weighted density matrix
W arises for the first term given by

E I,λ
T =

∑
μν

∑
�L

(
T �L

μν

)I,λ[
Re

(
Dαα,�L

νμ

) + Re
(
Dββ,�L

νμ

)]

−
∑
μν

∑
�L

(
S �L

μν

)I,λ[
Re

(
W αα,�L

νμ

) + Re
(
W ββ,�L

νμ

)]
. (69)

Here, the energy-weighted density matrix is defined as

W σσ ′,�L
μν = 1

VFBZ

n∑
i=1

∫ ε
�k
i <εF

FBZ
ei�k·�L(

cσ,�k
μi ε

�k
i c∗σ ′,�k

νi

)
d3k, (70)

which only differs from the density matrix by the inclusion of
the spinor energy ε

�k
i in the integral [cf. Eq. (19)]. Owing to

the properties of the overlap matrix, we only need the real
part of the diagonal spin blocks, i.e., σ = σ ′, which is the
analog of the particle density matrix. Therefore, this term can
be implemented straightforwardly based on the 1c routines.

The derivative of the Coulomb energy E I,λ
J does not depend

on the spin-vector density but only on the particle density.
Therefore, its derivative is the same as in the 1c formalism.
Thus, it consists of a crystal-near-field and a crystal-far-field
contribution

E I,λ
J = E I,λ

J,CNF + E I,λ
J,CFF. (71)

They are defined in Ref. [110], and we point to this reference
for details.

For the spin-orbit ECPs, the derivative E I,λ
SO follows

similarly to the kinetic energy contribution, and can be
expressed as

E I,λ
SO =

∑
μν

∑
�L

Tr
[(

hSO,�L
μν

)I,λ
D�L

νμ

]
. (72)

Consequently, the one-electron SO-ECP integral derivatives
are simply contracted with the antisymmetric linear combina-
tions of the complex AO density matrix. These are the same
as for the SCF energy calculation.

Finally, the derivative of the exchange-correlation energy
E I,λ

XC is needed. Again, no derivative of the density matrix
arises for first-order derivatives. Therefore, we only need to
form the derivative of the XC potential matrix

(
X �L

μν

)I,λ =
(∫

ξ
�0
μ(�r) V XC(�r) ξ

�L
ν (�r)d3r

)I,λ

. (73)

That is, the derivatives of X 0,�L
μν and X u,�L

μν from Eqs. (41)
and (42) (with u ∈ {x, y, z}) are calculated and contracted
directly with the respective density matrices to yield E I,λ

XC .
These derivatives are now essentially given by the gradient
of a product of Gaussian basis functions and the existing
functional ingredients for SCF energies (cf. Refs. [132,133]).
Weight derivatives for the numerical integration of the XC
part are included based on the 2c generalization of previous
work [108,110,123]. For closed-shell systems, the Kramers

restriction and time-reversal symmetry can be exploited as
done for SCF energies. This way, the 2c Kramers-restricted
implementation with semilocal functionals is almost com-
pletely available from an existing 1c implementation.

C. Stress tensor

Unit-cell parameters are optimized with the stress tensor
[123,126,127] according to

∂ESCF

∂vn,p
=

∑
q={x,y,z}

[
VUC σpq −

∑
I

∂ESCF

∂RI,p
RI,q

]
(A−1)nq, (74)

where A is a (3 × 3) matrix consisting of the three vectors �vn

describing the unit cell of a three-dimensional periodic system
and p, q ∈ {x, y, z} are the Cartesian components. The stress
tensor components are given by

σpq = 1

VUC

∂ESCF

∂εpq
(75)

with the volume of the unit cell VUC and the symmetric strain
tensor εpq. The latter describes the change of an atomic po-
sition �RI in a direct lattice cell �L for an elastic deformation,
i.e., (

R�L
I,p

)′ =
∑

q={x,y,z}
(δpq + εpq)R�L

I,q (76)

with the Kronecker delta δpq. The stress tensor follows as a
sum over UC contributions

σpq = 1

VUC

∑
�L

∑
I

∂ESCF

∂R�L
I,p

R�L
I,q (77)

and the derivatives are obtained using Eq. (68). This leads to

σpq = 1

VUC

∑
�L

∑
I

[
∂ET

∂R�L
I,p

+ ∂EJ

∂R�L
I,p

+ ∂ENN

∂R�L
I,p

]
R�L

I,q

+ 1

VUC

∑
�L

∑
I

[
∂ESO

∂R�L
I,p

+ ∂EXC

∂R�L
I,p

]
R�L

I,q, (78)

where the kinetic energy term again includes the energy-
weighted density matrix

∂ET

∂R�L
I,p

=
∑
μν

∑
�L ′

∂T �L ′
μν

∂R�L
I,p

[
Re

(
Dαα,�L ′

νμ

) + Re
(
Dββ,�L ′

νμ

)]

−
∑
μν

∑
�L ′

∂S �L ′
μν

∂R�L
I,p

[
Re

(
W αα,�L ′

νμ

) + Re
(
W ββ,�L ′

νμ

)]
. (79)

Hence, the calculation of the stress tensor contributions essen-
tially reduces to the calculation of derivatives with respect to
nuclear displacements.

The Coulomb contribution is evaluated like in the nonrela-
tivistic or scalar 1c limit [123], whereas the calculation of the
SO-ECP and XC terms in Eq. (78) requires the additional AO
density matrix linear combinations.

The derivatives of ESO use the antisymmetric lin-
ear combinations Im(Dαβ,�L ′

νμ ) + Im(Dβα,�L ′
νμ ), Re(Dαβ,�L ′

νμ ) −
Re(Dβα,�L ′

νμ ), and Im(Dαα,�L ′
νμ ) − Im(Dββ,�L ′

νμ ) for the contraction
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with ∂hSO,u,�L ′
μν /∂R�L

I,p, with u denoting the spin-orbit compo-
nents x, y, z.

For the XC contribution, the respective derivatives of X 0,�L ′
μν

and X u,�L ′
μν are contracted with the symmetric AO density ma-

trices Re(Dαα,�L ′
νμ ) + Re(Dββ,�L ′

νμ ) for the scalar contributions,

and Re(Dαβ,�L ′
νμ ) + Re(Dβα,�L ′

νμ ), Im(Dαβ,�L ′
νμ ) − Im(Dβα,�L ′

νμ ), and

Re(Dαα,�L ′
νμ ) − Re(Dββ,�L ′

νμ ) for the noncollinear x, y, and z
components. The evaluation of the derivatives of the XC po-
tential ingredients (∂ f XC/∂ρ, ξμ, etc.) is done as described
in Refs. [117,123,134,135]. We emphasize that weight deriva-
tives of the DFT part are of great importance for the stress
tensor [134,136] and, therefore, we always include them based
on Refs. [117,135].

D. Implementation

Due to the integral evaluation in real space, our im-
plementation is largely based on the existing molecular
implementations [43–45]. That is, the SO-ECP integrals are
evaluated with the McMurchie-Davidson scheme [137,138].
All one- and two-electron integral routines are parallelized
with the OPENMP paradigm [139,140]. Algebraic operations
make use of the Math Kernel Library (MKL). Depending on
the size of the basis set and the number of k points in recipro-
cal space, parallelization is either done over the k points or for
the algebraic operations and transformations inside the loop
over k points. The first option is used with many k points
and comparably small basis sets, whereas the second option
is used for large basis sets with more than, e.g., 5000 bands.
The direct inversion in the iterative subspace (DIIS) is ex-
ploited to accelerate the SCF convergence [141] in its �-point
version. Interfaces to LIBXC [142–144] are provided to sup-
port (almost) all semilocal density functional approximations.
Both the canonical and the (modified) Scalmani-Frisch non-
collinear formalism were implemented. The latter was also
added for the molecular parts of the program suite, i.e., DFT
energies [43,44,145], gradients [44,146], electron paramag-
netic resonance properties [79,80], and the Green’s function
GW approach [91,147–149]. Global and range-separated hy-
brid functionals are available for the SCF procedure.

Our implementation supports the SCF initial construction
of the band structure based on a discrete Hückel guess, core
Hamiltonian guess, (noncollinear) superposition of atomic
densities, converged 1c molecular orbitals (MOs), 2c molec-
ular spinors, or 1c bands. The Kramers-restricted framework
can only be used on top of MOs or bands of an RKS calcula-
tion. For the KU formalism, the starting wave function can be
constructed as an eigenfunction of the spin operators Ŝx, Ŝy, or
Ŝz. For simplicity, we use the last option as default setting. By
default, a threshold of 10−6 is used for the eigenvalues of the
overlap matrix in the transformation to an orthogonal basis for
periodic systems [150].

The 2c geometry gradients and the related stress tensor
were implemented based on the 1c routines [110,123]. The
SO-ECP integral derivatives are currently evaluated numer-
ically (cf. the molecular implementation in Ref. [44]). The
other contributions use analytical integral derivatives. All
integral derivatives are parallelized with the OPENMP scheme.

Structures can be optimized with Grimme’s DFT disper-
sion correction D3 [115], including Becke-Johnson (D3-BJ)
damping [116].

E. SCF computation times

Table I shows the computation time for a three-dimensional
face-centered-cubic (fcc) Pb crystal (primitive unit cell vec-
tors’ length 3.500 Å), employing 1c restricted Kohn-Sham
(RKS), 1c UKS, 2c GKS KR, and 2c GKS KU frameworks.
Here, we used the singlet state as initial guess since this is
the ground state in 2c calculations. The number of atoms per
unit cell is one, the number of k points used is 32 768 and
the chosen grid size for the exchange-correlation potential
is 4 [153,154]. Note that all frameworks except for 2c GKS
KU use time-reversal symmetry for the k points. The PBE
functional [151] was combined with the dhf-TZVP-2c orbital
and auxiliary basis set [152]. Thus, small-core Dirac-Fock
ECPs are applied (ECP-60) [155]. SCF thresholds of 10−8

hartree for the energy are chosen. Gaussian smearing is used
with a criterion of 0.005 hartree. For comparison, the initial
bands are obtained from a standard 1c Hückel guess.

The extension from a 1c to a 2c formalism has a crucial
impact on the running time of the SCF procedure, due to the
complex nature of the SCF orbitals in real space. This covers
the following major steps.

(i) Construction of the density matrix. For the 2c KU for-
malism, the particle density ρp and the spin densities ρx

m, ρ
y
m,

and ρz
m have to be constructed for both +�k and −�k. Addition-

ally, the densities for the contraction with the SO-ECP part are
needed. Formally, this leads to a factor of 8, however, several
densities can be processed simultaneously and symmetric and
antisymmetric linear combinations are formed. In the KR
framework, time-reversal symmetry is used as done for the 1c
approaches. Thus, only half the number of k points is needed
and the computation time is reduced.

(ii) Coulomb matrix. There is no structural change and no
increase of the computation time.

(iii) Exchange-correlation matrix. For the 2c KU formal-
ism, it is necessary to evaluate four densities ρp, ρx

m, ρ
y
m, and

ρz
m on the DFT grid. Compared to the 1c RKS procedure, this

leads to a factor of 4, or a factor of 2 compared to the 1c UKS
procedure. The 2c KR approach does not lead to any extra
costs relative to the 1c RKS ansatz.

(iv) Diagonalization of the Kohn-Sham-Fock matrix. For
periodic systems, a single diagonalization of the Kohn-Sham-
Fock matrix is eight times more involved compared to a
1c RKS calculation, as the dimensionality of matrices dou-
bles due to the 2c construction. As the computational time
scales as cubically with the number of basis functions, N3

BF,
this leads to the observed prefactor. In UKS theory, the spin
components of the Kohn-Sham-Fock matrix can be decou-
pled, which is not possible in 2c GKS due to spin-orbit
interaction.

The time investment needed for the diagonalization of the
Kohn-Sham-Fock matrix depends on two factors, i.e., on the
number of basis functions NBF and the total number of k points
Nk , as one diagonalization per k point is executed. This means
that the computational costs of the diagonalization are propor-
tional to N3

BF and to Nk . For smaller systems in terms of basis
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TABLE I. Computation time in seconds for the SCF steps and number of iterations for a calculation of a three-dimensional Pb crystal
(PBE functional [151], dhf-TZVP-2c basis [152]) with a single thread of an Intel Xeon Gold 6212U central processing unit @ 2.40 GHz. The
number of atoms per unit cell is one, the number of k points is 32 768 and the chosen grid size for the XC potential is 4 [153,154]. The code
was compiled with the Intel Fortran Compiler 19.0.1.144 (no just-in-time flags). The SCF initial guess is obtained by constructing bands from
Hückel theory. The overlap, kinetic energy, ECP, and SO-ECP integrals are evaluated prior to entering the SCF iterations (“Pre-SCF”). Timings
for the overlap and kinetic energy matrix are omitted, as they are negligible. “Dμν build” refers to the construction of the density matrices in
real space, “J” to the evaluation of the Coulomb integrals, and “XC” to the numerical integration of the XC potential. “Diag” and “Iter” denote
the diagonalization for the Kohn-Sham equations and the number of iterations. “Time” denotes the computation time per iteration of the SCF
procedure. Note that the energy contributions from the Coulomb term J and the XC part are again calculated after the last iteration. Bands
are stored in binary format, while the MOs or spinors of the unit cell are stored in ASCII format (Band/MO dump) after converging the SCF
procedure (“Post-SCF”). “Total” refers to the complete computation time.

Pre-SCF SCF Post-SCF

ECP SO-ECP Dμν build J XC Diag Time Iter Dump Total

1c RKS 4.7 – 12.3 33.8 38.4 20.1 108.8 14 53.0 1656.4
1c UKS 4.9 – 24.7 33.8 50.6 39.6 156.7 14 104.6 2488.2
2c GKS KR 4.7 38.0 49.4 33.5 37.9 82.7 214.3 14 150.2 3253.5
2c GKS KU 4.9 38.4 96.9 33.6 90.4 231.3 483.9 14 301.7 7050.8

functions, the diagonalization time plays only a minor role for
the total computation time. Ultimately, it is obvious that the
diagonalization time for the 2c calculations is substantially
larger than for the 1c calculations.

We conclude that for periodic systems, the 2c formalism
provides an efficient way of dealing with physics based on
spin-orbit coupling. To reduce the computational costs, the
unit-cell size can be decreased to the minimum extent, while
simultaneously increasing the number of k points in order to
retain the same effective system size. This way, a linear in-
crease of the computational demands proportional to Nk rather
than the cubic proportionality of N3

BF is exploited. That allows
us to perform calculations on large systems in a reasonable
amount of time with standard computer hardware. Note that
this statement is not only true for 2c periodic calculations but
for periodic calculations in general.

III. APPLICATIONS TO DISCRETE
AND PERIODIC SYSTEMS

In this section, we present calculations of various systems
to illustrate applications of the 2c GTO-based approach and to
show differences of the electronic structure by the inclusion of
spin-orbit coupling. First, we discuss discrete atoms and sub-
sequently systems that are periodic in three to one dimensions.
Computational details are discussed in each subsection.

A. Ionization energies of zero-dimensional heavy p-block atoms

To begin with, we validate the implementation in the
RIPER module of TURBOMOLE by comparison to the existing
2c molecular functionalities in the RIDFT module [43,44,156–
158]. We study the ionization energies of heavy p elements.
Compared to lighter elements, the ionization energies of
heavy 5p and 6p elements follow a different trend. While the
light elements show an increasing ionization energy from left
to right in the periodic table with especially stable half-filled
subshells [159,160], this is not the case for the heavy elements
as they feature a heavier core and, therefore, stronger spin-
orbit coupling. Strong spin-orbit coupling is accompanied by

a larger splitting of p, d , and f orbitals. Here, the splitting
of the p shell is of particular importance. The p shells split
into twofold-degenerated p1/2 and fourfold-degenerated p3/2

orbitals, indicating a stable p2 configuration for lead. Thus,
the ground state of lead is a triplet based on 1c calculations,
while it is a singlet in 2c approaches.

According to the results in Table II, the computed ion-
ization energies validate this trend. For all calculations, the
PBE [151] (grid size 4 [153,154]) and PBE0 [161] exchange-
correlation functionals combined with the dhf-SVP-2c GTO
basis set [152] with small-core Dirac-Fock ECPs [155] are
employed. The 2c procedure shows a good qualitative agree-
ment with the experimental values, while the 1c calculations

TABLE II. Ionization energies based on energy differences of
the atom and its cation for the heavy p-block elements In-I and
Tl-At. The PBE [151] and PBE0 [161] exchange-correlation func-
tionals combined with the dhf-SVP-2c Gaussian basis set [152]
and small-core Dirac-Fock ECPs [155] are employed. Experimen-
tally determined ionization potentials (“Experiment”) are taken from
Ref. [162]. All values are given in eV.

5p block In Sn Sb Te I

1c RIPER PBE 5.58 7.26 8.95 8.66 10.42
2c RIPER PBE 5.70 7.14 8.67 8.86 10.31
2c RIDFT PBE 5.70 7.14 8.67 8.86 10.31
1c RIPER PBE0 5.61 7.31 9.05 8.68 10.55
2c RIPER PBE0 5.75 7.18 8.76 8.88 10.37
2c RIDFT PBE0 5.75 7.18 8.76 8.88 10.37
Experiment 5.70 7.34 8.64 9.01 10.45

6p block Tl Pb Bi Po At

1c RIPER PBE 5.41 6.97 8.55 8.26 9.99
2c RIPER PBE 6.06 7.12 7.26 8.32 9.16
2c RIDFT PBE 6.06 7.12 7.26 8.32 9.16
1c RIPER PBE0 5.43 7.01 8.65 8.25 9.99
2c RIPER PBE0 6.10 7.15 7.33 8.36 9.20
2c RIDFT PBE0 6.10 7.15 7.33 8.36 9.20
Experiment 6.11 7.42 7.29 8.43 9.54
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exhibit partly large deviations. On quantitative considera-
tions, the 2c PBE simulations yield an average deviation
of 0.14 eV from the experimental values, while we find an
average deviation of 0.39 eV for the 1c procedure. PBE0
yields similar overall errors, as it does not consistently im-
prove the results. Calculations with the RIDFT module lead
to the same values as the RIPER module, demonstrating
consistency.

B. Band structures of three-dimensional gold and lead crystals

Next, we demonstrate consistency of our implementation
with well-established codes such as the plane-wave QUANTUM

ESPRESSO program [52]. Therefore, we study the band struc-
tures of three-dimensional gold and lead crystals. Figure 1
shows the simulated electronic band structure for bulk gold
and lead, forming a face-centered-cubic (fcc) lattice with a lat-
tice constant of a = 4.0800 and 4.9508 Å, respectively [163].

For the RIPER calculations (1c, 2c), the PBE functional
[151] (grid size 4) and the dhf-TZVP-2c GTO basis set
[152] with small-core Dirac-Fock ECPs [155,164] (ECP-60
for Au and Pb) are employed. A k-point mesh of 32 ×
32 × 32 is used in combination with a Gaussian smearing
of 0.005 hartree [165] to ensure convergence. Total SCF en-
ergies are converged up to 10−8 hartree. For the QUANTUM

ESPRESSO calculations, we use the relativistic pseudopoten-
tials Au.rel-pbe-dn-rrkjus_psl.0.1.UPF for gold and
Pb.rel-pbe-dn-rrkjus_psl.0.2.2.UPF for lead, respec-
tively. Cutoff radii of 100 hartree for the wave function and
1000 hartree for the electron density are set, while the other
parameters such as the number of k points, the Gaussian
smearing, and the convergence threshold are the same as for
the RIPER calculations to ensure comparability.

The impact of spin-orbit interaction on the band structure
of gold can be quantified by comparing 1c (orange) and 2c
(purple) RIPER band structures in Fig. 1(a). We find that the
influence of spin-orbit interaction is of minor relevance for
bulk gold. For large parts of the electronic band structure,
both curves are in excellent agreement, especially close to
the Fermi level at εF = 0 eV. The most prominent deviations
between 1c and 2c calculations occur for band splittings at
about 5.5 eV for the W point and at around −5 eV for the
� point. The comparison of the band structure of the 2c
RIPER (purple) and the QUANTUM ESPRESSO (red) calculations
reveals a good agreement of energies below and around the
Fermi level εF = 0 eV. This indicates consistent results of
the 2c RIPER implementation and the plane-wave QUANTUM

ESPRESSO code, while providing the reduced calculation times
of GTO over plane-wave basis sets. However, the band struc-
tures exhibit larger deviations in the region above 7 eV. This
is not surprising as plane-wave basis sets are known to be
superior in the description of energy states in the contin-
uum above the gold work function, which amounts to around
5 eV [166].

In contrast to gold, the band structure of lead in Fig. 1(b) re-
veals a more pronounced impact of spin-orbit coupling due to
the heavier atoms. Comparison of 1c (orange) and 2c (purple)
RIPER band structures shows a band splitting of 0.87 eV at
the W point for the energetic region around −1.5 eV. That is,
the proper description of bulk electronic structures of heavy

FIG. 1. Simulated band structure for (a) an fcc bulk gold crystal
(lattice constant a = 4.0800 Å [163]) and (b) an fcc bulk lead crystal
(a = 4.9508 Å [163]). Results for the RIPER module with (2c) and
without (1c) spin-orbit coupling are shown together with relativis-
tic 2c calculations using the QUANTUM ESPRESSO (QE) code [52].
All computations employ the PBE exchange-correlation functional
[151]. We use the dhf-TZVP-2c GTO basis set for RIPER and a
plane-wave basis for QUANTUM ESPRESSO. Vertical dashed lines mark
high-symmetry points of the FBZ.

p-block systems generally necessitates the consideration of
spin-orbit interaction. Figure 1(b) furthermore shows a similar
behavior concerning the quality of our implementation for
bulk lead. For energies below and around the Fermi level
εF = 0 eV, the band structures of both the relativistic QUAN-
TUM ESPRESSO (red) and the 2c RIPER (purple) calculations
match almost perfectly. In contrast, deviations are observed
for energies above 5 eV. Again, this is a consequence of the
better description of high-energy states close to the contin-
uum with plane-wave basis sets (cf. the work function of Pb
amounts to around 4 eV [167]).
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TABLE III. Band gaps (in eV) of three-dimensional AgCl, AgBr,
and AgI crystals (lattice constants a = 5.612, 5.843, and 6.169 Å,
all rocksalt structure) at high-symmetry points of the FBZ with the
PBE functional [151] and grid size 4. Nonrelativistic calculations
(NR) are performed with the TZVPalls2 (Ag) [173], def2-TZVP
(Cl, Br) [174], and the TZVPall (I) basis sets [173], whereas the
ECP-based 1c and 2c calculations use the dhf-SVP bases [152] and
small-core Dirac-Fock ECPs for Ag and I [175,176]. Results with
scalar relativistic (SR) and spin-orbit (SO) X2c employing (trun-
cated) Slater-type bases are taken from Ref. [169]. Four-component
DKS results are taken from Ref. [170], employing uncontracted
double-ζ basis sets [177–179].

AgCl L-L �-� X -X L-�

NR 4.86 3.72 5.32 1.66
1c ECP 4.62 3.11 4.16 0.91
SV ECP 4.57 2.94 3.99 0.86
2c ECP 4.57 2.94 3.99 0.86
SR X2c 4.31 3.09 4.23 0.92
SO X2c 4.27 2.99 4.03 0.88
4c DKS 4.47 2.93 4.20 0.87

AgBr L-L �-� X -X L-�

NR 4.28 3.19 4.77 1.56
1c ECP 4.07 2.64 3.70 0.86
SV ECP 4.02 2.64 3.54 0.82
2c ECP 4.02 2.64 3.54 0.82
SR X2c 3.87 2.43 3.87 0.68
SO X2c 3.77 2.25 3.67 0.60
4c DKS 3.82 2.24 3.68 0.61

AgI L-L �-� X -X L-X

NR 3.89 3.42 3.71 1.48
1c ECP 3.49 2.16 2.98 0.65
SV ECP 3.25 1.82 2.69 0.41
2c ECP 3.25 1.82 2.69 0.41
SR X2c 3.42 2.27 3.07 0.74
SO X2c 3.17 1.90 2.76 0.49
4c DKS 3.25 1.88 2.74 0.49

C. Band gaps of three-dimensional silver halide crystals

Silver halide crystals AgX (X = Cl, Br, I) are typical
model systems to study relativistic effects [168–171]. Stud-
ies have been performed with relativistic all-electron and
ECP-based or quasirelativistic Hamiltonians. Due to the small
gaps and the densely packed crystal structures, the systems
are a challenging case for computational simulations [170].
In Table III, we compare results with our ECP-based im-
plementation to previously reported ones from relativistic
all-electron approaches including all-electron exact two-
component (X2c) theory [169] and the four-component (4c)
Dirac-Kohn-Sham (DKS) ansatz directly based on the many-
electron Dirac-Coulomb equation [170]. Additionally, we
used a non-self-consistent second-variational-like (SV) ap-
proach for SO effects [172]. Technically, the converged 1c
bands are taken as initial guess for a 2c calculation and only
one 2c diagonalization is carried out. For these calculations,
the damping was turned off. We note that in the terminology
of Ref. [172] we use Nstates = Nbasis and these authors would

call our procedure a non-self-consistent first-variational
approach.

Computational settings are chosen in accordance with pre-
vious studies [168–170]. Lattice constants are taken from
Ref. [168], i.e., a = 5.612 Å for AgCl, a = 5.843 Å for AgBr,
and a = 6.169 Å for AgI. Calculations are carried out with
the primitive unit cell and a k mesh of 7 × 7 × 7 points.
Increasing this to 12 × 12 × 12 changed the energy of AgCl
by less than 3 × 10−6 hartree. SCF convergence thresholds are
set to 10−7 hartree. Nonrelativistic calculations are performed
with the TZVPalls2 (Ag), def2-TZVP [174] (Cl, Br), and the
TZVPall (I) all-electron basis sets [173]. Scalar-relativistic
and spin-orbit calculations employ the dhf-SVP basis sets
[152] together with small-core Dirac-Fock ECPs (ECP-28)
[175,176]. Note that we always transform the Kohn-Sham-
Fock matrices into an orthogonal basis by diagonalization
of the overlap matrix [threshold 10−6 (cf. Sec. II D)] [109].
Thus, we have not removed diffuse functions, i.e., functions
with exponents smaller than 0.1 bohrs−1, in contrast to related
studies of silver halide crystals [168,169].

We find that the nonrelativistic framework is clearly insuf-
ficient for all systems, as it leads to a large deviation from the
formally superior 4c DKS approach. Relativistic effects are
mainly captured by scalar ECPs, i.e., the spatial contraction
of the electron density is the leading relativistic correction.
However, some band gaps such as the �-� and the X -X
gap of AgI require the inclusion of spin-orbit coupling, as it
lowers the gap by 0.2 eV. Likewise, the �-� and X -X gaps
of AgCl and AgBr are notably affected. The SV and 2c-ECP
approaches lead to the same band gaps for the considered
semilocal functionals. The same holds for total energies. This
finding is in line with the literature [172]. The SV approach is
not sufficient for hybrid functionals which include the current
density in the two-electron part (see below and Ref. [180]).

The 2c-ECP approach leads to a good agreement with
relativistic all-electron X2c and DKS schemes. The quali-
tative trends of the band gaps are well described, and the
2c approach generally reduces the deviation towards the 4c
DKS results. Exceptions in this regard are the X -X gaps of
AgCl and AgBr. The same holds for scalar-relativistic and
spin-orbit X2c calculations of the X -X gap of AgCl (see
Refs. [169,170]). For both ECPs and X2c, spin-orbit effects
lower these band gaps by about 0.2 eV. Therefore, considering
these effects worsens the results, which hints at subtle error
cancellation.

For comparison, we study the impact of the basis set and
the density functional approximation. For the DFT study, we
consider the first three rungs of Jacob’s ladder [189]. The
local spin density approximation (LSDA) is represented by
the S-VWN (V) functional [190,191], whereas PBE [151]
and PBEsol [192] serve as examples for GGAs. mGGAs are
included with the TPSS [105], revTPSS [193,194], Tao-Mo
[195], PKZB [196], and r2SCAN [197,198] approximations.
Note that we use LIBXC [142–144] for the PBEsol, revTPSS,
Tao-Mo, PKZB, and r2SCAN functionals. The dhf-SVP and
dhf-TZVP basis sets are employed with fixed crystal struc-
tures, and results are listed in the Supplemental Material
[199]. In addition, cell structure optimizations with these
exchange-correlation functionals were carried out with the
dhf-SVP basis [152,200], including the D3 correction with
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TABLE IV. Optimized lattice constants a (in Å, rocksalt struc-
ture) of three-dimensional AgCl, AgBr, and AgI crystals and band
gaps (in eV) at high-symmetry points of the FBZ with various den-
sity functional approximations and the dhf-SVP basis sets [152].
Experimental data taken from Refs. [181–188], as collected in
Ref. [169].

AgCl a L-L �-� X -X L-�

S-VWN (V) no D3 5.377 3.93 3.27 3.85 0.55
PBE no D3 5.624 4.58 2.91 3.99 0.86
PBEsol no D3 5.515 4.20 2.98 3.89 0.66
TPSS no D3 5.586 4.55 3.04 4.13 0.97
revTPSS no D3 5.561 4.38 3.02 4.13 0.89
Tao-Mo no D3 5.541 4.24 3.10 4.24 0.97
PKZB no D3 5.636 4.59 3.10 4.26 1.18
r2SCAN no D3 5.576 5.02 3.55 4.56 1.41
PBE D3-BJ 5.537 4.47 3.08 4.03 0.85
PBEsol D3-BJ 5.426 4.07 3.20 3.93 0.66
TPSS D3-BJ 5.498 4.40 3.21 4.18 0.94
revTPSS D3-BJ 5.476 4.23 3.20 4.17 0.87
Tao-Mo D3-BJ 5.511 4.20 3.17 4.25 0.97
r2SCAN D3-BJ 5.517 4.94 3.68 4.59 1.42
Experiment 5.550 – 5.2 – 3.0

AgBr a L-L �-� X -X L-�

S-VWN (V) no D3 5.604 3.42 2.82 3.39 0.54
PBE no D3 5.849 4.03 2.63 3.54 0.82
PBEsol no D3 5.692 3.60 2.77 3.45 0.65
TPSS no D3 5.812 3.99 2.90 3.68 0.95
revTPSS no D3 5.784 3.87 2.96 3.67 0.94
Tao-Mo no D3 5.738 3.78 3.14 3.79 1.08
PKZB no D3 5.868 4.13 2.99 3.81 1.19
r2SCAN no D3 5.811 4.50 3.36 4.09 1.42
PBE D3-BJ 5.747 3.89 2.82 3.57 0.83
PBEsol D3-BJ 5.613 3.48 2.95 3.48 0.67
TPSS D3-BJ 5.708 3.82 3.09 3.71 0.95
revTPSS D3-BJ 5.690 3.72 3.14 3.70 0.94
Tao-Mo D3-BJ 5.743 3.79 3.13 3.79 1.08
r2SCAN D3-BJ 5.772 4.45 3.44 4.10 1.42
Experiment 5.774 – 4.3 – 2.5

AgI a L-L �-� X -X L-X

S-VWN (V) no D3 5.937 2.73 1.96 2.70 -0.17
PBE no D3 6.187 3.27 1.79 2.67 0.44
PBEsol no D3 6.023 2.88 1.93 2.74 0.09
TPSS no D3 6.153 3.25 2.05 2.94 0.58
revTPSS no D3 6.116 3.15 2.13 3.00 0.54
Tao–Mo no D3 6.071 3.10 2.34 3.11 0.62
PKZB no D3 6.200 3.41 2.15 2.99 0.83
r2SCAN no D3 6.159 3.78 2.50 3.24 0.91
PBE D3-BJ 6.067 3.11 1.99 2.78 0.28
PBEsol D3-BJ 5.927 2.74 2.12 2.84 -0.06
TPSS D3-BJ 5.982 2.99 2.35 3.10 0.34
revTPSS D3-BJ 5.949 2.88 2.44 3.16 0.29
Tao–Mo D3-BJ 6.068 3.10 2.35 3.11 0.61
r2SCAN D3-BJ 6.156 3.77 2.51 3.24 0.91
Experiment 6.067 – – – –

Becke-Johnson damping if available [76,115,116,201,202].
All other computational parameters such as SCF thresholds
and grids are unchanged, compared to the Hamiltonian study

in Table III. The main results are listed in Table IV (see
Supplemental Material [199] for all results).

Obviously, the impact of the density functional approxima-
tions is much larger than the deviations between the 2c ECP
and the all-electron X2c or DKS ansatz. Especially for the
small L-� and L-X band gaps, the choice of the semilocal
functional substantially affects the results. Here, the gaps in-
crease from LSDA to GGA functionals and tend to further
rise for the mGGAs. This finding also holds for the other
band gaps of all AgX systems. For AgI, the L-X band gap
is very small and negative gaps are obtained at the S-VWN
(V) and PBEsol-D3 levels. Negative L-X band gaps of AgI
were already found by the group of Liu with S-VWN [169].

Dispersion correction leads to notably decreased lattice
constants and thus indirectly affects the band gaps. For the
lattice constants, the PBE-D3 functional performs best for
AgCl, whereas r2SCAN-D3 and Tao-Mo-D3 perform best for
AgBr and AgI, respectively.

According to the Supplemental Material [199], the larger
triple-ζ basis sets consistently lower the gaps, which is in
agreement with similar studies at the DKS level [170].

We note, however, that none of the semilocal density func-
tionals applied herein are able to accurately reproduce the
experimental band gaps for AgCl and AgBr. Therefore, we
study the performance of the range-separated hybrid function-
als HSE03 [203,204], HSE06 [203–205], HSEsol [206], and
HSE12 [207] using LIBXC [142–144]. Computational settings
are unchanged except that the threshold for the canonical or-
thogonalization was raised from 10−6 to 5.5 × 10−5 for AgCl
with all hybrid functionals and for AgBr with HSE12 in order
to facilitate the SCF convergence. This removes three vectors
for AgCl with all hybrid functionals and also three vectors
for AgBr with HSE12. For AgI, the smallest eigenvalue of
the overlap matrix is larger than 10−3, ensuring a smooth
convergence. Results are listed in Table V.

Admixture of Fock exchange substantially increases the
band gaps and hence improves the agreement with exper-
iment. Especially, the L-� gap rises and the silver halides
become small-gap semiconductors in line with the experimen-
tal findings. The impact of the proper 2c generalization using
the spin-current density for Fock exchange is comparably
small for these systems.

In conclusion, an ECP-based implementation is sufficient
for the band gaps of crystals, as this property is driven by
the valence region. In contrast, all-electron approaches may
be needed for other properties or for a fully parameter-free
description of relativistic effects.

D. Indium(I,III)-telluride two-dimensional honeycomb system

To illustrate the applicability of the implementation to two-
dimensional systems, we consider the indium(I,III)-telluride
(InTe) honeycomb crystal displayed in Fig. 2(a). For layered
two-dimensional materials and their atomically thin layers
dispersion interaction may play an important role. Here, we
use the PBE functional [151] (grid size 4) combined with the
D3-BJ correction [115,116]. The dhf-TZVP-2c basis set [152]
is applied, and a k mesh of 32 × 32 is employed. A Gaussian
smearing of 0.001 hartree [165] and an SCF threshold of 10−8

hartree are chosen. The cell structure is optimized with the 2c
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FIG. 2. (a) Top and side views of the two-dimensional InTe honeycomb system with indicated unit cell. The unit cell consists of two In
and two Te atoms. (b), (c) Electronic band structure of the FBZ. The orange dashed lines are calculated without spin-orbit coupling, while the
solid purple lines include spin-orbit interaction. The black vertical dashed lines mark the � and K points of the Brillouin zone. Calculations are
performed with the PBE functional [151], the D3-BJ dispersion correction [115,116], and the dhf-TZVP-2c basis set [152]. See Supplemental
Material [199] for results with HSE06 [203–205].

Hamiltonian, and band structures are shown in Figs. 2(b) and
2(c). For comparison, the electronic band structure based on
the unit-cell structure optimized without the D3-BJ correction
and spin-orbit interaction is displayed in the Supplemental
Material [199].

We find that dispersion correction and weight derivatives
are important for the unit-cell structure and consequently the
band gap. Without D3-BJ and weight derivatives, an in-plane
lattice constant of 4.17 Å, and band gaps of 1.56 eV (1c)
and 1.12 eV (2c) are obtained. Adding the D3-BJ correction
and weight derivatives changes the lattice constant to 4.23 Å.
Band gaps are increased to 1.63 eV (1c) and 1.44 eV (2c).
This reveals a delicate interplay of spin-orbit coupling and cell
structure.

The most notable changes of the band structure induced by
spin-orbit coupling are found for the � point in the energetic
region from 1 to 2 eV below the Fermi level of εF = 0 eV.
Here, the energies of the two occupied bands are substantially
decreased. The shifts for these bands at about −1.5 eV amount
to more than 0.5 eV.

The reduction of the bands gap from 1.63 to 1.44 eV due to
spin-orbit coupling is mainly caused by the energetic decrease
of the band 1 eV above the Fermi level. Overall, our results are
in reasonable agreement with those of Shang et al. [208], who
reported a band gap of 1.27 eV.

Application of Fock exchange using the HSE06 functional
[203–205] with a k mesh of 17 × 17 and a threshold of
5.5 × 10−5 for the orthogonal basis increases the band gap

to 2.29 eV. Inclusion of spin-orbit coupling changes this to
2.13 eV without spin currents in the Fock exchange and to
2.09 eV with the complete 2c Fock exchange. According to
the band plots in the Supplemental Material [199], the in-
crease of the band gap for HSE06 compared to PBE is mainly
due to the energetic shift of occupied bands.

E. One-dimensional platinum chains

Electron transport through atomically thin wires serves as a
sensitive probe of their electronic structure. Scalar-relativistic
effects have been pointed out to be crucial for the chain forma-
tion in metallic atomic contacts of Ir, Pt, and Au [209]. From
these three elements, Pt and Ir have been suggested to show
interesting magnetic effects based on the spin-orbit coupling,
such as an anisotropic magnetoresistance [24]. As chains are
pulled, they transition from a zigzag to a linear configuration
[210]. While linear chains are thus not the ground-state ge-
ometry for all interatomic distances, linear chains of Pt are
by now a reference system for a transition to a magnetic
state [24,211–214]. We will reexamine this system with our
implementation here.

Our unit cell consists of two platinum atoms and is indi-
cated in Fig. 1(a). The cell parameter d was varied from 4.0
to 6.0 Å, with structures specified in the Supplemental Mate-
rial [199]. For the calculations, the PBE exchange-correlation
functional [151] (grid size 4 [153,154]) and the dhf-SVP-2c
GTO basis set [152] with small-core Dirac-Fock ECPs [164]

165144-13



FRANZKE, SCHOSSER, AND PAULY PHYSICAL REVIEW B 109, 165144 (2024)

TABLE V. Band gaps (in eV) of three-dimensional AgCl, AgBr,
and AgI crystals (lattice constants a = 5.612, 5.843, and 6.169 Å, all
rocksalt structure) at high-symmetry points of the FBZ with the PBE
[151], HSE03 [203,204], HSE06 [203–205], HSEsol [206], and the
HSE12 [207] functionals. “no j” and “ j” denote that the spin cur-
rent density contributions are neglected or included for the 2c Fock
exchange. Only the latter option is the complete 2c generalization of
the Fock exchange.

AgCl L-L �-� X -X L-�

1c PBE 4.62 3.11 4.16 0.91
2c PBE 4.57 2.94 3.99 0.86
1c HSE03 6.06 4.54 6.27 2.44
2c HSE03 (no j) 6.02 4.54 6.10 2.39
2c HSE03 ( j) 6.01 4.54 6.09 2.39
1c HSE06 5.97 4.49 6.23 2.37
2c HSE06 (no j) 5.93 4.48 6.05 2.33
2c HSE06 ( j) 5.93 4.48 6.05 2.33
1c HSEsol 5.81 4.42 6.15 2.26
2c HSEsol (no j) 5.76 4.41 5.97 2.22
2c HSEsol ( j) 5.76 4.41 5.97 2.22
1c HSE12 6.42 4.95 6.87 2.86
2c HSE12 (no j) 6.37 4.94 6.70 2.81
2c HSE12 ( j) 6.37 4.94 6.69 2.81
Experiment – 5.2 – 3.0

AgBr L-L �-� X -X L-�

1c PBE 4.07 2.64 3.70 0.86
2c PBE 4.02 2.64 3.54 0.82
1c HSE03 5.34 3.88 5.60 2.23
2c HSE03 (no j) 5.30 3.87 5.54 2.19
2c HSE03 ( j) 5.30 3.87 5.54 2.19
1c HSE06 5.25 3.83 5.58 2.17
2c HSE06 (no j) 5.21 3.82 5.50 2.13
2c HSE06 ( j) 5.21 3.82 5.49 2.13
1c HSEsol 5.09 3.77 5.57 2.08
2c HSEsol (no j) 5.05 3.77 5.42 2.04
2c HSEsol ( j) 5.05 3.76 5.41 2.04
1c HSE12 5.65 4.24 6.04 2.61
2c HSE12 (no j) 5.61 4.23 6.02 2.58
2c HSE12 ( j) 5.61 4.23 6.02 2.58
Experiment – 4.3 – 2.5

AgI L-L �-� X -X L-X

1c PBE 3.49 2.16 2.98 0.65
2c PBE 3.25 1.82 2.69 0.41
1c HSE03 4.54 3.22 4.06 1.76
2c HSE03 (no j) 4.27 2.87 3.77 1.50
2c HSE03 ( j) 4.24 2.84 3.75 1.47
1c HSE06 4.45 3.18 4.04 1.73
2c HSE06 (no j) 4.19 2.83 3.75 1.47
2c HSE06 ( j) 4.16 2.80 3.73 1.44
1c HSEsol 4.31 3.12 4.06 1.70
2c HSEsol (no j) 4.05 2.78 3.77 1.44
2c HSEsol ( j) 4.02 2.74 3.74 1.41
1c HSE12 4.79 3.54 4.43 2.11
2c HSE12 (no j) 4.52 3.19 4.14 1.85
2c HSE12 ( j) 4.48 3.15 4.10 1.81
Experiment – – – –

are employed. 32 k points are used in combination with a
Gaussian smearing of 0.01 hartree [165]. SCF procedures are
converged with a threshold of 10−8 hartree. We started the
SCF calculations both from a closed-shell initial guess and an
open-shell initial guess based on four unpaired electrons. In
the 2c calculations, the initial wave function is chosen to be
an eigenfunction of Sx or Sz, and the converged 2c
wave function is thus aligned accordingly. We also confirmed
the settings for the 2c calculations using a superposition of
atomic densities with the magnetization aligned along the x or
z axis for both Pt atoms as initial guess. Note that we assume
periodicity along the x direction for one-dimensional systems
[150]. Results with the Scalmani-Frisch approach are further
listed in the Supplemental Material [199].

According to the restricted and unrestricted DFT calcula-
tions in Figs. 3(d)–3(f), no notable spin polarization occurs for
unit cells with d smaller than 5.0 Å. Here, the spin expectation
values are essentially zero. The most energetically favorable
geometric structure is found for d = 4.75 Å in both scalar-
relativistic and spin-orbit calculations. Apparently the impact
of spin-orbit coupling on the geometric structure is small for
this system. However, spin-orbit interaction has a large impact
on the electronic band structure. For the 2c Kramers-restricted
solution in Fig. 3(a), only two bands cross the Fermi level at
εF = 0 eV. In contrast, seven and four bands cross the Fermi
level for the Kramers-unrestricted solutions with Sx and Sz

alignments, respectively [see Figs. 3(b) and 3(c)]. For the
latter two cases, many bands are split due to spin-orbit effects.
Thus, we find that spin-orbit interaction substantially affects
the band structure for all spin configurations.

Furthermore, spin-orbit coupling is of relevance for the
magnetic moment and the spin expectation value. The Pt
chains transition into a magnetic state at d = 5.25 Å without
taking spin-orbit interaction into account, while spin-orbit
effects change the transition geometry to d = 5.04 Å for the
Sx orientation and to d = 5.35 Å for the Sz orientation. For the
absolute spin expectation values, we find 〈Sz〉 = 1.2 for large
d = 6.0 Å in the 1c UKS formalism, while the 2c calculations
lead to 〈Sx〉 = 1.0 and 〈Sz〉 = 0.85. This corresponds to a
large magnetic anisotropy as choosing the spin parallel to the
periodic direction (x axis) notably affects the absolute spin ex-
pectation values and consequently the magnetic moments. In
the spin-only approximation, the latter are obtained in units of
Bohr’s magneton µB by doubling the spin expectation value.
Since our unit cell contains two atoms, the spin expectation
values listed above directly correspond to the magnetic mo-
ments in µB per atom.

Changing the density functional approximation to the
LSDA functional S-VWN (V) [190,191] or to the mGGA
functional TPSS [105] leads to a transition geometry of d =
5.3 and 5.2 Å (1c). Inclusion of spin-orbit coupling results in
a jump of the magnetization at d = 5.0 and 4.9 Å for the spin
alignment parallel to the chain at the 2c level, respectively.
The spin expectation value for large cells is very similar to
the PBE result. The 1c UKS formalism predicts a jump of
the magnetic moment at about d = 5.1 Å for both function-
als. Notably, the range-separated hybrid functional HSE06
[203–205] leads to a transition already at d = 4.7 Å (1c). We
refer to the Supplemental Material [199] for the complete
results with S-VWN (V), TPSS, and HSE06.
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FIG. 3. (a)–(c) Electronic band structure in the FBZ for a linear platinum chain at d = 5.56 Å. The unit cell consists of two platinum
atoms and is exemplarily shown above (b). The black vertical dashed lines in each panel mark the � point of the FBZ. Expectation values of
the respective spin components are 1.16 [1c UKS, (b) and (c)], 0.82 [2c KU Sx , (b)], and 0.71 [2c KU Sz, (c)], and the spin vector is fully
aligned along the x and z direction, respectively. Note that we assume periodicity along the x direction for one-dimensional systems [150].
The open-shell solutions are energetically favored compared to the respective closed-shell solutions (1c RKS or 2c KR) by about 4 × 10−3

hartree (1c UKS), 2 × 10−3 hartree (2c KU Sx alignment), and 10−3 hartree (2c KU Sz alignment). The magnetization parallel to the nanowire
is thus energetically preferred to the perpendicular one by about 10−3 hartree. Calculations are performed with the PBE functional [151] and
the dhf-SVP-2c basis set [152]. (d) Dependence of the energy on the cell parameter in units of hartree per atom for 1c RKS and 1c UKS. (e)
Dependence of the energy on the cell parameter in units of hartree per atom for 2c KR, 2c KU Sx , and 2c KU Sz. (f) Magnetic moment in units
of Bohr’s magneton µB per atom for the spin contribution of 1c UKS, 2c KU Sx , and 2c KU Sz.

Our scalar-relativistic results are in excellent agreement
with the study of Fernández-Rossier et al. [213], who pre-
dicted an equilibrium structure with d = 4.8 Å. Additionally,
they observed the magnetic transition at d = 5.2 Å and a
magnetic moment of 1.2 µB per atom at d = 6.0 Å based on 1c
UKS PBE calculations with the GTO-based code CRYSTAL03.
Note that these authors used one platinum atom per unit cell
and hence the lattice spacing in their work has to be converted
for comparison with our results.

Our results are also in qualitative agreement with the study
of Smogunov et al. using plane-wave methods [214]. They
obtained an equilibrium distance of d0 ≈ 4.8 Å (GGA), which
is in close agreement with our prediction of d0 = 4.8 Å. Ad-
ditionally, the transition to a magnetic state occurs at smaller
d values for a magnetization parallel to the chain than for

a perpendicular magnetization. A jump of the magnetic mo-
ment is found at d ≈ 4.84 Å for the first orientation with
GGA functionals and at slightly smaller d for LSDA. For
the perpendicular magnetization, the jump is at d ≈ 5.2 Å.
Smogunov et al. [214] also found that the parallel magnetiza-
tion is energetically favored, which is in agreement with our
calculations.

IV. SUMMARY AND OUTLOOK

We presented an efficient two-component DFT procedure,
which accounts for spin-orbit interaction as well as for scalar-
relativistic effects. Relativistic effects are introduced with
effective core potentials. Due to the use of atom-centered
Gaussian-type orbitals, our implementation is applicable to
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both molecular and periodic systems of any dimensionality.
For ground-state energy calculations hybrid functionals are
available to account for the self-consistent relaxation of the
induced current density.

We demonstrated the validity of our approach by calcu-
lating the ionization energies of heavy p-block atoms, the
electronic bulk band structure of gold and lead, band gaps
of silver halide crystals, the geometry and band structure of
the InTe honeycomb system, as well as the spin polarizations
of linear platinum chains. In the process, we assessed the
accuracy of the implementation by comparison with the plane-
wave-based QUANTUM ESPRESSO program and other codes,
showing excellent agreement.

Extension of this work is promising in multiple directions.
In terms of density functional approximations, this covers
the extension of the mGGA framework to account for the

current density as done in Ref. [45]. An extension to local
hybrid functionals [215] may be useful to allow for a more
flexible admixture of Fock exchange [216–218]. Additionally,
relativistic all-electron approaches are necessary to study en-
ergetically low-lying states and the density in the vicinity of
the nuclei [145,146].
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