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Multiple scattering of waves is eminent in a wide
range of applications and extensive research is being
undertaken into multiple scattering by ever more
complicated structures, with emphasis on the design
of metamaterial structures that manipulate waves in
a desired fashion. Ongoing research investigates the
design of structures and new solution methods for
the governing partial differential equations. There is a
pressing need for easy-to-use software that empowers
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rapid prototyping of designs and for validating other solution methods. We develop a
general formulation of the multiple scattering problem that facilitates efficient application of
the multipole-based method. The shape and morphology of the scatterers is not restricted,
provided their T-matrices are available. The multipole method is implemented in the
TMATSOLVER software package, which uses our general formulation and the T-matrix
methodology to simulate accurately multiple scattering by complex configurations with
a large number of identical or non-identical scatterers that can have complex shapes
and/or morphologies. This article provides a mathematical description of the algorithm and
demonstrates application of the software to four contemporary metamaterial problems. It
concludes with a brief overview of the object-oriented structure of the TMATSOLVER code.

1. Introduction
We consider the problem of numerically simulating multiple scattering of waves by
configurations containing many particles in two spatial dimensions. Such multiple scattering
processes have been studied across a broad range of wave phenomena, such as atmospheric
science, oceanography, astrophysics (see, for example, Van de Hulst [1]), thermal radiation [2,3],
water waves [4,5] and design of phonic and photonic crystals [6]. More recently, there has
been significant interest in the design of metamaterials whose wave propagation properties
stem from multiple scattering effects between their component atoms or particles. Such
metamaterials can have interesting and important qualities, such as controlling the wave speed
within the material [7–9], or having unusual anisotropy [10], large attenuation [11] or large
amplification [12].

In practice, design of such metamaterials using advanced mathematical techniques is
supported by numerical simulations for validation before experimental/practical realization (see,
e.g. [8,9]). Simulations can be used to explore the differences between physical problems and their
corresponding model problems, which are often simplified so they can be solved analytically (for
example, hypothetical infinite-metamaterials and their finite physical counterparts). Simulations
are also important for validating new solution methods (see, e.g. [13–15]).

Most numerical simulations are based on either the finite-element method (FEM) (e.g.
[9,11,13–16]) or multipole expansions (e.g. [8,10]). The FEM is capable of handling complex-
shaped particles and heterogeneous media, but requires truncation of the infinite domain and
approximation of the corresponding radiation condition. Numerical simulations using multipoles
incorporate the radiation condition exactly, but have often been restricted to circular-shaped
homogeneous particles, primarily because more complicated geometries require sophisticated
theory and numerical implementations. However, recent advances in numerical methods for
computing the so-called T-matrix [17–19] have facilitated a significant expansion in the kinds
of metamaterials that can be simulated using multipoles, including the kind of complex-shaped
scatterers typically simulated using the FEM.

The T-matrix describes the response of a single scatterer to any incident wave in the sense
that it is the solution operator to the general scattering problem of that body, and generalizes to
non-spherical scatterers an approach originally developed in 1881 by Rayleigh [20]. The T-matrix
was introduced for electromagnetics in 1965 by Waterman [21], and subsequently described for
the Helmholtz equation in two and three dimensions in 1969 [22]. In these seminal papers, the
T-matrix was computed using the Null Field Method. Subsequently, many alternative methods
for computing the T-matrix have been developed, including the invariant imbedding method [23],
discrete sources expansions [24,25], point matching on the scatterer boundary [26–28], combined
FEM–BEM methods using Green’s functions in eigenfunction expansions [29,30], and projection
onto the wave function basis in the far field [17–19].
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The extension of the T-matrix to multiple scattering is based on the self-consistent method,
which represents the field incident on each scatterer as the sum of the fields from the other
scatterers, together with the exciting field. The use of wave function expansions, and changes
of expansion origin using the translation–addition theorem, facilitate application of the T-matrix
on each particle to give its scattered field. Similar representations on all of the particles lead
to a system of coupled equations that is solved for the scattered field. There is an extensive
literature on this approach and we refer to [31] for a detailed review. The self-consistent method
is formulated in [31, Section 1.1.3] and we refer to [31, Section 2.5] for the translation–addition
theorem.

In this work, we develop a general formulation of the multiple scattering problem, with
particular focus on efficiently capturing the key properties of the scatterers and their arrangement
in space. This formulation facilitates application of a flexible and efficient multipole-based
method for solving the multiple scattering problem, which exploits identical scatterers, if they
occur, even if they have different orientations. A key feature of this approach is its ability to
simulate accurately scattering by circular and non-circular scatterers with complex morphology
using the T-matrix. The numerical method is implemented in an accompanying object-oriented
MATLAB package TMATSOLVER [32], which has been written to provide an easy-to-use tool for
rapid prototyping and validation of metamaterials comprising from a few to a few-hundred
individual scatterers.

Convergence of the multipole expansions is super-algebraic and the number of unknowns
required for a particular scatterer is independent of its shape [33]. A reliable estimate for the
number of unknowns required to represent the scattered field for a single scatterer is given by
(2.19) in §2, and is approximately ka, where a is the radius of the scatterer and k the wavenumber.
Thus the number of unknowns required for simulating scattering by a configuration of N
scatterers is proportional to kN, independent of the arrangement of the scatterers. This is a
lower-order dependence on k than for the FEM, for which the number of unknowns required
is proportional to kA × kB, where A × B are the dimensions of a box containing the scatterers,
which is decomposed into triangular elements (and, typically, perfectly matched layer (PML)
conditions are applied on the boundary). This condition is equivalent to requiring a fixed number
of points per wavelength in each dimension as the wavenumber increases. We have validated the
TMATSOLVER software against MieSolver [34] for multiple scattering configurations containing
sound-soft circular cylinders at frequencies up to ka = 40π ≈ 125.7, i.e. cylinders with diameter
40 times the wavelength.

Numerous software packages have been developed for multiple scattering simulations and an
excellent directory of open-source software is provided at the Scattport [35] website. Packages
that provide easy-to-use object-oriented interfaces, similar to TMATSOLVER, include MieSolver
[34,36], CELES [37,38] and MultipleScattering.jl [39]. These packages are also based on multipole
expansions and the self-consistent method, but are restricted to spherical scatterers (although
MieSolver also supports layered-scatterers). As outlined above, extension of the self-consistent
method to non-spherical scatterers requires the T-matrix. Although there are several packages
available that can compute the T-matrix for three-dimensional scatterers, the only package that
can compute the T-matrix for scattering by cylinders is TMATROM [40].

To demonstrate our approach, we present results for four canonical metamaterial problems
that were discussed at the ‘Mathematical Theory and Applications of Multiple Wave Scattering’
(MWS) programme at the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK in
January–June 2023 (from which the articles in the Special Feature of Proceedings A were derived).
The problems demonstrate TMATSOLVER across a spectrum of challenging problems that include
large numbers of scatterers, anisotropic scatterers (and so there is strong mode-coupling even for
scatterers with circular shape), scatterers with challenging square boundaries, penetrable non-
circular scatterers with high contrast, and scatterers in configurations that exhibit resonance. Code
demonstrating the last two problems is included in the TMATSOLVER package.

In more detail, the first problem involves simulation of multiple scattering in an array of
anisotropic metacylinders. The incident wave induces interior fields in the metacylinders but
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these are already taken care of within the T-matrix, and interactions between the scatterers
are calculated without explicit consideration of the interior fields, substantially reducing the
complexity of the simulation. The second problem involves simulation of multiple scattering by
an infinite wedge interface, where multipole simulations using TMATSOLVER for a large number
of scatterers are used to validate the semi-analytical solution found using the Wiener–Hopf
technique. The third problem considers design of metamaterials with unusually large attenuation.
The attenuation is shown to be dependent on the structure of the materials, and arises from
multiple scattering effects between high-contrast square particles. The fourth problem involves
simulation of the wavefield around a finite periodic line array of square scatterers dominated by
Rayleigh–Bloch waves. This effect is exploited in metamaterial applications by tuning the period
to modulate the group velocity of the waves and control the amplitude at key locations. We are
able to tackle the difficult square-shaped scatterers in these problems using a multipole-based
approach because we compute the T-matrix of the scatterers using the TMATROM package, which
computes the T-matrix using projection of the far field onto the wave function basis [17–19].
Although the T-matrix is computed from far-field data, the near-field response of the scatterer
is accurately captured because of the relation between the expansion of the near field (given in
equation (2.6) below) and the corresponding expansion of the far field [18]. Convergence of the
expansion (2.6) is guaranteed outside the circumscribing sphere of the scatterer. Convergence
inside the circumscribing sphere is discussed in detail in [41]. The far fields are computed using
the coupled FEM–BEM method [42] and MPSPack [43], respectively.

The structure of the paper is as follows. In §2, we formulate the governing equations for the
multiple scattering problem in a flexible way that encompasses all of our canonical metamaterial
problems, and concisely describe the self-consistent method of solution. In the remainder of
the paper, we focus on our canonical metamaterial problems. In §3a, we simulate multiple
scattering by arrays of anisotropic metacylinders. In §3b, we validate Wiener–Hopf simulations
from infinite arrays. In §3c, we investigate damping and band gaps in metamaterials comprising
high-contrast square scatterers. In §3d, we simulate Rayleigh–Bloch waves in finite line-arrays of
square cylinders. In §4, we draw some conclusions. Finally, in the appendix, we briefly describe
the TMATSOLVER code and describe—with examples—the key functions and methods of the
package.

2. Mathematical description
All of the canonical problems considered in this paper require solving the two-dimensional
Helmholtz equation

�u(x) + k2u(x) = 0, x ∈ R
2 \ D, (2.1)

in an unbounded heterogeneous medium containing one or more scattering particles. Here, k =
ω/c is the wavenumber, ω is the angular frequency and c the wave speed in the medium. We
assume that the scatterer D can be written D = D1 ∪ · · · ∪ DN , where D1, . . . , DN are the individual
scattering particles. We establish a general description of the two-dimensional multiple scattering
problem that encompasses all four of the canonical problems.

The interaction of an incident wave uinc with the scatterers D1, . . . , DN induces a scattered
wave us in the exterior R

2 \ D. Physically important incident waves include the plane wave

uinc(x) = eikx·d, (2.2)

with incident direction specified by a unit vector d, and the point source

uinc(x) = i
4

H(1)
0 (k|x − x0|), (2.3)

with source located at x0 ∈ R
2 \ D. Here, H(1)

n denotes the first-kind Hankel function with order n.
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The incident field, scattered field and total field u = uinc + us satisfy the Helmholtz equation
(2.1). The scattered field additionally satisfies the radiation condition

lim
r→∞

√
r
(
∂us

∂r
− ikus

)
= 0, (2.4)

where the limit holds uniformly with respect to θ and we use polar coordinates (r, θ ) for x.
A consequence of (2.4) is that

us(r, θ ) = eikr
√

r
(u∞(θ ) + O(1/r)), (2.5)

where the modulation function u∞ is the far-field of us.
It is convenient to decompose the scattered field as us = us

1 + · · · + us
N , where us

I can be
considered the part of the scattered field radiated by DI. Then us

I admits the series expansion

us
I (x) =

∞∑
n=−∞

a(I)
n ψn(x − xI), x /∈ BI, (2.6)

where xI ∈ DI is a local origin for the expansions, BI is the smallest closed ball centred at xI that
contains DI. We also define

ψn(r, θ ) = H(1)
|n| (kr) einθ and Regψn(r, θ ) = J|n|(kr) einθ , (2.7)

where Jn is the Bessel function of order n, and Regψn and ψn are known as regular and radiating
(cylindrical) wavefunctions, respectively. The coefficients a(I)

n in (2.6) are unknown and to be
determined.

We observe that the field incident on DI is

uinc
I (x) = uinc(x) +

∑
J �=I

us
J (x), (2.8)

which comprises the parts of the scattered field radiated by the other particles, as well as the
incident wave uinc itself. In a neighbourhood of DI the field uinc

I admits the series expansion

uinc
I (x) =

∞∑
n=−∞

f (I)
n Regψn(x − xI). (2.9)

The coefficients f (I)
n are unknown but, crucially, related to the coefficients a(I)

n through the T-matrix
[40] of the scatterer DI. In particular, there holds the relation

a(I) = T(I)f(I), (2.10)

where a(I) = (a(I)
n ), f(I) = ( f (I)

n ) and T(I) is a matrix known as the T-matrix (of DI with respect to the
local origin xI).

It often happens that a scattering problem contains multiple copies of the same kind of
scatterer, with different positions and perhaps with different orientations, but having the same
shape and material properties. In this case, the same T-matrix can be used for all copies of the
scatterer, after introducing (temporary) translations and rotations of the coordinate system, and it
is efficient to exploit this where possible. Subsequently, we say that particles with the same shape
and material properties, but perhaps different positions and orientations, have the same design.
It follows that any particle in the configuration can be described by its design, its position and its
orientation. (The position and orientation are then described with respect to a reference location
and origin of a template for the design.)

We do not try to describe the design precisely because the range of particles that can be
tackled is very broad, including homogeneous particles of various shapes, but also particles
comprising heterogeneous media. It is sufficient to note that design is associated with the
particle’s morphology, including shape and boundary conditions, and the key from the modelling
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perspective is not to describe the morphology in detail, but that the scatterer’s T-matrix can be
computed and that the design can be visualized schematically.

It is expedient to assume that the particles D1, . . . , DN can be obtained by translations
and rotations of M ≤ N designs D1, . . . ,DM. Then, the Ith particle can be represented by PI =
(DKI , xI,φI) for 1 ≤ KI ≤ M, where the design DKI represents a template particle with local origin
0, and PI is obtained by translating the template particle with translation vector xI, and rotating it
by φI in the positive direction (figure 1). The T-matrix of the Ith particle is then [29]

T(I) = R(−φI)T(DKI )R(φI), (2.11)

where T(D) denotes the T-matrix of the design D, and rotation of the coordinate system by φ in
the positive direction is effected by the diagonal matrix

R(φ) = (rnm(φ)) and rnm(φ) = δnm einφ . (2.12)

Matrix vector products with the T-matrix (2.11) are computed in factored form using the
right-hand side, and the matrix T(I) is not assembled. The T-matrices of discs, with sound-
soft, sound-hard and transmission boundary conditions have simple analytical expressions [34].
A numerically stable code for calculating the T-matrix of a wide range of other particles is
provided by TMATROM [40].

Returning to the field incident on DI given by equation (2.8), it is helpful to rewrite the parts
of the scattered field radiated by each of the other scatterers as

us
J (x) =

∞∑
n=−∞

c(IJ)
n Regψn(x − xI), |x − xI|< |xJ − xI|. (2.13)

The coefficients in (2.13) are given by Graf’s addition theorem [31, Theorem 2.12] (see also [44])

c(IJ) = S(xI − xJ)a(J), (2.14)

where cIJ = (cIJ
n ) and

S(z) = (snm(z)) and snm(z) = (−i)|n|−|m|−|n−m|ψn−m(z). (2.15)

Substituting (2.14) into (2.8) and comparing with (2.9) gives

f(I) = b(I) +
∑
J �=I

S(xI − xJ)a(J), (2.16)

where b(I) = (b(I)
n ) are the regular wave function expansion coefficients of uinc with local origin xI,

which are known analytically for plane waves and point sources (see [34]). Then from (2.10), we
see that the unknown coefficients a(J) for J = 1, . . . , N satisfy the block linear system

a(I) − T(I)
∑
J �=I

S(xI − xJ)a(J) = T(I)b(I), I = 1, . . . , N. (2.17)

The matrix on the left-hand side is a perturbation of the identity matrix and the linear system
(2.17) is typically well-conditioned provided the circumscribing spheres B1, . . . , BN do not
intersect, that is, provided

BI ∩ BJ = ∅, I �= J. (2.18)

Equation (2.18) is effectively a separation condition on the scatterers. However, the radii of
B1, . . . , BN can be minimized by carefully choosing the local origins of the reference particles when
computing their T-matrices (see [40] and [45] for details). The system (2.17) may be solvable when
condition (2.18) is violated, and we refer to the discussion and numerical results in [46] for more
details.

It is efficient to solve the linear system (2.17) iteratively using GMRES [47], which requires only
matrix vector products with the matrix on the left-hand side, which are performed dynamically
without assembling the off-diagonal blocks. Because the linear system (2.17) is usually well
conditioned, preconditioning is typically not required. In practice, the infinite series expansions
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0

xI φI

I

Figure 1. Schematic showing a template particleD at 0 and the associated scatterer PI with origin xI and rotationφI .

and the associated matrices must be truncated, and we replace
∑∞

n=−∞ · by
∑nmax

n=−nmax
· on each

particle, where we use Wiscombe’s formula for the truncation parameter [48],

nmax =

⎧⎪⎨⎪⎩
ka + 4(ka)1/3 + 1, for ka ≤ 8,
ka + 4.05(ka)1/3 + 2, for 8< ka ≤ 4200,
ka + 4(ka)1/3 + 2, otherwise,

(2.19)

and a denotes the radius of the particle. The truncation order nmax is allowed to differ between
different particles in the configuration but for brevity we do not include this explicitly in our
notation.

Once the coefficients a(J) in (2.17) have been computed, they can be used in the truncated
expansions (2.6) to compute the near field at points x outside the circumscribing spheres B1 ∪
· · · ∪ BN .

Remark 2.1. The expansions (2.6) may diverge inside the circumscribing spheres and we refer
to [41,46,49] for detailed discussion on the convergence properties of the series close to the
scatterers.

Finally, from the asymptotic behaviour of the radiating wavefunctions (2.7), we observe that
the far field of us is u∞ = u∞

1 + · · · + u∞
N , where

u∞
J (̂x) =

∞∑
n=−∞

a(J)
n e−ikxJ ·̂x ψ∞

n (̂x). (2.20)

Here, the unit vector x̂ is the observation direction, with polar coordinates (1, θ ), and

ψ∞
n (̂x) =

√
1
πk

(−i)|n|(1 − i) einθ . (2.21)

3. Results

(a) Application: anisotropic metacylinders
In this section, we consider scattering by a metamaterial comprising anisotropic particles. The
particles are cylinders with infinite depth, subject to transverse electric (TE) polarized light under
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normal incidence. The cross-section of the particles is itself occupied by a metamaterial consisting
of an array of perfectly conducting plates and interstitial dielectric channels of relative refractive
index nr with respect to the exterior bulk. The microstructured plate-array material within
the cylindrical inclusions is replaced by an effective medium description [50–52] encapsulated
by three equations: a one-dimensional wave equation in the interior and a pair of continuity
conditions at the surface.

The geometry of the plate-array medium is illustrated in figure 2a. The parallel plate-array is
of decreasing length outwards, such that when viewed from above it forms a cylinder of circular
cross-section of radius a, and is aligned at cylinder angle δ with respect to the x-axis where δ ∈
[0, 2π ). In the rotated coordinate system (x′, y′) (figure 2a), the constitutive equations are(

∂2

∂x′2 + n2
r k2

)
Hi

z(x′, y′) = 0, (3.1)

governing the longitudinal magnetic field Hi interior to the metacylinder, and

He
z = Hi

z

∂He
z

∂r
= 1

n2
r

cos(θ − δ)
∂Hi

z
∂x′ ,

r = a, (3.2)

which comprise the continuity of the field and its gradient through the cylindrical surface, where
He denotes the exterior field. Equation (3.1) applies strictly to the interstitial dielectric channels,
and admits the following expansions in Chebyshev polynomials and regular waves:

Hi
z(x) =

∞∑
n=0

cn cos
(

n
(
θ − δ − π

2

))
·

∞∑
m=−∞

imJm(nrkr)eim(θ−δ)

+
∞∑

n=0

dn cos
(

n
(
θ − δ − π

2

))
·

∞∑
m=−∞

(−i)mJm(nrkr)eim(θ−δ). (3.3)

Following §2, in the case of a single metacylinder, the field exterior to the metacylinder is the
superposition of an incident plane wave and the outgoing scattered field from the metacylinder,

He
z (x) =

∞∑
n=−∞

fn Regψn(x) +
∞∑

n=−∞
anψn(x). (3.4)

Substitution of (3.3) and (3.4) into conditions (3.2) at the metacylinder boundary yields the
following system of equations for the unknown multipole moments a = (an) and Chebyshev
coefficients c = (cn), d = (dn), (

H C
H′ C′

)(
a
g

)
=
(

Q
Q′

)
, (3.5)

where g = (c, d) encapsulates the coefficients of the interior field. The H and H′ sub-matrices
comprise the exterior field Hankel functions and their derivatives, whereas the C and C′ sub-
matrices comprise the interior field terms, and their derivatives. The vectors Q and Q′ consist of
the fn moments and Bessel functions of the first kind and their derivatives. In practice, the infinite
series expansions must be truncated, and in this application, it is expedient to replace

∑∞
n=−∞ ·

by
∑nmax

n=−nmax−1 ·, so that each sub-matrix is of size (2nmax + 2) × (2nmax + 2).
To compute the T-matrix of the metacylinder, we multiply (3.5) by the inverse of the scattering

matrix to give (
a
g

)
=
(

T11 T12
T21 T22

)(
Q
Q′

)
, (3.6)
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(a)

(c)

y′ x′

y

nr

a

x

(b)

δ

1

0

–1

Figure 2. (a) Coordinate systems of the metacylinder. Cylinder coordinates are rotated through δ to primed plate array
coordinates. The plate array is merely illustrative and is not representative of the number of plates, the plate thickness or the
inter-plate spacing. (b) Normalized longitudinal magnetic fields (0, 0, Hz) due to the scattering by a plane-wave of incident
angleψinc = π/2 by a singlemetacylinder of radius a= 1 and relative index nr = 1. (c) Scattering of a plane-wave of incident
angle ψinc = π/2 by a quasi-periodic chain of metacylinders of uniform angle δ = −π/4. (a) Coordinate systems of the
metacylinder, (b) Scattering for δ= π/4, nrka= 1 and (c) Scattering by a quasi-periodic chain.

where again each sub-matrix is of size (2nmax + 2) × (2nmax + 2). We write the incident wave
vector (Q, Q′) as (

Q
Q′

)
=
(

J
J′

)
f, (3.7)

where the matrices J, J′ are diagonal matrices of elements Jn(ka) and J′n(ka), respectively.
Combining (3.6) and (3.7), we have(

a
g

)
=
(

T11 T12
T21 T22

)(
J
J′

)
f =

((
T11J + T12J′

)
f(

T21J + T22J′
)
f

)
. (3.8)

The T-matrix is then, using the top row,

T = T11J + T12J′. (3.9)

We use the submatrix corresponding to n = −nmax, . . . , nmax in our subsequent calculations.
The T-matrix approach represents a rapid technique for the investigation of the eigenmodes

of large, but finite, arrangements of scatterers. A prime example of this type of system is the
quasi-periodic array, in which a long chain of periodically arranged inclusions undergoes some
perturbation to the positions of the scatterers. In figure 2c, we plot the scattering of a plane-wave
by a quasi-periodic chain of metacylinders of uniform plate-array angle δ = −π/4 and unit radius
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and index. The provided solution converged exactly to that computed with the multipole method
detailed in [10] (not shown), but required less than half of the computational time, due to the large
number of expansion terms necessary to the multipole technique. Thus, we envisage the use of
T-matrices as a faster method for the exploration of the parameter space of systems consisting of
many hundreds, or even thousands, of inclusions.

(b) Application: infinite wedge interface of point scatterers
In this section, we consider scattering by line arrays with large numbers of scatterers, which
provide finite approximations to infinite line arrays. Of particular, interest is the configuration
with two semi-infinite arrays positioned to form a wedge interface. The scatterers are illuminated
by a plane wave with direction d = (cos(π + θI), sin(π + θI)), where θI denotes the angle from
which the plane wave is incident. The scatterers are identical sound-soft circular particles with
small radius a and positions

x(1)
J = Js(cosα1, sinα1)

x(2)
J = (J + 1)s(cosα2, − sinα2).

J ≥ 0 (3.10)

To prevent the scatterers from overlapping, we require a< s/2 and a< s| sin(α1 + α2)/2|. When
α1 = 0 and α2 = π the configuration becomes an infinite line array, for which an analytical solution
is available in the low-frequency case.

The analytical Wiener–Hopf-based techniques in [13,16] can be applied to the semi-infinite
arrays under the assumption that the scatterers are small in comparison to the wavelength of
the incident wave, that is ka � 1. On the other hand, truncating the arrays leads to a scattering
problem with a finite number of scatterers that can be solved directly using TMATSOLVER, which
provides a useful comparison with the analytical techniques for validation.

We briefly review the method in [13,16]. For sound-soft boundary conditions, we can model
the scatterers as isotropic point scatterers in the spirit of [53] (known as Foldy’s approximation).
Using a similar expansion to the one in (2.6), but using only monopole terms (i.e. only the ψ0(r, θ )
terms) the approximation to the total scattered field is

vs(r, θ ) =
∞∑

J=0

A(1)
J H(1)

0 (k|x − x(1)
J |) +

∞∑
J=0

A(2)
J H(1)

0 (k|x − x(2)
J |), (3.11)

where A(1)
J and A(2)

J are the unknown scattering coefficients to be determined. The procedure of
[13,16] is to find two coupled systems of equations, one for each semi-infinite array, and solve
them using the discrete analogue of the Wiener–Hopf technique, in a manner similar to the semi-
infinite array problem [54,55]. The Wiener–Hopf solution is written in the form of a block matrix
equation, (

I M(1,2)

M(2,1) I

)(
A(1)

A(2)

)
=
⎛⎝A(1)

0

A(2)
0

⎞⎠ , (3.12)

which is then inverted to determine the scattering coefficients contained in the column vectors
A(l). Here, A(l)

0 is a column vector containing the scattering coefficients that solve the equivalent
independent semi-infinite array problems, the entries of which are given by eqn (25) in [16]. The
entries of the infinite block matrices M(l′,l) are given by eqn (29) in [16].

We will directly compare the scattered wave fields us computed by the Wiener–Hopf method
and TMATSOLVER for two test cases. For the Wiener–Hopf method, we truncate the matrix in (3.12)
so that each block is an M × M matrix. For the TMATSOLVER method, we restrict the number
of multipole terms to just the monopole and dipole terms (i.e. truncation parameter nmax = 1),
which is appropriate for the small radius a = 0.001 of the scatterers considered. The number of
scatterers in the finite arrays is chosen to match the number of coefficients evaluated through the
Wiener–Hopf method. The remaining parameters are as given in fig. 6 of [13].
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Figure 3. Visualization of Re{us} for the Wiener–Hopf (a,b) and TMATSOLVER (c,d) methods with a= 10−3 and truncation (in
TMATSOLVER)M= 100. (a) Scattered field (Wiener–Hopf technique), (b) total field (Wiener–Hopf technique), (c) scattered field
(TMATSOLVER) and (d) total field (TMATSOLVER).

In figure 3, we demonstrate the excellent visual agreement in the scattered fields computed
using both methods. In figure 4, we examine in detail the discrepancy between the two methods
by plotting the difference in the monopole scattering coefficients at the different scatterers for a
wedge and an infinite line array (with α1 = 0 and α2 = π ), respectively. We order the coefficients
such that A−101, . . .A−1, A0, . . .A100 corresponds to A(2)

100, . . .A(2)
0 , A(1)

0 , . . .A(1)
100 respectively. We

note the similarities between the errors in figure 4 for the two configurations.
The advantage of considering the infinite line array is that there is an analytical solution for

the scattering coefficients that is independent of the truncation,

A(1)
J = − e−iksJ cos(θI)

K(eiks cos(θI))
, J ≥ 0

and A(2)
J = −eiks(J+1) cos(θI)

K(eiks cos(θI))
, J ≥ 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.13)

Because this exact solution is available, we include in figure 4c,d comparisons with (3.13). This
allows us to observe the errors in each method for simulating the infinite arrays. The similarity
of these plots with fig. 6 in [16] implies similar conclusions. Firstly, that the Wiener–Hopf method
is weaker in the middle of the infinite line array (J ≈ 0), where the ends of the two semi-infinite
arrays meet, and stronger where the arrays are truncated (J ≈ ±100). Conversely, TMATSOLVER is
stronger in the middle and weaker where the arrays are truncated. The reason for this is how
each method models the geometry of the problem. The Wiener–Hopf method considers each
semi-infinite array individually and adds the interaction between them when the big matrix
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(a) (b)

Figure 4. Absolute difference between the scattering coefficients for a wedge array (a,b) and an infinite line array (c,d).
(a) Absolute error of AJ for point scatterer wedge (θI = π/4), (b) absolute error of AJ for point scatterer wedge (θI = π/12),
(c) absolute error of AJ for infinite array (θI = π/4), (d) absolute error of AJ for infinite array (θI = π/12).

is inverted. The TMATSOLVER method considers each scatterer individually and solves for the
individual interactions but does not model the infinite number of scatterers.

(c) Application: high-contrast heterogeneous media
In this section, we consider wave propagation through high-contrast metamaterials comprising
a large number of small, heterogeneous, penetrable scatterers. The scatterers are square particles
centred at positions x ∈ εZ2 and with side length ε/2 for the small parameter 0< ε < 1. We chose
ε= 1/8 in the experiments below.

Metamaterials can induce astonishing effective wave phenomena such as exponential
damping and, related, the occurrence of all-angle frequency band gaps. The latter means that,
independent of the angle of an incoming plane wave, the metamaterial dampens the waves at
certain frequencies so that for such frequencies no waves can propagate through the material. For
this, a high material contrast is crucial to incite special resonance effects, see [56,57]. The high
material contrast means that the refractive index is chosen as ε2 inside the small particles.

We consider a plane incident wave with wavenumber k = 28, which is known to induce
resonance effects in this configuration [11]. The T-matrix of a single small square particle is
computed using TMATROM [40] from far-field data computed using a coupled FEM–BEM solver
[42]. Having fixed k and ε and having computed the T-matrix, TMATSOLVER allows us to calculate
the total field for various placements of the small particles quickly. We use this computational
efficiency of TMATSOLVER to investigate the following pre-requisites for exponential damping
of the incident plane wave: (i) the necessary thickness of the metamaterial slab and (ii) the
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importance of a periodic arrangement of the small particles. Code for this application is included
in the TMATSOLVER package.

We position our particles at xlm := ((2.5 + l)/8, (0.5 + m)/8) for m = 0, . . . , 7 and l = 0, . . . , n and
vary the number of layers n + 1. The computed total field for one, two, three and four layers is
visualized in figure 5. A certain number of layers is required to dampen the wave significantly, as
we can observe, for instance, by comparing the results for one and three layers. Furthermore, the
effect of adding more layers decreases rapidly with the number of layers already present. For our
setup, two to three layers seem to be sufficient to get close to maximum damping.

Similar to the previous experiment, we observe the desired wave damping for the particles
positioned at xlm := ((2.5 + l)/8, (2.5 + m)/8) for l = 0, . . . , 3 and m = 0, . . . , 3, see figure 6a. Since
the incident wave can propagate around the metamaterial in this example, the damping expresses
itself in a ‘shadow region’ directly behind (i.e. to the right of) the material. We compare this
periodic configuration with three different disordered configurations for the particles. For the
latter, we randomly choose 16 centres xI out of the 32 possibilities xlm := ((2.5 + l)/8, (0.5 + m)/8),

m = 0, . . . , 7 and l = 0, . . . , 3. The periodic configuration shown in figure 6 is one of

(
32
16

)
=

601080390 possible particle geometries. As figure 6 illustrates, the periodic configuration is
clearly distinguished with respect to its damping potential in comparison to the disordered
configurations. The latter show a wide variation of wave behaviour due to the different scatterer
geometries, but no clear shadow region can be observed for any of them.

(d) Application: Rayleigh–Bloch waves
In this section, we consider simulation of wavefields dominated by Rayleigh–Bloch waves in
finite periodic line arrays of scatterers. In particular, we consider arrays comprising N identical,
equally spaced sound-hard obstacles, D1, . . . , DN , which are aligned along the x-axis with
uniform spacing. Rayleigh–Bloch waves propagate along the corresponding infinite array with
wavenumber β(k)> k, and decay exponentially away from it [58]. Nevertheless, Rayleigh–Bloch
waves can dominate the response along the finite array [59–61]. They can also be used to engineer
desired responses along the array [62,63].

Rayleigh–Bloch waves are unforced solutions of the corresponding infinite-array problem (i.e.
with an infinite number of scatterers). They are a class of Bloch wave, familiar in the analysis
of doubly periodic structures such as photonic/phononic crystals, and they exist quite generally
along infinite array-like structures [64]. They are the localized solutions obtained in the limit that
the unit cell for a doubly periodic structure tends to infinity in one dimension [65], and, thus, they
are also a class of trapped mode [58]. Plane waves cannot excite Rayleigh–Bloch waves along an
infinite array as β(k)> k, but they can excite Rayleigh–Bloch waves along a semi-infinite array
that propagate away from the end [66,67], or in both directions along a finite array [60].

In the acoustic/water-wave setting, Rayleigh–Bloch waves have been computed predominantly
for circular scatterers [59–61,65–69], with notable exceptions being elliptical scatterers [58],
rectangular scatterers [70] and C-shaped resonators [62,71]. For circular cylinders of radius a
and centre-to-centre spacing R, Rayleigh–Bloch waves that are symmetric about the x-axis exist
for all k ≤ kc <π/R, where kc(a) is known as the cut-off frequency. They have been extended to
frequencies above the cut-off, for which the wavenumber β becomes complex and, hence, the
Rayleigh–Bloch waves attenuate along the array [61]. They have also been extended to multi-line
arrays [71].

As mentioned above, calculation of Rayleigh–Bloch waves has mostly been restricted
to circular obstacles, primarily because more complicated geometries require sophisticated
numerical implementations. Moreover, on finite (or semi-infinite) arrays, they are usually forced
by simple plane waves. By contrast, we use TMATSOLVER to observe Rayleigh–Bloch waves on
an array of N = 21 sound-hard square scatterers forced by a point source. The square scatterers
have side lengths 3R/2 and their centres are xJ = (JR, 0), J = 1, 2, . . . , 21. The forcing point source
is located at the origin, that is, at the left-hand end of the array. The T-matrices of the square
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Figure 5. Visualization of the total field Re{u(x)} from a periodic high-contrast material with varying thickness. The field is
excited by a plane wave incoming from the left. The field inside the circumscribing circles is not shown (see remark 2.1).
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by a plane wave incoming from the left. The field inside the circumscribing circles is not shown (see remark 2.1).

scatterers are computed using TMATROM [40] using far-field data computed using MPSPack [43].
Code for this application is included in the TMATSOLVER package.

The presence of Rayleigh–Bloch waves is detected by performing a frequency sweep of the
response of the array at its centre point x = x∗ = ((N + 1) R/2, 0). There is a near-resonant peak
in the response for k<Rπ (figure 7a), which is caused by constructive interference between
Rayleigh–Bloch waves after reflections and re-reflections by the array ends [60]. The resonance
occurs at a frequency just below the cut-off, which is indicated by the sudden drop in the response
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Figure 7. Detection of Rayleigh–Blochwaves along a line array ofN = 21 sound-hard square scatterers forcedby apoint source.
(a) Response at the mid-point of the array versus frequency, where the near-resonant response is indicated by the red circle.
(b) Profile at the near-resonant frequency, at the mid-points between the scatterers. (c) The wave field, Re(u), at the near-
resonant frequency.

at higher frequencies, and can be confirmed by calculations of the spectrum for the infinite array,
similar to [68] (not part of TMATSOLVER). The profile at the near-resonant frequency (figure 7b)
is symmetrical with a peak at the centre, which is associated with primary resonances caused by
Rayleigh–Bloch waves [59–61,72].

The wavefield at the near-resonant frequency is dominated by the Rayleigh–Bloch waves,
particularly around the centre of the array (figure 7c). At this frequency just below the cut-off,
the Rayleigh–Bloch waves are approximately anti-symmetric with respect to the vertical axes
passing through the scatterers, with blue on one side and yellow on the other side of a given
scatterer (compare with fig. 3c in [61]). Although the near-resonant field contains both rightward
and leftward propagating Rayleigh–Bloch waves, they are close to standing waves (near-zero
group velocity) and have similar shapes.

4. Conclusion
We have addressed the challenge of rapidly simulating multiple scattering processes in
metamaterials by developing a general formulation of the multiple scattering problem
that can simply and easily describe typical metamaterial structures, while facilitating
efficient implementation of the multipole-based self-consistent method. Complex shapes and
morphologies of the scatterers are encapsulated in their T-matrices, which allows our formulation
to model metamaterials comprising complex particles. Our formulation is implemented in

 D
ow

nl
oa

de
d 

fro
m

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 Ju

ne
 2

02
4 



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230934

..........................................................

the TMATSOLVER software, which provides a tool for researchers working on metamaterials
to prototype their metamaterial designs or validate numerical methods quickly and easily.
Numerical results have demonstrated the application of the software for challenging problems
arising in recent metamaterials research, which include large numbers of scatterers, anisotropy,
complex-shaped boundaries, high-contrast materials and resonances.
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Appendix A. TMATSOLVER software description
The TMATSOLVER software [32] has two principal parts. The first part, which we refer to as the
solver, associates an incident wave with a set of particles, and undertakes numerical solution of
the governing equations described in §2. The second part, which we refer to as the geometry, holds
the description of the particles and their T-matrices.

The class structure of the solver part of the code is shown in figure 8. The class structure of the
geometry part of the code is shown in figure 9. We now describe how to set up the particles in a
geometry, and then solve the associated scattering problem.

(a) The geometry
As outlined in §2, we describe an individual particle by its design, position and orientation. The
position and orientation are simply explained and we return to these subsequently. The design
encompasses the morphology of the particle, including its shape and material properties.

For the purposes of TMATSOLVER, we require only to be able to visualize particles having
a particular design, and to know how they scatter any given incident wave. Since a scatterer’s
response to an incident wave is wholly described by its T-matrix (see [40]), for the latter, it is
sufficient to know the scatterer’s T-matrix.

For circular scatterers, the T-matrix is given by a simple formula (see for example [34]),
and the corresponding designs are provided in the software with the sound_soft_disk,
sound_hard_disk and penetrable_disk classes. For scatterers with more complex
morphology the T-matrix can be computed using TMATROM [40] and imported using the
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handle

tmatsolver

+particle(*) : particles
+incident : incident_field

+solve
+schematic
+plot
+plotIncident
+plotScattered

incident

+minus
+mtimes
+plus
+uminus

particle

+complex: pos
+double: rot
+design: type

+plot

point_source

+double : kwave
+complex : source

plane_wave

+double : kwave
+double : direction

Figure 8. UML class diagram showing the structure relating the solver to the particles and incident wave. Key class attributes
and methods are shown but others may be omitted.

handle

particle

+complex : pos
+double : rot
+design : type

+plot

design

+tmatrix : tmat

+error
+plot

tmatrix

sound_soft_disk

+plot

sound_hard_disk

+plot

penetrable_disk

+plot

extern_design

+plot

Figure 9. UML class diagram showing the structure relating the particles to their designs and the T-matrix. Key class attributes
and methods are shown but others may be omitted.
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extern_design class. For example, the following code creates a design for a sound soft disc:

rad = 1; % radius
d = sound_soft_disk(kwave, rad);

In two dimensions, the particle’s position vector (x, y) can be represented by the complex
number z = x + yi and its orientation can be represented by a real number. The particle class
represents a particle by associating a design with a position and orientation. For example, the
following code creates a particle with position (2, 3) and orientation π/4:

z = 2+3i; % position
phi = pi/4; % orientation
p = particle(d, z, phi);

The particle can be visualized using

p.plot( )
This uses the design.plot method. The user may define their own child classes (of the
design class) to implement their own scatterers. This has the particular advantage over the
extern_design class in allowing overloading of the plot method to specify how their scatterer
should be plotted.

(b) The solver
Solving the scattering problem and visualization of the solution is performed using the
tmatsolver class. As outlined in §2, the scattering problem involves an incident wave uinc

and a collection of particles. In TMATSOLVER, the incident wave is represented by the TMATROM

incident class and its subclasses. For example, the plane wave uinc(x) = eikx·(cos θ ,sin θ) with
direction θ = π/4 and wavenumber k = 1 is represented as follows:

theta = pi/4; % incident wave direction
kwave = 1; % wavenumber
uinc = plane_wave(theta, kwave);

We refer to the TMATROM documentation [45] for more information about incident waves that
are linear combinations of plane waves and point sources.

The solver can be set up using the incident wave and the particles, for example,

obj = tmatsolver(uinc, p1, p2, p3, p4) ;
or using just the incident wave, with the particles added subsequently

obj = tmatsolver(uinc);
obj.addParticle(p1);
obj.addParticle(p2);
obj.addParticle(p3);
obj.addParticle(p4);

The scattering problem is solved using

obj.solve( )
The linear system (2.17) is solved iteratively using GMRES [47]. The default solver tolerance

is 10−8 and the default maximum number of iterations is the dimension of (2.17). The solver
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tolerance and maximum number of iterations can be set to other values using, for example

obj.setSolverTol(1e-4);
obj.setSolverIterations(100);

We refer to the online documentation (type help tmatsolver in the MATLAB command
window) for methods to check the convergence of the GMRES iteration.

The total field, computed from the solution of the scattering problem, can be plotted using, for
example

L = [-10 10 -20 20] % set plot domain [-10,10] × [-20,20]
obj.plot(L);

The scattered field can be plotted similarly

L = [-10 10 -20 20] % set plot domain [-10,10] × [-20,20]
obj.plotScattered(L);

We refer to the online documentation (type help tmatsolver in the MATLAB command
window) for the full range of plotting and visualization options.
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