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1. Introduction

This work consists of a discussion of standard concepts in light scattering like the T-matrix approach.
Although there are many reviews on this subject we include this in order to establish our notation. In
the main part of the paper we propose a random-matrix approach to describe scattering by an array of
randomly shaped particles.

1.1. Maxwell theory

The electromagnetic field is described by the Maxwell equations

∇ × B− �

c2
�E
�t

= �0j,
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∇ × E + �B
�t

= 0,

where j is the current density that creates the electric field E and the magnetic field B. j can be split in
the contribution from the light source j0 and the currents in the scattering medium which are related to
the electric field by Ohm’s law j′ = �E

j= j0 + �E

with the conductivity � of the scattering medium, � � 1 is the relative dielectric coefficient, and �0 is the
permeability of the medium. We consider a monochromatic field for light with frequency �

E(t)= Eei�t , B(t)= Bei�t , j0(t)= j0ei�t .

Then the electric field satisfies the equation

ME ≡ ∇2E − ∇(∇ · E)+
(

�
�2

c2 − i��0�

)
E = �0i�j0 ≡ J0 (1)

with the Maxwellian M . It should be noticed that the term with ∇ · E vanishes in the absence of a
charge density. In an inhomogeneous space, however, there can be a charge density, corresponding with
a spatially varying dielectric coefficient � in Eq. (1).

The structure of the Maxwellian (1) in vacuum (i.e. � = 1 and � = 0) is represented by an expansion as

M0 =
3∑
j=1
(�2/c2 + ∇2 − ∇2

j )�jj − ∇1∇2�12 − ∇1∇3�13 − ∇2∇3�23 (2)

with 3 × 3 matrices

�11 =
(1 0 0

0 0 0
0 0 0

)
, �22 =

(0 0 0
0 1 0
0 0 0

)
, �33 =

(0 0 0
0 0 0
0 0 1

)
,

�12 =
(0 1 0

1 0 0
0 0 0

)
, �13 =

(0 0 1
0 0 0
1 0 0

)
, �23 =

(0 0 0
0 0 1
0 1 0

)
. (3)

The algebra of these matrices is given for 1 � i � j � 3 and 1 � k� l� 3 by the anti-commutator relation

�ij �kl + �kl�ij = �ik(1 − �j l)(�j l + �lj )+ �j l(1 − �ik)(�ik + �ki)+ 2�ik�j l(�ii + �jj ), (4)

where �j l = 0 for j > l. This algebra represents a fundamental structure of the light scattering theory. It
allows us to expand not only M but also other quantities in this basis.

For a given current J0, the source of light in the system under consideration, the electric field can be
obtained by the inversion of the Maxwellian

E(r)=
∫
M−1(r, r′)J0(r′) d3r′, (5)
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where M−1(r, r′) is a function that gives the Dirac deltafunction for the positions in space (called sites
subsequently)

MM−1(r, r′)= �(r, r′).

In the following we shall use the compact notation of Eq. (5)

E =M−1J0

which has implicit integrations (convolutions) between operators (depending on two sites) and fields
(depending on one site).

A (random) medium is described by a shift of the vacuum Maxwellian due to a space-dependent term

�(r)= �2

c2 [�(r)− 1] − i��0�(r) (6)

asM =M0 +∑
r∈scatterers�(r). �(r) contains all the information about the spatial distribution of optical

properties of the medium that can, for example, consist of a number of individual particles.The treatment of
the random fluctuations depends on their distribution. In practice, only spatially uncorrelated fluctuations
are tractable by most methods. The common example for distributions is based on the conditions

〈�(r)〉 = �0, 〈�(r)�(r′)〉 = �2
0 + g�(r, r′),

where g� 0 controls the strength of the random fluctuations of �(r). However, the restriction to randomly
independent point scatterers is not realistic. This is often reflected by a singular behavior of the theory
that has to be cured by additional regularizations [1]. This problem shall be briefly discussed in Section
4.2 and alternative models for avoiding it shall be proposed.

2. Green’s function and the T matrix

Light scattering is conveniently described within a formalism using Green’s functions and the T matrix.
Here we briefly summarize the main ideas.

The propagation of a light amplitude, induced by a current source J0 at site r0

J0(r)= J0�(r − r0)

is given by

E(r)=M−1(r, r0)J(r0) ≡ G(r, r0)J(r0),

whereG=M−1 is the Green’s function. From this we can evaluate the intensity of light for an observer
at r1 as

I (r1)= |E(r1)|2 = |G(r1, r0)J(r0)|2.
Similar expressions are available for other components of the Stokes vector, expressed by the components
of the electric field amplitude [2].
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Solutions for the propagation in a homogeneous medium

G0 =M−1
0

are known [3], whereas the Green’s functions of the scattering problem

G= (M0 + �)−1

have known solutions only in a few cases. An example is a spherical particle [2]. More general situations
can be studied by perturbation theory and approximative methods.

The Green’s function can be rewritten, using a Dyson equation (see Appendix A), in the form of

G=G0 +G0(�G� − �)G0. (7)

This expression allows us to separate the propagation of the light from the source J0 directly to the
observer and indirectly via the scattering region to the observer, since the electric field at the site of the
observer reads

E = (G0 +G0TG0)J0

with T = �G� − �. The light going directly from the source to the observer is E0 =G0J0, whereas the
scattered light is given by the T matrix as

E′ =G0TG0J0.

Thus only the second term on the right-hand side of Eq. (7) is of interest in the scattering process, i.e.
G−G0. The T matrix for given sites r and r′

T (r, r′)= −�(r)�(r − r′)+ �(r)G(r, r′)�(r′) (8)

is the relevant quantity for the scattering process. It vanishes if its arguments r or r′ are outside the
scattering region. It should be noticed that the T matrix is often used in a special representation using, for
instance, spherical waves as introduced by Waterman [4].

We consider now a situation which is typical for remote sensing where the source of light, the scatterers,
and the observer are very far apart of each other (cf. Fig. 1). Then the Green’s function G0 enters the T
matrix only through its asymptotic value at large distances r = |r| [1]

G0(r, 0) ∼ eikr

4�r3


 r2 − x2

1 −x1x2 −x1x3
−x2x1 r2 − x2

2 −x2x3
−x3x1 −x3x2 r2 − x2

3


 (k = �/c), (9)

where x1, x2, x3 are the three cartesian components of r. For the scattered light amplitude E′, induced by
a local current at r0, we have the expression

E′(r1)=
∫ ∫

G0(r1, r)T (r, r′)G0(r′, r0) d3r d3r′J0

∼ eik(r1+r0)

16�2r0r1

( sin2 � − cos � sin � 0
− cos � sin � cos2 � 0

0 0 1

)(
t11 t12 t13
t21 t22 t23
t31 t32 t33

)( 0
J2
J3

)
(10)
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Fig. 1. Geometry of the light scattering. The observer is in the x1–x2 plane.

for r0, r1 very large in comparison with the size of the scattering region. � is the angle between r0 and
r1 and tij are elements of the 3 × 3 matrix

T̃ (r0/r0, r1/r1)=
∫ ∫

eikr1·r/r1T (r, r′)eikr0·r′/r0 d3r d3r′.

T̃ is the unitarily transformed T matrix T. More specifically, it is a Fourier transformation from the
coordinates r and r′ to the wave vectors k = kr1/r1 and k′ = −kr0/r0, respectively. Therefore, T̃ can
also be written in our operator notation as

T̃ = UkT U†
k′, (11)

whereUk represents the Fourier transformation with wave vector k. Using unit vectors e1, e2, e3 (i.e., we
use a fixed coordinate system which does not move with the phase angle �), and choosing r0 along the
x1-axis, r1 in the x1–x2 plane

r0 = r0e1, r1 = r1 cos �e1 + r1 sin �e2,

expression (11) reads

T̃ (k,�)=
∫ ∫

eik(r·e1 cos �+r·e2 sin �)T (r, r′)eikr′·e1 d3r d3r′. (12)

The T matrix T̃ appears as a 3×3 matrix. However, the asymptotics in Eq. (10) implies that it is effectively
only a 2×2 matrix, since the incident field at the scattering region has only two components perpendicular
to r0 and the scattered field at the observer has only two components perpendicular to r1.

Using Eq. (10) the elements of matrix T̃ can be used to evaluate the intensity for J2 = J3 ≡ J

|E3/J |2 + |E2/J |2 + |E1/J |2 = |t33 + t32|2 + |(t12 + t13) sin � + (t22 + t23) cos �|2 (13)
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and the polarization

|E3/J |2 − |E2/J |2 − |E1/J |2
|E3/J |2 + |E2/J |2 + |E1/J |2 = |t33 + t32|2 − |(t12 + t13) sin � + (t22 + t23) cos �|2

|t33|2 + |(t12 + t13) sin � + (t22 + t23) cos �|2 . (14)

One possible strategy for treating T is to expand it in terms of a well-defined set of (orthogonal) eigen-
functions ofM0 [4,5]

T (r, r′)=
∑
	,	′
t		′f	(r)f	′(r′)

with the expansion coefficients

t		′ =
∫
f	(r)T (r, r′)f	′(r′) d3r d3r′.

Depending on the boundary conditions, this can be performed, for instance, with spherical wave functions.
In the case of random scatterers, the coefficients of the expansion t		′ are random. To obtain generic
properties of physical quantities, e.g. for the intensity or the polarization, we have to average them with
respect to a distribution of their fundamental parameters like the refractive index or the particle size. In
this paper we propose an alternative approach, where

�1/2M−1
0 �1/2

of the scattering problem is expressed in terms of a random set of scatterers, using special random matrices.
This approach is based on the idea that (i) it is impossible to know the exact distribution of the scatterers
in a real system and (ii) the generic properties of the physical quantities do not depend on the specific
choice of the distribution, as long as some fundamental properties are included. In other words, in a
specific measurement of the intensity or polarization of light our data scatter in some range, indicating a
statistics which may or may not reveal information about the observed object as well as the instrument.
In a first approximation we are only interested in the average values, according to the distributed data.
This means that we fit the observed data with an interpolating curve.

3. Discussion of the scattering processes

Starting from T matrix we must separate the scattering region (where �(r) �= 0) from the vacuum
(where �(r) = 0). This can be done by introducing a projector P which projects the three-dimensional
space on the areas or points with �(r) �= 0. With this projector T matrix reads

T = −� + �G� = −� + �P(M0 + �)−1P�. (15)

Now for the term P(M0 + �)−1P we can use the identity [6]

P(M0 + �)−1P = ((PM−1
0 P)

−1 + �)−1. (16)

to write with GP = �1/2M−1
0 �1/2

T=�1/2[(�−1/2(PM−1
0 P)

−1�−1/2 + 1)−1 − 1]�1/2

= − �1/2(GP + 1)−1�1/2. (17)
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Fig. 2. Scattering region consisting of the scatterers with centers r1, …, r5. The scatterer at rk is inside a sphere of volume Ak .

This result indicates that the central quantity of the T matrix, in contrast to the Green’s function, is not the
Maxwellian but GP . Since M−1

0 , the Green’s function of the vacuum, is known for different boundary
conditions [3,1], the remaining problem is to evaluate (GP +1)−1 in Eq. (17). Our aim is to motivate that
GP can be replaced by an appropriate set of random matrices. The proper choice requires a discussion
of the specifics of the scatterers. This is given subsequently.

4. Matrix representation

Scattering regions are typically composed of an ensemble of scattering objects. An example is shown in
Fig. 2. Then �(r) is characterized by the centers of the scatterers r1, . . . , rn, such that it can be expanded
around these centers as

�1/2(r)=
n∑
j=1


j (r), (18)

where 
j (r) vanishes at the boundary of the scatterers. These are random quantities since �(r) is random
in a random medium. In the general case of extended scatterers, the functions 
j (r) can be expanded in
a set of orthogonal functions f	(r) as


j (r)=
N∑

	=1

j	f	(r − rj ),

where we assume that f	(r) decays with r on a sphere of radius R, the maximal sphereAk of all scatterers.
N is the number of the basis functions which is infinite. However, we can truncate the expansion at finite
N if the coefficients 
j	 are small for 	>N . Whether this is possible depends on the proper choice of the
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functions f	. For instance, in the case of a point-like scatterer (see Section 4.2)N = 1 and f1 is the Dirac
deltafunction. Using spherical wavefunctions for f	, we have N = 1 for a sphere, N = 2 for a spheroid
and an increasing value of N for an increasing complexity of the scatterer.

The orthogonality of the functions f	∫
f	(r − rj )f	′(r − rj ′) d3r = �jj ′�		′

means that the integral

Fj	,j ′	′ =
∫
f	(r − rj )F (r, r′)f	′(r′ − rj ′) d3r d3r′

is an orthogonal transformation of F. We can apply this orthogonal transformation to GP + 1 to obtain∫
f	(r − rj )(GP + 1)(r, r′)f	′(r′ − rj ′) d3r d3r′ =GP ;j	,j ′	′ + �j,j ′�	,	′ . (19)

The T matrix then reads

T̃ = −
n∑

j,j ′=1

N∑
	,	′=1

eik·rj−ik′·rj ′ 
j	(GP + 1)−1
j	,j ′	′
j ′	′ . (20)

T̃ can be studied for special types of scatterers. Subsequently we will consider weak scatterers, point-like
scatterers and an array of randomly shaped particles.

4.1. Weak scatterers

If we assume that |�|>1 the T matrix in Eq. (15) can be expanded in powers of �. For the full Green’s
function

G=G0(1+ �G0)
−1

we obtain in powers of �

(M0 + �)−1 =G0 −G0�G0 + · · · + (−1)nG0(�G0)
n + · · · .

The truncation after the linear term leads to

T ≈ −� + �G0� = −�1/2(1−GP )�1/2. (21)

Partial summations for higher powers of GP can also be carried out for this expansion. An example is
the evaluation of the intensity or polarization, averaged over a random distribution of �. In this case we
can choose the ladder and maximally crossed diagrams of Langer and Neal [7]. This was discussed for
the case of light scattering in several papers [8–10].

4.2. Point-like scatterers

A particular case of our expansion (18) is that of n point scatterers:
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�1/2(r)=
n∑
j=1


j�(r − rj ).

Here it is not necessary to expand the Dirac deltafunction with orthogonal functions. Therefore, the T
matrix is

T̃ = −
∑
j,j ′

eik·rj−ik′·rj ′ 
j (GP + 1)−1
j,j ′
j ′,

where the n× n matrix (GP ;j,j ′) has elements

GP ;jj ′ =
∫

�(r − rj )GP (r, r′)�(r′ − rj ′) d3r d3r′ =GP (rj , rj ′).

With the definition of GP this we can also write as

GP (rj , rj ′)= �1/2(rj )G0(rj , rj ′)�1/2(rj ′). (22)

In this representation our calculation of the T matrix reduces to the inversion of an n× n matrix for n
point scatterers:

T̃ = −
n∑

j,j ′=1

eik·rj−ik′·rj ′ 
j (GP + 1)−1
jj ′
j ′ . (23)

However, a problem is that the Green’s function G0(r, r) is singular. It reflects the fact that the point
scatterers are not realistic due to the sharp Dirac deltafunction. This can be solved by replacing the Dirac
deltafunction by a smooth function. A standard way to do that is to introduce a cut-off for short lengths.
This was discussed in great detail by de Vries et al. [1] and leads to a regularized Green’s function G̃0. It
was shown that under some conditions regularized point-like particles represent small spherical particles.
The parameters of the spheres (i.e., radius and their refractive index) are related to two regularization
parameters �L and �T . The regularized Green’s function G̃0 that replaces G0 then reads [1]

G̃0(r, 0)= G̃T0 (r, 0)+ G̃L0 (r, 0)

with

G̃T0 (r, 0)= − r2�0 − 3�

4�k2r5 −
{

eikr

4�r
[P(ikr)�0 +Q(ikr) �

r2 ]

−e−�T r

4�r
[P(−�T r)�0 +Q(−�T r)

�

r2 ]
}

�2
T

�2
T + k2
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Fig. 3. Scattering on a cubic array of 125 point-like particles. The size parameter of each particle is 0.1. The center of the array
is located in the origin of the coordinates and the edges are parallel to the coordinate axes.

and

G̃L0 (r, 0)=
r2�0 − 3�

4�k2r5 {1 − e−�Lr [cos(�Lr)+ �Lr(cos(�Lr)+ sin(�Lr)]}
+ �2

Le−�Lr sin(�Lr)
�

2�k2r3 .

�0 is the 3 × 3 unit tensor (=∑3
i=1�ii) and

� =
∑

1 � i � j � 3
xixj �ij =

(
x1x1 x1x2 x1x3
x2x1 x2x2 x2x3
x3x1 x3x2 x3x3

)
.

The functions P and Q are

P(z)= 1 − 1
z

+ 1
z2 , Q(z)= −1 + 3

z
− 3
z2 .

In the case of n point scatterers this provides with Eq. (23) a well-defined n× n matrix, since for small
values of r we get

G̃0(r, 0) ∼ 1
6�

[
�3
L

k2 − �2
T

�2
T + k2 (�T + ik)

]
�0 − 1

32�k2 (4�4
L + k2�2

T )
�

r
. (24)

We have studied an array of 125 point-like scatterers with random coefficients 
j . The result for the
intensity and the polarization is shown in Fig. 3.
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4.3. Randomly shaped scatterers

In the case of scatterers with random shape it is difficult and time consuming to perform the calculations
for the T matrix without additional approximations, even if the number of scatterers is small. This problem
is well known in many areas like nuclear [11,12] or mesoscopic physics [13,14]. The reason is that particles
are characterized by many parameters, a very common situation in realistic physical systems. For instance,
for scattering of small particles (e.g. protons or neutrons) on heavy atomic nuclei, the nucleons inside
the nuclei act like randomly distributed scatterers. This situation was discussed by Wigner [11], using
a random-matrix (R-matrix) ensemble. This is based on the idea that the realistic Hamiltonian H of the
atomic nucleous is so complex that it has to be described by a statical approach. What is known from
fundamental physics, however, is the fact that this Hamiltonian has to be symmetric [12]. Moreover,
H can only be determined up to an orthogonal transformation, i.e. by its eigenvalues. The central and
surprisingly simple idea is to replace the original Hamiltonian H by a specific distribution of matrices. In
the case of a symmetric Hamiltonian H this leads to

H →

 h11 . . . h1N

...
. . .

...

hN1 . . . hNN


 (hij = hji),

where {hij } (1 � i � j �N) are independent random numbers:

〈hij 〉 = 0, 〈hijhkl〉 = g

N
(�ik�j l + �il�jk).

g is a parameter that controls the random fluctuations of the medium. It has to be chosen
empirically.

In the case of the Maxwell theory the Maxwellian must be considered instead of the Hamiltonian H.
Then the dyadic structure of Eq. (2), related to the algebra of the � matrices, must be included in the
construction of the corresponding random-matrix theory.

5. R-matrix approach to light scattering

The Green’s function G0 on a compact region is symmetric, a consequence of the fact that M0 is
symmetric. Therefore, it can be represented by the complete set of symmetric 3×3 matrices of Eq. (3) as

G0 =
∑

1 � i � j � 3
G0;ij �ij . (25)

Comparing this result, for instance, with the asymptotic behavior of G0(r, 0) in Eq. (9), we obtain

G0;ij (r, 0) ∼ cos(kr)
4�r3

{
r2 − x2

i , i = j,
−xixj , i < j.

The expansion of Eq. (25) implies for GP

GP =
∑
i � j

�1/2G0;ij�1/2�ij
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which can be used to calculate the T matrix of Eq. (20) and finally the intensity and the polarization in
Eqs. (13) and (14), respectively.

The orthogonal transformation ofGP of Eq. (19) creates from �1/2G0;ij�1/2 an nN ×nN matrix. The
properties of this matrix are determined by � of Eq. (6) that describes the spatial distribution of optical
properties. To study a generic situation for scattering in a random medium or a randomly distributed
ensemble of scatterers we can consider the elements of a symmetric matrix

�ij ;k	,k′	′ =
∫ ∫

f	(r − rk)�1/2(r)G0;ij (r, r′)�1/2(r′)f	′(r′ − rk′) d3r d3r′

for 1 � i � j � 3, 1 � k� k′ � n and 1 � 	 � 	′ �N . The contribution of a single scatterer (i.e., for k′ = k)
requires only the integration of the area of the scattererAk around rk . If we assume that this area is small,
we can use the approximation of G0(r, r′) given in Eq. 0 (24):

G0;ij (r, r′) ≈ a�ij + b(xi − x
′
i)(xj − x′

j )

|r − r′| .

This allows us to write

�ij ;k	,k	′=
∫
Ak

∫
Ak

f	(r − rk)�1/2(r)G0;ij (r, r′)�1/2(r′)f	′(r′ − rk) d3r d3r′

≈A�		′�ij + �′
ij ;k	,k	′

and for k′ �= k

�ij ;k	,k′	′=
∫
Ak

∫
Ak′
f	(r − rk)�1/2(r)G0;ij (r, r′)�1/2(r′)f	′(r′ − rk′) d3r d3r′

≈ �′
ij ;k	,k′	′ .

The constantA describes the averaged properties of the scatterers and �′
ij ;k	,k′	′ their random fluctuations.

Using the assumption that the expectation values 〈�(r)〉 and 〈�(r)�(r′)〉 are constant on Ak , we can
calculate expectation values of �ij ;k	,k′	′ . Choosing for the latter independent Gaussian random numbers,
this implies the expectation values

〈�′
ij ;k	,k′	′〉 = 0,

〈�′
ij ;k	,k′	′�′

ij ;l
,l′
′〉 = gkk′

N
(�kl�k′l′�	
�	′
′ + �kl′�k′l�	
′�	′
) (26)

and with the symmetry constraint

�′
ij ;k	,k′	′ = �′

ij ;k′	′,k	 (1 � i � j � 3).

Here we assumed that the fluctuations, characterized by the parameter gkk′ , are independent of the indices
i, j . This simplification can be abandoned to describe, for instance, anisotropic scattering media.

From the T matrix of Eq. (20) we then obtain the expression

T̃ = −
n∑

l,l′=1

N∑
	,	′=1

eik·rl−ik′·rl′ 
l	


1+

∑
i � j

�ij �ij




−1

l	,l′	′

l′	′ . (27)
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This expression can be treated in the asymptotic regime of large values of N , leading to a perturbation
theory in terms of 1/N .

5.1. Perturbation theory: 1/N expansion

In order to obtain the averaged intensity and the averaged polarization in Eqs. (13) and (14) we must
evaluate the average of products of elements of the T matrix. The averaging procedure can be performed
easily if we expand the inverse matrix in T̃

1+
∑
i � j

�ij �ij




−1

=
∑
l� 0
(−1)l


∑
i � j

�ij �ij



l

and use the properties of the distribution given in Eq. (26). Then our calculation reduces to averaging
products of matrix elements of �ij . The expectation value of a multiple product of matrix elements can be
decomposed into products of averaged pairs of matrix elements because higher moments of the Gaussian
distribution can be related to products of second moments. As a first example, we discuss the average T
matrix. A typical term is

〈�ij ;k	,k1	1�ij ;k1	1,k2	2 · · · �ij ;kl−1	l−1,k′	′〉, (28)

where the intermediate indices 	1, ..., 	l−1 are summed from 1 to N , and the labels of the intermediate
scattering centers k1, k2, ..., kl−1 are summed from 1 to n. According to properties (26), the matrix
elements �ij ;kl	l,kl+1	l+1 must appear in (28) as an even power. This can be depicted by a diagrammatic
representation of the perturbation expansion: the two sites kl	l and kl+1	l+1 are connected by a matrix
element �ij ;kl	l,kl+1	l+1 . Then the string of matrix elements in Eq. (28) is represented by a line, connecting
k	 with k′	′. Averaging gives a nonzero expression, for instance, if we fold the string in the middle such
that every pair of sites coincide. This requires a string of length l, where l is an even number. The same
construction must be applied for products of T-matrix elements, as shown in Fig. 4. It is crucial in all cases
that there is a summation over the indices 	j =1, ..., N , providing a factor N because the terms of the sum
are degenerate. Moreover, there is a factor g/N from each pair of matrix elements after averaging, due to
Eq. (26). As a result, the expansion can be organized in powers of 1/N , in contrast to the weak-scattering
expansion in powers of g, starting with the leading order 1. The leading order of the intensity and the
polarization is related to the ladder and maximally crossed diagrams [7].

For practical purposes this diagrammatic approach is too involved and not very efficient though.A more
transparent and efficient approach is the representation of the T matrix in a supersymmetric functional-
integral formalism [14]. In this representation the N → ∞ limit is a saddle point of an integral. This
shall be discussed in a separate paper.

6. Discussion of the results

For a qualitative understanding of the T matrix of Eq. (27) we consider its expansion in terms of the �
matrices:

T̃ =
∑

1 � i � j � 3
tij �ij .
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Fig. 4. Ladder and maximally crossed diagrams. Crosses indicate sites k	, full lines between crosses indicate matrix elements
�ij ,k	,k′	′ and dashed lines connect pairs of �ij ,k	,k′	′ (in the ladder) and pairs of �ij ,k	,k′	′ and �ij ,k′	′,k	 (in the maximally
crossed diagram). All these diagrams contribute in order 1/N .

It is important to notice that the random variables tij are correlated, in contrast to the independent
Gaussian random matrices �′

ij of Eq. (27). This can be seen, for instance, in a perturbation theory for
weak scatterers, where we expand the inverse matrix in T̃ (cf. Section 5.1). The correlations are crucial
for the properties of the scattering process. We discuss this in the following for a small single scatterer
(Rayleigh particle) located at r=0. The fact that the scatterer is small allows us to approximate the unitary
transformation Uk by the identity:

eik·r ≈ 1.

Consequently, we can use T̃ = UkT U†
k′ ≈ T . The dependence on the phase angle � then is only due to

the trigonometric coefficients in the intensity and polarization of Eqs. (13), (14). The elements of T are
independent of � and of the form

tij = a�ij + �ij

with a constant a and random variables �ij with 〈�ij 〉 = 0.
If we assume uncorrelated tij with 〈�ij �∗

i′j ′〉 = gij�ii′�jj ′ , for instance by truncating the perturbation
theory at low-order terms, we get simple expressions for the average intensity

|a|2(1 + cos2 �)+ g23 + g33 + (g12 + g13) sin2 � + (g22 + g23) cos2 �

and for the average polarization

|a|2 sin2 � + g23 + g33 − (g12 + g13) sin2 � − (g22 + g23) cos2 �

|a|2(1 + cos2 �)+ g23 + g33 + (g12 + g13) sin2 � + (g22 + g23) cos2 �
.

These two quantities are symmetric with respect to the phase angle � = �/2. In the case of diago-
nal scattering (i.e. gij = 0 for i �= j and gii = g) we get for the polarization the result of a point
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Fig. 5. Intensity and polarization of a single random particle (n=N = 1) for A= 0.6 (full curves) and A= 1.1 (dashed curves).
The matrix elements are uniformally distributed on the interval [−0.5, 0.5].

scatterer

sin2 �

1 + cos2 �
.

With off-diagonal scattering gij = g′ (i �= j ) the polarization is

(|a|2 + g − g′) sin2 �

(|a|2 + g + g′)(1 + cos2 �)+ 2g′ sin2 �
.

For isotropic scattering (i.e. g′ = g) the average polarization reduces to

sin2 �

4g/|a|2 + 1 + cos2 �
.

Thus the off-diagonal scattering suppresses the polarization due to the extra term 4g/|a|2 in the denomi-
nator, in comparison with the result of a point scatterer.

Starting with the T matrix of Eq. (27), an asymmetric behavior is found for individual realizations of
the random distribution but the average over all realizations leads again to a symmetric behavior with
respect to � = �/2. This is shown for a single random scatterer (i.e. n = 1) with N = 1 in Fig. 5. It
indicates that there are no correlations between the matrix elements tij to create an asymmetric term

〈(t12 + t13)(t
∗
22 + t∗23)〉 cos � sin �
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in the intensity or in the polarization. Asymmetric contributions to small scatterers can be obtained from
the T matrix in Eq. (12) by expanding the exponentials of the Fourier transformation in powers of kr cos �
and kr sin �.

7. Conclusions

To describe the scattering of light in a random medium we introduced a random-matrix model. The
construction is based on a scattering medium that consists of small randomly shaped particles (grains).
Their optical properties are defined by the quantity �(r) in Eq. (6) which is zero in vacuum but non-
zero in the scatterers, where it depends on the dielectric constant. Our random-matrix approach relies on
similar approaches in quantum theory. However, the vectorial structure of light, in contrast to the scalar
structure of the Schrödinger wave function in quantum theory, requires some additional considerations.
In our model each scattering particle is represented by an 3N × 3N random matrix, and the scattering
between each pair of different particles by another 3N × 3N random matrix. The number N refers to
N internal degrees of freedom which characterize the structure of the particle. For point-like spherical
particles there is N = 1. Then a system of n particles is represented by an 3nN × 3nN random matrix.
From this we derived the effective T matrix and the corresponding expressions for the intensity and the
polarization. In our approach two parameters (strength of fluctuations g of the random medium and 1/N)
appear which allow us to apply two types of perturbation theory. The approach can be used to describe the
electromagnetic field, in particular, its intensity and polarization, caused by the scattering by an arbitrary
ensemble of random particles. It can be used to study the characteristics of natural or man-made dusts
and aerosols.
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Appendix A. Dyson equation and T matrix

The following calculations can be performed directly but it is more instructive to use perturbation
theory. We expand the full Green’s function in powers of �

G=(M0 + �)−1 =M−1
0

∑
l� 0
(−�M−1

0 )l

=M−1
0 −M−1

0 �M−1
0 +M−1

0

∑
l� 2
(−�M−1

0 )l .

Since ∑
l� 2
(−�M−1

0 )l = �M−1
0

∑
l� 0
(−�M−1

0 )l�M−1
0 = �G�M−1

0 ,
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we can write

G=M−1
0 −M−1

0 �M−1
0 +M−1

0 �G�M−1
0 ≡ M−1

0 +M−1
0 TM−1

0 .

This result can be considered as a Dyson equation of the Green’s function G and a definition of the T
matrix T.
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