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1. Introduction

Graphene, a sheet of graphite with a honeycomb
structure, was discovered as a genuine two-dimensional
electronic system [1–3]. The separation of a single sheet is
possible in graphite because this material has an extreme
anisotropy due to layers with an interlayer spacing of 3:4 Å
and an interatomic distance within the layers of 1:4 Å.
Among many other characteristic features, this material
has surprisingly robust transport properties: It behaves like
a metal with almost constant mobility over a large range of
temperatures and charge densities. This raises questions
about the relevant mechanism of transport and the role of
scattering of the quasiparticles in graphene.

It has been suggested that transport in graphene is
ballistic even at temperatures up to 300K [4] due to its high
mobility. However, recent studies have seen strong break-
ing of translational invariance due to ripples [5] which
make ballistic transport unlikely. Moreover, an inhomo-
geneous charge-carrier distribution with an intrinsic
disorder length scale of l � 30 nm was seen in a scanning
single-electron transistor study at T ¼ 0:3K [6]. This also
indicates that ballistic transport is unlikely. Although it is
not clear, whether or not the charge inhomogeneities are
ess: klaus.ziegler@physik.uni-augsburg.de
caused by ripples, the latter present the main source of
disorder in graphene.
In order to study transport in a two-dimensional (2D)

system, a classical (Boltzmann) as well as a quantum
(Kubo) approach can be applied. Quantum effects (i.e., the
spectral properties of the quasiparticles) can be included in
the Boltzmann approach, but for a consistent treatment the
Kubo approach is favorable. The Kubo approach is
sensitive if certain limits are applied (e.g., zero temperature
or zero frequency (DC) limit [7]). Therefore, the following
discussion will be restricted to the case where the zero-
temperature limit is taken first. This allows us to
concentrate on quantum effects in the transport mechan-
ism of graphene. It is also motivated by the fact that the
relevant energy scale in graphene is given by the nearest-
neighbor hopping rate of about 3 eV [8]. Thus the energy of
thermal fluctuations at typical temperature in the transport
experiments is relatively small in comparison to the
hopping energy.
In the following, we will study a model for quasiparticles

in graphene, where weak and strong disorder is taken into
account. The Boltzmann approach and its results for
graphene near the Dirac point is briefly discussed. Then
the Kubo approach is used to evaluate the DC conductivity
at the Dirac point, applying different approximations.
The main result is a diffusion propagator for the average
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two-particle Green’s function for weak as well as for strong
disorder.

1.1. Boltzmann approach

The Einstein relation [9]

s ¼ e2rD (1)

is a possible starting point for calculating the DC
conductivity. Here the diffusion coefficient is proportional
to the scattering time t, and r is the density of states at the
Fermi energy. An extension to frequency o40 leads to the
Drude formula

sðoÞ ¼
s0t

1� iot
.

The main problem is to evaluate t, and a possible way to
do that is provided by the Boltzmann approach. The latter,
based on the classical Boltzmann equation, has been a very
successful concept for the discussion of transport in solid-
state physics. It was also successfully applied the case in
graphene [10,11].

A special case in graphene, however, the observation of a
minimal conductivity at the Dirac point requires some
explanation [2]. At this point the density of states vanishes
(i.e., there are no states at the Fermi energy). This implies
that a statistical concept which uses the distribution of
charges may experience some difficulties. Nevertheless, the
Boltzmann approach can be applied away from the Dirac
point and then the Dirac point is approached at the end.
Then the density of states is r / kF, where kF is the
Fermi vector (at the Dirac point is kF ¼ 0). Perturbation
theory with short-range scatterers gives for the scattering
time [10,12,13]

t /
1

kF
�1.

A divergent scattering time at the Dirac point does not
describe a realistic situation because quasiparticles are
scattered, e.g., by the ripples or charge inhomogeneities.
However, the conductivity is constant because the wave
vectors kF cancel each other. This would agree with a
nonzero minimal conductivity for kF ¼ 0. Unfortunately,
the constant conductivity is in disagreement with experi-
ments, where a linearly increasing conductivity was
observed away from the Dirac point [2]. This problem
can be cured by the assumption of charged (i.e., long-range
correlated) scatterers. They give indeed a linear conductiv-
ity [10]. The price is that the conductivity vanishes at the
Dirac point. So, the classical Boltzmann approach is not
capable to describe transport near the Dirac point
properly, and it must be replaced by a more microscopic
approach, based on the Kubo formula for linear response
to an external electric field. We will discuss subsequently
that the Kubo formula, averaged with respect to disorder,
recovers the Einstein relation Eq. (1) with a disorder
dependent diffusion coefficient D.
2. Model

The lattice Hamiltonian

H ¼ h1s1 þ h2s2 þms3 (2)

with Pauli matrices sj and a (Dirac mass) term ms3 is
considered in this paper. 2D Dirac fermions (2DDF) is a
special case of this Hamiltonian, the tight-binding Hamil-
tonian on a honeycomb lattice (TBHL) is another one. In a
translational-invariant system the Fourier representation
with wavevector ~k ¼ ðk1; k2Þ reads

hj ¼ kj ð2DDFÞ; h1 ¼ �t
X3
j¼1

cos ð~aj �
~kÞ,

h2 ¼ �t
X3
j¼1

sin ð~aj �
~kÞ ðTBHLÞ

with the lattice vectors of the honeycomb lattice

~a1 ¼ ð�
ffiffiffi
3
p

=2; 1=2Þ; ~a2 ¼ ð0;�1Þ; ~a3 ¼ ð
ffiffiffi
3
p

=2; 1=2Þ.

H can be diagonalized as H ¼ diagðek;�ekÞ with

ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ h2

1 þ h2
2

q
. In graphene usually we have m ¼ 0.

However, in a bilayer of two graphene sheets it is possible
to create a weak term with ma0 due to its internal
structure (i.e., A and B sublattice are not equivalent in a
bilayer).
2.1. Disorder

Disorder due to ripples can be described by quenched
randomly distributed bonds. In terms of our Hamiltonian
H this leads to a random ‘‘gauge field’’. This means that a
random term v1s1 þ v2s2 appears in H [11,14,15]. It is not a
real gauge field, because it does not appear in a Peierls
phase factor but can be understood as a gauge field in the
continuum limit of the Dirac fermions [16]. Another source
of disorder is doping with impurity atoms or bilayers. This
is represented by a random ms3 term in H which
corresponds with a random mass term in the case of Dirac
fermions. Moreover, it is assumed that randomness due to
disorder has an uncorrelated Gaussian distribution with
mean zero and variance hv2i ¼ hm2i ¼ g.
2.2. Kubo approach

Starting from a Hamiltonian, in our case from H in
Eq. (2), the current operator is

jk ¼ �ie½H ; rk�.

On the other hand, the average current induced by an
external electric field E reads in terms of linear response as
Ohm’s law

hjki ¼ sklEl
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with conductivity (we use the notation of Ref. [18] here)

skk ¼ �
e2

h

o2

2

Z X
r

r2kKðr; �;oÞ

�
f bð�þ o=2Þ � f bð�� o=2Þ

o
d�. ð3Þ

f bðxÞ ¼ ð1þ ebxÞ
�1 is the Fermi distribution at temperature

T ¼ 1=kBb, Kðr; �;oÞ is the average two-particle Green’s
function (2PGF)

Kðr; �;oÞ ¼ lim
d!0
hTr2½Gðr; 0; �� o=2þ idÞGðr; 0; �

þ o=2� idÞ�i

and G is the one-particle Green’s function (1PGF):

Gðr; 0; zÞ ¼ ðz�HÞ�1r;0 .

Off-diagonal terms of skl vanish because we do not
consider a magnetic field here. h. . .i means averaging with
respect to quenched disorder. In the case of zero
temperature the factor �ðf bð�þ o=2Þ � f bð�� o=2ÞÞ=o in
the Kubo formula becomes a Dirac delta function with
respect to �. Thus the conductivity reduces to the
expression

skk ¼ o2 q2Kðq; 0;oÞ
qq2

k

� �
q¼0

e2

h
. (4)

2.3. Approximations

A common approximation is to use a one-particle
average in the average 2PGF, where the average of the
2PGF is replaced by the product of two average 1PGFs
[12,13]:

Kðr; �;oÞ � lim
d!0

Tr2½hGðr; 0; �� o=2þ idÞi

�hGðr; 0; �þ o=2� idÞi�. ð5Þ

This allows us to apply the self-consistent Born approx-
imation to the average 1PGF [13], where a self-energy iZ is
introduced to shift the Hamiltonian H0 � hHi as H0!

H0 � iZ. Z is given by the self-consistent condition

Z ¼ igTr2½ðz�H0 þ iZÞ�1rr �. (6)

Z can be interpreted as an effective scattering rate, or 1=Z ¼
t can be interpreted as a scattering time. The average 1PGF
then reads

hGðr; 0; zþ idÞi � ðzþ iZþ id�H0Þ
�1
r;0

and Z / e�p=g=g for z ¼ 0. Moreover, the average 2PGF of
Eq. (5) is

Kðq ¼ 0; � ¼ 0;oÞ � �
1

2p
log ð�ðo� iZÞ2Þ

and

q2Kðq; 0;oÞ
qq2

k

� �
q¼0

�
1

pðo� iZÞ2
,

such that with Eq. (4) the conductivity reads

skk ¼ o2 q2Kðq; 0;oÞ
qq2

k

� �
q¼0

e2

h
�

e2

h

o2

pðo� iZÞ2
. (7)

This result gives a minimal conductivity for Z5o, i.e., in
the perturbative regime of disorder. However, the con-
ductivity of Eq. (4) would vanish in the limit o! 0 if Z40.
In other words, the DC limit does not make sense in this
approximation. The result is also in disagreement with the
Drude formula.

2.4. Nonlinear sigma model

It is possible to avoid the approximation of Eq. (5) and
to evaluate the average 2PGF directly [19]. The reason is
that the 2PGF preserves an intrinsic symmetry. After
averaging over disorder, the symmetry leads to a special
nonlinear sigma model which gives for the Fourier
components of the 2PGF a diffusion propagator

Kðq; 0;oÞ ¼
K0

ioþDq2
.

The prefactor K0 and the diffusion coefficient D depend
in general on the strength of disorder g and on the fre-
quency o. We have (up to some numerical constants) for
weak bond disorder [18] or for a weak random ms3 term
in H [19]

K0 ¼
ioþ Z

g
; D /

g

ioþ Z

and for strong disorder [15]

K0 /
1ffiffiffi
g
p ; D /

1ffiffiffi
g
p .

Eq. (4) implies the Einstein relation of Eq. (1) with

skk ¼ o2 q2Kðq; 0;oÞ
qq2

k

� �
q¼0

e2

h
/ K0D

e2

h

¼
e2

h

1 weak disorder;

g�1 strong disorder:

(
ð8Þ

Thus, there is a non-vanishing minimal conductivity even
in the presence of strong disorder, although it is suppressed
by 1=g in comparison with the case of weak disorder.
It is essential for these results that there is no random

term proportional to s0 (random potential term) in the
Hamiltonian of Eq. (2). Such a term would lead to
Anderson localization, as discussed by Ludwig et al. [16].
Castro Neto and Kim [17] have shown recently that a
random potential term can appear if next-nearest neighbor
hopping is included in graphene with ripples. The experi-
mental fact that Anderson localization has not been
observed may indicate that there is a very large localization
length.
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3. Discussion and conclusions

Ballistic transport in graphene near the Dirac point can
be ruled out on the basis of recent experiments [5,6]. In
particular, the intrinsic disorder length scale l � 30 nm,
which was found in a scanning single-electron transistor
study [6], indicates that substantial disorder scattering must
be present in graphene. Ripples might be the main source
of disorder, whereas potential disorder due to impurities
may not be so important. If ripples are approximated by
random nearest-neighbor hopping rates, previous studies
have found that an internal symmetry of the two-particle
Green’s function on the honeycomb lattice leads to a
diffusion propagator, after averaging over disorder. It has
been shown in this paper, that the usual self-consistent
Born approximation misses this property. The fact that
ripples lead to a diffusion mode, in contrast to impurity
potential which causes localization [20], can explain the
existence of the minimal conductivity.
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