Immunologische Charakterisierung des angeborenen und adaptiven Immunsystems von Kindern und Jugendlichen mit chronisch nicht-bakterieller Osteomyelitis

Dissertation

zur Erlangung des akademischen Grades Dr. med.

eingereicht an der

Medizinischen Fakultät der Universität Augsburg

von

Regine Borchers

Augsburg, 29.09.2023

Eidesstattliche Versicherung und Erklärung

Hiermit versichere ich an Eides statt, dass die vorliegende Dissertation von mir selbständig und ohne unerlaubte Hilfe angefertigt wurde. Zudem wurden keine anderen als die angegebenen Quellen verwendet. Außerdem versichere ich, dass die Dissertation keiner anderen Prüfungskommission vorgelegt wurde und ich mich nicht anderweitig einer Doktorprüfung ohne Erfolg unterzogen habe.

Statutory declaration and statement

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources. As well I declare that I have not submitted a dissertation without success and not passed the oral exam. The present dissertation (neither the entire dissertation nor parts) has not been presented to another examination board.

Augsburg, 29.09.2023

Dissertation eingereicht am: 29.09.2023

Erstgutachter (Hauptbetreuerin/Hauptbetreuer): Professor Dr. Dr. Michael Frühwald

Zweitgutachter: Privatdozentin Dr. Stefanie Gilles

Tag der mündlichen Prüfung: 25.04.2024

Inhaltsverzeichnis

1	Ein	leitung	1
	1.1	Chronisch nicht-bakterielle Osteomyelitis	1
	1.1.	.1 Definition und Begriffsklärung	1
	1.1.		
	1.1.		
	1.1	.4 Pathophysiologie	3
	1.1.		
	1.1.		
	1.1.	.7 Therapie	6
	1.1.	.8 Immunologische Veränderungen und Biomarker	6
	1.2	SAPHO-Syndrom	8
	1.2	.1 Übersicht	۵
	1.2		
	1.3	Zusammenfassung	
	1.4	Fragestellung	12
2	Mat	terial und Methoden	13
	2.1	Studiendesign und Studienablauf	13
	2.2	Ethik- und Tierversuchsvotum	14
	2.3	Patientenrekrutierung	14
	2.3	.1 Ein- und Ausschlusskriterien	14
	2.3	.2 Rekrutierungsablauf	14
	2.4	Erstellung der Datenbank	15
	2.4	.1 Datenerfassung	15
	2.4	.2 Anamnestische und klinische Daten	15
	2.5	MRT-Befundung	17
	2.6	Materialgewinnung und Versorgung	17
	2.7	Laboruntersuchungen	18
	2.7	.1 Immunologische Routine-Untersuchungen	18
	2.7	.2 Neutrophilenaktivierung	18
	2.7	.3 Lymphozytendifferenzierung	18
	28	Statistische Auswertung	24

3	Erg	Ergebnisse				
	3.1	Ana	mnestische und klinische Daten der Studienpopulationen	25		
	3.2	MR	T-Befundung	27		
	3.3	Lab	orergebnisse	27		
	3.3	.1	Immunologische Routine-Untersuchungen	27		
	3.3	.2	Neutrophilenaktivierung	31		
	3.3	.3	Lymphozytendifferenzierung	31		
4	Dis	kuss	ion	37		
	4.1	Zus	ammenfassung der Hauptergebnisse	37		
	4.2	Bev	vertung der Ergebnisse	37		
	4.2	.1	Immunologische Routine-Untersuchungen	38		
	4.2	.2	Neutrophilenaktivierung	40		
	4.2	.3	Lymphozytensubpopulationen	41		
	4.3	Lim	itationen	48		
	4.4	Sch	lussfolgerung	49		
	4.5	Aus	blick	50		
5	Zus	samn	nenfassung	51		
6	Lite	ratur	verzeichnis	53		
7	Арр	pendi	x	69		
	I		Abkürzungsverzeichnis	69		
	II		Abbildungsverzeichnis	71		
	II	II	Tabellenverzeichnis	72		
	IV	V	Danksagung	73		
	٧	/	Eigene Veröffentlichungen und Kongressteilnahmen	74		
	٧	/	Übersicht der für die Durchflusszytometrie verwendeten Antikörper mit Farbstoffen	75		
	V	/II	Anhang			
	V	11	7 till till till till till till till til	10		

1 Einleitung

1.1 Chronisch nicht-bakterielle Osteomyelitis

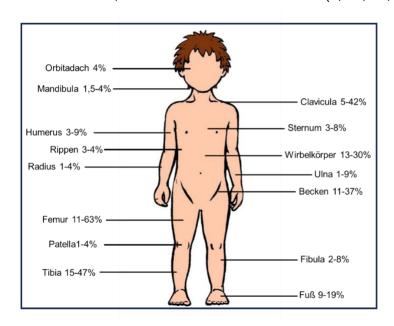
1.1.1 Definition und Begriffsklärung

Die chronisch nicht-bakterielle Osteomyelitis (CNO) ist eine autoinflammatorische Erkrankung unklarer Ätiologie, die durch eine nicht-infektiöse Knochenentzündung charakterisiert ist und erstmalig 1972 von Giedion beschrieben wurde. (1, 2) In der Literatur finden sich verschiedene Bezeichnungen, aktuell gebräuchlich ist der Oberbegriff "Nichtbakterielle Osteomyelitis bzw. Osteitis" (NBO) mit der chronischen Verlaufsform CNO. Bei der oft schwer verlaufenden, rekurrierenden und multifokalen Form wird von der chronisch rekurrierenden, multifokalen Osteomyelitis (CRMO) gesprochen. (3-5) In dieser Arbeit wird der übergeordnete Begriff CNO verwendet, der alle chronischen Verlaufsformen mit unifokalem und multifokalem knöchernem Befall umfasst.(4) Der Begriff der CRMO wird nur für eine Untergruppe der CNO als schwerste Verlaufsform eingesetzt, da in vielen Studien nur diese untersucht wurde.

Betroffen sind Kinder und heranwachsende Jugendliche. Im Erwachsenenalter bestehen Assoziationen zum Synovitis, Akne, Pustulosis, Hyperostose, Osteitis-Syndrom (SAPHO-Syndrom). (3, 6)

1.1.2 Epidemiologie

Die CNO betrifft vor allem Kinder- und Jugendliche, kann aber grundsätzlich in allen Altersgruppen aller Ethnien auftreten. Kinder und Jugendliche erkranken in der Regel zwischen 7 und 12 Jahren (medianes Alter bei Erkrankungsbeginn je nach Literaturangabe ca. 10-11 Jahre), Mädchen sind dabei häufiger betroffen. Im Erwachsenenalter tritt die Erkrankung seltener auf mit einem medianen Erkrankungsalter von ca. 40 Jahren. (3, 7-9) Eine exakte Inzidenz ist nicht bekannt. In einer Studie wurde in einer deutschen Erhebung eine geschätzte jährliche Inzidenz von 0,4 Fällen pro 100.000 Kindern angegeben. (10)


1.1.3 Klinische Präsentation

Die klinische Ausprägung kann sehr unterschiedlich von asymptomatisch über mild bis schwer sein. Der Verlauf kann selbstlimitierend bzw. monophasisch (Beschwerden nicht länger als 6 Monate), chronisch aktiv (Beschwerden länger als 6 Monate) oder

rekurrierend sein. Dabei kann ein unifokaler oder multifokaler Befall von Knochen bestehen, selten entsteht eine Knochendestruktion.

Klinisch zeigt sich als Ausdruck der Inflammation eine Überwärmung, Schwellung, Hyperostose (vor allem der Clavicula, Femur und Fibula), lokalisierte Schmerzen bzw. Knochenschmerzen, selten Hautrötung. Fieber und Funktionsverlust können bestehen. Begleitend können Nerven- und Gefäßbeteiligung, mukokutane Hautbeteiligung, insbesondere eine Akne und palmoplantare Pustulosis, Darmbeteiligung sowie Arthritis (vor allem des Iliosakralgelenkes) auftreten. (3, 4, 6-8, 11-17)

Am häufigsten sind die unteren Extremitäten betroffen, hier vor allem die Metaphysen der langen Röhrenknochen insbesondere der distalen Tibia. Grundsätzlich kann jeder Knochen befallen sein. (4, 5, 18-20) **Abbildung 1** zeigt eine Übersicht der häufigsten Lokalisationen, diese variieren in der Literatur. (7, 13, 16, 17, 21, 22)

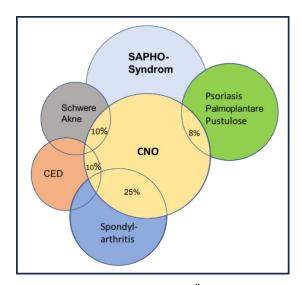


Abbildung 1: Verteilung der Knochenläsionen bei Kindern und Jugendlichen mit chronisch nichtbakterieller Osteomyelitis (CNO); modifiziert nach Skrabl-Baumgartner 2019 und Nemes 2022. (7, 13, 16, 17, 21-23)

Organbeteiligungen von Haut und Darm sind neben Befall von Lunge, Herz und Auge beschrieben. Begleitend wurden Lymphknotenvergrößerungen und Hepatosplenomegalie beobachtet. (7, 13, 17, 24-26)

Weitere Erkrankungen wie fulminante Akne, chronisch entzündliche Darmerkrankung (CED), Psoriasis oder ankylosierende Spondylarthritis bzw. Enthesitis-assoziierte Arthritis oder Polyarthritis (juvenile idiopathische Arthritis: JIA) sind mit der CNO assoziiert bzw. es bestehen Überlappungen mit diesen Erkrankungen (siehe auch

Abbildung 2). (7-9, 17, 27-30) Bei einigen PatientInnen geht die Erkrankung im Erwachsenenalter in eine Spondylarthropathie über. (27)

Abbildung 2: Assoziationen/Überlappungen der CNO mit anderen Erkrankungen; modifiziert nach Hofmann 2017 (30)

Abkürzungen: CED chronisch entzündliche Darmerkrankung, CNO chronisch nicht-bakterielle Osteomyelitis, SAPHO-Syndrom Synovitis, Akne, Pustulosis, Hyperostose, Osteitis-Syndrom

1.1.4 Pathophysiologie

Die CNO gehört zu den Autoinflammationserkrankungen, die durch eine Inflammation des innaten Immunsystems mit Zytokinbildung, durch das Fehlen von hohen Autoantikörper-Titern und fehlenden autoreaktiven Lymphozytenpopulationen bei Erkrankungsbeginn gekennzeichnet sind. (3, 31-34) Dabei wurden Infektionen als ursächlich ausgeschlossen. (35, 36)

Zusammenfassend scheint die Knochenentzündung durch eine beeinträchtigte Immunantwort des innaten Immunsystems hervorgerufen zu werden, die vor allem durch Zytokindysbalance in einer Osteoklastenaktivierung, in Osteolysen und Knochenumbau mündet. (37, 38) Dabei verursacht wahrscheinlich das Zusammentreffen von Störungen in mehreren immunregulatorischen Vorgängen das klinische Bild der CNO. (39-41)

So konnte gezeigt werden, dass die antiinflammatorisch wirkende Interleukin (IL)-10 Expression in Monozyten von CNO-PatientInnen deutlich reduziert ist. (42-45)

Auf der anderen Seite konnte auch eine Erhöhung von proinflammatorischen Zytokinen wie z.B. Tumor-Nekrose-Faktor alpha (TNF-alpha), IL-1 und IL-6 nachgewiesen werden. (46-48) Als mögliche pathogenetische Ursache wurde zudem eine gesteigerte Aktivität des NLRP3-Inflammasoms (NOD-, LRR- and pyrin domain-containing protein 3-

Inflammasom), identifiziert, die sich durch erhöhtes proinflammatorisch wirksames IL-1 äußert. (42, 49, 50)

Durch die Zytokin-Dysbalance mit Überwiegen der proinflammatorischen Effekte kommt es zu einer gesteigerten Osteoklastendifferenzierung und -aktivierung über eine verstärkte Interaktion zwischen dem Transmembranrezeptor "receptor activator of nuclear factor-kappa B" (RANK) und seinem löslichen Liganden (RANKL), das zu Osteolysen und Knochenresorption führt. (51-54)

Auf zellulärer Ebene konnten vermehrte Mastzellen sowohl in Knochenbiopsien als auch im Serum, darüber hinaus vermehrte CD14+ (CD = cluster of differentiation) -Monozyten in Knochenbiopsien von CNO-PatientInnen nachgewiesen werden. Diese könnten somit möglicherweise eine pathogenetische Rolle spielen. (55, 56)

Einen weiteren pathogenetischen Einfluss scheint das Microbiom (Darm bzw. oral) in Bezug auf das immunologische Gleichgewicht zu haben. Ist dieses gestört, kann dies zu Inflammation und Entstehung von Autoimmunerkrankungen führen. (57-59) Auch bei der CNO konnte dieser Einfluss gezeigt werden. (60, 61)

1.1.5 Genetische Veränderungen

Es gibt monogenetische Erkrankungen, die mit Symptomen einer CNO einhergehen, so z.B. das Majeed-Syndrom, "deficiency of IL-1 receptor antagonist" (DIRA), pyogene Arthritis, Pyoderma gangrenosum und Akne-Syndrom (PAPA-Syndrom) mit zumeist gleichzeitig bestehenden kutanen Veränderungen und teils sehr schweren Verläufen. (62-68) Auch Cherubismus zeichnet sich durch symmetrische, bilaterale fibröossäre Läsionen bzw. Knochenresorptionen des Ober- oder Unterkiefers aus. (69, 70) Es besteht allerdings Uneinigkeit, ob diese Erkrankung zu den Autoinflammationserkrankungen gezählt werden kann. (3)

Auch bei der nicht-syndromalen bzw. sporadischen CNO wird bei vermehrtem Auftreten in bestimmten Familien sowie gleichzeitigem Auftreten von inflammatorischen Erkrankungen bei engen Verwandten nach Expertenmeinung ein genetischer Hintergrund vermutet. (71) Es wurden einzelne Kandidatengene identifiziert, die aber in nachfolgenden Studien bisher nicht verifiziert werden konnten. (40, 72-81)

1.1.6 Diagnostik

Die CNO ist eine Ausschlussdiagnose, daher beruht die Diagnose zunächst auf dem Ausschluss von Differentialdiagnosen wie Infektionen, Immundefekte, Stoffwechselerkrankungen oder malignen bzw. hämatologischen Erkrankungen. Die Diagnostik

umfasst neben Anamnese und körperlicher Untersuchung, Laboruntersuchungen, Bildgebung und ggf. Biopsie. Allgemein stellen Knochenschmerzen oder schmerzhafte Funktionseinschränkungen des muskuloskelettalen Systems mit typischen Befunden in der Magnetresonanztomographie (MRT) die Basis der Diagnose dar. (18, 39, 82, 83) Laboruntersuchungen dienen vor allem zur Beurteilung der Entzündungsaktivität bzw. zur Abklärung von Differentialdiagnosen. Bei monofokalem Befall ist an eine Tuberkulose-Diagnostik zu denken. (18, 33, 84)

Von Jansson et al. wurden angepasste, diagnostische Kriterien, die in **Tabelle 1** aufgeführt sind, vorgeschlagen. Allerdings sind diese nicht validiert, können aber hilfreich sein. (16, 39, 82, 84) Neben diesen Diagnosekriterien wurde ein klinischer Score zur Unterscheidung der CNO von anderen Knochenläsionen entwickelt. (85)

Tabelle 1: Angepasste CNO-Diagnosekriterien nach Jansson (16)

Majork	riterien	Minork	riterien			
1.	Radiologisch nachgewiesene osteolytisch/-sklerotische Knochenläsion	A.	Normales Blutbild und guter Allgemeinzustand			
2.	Multifokale Knochenläsion	B.	CRP und BKS leicht bis mäßig erhöht			
3.	PPP oder Psoriasis	C.	Beobachtungszeit länger als 6 Monate			
4.	Sterile Knochenbiopsie mit Zeichen von Inflammation und/oder Fibrose, Sklerose	D.	Hyperostose			
		E.	Verwandte I. oder II. Grades mit autoimmuner Erkrankung (PPP, Ps, Akne, CED) oder Autoinflam- mationserkrankung oder mit NBO			
	Das Vorliegen von zwei Majorkriterien oder einem Majorkriterium und drei Minorkriterien macht die Diagnose CNO wahrscheinlich					

Abkürzungen: BKS Blutkörperchensenkungsgeschwindigkeit, CED chronisch-entzündliche Darmerkrankung, CNO chronisch nicht-bakterielle Osteomyelitis, CRP C-reaktives Protein, NBO nichtbakterielle Osteitis, PPP palmoplantare Pustulose, Ps Psoriasis

Die bildgebenden Verfahren umfassen Röntgen, Computertomographie (CT), Szintigraphie und MRT. (84) Die Szintigraphie ist bei Kindern inzwischen obsolet, ebenso wird die CT nur noch bei speziellen Fragestellungen (z.B. Differentialdiagnose eines Osteoidosteoms) durchgeführt. (83, 86)

Die Sensitivität des Ganzkörper-MRT (GK-MRT) ist am höchsten und es wird daher bevorzugt eingesetzt. (11, 87, 88) Dabei werden Knochenmarködeme, Hyperostosen, sklerotischen Veränderungen und Osteolysen auch ohne Kontrastmittelgabe neben Periostreaktionen, Weichteilschwellung und Gelenkbeteiligung als typische Befunde

beschrieben. (11, 87, 89-91) Auch asymptomatische ("stille") Herde können hier detektiert werden. (92-94)

Zum Ausschluss von Differentialdiagnosen kann bei unklaren Befunden bzw. zur histologischen und infektiologischen Aufarbeitung eine Knochenbiopsie notwendig werden. Die CNO zeigt jedoch keine spezifischen Veränderungen, weswegen eine histopathologische Diagnosesicherung nicht zwingend erforderlich für die Diagnose ist und meist darauf verzichtet werden kann. (35, 84, 95, 96)

1.1.7 Therapie

Es gibt keine einheitlichen bzw. international anerkannten Therapieleitlinien. Die Therapie wird in der Regel empirisch durchgeführt. (3, 51) Allerdings wurden verschiedene Konsensus-Therapiepläne zur Orientierung formuliert. (82, 97)

Therapie der ersten Wahl sind nichtsteroidale Antirheumatika (NSAR), die bei Kindern gut wirksam sind und eine klinische Remission in mehr als 50 % der Fälle innerhalb der ersten 12 Monate erreichen lassen. (7, 12, 14, 17, 98)

Weitere medikamentöse Therapieoptionen sind Steroide (Glukokortikoide), "Disease-modifying antirheumatic drugs" (DMARDs), Bisphosphonate und Biologika. (16, 18, 20, 98, 99)

Systemische, oral verabreichte Glukokortikoide sollten aufgrund des Nebenwirkungsprofils nur kurzeitig eingesetzt werden, können Schübe aber gut kontrollieren. (18, 82, 100)

Bei Entzündungsherden der Wirbelkörper mit strukturellen Veränderungen aber auch als weitere Therapieoption werden Bisphosphonate mit guter Wirksamkeit zur Entzündungsund Osteoklastenhemmung eingesetzt. (84, 97, 101-105)

Eine weitere Therapiemöglichkeit sind Biologika wie TNF-Inhibitoren oder IL-1-Blocker (Anakinra), die bei NSAR-refraktärem Verlauf mit unterschiedlicher Wirksamkeit eingesetzt werden. (10, 14, 20, 21, 98, 100, 106-110)

Als adjuvante, nicht-medikamentöse Therapien werden Physiotherapie sowie lokale Wärme- oder Kälteanwendung, Hilfsmittelanpassung, Vitamin-D-Supplementierung entsprechend geltenden Empfehlungen und psychosoziale Betreuung empfohlen. (82)

1.1.8 Immunologische Veränderungen und Biomarker

In der Routine-Diagnostik werden zwar Inflammationsparameter bestimmt, allerdings sind diese nicht spezifisch für die CNO und lassen keine prognostische Aussage zu. (12, 16, 17, 111) Ferritin und Immunglobuline, insbesondere IgG, können initial erhöht sein,

sind aber nicht spezifisch. (7, 12, 112) HLA-B27 wird bei ca. 6-7 % der CNO-PatientInnen entsprechend der Häufigkeit der Normalbevölkerung nachgewiesen, korreliert aber nicht mit entsprechenden Symptomen einer Enthesitis-assoziierten-Arthritis bzw. Spondylarthritis und scheint daher wenig hilfreich. (7, 13, 16, 20)

Antinukleäre Antikörper (ANA) sind in bis zu 38% der CNO-PatientInnen positiv getestet worden, allerdings ohne spezifischen Antigennachweis. (7, 16)

Möglicherweise lässt die Bestimmung von S100 A8/A9, das von neutrophilen Granulozyten und Monozyten sezerniert wird und bei Inflammasomaktivierung erhöht ist, eine Unterscheidung zu anderen Erkrankungen wie z.B. Leukämien oder CED bzw. Gesunden zu. Konfirmationsstudien hierzu stehen aber noch aus. (46, 113)

Erhöhte Interleukin-Werte wie z.B. TNF-alpha, IL-6 oder IL-18 können bei CNO-PatientInnen nachgewiesen werden, als Einzelbestimmung lassen diese jedoch keine Unterscheidung zu anderen inflammatorischen Erkrankungen zu. (114) Wie oben beschrieben konnte auf der anderen Seite eine verminderte IL-10-Expression in Monozyten sowie ein fehlender Nachweis des antiinflammatorischen IL-10 im Serum von CNO-PatientInnen nachgewiesen werden. (42, 43)

2016 wurde durch Hofmann *et al.* ein Set aus neun Biomarkern bestehend aus Interleukinen, Chemokinen und regulatorischen Molekülen evaluiert, das eine Unterscheidung zwischen an CNO- und CED-Erkrankten bzw. Gesunden ermöglicht, allerdings nicht zu JIA-PatientInnen. Ein Set aus sechs Biomarkern [IL-6, IL-12, Eotaxin, MCP-1 (monocyte chemoattractant protein-1), RANTES (regulated upon activation, normal T cell expressed and presumably secreted) und sIL-2R (löslicher IL-2-Rezeptor)] erlaubt die Beurteilung einer möglichen Remission. (114) Hierfür sind weitere Studien zur Bestätigung notwendig.

In einer weiteren Studie aus 2017 konnte die Arbeitsgruppe von Hofmann *et al.* Biomarker zur Diagnose der CNO eingrenzen (IL-6 und Chemokinligand (CCL) 11/Eotaxin). Damit ist eine Unterscheidung von CNO-PatientInnen von anderen Erkrankungen einschließlich der JIA sowie von Gesunden möglich. (46) Auch hier ist eine Validierung ausstehend.

Als Aktivitätsmarker bzw. Knochenresorptionsmarker wurde unter Pamidronat-Therapie das N-Telopeptid im Verhältnis zu Kreatinin im Urin genutzt, allerdings ist auch dies bisher nicht als Aktivitätsmarker validiert. (102)

Weitere zelluläre, immunologische Veränderungen im Serum, außer den zuvor beschriebenen CD14+ Monozyten und Mastzellen, sind bei CNO-PatientInnen bisher nicht bekannt. (115)

1.2 SAPHO-Syndrom

1.2.1 Übersicht

Im Erwachsenenalter bestehen Gemeinsamkeiten zwischen der CNO und dem SAPHO-Syndrom. Im Vordergrund stehen beim SAPHO-Syndrom kutane und osteoartikuläre Veränderungen. (116, 117) Bisher wurde das SAPHO-Syndrom zu den Spondylarthropathien gezählt, mittlerweile wird auch das SAPHO-Syndrom als Autoinflammationserkrankung angesehen. (5, 118)

Der Altersgipfel liegt bei ca. 40 Jahren, Frauen sind häufiger betroffen. (119) Die Erkrankung kann aber auch bei Kindern auftreten, wobei letztlich unklar ist, ob diese als Äquivalent zur CNO zu sehen ist, (62, 120) da Unterschiede vor allem in Bezug auf die Hauterscheinungen oder Lokalisation der Knochenveränderungen auffallen. (17, 121) Die Prävalenz und Inzidenz wird in der Literatur sehr unterschiedlich angegeben und bleibt letztlich unklar. (122)

Klinisch besteht auch hier ein heterogenes Bild aus Schwellung und Schmerzen, was die Diagnosestellung erschwert. (123, 124) Dabei ist die neben der sterilen Osteomyelitis bzw. Osteitis die häufig beobachtete Hyperostose charakteristisch. Vor allem betroffen sind Sternum bzw. vordere Brustwand (bzw. "anterior chest wall"), Claviculae, das Achsenskelett sowie das Iliosakralgelenk. (125-128) Die knöchernen Veränderungen sind identisch zu denen der CRMO bzw. ist die CRMO auch ein Diagnosekriterium des SAPHO-Syndroms und wird zum Symptomenkomplex des SAPHO-Syndroms gezählt. (6, 62, 122) Die häufigsten Hautveränderungen sind palmoplantare Pustulosis, Psoriasis, fulminante Akne oder Hidradenitis suppurativa.(127, 129)

Unterschiedliche Häufigkeiten der klinischen Charakteristika zwischen Kindern und Erwachsenen mit CNO bzw. SAPHO-Syndrom, die in einer Studie 2019 erhoben wurden, zeigt zur besseren Übersicht **Tabelle 2**. (17)

Tabelle 2: Häufigkeiten klinischer Charakteristika von Kindern und Erwachsenen mit CNO bzw. SAPHO-Syndrom; modifiziert nach Skrabl-Baumgartner 2019 (17)

	CNO	SAPHO
Alter bei Diagnose	ca. 12 Jahre	Ca. 32 Jahre
Anteil des weiblichen Geschlechtes	58%	60%
Gelenkbeteiligung	50 %	30%
ISG-Beteiligung	25%	10%
Hautbeteiligung	33%	40%
Schwere Akne	29%	10%

Palmoplantare Pustulosis	0	20%
Psoriasis	4%	0
Hidradenitis suppurativa	0	10%
Radiologisch nachgewiesene Herde (Median)	2	2
Unifokal	42%	40%
Clavicula	42%	10%
Sternum	8%	50%
Metaphysen langer Röhrenknochen	33%	10%
Wirbelkörperbeteiligung	21%	50%

Abkürzungen: CNO chronisch nicht-bakterielle Osteomyelitis, ISG Iliosakralgelenk, SAPHO Synovitis, Akne, Pustulosis, Hyperostose, Osteitis-Syndrom

Die Ätiopathogenese des SAPHO-Syndroms ist ähnlich wie bei der CNO unklar. (130) Dabei werden eine Immundysfunktion, genetische Veränderungen und Umweltfaktoren (z.B. Infektionen insbesondere durch Propionibacterium acnes) als ursächlich angesehen. (125, 131-136) Bei Kindern mit CNO konnte kein sicherer Zusammenhang zu Infektionen mit Propionibacterium acnes aufgezeigt werden. (35)

Beobachtet wird aber auch hier eine gesteigerte Aktivität des innaten Immunsystems mit Erhöhung von proinflammatorischen Zytokinen. (137-139) Dabei scheint die IL-17-vermittelte Entzündung eine bedeutende Rolle beim SAPHO-Syndrom zu spielen. (140-142) IL-17 trägt dabei zur Osteoklastenaktivierung bzw. Knochendestruktion im Rahmen der Entzündungsreaktion bei. (143, 144)

Da das SAPHO-Syndrom auch in Verbindung mit Autoimmunerkrankungen wie Psoriasis, Pyoderma gangrenosum oder CED einhergeht und sich auch mit der Spondylarthritis überlappt, wird vermutet, dass die sich selbst verstärkende Entzündungsreaktion auch durch Autoimmunität unterhalten werden kann. (145-149) Letztlich werden genetische Assoziationen genannt, die aber bisher nicht bestätigt werden konnten. (150-152)

Es gibt mehrere Klassifikationskriterien, die im Verlauf angepasst wurden und zuletzt von Kahn auf dem 67sten Wissenschaftstreffen des American College of Rheumatology 2003 nach klinischen Gesichtspunkten revidiert wurden und in **Tabelle 3** dargestellt sind. (132, 151, 153-155)

Tabelle 3: Klassifikationskriterien des SAPHO-Syndroms von 2003 (161, 162)

Mindestens 1 von 5 Kriterien muss erfüllt sein

- 1. Knochen- bzw. Gelenkbeteiligung in Verbindung mit PPP oder Psoriasis vulgaris
- 2. Knochen- bzw. Gelenkbeteiligung in Verbindung mit SA
- 3. Isolierte, sterile Hyperostose/Osteitis
- 4. CRMO (Kinder)
- 5. Knochen- bzw. Gelenkbeteiligung in Verbindung mit CED

Ausschluss von: Infektiöser Osteitis, tumoröse Knochenveränderungen, nicht-inflammatorische, kondensierende Knochenläsionen

Abkürzungen: PPP Palmoplantare Pustulosis, SA Spondylarthritis, CRMO chronisch rekurrierende multifokale Osteomyelitis, CED chronisch entzündliche Darmerkrankung

Analog zur CNO stützt sich die Diagnose beim SAPHO-Syndrom auf klinische Symptome, Bildgebung und Laboruntersuchungen nach Ausschluss von Differential-diagnosen. (151, 156) Auch hier ist das MRT das wichtigste bildgebende Verfahren. (90, 157, 158) Histologische und mikrobiologische Untersuchungen von Knochenmaterial dienen dem Ausschluss von Infektionen und malignen Erkrankungen und zeigen das Bild einer chronischen Entzündung passend zur CNO. (20, 159)

Die medikamentöse Therapie umfasst NSAR, DMARDs, Antibiotika, Steroide, Bisphosphonate und Biologika, wobei die NSAR-Therapie meist keinen ausreichenden und die antibiotische Therapie keinen anhaltenden Effekt zeigen. (36, 158, 160-162) Eine Bisphosphonat-Therapie zeigt gute Ergebnisse bezüglich der osteoartikulären Symptome. (127, 163, 164) Steroide intraartikulär scheinen wenig wirksam im Gegensatz zur systemischen Gabe. (165, 166) Die Wirkung von DMARDs und Biologika wie TNF-Blocker, Anakinra oder Sekukinumab wird unterschiedlich bewertet. (119, 131, 140, 167-169) Neu eingesetzte Substanzen sind Januskinase-Inhibitoren mit vielversprechendem Effekt. (169-172) Eine einheitliche Therapieempfehlung existiert bisher nicht. (151)

1.2.2 Biomarker bzw. immunologische Veränderungen bei SAPHO-Syndrom

Neben einer Erhöhung von unspezifischen Entzündungsparametern werden erhöhte, proinflammatorische Interleukin-Werte beobachtet. Insbesondere IL-1ß ist Inflammasom-unabhängig erhöht. Aber auch IL-6, IL-8, IL17A, IL-18, TNF-alpha oder RANKL sind erhöht, wobei sich dies in verschiedenen Studien unterscheidet (80, 129, 137, 138, 173, 174) Eine Erhöhung von Autoantikörpern inklusive der ANA konnte nicht in allen Studien bestätigt werden. (129, 137, 175) Als Aktivitätsmarker scheint auch die

Immunglobulin-Subklasse-4 (IgG4) vielversprechend, deren Erhöhung mit einer hohen Krankheitsaktivität korreliert. (176) 2021 wurde erstmalig über erhöhte Anti-Sperm Protein 17 (SP17)-Autoantikörper bei Patientlnnen mit SAPHO-Syndrom als potenzieller, spezifischer Biomarker bzw. Aktivitätsmarker berichtet. (177) Eine Validierung steht aus. Zudem wurde bei SAPHO-Patientlnnen eine erhöhte Anzahl von Th17-Zellen im peripheren Blut im Vergleich zu Gesunden und Psoriasis-Patientlnnen nachgewiesen. (142) Ebenso zeigte sich eine Imbalance zwischen Th17- und Treg-Zellen bzw. ein erhöhtes Th17/Treg-Verhältnis im Vergleich zu Gesunden, wodurch es zu einer anhaltenden Entzündungsreaktion kommen kann. (145, 178) Wie auch bei anderen entzündlichen Arthropathien wie z.B. der Spondylarthritis, konnte auch beim SAPHO-Syndrom eine verminderte Anzahl von NK-Zellen im peripheren Blut im Vergleich zu Gesunden aufgezeigt werden. (145) NK-Zellen scheinen eine wichtige Rolle in der Pathogenese von entzündlichen Arthropathien bzw. bei autoinflammatorischen Erkrankungen zu spielen. (179)

Zusammenfassend sind allerdings analog zur CNO derzeit keine spezifischen, für die Routine durchführbaren Laborparameter bzw. Biomarker bekannt, die die Diagnose sichern können oder prognostische Aussagen zulassen. (151)

1.3 Zusammenfassung

Die CNO ist eine autoinflammatorische Erkrankung, die sich vor allem in einer ossären Entzündung vorwiegend im Kindesalter äußert. Die Pathogenese ist unklar, genetische Veränderungen konnten nicht bestätigt werden. Pathophysiologisch scheint vor allem eine Zytokindysbalance im Vordergrund zu stehen im Unterschied zu Autoimmunerkrankungen wie zum Beispiel der JIA, bei denen vor allem Autoantigen-spezifische Immunreaktionen eine Rolle spielen. Der diagnostischen Aufarbeitung der CNO stehen Biomarker zur Diagnosestellung oder prognostischen Einschätzung in der Routine-Diagnostik nicht zur Verfügung.

Es bestehen Überschneidungen mit der Enthesitis-assoziierten-Arthritis bzw. mit der Spondylarthritis sowie dem SAPHO-Syndrom im Erwachsenenalter. Das SAPHO-Syndrom wurde zunächst nur zu den Spondylarthritiden als Autoimmunerkrankung gezählt, wird aber inzwischen auch als Autoinflammationserkrankung mit Überlappungen mit Spondylarthritiden angesehen. Neben Zytokin-Veränderungen als Ausdruck der Autoinflammation konnten beim SAPHO-Syndrom auch Veränderungen in den Lymphozytensubpopulationen im Vergleich zu Gesunden bzw. Psoriasis-PatientInnen aufgezeigt werden.

Da die CNO auch zu den Autoinflammationserkrankung gezählt wird, sind Zytokin-Veränderungen gut beschrieben. Es bestehen aber keine gezielten Untersuchungen der im peripheren Blut zirkulierenden Lymphozytensubpopulationen bei CNO-PatientInnen analog zum SAPHO-Syndrom.

1.4 Fragestellung

Ziel dieser Arbeit war es, CNO-PatientInnen durch Veränderungen des angeborenen und adaptiven Immunsystems bzw. immunologischer Biomarker im Vergleich zu autoimmunologisch erkrankten JIA-PatientInnen und immunologisch Gesunden (keine Autoantigen-vermittelte oder autoinflammatorische Erkrankung) zu charakterisieren. Unter der Annahme, dass bei der CNO Überschneidungen mit dem SAPHO-Syndrom bestehen, ziehen wir hierfür vor allem die Untersuchung von Lymphozytensubpopulationen, die bei der CNO bisher nicht untersucht wurden, heran.

Die Studie ist als klinische Explorationsstudie angelegt, um ggf. Hypothesen für weiterführende Studien generieren zu können.

Neben der immunologischen Charakterisierung von CNO-PatientInnen wurde folgende Hypothese formuliert:

 CNO-PatientInnen unterscheiden sich hinsichtlich der Verteilung von zirkulierenden Lymphozytensubpopulationen von JIA-PatientInnen und immunologisch Gesunden.

Die Hypothese bezieht sich auf die klinische Fragestellung. Zur statistischen Auswertung wurde diese aufgrund der geringen Fallzahlen als Nullhypothese formuliert (keine Unterschiede vorhanden).

Folgende Fragen sollten geklärt werden:

- (1) Lassen sich bei CNO-PatientInnen Veränderungen des angeborenen und adaptiven Immunsystems, vor allem in der Verteilung von zirkulierenden Lymphozytensubpopulationen analog zum SAPHO-Syndrom, im Vergleich zu JIA-PatientInnen und immunologisch Gesunden identifizieren?
- (2) Lassen sich bei CNO-PatientInnen Assoziationen zwischen immunologischen Veränderungen und klinischen Merkmalen explorativ erkennen? Hier wurden nur deskriptive Untersuchungen durchgeführt, da die Fallzahl rekrutierter PatientInnen zu gering war, um weiterführende statistische Analysen durchzuführen.

2 Material und Methoden

2.1 Studiendesign und Studienablauf

Die Studie war eine gemischt retrospektiv/prospektiv biomedizinische, klinische Studie im Sinne einer Explorationsstudie. Dabei war das Studienvorhaben eine interdisziplinär durchgeführte Studie, die die Disziplinen Kinderrheumatologie, Kinder- und Jugendmedizin, Kinderchirurgie, Labormedizin, internistische Hämatologie und Kinderradiologie umfasst. Diese Beobachtungsstudie ist als explorative Pilotstudie angelegt, um ggf. weitere Hypothesen generieren zu können. Daher wurde keine Fallzahlberechnung durchgeführt. Neben der Erstellung des Studienprotokolls wurde die Einwilligung inklusive Datenschutzaufklärung mit entsprechenden altersabgestuften Informationen verfasst (siehe Appendix VII). Zudem wurde ein Fragebogen zur anamnestischen Erfassung der Erkrankung selbst, des Erkrankungsbeginns, des Krankheitsverlaufes, der aktuellen Krankheitsaktivität, der medikamentösen Therapie, weiterer Vorerkrankungen, durchgeführter Bildgebungen, des Impfstatus und immunologischer Erkrankungen in der Familie angefertigt (siehe Appendix VIII).

Nach Einwilligung der Eltern bzw. der PatientInnen wurden im Rahmen einer geplanten, ambulanten Vorstellung, ggf. auch im Rahmen eines stationären Aufenthaltes, der Fragebogen ausgehändigt, Blut standardisiert abgenommen und in die entsprechenden Labore verbracht.

Es wurde eine elektronische Datenbank (Software Excel) angelegt, die alle anamnestischen Angaben sowie MRT-Befunde und alle Labordaten pseudonymisiert erfasst. Jeweils nach Erhalt des Patienten-Fragebogens, der Arztbriefe, MRT-Befundungen sowie der bestimmten Laborwerte wurden die Daten während der gesamten Studienlaufzeit entsprechend eingegeben und fehlende Angaben ggf. aus Patientenakten ergänzt. Ggf. wurden MRT-Befunde mit der Kinderradiologie nachbefundet.

Bei der CNO handelt es sich um eine seltene Erkrankung. Die PatientInnen wurden in dieser Studie in den in Augsburg vorhandenen Kinderrheumatologischen Einrichtungen rekrutiert. Die Rekrutierungszeit war auf maximal 2 Jahre begrenzt. Um eine in diesem Zeitraum erreichbare Fallzahlabschätzung zu benennen, wurde die Anzahl der behandelten CNO-PatientInnen in den vorausgegangenen Jahren betrachtet. Daraus resultierend wurde eine Rekrutierung von mind. 15 CNO-PatientInnen mit den entsprechenden Kontrollen festgelegt. Nach Erhebung der Daten folgte die Datenauswertung.

2.2 Ethik- und Tierversuchsvotum

Nach Erstellung des Studienprotokolls einschließlich der Einwilligungen mit Aufklärung über den Datenschutz sowie der Patientenfragebögen wurde ein positives Votum der Ethikkommission bei der Ludwig-Maximilians-Universität München mit Bestätigung der ethisch-rechtlichen Unbedenklichkeit der Studie ausgesprochen (Projektnummer 21-0440).

2.3 Patientenrekrutierung

2.3.1 Ein- und Ausschlusskriterien

Einschlusskriterien:

- PatientInnen unter 18 Jahren sowie junge Erwachsene bis max. 25 Jahre mit CNO bzw. SAPHO-Syndrom unabhängig vom Krankheitsstadium sowie PatientInnen mit JIA und immunologisch Gesunde (PatientInnen mit nicht-immunologisch bedingten Erkrankungen)
- KontrollpatientInnen sind nach Geschlecht und Alter (max. 10 Prozent Abweichung) gematcht
- Geplante Blutentnahme im Rahmen einer Routine-Kontrolle oder einem geplanten Eingriff
- Vorliegen der schriftlichen Zustimmung der PatientInnen bzw. Sorgeberechtigten zur Studienteilnahme

Ausschlusskriterien:

- Vorliegen einer weiteren, nicht-assoziierten immunologischen oder autoinflammatorischen Erkrankung bei CNO-PatientInnen
- Vorliegen einer autoinflammatorischen Erkrankung bei JIA-PatientInnen
- Vorliegen einer autoimmunologischen oder autoinflammatorischen Erkrankung in der Anamnese bei immunologisch Gesunden

2.3.2 Rekrutierungsablauf

Die PatientInnen mit CNO wurden im Rahmen der nächsten geplanten, ambulanten oder stationären Vorstellung in der Kinderrheumatologischen Ambulanz bzw. in der Pädiatrie am Universitätsklinikum Augsburg sowie an der KJF Klinik Josefinum, Augsburg, zur Teilnahme an der Studie unabhängig von Krankheitsstadium oder Therapie eingeladen und nach schriftlicher Einwilligung in die Studie eingeschlossen. Ebenso wurden dort

JIA-PatientInnen, die als gematchte Kontrolle in Frage kamen, eingeladen und rekrutiert. Immunologisch gesunde Kontrollen, die als gematchte Kontrolle in Frage kamen, wurden sowohl über das Ambulanzzentrum der Klinik für Kinder- und Jugendliche sowie der Kinderchirurgie am Universitätsklinikum Augsburg bzw. im Rahmen eines stationären Aufenthaltes dieser Kliniken nach Aufklärung und Einwilligung eingeschlossen.

Die Aufklärung über die Studie und deren genauer Inhalt und Ablauf erfolgte in einem Gespräch zwischen den PatientInnen bzw. deren Sorgeberechtigten und der Studienleitung bzw. in die Studie entsprechend eingeführten ÄrztInnen. In diesem Gespräch wurden Ablauf, Nutzen und Ziele der Studie, Risiken, Datenschutz, Teilnahmebedingungen und Möglichkeit zum Widerruf der Einwilligung erläutert. Hierfür erhielten die StudienteilnehmerInnen bzw. deren Sorgeberechtigten das Informationsschreiben inklusive Einwilligung und Datenschutzaufklärung.

2.4 Erstellung der Datenbank

2.4.1 Datenerfassung

Die Daten wurden elektronisch, pseudonymisiert erfasst. Dabei wurden alle anamnestischen und klinischen Daten als Zahlenwerte verschlüsselt. Die Neutrophilenaktivierung wurde als auffällig oder unauffällig durch Zahlenwerte verschlüsselt.

2.4.2 Anamnestische und klinische Daten

Es wurden folgende anamnestische und klinische Daten erfasst, sofern diese bekannt waren:

Für CNO-PatientInnen:

- Alter in Jahren bei Einschluss
- Geschlecht (männlich, weiblich)
- Manifestationszeitpunkt Monat/Jahr (bei unbekanntem Monat wurde Januar festgelegt)
- Erkrankungsdauer (Manifestation bis Einschluss in Monaten)
- Befallsmuster (unifokal, multifokal)
- Klinische Krankheitsaktivität (aktiv, inaktiv) (Beurteilung durch betreuenden Arzt)
- Krankheitsverlauf (monophasisch bzw. akut (Dauer < 6 Monate), chronisch aktiv
 (Dauer > 6 Monate) oder rekurrierend bzw. chronisch rezidivierend)

- Ärztliche Globaleinschätzung der Krankheitsaktivität (= physician global) bei Einschluss (1-10 visuelle Analogskala VAS)
- Erstsymptome bei Manifestation und im Verlauf (Schmerz, Hyperostose, Fieber, Arthralgie, Weichteilschwellung)
- Begleitsymptome bei Manifestation und im Verlauf (weitere Hautveränderungen, Arthritis, Fieber)
- Auftreten von assoziierten Erkrankungen während des gesamten Krankheitsverlaufes (Palmoplantare Pustulosis PPP, Psoriasis, CED)
- Therapie während des gesamten Verlaufs und bei Einschluss [NSAR, Bisphosphonate bei Einschluss bzw. in den letzten 3 Monaten), Biologika, DMARDs, systemische Steroide (bei Einschluss in den letzten 4 Wochen), intraartikuläre Steroide (bei Einschluss in den letzten 4 Wochen)]
- Vitamin-D-Substitution bei Einschluss (ja, nein)
- Bekannte entzündliche Vorerkrankungen in der Vorgeschichte (ja, nein)
- familiäre Belastung erstgradig Verwandter (rheumatologische Erkrankung, immunologische Erkrankung, Immundefekt)
- Impfungen (Grundimmunisierung außer SARS-CoV2) nach Impfempfehlung der Ständigen Impfkommission erhalten (ja, nein)

Für JIA-PatientInnen und immunologisch Gesunde (analog zu CNO-PatientInnen):

- Alter in Jahren und bei Einschluss
- Geschlecht (männlich, weiblich)
- Bekannte entzündliche Vorerkrankungen in der Vorgeschichte (ja, nein)
- Vitamin-D-Substitution bei Einschluss (ja, nein)
- familiäre Belastung erstgradig Verwandter (rheumatologische Erkrankung, immunologische Erkrankung, Immundefekt)
- Impfungen (Grundimmunisierung außer SARS-CoV2) nach Impfempfehlung der Ständigen Impfkommission erhalten (ja, nein)

Zusätzlich für JIA-PatientInnen:

- Manifestationszeitpunkt Monat/Jahr (bei unbekanntem Monat wurde Januar festgelegt)
- Erkrankungsdauer (Manifestation bis Einschluss in Monaten)
- Klinische Krankheitsaktivität (aktiv, inaktiv) (Beurteilung durch den betreuenden Arzt)

- Ärztliche Globaleinschätzung der Krankheitsaktivität (= physician global) bei Einschluss (1-10 VAS)
- Therapie während des gesamten Verlaufs und bei Einschluss [NSAR, Bisphosphonate bei Einschluss bzw. in den letzten 3 Monaten), Biologika, DMARDs, systemische Steroide (bei Einschluss in den letzten 4 Wochen), intraartikuläre Steroide (bei Einschluss in den letzten 4 Wochen), JAK-Inhibitoren]

2.5 MRT-Befundung

Die vorliegenden MRT-Befunde wurden überwiegend von der Kinderradiologie des Universitätsklinikums Augsburg erhoben. Extern erhobene Befunde wurden ggf. in Bezug auf die nachstehenden Merkmale in Zusammenarbeit mit der Kinderradiologie nachbefundet.

Für die Studie erhoben wurden folgende Daten:

- MRT bei Manifestation (ja, nein) bzw. inklusive in den ersten 6 Monaten nach Manifestation; wenn ja: lokal oder Ganzkörper-MRT
- MRT-Kontrollen im Verlauf (ja, nein)
- Anzahl vorhandener Herde im MRT bei Manifestation sowie im Verlauf (kumulativ)
- Lokalisation bei Manifestation und im Verlauf: obere und untere Extremitäten, Claviculae, Kiefer, Stamm außer Wirbelsäule, Wirbelkörperbeteiligung
- strukturelle Wirbelkörperveränderungen (ja, nein)
- Gelenkbeteiligung (ja, nein)
- Weichteilbeteiligung (ja, nein)

2.6 Materialgewinnung und Versorgung

Die erforderliche Blutentnahme erfolgte ausschließlich im Rahmen einer bereits geplanten bzw. notwendigen Blutentnahme nach schriftlicher Einwilligung. Dabei wurden zusätzlich ca. 1 ml EDTA-Blut (Ethylendiamintetraessigsäure-Blut) sowie ca. 1 ml Natrium-Heparin-Blut nach Standard abgenommen und nach Abnahme der Studienleitung übergeben. Es wurde zeitnah einem gesundem Kontrollprobanden Natrium-Heparin-Blut abgenommen und das gesamte Material zusammen mit dem Patientenblut umgehend bei Raumtemperatur in die entsprechenden Labore verbracht (Institut für Labormedizin und Mikrobiologie, Universitätsklinikum Augsburg bzw. Labor Becker MVZ. München; Immundiagnostisches Labor. Umweltmedizin. Universitätsklinikum Forschungslabor II. Medizinische Klinik, Augsburg;

Universitätsklinikum Augsburg). Dort wurde das Material innerhalb der nächsten 24 Stunden verarbeitet.

2.7 Laboruntersuchungen

Zur immunologischen Charakterisierung der PatientInnen wurden erweiterte immunologische Routine-Parameter, die Bestimmung der Neutrophilenaktivierung sowie eine Lymphozytendifferenzierung durchgeführt.

2.7.1 Immunologische Routine-Untersuchungen

Eine Übersicht der untersuchten Routine-Laborwerte gibt **Tabelle 4**. Dabei wurden CRP-Werte mit <0,06 mg/dl als 0,06 mg/dl sowie IL-6-Werte mit <3,5 pg/ml als 3,5 pg/ml definiert. Bei den ANA wurden Titer mit "≤" als "=" definiert. Bei allen anderen Variablen wurden die Ist-Werte in die Datenbank übernommen.

Tabelle 4: Übersicht der untersuchten Routine-Laborwerte

Leukozyten	Hämoglobin	Thrombozyten	
CRP	BSG	IL-6	
sIL-2-Rezeptor	ß2- Mikroglobulin	ANA	
IgG	IgM	IgA	
IgG1	lgG2	IgG3	lgG4
Vitamin D3			

Abkürzungen: ANA antinukleäre Antikörper, BSG Blutsenkungsgeschwindigkeit, CRP C-reaktives Protein, Ig Immunglobulin, IL Interleukin, s löslich

2.7.2 Neutrophilenaktivierung

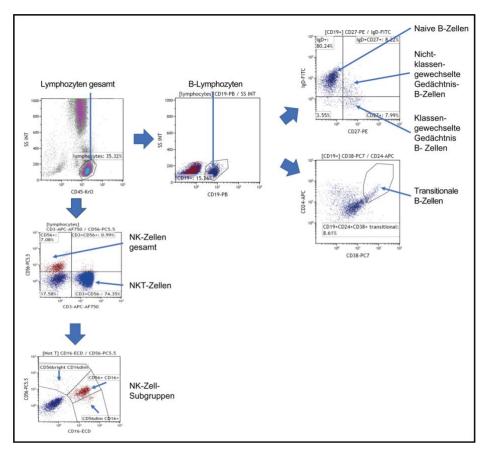
Die Neutrophilenaktivierung wurde mit einem zertifizierten Kit (FagoFlowEx Kit, exbio bzw. Phagoburst, Glycotope Biotechnology) mittels Durchflusszytometrie (Navios, Beckman Coulter) mittels Messung der DHR (Dihydrorhodamine)-markierten Sauerstoffradikale, die durch aktivierte neutrophile Granulozyten gebildet werden, bestimmt. Dabei wurden die Ergebnisse als "unauffällig" bzw. "auffällig" befundet.

2.7.3 Lymphozytendifferenzierung

Die Lymphozytendifferenzierung erfolgte, mittels Immunphänotypisierung. Dabei wurden am Durchflusszytometer (Navios Beckman Coulter®, 10 Farben) dot plots für die zu untersuchenden Zellpopulationen erstellt sowie die absoluten Zellzahlen der Gesamtlymphozyten, B-, T- und NK-Zellen mit deren Subgruppen bestimmt.

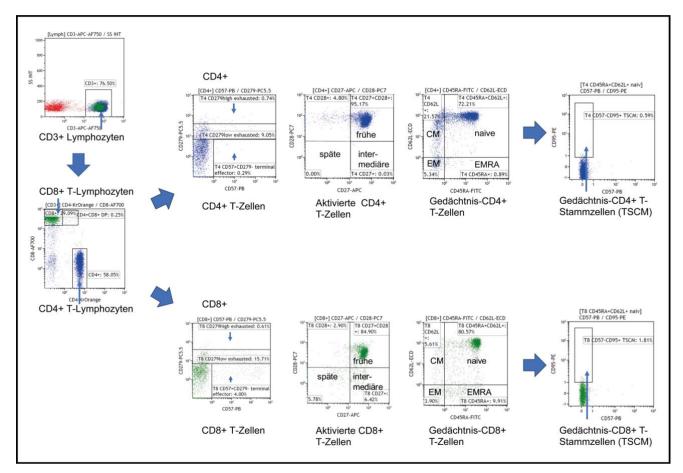
Die untersuchten Zellgruppen sind in **Tabelle 5** mit den dazugehörigen Zielantigenen/Oberflächenmarkern, die durch Zugabe entsprechender Antikörper durchflusszytometrisch differenziert wurden, aufgeführt. Eine Übersicht über die verwendeten Antikörper und die entsprechenden Farbstoffe findet sich unter **Appendix VII**. Dabei wurden vier Reagiergefäße nach Probenaufbereitung, Zugabe der Antikörper mit Färbung und Waschung untersucht. Als Antikörper-Negativ-Kontrolle wurde die Fluoreszenz-minus-one (FMO)-Methode verwendet. Zur Kalkulation der absoluten Zellzahlen wurden beads der Firma Beckman Coulter benutzt. Zur Berechnung des Th17/Treg-Verhältnisses (ratio) wurden CD4+ Treg-Werte verwendet.

Die Gating-Strategien der einzelnen Reagiergefäße sind **Abbildung 3** bis **Abbildung 6** zu entnehmen.

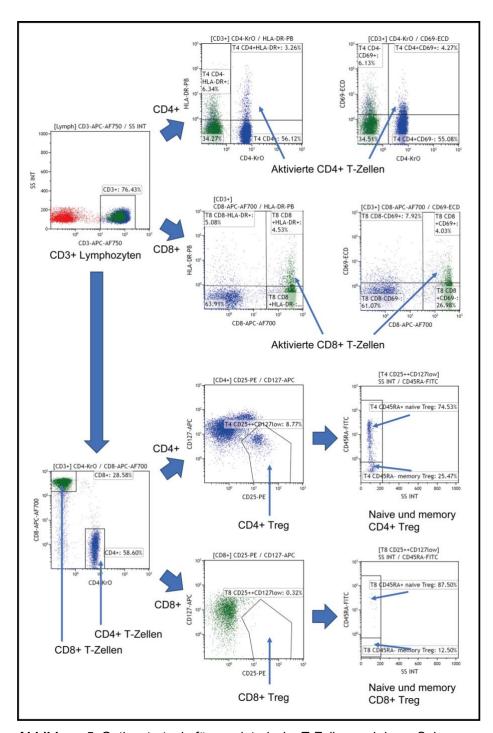

Tabelle 5: Auflistung der bestimmten Lymphozytensubpopulationen mit entsprechenden Oberflächenmarkern (blau markiert)

B- Lympho-		NK-	ı		
B- Lympho-		I INK-			
zyten	T- Lympho- zyten	ähnliche T- Zellen (NKT- Zellen)			
CD19+	CD3+	CD3+ CD56+			
Naive B- Zellen	Transit- ionale B- Zellen	Nicht klassenge- wechselte Gedächtnis - B-Zellen	Klassenge- wechselte Gedächtnis - B-Zellen		
IgD+, CD27-	CD24++ CD38++	IgD+ CD27+	IgD- CD27+		
Naive T-Helfer- zellen	Zentrale Gedächtnis -T-Helfer- zellen (CM)	Effektor- Gedächtnis -T-Helfer- zellen (EM)	Effektor Gedächtnis - RA+ T-Helfer- zellen (EMRA)	Aktivierte Gedächtnis -T-Helfer- zellen	
CD62L+, CD45RA+	CD62L+ CD45 RA-	CD62L-, CD45RA-	CD62L- CD45RA+	HLA-DR+ oder CD69+	
	Naive B-Zellen IgD+, CD27- Naive T-Helfer-zellen CD62L+,	Naive B-Zellen IgD+, CD24++CD27- Naive Gedächtnis T-Helfer-zellen CD62L+, CD62L+	CD19+ CD3+ CD3+ CD56+ Naive B-Zellen Transit-ionale B-Zellen Wechselte Gedächtnis - B-Zellen IgD+, CD24++ IgD+ CD27- CD38++ CD27+ Naive Gedächtnis -T-Helfer-Zellen (CM) Effektor-Gedächtnis -T-Helfer-Zellen (EM) CD62L+, CD62L+ CD62L-,	Naive B-Zellen Naive B-Zellen Transitionale B-Zellen IgD+, CD24++ IgD+ CD27+ CD38++ CD27+ Naive Gedächtnis -B-Zellen Verbeat Gedächtnis -B-Zellen Raive Gedächtnis -T-Helfer-Zellen (CM) CD62L+, CD62L+ CD62L- Nicht klassenge-wechselte Gedächtnis -B-Zellen Klassenge-wechselte Gedächtnis -B-Zellen Gedächtnis -B-Zellen Gedächtnis -T-Helfer-Zellen (EM) CD62L-, CD62L- CD6	Naive B-Zellen Naive B-Zellen IgD+, CD24++ CD27- Naive Gedächtnis -B-Zellen Naive T-Helfer-Zellen (CM) CD62L+, CD62L+ CD62L+, CD45 RA+ CD656+ Nicht klassenge-wechselte Gedächtnis -B-Zellen Rlassenge-wechselte Gedächtnis -B-Zellen Rlassenge-wechselte Gedächtnis -B-Zellen Gedächtnis -B-Zellen Seffektor Gedächtnis -B-Zellen Gedächtnis -RA+ T-Helfer-Zellen (EMRA) CD658A+ CD658A- CD

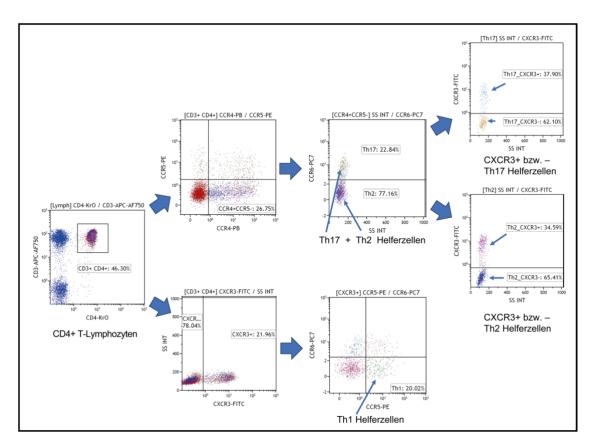
Subgruppe: Oberflächen-	Aktivierte frühe T- Helfer- zellen	Aktivierte inter- mediäre T- Helfer- zellen CD28-	Aktivierte späte T- Helfer- zellen	Terminale Effektor-T- Helfer- zellen CD279-	Low- exhausted T-Helfer- zellen	High- exhausted T-Helfe- rzellen
marker:	CD27+	CD27+	CD27-	CD57+	low	high
Subgruppe:	Th1-T- Helfer-zelle	Th2-T- Helferzelle	CXCR3+ Th2-T- Helferzelle	Th17-T- Helferzelle	CXCR3+ Th17- T- Helferzelle	
Oberflächen- marker:	CXCR3+ CCR5+ CCR6-	CCR4+ CCR5- CCR6-	CXCR3+ CCR4+ CCR5- CCR6-	CCR4+ CCR5- CCR6+	CXCR3+ CCR4+ CCR5- CCR6+	
Subgruppe:	T	T	T	Gedächtnis	T	
•	Treg- Helfer- zellen	Naive Treg- Helfer- zellen	Gedächtnis -Treg- Helfer- zellen	- T-Helfer- Stamm- zellen (TSCM)		
Oberflächen- marker:	CD25++ CD127low	CD25++ CD127low CD45RA+	CD25++ CD127low CD45RA-	CD57- CD95+		
CD3+CD8+ T-Lymphozyten (= zyto- toxische T-Zellen):				7.4.		T
Subgruppe:	Naive, zyto- toxische T- Zellen	Zentrale, zyto- toxische Gedächtnis - T-Zellen (CM)	Zyto- toxische Effektor- Gedächtnis - T-Zellen (EM)	Zyto- toxische Effektor Gedächtnis - RA+ T- Zellen (EMRA)	Aktivierte, zyto- toxische Gedächtnis - T-Zellen	
Oberflächen- marker:	CD62L+, CD45RA+	CD62L+ CD45 RA-	CD62L-, CD45RA-	CD62L- CD45RA+	HLA-DR+ oder CD69+	
Subgruppe:	T	Aktivierte,	T	T	T	
oungruppe.	Aktivierte, frühe zyto- toxische T-Zellen	inter- mediäre zyto- toxische T-Zellen	Aktivierte, späte zyto- toxische T-Zellen	Terminale, zyto- toxische Effektor- T-Zellen	Low- exhausted zyto- toxische T-Zellen	High- exhausted zyto- toxische T-Zellen
Oberflächen- marker:	CD28+ CD27+	CD28- CD27+	CD28- CD27-	CD279- CD57+	CD279+ low	CD279+ high
Subgruppe:	Zyto- toxische Treg- Zellen	Naive, zyto- toxische Treg-Zellen	Zyto- toxische Gedächtnis -Treg- Zellen	Zyto- toxische Gedächtnis - T-Stamm- zellen (TSCM)		
Oberflächen- marker	CD25++ CD127low	CD25++ CD127low CD45RA+	CD25++ CD127low CD45RA-	CD57- CD95+		


CD3-CD56+ NK-Zellen					
Subgruppe:	CD56dim CD16bright NK-Zellen	CD56+ CD16+ NK-Zellen	CD56bright CD16dim NK-Zellen		
Oberflächen- marker:	CD56dim CD16bright	CD56+ CD16+	CD56bright CD16dim		

Abkürzungen: C(X)CR Chemokinrezeptor, CD cluster of differentiation, CM central memory, EM early memory, EMRA effector memory RA+, HLA Humanes Leukozytenantigen, Ig Immunglobulin, NK natürliche Killerzellen, Th T-Helferzelle, Treg regulatorische T-Zelle, TSCM stem cell-like memory T cell, SSC side scatter count


Abbildung 3: Gatingstrategie für Lymphozyten gesamt sowie B-Lymphozyten gesamt mit B-Zell-Subgruppen und NK-Zellen gesamt mit NK-Zell-Subgruppen (Reagiergefäß 1); die Gesamt-Lymphozyten wurden im SSC/CD45 Plot nach Granularität durch Markierung des Leukozytenmarkers CD45 abgegrenzt (CD45+/SSC low); durch Zugabe der entsprechenden Oberflächenmarker (CD19, CD3, IgD, CD27, CD24, CD38, CD56, CD16) wurden die Subgruppen bestimmt.

Abkürzungen: AF Alexa Fluor®, APC Allophycocyanin, CD cluster of differentiation, ECD Electron Coupled Dye, FITC Fluorescein Isothiocyanat, Ig Immunglobulin, SS side scatter, PB Pacific Blue®, PC Phycoerythrin-Cyanin, PE Phycoerythrin


Abbildung 4: Gatingstrategie für CD4+ und CD8+ T-Zellen mit Subgruppen (Reagiergefäß 2); nach Markierung der T-Lymphozyten mit CD3, CD4 und CD8 erfolgte die Differenzierung in die entsprechenden Subgruppen mittels CD27, CD28, CD45RA, CD62L, CD57, CD279 und CD95.

Abkürzungen: AF Alexa Fluor®, APC Allophycocyanin, CD cluster of differentiation, CM central memory, ECD Electron Coupled Dye, EM early memory, EMRA early memory RA+, FITC Fluorescein Isothiocyanat, FS forward scatter, KrO Krome Orange, PB Pacific Blue®, PC Phycoerythrin-Cyanin, PE Phycoerythrin, SS side scatter, TSCM stem cell-like memory T cell, T4 CD4+-T-Helferzelle, T8 CD8+-zytotoxische T-Zelle

Abbildung 5: Gatingstrategie für regulatorische T-Zellen und deren Subgruppen sowie aktivierte T-Zellen (Reagiergefäß 3); Nach Markierung der T-Lymphozyten mit CD3, CD4 und CD8 erfolgte die Differenzierung der Treg bzw. aktivierten T-Zellen mittels HLA-DR, CD69, CD25, CD127 und CD45RA.

Abkürzungen: AF Alexa Fluor®, APC Allophycocyanin, CD cluster of differentiation, ECD Electron Coupled Dye, FITC Fluorescein Isothiocyanat, FS forward scatter, HLA Humanes Leukozytenantigen, KrO Krome Orange, PB Pacific Blue®, PC Phycoerythrin-Cyanin, PE Phycoerythrin, SS side scatter, Treg regulatorische T-Zelle, T4 CD4+-T-Helferzelle, T8 CD8+-zytotoxische T-Zelle

Abbildung 6: Gatingstrategie für Th1, Th2 und Th17 mit Subgruppen (Reagiergefäß 4); Nach Markierung der T-Helferzellen mit CD3 und CD4 erfolgte die Bestimmung der Th1, Th2 und Th17 mittels CXCR3, CCR4, CCR5 und CCR6.

Abkürzungen: AF Alexa Fluor®, APC Allophycocyanin, C(X)CR Chemokinrezeptor, CD cluster of differentiation, ECD Electron Coupled Dye, FITC Fluorescein Isothiocyanat, FS forward scatter, KrO Krome Orange, PB Pacific Blue®, PC Phycoerythrin-Cyanin, PE Phycoerythrin, SS side scatter, Th T-Helferzelle

2.8 Statistische Auswertung

Die statistische Auswertung der Daten erfolgte in enger Zusammenarbeit mit der statistischen Beratung (Dr. Stefan Schiele; Lehrstuhl für Rechnerorientierte Statistik und Datenanalyse am Institut für Mathematik; Universität Augsburg), die die statistischen Berechnungen durchführte (Software: R, Version 4.2.1). Die statistische Interpretation der Daten erfolgte gemeinsam.

Es wurde ein nichtparametrischer, gepaarter Wilcoxon-Test verwendet. Die p-Werte beziehen sich dabei auf den generellen Unterschied in der Verteilung mit Vergleich der zentralen Tendenzen zweier abhängiger Stichproben. Verglichen wurden jeweils die entsprechenden Variablen der CNO-PatientInnen mit JIA-PatientInnen bzw. der CNO-PatientInnen mit den immunologisch gesunden Kontrollen. Als statistisch signifikant wurden p-Werte < 0,05 gewertet. Der Median wurde mit dem unteren und oberen Quartil

angegeben. Weitere deskriptive Ergebnisse wurden als Mittelwert und minimalen bzw. maximalen Messwert (Min-Max) aufgelistet. Zur Beurteilung von Assoziationen und klinischen Merkmalen wurden die Ergebnisse der CNO-Gruppe nach Erkrankungsdauer (≤ bzw.> 12 Monate), Krankheitsaktivität (aktiv bzw. inaktiv) sowie Therapiestatus bei Einschluss (ohne bzw. mit) in Subgruppen stratifiziert und deskriptiv dargestellt.

3 Ergebnisse

3.1 Anamnestische und klinische Daten der Studienpopulationen

In die Studie wurden zwischen September 2021 und März 2023 16 CNO-PatientInnen im Alter zwischen 6-15 Jahren mit einem medianen Alter von 12,5 Jahren sowie jeweils 16 nach Alter und Geschlecht gematchte JIA-PatientInnen und immunologisch Gesunde eingeschlossen (Anzahl insgesamt n = 48). Die mediane Altersabweichung der KontrollpatientInnen betrug 3 Monate. Die allgemeinen und anamnestischen Charakteristika sind in **Tabelle 6** dargestellt.

Tabelle 6: Allgemeine und anamnestische Charakteristika der Studienpopulationen

	CNO	JIA	Gesunde
n	16	16	16
Alter bei Einschluss (Jahre)			
Median	12,5	13	12,5
Geschlecht (n)			
Weiblich	12	12	12
männlich	4	4	4
Vitamin D-Substitution (n)			
Ja	7	2	2
nein	9	4	10
unbekannt	0	10	4
Impfstatus (Grundimmunisierung) (n)			
ja	15	12	10
nein	0	2	1
unbekannt	1	2	5
Entzündliche Vorerkrankungen (n)			
Ja	0	3	0
nein	16	13	16
Familiäre Belastung (n)			
Ja	6	7	6
nein	10	9	10

Abkürzungen: CNO chronisch nicht-bakterielle Osteomyelitis, Gesunde Gesunde Kontrollen, JIA juvenile idiopathische Arthritis, n Anzahl

Eine Übersicht über die wichtigsten klinischen Charakteristika der CNO- und JIA-PatientInnen gibt **Tabelle 7**.

Tabelle 7: Klinische Charakteristika der CNO- und JIA-PatientInnen

	CNO	JIA
Erkrankungsdauer in Jahren bei		VIA
Einschluss		
Median	1,8	5,3
Erkrankungsdauer (n)	1,0	0,0
<=12 Monate	4	1
> 12 Monate	12	15
Krankheitsaktivität bei	12	13
Einschluss (n)		
aktiv	7	2
inaktiv	9	14
Verlauf (nur CNO) (n)		17
monophasisch (akut)	1	
Chronisch	7	
rekurrierend bzw. chronisch	8	
rezidivierend	0	
Bisherige Therapie (kumulativ; n)		
NSAR	16	3
DMARD	0	15
Biologikum	2	8
Bisphosphonat	4	0
JAK-Inhibitor	0	0
Steroide		
systemisch	1	0
intraartikulär	Ö	5
keine	Ö	0
Therapie bei Einschluss (n)		
NSAR (II)	9	0
DMARD	Ö	11
Biologikum	1	3
Bisphosphonat	Ö	0
JAK-Inhibitor	Ö	1
Steroide		
systemisch	0	0
intraartikulär	Ö	Ö
keine	6	4
Befallsmuster (nur CNO) (n)		
Unifokal	0	-
multifokal	16	
Assoziierte Begleiterkrankungen		
(nur CNO) (n)	0	-
Erstsymptome (nur CNO) (n)		
Schmerz	16	_
Weichteilschwellung	5	
Hyperostose	3	
Arthralgien	4	
Gelenkbeteiligung (nur CNO) (n)		
ja	4	_
nein	12	
Ärztliche Globaleinschätzung		
bei Einschluss (0-10 VAS)		
Median	1,0	1,5
	<i>j -</i>	, -

Abkürzungen: CNO chronisch nicht-bakterielle Osteomyelitis, DMARD Disease Modifying Anti-Rheumatic Drug, JAK Januskinase, JIA juvenile idiopathische Arthritis, n Anzahl, NSAR nicht-steroidale Antirheumatika

3.2 MRT-Befundung

Alle CNO-PatientInnen bis auf einen erhielten initial (erste 6 Monate) ein lokales MRT, 13 auch im Verlauf ein Ganzkörper-MRT. Eine Übersicht über die entsprechenden MRT-Befunde zeigt **Tabelle 8**.

Tabelle 8: MRT-Befunde der CNO-PatientInnen; + = vorhanden, - = nicht vorhanden.

CNO- PatNr.	Herde kumulativ (n)	Lok	alisat	ion		Strukturelle WK-	Gelenk- beteiligung	Weichteil- beteiligung
	(-)	OE	UE	WK	S	Veränderung	, wording amy	, seemigang
1	22	+	+	-	+	-	+	-
2	7	-	+	-	-	-	+	-
3	2	-	+	-	-	-	-	+
4	2	-	+	-	ı	ı	+	+
5	14	+	+	-	+	ı	-	-
6	8	+	+	-	+	ı	-	-
7	11	-	+	+	+	ı	+	+
8	3	-	ı	+	ı	ı	-	+
9	6	-	ı	+	+	ı	-	-
10	6	-	+	+	+	+	-	-
11	10	-	+	+	+	ı	-	-
12	6	+	+	+	+	+	-	+
13	14	+	+		+	ı	-	+
14	8	-	+	+	+	-	-	+
15	6	-	+	+	+	-	-	+
16	3	-	+	-	-	-	_	+

Abkürzungen: CNO chronisch nicht-bakterielle Osteomyelitis, CNO-Pat.-nr. CNO-PatientInnen-Nummer, n Anzahl, OE obere Extremität, S Sonstige (alles außer OE, UE oder WK), UE untere Extremität, WK Wirbelkörper

3.3 Laborergebnisse

3.3.1 Immunologische Routine-Untersuchungen

Hier fanden sich signifikante Unterschiede im Wilcoxon-Test im Vergleich zwischen CNO-PatientInnen und Gesunden bei den folgenden Variablen: Hämoglobin-Gehalt (p=0,010), CRP (p=0,018), BSG (p=0,019), IgA (p=0,018), IgG2 (p=0,033) (siehe auch **Tabelle 9**). Im Vergleich CNO-PatientInnen zu JIA-PatientInnen zeigte sich ein signifikanter Unterschied bei den Werten für das IgG1 (p=0,035) (siehe auch **Tabelle 10**). Keine Unterschiede bestanden bei: Leukozyten, Thrombozyten, IL-6, sIL2-Rezeptor, beta2-Mikroglobulin, ANA-Titer, IgG gesamt, IgM, IgG3, IgG4 und Vitamin-D3-Spiegel zwischen der CNO-Gruppe und den jeweiligen Kontrollgruppen.

Tabelle 9: Dargestellt sind Median, minimaler und maximaler Messwert und p-Wert (Wilcoxon-Test) der immunologischen Routine-Untersuchungen der CNO-PatientInnen im Vergleich zu Gesunden. Signifikante p-Werte sind rot markiert.

	CNO	Gesunde	p-Wert	
	Median	Median Min Max		
Leuko (/nl)	Min-Max	Min-Max		
Leuko (/III)	6,2 4,3-9,9	6,2 4,4-8,8	0,756	
Hb (g/l)	123,5	132,5	0,010	
nu (g/i)	111,0-149,0	119,0-161,0	0,010	
Thrombo (/nl)	295,0	284,5	0,464	
THIOHIDO (/III)	•	131,0-418,0	0,404	
CRP (mg/dl)	201,0-539,0	0,1	0,018	
CRP (Ilig/ul)	0,1 0,1-1,6	0,1-0,6	0,010	
BSG (mm/h)	7,0	2,0	0,019	
136 (IIIIII/II)	2,0-23,0	2,0-8,0	0,018	
IL-6 (pg/ml)	3,5	3,5		
ıL-6 (þg/iiii)	•	-	0,101	
sIL-2-Rez (U/ml)	3,5-14,0 271,0	3,5-3,5	0,925	
SIL-2-ReZ (U/IIII)	7	304,0	0,925	
00 Milano al ob /m a/l\	124,0-1049,0	174,0-719,0	0,464	
ß2-Mikroglob (mg/l)	1,5	1,6	0,404	
ANA (:100 Titer)	1,1-2,0 100	1,1-2,4 100	0,161	
ANA (. 100 Titer)	0-1600	0-400	0, 10 1	
IaC (ma/dl)	1085,0	955,5	1,00	
lgG (mg/dl)		· ·	1,00	
In M. (no n/all)	625,0-1560,0	678,0-1820,0	0,330	
lgM (mg/dl)	85,8	105,0	0,330	
la A (ma/dl)	47,0-188,0	45,0-273,0	0,018	
IgA (mg/dl)	185,0	99,7	0,010	
IgG1 (mg/dl)	65,0-259,0 651,0	63,0-211,0	0,638	
igG1 (mg/ai)	7	584,0	0,036	
IaC2 (ma/dl)	447,0-825,0	384,0-944,0	0.025	
lgG2 (mg/dl)	304,0	260,0	0,035	
IaC2 (ma/dl)	145,0-494,0	151,0-746,0	0.045	
IgG3 (mg/dl)	39,0	50,0 0,245		
InC4 (ma/dl)	15,0-67,0	22,0-148,0	0.592	
IgG4 (mg/dl)	39,4	31,5	0,583	
Vitamin DO //!\	10,4-143,9	2,0-140,5	0.445	
Vitamin D3 (ng/ml)	25,5	18,0	0,115	
	16,0-49,7	6,0-37,0		

Abkürzungen: ANA antinukleäre Antikörper, BSG Blutsenkungsgeschwindigkeit, CNO chronisch nichtbakterielle Osteomyelitis, CRP C-reaktive Protein, Hb Hämoglobin, Ig Immunglobulin, IL-Interleukin, JIA juvenile idiopathische Arthritis, Leuko Leukozyten, ß2-Mikroglob ß2-Mikroglobulin, Min-Max minimaler und maximaler Messwert, n Anzahl, sIL-2-Rez löslicher Interleukin-2-Rezeptor, Thrombo Thrombozyten

Tabelle 10: Dargestellt sind Median, minimaler und maximaler Messwert und p-Wert (Wilcoxon-Test) bei den immunologischen Routine-Untersuchungen der CNO-PatientInnen im Vergleich mit JIA-PatientInnen. Signifikante p-Werte sind rot markiert.

	CNO	JIA	p-Wert	
	Median Min-Max	Median Min-Max		
Leuko (/nl)	6,2 4,3-9,9	7,4 5,9-10,0	0,215	
Hb (g/l)	123,5 111,0-149,0	131,0 114,0-151,0	0,051	
Thrombo (/nl)	295,0 201,0-539,0	286,0 212,0-411,0	0,623	
CRP (mg/dl)	0,1 0,1-1,6	0,1 0,1-0,7	0,142	
BSG (mm/h)	7,0 2,0-23,0	4,5 2,0-17,0	0,091	
IL-6 (pg/ml)	3,5 3,5-14,0	3,5 3,5-7,5	0,106	
sIL-2-Rez (U/ml)	271,0 124,0-1049,0	355,0 217,0-417,0	0,273	
ß2-Mikroglob (mg/l)	1,5 1,1-2,0	1,4 1,1-1,8	0,469	
ANA (:100 Titer)	100 0-1600	320 0-400	0,609	
IgG (mg/dl)	1085,0 625,0-1560,0	1219,0 858,0-1720,0	0,175	
IgM (mg/dl)	85,8 47,0-188,0	96,5 45,0-278,0	0,820	
lgA (mg/dl)	185,0 65,0-259,0	134,0 55,0-423,0	0,144	
lgG1 (mg/dl)	651,0 447,0-825,0	743,0 532,0-1120	0,033	
lgG2 (mg/dl)	304,0 145,0-494,0	276,5 161,0-582,0	0,600	
IgG3 (mg/dl)	39,0 15,0-67,0	44,5 17,0-118,0	0,256	
lgG4 (mg/dl)	39,4 10,4-143,9	37,4 5,5-168,0	0,454	
Vitamin D3 (ng/ml)	25,5 16,0-49,7	19,6 6,8-42,0	0,121	

Abkürzungen: ANA antinukleäre Antikörper, BSG Blutsenkungsgeschwindigkeit, CNO chronisch nichtbakterielle Osteomyelitis, CRP C-reaktive Protein, Hb Hämoglobin, Ig Immunglobulin, IL Interleukin, JIA juvenile idiopathische Arthritis, Leuko Leukozyten, ß2-Mikroglob ß2-Mikroglobulin, Min-Max minimaler und maximaler Messwert, n Anzahl, sIL-2-Rez löslicher Interleukin-2-Rezeptor, Thrombo Thrombozyten

Die Ergebnisse der Routine-Laborparameter der CNO-PatientInnen wurden nach Erkrankungsdauer, Krankheitsaktivität und Therapiestatus stratifiziert und sind in **Tabelle 11** abgebildet. Die ANA sowie Vitamin D3 wurden hier nicht mitgeführt, da diese nicht als Aktivitätsmarker oder Biomarker geeignet sind.

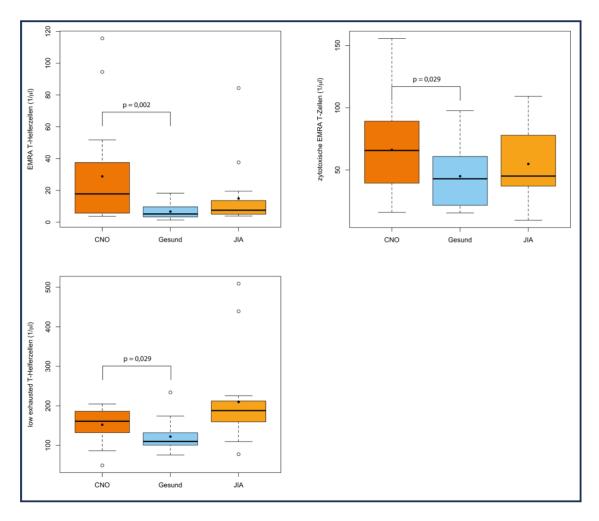
Tabelle 11: Dargestellt sind Median und minimaler und maximaler Messwert der Routine-Laborparameter der CNO-PatientInnen nach Unterteilung in Erkrankungsdauer ≤12 bzw. >12 Monate, Krankheitsaktivität aktiv bzw. inaktiv und Therapiestatus ohne bzw. mit Therapie bei Studieneinschluss.

	< 12	> 12	aktiv	inaktiv	ohne	mit
	Monate	Monate			Therapie	Therapie
	(n=4)	(n=12)	(n=7)	(n=9)	(n=6)	(n=10)
	Median	Median	Median	Median	Median	Median
	Min-Max	Min-Max	Min-Max	Min-Max	Min-Max	Min-Max
Louke	7.5	5.0	7.2	6.0	6.2	6.0
Leuko (/nl)	7,5 6,1-9,9	5,9 4,3-9,2	7,3 5,7-9,9	6,0 4,3-9,2	6,2 5.2-9.9	6,2 4,3-9,2
Hb (g/l)	122,0	126,5	124,0	123,0	121,0	125,5
116 (9/1)	112,0-	111,0-	111,0-	112,0-	117,0-	111,0-
	127,0	149,0	138,0	149,0	149,0	138,0
Thr (/nl)	305,0	295,0	277,0	310,0	264,0	303,5
(,	277,0-	201,0-	201,0-	246,0-	201,0-	235,0-
	539,0	406,0	539,0	369,0	369,0	539,0
CRP	0,4	0,1	0,2	0,1	0,1	0,1
(mg/dl)	0,1-1,3	0,1-1,6	0,1-1,3	0,1-1,6	0,1-0,7	0,1-1,6
BSG	20,5	3,0	12,0	3,0	5,5	12,0
(mm/h)	8,0-23,0	2,0-16,0	2,0-23,0	2,0-23,0	2,0-12,0	2,0-23,0
IL-6	7,7	3,5	3,5	3,5	3,5	3,5
(pg/ml)	3,5-14,0	3,5-6,3	3,5-14,0	3,5-4,8	3,5-11,8	3,5-14,0
sIL-2-	576,5	241,5	285,0	268,0	286,5	257,0
Rez	260,0-	124,0-	124,0-	180,0-	180,0-	124,0-
(U/ml)	1049,0	322,0	1049,0	738,0	1049,0	738,0
ß2-	1,7	1,5	1,5	1,5	1,5	1,6
Mikrogl	1,4-2,0	1,1-2,0	1,1-1,9	1,1-2,0	1,4-1,9	1,1-2,0
(mg/l)	4000.0	4404.5	4000.0	4400.0	4454.5	004.0
IgG	1080,0	1121,5	1080,0	1100,0	1151,5	994,0
(mg/dl)	625,0- 1090,0	857,0-	625,0-	857,0-	1080,0-	625,0-
IgM	88,3	1560,0 84,0	1190,0 86,6	1560,0 83,0	1560,0 119,0	1230,0 84,8
(mg/dl)	76,0-150,0	47,0-188,0	53,0-180,0	47,0-188,0	47,0-188,0	53,0-169,0
IgA	166,0	185,0	199,0	152,0	174,5	185,0
(mg/dl)	98,0-255,0	65,0-259,0	115,0-	65,0-259,0	89,0-259,0	65,0-255,0
(mg/ai)	00,0 200,0	00,0 200,0	255,0	00,0 200,0	00,0 200,0	00,0 200,0
IgG1	672,0	635,0	635,0	638,5	722,0	598,0
(mg/dl)	470,0-	447,0-	470,0-	447,0-	635-	447,0-
	722,0	825,0	791,0	825,0	820,0	825,0
lgG2	341,0	304,0		307,5	304,0	299,0
(mg/dl)	287,0-	145,0-	231,0-	145,0-	244,0-	145,0-
	494,0	436,0	494,0	369,0	436,0	494,0
IgG3	45,5	36,0	47,0	37,5	47,0	37,5
(mgl/dl)	36,0-58,0	15,0-67,0	17,0-67,0	15,0-63,0	34,0-63,0	15,0-67,0
IgG4	30,8	60,4	37,4	63,6	88,5	33,3
(mg/dl)	18,5-101,0	10,4-143,9	12,2-143,9	10,4-88,5	20,4-143,9	10,4-76,2

Abkürzungen: ANA antinukleäre Antikörper, BSG Blutsenkungsgeschwindigkeit, CNO chronisch nichtbakterielle Osteomyelitis, CRP C-reaktive Protein, Hb Hämoglobin, Ig Immunglobulin, IL Interleukin, JIA juvenile idiopathische Arthritis, Leuko Leukozyten, ß2-Mikroglob ß2-Mikroglobulin, Min-Max minimaler und maximaler Messwert, n Anzahl, sIL-2-Rez löslicher Interleukin-2-Rezeptor, Thr Thrombozyten, Vit Vitamin

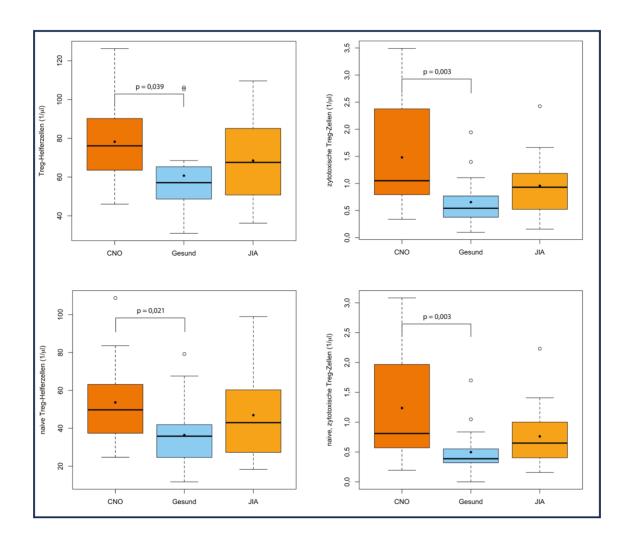
3.3.2 Neutrophilenaktivierung

Keine von den untersuchten (16 x CNO, 14 x JIA, 14 x Ges) Laborproben zeigte Auffälligkeiten in der Neutrophilenaktivierung (oxidative burst). Somit ergab sich kein Hinweis auf eine Granulozytenfunktionsstörung. Bei vier PatientInnen war eine Untersuchung aus labortechnischen Gründen nicht möglich, da zum Rekrutierungszeitpunkt die Analytik aufgrund zu niedriger Temperaturen in den Laborräumen technisch nicht gelang.

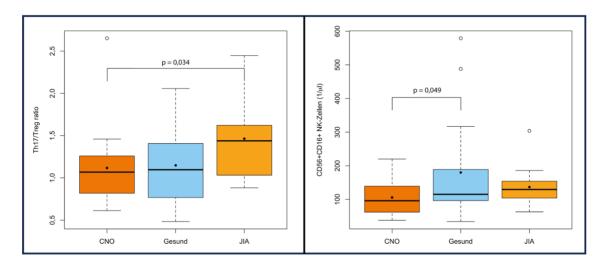

3.3.3 Lymphozytendifferenzierung

Signifikant erhöhte Werte fanden sich im Wilcoxon-Test bei den CNO-PatientInnen im Vergleich zu Gesunden bei Effektor-Gedächtnis-RA+-T-Helferzellen (EMRA) (p=0,002), low-exhausted T-Helferzellen (p=0,029), Treg-Helferzellen (p=0,039), naiven Treg-Helferzellen (p=0,021), zytotoxischen Effektor Gedächtnis- RA+-T-Zellen (EMRA) (p=0,034), zytotoxischen Treg-Zellen (p=0,003) und naiven, zytotoxischen Treg-Zellen (0,003).

Die CD56+CD16+ NK-Zellen waren im Vergleich von CNO-PatientInnen mit Gesunden signifikant vermindert (p=0,049). Die Th17/Treg Ratio (CD4+) zeigte sich bei CNO-PatientInnen im Vergleich zu JIA-PatientInnen ebenso signifikant vermindert (p=0,034). Bei den anderen Subpopulationen ergaben sich keine signifikanten Unterschiede zwischen CNO- und JIA-PatientInnen bzw. Gesunden.


Die Ergebnisse der entsprechenden Lymphozytensubpopulationen, bei denen signifikante Unterschiede bestanden, sind in **Abbildung 7**, **Abbildung 8** und **Abbildung 9** als boxplots inklusive der signifikanten p-Werte dargestellt.

Aus Gründen der Übersichtlichkeit wurde auf die Angabe der Laborwerte der Lymphozytensubpopulationen, für die keine signifikanten Unterschiede ermittelt wurden, verzichtet.


Abbildung 7: Boxplots der Messwerte (mit unterer und oberer Quartile) der EMRA-T-Helferzellen, zytotoxischen EMRA-T-Helferzellen sowie low exhausted T-Helferzellen der CNO-PatientInnen (orange), gesunden Kontrollen (blau) sowie JIA-PatientInnen (gelb). Der Median ist als waagrechter Strich, der Mittelwert als ausgefüllter Punkt eingezeichnet. Ebenso sind signifikante p-Werte (Wilcoxon-Test) markiert.

Abkürzungen: CNO chronisch nicht-bakterielle Osteomyelitis, EMRA Effektor-RA+-Gedächtniszelle, Gesund gesunde Kontrolle, JIA juvenile idiopathische Arthritis, p Signifikanzwert

Abbildung 8: Boxplots der Messwerte (mit unterer und oberer Quartile) der Treg-Helferzellen, zytotoxischen Treg-T-Zellen sowie naiven Treg-Helferzellen und naiven zytotoxischen Treg-Zellen der CNO-PatientInnen (orange), gesunden Kontrollen (blau) sowie JIA-PatientInnen (gelb). Der Median ist als waagrechter Strich, der Mittelwert als ausgefüllter Punkt eingezeichnet. Ebenso sind signifikante p-Werte (Wilcoxon-Test) markiert.

Abkürzungen: CNO chronisch nicht-bakterielle Osteomyelitis, JIA juvenile idiopathische Arthritis, p Signifikanzwert, Treg regulatorische T-Zelle

Abbildung 9: Boxplots der Messwerte (mit unterer und oberer Quartile) der Th17/Treg Ratio sowie CD56+CD16+ NK-Zellen der CNO-PatientInnen (orange), gesunden Kontrollen (blau) sowie JIA-PatientInnen (gelb). Der Median ist als waagrechter Strich, der Mittelwert als ausgefüllter Punkt eingezeichnet. Ebenso sind signifikante p-Werte (Wilcoxon-Test) markiert.

Abkürzungen: CD cluster of differentiation, CNO chronisch nicht-bakterielle Osteomyelitis, JIA juvenile idiopathische Arthritis, p Signifikanzwert, Th T-Helferzelle, Treg regulatorische T-Zelle

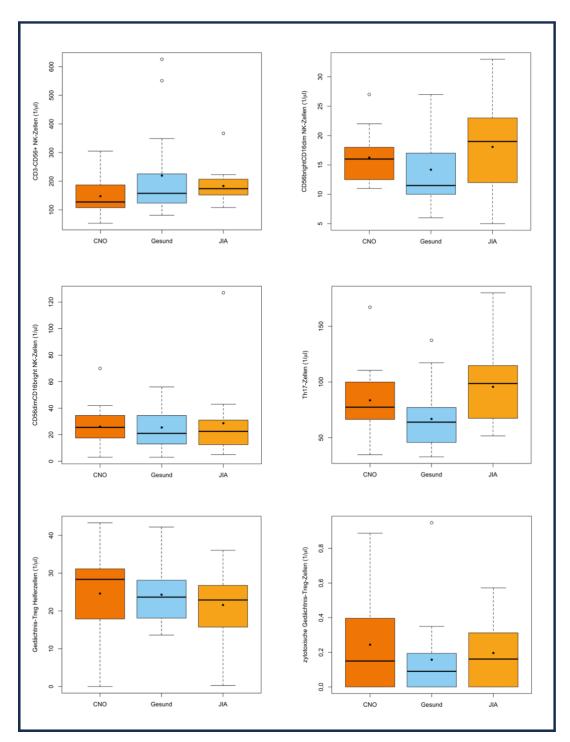

Die Ergebnisse der Lymphozytensubpopulationen wurden bei der CNO-Gruppe analog zu den oben aufgeführten Routine-Laborparametern nach Erkrankungsdauer, Krankheitsaktivität und Therapiestatus stratifiziert. In **Tabelle 12** werden die stratifizierten Subpopulationen inklusive der Th17/Treg Ratio aufgeführt, die im Vergleich der CNO-Gruppe entweder mit der JIA-Gruppe oder der Gruppe der Gesunden signifikante Unterschiede zeigten. Aufgrund der geringen Fallzahlen wurden keine weiteren statistischen Berechnungen durchgeführt. Aus Gründen der Übersichtlichkeit wurde auf die Darstellung der Lymphozytensubpopulationen, die im Vergleich CNO- mit JIA-PatientInnen bzw. Gesunden nicht signifikant waren, auch hier verzichtet.

Tabelle 12: Dargestellt sind Median und minimaler und maximaler Messwert von Lymphozytensubpopulationen der CNO-PatientInnen nach Unterteilung in Erkrankungsdauer ≤12 bzw. >12 Monate, Krankheitsaktivität aktiv bzw. inaktiv und Therapiestatus ohne bzw. mit Therapie bei Studieneinschluss (Absolutwerte/μI). Aufgelistet sind nur die Lymphozytensubpopulationen, die im Vergleich zwischen CNO-PatientInnen und JIA-PatientInnen bzw. Gesunden signifikante Unterschiede aufwiesen.

	< 12 Monate (n=4)	> 12 Monate (n=12)	aktiv (n=7)	inaktiv (n=9)	ohne Therapie (n=6)	mit Therapie (n=10)
	Median Min-Max	Median Min-Max	Median Min-Max	Median Min-Max	Median Min-Max	Median Min-Max
EMRA-T-	10,4	19,8	12,9	21,9	16,1	18,3
Helferzellen	3,7-39,6	5,2-115,6	3,7-51,7	5,2-115,6	4,5-51,7	3,7-115,6
Zytotoxische	69,4	65,7	65,8	52,7	55,0	80,5
EMRA	16,0-96,3	17,7-	16,0-	117,7-	16,0-73,7	17,7-
T-Zellen		155,7	155,7	101,6		155,7
Low-	164,0	161,0	145,5	174,7	161,0	153,7
exhausted	111,2-	49,3-	111,2-	49,3-	134,8-	49,3-
T-Helferzellen	199,3	204,7	199,3	204,7	204,7	199,3
Treg-	74,1	76,1	76,5	66,4	78,8	65,8
Helferzellen	64,0-81,1	46,1-	50,4-86,7	46,1-	66,4-	46,1-
		126,3		126,3	126,3	109,4
Naive	45,4	58,2	49,7	63,0	53,6	45,5
Treg-	37,2-49,8	24,7-	34,7-58,8	24,7-	37,6-83,6	24,7-
Helferzellen		108,8		108,8		108,8
Zytotoxische	1,7	0,9	1,3	0,9	1,1	1,0
Treg-Zellen	0,9-3,5	0,3-3,0	0,3-3,5	0,6-2,8	0,3-3,5	0,6-3,0
Naive,	1,3	0,8	0,7	0,9	0,9	0,8
zytotoxische	0,5-3,1	0,2-3,0	0,3-3,1	0,2-2,0	0,3-3,1	0,2-3,0
Treg-Zellen						
Th17/Treg	1,1	1,1	1,1	1,0	1,1	1,1
Ratio	0,6-1,3	0,7-2,7	0,6-1,5	0,7-2,7	0,6-1,5	0,7-2,7
CD56+CD16+	136,0	89,5	99,0	86,0	84,5	124,5
NK-Zellen	65,0-	38,0-	53,0-	38,0-	51,0-	38,0-
	220,0	172,0	220,0	172,0	108,0	220,0

Abkürzungen: EMRA Effektor Gedächtnis- RA+ T-Helferzellen, n Anzahl, NK natürliche Killerzellen, Min-Max minimale und maximale Messwerte, Th T-Helferzellen, Treg regulatorische T-Zellen

Die bisher beim SAPHO-Syndrom beschriebenen Unterschiede zwischen SAPHO-PatientInnen und gesunden Kontrollen betrafen NK-Zellen, Th17 und Treg-Zellen. Die signifikanten Unterschiede bei Treg (CD4+ Helferzellen und CD8+ zytotoxische T-Zellen), naiven Treg (CD4+ Helferzellen und CD8+ zytotoxische T-Zellen), CD56+CD16+ NK-Zellen und der Th17/Teg Ratio wurden bereits oben beschrieben. Bei den weiteren Treg-Subpopulationen, NK-Zellen sowie weiteren Subgruppen ergaben sich keine signifikanten Unterschiede, werden aber aufgrund des Vergleiches mit dem SAPHO-Syndrom als boxplots in **Abbildung 10** mit aufgeführt.

Abbildung 10: Boxplots der Messwerte (mit unterer und oberer Quartile) der Gedächtnis-Treg (Helferzellen und zytotoxische Zellen), Th17, CD3-CD56+ NK-Zellen, CD56dimCD16bright bzw. CD56brightCD16dim NK-Zellen der CNO-PatientInnen (orange), gesunden Kontrollen (blau) sowie JIA-PatientInnen (gelb). Der Median ist als waagrechter Strich, der Mittelwert als Punkt eingezeichnet.

Abkürzungen: CD cluster of differentiation, CNO chronisch nicht-bakterielle Osteomyelitis, Gesund gesunde Kontrolle, JIA juvenile idiopathische Arthritis, NK natürliche Killerzelle, Th T-Helferzelle, Treg regulatorische T-Zelle, Zytotox. Zytotoxische T-Zelle

4 Diskussion

4.1 Zusammenfassung der Hauptergebnisse

In der Zusammenschau konnten wir Unterschiede in den immunologischen Routine-Untersuchungen sowie in der Lymphozytendifferenzierung zwischen CNO-PatientInnen und JIA-PatientInnen bzw. immunologisch Gesunden nachweisen.

Bei den immunologischen Routine-Untersuchungen zeigte sich eine signifikant erhöhte Entzündungsaktivität bei den CNO-PatientInnen im Vergleich zu Gesunden, wenn dies auch nicht alle Entzündungswerte betraf. Im Vergleich zu den JIA-PatientInnen ergaben sich keine spezifischen Unterschiede.

Ebenso bestanden signifikante Unterschiede in verschiedenen Lymphozytensubpopulationen zwischen CNO-Patientlnnen und gesunden Kontrollen. Diese betrafen Effektor-Gedächtnis-RA+-T-Zellen sowie Treg-Zellen, low exhausted T-Helferzellen und CD56+CD16+-NK-Zellen. Die Th17/Treg Ratio bei den CNO-Patientlnnen war gegenüber JIA-Patientlnnen signifikant erniedrigt.

Somit konnte die Hypothese, dass sich Unterschiede in den Lymphozytensubpopulationen zwischen CNO-PatientInnen und JIA-PatientInnen bzw. gesunden Kontrollen zeigen, bestätigt werden.

Die vorbeschriebenen Veränderungen der Lymphozytensubpopulationen beim SAPHO-Syndrom konnten nicht gleichermaßen nachgewiesen werden. Im Vergleich zu Voruntersuchungen beim SAPHO-Syndrom zeigten die CD3-CD56+NK-Zellen bei den CNO-Patientlnnen im Vergleich zu Gesunden mit p=0,08 knapp keinen signifikanten Unterschied. Die CD56+CD16+ NK-Zell-Subgruppe zeigte sich allerdings signifikant erniedrigt, wurde aber bei SAPHO-PatientInnen bisher nicht gezielt untersucht.

Eine weiterführende statistische Auswertung der Variablen in Bezug auf Assoziationen zwischen immunologischen Veränderungen inklusive der Lymphozytensubpopulationen und klinischen Merkmalen von CNO-Untergruppen war aufgrund der geringen Fallzahlen nicht möglich. Hier sind die Ergebnisse rein deskriptiv dargestellt.

4.2 Bewertung der Ergebnisse

In dieser Arbeit sollten immunologische Veränderungen insbesondere der Lymphozytensubpopulationen bei CNO-PatientInnen im Vergleich zu JIA-PatientInnen sowie Gesunden charakterisiert bzw. identifiziert werden. Vor allem wurde die Hypothese, dass sich Unterschiede in den Lymphozytensubpopulationen zwischen CNO-PatientInnen und JIA-PatientInnen bzw. Gesunden nachweisen lassen,

untersucht. Dabei wurden Veränderungen der Lymphozytensubpopulationen mit Voruntersuchungen beim SAPHO-Syndrom verglichen. Ggf. sollten weitere Hypothesen generiert werden.

Zudem sollte eine Beschreibung von möglichen Assoziationen der untersuchten Parameter zu klinischen Merkmalen von CNO-Untergruppen erfolgen.

4.2.1 Immunologische Routine-Untersuchungen

Entzündungsparameter

Unsere Untersuchungen decken sich mit denen in der Literatur beschriebenen Veränderungen der Entzündungsparameter. Mehrere Autoren wie Girschick et al., Lenert et al., Hoffmann et al. wie auch weitere beobachteten erhöhte Werte für BSG, CRP, IL-6 und sIL-2-Rezeptor bei CNO-PatientInnen vor allem bei Erkrankungsbeginn. Diese waren nicht immer gleichermaßen verändert, korrelierten aber teils mit klinischen Entzündungszeichen oder radiologischen Veränderungen wie z.B. der Anzahl der aktiven Herde (unifokal versus multifokal). Eine Unterscheidung zu JIA-PatientInnen oder weiteren Differentialdiagnosen wie z.B. chronisch entzündlichen Darmerkrankungen gelang nur in Verbindung mit weiteren Parametern. Die Bestimmungen von vor allem BSG und CRP werden aber als Aktivitätsmarker genutzt. (7, 12, 16, 22, 46, 82, 99, 114, 180) Ein erniedrigter Hb-Wert ist bei einem Teil der CNO-PatientInnen in der Literatur so z.B. von Jansson et al. beschrieben, ist aber ebenso unspezifischer Ausdruck einer chronischen Entzündung und kann Aktivitätsüberwachung genutzt werden. (10, 181)

Eine Beurteilung bezüglich unifokalen oder multifokalen Befalls lassen unsere Daten nicht zu, da hier keine PatientInnen mit unifokalem Befall eingeschlossen wurden.

Unsere Beobachtung, dass CNO-PatientInnen mit einer Erkrankungsdauer ≤ 12 Monaten deskriptiv höhere Entzündungsparameter als die mit längerer Erkrankungsdauer zeigen, ist in der Literatur so nicht untersucht. Dies könnte sich aber mit den berichteten Beobachtungen von Catalano-Pons et al. decken. Hier waren die BSG und das CRP vor allem initial bei Manifestation der CNO erhöht. (99) Die deskriptiv höheren BSG-Werte bei unseren CNO-PatientInnen mit aktiver Krankheitsaktivität konnten bestätigen, dass die BSG als Aktivitätsmarker in Frage kommt. Für eine statistische Auswertung sind Untersuchungen an einem größeren Kollektiv zur Bestätigung notwendig.

Die erhöhten Entzündungsparameter sind zusammenfassend als Ausdruck einer chronischen Entzündung zu werten und können als Aktivitätsmarker eingesetzt werden. Als Biomarker zur Unterscheidung zu anderen entzündlichen Erkrankungen sind diese nicht geeignet, wie es z.B. auch von Jansson et al. bewertet wurde. (16)

Immunglobuline

Zu IgG, IgA und IgM bei CNO-PatientInnen fanden sich unterschiedliche Ergebnisse. So beobachtete Beck et al. erhöhte IgA-Werte bei Erkrankungsbeginn, wohingegen bei Jansson et al. das IgA normwertig war. (12, 16) Das IgG lag überwiegend im Normbereich oder war erhöht, das IgM wurde durch Beck et al. allenfalls initial als vermindert beschrieben (7, 12, 16, 112) Bei SAPHO-PatientInnen konnten erhöhte IgA-Level bei nicht erhöhtem IgG und IgM durch Hurtado-Nedelec et al. und Li et al. aufgezeigt werden. (137, 176)

Das erhöhte IgA in unserer CNO-Gruppe deckt sich mit den Angaben von Beck et al.. (12) Eine Unterscheidung zur JIA konnte auch hier nicht aufgezeigt werden. Damit ist dies als unspezifische Erhöhung zu sehen, kann aber Ausdruck einer IgA-induzierten chronischen Inflammation sein, wie es auch bei Autoimmunerkrankungen wie z.B. dem systemischen Lupus erythematodes, Zöliakie, rheumatoider Arthritis oder auch bei chronisch entzündlichen Darmerkrankungen trotz unklarem Pathomechanismus beschrieben ist. (182-185)

In einer retrospektiven Studie von Jansson et al. waren die IgG-Subklassen 1-3 nur bei einem Teil der eingeschlossenen CNO-PatientInnen erhöht, weitere Untersuchungen der IgG-Subklassen bei CNO-PatientInnen liegen nicht vor. (16) Bei Erwachsenen mit SAPHO-Syndrom konnte Li et al. erhöhte IgG4-Level nachweisen, die mit vermehrtem Schmerz und erhöhter Krankheitsaktivität assoziiert wurden. Eine signifikante Erhöhung der weiteren IgG-Subklassen 1-3 wurde nicht nachgewiesen. (176) Eine Erhöhung der IgG1- und IgG3-Subklassen bzw. aller IgG-Subklassen können je nach Literaturangabe bei PatientInnen mit Rheumatoider Arthritis sowie JIA assoziiert sein. (186-188)

Somit sind unsere Ergebnisse der Immunglobuline sowie IgG-Subklassen bei sehr uneinheitlichen Literaturergebnissen bzw. fehlenden Untersuchungen bei der CNO schwierig einzuordnen. Eine Unterscheidung zur JIA ist bis auf das IgG1 in unserer Untersuchung nicht möglich.

Möglicherweise könnte unsere Beobachtung, dass die Werte in der Therapie-naiven CNO-Untergruppe bei IgG, IgM und IgG-Subklassen außer IgG2 deskriptiv höher sind

als in der Untergruppe mit Therapie, mit einer effektiven Therapie assoziiert sein. Weitere Untersuchungen zur statistischen Auswertung sind hier notwendig.

Von Jansson et al. ist der Nachweis von unspezifischen ANA bei CNO-PatientInnen beschrieben. (16) Es konnten aber keine Assoziationen zum Krankheitsverlauf aufgezeigt werden. (7) Somit ist die Rolle der ANA unklar. Unsere Ergebnisse stützen dies, da kein Unterschied zu den Kontrollgruppen vorlag und damit die ANA als Biomarker ungeeignet sind.

In der Literatur waren keine Untersuchungen des Vitamin D3-Spiegels in großen Kollektiven bei CNO-PatientInnen aufzufinden. Die Bestimmung dient dem Ausschluss von Differentialdiagnosen. (121) Eine Untersuchung scheint aber sinnvoll, da eine positive Beeinflussung von systemischer Entzündung und Schmerzreduktion durch Vitamin-D-Substitution diskutiert wird. (189-191) Eine Beurteilung bei unserem CNO-Kollektiv ist aufgrund der Vitamin-D3-Substitution bei über der Hälfte der CNO-PatientInnen im Gegensatz zu den Kontrollgruppen eingeschränkt. Daher erfolgte hier wie bei den ANA keine weitere Beurteilung bezüglich der CNO-Untergruppen.

Zusammenfassend zeigen die Ergebnisse der immunologischen Routine-Laborparameter, dass CNO-PatientInnen im Unterschied zu Gesunden bei Studieneinschluss eine erhöhte Entzündungsaktivität zeigten. Diese können als unspezifische Aktivitätsmarker eingesetzt werden. Eine Unterscheidung zu JIA-PatientInnen lassen diese aber nicht zu und sind als Krankheits-spezifische Biomarker nicht geeignet.

4.2.2 Neutrophilenaktivierung

Ferguson et al. untersuchte Neutrophilenfunktionsstörungen bei SAPHO-PatientInnen, die in den dort vergleichbaren Untersuchungen zu den hier durchgeführten keine Auffälligkeiten zeigten. (192) Weitere Untersuchungen, insbesondere bei der CNO, liegen nicht vor. Zusammenfassend ergaben sich keine Hinweise für eine Granulozytenfunktionsstörung bzw. septische Granulomatose als mögliche Ursache der Osteomyelitis in unserem Kollektiv, ebenso nicht in den Kontrollgruppen. Unsere Ergebnisse zeigen, dass diese Untersuchung nur zum Ausschluss von Differentialdiagnosen geeignet ist.

4.2.3 Lymphozytensubpopulationen

B-Zell-Subgruppen

In der Untersuchung von Xu et al. bei SAPHO-PatientInnen zeigten sich keine signifikanten Unterschiede der Gesamt-B-Lymphozyten im Vergleich zu Gesunden, die B-Zell-Subgruppen wurden nicht untersucht. (145) Bei neu diagnostizierten, Therapienaiven JIA-PatientInnen konnten ebenso keine signifikanten Unterschiede der Gesamt-B-Lymphozyten im Vergleich zu Gesunden durch Zahran et al. beobachtet werden, allerdings zeigten sich signifikant verminderte Gedächtnis-B-Zellen, klassengewechselte Gedächtnis-B-Zellen und IgM Gedächtnis-B-Zellen sowie signifikant erhöhte naive B-Zellen ähnlich weiterer Untersuchungen bei der RA. Hier wird vermutet, dass die Reduktion der entsprechenden B-Gedächtniszellen im peripheren Blut Folge einer Einwanderung in das entzündliche Gelenk ist. (193-196) Zur CNO liegen keine Untersuchungen zu B-Zell-Subgruppen vor, sodass eine Beurteilung diesbezüglich nicht einzuordnen ist. Eine Unterscheidung zu Gesunden bzw. JIA-PatientInnen ist bei unseren Ergebnissen nicht möglich.

T-Zell-Subgruppen

Erhöhte EMRA-T-Zellen und low exhausted T-Helferzellen als Ausdruck einer T-Zell-Erschöpfung

EMRA-T-Zellen

EMRA-T-Zellen (= TEMRA), sowohl CD4+ wie auch CD8+, sind bisher nicht bei CNO-, SAPHO- oder JIA-PatientInnen im peripheren Blut untersucht, daher lassen sich hier keine Vergleiche durchführen.

Die überwiegend zirkulierenden EMRA-T-Zellen oder auch terminal differenzierte Effektorzellen stellen ausdifferenzierte Gedächtniszellen mit Verlust von Effektorfunktionen dar und finden sich häufig bei den CD8+-T-Zellen. (197-199) Eine erhöhte Anzahl von ausdifferenzierten Zellen findet sich auch bei älteren Menschen als Zeichen der natürlichen "Alterung" bzw. Reifung des Immunsystems, die wohl durch eine wiederholte Auseinandersetzung mit Pathogenen zu einer Erschöpfung des Immunsystems mit Akkumulation von stark differenzierten Zellen wie z.B. TEMRA führt. (200-203)

Bei JIA-PatientInnen wurde eine T-Zell-Alterung bzw. Erschöpfung anhand anderer T-Zellsubgruppen als Ausdruck einer Immundysregulation durch Dvergsten et al.

postuliert. Unklar bleibt, ob dies krankheitsverursachend oder Erkrankungsfolge ist. (204) Analog hierzu könnten die erhöhten EMRA bei unseren CNO-PatientInnen im Vergleich zu Gesunden Ausdruck einer T-Zell-Alterung bzw. Erschöpfung darstellen, wie sie auch bei chronischer Entzündungsaktivität beschrieben ist. (205-207)

Zudem können TEMRA proinflammatorische Zytokine ausschütten, die zu einer leichtgradigen, dauerhaften Entzündungsreaktion im Alter, die hinreichend beschrieben ist, führen können. TEMRA produzieren z.B. vor allem Interferon γ (IFNγ), das wiederum Makrophagen und NK-Zellen stimulieren kann. Durch Reinke et al. wurde aufgezeigt, dass eine Erhöhung der CD8+ TEMRA im peripheren Blut mit einer schlechteren Knochenheilung korreliert. Möglicherweise könnte die Zytokin-gesteuerte Zellaktivierung durch TEMRA und die schlechtere Knochenheilung auch bei CNO-PatientInnen zur Unterhaltung der chronischen Knochenentzündung beitragen (208-212).

Eine Unterscheidung zu JIA-PatientInnen ließen unsere Untersuchungen nicht zu. Somit bleibt unklar, ob der Nachweis von erhöhten TEMRA pathogenetisch bedeutsam ist oder sekundäre Folge der Entzündung ist. Ob diese Subgruppe als Biomarker bzw. Aktivitätsmarker in Frage kommt, bedarf weiterer Untersuchungen.

Die Ergebnisse nach Stratifizierung in die CNO-Untergruppen ließen keine eindeutigen Assoziationen erkennen, da die Werte zwischen CD4+ und CD8+ EMRA in den einzelnen Untergruppen nicht gleichermaßen verändert waren. Eine Beurteilung diesbezüglich ist nicht möglich. Vergleichbare Voruntersuchungen liegen nicht vor.

Exhausted-T-Zellen

Auch die Effektor-T-Zellsubgruppen sind bei der CNO oder dem SAPHO-Syndrom bisher nicht untersucht. Möglicherweise sind die erhöhten low exhausted T-Helferzellen Ausdruck der chronischen Entzündungsreaktion bei CNO-PatientInnen analog zu Untersuchungen bei der RA durch Frenz et al.. (213) Anhaltende Antigen-Stimulation wie z.B. bei chronischer Infektion oder Tumorerkrankungen, bei denen es nicht zu einer Elimination des Antigens kommt, führt zu funktioneller Erschöpfung der Antigenspezifischen Effektor-T-Zellen (= t cell exhaustion), vor allem der CD8+- aber auch der CD4+-T-Zellen. Diese erschöpften Effektorzellen (exhausted T-Zellen) sind durch vermehrte Expression inhibitorischer Marker (z.B. PD (programmed cell death)-1 = CD279) sowie einem Funktionsverlust gekennzeichnet. T-Zell-Erschöpfung hemmt wiederum Immunreaktionen, wodurch es zu einer Antigen-Persistenz kommen kann. (214, 215) Darüber hinaus gibt es Hinweise, dass T-Zell-Erschöpfung auch bei Autoimmunerkrankungen, z.B. der RA (hier CD4+), eine Rolle spielt. (216) Allerdings

korreliert das Ausmaß der T-Zell-Erschöpfung bei Autoimmunerkrankungen nicht immer mit der Krankheitsaktivität. Eine T-Zell-Erschöpfung scheint aber bei Autoimmunerkrankungen prognostisch günstig zu sein, da es zur Hemmung der Gewebe-schädigenden Überaktivität der T-Effektorzellen kommt. Dennoch ist dies aber Ausdruck einer dauerhaften (Auto-)Antigen-Exposition bei Autoimmunerkrankungen. (214, 216-224) Untersuchungen zu Autoinflammationserkrankungen liegen derzeit nicht vor.

Ob die bei uns erhöhten low exhausted T-Helferzellen als Ausdruck einer T-Zell-Erschöpfung bei CNO-PatientInnen Folge bzw. Ausdruck der chronischen Entzündung sind oder sogar prognostisch günstig sind, wie es bei Autoimmunerkrankungen vermutet wird, lässt sich aufgrund fehlender Untersuchungen diesbezüglich abschließend nicht klären. (216, 217) Eine Unterscheidung zur JIA-Gruppe war hierdurch nicht möglich, sodass diese Veränderungen nicht krankheitsspezifisch zu sein scheinen.

In den CNO-Untergruppen lagen die Werte bei den inaktiven PatientInnen deskriptiv etwas höher als bei den aktiven PatientInnen. Dies ist nicht vereinbar mit Untersuchungen bei RA-PatientInnen, allerdings ist eine abschließende Aussage aufgrund der geringen Fallzahl nicht möglich. (216) Bezüglich autoinflammatorischen Erkrankungen liegen keine Berichte vor, daher ist eine Beurteilung hier ebenso nicht möglich.

Erhöhte regulatorische T-Zellen unklarer Ätiologie und Bedeutung

Treg sind an der peripheren T-Zell-Homöostase beteiligt, die durch Hemmung von Effektor-Mechanismen, Produktion des antiinflammatorischen IL-10, Apoptose-Aktivierung und Zytotoxizität erreicht wird. Sind diese Effekte gestört, kann durch Verlust der Selbsttoleranz von Gewebe oder Molekülen Autoimmunität durch fehlende Regulierung von Immunantworten entstehen, die sonst verhindert wird. Insbesondere entstehen diese bei einer Imbalance von TH17 und Treg, (220, 225-227)

Bei SAPHO-PatientInnen konnte Xu et al. keinen Unterschied der Treg-Zellen im Vergleich zu gesunden Kontrollen feststellen. (145) Somit unterscheiden sich unsere Ergebnisse mit erhöhten Treg bei CNO-PatientInnen im Vergleich zu Gesunden hiervon, sind aber aufgrund fehlender Untersuchungen bei der CNO nicht in der Literatur einzuordnen.

Bei RA- und JIA-PatientInnen wurden widersprüchliche Ergebnisse bezüglich der Häufigkeit von Treg-Zellen im peripheren Blut beschrieben (normale, erniedrigte oder erhöhte Werte), wohingegen diese vermehrt in der Synovia der entzündeten Gelenke durch van Amelsfort et al. bei RA-PatientInnen gefunden werden konnten. (228-235) In unseren Untersuchungen zeigte sich kein Unterschied zwischen der CNO- und der JIA-Gruppe, da die zirkulierenden Treg-Zellen in der JIA-Gruppe ebenso erhöht waren.

Bei PatientInnen mit ankylosierender Spondylarthritis als eher autoinflammatorisch bedingte Erkrankung zeigten sich bei Untersuchungen von Li et al. verminderte Treg, wohingegen PatientInnen mit Darmbeteiligung oder chronisch entzündlicher Darmerkrankung vermehrt periphere Treg bei Untersuchungen von Ciccia et al. aufwiesen. (236, 237)

Bei sJIA-PatientInnen wurde über verminderte, zirkulierende Treg bei hoher Krankheitsaktivität von de Kleer et al. berichtet. (238) In einer weiteren Studie von Macaubas et al. waren die Treg von sJIA-PatientInnen im Vergleich zu JIA-PatientInnen mit polyartikulärem Verlauf idem, bei sJIA-PatientInnen mit inaktiver Erkrankung im Vergleich zu Gesunden aber erhöht, was im Einklang mit unseren Ergebnissen sein könnte. (239)

Die unterschiedlich hoch gemessenen Treg-Zellen auch innerhalb einer Erkrankung lassen diese Zellreihe als Biomarker zur Unterscheidung zu anderen Erkrankungen aber als ungeeignet erscheinen. Auch in unserer Untersuchung konnte kein Unterschied zur JIA-Gruppe gezeigt werden und unterstützt die fehlende Eignung als Biomarker.

Bei erhöhten Treg aber trotzdem vorliegender Entzündung wird von einer fehlenden Wirkung der Treg an den Effektorzellen ausgegangen. Dies konnte auch in der Synovialflüssigkeit von Arthritis-PatientInnen nachgewiesen werden, bei denen die dort erhöhten Treg-Zellen eine beeinträchtigte Funktion aufwiesen. (228, 229, 240-243) Möglicherweise könnte der Funktionsverlust von Treg-Zellen auch die Erhöhung bei unseren CNO-PatientInnen erklären. Dies bleibt aber zu beweisen.

Treg spielen aber auch, wie die Th17, eine Rolle in der Osteoimmunologie. Treg hemmen entweder die Osteoklastenproduktion durch Verminderung von z.B. RANKL oder fördern die Proliferation von Osteoblasten mit konsekutiver Zunahme der Knochenmasse. (244-246) Somit könnten erhöhte Treg-Zellen auch bei der CNO in Bezug auf die knöchernen Umbauten eine Rolle spielen. Dies ist aber bisher nicht beschrieben und lässt sich derzeit nicht beweisen.

Ein Grund für die widersprüchlichen Ergebnisse könnte aber auch in der methodisch problematischen Bestimmung der Treg-Zellen an sich liegen. Dies liegt zum einem an einer hohen Plastizität der Treg-Zellen, die durch eine Umwandlung zwischen verschiedenen Subgruppen gekennzeichnet ist. Damit werden nicht immer alle Treg gleichermaßen sicher erfasst. Zum anderen existieren verschiedenen Nachweis-

methoden, da es keine einheitlich definierten Oberflächenmarker gibt und diese unterschiedlich eingesetzt werden. Teilweise werden Treg durch die Markierung des Transkriptionsfaktors FOXP3 bestimmt, allerdings können Treg diese Expression verlieren, sodass bei dieser Nachweismethode möglicherweise Treg nicht vollständig erfasst werden. Dies erschwert den Vergleich zwischen unterschiedlichen Studien und könnte die unterschiedlichen Ergebnisse erklären. (239, 247-253)

Auch bei den Treg lässt sich nach Stratifizierung in die CNO-Untergruppen kein einheitliches Muster erkennen. Untersuchungen bei Autoinflammationserkrankungen liegen nicht vor, somit lässt sich hier keine Bewertung abgeben.

Zusammenfassend bleibt die hier aufgezeigte Treg-Erhöhung bei CNO-PatientInnen im Vergleich zu Gesunden unklar.

Th17/Treg Ratio

Neben der Einzelbestimmung von Th17 und Treg scheint das Verhältnis von Th17 zu Treg aussagekräftiger zu sein, da vor allem eine Th17/Treg-Imbalance zu Störungen des Immunsystems bei Autoimmunerkrankungen oder autoinflammatorischen Erkrankungen führt. Bei einer Imbalance kommt es entweder zu einem Überwiegen der proinflammatorischen Effekte der Th17-Zellen oder zu unzureichenden regulatorischen, antagonistischen Effekten der Treg-Zellen unabhängig von der Häufigkeit der Einzelgruppe, das zu Autoimmunität oder chronischer Inflammation führen kann. (178, 220)

Es konnte bei verschiedensten Autoimmunerkrankungen sowie inflammatorischen Erkrankungen eine veränderte Th17/Treg Ratio aufgezeigt werden, allerdings war diese zumeist erhöht wie z.B. bei autoimmuner Enzephalitis, chronisch entzündlicher Darmerkrankung oder autoimmuner Lebererkrankung. (254-256)

Auch bei der RA oder JIA wurde teils eine Dysbalance mit einer zumeist erhöhten Th17/Treg Ratio durch Wang et al. bzw. Szymanska-Kaluza et al. beschrieben. (257, 258) Durch Wu et al. wurden bei der JIA aber auch vermehrte Treg aufgezeigt, allerdings waren die Th17 ebenso erhöht, sodass die Th17/Treg Ratio ausgeglichen war. Dies war auch bei der pädiatrischen Psoriasis der Fall. (259, 260) Somit liegen hier unterschiedliche Berichte vor.

Beim SAPHO-Syndrom zeigte sich in den Untersuchungen von Xu et al. die Th17/Treg-Ratio gegenüber Gesunden erhöht als Ausdruck einer Imbalance bei ebenso erhöhten Th17-Zellen. (145) Erhöhte Th17-Zellen konnten auch in einer weiteren Studie von Firinu et al. bei SAPHO-PatientInnen im Vergleich zu Gesunden und Psoriasis-PatientInnen im

peripheren Blut aufgezeigt werden. (142) Dies ist auch bei anderen Autoinflammationserkrankungen wie z.B. der sJIA beschrieben. (261, 262) Die Th17/Treg Ratio ist bisher nicht bei CNO-PatientInnen untersucht worden.

Auch bei CNO-PatientInnen wäre zumindest gegenüber Gesunden eine erhöhte Th17/Treg Ratio analog zu anderen Autoinflammationserkrankungen zu erwarten gewesen, was unsere Ergebnisse nicht zeigten. Möglicherweise könnte dies auch an der problematischen Bestimmung der Treg-Zellen (siehe oben) liegen.

Eine weitere Erklärung könnte sein, dass die Th17-Zellen möglicherweise aus dem peripheren Blut in die entzündlichen Läsionen abgewandert sind und dadurch keine erhöhte Th17/Treg Ratio besteht, wie es auch teils bei der RA beschrieben ist. Bei RA-PatientInnen zeigten sich die Th17-Zellen im peripheren Blut in unterschiedlichen Studien entweder erhöht oder gleichwertig im Vergleich zu Gesunden. Hier konnte ein vermehrter Nachweis von Th17 Zellen in Synovia und Synovialis in den entzündeten Gelenken von RA- und JIA-PatientInnen nachgewiesen werden. Postuliert wurde, dass dies Folge einer Migration der Th17-Zellen aus dem peripheren Blut ist. (234, 240, 263-267)

Zudem können sich Th17-Zellen unter weiterem Einfluss von Zytokinen wie z.B. TNF zu pro- aber auch antiinflammatorischen Th17-Zellen (z.B. Th1/Th17-Zellen) weiter differenzieren, wie es z.B. auch bei autoinflammatorischen Erkrankungen wie dem Schnitzler-Syndrom oder aber der oligoartikulären JIA beschrieben ist. Bei der JIA sind diese vor allem im Gelenk nachweisbar, nicht im peripheren Blut. Dies könnte eine weitere Erklärung dafür sein, dass die Th17-Zellen nicht immer vermehrt im peripheren Blut zu finden sind. (225, 268-272)

Zusammenfassend bleiben unsere Ergebnisse bezüglich der Th17/Treg Ratio aber leider schwer zu interpretieren.

Natürliche Killerzellen als möglicher pathogenetischer Faktor

Xu et al. berichtet über signifikant verminderte CD3-CD56+ NK-Zellen bei SAPHO-PatientInnen im Vergleich zu Gesunden und vermutet einen pathophysiologischen Zusammenhang. Dabei wird postuliert, dass die verminderten NK-Zellen durch Immuninstabilität zu weiteren zellulären Veränderungen führt und dadurch auch zu Autoimmunität. (145) Bei CNO-PatientInnen sind NK-Zellen bzw. deren Subgruppen bisher nicht untersucht.

Neben der zytotoxischen Funktion können NK-Zellen Zytokine sezernieren, die zu einer Inflammationsreaktion führen können oder diese aber auch hemmen. Durch Sekretion

von z.B. IFN-γ oder IL-10 werden entsprechende T-Zellantworten (Proliferation bzw. Hemmung) hervorgerufen, die auch bei Autoimmunerkrankungen inflammatorischen Erkrankungen beobachtet werden. (273-276) So scheinen NK-Zellen bei einer Reihe dieser Erkrankungen, vor allem auch autoinflammatorischen Erkrankungen, eine wichtige Rolle zu spielen. (115) Bei PatientInnen mit RA bzw. Psoriasis-Arthritis konnten vermehrte NK-Zellen (vor allem CD56bright) in der Synovia nachgewiesen werden, wohingegen diese im peripheren Blut vermindert waren. Dies wird durch eine Einwanderung von NK-Zellen in das entzündete Gewebe durch Rekrutierung aus dem Blut erklärt. (277-280) Auch bei z.B. der systemischen Sklerose, SLE, juvenilem SLE, sJIA und dem Makrophagenaktivierungssyndrom wurde dies beobachtet. (281-285) Analog hierzu könnte dies auch bei der CNO der Fall sein. Am Ort der Entzündung könnten die NK-Zellen zu einer lokalen Entzündungshemmung von Th17-Zellen bzw. deren induzierter Entzündungsreaktion durch die Interaktion von NK-Zellen und dendritischen Zellen auch bei der CNO führen, wie es von Chong et al. beschrieben wurde. (286) Für die CNO ist dies aber bisher nicht untersucht.

Bei unserer CNO-Gruppe zeigten sich die CD3-CD56+ NK-Zellen im Vergleich zu Gesunden nur knapp nicht signifikant erniedrigt. Gemeinsam mit der signifikant verminderten Subgruppe lassen aber auch unsere Untersuchungen vermuten, dass dies auch bei CNO-PatientInnen eine pathogenetische Rolle spielen könnte. Weitere Untersuchungen an einem größeren Patientenkollektiv sind aber notwendig, um dies zu bestätigen.

Eine Unterscheidung zu JIA-PatientInnen ließ auch die Untersuchung dieser Zellreihe nicht zu.

Bei den CNO-PatientInnen mit einer Erkrankungsdauer unter 12 Monaten lagen die Werte der CD56+CD16+-NK-Zellen deskriptiv höher versus der Gruppe mit > 12 Monaten. Diese Beobachtung lässt sich aufgrund fehlender Literatur nicht einordnen und aufgrund der geringen Fallzahl nicht beurteilen.

Vergleich der Ergebnisse mit den vorbeschriebenen Veränderungen der Lymphozytensubpopulationen beim SAPHO-Syndrom

Zusammenfassend lassen sich Unterschiede bei den Lymphozytensubpopulationen vor allem zwischen CNO-PatientInnen und Gesunden finden, allerdings decken sich unsere Ergebnisse nicht mit den von Xu et al. sowie Firinu et al. vorbeschriebenen Veränderungen beim SAPHO-Syndrom, wie bereits oben diskutiert. (142, 145)

Die bei uns untersuchten Treg-Subgruppen sowie NK-Zell-Subgruppen wurden bisher nicht beim SAPHO-Syndrom untersucht, daher lassen sich hier keine zur CNO vergleichenden Aussagen treffen.

4.3 Limitationen

Unsere Studie weist einige Limitationen auf:

- Für eine statistische Auswertung mit hoher statistischer Power konnten wir nicht ausreichend Patienten rekrutieren. Aufgrund der geringeren, statistischen Power sind möglicherweise nicht alle signifikanten Unterschiede erfasst, die sich bei höheren Fallzahlen zeigen könnten.
- Die Auswertung könnte zudem durch die inhomogen verteilten klinischen Charakteristika der CNO-Gruppe bezüglich Therapie, Erkrankungsdauer oder Erkrankungsverlauf beeinflusst sein. Auch hier sind Untersuchungen mit höheren Fallzahlen notwendig, um Untergruppen untersuchen zu können.
- Auf der anderen Seite zeigten alle PatientInnen einen multifokalen Befall, wodurch ein Bias entstanden sein könnte.
- Durch die Stratifizierung der CNO-Gruppe wiesen die Untergruppen noch kleinere Fallzahlen auf, die eine statistische Signifikanzberechnung nicht mehr erlaubten.
 Daher war die Aufarbeitung von Assoziationen zwischen klinischen Merkmalen und Unterschieden der Variablen in Bezug auf die Untergruppen nur eingeschränkt und rein deskriptiv möglich.
- Es wurden auch Lymphozytensubpopulationen untersucht, obwohl deren Bedeutung bei autoinflammatorischen Erkrankungen noch nicht untersucht bzw. bislang unbekannt ist. Dennoch wurden diese Untersuchungen bewusst durchgeführt, um Daten für spätere Untersuchungen zur Verfügung zu stellen. Möglicherweise sind diese dann bei größerem Erkenntnisgewinn in der Zukunft verwertbar und beurteilbar.
- Methodisch ist die vorliegende Untersuchung nicht immer mit anderen bereits durchgeführten Untersuchungen vergleichbar, da vor allem in der Lymphozytendifferenzierung z.B. unterschiedliche Nachweismethoden bezüglich des Gating oder unterschiedliche Oberflächenmarker verwendet wurden. Möglicherweise unterscheiden sich unsere Ergebnisse daher von den in der Literatur beschriebenen bzw. erschwert dies einen Vergleich und eine Beurteilung der Ergebnisse.
- Aus technisch-organisatorischen Gründen konnten nicht bei allen PatientInnen alle zu untersuchenden Routine-Werte erhoben werden (fehlende Werte: CRP bei 2

Gesunden, BSG bei 1 Gesunden und 1 CNO, IgA bei 1 Gesunden, IgG1 bei 1 Gesunden und 1 CNO, IgG2 bei 1 Gesunden und 1 CNO), was wiederum die statistische Power hier einschränkte. Dennoch konnten hier aber signifikante Werte ermittelt werden.

 Da sich keine signifikanten Unterschiede zwischen der CNO- und der JIA-Gruppe bis auf die Th17/Treg Ratio zeigten, könnte möglicherweise die JIA-Gruppe als Vergleichsgruppe ungeeignet gewesen sein, obwohl z.B. die Psoriasisarthritis als Korrelat zur JIA bereits in anderen Studien als Kontrollgruppe eingesetzt wurde. (142)

4.4 Schlussfolgerung

Wir konnten signifikante Unterschiede sowohl in den Routine-Untersuchungen wie auch bei den Lymphozytensubpopulationen zwischen CNO-PatientInnen und Gesunden bzw. JIA-PatientInnen nachweisen.

Dabei konnten wir eine erhöhte Entzündungsaktivität bei CNO-PatientInnen im Vergleich zu Gesunden bestätigen. Diese Veränderungen sind unspezifisch, können aber als Aktivitätsmarker eingesetzt werden.

Bei den Lymphozytensubpopulationen zeigten sich signifikante Unterschiede bei einzelnen Subgruppen im Vergleich zwischen CNO-PatientInnen und Gesunden sowie der Th17/Treg Ratio zwischen CNO- und JIA-PatientInnen. Somit konnte die postulierte Hypothese bestätigt werden.

Die erhöhten EMRA-T-Zellen sowie low exhausted T-Helferzellen bei den CNO-PatientInnen sind Ausdruck einer T-Zell-Erschöpfung. Diese kann Folge der chronischen Entzündung sein oder diese auch weiter unterhalten. Ein Unterschied zu JIA-PatientInnen bestand nicht, sodass dies wahrscheinlich nicht krankheitsspezifisch ist, aber eine pathogenetische Rolle bei der CNO spielen könnte. Hierfür sind Bestätigungsstudien mit höheren Fallzahlen sowie weiterführende Untersuchungen notwendig.

Die erhöhten Treg-Zellen bei CNO-PatientInnen im Vergleich zu Gesunden lassen sich schwer einordnen. In der Literatur sind diese auch innerhalb einer Erkrankung unterschiedlich hoch untersucht worden, sodass die Bestimmung der Treg-Zellen problematisch erscheint. Ein Unterschied zu den JIA-PatientInnen bestand nicht. Eine Wertung diesbezüglich ist abschließend nicht möglich.

Ebenso schwierig einzuordnen ist die erniedrigte Th17/Treg Ratio bei den CNO-PatientInnen gegenüber JIA-PatientInnen. Dies ist allerdings eher Folge der erniedrigten Treg-Zellen bei den CNO-PatientInnen und somit ebenso nicht gut zu bewerten.

In unseren Untersuchungen konnten die beim SAPHO-Syndrom beschriebenen Unterschiede nicht bei der CNO bestätigt werden. Allerdings zeigten sich in unseren Untersuchungen im Vergleich zu Gesunden die CD56+CD16+NK-Zellsubgruppe signifikant vermindert bei knapp nicht signifkant verminderten CD3-CD56+ NK-Zellen. Die fehlende Signifikanz könnte an der geringen Fallzahl liegen. Die NK-Zell-Subgruppen sind beim SAPHO-Syndrom bisher nicht untersucht. Die Ergebnisse lassen aber vermuten, dass die NK-Zellen auch bei der CNO, wie beim SAPHO-Syndrom beschrieben, eine mögliche pathogenetische Rollen spielen könnten und die Verbindung zu beschriebenen, autoimmunologischen Veränderungen darstellen könnten. Bestätigungsstudien mit höheren Fallzahlen sind notwendig. Ein Unterschied zu den JIA-PatientInnen bestand nicht.

Assoziationen zu bestimmten CNO-Untergruppen konnten in der Zusammenschau nicht abschließend beurteilt werden.

Insgesamt könnten die zellulären Veränderungen, die wir in unserer Studie zeigen, eine pathogenetische Rolle spielen. Dies betrifft vor allem die EMRA-T-Zellen mit low exhausted T-Helferzellen als Ausdruck einer T-Zellerschöpfung sowie NK-Zellen als mögliche Verbindung zu autoimmunen Vorgängen. Eine Unterscheidung zur JIA ließen diese nicht zu, sodass diese nicht als Biomarker geeignet sind.

4.5 Ausblick

Diese Studie wurde durchgeführt, um gegebenenfalls neue Hypothesen formulieren zu können. Die Beurteilung unserer Ergebnisse ist zwar durch die geringe Fallzahl eingeschränkt, dennoch können zwei neue Hypothesen formuliert werden:

- Eine T-Zellerschöpfung, die sich vor allem durch erhöhte EMRA-T-Zellen sowie exhausted T-Zellen zeigt, spielen eine pathogenetische Rolle bei der CNO.
- Verminderte NK-Zellen bei CNO-PatientInnen spielen eine pathogenetische Rolle und stellen eine Verbindung zur Autoimmunität dar.

Zur Bestätigung dieser Hypothesen sind Folgeuntersuchungen mit deutlich höheren Fallzahlen notwendig, um die zellulären Veränderungen bei CNO-PatientInnen zu verifizieren. Daher ist eine multizentrische Studie geplant, um höhere Fallzahlen erreichen zu können. Sollten sich die Hypothesen in weiteren Studien bestätigen, könnten sich daraus therapeutische Optionen ergeben.

5 Zusammenfassung

Die CNO ist eine autoinflammatorische Erkrankung des Kindesalters unklarer Ätiologie, die sich in einer sterilen Knochenentzündung äußert. Pathophysiologisch liegt eine beeinträchtigte, angeborene Immunantwort zugrunde, die zu einer Zytokindysbalance führt. Das klinische Bild der CNO ist Folge eines Zusammentreffens von Störungen in mehreren immunregulatorischen Vorgängen. Es bestehen Gemeinsamkeiten mit dem SAPHO-Syndrom im Erwachsenenalter, bei dem auch Veränderungen bei den Lymphozytensubpopulationen beschrieben wurden.

Ziel dieser Arbeit war es, CNO-PatientInnen durch Veränderungen des angeborenen und adaptiven Immunsystems bzw. immunologischer Biomarker im Vergleich zu JIA-PatientInnen und immunologisch Gesunden zu charakterisieren. Hier lag die Betonung auf der Untersuchung der Lymphozytensubpopulationen, die bisher bei der CNO nicht untersucht sind.

Außer der immunologischen Charakterisierung von CNO-PatientInnen sollte geklärt werden, ob sich die zirkulierenden Lymphozytensubpopulationen bei CNO-PatientInnen von JIA-PatientInnen und Gesunden unterscheiden. Diese wurden mit vorbeschriebenen Veränderungen beim SAPHO-Syndrom verglichen.

Mögliche Assoziationen zwischen klinischen Merkmalen und CNO-Untergruppen wurden deskriptiv dargestellt.

Neben der Erfassung von anamnestischen und klinischen Merkmalen wurden immunologische Routine-Untersuchungen, Untersuchung der Neutrophilenaktivierung sowie durchflusszytometrische Untersuchungen von Lymphozytensubpopulationen durchgeführt.

Dabei wurden unspezifisch erhöhte Entzündungsparameter bei CNO-PatientInnen im Vergleich zu Gesunden beobachtet, die zur Aktivitätsüberwachung einsetzbar sind.

Die bei SAPHO-PatientInnen beschriebenen Veränderung der zirkulierenden Lymphozytensubpopulationen konnten nicht bei CNO-PatientInnen bestätigt werden.

Es zeigten sich aber erhöhte EMRA-T-Zellen und low exhausted T-Helferzellen im Vergleich zu Gesunden. Ebenso zeigten sich verminderte CD56+CD16+ NK-Zellen im Vergleich zu Gesunden, die vereinbar mit den Untersuchungen beim SAPHO-Syndrom sein könnten.

Diese Veränderungen könnten zum einen Ausdruck einer T-Zellerschöpfung sein, zum anderen könnten verminderte NK-Zellen die Verbindung zu autoimmunologischen Veränderungen darstellen. Beides könnte eine pathogenetische Rolle bei der CNO spielen und therapeutische Optionen öffnen. Folgestudien sind notwendig.

CNO is an autoinflammatory disease in childhood of unknown etiology presenting with sterile bone inflammation. The pathophysiology is characterized by an altered innate immune response resulting in cytokine dysbalance. Coincidence of changes in multiple immunoregulatory pathways leads to the clinical picture of CNO. Similarities with the SAPHO syndrome occurring in adulthood exist. Altered circulating lymphocyte subpopulations have been described in SAPHO syndrome.

The purpose of the current study was to characterize CNO patients compared to JIA patients and healthy controls by changes of the adaptive and innate immune system or immunological biomarkers. We took a focus on the lymphocyte subpopulations, which concerning CNO have not yet been studied.

Apart from the immunological characterization of CNO patients, differences of circulating lymphocyte subpopulations comparing CNO and JIA patients or healthy controls are to be examined and compared with changes described in SAPHO syndrome. Associations between clinical signs and CNO subgroups are on record.

Apart from recording the history and clinical features, laboratory studies of immunological routine parameters, neutrophil activation and cytometry of lymphocyte subpopulations were performed.

Increased unspecific inflammatory markers were observed in CNO patients when compared to healthy controls, which can be used for activity surveillance.

Alterations of circulating lymphocyte subgroups of SAPHO patients could not be confirmed in CNO in our study.

Instead, increased EMRA t cells and low exhausted helper t cells compared to healthy controls were demonstrated. Moreover, a reduction of CD56+CD16+ NK cells compared to healthy controls has been shown, which might be compatible with studies of SAPHO syndrome.

These changes could reflect t cell exhaustion on the one hand, on the other hand reduced NK cells could express the link to autoimmunity. Both could be involved in pathophysiology and might open therapeutical options. Further studies are needed.

6 Literaturverzeichnis

- 1. Giedion A, Holthusen W, Masel LF, Vischer D. [Subacute and chronic "symmetrical" osteomyelitis]. Ann Radiol (Paris). 1972;15(3):329-42.
- 2. Ferguson PJ, El-Shanti HI. Autoinflammatory bone disorders. Curr Opin Rheumatol. 2007;19(5):492-8.
- 3. Hedrich CM, Girschick HJ. Chronic Non-Bacterial Osteomyelitis. In: Hashkes PJ, Laxer RM, Simon A, editors. Textbook of Autoinflammation. Cham: Springer International Publishing; 2019. p. 563-85.
- 4. Girschick HJ, Raab P, Surbaum S, Trusen A, Kirschner S, Schneider P, et al. Chronic non-bacterial osteomyelitis in children. Ann Rheum Dis. 2005;64(2):279-85.
- 5. Hedrich CM, Morbach H, Reiser C, Girschick HJ. New Insights into Adult and Paediatric Chronic Non-bacterial Osteomyelitis CNO. Curr Rheumatol Rep. 2020;22(9):52.
- 6. Beretta-Piccoli BC, Sauvain MJ, Gal I, Schibler A, Saurenmann T, Kressebuch H, et al. Synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome in childhood: a report of ten cases and review of the literature. Eur J Pediatr. 2000;159(8):594-601.
- 7. Girschick H, Finetti M, Orlando F, Schalm S, Insalaco A, Ganser G, et al. The multifaceted presentation of chronic recurrent multifocal osteomyelitis: a series of 486 cases from the Eurofever international registry. Rheumatology (Oxford). 2018;57(8):1504.
- 8. Schnabel A, Range U, Hahn G, Siepmann T, Berner R, Hedrich CM. Unexpectedly high incidences of chronic non-bacterial as compared to bacterial osteomyelitis in children. Rheumatol Int. 2016;36(12):1737-45.
- 9. Reiser C, Klotsche J, Hospach A, Berendes R, Schnabel A, Jansson AF, et al. First-year follow-up of children with chronic nonbacterial osteomyelitis-an analysis of the German National Pediatric Rheumatologic Database from 2009 to 2018. Arthritis Res Ther. 2021;23(1):281.
- 10. Jansson AF, Grote V. Nonbacterial osteitis in children: data of a German Incidence Surveillance Study. Acta Paediatr. 2011;100(8):1150-7.
- 11. Bhat CS, Anderson C, Harbinson A, McCann LJ, Roderick M, Finn A, et al. Chronic non bacterial osteitis- a multicentre study. Pediatr Rheumatol Online J. 2018;16(1):74.
- 12. Beck C, Morbach H, Beer M, Stenzel M, Tappe D, Gattenlöhner S, et al. Chronic nonbacterial osteomyelitis in childhood: prospective follow-up during the first year of anti-inflammatory treatment. Arthritis Res Ther. 2010;12(2):R74.
- 13. Concha S, Hernández-Ojeda A, Contreras Ó, Mendez C, Talesnik E, Borzutzky A. Chronic nonbacterial osteomyelitis in children: a multicenter case series. Rheumatol Int. 2020;40(1):115-20.
- 14. Kaiser D, Bolt I, Hofer M, Relly C, Berthet G, Bolz D, et al. Chronic nonbacterial osteomyelitis in children: a retrospective multicenter study. Pediatr Rheumatol Online J. 2015;13:25.
- 15. Aden S, Wong S, Yang C, Bui T, Higa T, Scheck J, et al. Increasing Cases of Chronic Nonbacterial Osteomyelitis in Children: A Series of 215 Cases From a Single Tertiary Referral Center. J Rheumatol. 2022;49(8):929-34.
- 16. Jansson A, Renner ED, Ramser J, Mayer A, Haban M, Meindl A, et al. Classification of non-bacterial osteitis: retrospective study of clinical, immunological and genetic aspects in 89 patients. Rheumatology (Oxford). 2007;46(1):154-60.
- 17. Skrabl-Baumgartner A, Singer P, Greimel T, Gorkiewicz G, Hermann J. Chronic non-bacterial osteomyelitis: a comparative study between children and adults. Pediatr Rheumatol Online J. 2019;17(1):49.

- 18. Koryllou A, Mejbri M, Theodoropoulou K, Hofer M, Carlomagno R. Chronic Nonbacterial Osteomyelitis in Children. Children (Basel). 2021;8(7).
- 19. Watanabe T, Ono H, Morimoto Y, Otsuki Y, Shirai M, Endoh A, et al. Skull involvement in a pediatric case of chronic recurrent multifocal osteomyelitis. Nagoya J Med Sci. 2015;77(3):493-500.
- 20. Wipff J, Costantino F, Lemelle I, Pajot C, Duquesne A, Lorrot M, et al. A large national cohort of French patients with chronic recurrent multifocal osteitis. Arthritis Rheumatol. 2015;67(4):1128-37.
- 21. Borzutzky A, Stern S, Reiff A, Zurakowski D, Steinberg EA, Dedeoglu F, et al. Pediatric chronic nonbacterial osteomyelitis. Pediatrics. 2012;130(5):e1190-7.
- 22. Wintrich S, Horneff G. Characteristics and outcomes of chronic non-bacterial osteitis in children. Eur J Rheumatol. 2015;2(4):139-42.
- 23. Nemes K, Johann PD, Steinbügl M, Gruhle M, Bens S, Kachanov D, et al. Infants and Newborns with Atypical Teratoid Rhabdoid Tumors (ATRT) and Extracranial Malignant Rhabdoid Tumors (eMRT) in the EU-RHAB Registry: A Unique and Challenging Population. Cancers (Basel). 2022;14(9).
- 24. Borchers R, Speth F, Häfner R, Vollert K, Haas J. Pulmonaler Befall bei chronisch rekurrierender multifokaler Osteomyelitis. Arthritis + Rheuma. 2015;3:83-5.
- 25. Ravelli A, Marseglia GL, Viola S, Ruperto N, Martini A. Chronic recurrent multifocal osteomyelitis with unusual features. Acta Paediatr. 1995;84(2):222-5.
- 26. Kerem E, Manson D, Laxer RM, Levison H, Reilly BJ. Pulmonary association in a case of chronic recurrent multifocal osteomyelitis. Pediatr Pulmonol. 1989;7(1):55-8.
- 27. Vittecoq O, Said LA, Michot C, Mejjad O, Thomine JM, Mitrofanoff P, et al. Evolution of chronic recurrent multifocal osteitis toward spondylarthropathy over the long term. Arthritis Rheum. 2000;43(1):109-19.
- 28. O'Leary D, Wilson AG, MacDermott EJ, Lowry C, Killeen OG. Variability in phenotype and response to treatment in chronic nonbacterial osteomyelitis; the Irish experience of a national cohort. Pediatr Rheumatol Online J. 2021;19(1):45.
- 29. Koné-Paut I, Mannes I, Dusser P. Chronic Recurrent Multifocal Osteomyelitis (CRMO) and Juvenile Spondyloarthritis (JSpA): To What Extent Are They Related? J Clin Med. 2023;12(2).
- 30. Morbach H, Dick A, Beck C, Stenzel M, Müller-Hermelink HK, Raab P, et al. Association of chronic non-bacterial osteomyelitis with Crohn's disease but not with CARD15 gene variants. Rheumatol Int. 2010;30(5):617-21.
- 31. Hedrich CM, Hofmann SR, Pablik J, Morbach H, Girschick HJ. Autoinflammatory bone disorders with special focus on chronic recurrent multifocal osteomyelitis (CRMO). Pediatr Rheumatol Online J. 2013;11(1):47.
- 32. Masters SL. Broadening the definition of autoinflammation. Semin Immunopathol. 2015;37(4):311-2.
- 33. Hofmann SR, Kapplusch F, Girschick HJ, Morbach H, Pablik J, Ferguson PJ, et al. Chronic Recurrent Multifocal Osteomyelitis (CRMO): Presentation, Pathogenesis, and Treatment. Curr Osteoporos Rep. 2017;15(6):542-54.
- 34. Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol. 2009;27:621-68.
- 35. Girschick HJ, Huppertz HI, Harmsen D, Krauspe R, Müller-Hermelink HK, Papadopoulos T. Chronic recurrent multifocal osteomyelitis in children: diagnostic value of histopathology and microbial testing. Hum Pathol. 1999;30(1):59-65.
- 36. Assmann G, Kueck O, Kirchhoff T, Rosenthal H, Voswinkel J, Pfreundschuh M, et al. Efficacy of antibiotic therapy for SAPHO syndrome is lost after its discontinuation: an interventional study. Arthritis Res Ther. 2009;11(5):R140.

- 37. Hedrich CM, Hahn G, Girschick HJ, Morbach H. A clinical and pathomechanistic profile of chronic nonbacterial osteomyelitis/chronic recurrent multifocal osteomyelitis and challenges facing the field. Expert Rev Clin Immunol. 2013;9(9):845-54.
- 38. Hofmann SR, Schnabel A, Rösen-Wolff A, Morbach H, Girschick HJ, Hedrich CM. Chronic Nonbacterial Osteomyelitis: Pathophysiological Concepts and Current Treatment Strategies. J Rheumatol. 2016;43(11):1956-64.
- 39. Zhao Y, Ferguson PJ. Chronic non-bacterial osteomyelitis and autoinflammatory bone diseases. Clin Immunol. 2020;216:108458.
- 40. Cox AJ, Ferguson PJ. Update on the genetics of nonbacterial osteomyelitis in humans. Curr Opin Rheumatol. 2018;30(5):521-5.
- 41. Chen Z, Cheng L, Feng G. Bone inflammation and chronic recurrent multifocal osteomyelitis. Eur Rev Med Pharmacol Sci. 2018;22(5):1380-6.
- 42. Hofmann SR, Kubasch AS, Ioannidis C, Rösen-Wolff A, Girschick HJ, Morbach H, et al. Altered expression of IL-10 family cytokines in monocytes from CRMO patients result in enhanced IL-1β expression and release. Clin Immunol. 2015;161(2):300-7.
- 43. Hofmann SR, Schwarz T, Möller JC, Morbach H, Schnabel A, Rösen-Wolff A, et al. Chronic non-bacterial osteomyelitis is associated with impaired Sp1 signaling, reduced IL10 promoter phosphorylation, and reduced myeloid IL-10 expression. Clin Immunol. 2011;141(3):317-27.
- 44. Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29:71-109.
- 45. Hofmann SR, Morbach H, Schwarz T, Rösen-Wolff A, Girschick HJ, Hedrich CM. Attenuated TLR4/MAPK signaling in monocytes from patients with CRMO results in impaired IL-10 expression. Clin Immunol. 2012;145(1):69-76.
- 46. Hofmann SR, Böttger F, Range U, Lück C, Morbach H, Girschick HJ, et al. Serum Interleukin-6 and CCL11/Eotaxin May Be Suitable Biomarkers for the Diagnosis of Chronic Nonbacterial Osteomyelitis. Front Pediatr. 2017;5:256.
- 47. Hofmann SR, Roesen-Wolff A, Hahn G, Hedrich CM. Update: Cytokine Dysregulation in Chronic Nonbacterial Osteomyelitis (CNO). Int J Rheumatol. 2012;2012:310206.
- 48. Hofmann SR, Rösen-Wolff A, Tsokos GC, Hedrich CM. Biological properties and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury. Clin Immunol. 2012;143(2):116-27.
- 49. Scianaro R, Insalaco A, Bracci Laudiero L, De Vito R, Pezzullo M, Teti A, et al. Deregulation of the IL-1 β axis in chronic recurrent multifocal osteomyelitis. Pediatr Rheumatol Online J. 2014;12:30.
- 50. Greenhill CJ, Jones GW, Nowell MA, Newton Z, Harvey AK, Moideen AN, et al. Interleukin-10 regulates the inflammasome-driven augmentation of inflammatory arthritis and joint destruction. Arthritis Res Ther. 2014;16(4):419.
- 51. Buch K, Thuesen ACB, Brøns C, Schwarz P. Chronic Non-bacterial Osteomyelitis: A Review. Calcif Tissue Int. 2019;104(5):544-53.
- 52. Nakashima T, Takayanagi H. Osteoimmunology: crosstalk between the immune and bone systems. J Clin Immunol. 2009;29(5):555-67.
- 53. Wang T, He C. TNF- α and IL-6: The Link between Immune and Bone System. Curr Drug Targets. 2020;21(3):213-27.
- 54. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13(18):2412-24.
- 55. Young S, Sharma N, Lee JH, Chitu V, Neumeister V, Sohr E, et al. Mast cells enhance sterile inflammation in chronic nonbacterial osteomyelitis. Dis Model Mech. 2019;12(8).

- 56. Brandt D, Sohr E, Pablik J, Schnabel A, Kapplusch F, Mabert K, et al. CD14(+) monocytes contribute to inflammation in chronic nonbacterial osteomyelitis (CNO) through increased NLRP3 inflammasome expression. Clin Immunol. 2018;196:77-84.
- 57. Ter Horst R, Jaeger M, Smeekens SP, Oosting M, Swertz MA, Li Y, et al. Host and Environmental Factors Influencing Individual Human Cytokine Responses. Cell. 2016;167(4):1111-24.e13.
- 58. Clemente JC, Manasson J, Scher JU. The role of the gut microbiome in systemic inflammatory disease. Bmj. 2018;360:j5145.
- 59. Zeus M, Janssen S, Laws HJ, Fischer U, Borkhardt A, Oommen PT. Results from a pilot study on the oral microbiome in children and adolescents with chronic nonbacterial osteomyelitis. Z Rheumatol. 2021.
- 60. Rausch P, Hartmann M, Baines JF, von Bismarck P. Analysis of the fecal and oral microbiota in chronic recurrent multifocal osteomyelitis. Arthritis Res Ther. 2022;24(1):54.
- 61. Lukens JR, Gurung P, Vogel P, Johnson GR, Carter RA, McGoldrick DJ, et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature. 2014;516(7530):246-9.
- 62. Stern SM, Ferguson PJ. Autoinflammatory bone diseases. Rheum Dis Clin North Am. 2013;39(4):735-49.
- 63. Majeed HA, Kalaawi M, Mohanty D, Teebi AS, Tunjekar MF, al-Gharbawy F, et al. Congenital dyserythropoietic anemia and chronic recurrent multifocal osteomyelitis in three related children and the association with Sweet syndrome in two siblings. J Pediatr. 1989;115(5 Pt 1):730-4.
- 64. Majeed HA, Al-Tarawna M, El-Shanti H, Kamel B, Al-Khalaileh F. The syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia. Report of a new family and a review. Eur J Pediatr. 2001;160(12):705-10.
- 65. Jesus AA, Osman M, Silva CA, Kim PW, Pham TH, Gadina M, et al. A novel mutation of IL1RN in the deficiency of interleukin-1 receptor antagonist syndrome: description of two unrelated cases from Brazil. Arthritis Rheum. 2011;63(12):4007-17.
- 66. Aksentijevich I, Masters SL, Ferguson PJ, Dancey P, Frenkel J, van Royen-Kerkhoff A, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med. 2009;360(23):2426-37.
- 67. Lindor NM, Arsenault TM, Solomon H, Seidman CE, McEvoy MT. A new autosomal dominant disorder of pyogenic sterile arthritis, pyoderma gangrenosum, and acne: PAPA syndrome. Mayo Clin Proc. 1997;72(7):611-5.
- 68. Wise CA, Gillum JD, Seidman CE, Lindor NM, Veile R, Bashiardes S, et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet. 2002;11(8):961-9.
- 69. Reichenberger EJ, Levine MA, Olsen BR, Papadaki ME, Lietman SA. The role of SH3BP2 in the pathophysiology of cherubism. Orphanet J Rare Dis. 2012;7 Suppl 1(Suppl 1):S5.
- 70. Ueki Y, Tiziani V, Santanna C, Fukai N, Maulik C, Garfinkle J, et al. Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism. Nat Genet. 2001;28(2):125-6.
- 71. Ferguson PJ, Sandu M. Current understanding of the pathogenesis and management of chronic recurrent multifocal osteomyelitis. Curr Rheumatol Rep. 2012;14(2):130-41.
- 72. Golla A, Jansson A, Ramser J, Hellebrand H, Zahn R, Meitinger T, et al. Chronic recurrent multifocal osteomyelitis (CRMO): evidence for a susceptibility gene located on chromosome 18q21.3-18q22. Eur J Hum Genet. 2002;10(3):217-21.
- 73. Cox AJ, Darbro BW, Laxer RM, Velez G, Bing X, Finer AL, et al. Recessive coding and regulatory mutations in FBLIM1 underlie the pathogenesis of chronic recurrent multifocal osteomyelitis (CRMO). PLoS One. 2017;12(3):e0169687.

- 74. Assmann G, Köhm M, Schuster V, Behrens F, Mössner R, Magnolo N, et al. Genetic variants in FBLIM1 gene do not contribute to SAPHO syndrome and chronic recurrent multifocal osteomyelitis in typical patient groups. BMC Med Genet. 2020;21(1):102.
- 75. O'Leary D, Killeen OG, Wilson AG. Genetics of chronic nonbacterial osteomyelitis in the irish population: no significant association with rare FBLIM1 variants. Pediatr Rheumatol Online J. 2021;19(1):32.
- 76. d'Adamo AP, Bianco AM, Ferrara G, La Bianca M, Insalaco A, Tommasini A, et al. High prevalence of rare FBLIM1 gene variants in an Italian cohort of patients with Chronic Non-bacterial Osteomyelitis (CNO). Pediatr Rheumatol Online J. 2020;18(1):55.
- 77. Beck C, Girschick HJ, Morbach H, Schwarz T, Yimam T, Frenkel J, et al. Mutation screening of the IL-1 receptor antagonist gene in chronic non-bacterial osteomyelitis of childhood and adolescence. Clin Exp Rheumatol. 2011;29(6):1040-3.
- 78. Ferguson PJ, Bing X, Vasef MA, Ochoa LA, Mahgoub A, Waldschmidt TJ, et al. A missense mutation in pstpip2 is associated with the murine autoinflammatory disorder chronic multifocal osteomyelitis. Bone. 2006;38(1):41-7.
- 79. Chitu V, Ferguson PJ, de Bruijn R, Schlueter AJ, Ochoa LA, Waldschmidt TJ, et al. Primed innate immunity leads to autoinflammatory disease in PSTPIP2-deficient cmo mice. Blood. 2009;114(12):2497-505.
- 80. Cassel SL, Janczy JR, Bing X, Wilson SP, Olivier AK, Otero JE, et al. Inflammasome-independent IL-1 β mediates autoinflammatory disease in Pstpip2-deficient mice. Proc Natl Acad Sci U S A. 2014;111(3):1072-7.
- 81. Abe K, Cox A, Takamatsu N, Velez G, Laxer RM, Tse SML, et al. Gain-of-function mutations in a member of the Src family kinases cause autoinflammatory bone disease in mice and humans. Proc Natl Acad Sci U S A. 2019;116(24):11872-7.
- 82. Schwarz T, Oommen PT, Windschall D, Weissbarth-Riedel E, Trauzeddel R, Grote V, et al. Protokolle zur Klassifikation, Überwachung und Therapie in der Kinderrheumatologie (PRO-KIND): Chronisch nicht-bakterielle Osteomyelitis (CNO). Ergebnisse der Arbeitsgruppe Chronisch nicht-bakterielle Osteomyelitis in der GKJRKommission PRO-KIND. 2018;38(04):282-8.
- 83. Zhao DY, McCann L, Hahn G, Hedrich CM. Chronic nonbacterial osteomyelitis (CNO) and chronic recurrent multifocal osteomyelitis (CRMO). J Transl Autoimmun. 2021;4:100095.
- 84. Jansson AF, Borte M, Hospach A, Kallinich T, Oommen PT, Trauzeddel R, et al. Diagnostik und Therapie der nichtbakteriellen Osteitis. Monatsschrift Kinderheilkunde. 2014;162(6):539-45.
- 85. Jansson AF, Müller TH, Gliera L, Ankerst DP, Wintergerst U, Belohradsky BH, et al. Clinical score for nonbacterial osteitis in children and adults. Arthritis Rheum. 2009;60(4):1152-9.
- 86. Morbach H, Schneider P, Schwarz T, Hofmann C, Raab P, Neubauer H, et al. Comparison of magnetic resonance imaging and 99mTechnetium-labelled methylene diphosphonate bone scintigraphy in the initial assessment of chronic non-bacterial osteomyelitis of childhood and adolescents. Clin Exp Rheumatol. 2012;30(4):578-82.
- 87. Fritz J, Tzaribatchev N, Claussen CD, Carrino JA, Horger MS. Chronic recurrent multifocal osteomyelitis: comparison of whole-body MR imaging with radiography and correlation with clinical and laboratory data. Radiology. 2009;252(3):842-51.
- 88. Arnoldi AP, Schlett CL, Douis H, Geyer LL, Voit AM, Bleisteiner F, et al. Wholebody MRI in patients with Non-bacterial Osteitis: Radiological findings and correlation with clinical data. Eur Radiol. 2017;27(6):2391-9.
- 89. Capponi M, Pires Marafon D, Rivosecchi F, Zhao Y, Pardeo M, Messia V, et al. Assessment of disease activity using a whole-body MRI derived radiological activity index in chronic nonbacterial osteomyelitis. Pediatr Rheumatol Online J. 2021;19(1):123.

- 90. Himuro H, Kurata S, Nagata S, Sumi A, Tsubaki F, Matsuda A, et al. Imaging features in patients with SAPHO/CRMO: a pictorial review. Jpn J Radiol. 2020;38(7):622-9.
- 91. Zhao Y, Sato TS, Nielsen SM, Beer M, Huang M, Iyer RS, et al. Development of a Scoring Tool for Chronic Nonbacterial Osteomyelitis Magnetic Resonance Imaging and Evaluation of its Interrater Reliability. J Rheumatol. 2020;47(5):739-47.
- 92. d'Angelo P, de Horatio LT, Toma P, Ording Müller LS, Avenarius D, von Brandis E, et al. Chronic nonbacterial osteomyelitis clinical and magnetic resonance imaging features. Pediatr Radiol. 2021;51(2):282-8.
- 93. von Kalle T, Heim N, Hospach T, Langendörfer M, Winkler P, Stuber T. Typical patterns of bone involvement in whole-body MRI of patients with chronic recurrent multifocal osteomyelitis (CRMO). Rofo. 2013;185(7):655-61.
- 94. Schaal MC, Gendler L, Ammann B, Eberhardt N, Janda A, Morbach H, et al. Imaging in non-bacterial osteomyelitis in children and adolescents: diagnosis, differential diagnosis and follow-up-an educational review based on a literature survey and own clinical experiences. Insights Imaging. 2021;12(1):113.
- 95. Roderick MR, Shah R, Rogers V, Finn A, Ramanan AV. Chronic recurrent multifocal osteomyelitis (CRMO) advancing the diagnosis. Pediatr Rheumatol Online J. 2016;14(1):47.
- 96. Bj0rkstén B, Boquist L. Histopathological aspects of chronic recurrent multifocal osteomyelitis. J Bone Joint Surg Br. 1980;62(3):376-80.
- 97. Zhao Y, Wu EY, Oliver MS, Cooper AM, Basiaga ML, Vora SS, et al. Consensus Treatment Plans for Chronic Nonbacterial Osteomyelitis Refractory to Nonsteroidal Antiinflammatory Drugs and/or With Active Spinal Lesions. Arthritis Care Res (Hoboken). 2018;70(8):1228-37.
- 98. Kostik MM, Kopchak OL, Chikova IA, Isupova EA, Mushkin AY. Comparison of different treatment approaches of pediatric chronic non-bacterial osteomyelitis. Rheumatol Int. 2019;39(1):89-96.
- 99. Catalano-Pons C, Comte A, Wipff J, Quartier P, Faye A, Gendrel D, et al. Clinical outcome in children with chronic recurrent multifocal osteomyelitis. Rheumatology (Oxford). 2008;47(9):1397-9.
- 100. Schnabel A, Range U, Hahn G, Berner R, Hedrich CM. Treatment Response and Longterm Outcomes in Children with Chronic Nonbacterial Osteomyelitis. J Rheumatol. 2017;44(7):1058-65.
- 101. Gleeson H, Wiltshire E, Briody J, Hall J, Chaitow J, Sillence D, et al. Childhood chronic recurrent multifocal osteomyelitis: pamidronate therapy decreases pain and improves vertebral shape. J Rheumatol. 2008;35(4):707-12.
- 102. Miettunen PM, Wei X, Kaura D, Reslan WA, Aguirre AN, Kellner JD. Dramatic pain relief and resolution of bone inflammation following pamidronate in 9 pediatric patients with persistent chronic recurrent multifocal osteomyelitis (CRMO). Pediatr Rheumatol Online J. 2009;7:2.
- 103. Andreasen CM, Jurik AG, Deleuran BW, Horn HC, Folkmar TB, Herlin T, et al. Pamidronate in chronic non-bacterial osteomyelitis: a randomized, double-blinded, placebo-controlled pilot trial. Scand J Rheumatol. 2020;49(4):312-22.
- 104. Andreasen CM, Jurik AG, Glerup MB, Høst C, Mahler BT, Hauge EM, et al. Response to Early-onset Pamidronate Treatment in Chronic Nonbacterial Osteomyelitis: A Retrospective Single-center Study. J Rheumatol. 2019;46(11):1515-23.
- 105. Bhat CS, Roderick M, Sen ES, Finn A, Ramanan AV. Efficacy of pamidronate in children with chronic non-bacterial osteitis using whole body MRI as a marker of disease activity. Pediatr Rheumatol Online J. 2019;17(1):35.
- 106. Eleftheriou D, Gerschman T, Sebire N, Woo P, Pilkington CA, Brogan PA. Biologic therapy in refractory chronic non-bacterial osteomyelitis of childhood. Rheumatology (Oxford). 2010;49(8):1505-12.

- 107. Schnabel A, Nashawi M, Anderson C, Felsenstein S, Lamoudi M, Poole-Cowley J, et al. TNF-inhibitors or bisphosphonates in chronic nonbacterial osteomyelitis? Results of an international retrospective multicenter study. Clin Immunol. 2022;238:109018.
- 108. Batu ED, Ergen FB, Gulhan B, Topaloglu R, Aydingoz U, Ozen S. Etanercept treatment in five cases of refractory chronic recurrent multifocal osteomyelitis (CRMO). Joint Bone Spine. 2015;82(6):471-3.
- 109. Moussa T, Bhat V, Kini V, Fathalla BM. Clinical and genetic association, radiological findings and response to biological therapy in seven children from Qatar with non-bacterial osteomyelitis. Int J Rheum Dis. 2017;20(9):1286-96.
- 110. Maniscalco V, Abu-Rumeileh S, Mastrolia MV, Marrani E, Maccora I, Pagnini I, et al. The off-label use of anakinra in pediatric systemic autoinflammatory diseases. Ther Adv Musculoskelet Dis. 2020;12:1759720x20959575.
- 111. Gamalero L, Belot A, Zajc Avramovic M, Giani T, Filocamo G, Guleria S, et al. Chronic non-bacterial osteomyelitis: a retrospective international study on clinical manifestations and response to treatment. Clin Exp Rheumatol. 2020;38(6):1255-62.
- 112. Ata Y, Inaba Y, Choe H, Kobayashi N, Machida J, Nakamura N, et al. Bone metabolism and inflammatory characteristics in 14 cases of chronic nonbacterial osteomyelitis. Pediatr Rheumatol Online J. 2017;15(1):56.
- 113. Kostik MM, Makhova MA, Maletin AS, Magomedova SM, Sorokina LS, Tsukasaki M, et al. Cytokine profile in patients with chronic non-bacterial osteomyelitis, juvenile idiopathic arthritis, and insulin-dependent diabetes mellitus. Cytokine. 2021;143:155521.
- 114. Hofmann SR, Kubasch AS, Range U, Laass MW, Morbach H, Girschick HJ, et al. Serum biomarkers for the diagnosis and monitoring of chronic recurrent multifocal osteomyelitis (CRMO). Rheumatol Int. 2016;36(6):769-79.
- 115. Vandenhaute J, Wouters CH, Matthys P. Natural Killer Cells in Systemic Autoinflammatory Diseases: A Focus on Systemic Juvenile Idiopathic Arthritis and Macrophage Activation Syndrome. Front Immunol. 2019;10:3089.
- 116. Kahn MF, Chamot AM. SAPHO syndrome. Rheum Dis Clin North Am. 1992;18(1):225-46.
- 117. Chamot AM, Benhamou CL, Kahn MF, Beraneck L, Kaplan G, Prost A. [Acnepustulosis-hyperostosis-osteitis syndrome. Results of a national survey. 85 cases]. Rev Rhum Mal Osteoartic. 1987;54(3):187-96.
- 118. Firinu D, Garcia-Larsen V, Manconi PE, Del Giacco SR. SAPHO Syndrome: Current Developments and Approaches to Clinical Treatment. Curr Rheumatol Rep. 2016;18(6):35.
- 119. Hayem G, Bouchaud-Chabot A, Benali K, Roux S, Palazzo E, Silbermann-Hoffman O, et al. SAPHO syndrome: a long-term follow-up study of 120 cases. Semin Arthritis Rheum. 1999;29(3):159-71.
- 120. Kyriazi N, Papamerkouriou YM, Maritsi D, Dargara MA, Sr., Michelarakis J. Pediatric Synovitis, Acne, Pustulosis, Hyperostosis, Osteitis (SAPHO) Syndrome: Diagnostic Challenges and Treatment Approach. Cureus. 2020;12(4):e7595.
- 121. Lenert A, Ferguson PJ. Comparing children and adults with chronic nonbacterial osteomyelitis. Curr Opin Rheumatol. 2020;32(5):421-6.
- 122. Efthimiou P, Petryna O, Nakasato P, Kontzias A. New insights on multigenic autoinflammatory diseases. Ther Adv Musculoskelet Dis. 2022;14:1759720x221117880.
- 123. Li C, Cao Y, Zhang W. Clinical heterogeneity of SAPHO syndrome: Challenge of diagnosis. Mod Rheumatol. 2018;28(3):432-4.
- 124. Hussain A, Gondal M, Abdallah N, Yousuf H, Iqbal M. Synovitis, Acne, Pustulosis, Hyperostosis, Osteitis (SAPHO): An Interesting Clinical Syndrome. Cureus. 2020;12(9):e10184.

- 125. Przepiera-Będzak H, Brzosko M. SAPHO syndrome: pathogenesis, clinical presentation, imaging, comorbidities and treatment: a review. Postepy Dermatol Alergol. 2021;38(6):937-42.
- 126. Schilling F, KesslerS. [SAPHO syndrome: clinico-rheumatologic and radiologic differentiation and classification of a patient sample of 86 cases]. Z Rheumatol. 2000;59(1):1-28.
- 127. Aljuhani F, Tournadre A, Tatar Z, Couderc M, Mathieu S, Malochet-Guinamand S, et al. The SAPHO syndrome: a single-center study of 41 adult patients. J Rheumatol. 2015;42(2):329-34.
- 128. Okuno H, Watanuki M, Kuwahara Y, Sekiguchi A, Mori Y, Hitachi S, et al. Clinical features and radiological findings of 67 patients with SAPHO syndrome. Modern Rheumatology. 2018;28(4):703-8.
- 129. Colina M, Govoni M, Orzincolo C, Trotta F. Clinical and radiologic evolution of synovitis, acne, pustulosis, hyperostosis, and osteitis syndrome: a single center study of a cohort of 71 subjects. Arthritis Rheum. 2009;61(6):813-21.
- 130. Figueiredo ASB, Oliveira AL, Caetano A, Moraes-Fontes MF. SAPHO: has the time come for tailored therapy? Clin Rheumatol. 2020;39(1):177-87.
- 131. Cheng W, Li F, Tian J, Xie X, Chen JW, Peng XF, et al. New Insights in the Treatment of SAPHO Syndrome and Medication Recommendations. J Inflamm Res. 2022;15:2365-80.
- 132. Govoni M, Colina M, Massara A, Trotta F. "SAPHO syndrome and infections". Autoimmun Rev. 2009;8(3):256-9.
- 133. Cai R, Dong Y, Fang M, Fan Y, Cheng Z, Zhou Y, et al. Genome-Wide Association Identifies Risk Pathways for SAPHO Syndrome. Front Cell Dev Biol. 2021;9:643644.
- 134. Kotilainen P, Merilahti-Palo R, Lehtonen OP, Manner I, Helander I, Möttönen T, et al. Propionibacterium acnes isolated from sternal osteitis in a patient with SAPHO syndrome. J Rheumatol. 1996;23(7):1302-4.
- 135. Colina M, Lo Monaco A, Khodeir M, Trotta F. Propionibacterium acnes and SAPHO syndrome: a case report and literature review. Clin Exp Rheumatol. 2007;25(3):457-60.
- 136. Guo C, Tian X, Han F, Liu L, Gao J, Ma X. Copy Number Variation of Multiple Genes in SAPHO Syndrome. J Rheumatol. 2020;47(9):1323-9.
- 137. Hurtado-Nedelec M, Chollet-Martin S, Nicaise-Roland P, Grootenboer-Mignot S, Ruimy R, Meyer O, et al. Characterization of the immune response in the synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome. Rheumatology (Oxford). 2008;47(8):1160-7.
- 138. Zhang S, Li C, Zhang S, Li L, Zhang W, Dong Z, et al. Serum levels of proinflammatory, anti-inflammatory cytokines, and RANKL/OPG in synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome. Mod Rheumatol. 2019;29(3):523-30.
- 139. Berthelot JM, Corvec S, Hayem G. SAPHO, autophagy, IL-1, FoxO1, and Propionibacterium (Cutibacterium) acnes. Joint Bone Spine. 2018;85(2):171-6.
- 140. Wendling D, Aubin F, Verhoeven F, Prati C. IL-23/Th17 targeted therapies in SAPHO syndrome. A case series. Joint Bone Spine. 2017;84(6):733-5.
- 141. Ji Q, Wang Q, Pan W, Hou Y, Wang X, Bian L, et al. Exceptional response of skin symptoms to secukinumab treatment in a patient with SAPHO syndrome: Case report and literature review. Medicine (Baltimore). 2022;101(33):e30065.
- 142. Firinu D, Barca MP, Lorrai MM, Perra S, Cabras S, Muggianu E, et al. TH17 cells are increased in the peripheral blood of patients with SAPHO syndrome. Autoimmunity. 2014;47(6):389-94.

- 143. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203(12):2673-82.
- 144. Rossini M, Viapiana O, Adami S, Idolazzi L, Fracassi E, Gatti D. Focal bone involvement in inflammatory arthritis: the role of IL17. Rheumatol Int. 2016;36(4):469-82.
- 145. Xu D, Liu X, Lu C, Luo J, Wang C, Gao C, et al. Reduction of peripheral natural killer cells in patients with SAPHO syndrome. Clin Exp Rheumatol. 2019;37(1):12-8.
- 146. Naves JE, Cabré E, Mañosa M, Grados D, Olivé A, Domènech E. A systematic review of SAPHO syndrome and inflammatory bowel disease association. Dig Dis Sci. 2013;58(8):2138-47.
- 147. Marzano AV, Borghi A, Meroni PL, Cugno M. Pyoderma gangrenosum and its syndromic forms: evidence for a link with autoinflammation. Br J Dermatol. 2016;175(5):882-91.
- 148. Furer V, Kishimoto M, Tomita T, Elkayam O, Helliwell PS. Pro and contra: is synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) a spondyloarthritis variant? Curr Opin Rheumatol. 2022;34(4):209-17.
- 149. Callis Duffin K, Bachelez H, Mease PJ, Rosen C, Garg A, Zudak E, et al. Pustular Psoriasis and Associated Musculoskeletal Disorders. J Rheumatol. 2021.
- 150. Assmann G, Wagner AD, Monika M, Pfoehler C, Pfreundschuh M, Tilgen W, et al. Single-nucleotide polymorphisms p53 G72C and Mdm2 T309G in patients with psoriasis, psoriatic arthritis, and SAPHO syndrome. Rheumatol Int. 2010;30(10):1273-6.
- 151. Liu S, Tang M, Cao Y, Li C. Synovitis, acne, pustulosis, hyperostosis, and osteitis syndrome: review and update. Ther Adv Musculoskelet Dis. 2020;12:1759720x20912865.
- 152. Hurtado-Nedelec M, Chollet-Martin S, Chapeton D, Hugot JP, Hayem G, Gérard B. Genetic susceptibility factors in a cohort of 38 patients with SAPHO syndrome: a study of PSTPIP2, NOD2, and LPIN2 genes. J Rheumatol. 2010;37(2):401-9.
- 153. Benhamou CL, Chamot AM, Kahn MF. Synovitis-acne-pustulosis hyperostosis-osteomyelitis syndrome (SAPHO). A new syndrome among the spondyloarthropathies? Clin Exp Rheumatol. 1988;6(2):109-12.
- 154. Kahn MF, Khan MA. The SAPHO syndrome. Baillieres Clin Rheumatol. 1994;8(2):333-62.
- 155. Kahn MF. Proposed classification criteria of SAPHO syndrome. . Amercian college of rheumatology 67th Annual Scientific Meeting2003.
- 156. Klemm P, Lange U. [SAPHO syndrome : An overview and nosological differentiation of 35 disease cases]. Z Rheumatol. 2021;80(5):456-66.
- 157. Jinag C, Zhao Y, Li X, Hu H, Li C. Whole-body Bone Scan in the Diagnosis and Treatment of SAPHO Syndrome. J Coll Physicians Surg Pak. 2022;32(4):S64-s6.
- 158. Furer V, Kishimoto M, Tsuji S, Taniguchi Y, Ishihara Y, Tomita T, et al. The Diagnosis and Treatment of Adult Patients with SAPHO Syndrome: Controversies Revealed in a Multidisciplinary International Survey of Physicians. Rheumatol Ther. 2020;7(4):883-91.
- 159. Mahady S, Ladani A. Clinical and Diagnostic Considerations for Atypical, Adult Onset Presentation of Chronic Recurrent Multifocal Osteomyelitis (CRMO). Case Rep Rheumatol. 2019;2019:8206892.
- 160. Huang H, Zhang Z, Zhao J, Hao Y, Zhou W. The effectiveness of treatments for patients with SAPHO syndrome: a follow-up study of 24 cases from a single center and review of literature. Clin Rheumatol. 2021;40(3):1131-9.
- 161. Su CF, Shen YC, Liao HT, Tsai CY. SAPHO syndrome with enthesopathy. BMJ Case Rep. 2019;12(1).
- 162. Daoussis D, Konstantopoulou G, Kraniotis P, Sakkas L, Liossis SN. Biologics in SAPHO syndrome: A systematic review. Semin Arthritis Rheum. 2019;48(4):618-25.

- 163. Colina M, La Corte R, Trotta F. Sustained remission of SAPHO syndrome with pamidronate: a follow-up of fourteen cases and a review of the literature. Clin Exp Rheumatol. 2009;27(1):112-5.
- 164. Delattre E, Guillot X, Godfrin-Valnet M, Prati C, Wendling D. SAPHO syndrome treatment with intravenous pamidronate. Retrospective study of 22 patients. Joint Bone Spine. 2014;81(5):456-8.
- 165. Jung J, Molinger M, Kohn D, Schreiber M, Pfreundschuh M, Assmann G. Intraarticular glucocorticosteroid injection into sternocostoclavicular joints in patients with SAPHO syndrome. Semin Arthritis Rheum. 2012;42(3):266-70.
- 166. Wang L, Li C, Yu M, Cao Y, Jing H, Li J. Long-term remarkable remission of SAPHO syndrome in response to short-term systemic corticosteroids treatment in an immunoglobulin E elevated patient: A case report. Medicine (Baltimore). 2019;98(27):e16045.
- 167. Ben Abdelghani K, Dran DG, Gottenberg JE, Morel J, Sibilia J, Combe B. Tumor necrosis factor-alpha blockers in SAPHO syndrome. J Rheumatol. 2010;37(8):1699-704.
- 168. Wendling D, Prati C, Aubin F. Anakinra treatment of SAPHO syndrome: short-term results of an open study. Ann Rheum Dis. 2012;71(6):1098-100.
- 169. Li Y, Huo J, Cao Y, Yu M, Zhang Y, Li Z, et al. Efficacy of tofacitinib in synovitis, acne, pustulosis, hyperostosis and osteitis syndrome: a pilot study with clinical and MRI evaluation. Ann Rheum Dis. 2020;79(9):1255-7.
- 170. Xie W, Huang H, Zhang Z. Off-label use of tofacitinib: a potential treatment option for SAPHO syndrome. Ann Rheum Dis. 2022;81(6):e91.
- 171. Yang Q, Zhao Y, Li C, Luo Y, Hao W, Zhang W. Case report: successful treatment of refractory SAPHO syndrome with the JAK inhibitor tofacitinib. Medicine (Baltimore). 2018;97(25):e11149.
- 172. Yuan F, Luo J, Yang Q. SAPHO Syndrome Complicated by Ankylosing Spondylitis Successfully Treated With Tofacitinib: A Case Report. Front Immunol. 2022;13:911922.
- 173. Cao Y, Li C, Xu W, Wu X, Sun X, Zhang W, et al. Spinal and sacroiliac involvement in SAPHO syndrome: A single center study of a cohort of 354 patients. Semin Arthritis Rheum. 2019;48(6):990-6.
- 174. Wekell P, Björnsdottir H, Björkman L, Sundqvist M, Christenson K, Osla V, et al. Neutrophils from patients with SAPHO syndrome show no signs of aberrant NADPH oxidase-dependent production of intracellular reactive oxygen species. Rheumatology (Oxford). 2016;55(8):1489-98.
- 175. Grosjean C, Hurtado-Nedelec M, Nicaise-Roland P, Ferreyra-Dillon R, Bollet C, Quintin E, et al. Prevalence of autoantibodies in SAPHO syndrome: a single-center study of 90 patients. J Rheumatol. 2010;37(3):639-43.
- 176. Li C, Xiang Y, Wu X, Cao Y, Zhao Y, Sun X, et al. Serum IgG4 elevation in SAPHO syndrome: does it unmask a disease activity marker? Clin Exp Rheumatol. 2020;38(1):35-41.
- 177. You H, Dang G, Lu B, Zhang S, Li C, Wang L, et al. Serum Sp17 Autoantibody Serves as a Potential Specific Biomarker in Patients with SAPHO Syndrome. J Clin Immunol. 2021;41(3):565-75.
- 178. Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13(6):668-77.
- 179. Conigliaro P, Scrivo R, Valesini G, Perricone R. Emerging role for NK cells in the pathogenesis of inflammatory arthropathies. Autoimmun Rev. 2011;10(10):577-81.
- 180. Sağ E, Sönmez HE, Demir S, Bilginer Y, Ergen FB, Aydıngöz Ü, et al. Chronic recurrent multifocal osteomyelitis in children: a single center experience over five years. Turk J Pediatr. 2019;61(3):386-91.
- 181. Weiss G, Schett G. Anaemia in inflammatory rheumatic diseases. Nat Rev Rheumatol. 2013;9(4):205-15.

- 182. Hansen IS, Baeten DLP, den Dunnen J. The inflammatory function of human IgA. Cell Mol Life Sci. 2019;76(6):1041-55.
- 183. Hansen IS, Krabbendam L, Bernink JH, Loayza-Puch F, Hoepel W, van Burgsteden JA, et al. FcαRI co-stimulation converts human intestinal CD103(+) dendritic cells into pro-inflammatory cells through glycolytic reprogramming. Nat Commun. 2018;9(1):863.
- 184. Hansen IS, Hoepel W, Zaat SAJ, Baeten DLP, den Dunnen J. Serum IgA Immune Complexes Promote Proinflammatory Cytokine Production by Human Macrophages, Monocytes, and Kupffer Cells through FcαRI-TLR Cross-Talk. J Immunol. 2017;199(12):4124-31.
- 185. Derksen V, Allaart CF, Van der Helm-Van Mil AHM, Huizinga TWJ, Toes REM, van der Woude D. In rheumatoid arthritis patients, total IgA1 and IgA2 levels are elevated: implications for the mucosal origin hypothesis. Rheumatology (Oxford). 2022;62(1):407-16.
- 186. Engelhart S, Glynn RJ, Schur PH. Disease associations with isolated elevations of each of the four IgG subclasses. Semin Arthritis Rheum. 2017;47(2):276-80.
- 187. Lin G, Li J. Elevation of serum IgG subclass concentration in patients with rheumatoid arthritis. Rheumatol Int. 2010;30(6):837-40.
- 188. Martini A, Plebani A, Ravelli A, Avanzini MA, Jefferis R, Zonta L, et al. IgG subclass serum levels in juvenile chronic arthritis. Ann Rheum Dis. 1986;45(5):400-4.
- 189. Dong Y, Zhu H, Chen L, Huang Y, Christen W, Cook NR, et al. Effects of Vitamin D(3) and Marine Omega-3 Fatty Acids Supplementation on Biomarkers of Systemic Inflammation: 4-Year Findings from the VITAL Randomized Trial. Nutrients. 2022;14(24).
- 190. Vernia F, Valvano M, Longo S, Cesaro N, Viscido A, Latella G. Vitamin D in Inflammatory Bowel Diseases. Mechanisms of Action and Therapeutic Implications. Nutrients. 2022;14(2).
- 191. Arnson Y, Amital H. Is vitamin D a new therapeutic agent in autoinflammatory and pain syndromes? Isr Med Assoc J. 2011;13(4):234-5.
- 192. Ferguson PJ, Lokuta MA, El-Shanti HI, Muhle L, Bing X, Huttenlocher A. Neutrophil dysfunction in a family with a SAPHO syndrome-like phenotype. Arthritis Rheum. 2008;58(10):3264-9.
- 193. Zahran AM, Abdallah AM, Saad K, Osman NS, Youssef MAM, Abdel-Raheem YF, et al. Peripheral Blood B and T Cell Profiles in Children with Active Juvenile Idiopathic Arthritis. Arch Immunol Ther Exp (Warsz). 2019;67(6):427-32.
- 194. Moura RA, Weinmann P, Pereira PA, Caetano-Lopes J, Canhão H, Sousa E, et al. Alterations on peripheral blood B-cell subpopulations in very early arthritis patients. Rheumatology (Oxford). 2010;49(6):1082-92.
- 195. Wang J, Shan Y, Jiang Z, Feng J, Li C, Ma L, et al. High frequencies of activated B cells and T follicular helper cells are correlated with disease activity in patients with new-onset rheumatoid arthritis. Clin Exp Immunol. 2013;174(2):212-20.
- 196. Souto-Carneiro MM, Mahadevan V, Takada K, Fritsch-Stork R, Nanki T, Brown M, et al. Alterations in peripheral blood memory B cells in patients with active rheumatoid arthritis are dependent on the action of tumour necrosis factor. Arthritis Res Ther. 2009;11(3):R84.
- 197. Jameson SC. The Naming of Memory T-Cell Subsets. Cold Spring Harb Perspect Biol. 2021;13(1).
- 198. Larbi A, Fulop T. From "truly naïve" to "exhausted senescent" T cells: when markers predict functionality. Cytometry A. 2014;85(1):25-35.
- 199. Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754):708-12.
- 200. Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint JP, Labalette M. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+)

- versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mech Ageing Dev. 2006;127(3):274-81.
- 201. Li M, Yao D, Zeng X, Kasakovski D, Zhang Y, Chen S, et al. Age related human T cell subset evolution and senescence. Immun Ageing. 2019;16:24.
- 202. Kverneland AH, Streitz M, Geissler E, Hutchinson J, Vogt K, Boës D, et al. Age and gender leucocytes variances and references values generated using the standardized ONE-Study protocol. Cytometry A. 2016;89(6):543-64.
- 203. Ouyang Q, Wagner WM, Zheng W, Wikby A, Remarque EJ, Pawelec G. Dysfunctional CMV-specific CD8(+) T cells accumulate in the elderly. Exp Gerontol. 2004;39(4):607-13.
- 204. Dvergsten JA, Mueller RG, Griffin P, Abedin S, Pishko A, Michel JJ, et al. Premature cell senescence and T cell receptor-independent activation of CD8+ T cells in juvenile idiopathic arthritis. Arthritis Rheum. 2013;65(8):2201-10.
- 205. Wertheimer AM, Bennett MS, Park B, Uhrlaub JL, Martinez C, Pulko V, et al. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol. 2014;192(5):2143-55.
- 206. Salumets A, Tserel L, Rumm AP, Türk L, Kingo K, Saks K, et al. Epigenetic quantification of immunosenescent CD8(+) TEMRA cells in human blood. Aging Cell. 2022;21(5):e13607.
- 207. Covre LP, Martins RF, Devine OP, Chambers ES, Vukmanovic-Stejic M, Silva JA, et al. Circulating Senescent T Cells Are Linked to Systemic Inflammation and Lesion Size During Human Cutaneous Leishmaniasis. Front Immunol. 2018;9:3001.
- 208. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front Immunol. 2017;8:1960.
- 209. Larbi A, Dupuis G, Douziech N, Khalil A, Fülöp T, Jr. Low-grade inflammation with aging has consequences for T-lymphocyte signaling. Ann N Y Acad Sci. 2004;1030:125-33.
- 210. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244-54.
- 211. Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. The who's who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol. 2013;43(11):2797-809.
- 212. Reinke S, Geissler S, Taylor WR, Schmidt-Bleek K, Juelke K, Schwachmeyer V, et al. Terminally differentiated CD8⁺ T cells negatively affect bone regeneration in humans. Sci Transl Med. 2013;5(177):177ra36.
- 213. Frenz T, Grabski E, Buschjäger D, Vaas LA, Burgdorf N, Schmidt RE, et al. CD4(+) T cells in patients with chronic inflammatory rheumatic disorders show distinct levels of exhaustion. J Allergy Clin Immunol. 2016;138(2):586-9.e10.
- 214. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492-9.
- 215. Angelosanto JM, Blackburn SD, Crawford A, Wherry EJ. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J Virol. 2012;86(15):8161-70.
- 216. Koohini Z, Hossein-Nataj H, Mobini M, Hosseinian-Amiri A, Rafiei A, Asgarian-Omran H. Analysis of PD-1 and Tim-3 expression on CD4(+) T cells of patients with rheumatoid arthritis; negative association with DAS28. Clin Rheumatol. 2018;37(8):2063-71.
- 217. McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T-cell exhaustion, costimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523(7562):612-6.
- 218. Ahn E, Araki K, Hashimoto M, Li W, Riley JL, Cheung J, et al. Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci U S A. 2018;115(18):4749-54.

- 219. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007;27(4):670-84.
- 220. Murphy K, Weaver C. Janeway Immunologie. 9th ed: Springer Spektrum Berlin, Heidelberg; 2018
- 221. Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM, Barnett BE, et al. Molecular and transcriptional basis of CD4⁺ T cell dysfunction during chronic infection. Immunity. 2014;40(2):289-302.
- 222. Kasprowicz V, Schulze Zur Wiesch J, Kuntzen T, Nolan BE, Longworth S, Berical A, et al. High level of PD-1 expression on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. J Virol. 2008;82(6):3154-60.
- 223. Miggelbrink AM, Jackson JD, Lorrey SJ, Srinivasan ES, Waibl-Polania J, Wilkinson DS, et al. CD4 T-Cell Exhaustion: Does It Exist and What Are Its Roles in Cancer? Clin Cancer Res. 2021;27(21):5742-52.
- 224. Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH. Not-so-opposite ends of the spectrum: CD8(+) T cell dysfunction across chronic infection, cancer and autoimmunity. Nat Immunol. 2021;22(7):809-19.
- 225. Prelog M. Treg und Th17-Zellen: Verwandtschaft mit Folgen. Plastizität von Th17-Helfer-T-Zellen und regulatorischen T-Zellen (Treg) bei oligo- und polyartikulärer Juveniler Idiopathischer Arthritis im Kindesalter. 2020;40(02):118-23.
- 226. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490-500.
- 227. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151-64.
- 228. Nistala K, Moncrieffe H, Newton KR, Varsani H, Hunter P, Wedderburn LR. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum. 2008;58(3):875-87.
- 229. de Kleer IM, Wedderburn LR, Taams LS, Patel A, Varsani H, Klein M, et al. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J Immunol. 2004;172(10):6435-43.
- 230. Rossetti M, Spreafico R, Consolaro A, Leong JY, Chua C, Massa M, et al. TCR repertoire sequencing identifies synovial Treg cell clonotypes in the bloodstream during active inflammation in human arthritis. Ann Rheum Dis. 2017;76(2):435-41.
- 231. Wei CM, Lee JH, Wang LC, Yang YH, Chang LY, Chiang BL. Frequency and phenotypic analysis of CD4+CD25+ regulatory T cells in children with juvenile idiopathic arthritis. J Microbiol Immunol Infect. 2008;41(1):78-87.
- 232. Olivito B, Simonini G, Ciullini S, Moriondo M, Betti L, Gambineri E, et al. Th17 transcription factor RORC2 is inversely correlated with FOXP3 expression in the joints of children with juvenile idiopathic arthritis. J Rheumatol. 2009;36(9):2017-24.
- 233. Han GM, O'Neil-Andersen NJ, Zurier RB, Lawrence DA. CD4+CD25high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol. 2008;253(1-2):92-101.
- 234. Wu SA, Yeh KW, Lee WI, Yao TC, Huang JL. Persistent improper upregulation of Th17 and TReg cells in patients with juvenile idiopathic arthritis. J Microbiol Immunol Infect. 2016;49(3):402-8.
- 235. van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeber FP, Taams LS. CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 2004;50(9):2775-85.

- 236. Li M, Zhou X, Zhou L, Yu Z, Fu L, Yang P. Meta-Analysis of Changes in the Number and Proportion of Regulatory T Cells in Patients with Ankylosing Spondylitis. Biomed Res Int. 2020;2020:8709804.
- 237. Ciccia F, Accardo-Palumbo A, Giardina A, Di Maggio P, Principato A, Bombardieri M, et al. Expansion of intestinal CD4+CD25(high) Treg cells in patients with ankylosing spondylitis: a putative role for interleukin-10 in preventing intestinal Th17 response. Arthritis Rheum. 2010;62(12):3625-34.
- 238. de Kleer I, Vastert B, Klein M, Teklenburg G, Arkesteijn G, Yung GP, et al. Autologous stem cell transplantation for autoimmunity induces immunologic self-tolerance by reprogramming autoreactive T cells and restoring the CD4+CD25+ immune regulatory network. Blood. 2006;107(4):1696-702.
- 239. Macaubas C, Nguyen K, Deshpande C, Phillips C, Peck A, Lee T, et al. Distribution of circulating cells in systemic juvenile idiopathic arthritis across disease activity states. Clin Immunol. 2010;134(2):206-16.
- 240. Nistala K, Wedderburn LR. Th17 and regulatory T cells: rebalancing pro- and anti-inflammatory forces in autoimmune arthritis. Rheumatology (Oxford). 2009;48(6):602-6.
- 241. Holzer MT, Almanzar G, Woidich R, Hügle B, Haas JP, Prelog M. Mitigated suppressive function of regulatory T cells (Treg) upon Th17-inducing cytokines in oligoand polyarticular Juvenile Idiopathic Arthritis (JIA) patients. Pediatr Rheumatol Online J. 2022;20(1):26.
- 242. Baecher-Allan C, Viglietta V, Hafler DA. Inhibition of human CD4(+)CD25(+high) regulatory T cell function. J Immunol. 2002;169(11):6210-7.
- 243. van Roon JA, Hartgring SA, van der Wurff-Jacobs KM, Bijlsma JW, Lafeber FP. Numbers of CD25+Foxp3+ T cells that lack the IL-7 receptor are increased intraarticularly and have impaired suppressive function in RA patients. Rheumatology (Oxford). 2010;49(11):2084-9.
- 244. Zaiss MM, Axmann R, Zwerina J, Polzer K, Gückel E, Skapenko A, et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum. 2007;56(12):4104-12.
- 245. Lei H, Schmidt-Bleek K, Dienelt A, Reinke P, Volk HD. Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners. Front Pharmacol. 2015;6:184.
- 246. Rossi M, Rana I, Buonuomo PS, Battafarano G, De Martino V, D'Agostini M, et al. Stimulation of Treg Cells to Inhibit Osteoclastogenesis in Gorham-Stout Disease. Front Cell Dev Biol. 2021;9:706596.
- 247. Pesenacker AM, Wedderburn LR. T regulatory cells in childhood arthritis--novel insights. Expert Rev Mol Med. 2013;15:e13.
- 248. Rajendeeran A, Tenbrock K. Regulatory T cell function in autoimmune disease. J Transl Autoimmun. 2021;4:100130.
- 249. Morita T, Shima Y, Wing JB, Sakaguchi S, Ogata A, Kumanogoh A. The Proportion of Regulatory T Cells in Patients with Rheumatoid Arthritis: A Meta-Analysis. PLoS One. 2016;11(9):e0162306.
- 250. Roord ST, de Jager W, Boon L, Wulffraat N, Martens A, Prakken B, et al. Autologous bone marrow transplantation in autoimmune arthritis restores immune homeostasis through CD4+CD25+Foxp3+ regulatory T cells. Blood. 2008;111(10):5233-41.
- 251. Maddur MS, Miossec P, Kaveri SV, Bayry J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 2012;181(1):8-18.
- 252. Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20(1):62-8.

- 253. Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and Role of Regulatory T Cells in Rheumatoid Arthritis. Front Immunol. 2021;12:626193.
- 254. Zhang R, Tian A, Zhang H, Zhou Z, Yu H, Chen L. Amelioration of experimental autoimmune encephalomyelitis by β -elemene treatment is associated with Th17 and Treg cell balance. J Mol Neurosci. 2011;44(1):31-40.
- 255. Feng TT, Zou T, Wang X, Zhao WF, Qin AL. Clinical significance of changes in the Th17/Treg ratio in autoimmune liver disease. World J Gastroenterol. 2017;23(21):3832-8.
- 256. Eastaff-Leung N, Mabarrack N, Barbour A, Cummins A, Barry S. Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. J Clin Immunol. 2010;30(1):80-9.
- 257. Wang W, Shao S, Jiao Z, Guo M, Xu H, Wang S. The Th17/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis. Rheumatol Int. 2012;32(4):887-93.
- 258. Szymańska-Kałuża J, Cebula-Obrzut B, Smolewski P, Stanczyk J, Smolewska E. Imbalance of Th17 and T-regulatory cells in peripheral blood and synovial fluid in treatment naïve children with juvenile idiopathic arthritis. Cent Eur J Immunol. 2014;39(1):71-6.
- 259. Almanzar G, Klein M, Schmalzing M, Hilligardt D, El Hajj N, Kneitz H, et al. Disease Manifestation and Inflammatory Activity as Modulators of Th17/Treg Balance and RORC/FoxP3 Methylation in Systemic Sclerosis. Int Arch Allergy Immunol. 2016;171(2):141-54.
- 260. Zhang L, Li Y, Yang X, Wei J, Zhou S, Zhao Z, et al. Characterization of Th17 and FoxP3(+) Treg Cells in Paediatric Psoriasis Patients. Scand J Immunol. 2016;83(3):174-80.
- 261. Chen DY, Chen YM, Lan JL, Lin CC, Chen HH, Hsieh CW. Potential role of Th17 cells in the pathogenesis of adult-onset Still's disease. Rheumatology (Oxford). 2010;49(12):2305-12.
- 262. Omoyinmi E, Hamaoui R, Pesenacker A, Nistala K, Moncrieffe H, Ursu S, et al. Th1 and Th17 cell subpopulations are enriched in the peripheral blood of patients with systemic juvenile idiopathic arthritis. Rheumatology (Oxford). 2012;51(10):1881-6.
- 263. Shahrara S, Huang Q, Mandelin AM, 2nd, Pope RM. TH-17 cells in rheumatoid arthritis. Arthritis Res Ther. 2008;10(4):R93.
- 264. Leipe J, Grunke M, Dechant C, Reindl C, Kerzendorf U, Schulze-Koops H, et al. Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum. 2010;62(10):2876-85.
- 265. Arroyo-Villa I, Bautista-Caro MB, Balsa A, Aguado-Acín P, Nuño L, Bonilla-Hernán MG, et al. Frequency of Th17 CD4+ T cells in early rheumatoid arthritis: a marker of anti-CCP seropositivity. PLoS One. 2012;7(8):e42189.
- 266. Pène J, Chevalier S, Preisser L, Vénéreau E, Guilleux MH, Ghannam S, et al. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J Immunol. 2008;180(11):7423-30.
- 267. Zhang L, Li YG, Li YH, Qi L, Liu XG, Yuan CZ, et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS One. 2012;7(4):e31000.
- 268. Maggi L, Mazzoni A, Cimaz R, Liotta F, Annunziato F, Cosmi L. Th17 and Th1 Lymphocytes in Oligoarticular Juvenile Idiopathic Arthritis. Front Immunol. 2019;10:450.
- 269. Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F, Gattorno M, et al. Pathogen-induced human TH17 cells produce IFN- γ or IL-10 and are regulated by IL-1 β . Nature. 2012;484(7395):514-8.
- 270. Noster R, de Koning HD, Maier E, Prelog M, Lainka E, Zielinski CE. Dysregulation of proinflammatory versus anti-inflammatory human T(H)17 cell functionalities in the autoinflammatory Schnitzler syndrome. J Allergy Clin Immunol. 2016;138(4):1161-9.e6.

- 271. Nistala K, Adams S, Cambrook H, Ursu S, Olivito B, de Jager W, et al. Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc Natl Acad Sci U S A. 2010;107(33):14751-6.
- 272. Cosmi L, Cimaz R, Maggi L, Santarlasci V, Capone M, Borriello F, et al. Evidence of the transient nature of the Th17 phenotype of CD4+CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis. Arthritis Rheum. 2011;63(8):2504-15.
- 273. Fauriat C, Long EO, Ljunggren HG, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115(11):2167-76.
- 274. Freeman BE, Raué HP, Hill AB, Slifka MK. Cytokine-Mediated Activation of NK Cells during Viral Infection. J Virol. 2015;89(15):7922-31.
- 275. Martín-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol. 2004;5(12):1260-5.
- 276. Mehrotra PT, Donnelly RP, Wong S, Kanegane H, Geremew A, Mostowski HS, et al. Production of IL-10 by human natural killer cells stimulated with IL-2 and/or IL-12. J Immunol. 1998;160(6):2637-44.
- 277. Pridgeon C, Lennon GP, Pazmany L, Thompson RN, Christmas SE, Moots RJ. Natural killer cells in the synovial fluid of rheumatoid arthritis patients exhibit a CD56bright,CD94bright,CD158negative phenotype. Rheumatology (Oxford). 2003;42(7):870-8.
- 278. Dalbeth N, Callan MF. A subset of natural killer cells is greatly expanded within inflamed joints. Arthritis Rheum. 2002;46(7):1763-72.
- 279. Dalbeth N, Gundle R, Davies RJ, Lee YC, McMichael AJ, Callan MF. CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J Immunol. 2004;173(10):6418-26.
- 280. Spadaro A, Scrivo R, Moretti T, Bernardini G, Riccieri V, Taccari E, et al. Natural killer cells and gamma/delta T cells in synovial fluid and in peripheral blood of patients with psoriatic arthritis. Clin Exp Rheumatol. 2004;22(4):389-94.
- 281. Riccieri V, Parisi G, Spadaro A, Scrivo R, Barone F, Moretti T, et al. Reduced circulating natural killer T cells and gamma/delta T cells in patients with systemic sclerosis. J Rheumatol. 2005;32(2):283-6.
- 282. Riccieri V, Spadaro A, Parisi G, Taccari E, Moretti T, Bernardini G, et al. Down-regulation of natural killer cells and of gamma/delta T cells in systemic lupus erythematosus. Does it correlate to autoimmunity and to laboratory indices of disease activity? Lupus. 2000;9(5):333-7.
- 283. Lerkvaleekul B, Apiwattanakul N, Tangnararatchakit K, Jirapattananon N, Srisala S, Vilaiyuk S. Associations of lymphocyte subpopulations with clinical phenotypes and long-term outcomes in juvenile-onset systemic lupus erythematosus. PLoS One. 2022;17(2):e0263536.
- 284. Wouters CH, Ceuppens JL, Stevens EA. Different circulating lymphocyte profiles in patients with different subtypes of juvenile idiopathic arthritis. Clin Exp Rheumatol. 2002;20(2):239-48.
- 285. Grom AA, Villanueva J, Lee S, Goldmuntz EA, Passo MH, Filipovich A. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J Pediatr. 2003;142(3):292-6.
- 286. Chong WP, van Panhuys N, Chen J, Silver PB, Jittayasothorn Y, Mattapallil MJ, et al. NK-DC crosstalk controls the autopathogenic Th17 response through an innate IFN-γ-IL-27 axis. J Exp Med. 2015;212(10):1739-52.

7 Appendix

I Abkürzungsverzeichnis

AF Alexa Fluor®

APC Allophycocyanin

ANA antinukleäre Antikörper

BSG Blutsenkungsgeschwindigkeit

C(X)CR Chemokinrezeptor

CD cluster of differentiation

CED chronisch entzündliche Darmerkrankung

CM central memory

CNO chronisch nicht-bakterielle Osteomyelitis

CRMO chronisch rekurrierende, multifokale Osteomyelitis

CRP C-reaktives Protein

CT Computertomographie

DMARD Disease modifying antirheumatic drug

ECD Electron Coupled Dye = Phycoerythrin Texas Red®

EDTA Ethylendiamintetraessigsäure

EM early memory

EMRA effector memory RA+ (Effektor-RA+-Gedächtniszelle)

FITC Fluorescein Isothiocyanat

FS forward scatter

FSC forward scatter count

Ges immunologisch Gesunde/immunologisch gesunde Kontrolle

GK-MRT Ganzkörper-Magnet-Resonanz-Tomogramm

Hb Hämoglobin

HLA Humanes Leukozytenantigen

IFN Interferon

Ig Immunglobulin

IL Interleukin

JAK Januskinase

JIA juvenile idiopathische Arthritis

KrO Krome Orange

m männlich

Min-Max minimaler und maximaler Messwert MRT Magnet-Resonanz-Tomogramm

n Anzahl

NBO nichtbakterielle Osteitis NK natürliche Killerzelle

NSAR Nichtsteroidale Antirheumatika

p-Wert Signifikanz-Wert
PB Pacific Blue®

PC Phycoerythrin-Cyanin
PD programmed cell death

PE Phycoerythrin

PPP Palmoplantare Pustulosis

RA rheumatoide Arthritis

RANKL Rezeptor Aktivator von NF-kB (nuclear factor 'kappa-light-chain-

enhancer' of activated B-cells) Ligand

SAA Serum Amyloid A

SAPHO-Syndrom Synovitis, Akne, Pustulosis, Hyperostose, Osteitis-Syndrom

sJIA systemisch juvenile idiopathische Arthritis

STAT Signal Transducers and Activators of Transcription

SS side scatter

SSC side scatter count

TEMRA Effektor-Gedächtnis-RA+-T-Zelle

T_H T-Helferzellen

Th17 Th17-T-Helferzelle

TNF Tumor-Nekrose-Faktor
Treg regulatorische T-Zelle

TSCM stem cell-like memory T-Zelle

T4 CD4+ T-Helferzelle

T8 CD8+ zytotoxische T-Zelle

VAS visuelle Analogskala

w weiblich

II Abbildungsverzeichnis

Abbildung 1: Verteilung der Knochenläsionen bei Kindern und Jugendlichen mit
chronisch nicht-bakterieller Osteomyelitis (CNO)2
Abbildung 2: Assoziationen/Überlappungen der CNO mit anderen Erkrankungen3
Abbildung 3: Gatingstrategie für Lymphozyten gesamt sowie B-Lymphozyten gesamt
mit B-Zell-Subgruppen und NK-Zellen gesamt mit NK-Zell-Subgruppen
(Reagiergefäß 1)
Abbildung 4: Gatingstrategie für CD4+ und CD8+ T-Zellen mit Subgruppen
(Reagiergefäß 2)
Abbildung 5: Gatingstrategie für regulatorische T-Zellen und deren Subgruppen sowie
aktivierte T-Zellen (Reagiergefäß 3)
Abbildung 6: Gatingstrategie für Th1, Th2 und Th17 mit Subgruppen
(Reagiergefäß 4)
Abbildung 7: Boxplots der Messwerte (mit unterer und oberer Quartile) der EMRA-T-
Helferzellen, zytotoxischen EMRA-T-Helferzellen sowie low exhausted T-Helferzellen
der CNO-PatientInnen (orange), gesunden Kontrollen (blau) sowie JIA-PatientInnen
(gelb)
Abbildung 8: Boxplots der Messwerte (mit unterer und oberer Quartile) der Treg-
Helferzellen, zytotoxischen Treg-T-Zellen sowie naiven Treg-Helferzellen und naiven
zytotoxischen Treg-Zellen der CNO-PatientInnen (orange), gesunden Kontrollen (blau)
sowie JIA-PatientInnen (gelb)
Abbildung 9: Boxplots der Messwerte (mit unterer und oberer Quartile) der Th17/Treg
Ratio sowie CD56+CD16+ NK-Zellen der CNO-PatientInnen (orange), gesunden
Kontrollen (blau) sowie JIA-PatientInnen (gelb)
Abbildung 10: Boxplots der Messwerte (mit unterer und oberer Quartile) der
Gedächtnis-Treg (Helferzellen und zytotoxische Zellen), Th17, CD3-CD56+ NK-Zellen,
CD56dimCD16bright bzw. CD56brightCD16dim NK-Zellen der CNO-PatientInnen
(orange), gesunden Kontrollen (blau) sowie JIA-PatientInnen (gelb)

III Tabellenverzeichnis

Tabelle 1: Angepasste CNO-Diagnosekriterien nach Jansson
Tabelle 2: Häufigkeiten klinischer Charakteristika von Kindern und Erwachsenen mit
CNO bzw. SAPHO-Syndrom8
Tabelle 3: Klassifikationskriterien des SAPHO-Syndroms von 2003 10
Tabelle 4: Übersicht der untersuchten Routine-Laborwerte
Tabelle 5: Auflistung der bestimmten Lymphozytensubpopulationen mit entsprechenden
Oberflächenmarkern
Tabelle 6: Allgemeine und anamnestische Charakteristika der Studienpopulationen . 25
Tabelle 7: Klinische Charakteristika der CNO- und JIA-PatientInnen
Tabelle 8: MRT-Befunde der CNO-PatientInnen 27
Tabelle 9: Median, minimaler und maximaler Messwert und p-Wert (Wilcoxon-Test) der
immunologischen Routine-Untersuchungen der CNO-PatientInnen im Vergleich zu
Gesunden
Tabelle 10: Median, minimaler und maximaler Messwert und p-Wert (Wilcoxon-Test) bei
den immunologischen Routine-Untersuchungen der CNO-PatientInnen im Vergleich mit
JIA-PatientInnen
Tabelle 11: Median und minimaler und maximaler Messwert der Routine-
Laborparameter der CNO-PatientInnen nach Unterteilung in Erkrankungsdauer ≤12 bzw.
>12 Monate, Krankheitsaktivität aktiv bzw. inaktiv und Therapiestatus ohne bzw. mit
Therapie bei Studieneinschluss
Tabelle 12: Median und minimaler und maximaler Messwert von
Lymphozytensubpopulationen der CNO-PatientInnen nach Unterteilung in
Erkrankungsdauer ≤12 bzw. >12 Monate, Krankheitsaktivität aktiv bzw. inaktiv und
Therapiestatus ohne bzw. mit Therapie bei Studieneinschluss

IV Danksagung

Mein besonderer Dank gilt an dieser Stelle meinem Doktorvater Herrn Prof. Dr. Dr. med. Michael Frühwald für die Möglichkeit zur Durchführung dieser Arbeit, seine freundliche Unterstützung und Betreuung und nicht zuletzt das mühevolle Korrekturlesen.

Ganz besonders danken möchte ich auch Frau PD Dr. med. Michaela Kuhlen, die mir mit viel Geduld stets zur Seite stand, für ihre ausgezeichnete, fachliche Betreuung, ihre freundliche Hilfe bei der Umsetzung dieser Arbeit und ihren großen, zeitlichen Einsatz.

Herrn PD Dr. Andreas Rank möchte ich für die freundliche und kompetente Hilfestellung bei der Durchflusszytometrie danken, ebenso Herrn Dr. Stefan Schiele für die Unterstützung bei der statistischen Auswertung.

Mein Dank geht auch an alle, die mich mit viel Engagement bei der Rekrutierung der StudienteilnehmerInnen unterstützt haben. Hier danke ich vor allem meinem Team der Kinderrheumatologischen Ambulanz sowie insbesondere dem Kinderrheumatologischen Team von Herrn Thomas Keller im Josefinum.

Danken möchte ich der medizinischen Fakultät der Universität Augsburg, die mir die praktische Durchführung dieser Arbeit durch die Promotionsförderung ermöglichte.

Meiner Familie danke ich von ganzem Herzen für die uneingeschränkte Hilfe und den grenzenlosen Rückhalt!

V Eigene Veröffentlichungen und Kongressteilnahmen

Publikationen und Posterpräsentation:

Borchers et al. K-ras Mutations in Sera of Patients with Colorectal Neoplasias and Long-Standing Inflammatory Bowel Disease. Scand J Gastroenterol 2002;37(6):715-718.

Borchers et al. Pulmonaler Befall bei chronisch rekurrierender multifokaler Osteomyelitis (CRMO). Posterpräsentation 24. Jahrestagung der Gesellschaft für Kinder- und Jugendrheumatologie 2014. GKJR-PO-VV-6.

Borchers et al. Pulmonaler Befall bei chronisch rekurrierender multifokaler Osteomyelitis. Arthritis + Rheuma 2015;3:183-185.

Borchers et al. Verminderte NK-Zellen als potenzieller pathogenetischer Faktor bei Kindern und Jugendlichen mit chronisch nicht-bakterieller Osteomyelitis. Posterpräsentation Deutscher Rheumatologie Kongress 2022. KI.15

Vorträge:

Wenn Chronisches akut wird – Der kinderrheumatologische Notfall. Vortrag Jahrestagung der Süddeutschen Gesellschaft für Kinder- und Jugendmedizin 2021.

Wiederkehrendes Fieber? Wenn die Ursache im Verborgenen liegt. Vortrag Jahrestagung der Deutschen Gesellschaft für Kinder- und Jugendmedizin 2021.

VI Übersicht der für die Durchflusszytometrie verwendeten Antikörper mit Farbstoffen

Antikörper	Farbstoff	Klon	Firma
CD45RA	FITC	ALB11	Beckman Coulter
D183 (CXCR3)	AF 488	G025H7	Beckman Coulter
CD27	PE	1A4CD27	Beckman Coulter
CD95 (FAS)	PE	UB2	Beckman Coulter
CD25	PE	B1.49.9	Beckman Coulter
CCR5 (CD195)	PE	J418F1	BioLegend
CD16	ECD (PE- Texas Red®)	3G8	Beckman Coulter
CD62L	ECD	DREG56	Beckman Coulter
CD69	ECD	TP1.55.3	Beckman Coulter
CD56	PC5.5	N901	Beckman Coulter
CD279 (PD1)	PC5.5	PD1.3	Beckman Coulter
CD38	PC7	LS198-4-3	Beckman Coulter
CD28	PC7	CD28.2	Beckman Coulter
CCR6 (CD196)	PC7	B-R35	Beckman Coulter
CD24	APC	ALB9	Beckman Coulter
CD27	APC	1A4CD27	Beckman Coulter
CD127	APC	R34.34	Beckman Coulter
CD8	APC-AF700	B9.11	Beckman Coulter
CD3	APC-AF750	UCHT1	Beckman Coulter
CD19	PB	J3-119	Beckman Coulter
CD57	PB	NC1	Beckman Coulter
Anti-HLA-DR	PB	Immu-357	Beckman Coulter
CCR4 (CD194)	PB	L291H4	BioLegend
CD4	KrO	13B8.2	Beckman Coulter
CD45	KrO	J33	Beckman Coulter

Abkürzungen: AF Alexa Fluor®, APC Allophycocyanin, C(X)CR Chemokinrezeptor, CD cluster of differentiation, ECD Electron Coupled Dye = Phycoerythrin – Texas Red®, FITC Fluorescein Isothiocyanat, HLA Humanes Leukozytenantigen, KrO Krome Orange, PB Pacific Blue®, PC Phycoerythrin-Cyanin, PD programmed cell death, PE Phycoerythrin

VII Anhang

- Studienprotokoll
- Patienteninformation und Einwilligungserklärung
- Fragebogen Studienteilnehmer

Immunologische Charakterisierung bei chronisch nicht-bakterieller Osteomyelitis

Immunologische Charakterisierung des angeborenen und adaptiven Immunsystems von Kindern und Jugendlichen mit chronisch nicht-bakterieller Osteomyelitis- Evaluation von Biomarkern zur Subtypisierung und Verlaufsprognose

Versionsnummer 01

Versionsdatum 07.04.2021

Inhalt

- 1. Zusammenfassung des Projektes
- 2. Verantwortlichkeiten
 - 2.1. Studienleiter/in
 - 2.2. Beteiligte Wissenschaftler
 - 2.3. Kooperationspartner
 - 2.4. Geldgeber
- 3. Wissenschaftlicher Hintergrund
- 4. Projektziele
- 5. Zielgrößen
- 6. Studienpopulation
 - 6.1. Ein- und Ausschlusskriterien
 - 6.1.1. Einschlusskriterien
 - 6.1.2. Ausschlusskriterien
 - 6.2. Rekrutierungswege und Rekrutierungsmaßnahmen
- 7. Methodik und Durchführung
 - 7.1. Aufklärung und Einholung der Einwilligung
 - 7.2. Studiendesign
 - 7.3. Studienablauf
 - 7.4. Zu erfassende Daten
 - 7.5. Messparameter
 - 7.6. Zeitraum der Datenerfassung
 - 7.7. Gesamtdauer des Projekts
- 8. Nutzen-Risiko-Abwägung
 - 8.1. Studienbedingte Belastungen und Risiken
 - 8.2. Mit der Studie verbundener Nutzen
 - 8.3. Statement zur ärztlichen Vertretbarkeit
- 9. Biometrie
 - 9.1. Explorative Studie
 - 9.2. Statistische Verfahren
- 10. Datenmanagement und Datenschutz
 - 10.1. Datenerfassung und Datenspeicherung
 - 10.2. Datenweitergabe
 - 10.3. Widerruf und Datenlöschung
- 11. Versicherung
- 12. Unterschriften

1. Zusammenfassung des Projektes

Die chronisch nicht-bakterielle Osteomyelitis ist eine seltene autoinflammatorische Erkrankung, die überwiegend im Kindesalter auftritt und kinderrheumatologisch betreut wird. Die Ätiologie ist noch weitestgehend unbekannt. Der Verlauf der Erkrankung ist sehr unterschiedlich. Es bestehen Therapieempfehlungen, allerdings gibt es keine Parameter, die die Wahl der medikamentösen Therapie klar festlegen könnten. Auch prognostisch lässt sich der Verlauf schwer vorhersagen.

Das sogenannte SAPHO-Syndrom (Synovitis, Akne, Pustulosis, Hyperostosis und Osteitis Syndrom) des Erwachsenenalters ähnelt der kindlichen chronisch nicht-bakteriellen Osteomyelitis stark. Hier konnten zum Teil Veränderungen des zellulären Immunsystems aufgezeigt werden, z.B. Aktivierung von Th17-Zellen, die durch eine Osteoklastenaktivierung zur Osteoklastogenese führen. Bei der chronisch nicht-bakteriellen Osteomyelitis sind bisher nur wenige Veränderungen auf der zellulären Ebene beschrieben worden.

In der Kinderrheumatologischen Ambulanz an der Klinik für Kinder- und Jugendmedizin des Universitätsklinikums Augsburg werden Patienten mit chronisch nicht-bakterieller Osteomyelitis betreut. Auch hier zeigen diese Kinder unterschiedlichste Verläufe.

In dieser Studie sollen Patienten mit chronisch nicht-bakterieller Osteomyelitis immunologisch charakterisiert werden und mit Patienten mit juveniler idiopathischer Arthritis und immunologisch Gesunden verglichen werden. Hierbei sollen neben den immunologischen Daten auch anamnestische Daten und kernspintomographischen Befunden erfasst werden. Ziel ist es, den Verlauf der Erkrankung durch eine immunologische Charakterisierung besser einschätzen und mögliche prognostische Aussagen treffen zu können.

2. Verantwortlichkeiten

2.1. Studienleiter

Regine Borchers Klinik für Kinder- und Jugendmedizin Universitätsklinikum Augsburg Stenglinstr. 2, 86156 Augsburg

Tel.: 0821/400-161395

Email: Regine.Borchers@uk-augsburg.de

PD Dr. Michaela Kuhlen

Klinik für Kinder- und Jugendmedizin Universitätsklinikum Augsburg Stenglinstr. 2, 86156 Augsburg

Tel.: 0821/400-169307

Email: Michaela.Kuhlen@uk-augsburg.de

2.2. Beteiligte Wissenschaftler

Prof. Dr. Dr. Michael Frühwald Klinik für Kinder- und Jugendmedizin Universitätsklinikum Augsburg Stenglinstr. 2, 86156 Augsburg

Email: Michael.Fruehwald@uk-augsburg.de

PD Dr. Andreas Rank
II. Medizinische Klinik
Universitätsklinikum Augsburg
Stenglinstr. 2, 86156 Augsburg

Email: Andreas.Rank@uk-augsburg.de

Dr. Kurt Vollert

Klinik für Diagnostische und Interventionelle Radiologie Universitätsklinikum Augsburg Stenglinstr. 2, 86156 Augsburg Email: Kurt.Vollert@uk-augsburg.de

2.3. Kooperationspartner

kinderklinik.de

PD Dr. Matthias Wahle III. Medizinische Klinik Universitätsklinikum Augsburg Stenglinstr. 2, 86156 Augsburg

Email: Matthias.Wahle@uk-augsburg.de

Prof. Dr. Johannes-Peter Haas
Deutsches Zentrum für Kinder- und
Jugendrheumatologie
Gehfeldstr. 24,
82467 Garmisch-Partenkirchen
Email: haas.johannes-peter@rheuma-

Fr. Elisabeth Kling
Institut für Labormedizin und Mikrobiologie
Universitätsklinikum Augsburg
Stenglinstr. 2, 86156 Augsburg
Email: Elisabeth.Kling@uk-augsburg.de

Dr. Thomas Keller
Kinderrheumatologie
KJF Josefinum GmbH
Kapellenstr. 30, 86154 Augsburg
Email: Keller.Thomas@josefinum.de

Dr. Tobias Schuster Kinderchirurgie Universitätsklinikum Augsburg Stenglinstr. 2, 86156 Augsburg

Email: Tobias.Schuster@uk-augsburg.de

2.4. Geldgeber

Für die Studie werden keine Gelder aus der Pharmaindustrie verwendet. Es wird im Rahmen der intramuralen Forschungsförderung der medizinischen Fakultät der Universität Augsburg ein Antrag zur Promotionsförderung gestellt.

Ebenso ist ein Antrag zur Projektförderung bei der Dr. Melitta Berkemann Stiftung geplant. Darüber hinaus werden Drittmittelgelder des Lehrstuhls für Kinder- und Jugendmedizin der medizinischen Fakultät, Universität Augsburg verwendet.

3. Wissenschaftlicher Hintergrund

Die chronisch nicht-bakterielle Osteomyelitis (CNO) ist eine autoinflammatorische Erkrankung (AID) unklarer Ätiologie, bei der sterile Knochenentzündungen, selten auch weitere Organbeteiligungen, auftreten (1-4). Nach Ausschluss von bakteriellen Osteomyelitiden bzw. malignen Veränderungen werden syndromale Formen meist mit monogenetischem Erbgang wie z.B. das DIRA- oder Majeed-Syndrom abgegrenzt (5-7). Assoziationen zu inflammatorischen Erkrankungen wie z.B. der Psoriasis oder chronisch entzündliche Darmerkrankungen und eine familiäre Häufung lassen auch bei der sporadischen CNO eine komplexe genetische Grundlage ohne bisherigen Nachweis von spezifischen Genveränderungen vermuten (5, 8). Der Erkrankungsverlauf ist heterogen von monofokal selbstlimitierend bis rekurrierend multifokal (7). Prognostische Verlaufsparameter sind nicht verfügbar (5). Einflussfaktoren wie z.B. Umwelteinflüsse oder der Vitamin D-Status werden vermutet (1, 9-14).

Eine NSAR-Therapie gilt als Mittel der ersten Wahl. Bei NSAR-refraktärer CNO stehen mehrere medikamentöse Therapieoptionen von DMARDs über Biologika, Glucokortikoide und

Bisphosphonate zur Verfügung ohne klare Zuordnung zur Verlaufsform. Leitlinien liegen nicht vor (5, 9, 15, 16).

Die CNO tritt vor allem im Kindesalter auf. Im Erwachsenenalter bestehen Gemeinsamkeiten mit dem SAPHO-Syndrom (17, 18).

Bei AID steht die Dysregulation des angeborenen Immunsystems im Vordergrund (19). Dabei sind der fehlende Nachweis von Autoantikörpern und spezifischen T-Zellen charakteristisch und unterscheiden diese von Autoimmunerkrankungen (20). Auch der CNO liegt eine Störung des angeborenen Immunsystem zugrunde, die zu einer Dysregulation der Zytokin-Produktion (z.B. IL-1, IL-6 o. IL-10) führt (21, 22). Dabei spielt das NLRP3-Inflammasom die bedeutendste Rolle, allerdings wurden auch Inflammasom-unabhängige Wege beschrieben (1, 23-25). Biomarker im Serum (z.B. CRP, BSG, IL-6, sIL-2-Rezeptor) wurden zur Diagnosestellung bzw. Verlaufsbeurteilung in wissenschaftlichen Untersuchungen ohne Übernahme in die klinische Routineversorgung evaluiert (5, 26) (27).

Zudem wurden auch Veränderungen auf zellulärer Ebene beobachtet. Bei CNO-Patienten konnten z.B. CD14 Monozyten mit verminderter IL-10 Expression und gesteigerter Inflammasom-Aktivierung oder eine Mastzellbeteiligung mit vermehrter Bildung von Mastzellenzymen identifiziert werden (28) (29).

Beim SAPHO-Syndrom wurde eine verminderte Anzahl von natürlichen Killerzellen sowie eine erhöhte Th17/Treg Ratio beschrieben (30). Eine erhöhte Anzahl von Th17-Zellen konnte identifiziert werden mit vermehrter Sekretion von IL-17 und damit Granulozyten-Aktivierung und Bildung proinflammatorischer Zytokine, z.B. IL-1 (18, 31, 32). Die Aktivierung von Th17-Zellen führt zu einer Osteoklastenaktivierung und konsekutiven Steigerung der Osteoklastogenese (18) (33-35).

4. Projektziele

Ziel dieser Arbeit ist es, zelluläre Veränderungen des angeborenen und adaptiven Immunsystems sowie Biomarker bei Kindern und Jugendlichen mit CNO im Vergleich zu JIA-Patienten und Gesunden zu identifizieren und Korrelationen zwischen Auftreten immunologischer Veränderungen und dem Krankheitsverlauf aufzeigen zu können.

Durch Erfassung dieser Parameter und Gegenüberstellung klinischer, phänotypischer, bildmorphologischer, aber auch anamnestischer Parameter in einer Datenbank sollen mögliche Korrelationen in Bezug auf den Krankheitsverlauf untersucht werden.

5. Zielgrößen

Es handelt sich um eine Explorationsstudie, für die keine Fallzahlkalkulation erfolgt. Angestrebt wird die Rekrutierung von mind. 15 Patienten pro Gruppe, d.h. insgesamt mind. 45 Patienten.

6. Studienpopulation

6.1. Ein- und Ausschlusskriterien

6.1.1. Einschlusskriterien

In die Studie eingeschlossen werden Patienten unter 18 Jahren sowie junge Erwachsene bis max. 25 Jahre mit der Diagnose chronisch nicht-bakterielle Osteomyelitis bzw. SAPHO-Syndrom unabhängig vom Krankheitsstadium sowie Patienten mit juveniler idiopathischer Arthritis und immunologisch Gesunde.

6.1.2. Ausschlusskriterien

Ausgeschlossen werden Patienten mit fehlender Einwilligungserklärung des Patienten und/oder der Sorgeberechtigten. Patienten mit chronisch nicht-bakterieller Osteomyelitis, die eine weitere, nicht-assoziierte immunologische oder autoinflammatorische Grunderkrankung haben, werden ausgeschlossen. In der Kontrollgruppe der Patienten mit juveniler idiopathischer Arthritis dürfen keine weiteren autoinflammatorischen Erkrankungen vorliegen. In der Kontrollgruppe der Gesunden dürfen keine immunologischen oder autoinflammatorischen Erkrankungen vorliegen.

6.2. Rekrutierungswege und Rekrutierungsmaßnahmen

Die Rekrutierung der Studienteilnehmer findet an der Universitätsklinik Augsburg, insbesondere in der Klinik für Kinder- und Jugendmedizin, Kinderchirurgie und der III. Medizinischen Klinik, statt. Darüber hinaus werden Studienteilnehmer im Deutschen Zentrum für Kinder- und Jugendrheumatologie (Garmisch-Partenkirchen) sowie im Josefinum (Augsburg) rekrutiert. Dies gilt insbesondere für Patientengruppe mit chronisch nicht-bakterieller Osteomyelitis sowie für die Kontrollgruppe mit juveniler idiopathischer Arthritis.

Die Rekrutierung der Kontrollgruppe der immunologisch Gesunden erfolgt vor allem über die Klinik für Kinder- und Jugendmedizin und die Kinderchirurgie bei Patienten, die immunologisch gesund sind und eine Blutentnahme benötigen (z.B. OP-Planung, Routine-Kontrolluntersuchungen, stationäre Abklärung...).

Nach Bestätigung der Diagnosen bzw. Ausschluss einer immunologischen oder autoinflammatorischen Erkrankung in den Kontrollgruppen werden die Patienten, die die Einschlusskriterien erfüllen, sowie deren Sorgeberechtigte über die Studienziele und den Studienablauf aufgeklärt und zur Teilnahme an der Studie eingeladen. Bei Interesse an einer Studienteilnahme erfolgt auf freiwilliger Basis die schriftliche Einwilligung.

7. Methodik und Durchführung

7.1. Aufklärung und Einholung der Einwilligung

Die Aufklärung über die Studie und deren genauer Inhalt und Ablauf erfolgt in einem Gespräch zwischen dem Patienten und dessen Sorgeberechtigten und der Studienleitung (R. Borchers). In dem Gespräch werden folgende Punkte erläutert: Erklärung über Ablauf, Nutzen, Ziele und Risiken der Studie, Datenschutz, Teilnahmebedingungen und die Möglichkeit zum Widerruf der Einwilligung. Den Patienten und den Sorgeberechtigten wird zudem Informationsmaterial zur Studie übergeben, in dem sämtliche Punkte noch einmal zusammengefasst sind. Sowohl den Teilnehmern als auch den Sorgeberechtigten wird auch nach dem Gespräch jederzeit die Möglichkeit gegeben, Fragen zur Studie zu stellen.

7.2. Studiendesign

Das Studienvorhaben ist ein interdisziplinäres Projekt, das die Disziplinen Kinderrheumatologie, internistische Rheumatologie, Labormedizin, Hämato-Onkologie (PD Dr. Rank, Immunologische Testungen) und Kinderradiologie umfasst. Die vorliegende Studie ist eine gemischt retrospektiv/prospektiv biomedizinische Studie im Sinne einer Explorationsstudie. Hierzu werden bei der Patientengruppe anamnestische Daten über einen Elternfragebogen und die Krankenakte und schon bereits vorhandene bildmorphologische Befunde erhoben. Darüber hinaus werden nach Einwilligung zusätzliche Blutuntersuchungen im Rahmen einer routinemäßig erfolgenden Blutentnahme durchgeführt. Als Kontrollgruppen dienen möglichst nach Alter und Geschlecht gematchte Patienten mit juveniler idiopathischer Arthritis sowie immunologisch und autoinflammatorisch Gesunde.

7.3. Studienablauf

Potenzielle Studienteilnehmer sind alle Kinder- und Jugendlichen im Alter von 1 bis 17 Jahren sowie junge Erwachsene bis max. 25 Jahre, die die vorgenannten Einschlusskriterien erfüllen. In einem Gespräch werden die Patienten und deren Sorgeberechtigten über die Studie, deren Ziele und Ablauf ausführlich informiert und aufgeklärt.

Nach freiwilliger, schriftlicher Einwilligung in die Studie und Unterzeichnung der

Datenschutzerklärung folgt eine Blutentnahme im Rahmen der Routine-Blutuntersuchungen.

Zudem erhalten die Teilnehmer bzw. deren Sorgeberechtigten einen Fragebogen zur Erhebung anamnestischer Daten, der nach Beantwortung der Fragen an die Studienleitung zurückgegeben wird.

Die gewonnenen Blutproben werden entsprechend zeitnah analysiert (Routine-Untersuchung und zusätzliche Untersuchung).

Bereits durchgeführte kernspintomographische Untersuchungen werden nach Festlegung eines standardisierten Vorgehens ggf. nach-befundet (OA Dr. Vollert, Kinderradiologie, Universitätsklinikum Augsburg).

Zudem werden ggf. vorhandene oder noch fehlende Daten aus den Krankenakten ergänzt. Die erhobenen Daten und Messwerte werden pseudonymisiert (siehe 10.1) in eine Datenbank, die zuvor erstellt wurde, eingepflegt und entsprechend ausgewertet.

- 7.4. Zu erfassende Daten (aus dem Teilnehmer-Fragebogen bzw. der Patientenakte zu entnehmen)
 - 1. Alter
 - 2. Geschlecht
 - 3. Vorerkrankungen/Begleiterkrankungen
 - 4. Immunologische/autoinflammatorische Erkrankungen in der Familie (1. und 2. Generation)
 - 5. Impfstatus (anamnestisch nach Impfausweis)
 - 6. Manifestation der Erkrankung (Zeitpunkt, Klinik)
 - 7. Klinische Symptome im Verlauf
 - 8. Begleitsymptome (z.B. Hautveränderungen...)
 - 9. Assoziierte Erkrankungen (z.B. palmoplantare Pustulosis...)
 - 10. Therapieverlauf insbesondere medikamentöse Therapie (bisher und aktuell)
 - 11. Klinischer Erkrankungsverlauf (aktiv, selbstlimitierend, chronisch, Rezidiv) bzw. therapeutisches Ansprechen
 - 12. Kernspintomographische Befunde im Verlauf
 - 13. Krankheitsaktivität zum Zeitpunkt der Blutentnahme

7.5. Messparameter

- 1. Blutbild, Differentialblutbild, CRP, BSG, IL-6, sIL-2 Rezeptor, ß2-Mikroglobulin, ANA
- 2. IgG, IgM, IgA, IgG-Subklassen
- 3. 25-OH-Vitamin D
- 4. Für die Studie zusätzlich erhobene Parameter:
 - Zellulärer Immunstatus mit Bestimmung der Lymphozytensubpopulationen mittels Durchflusszytometrie (PD Dr. Rank, II. Medizinische Klinik, Universitätsklinikum Augsburg) mit
 - B-Lymphozyten mit funktionellen Untergruppen: naive, transitorische, classswitch und memory B-Zellen

- Gesamt T-Lymphozyten (CD3+) mit
- -T-Helferzellen (CD4+) mit funktionellen Untergruppen: Th1, Th2, Th17, naive, aktivierte (CD69+ und HLA-DR+), regulatorische und memory (center memory sowie effector memory) T-Zellen
- -zytotoxische T-Zellen (CD8+) mit funktionellen Untergruppen: naive, aktivierte (früh, intermediate, late, exhausted, und terminal effector sowie CD69+ und HLA-DR+), regulatorische und memory (center memory sowie effector memory mit und ohne Koexpression von CD45RA) T-Zellen
- NK-Zellen
- funktionelle Kompetenz der neutrophilen Aktivierung (Oxidative burst) (ILM, Universitätsklinikum Augsburg)
- 5. MRT-(Nach-)Befundung (insbesondere Anzahl der Herde, Lokalisation, ggf. KM-Aufnahme, Beschreibung der auffälligen Sequenzen)

7.6. Zeitraum der Datenerfassung

Die retrospektive Datenerhebung erfasst den Zeitpunkt seit Krankheitsmanifestation bis zur Blutentnahme. Die Blutentnahme findet zum Zeitpunkt der nächsten Routine-Vorstellung statt. Ein ggf. zweite Blutentnahme und ggf. weitere Datenerfassung erfolgt frühestens nach 3 Monaten im Rahmen der darauffolgenden Routine-Vorstellung, abhängig vom Krankheitsverlauf (z.B. Änderung der Krankheitsaktivität).

7.7. Gesamtdauer des Projekts

Die Gesamtdauer des Projektes beträgt 2 Jahre bzw. bis zur Rekrutierung von mind. 15 Patienten mit chronisch nicht-bakterieller Osteomyelitis und jeweils 15 Patienten der Kontrollgruppen (JIA und Gesunde).

8. Nutzen-Risiko-Abwägung

8.1. Studienbedingte Belastungen und Risiken

Da die Blutentnahmen im Rahmen der notwendigen Routine-Kontrollen erfolgen, sind keine darüber hinaus gehenden Blutentnahmen zur Teilnahme an der Studie notwendig. Es werden auch keine zusätzlichen Bildgebungen außerhalb der Routine-Kontrollen durchgeführt. Somit besteht keine zusätzliche Belastung.

Da für die zusätzlichen Laboruntersuchungen eine nur geringe Menge an Blut notwendig ist, besteht hier kein gesundheitliches Risiko für die Patienten. Auf die Behandlung haben die gewonnenen Daten keinen Einfluss.

8.2. Mit der Studie verbundener Nutzen

Für die Patienten hat die Teilnahme an der Studie keinen unmittelbaren Nutzen, da die Nützlichkeit der Ergebnisse erst noch wissenschaftlich ausgewertet und bewiesen werden muss. Die Patienten erhalten keinen Befundbericht der zusätzlich durchgeführten Analysen.

8.3. Statement zur ärztlichen Vertretbarkeit

Die Studie wird unter Berücksichtigung der folgenden Richtlinien durchgeführt:

- Revidierte Deklaration von Helsinki Version 2013
- Bundesdatenschutzgesetz 2009
- Europäisches Datenschutzgesetz 2019

9. Biometrie

9.1. Explorative Studie

Bei der vorliegenden Studie handelt es sich um eine Explorationsstudie als Vorbereitung auf eine mögliche konfirmatorische Studie.

9.2. Statistische Verfahren

Die Daten werden mithilfe deskriptiver Analysen ausgewertet. Für metrische Daten werden Mittelwerte und Standardabweichungen hinzugezogen. Bei kategorialen Variablen werden Häufigkeitsverteilungen eingesetzt. Gruppenvergleiche werden je nach Skalenniveau mit chi2-, Uoder t-Tests analysiert.

10. Datenmanagement und Datenschutz

10.1. Datenerfassung und Datenspeicherung

Die erhobenen Daten werden in einer Datenbank auf einem internen Datenserver gespeichert, ein regelmäßiges Backup erfolgt auf einem externen Datenspeicher. Die Datenserver sind passwortgeschützt und nur vom Intranet des Universitätsklinikums Augsburg aus zugänglich. Zugriff haben nur die Studienleiter.

Die Verschlüsselung erfolgt mittels fortlaufender Identifizierungsnummer, die sich nicht aus den Initialen oder dem Geburtsdatum der Patienten zusammensetzt. Eine Identifizierungsliste wird von der Projektleitung auf dem zugriffsgeschützten Server in Form einer passwortgeschützten Excel-Tabelle gespeichert, die in einem separaten Projektordner abgelegt wird. Die Einwilligungserklärungen werden getrennt von den übrigen Daten in einem Projektordner abgelegt. Die Daten werden für 10 Jahre gespeichert.

10.2. Datenweitergabe

In der vorliegenden Studie ist die Weitergabe der Daten an Dritte nicht vorgesehen. Im Rahmen von wissenschaftlichen Vorträgen und Publikationen werden die Daten anonymisiert, ein Rückschluss auf die Patienten ist nicht möglich.

10.3. Widerruf, Datenlöschung

Die Teilnahme an der Studie ist freiwillig. Patienten bzw. Sorgeberechtigte können die Einwilligung zur Teilnahme an der Studie jederzeit und ohne Angabe von Gründen mit sofortiger Wirkung widerrufen. Bei einem Widerruf werden alle bis dahin erhobenen und gespeicherten Daten im Rahmen der Studie gelöscht. Die für die Routine-Untersuchung erhobenen Daten im Rahmen der Patientenversorgung bleiben davon unberührt.

11. Versicherung

Es werden keine Versicherungen für Probanden oder Studienleiter abgeschlossen.

12. Unterschriften

Augsburg, 07.04.2021	
Regine Borchers	PD Dr. Michaela Kuhlen
Prof. Dr. Michael Frühwald	PD Dr. Andreas Rank
 Dr. Kurt Vollert	

Abkürzungsverzeichnis:

AID autoinflammatory disease, Autoinflammtionserkrankung

ALL akute Lymphatische Leukämie

BSG Blutsenkungsgeschwindigkeit

CD Clusters of Differentiation

CNO chronisch nicht-bakterielle Osteomyelitis

CRMO chronisch rekurrierende multifokale Osteomyelitis

CRP C-reaktives Protein

DIRA-Syndrom Defizienz des Interleukin-1-Rezeptor-Antagonisten-Syndrom

DMARDs Disease Modifying Anti-Rheumatic Drugs

EHS Environmental Health Sciences

FACS Fluorescence Activated Cell Sorting (= Durchflusszytometrie)

lg Immunglobulin

IL Interleukin

JIA juvenile idiopathische Arthritis

MCP-1 Monocyte chemotactic protein 1

MIS Medical Information Sciences

MRT Magnetresonanztomographie

NK-Zellen natürliche Killer-Zellen

NSAR nichtsteroidale Antirheumatika

PAPA-Syndrom Pyogene Arthritis, Pyoderma gangraenosum und Akne-Syndrom

PMBC Peripheral Blood Mononuclear Cells (=periphere mononukleäre Blutzellen)

RTE recent thymic emigrants (Thymusemigranten = Thymusreserve)

SAPHO-Syndrom Synovitis, Akne, Pustulosis, Hyperostosis and Osteitis Syndrom

slL-2-Rezeptor soluble (löslicher) Interleukin-2-Rezeptor

Th17 T-Helferzelle 17

TNFα Tumor Nekrose Faktor alpha

Treg regulatorische T-Zellen

Literaturverzeichnis:

- 1. Textbook of Autoinflammation. New York, NY: Springer Berlin Heidelberg; 2019. 820 p.
- 2. Borchers R, Speth F, Häfner R, Vollert K, Haas JP. Pulmonaler Befall bei chronisch rekurrierender multifokaler Osteomyelitis. . arthritis + rheuma. 2015;3:183-5.
- 3. Bhat CS, Anderson C, Harbinson A, McCann LJ, Roderick M, Finn A, et al. Chronic non bacterial osteitis- a multicentre study. Pediatr Rheumatol Online J. 2018;16(1):74.
- 4. Girschick H, Finetti M, Orlando F, Schalm S, Insalaco A, Ganser G, et al. The multifaceted presentation of chronic recurrent multifocal osteomyelitis: a series of 486 cases from the Eurofever international registry. Rheumatology (Oxford). 2018;57(7):1203-11.
- 5. Hofmann SR, Schnabel A, Rosen-Wolff A, Morbach H, Girschick HJ, Hedrich CM. Chronic Nonbacterial Osteomyelitis: Pathophysiological Concepts and Current Treatment Strategies. J Rheumatol. 2016;43(11):1956-64.
- 6. Jansson AF, Muller TH, Gliera L, Ankerst DP, Wintergerst U, Belohradsky BH, et al. Clinical score for nonbacterial osteitis in children and adults. Arthritis Rheum. 2009;60(4):1152-9.
- 7. Hedrich CM, Hofmann SR, Pablik J, Morbach H, Girschick HJ. Autoinflammatory bone disorders with special focus on chronic recurrent multifocal osteomyelitis (CRMO). Pediatr Rheumatol Online J. 2013;11(1):47.
- 8. Ferguson PJ, Sandu M. Current understanding of the pathogenesis and management of chronic recurrent multifocal osteomyelitis. Curr Rheumatol Rep. 2012;14(2):130-41.
- 9. Hofmann SR, Kapplusch F, Girschick HJ, Morbach H, Pablik J, Ferguson PJ, et al. Chronic Recurrent Multifocal Osteomyelitis (CRMO): Presentation, Pathogenesis, and Treatment. Curr Osteoporos Rep. 2017;15(6):542-54.
- 10. Lukens JR, Gurung P, Vogel P, Johnson GR, Carter RA, McGoldrick DJ, et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature. 2014;516(7530):246-9.
- 11. Cox AJ, Darbro BW, Laxer RM, Velez G, Bing X, Finer AL, et al. Correction: Recessive coding and regulatory mutations in FBLIM1 underlie the pathogenesis of chronic recurrent multifocal osteomyelitis (CRMO). PLoS One. 2017;12(7):e0181222.
- 12. Ferguson PJ, Laxer RM. New discoveries in CRMO: IL-1beta, the neutrophil, and the microbiome implicated in disease pathogenesis in Pstpip2-deficient mice. Semin Immunopathol. 2015;37(4):407-12.
- 13. Sassi F, Tamone C, D'Amelio P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients. 2018;10(11).
- 14. Arnson Y, Amital H. Is vitamin D a new therapeutic agent in autoinflammatory and pain syndromes? Isr Med Assoc J. 2011;13(4):234-5.
- 15. Schwarz T, Oommen PT, Windschall D, Weissbarth-Riedel E, Trauzeddel R, Grote V, et al. Protokolle zur Klassifikation, Überwachung und Therapie in der Kinderrheumatologie (Pro-Kind): Chronisch nicht-bakterielle Osteomyelitis (CNO). arthritis + rheuma. 2018;38:282-8.
- 16. Zhao Y, Wu EY, Oliver MS, Cooper AM, Basiaga ML, Vora SS, et al. Consensus Treatment Plans for Chronic Nonbacterial Osteomyelitis Refractory to Nonsteroidal Antiinflammatory Drugs and/or With Active Spinal Lesions. Arthritis Care Res (Hoboken). 2018;70(8):1228-37.
- 17. Hedrich CM, Morbach H, Reiser C, Girschick HJ. New Insights into Adult and Paediatric Chronic Non-bacterial Osteomyelitis CNO. Curr Rheumatol Rep. 2020;22(9):52.
- 18. Firinu D, Barca MP, Lorrai MM, Perra S, Cabras S, Muggianu E, et al. TH17 cells are increased in the peripheral blood of patients with SAPHO syndrome. Autoimmunity. 2014;47(6):389-94.
- 19. Sharma M, Ferguson PJ. Autoinflammatory bone disorders: update on immunologic abnormalities and clues about possible triggers. Curr Opin Rheumatol. 2013;25(5):658-64.

- 20. Giannelou A, Zhou Q, Kastner DL. When less is more: primary immunodeficiency with an autoinflammatory kick. Curr Opin Allergy Clin Immunol. 2014;14(6):491-500.
- 21. Hofmann SR, Roesen-Wolff A, Hahn G, Hedrich CM. Update: Cytokine Dysregulation in Chronic Nonbacterial Osteomyelitis (CNO). Int J Rheumatol. 2012;2012:310206.
- 22. Hofmann SR, Kapplusch F, Mabert K, Hedrich CM. The molecular pathophysiology of chronic non-bacterial osteomyelitis (CNO)-a systematic review. Mol Cell Pediatr. 2017;4(1):7.
- 23. Netea MG, van de Veerdonk FL, van der Meer JW, Dinarello CA, Joosten LA. Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol. 2015;33:49-77.
- 24. Lukens JR, Gross JM, Calabrese C, Iwakura Y, Lamkanfi M, Vogel P, et al. Critical role for inflammasome-independent IL-1beta production in osteomyelitis. Proc Natl Acad Sci U S A. 2014;111(3):1066-71.
- 25. Cassel SL, Janczy JR, Bing X, Wilson SP, Olivier AK, Otero JE, et al. Inflammasome-independent IL-1beta mediates autoinflammatory disease in Pstpip2-deficient mice. Proc Natl Acad Sci U S A. 2014;111(3):1072-7.
- 26. Hofmann SR, Kubasch AS, Range U, Laass MW, Morbach H, Girschick HJ, et al. Serum biomarkers for the diagnosis and monitoring of chronic recurrent multifocal osteomyelitis (CRMO). Rheumatol Int. 2016;36(6):769-79.
- 27. Hofmann SR, Bottger F, Range U, Luck C, Morbach H, Girschick HJ, et al. Serum Interleukin-6 and CCL11/Eotaxin May Be Suitable Biomarkers for the Diagnosis of Chronic Nonbacterial Osteomyelitis. Front Pediatr. 2017;5:256.
- 28. Brandt D, Sohr E, Pablik J, Schnabel A, Kapplusch F, Mabert K, et al. CD14(+) monocytes contribute to inflammation in chronic nonbacterial osteomyelitis (CNO) through increased NLRP3 inflammasome expression. Clin Immunol. 2018;196:77-84.
- 29. Young S, Sharma N, Lee JH, Chitu V, Neumeister V, Sohr E, et al. Mast cells enhance sterile inflammation in chronic nonbacterial osteomyelitis. Dis Model Mech. 2019;12(8).
- 30. Xu D, Liu X, Lu C, Luo J, Wang C, Gao C, et al. Reduction of peripheral natural killer cells in patients with SAPHO syndrome. Clin Exp Rheumatol. 2019;37(1):12-8.
- 31. Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 9 ed: Elsevier; 2018.
- 32. Le Jan S, Muller C, Plee J, Durlach A, Bernard P, Antonicelli F. IL-23/IL-17 Axis Activates IL-1beta-Associated Inflammasome in Macrophages and Generates an Auto-Inflammatory Response in a Subgroup of Patients With Bullous Pemphigoid. Front Immunol. 2019;10:1972.
- 33. Wang M, Tian T, Yu S, He N, Ma D. Th17 and Treg cells in bone related diseases. Clin Dev Immunol. 2013;2013:203705.
- 34. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203(12):2673-82.
- 35. Goenka A, Roderick M, Finn A, Ramanan AV. The jigsaw puzzle of chronic non-bacterial osteomyelitis: are anti-IL17 therapies the next piece? Rheumatology (Oxford). 2020;59(3):459-61.

Patienteninformation und Einwilligungserklärung

Information für Jugendliche ab 16 Jahren, Eltern und Sorgeberechtigte

"Immunologische Charakterisierung bei chronisch nicht-bakterieller Osteomyelitis"

Liebe Jugendliche, liebe Eltern und Sorgeberechtigte,

Du bist/ Ihr Kind ist an einer chronisch nicht-bakteriellen Osteomyelitis erkrankt und wird in unserer Kinderrheumatologischen Ambulanz am Universitätsklinikum Augsburg behandelt. Die chronisch nicht-bakterielle Osteomyelitis gehört zu den sogenannten seltenen Erkrankungen, für die wissenschaftliche Untersuchungen aufgrund ihrer Seltenheit besonders wichtig sind.

Wir möchten dich/ Sie daher bitten, uns in o.g. Studie zur Ursachenforschung dieser Erkrankung zu unterstützen.

Solltest Du/Ihr Kind nicht an einer chronisch nicht-bakteriellen Osteomyelitis erkrankt sein, wenden wir uns trotzdem an Dich/Sie, da Du/Ihr Kind entweder an einer juvenilen idiopathischen Arthritis erkrankt bist/ist oder Du/Ihr Kind immunologisch gesund bist/ist. Aus beiden Gruppen benötigen wir Patienten als sogenannte Kontrollgruppe, um die Ergebnisse der Untersuchungen vergleichen zu können.

Im Folgenden möchten wir Dir/ Ihnen nähere Informationen zur Studie geben, damit du/ Sie eine Entscheidung über Deine/ Ihre Teilnahme treffen kannst/ können. Bitte lies/ lesen Sie diese Informationen sorgfältig und besprich/ besprechen Sie evtl. verbleibende Fragen gerne mit uns in unserer Kinderrheumatologischen Ambulanz.

Die chronisch nicht-bakterielle Osteomyelitis zählt zu den sogenannten autoinflammatorischen Erkrankungen, bei denen es zu einer überschießenden Entzündungsreaktion in Teilen des Immunsystems kommt. Die genauen Ursachen und Vorgänge im Immunsystem sind bei dieser Erkrankung weiterhin unbekannt. Unklar ist auch, ob andere Bereiche des Immunsystems einen Einfluss auf die Erkrankung und deren Verlauf haben können. Daher möchten wir diese besser verstehen und wollen im Rahmen dieser Studie – über die übliche Routine hinausgehend - bestimmte Immunzellen (z.B. T-Zellen) und Biomarker (z.B. Entzündungseiweiße) bei Patienten mit chronisch nicht-bakterieller Osteomyelitis sowie Kontrollgruppen (Patienten mit juveniler idiopathischer

Arthritis und gesunde Patienten) zum Vergleich untersuchen. Wir hoffen, mit diesen Untersuchungen zukünftig den Verlauf der Erkrankung und die notwendige Behandlungsintensität bzw. -dauer besser einschätzen zu können.

Im Rahmen der Routine-Untersuchungen in unserer Kinderrheumatologischen Ambulanz wird Dir/ Ihrem Kind regelmäßig Blut zur Krankheits- und Therapieüberwachung abgenommen. Bei diesen Blutentnahmen möchten wir Dir/ Ihrem Kind nach Einschluss in die Studie zusätzlich 3 ml Blut (1 Teelöffel) abnehmen.

Zudem erhältst Du/ erhalten Sie einen Fragebogen, den wir Dich/ Sie bitten, einmalig auszufüllen. Dieser beinhaltet vor allem Fragen zum Krankheitsverlauf sowie zu möglichen Einflussfaktoren.

Falls Röntgen-Untersuchungen oder MRT-Untersuchungen (Kernspintomographische Bilder) vorliegen oder noch geplant sein sollten, werden diese ebenfalls nach-befundet und ausgewertet.

Es wurde keine Patienten-/ Probanden-Versicherung abgeschlossen, da die Untersuchungen im Rahmen der notwendigen Routine-Untersuchungen stattfinden. Bei den studienbedingten Blutentnahmen steht Ihr Kind/ stehen Sie gemäß §2 (1) Nr. 13b SGB VII unter dem Schutz der gesetzlichen Unfallversicherung. Diese schließt etwaige Wegeunfälle ein, die auf direktem Weg vom oder zum Ort der Probenentnahme auftreten.

Bei dieser Studie werden die Vorschriften über die ärztliche Schweigeplicht und den Datenschutz eingehalten. Für die Bewertung der Untersuchungsergebnisse ist die Berücksichtigung der Krankengeschichte und Deiner übrigen Befunde/ der übrigen Befunde Ihres Kindes notwendig. Der Schutz der Daten ist aber in jedem Fall gesichert.

Die Fragebögen und Laborergebnisse werden mit einer Studiennummer versehen, sodass Dein Name/ der Name Ihres Kindes in der Datenerhebung nicht erkennbar ist. Die Zuordnung der Daten zu Dir/ Ihrem Kind ist nur den Studienmitarbeitern über eine sogenannte Pseudonymisierungsliste möglich.

Die Daten werden mit der Studiennummer ohne Nennung Deines Namens/ des Namens Ihres Kindes in eine Datenbank eingegeben, den gesetzlichen Bestimmungen entsprechend für 10 Jahre archiviert und wissenschaftlich ausgewertet. Die Ergebnisse der Studie werden in wissenschaftlichen Zeitschriften und Konferenzen bzw. im Rahmen einer Promotion veröffentlicht. Diese Veröffentlichungen werden keinerlei persönliche Daten enthalten, die Rückschlüsse auf Dich/ Ihr Kind ermöglichen.

Die den allgemeinen Empfehlungen entsprechende Diagnostik und Therapie werden durch dieses Forschungsvorhaben nicht beeinträchtigt oder verändert. Die zusätzlich gewonnenen Untersuchungsergebnisse haben auf Deine Behandlung/ die Behandlung Ihres Kindes keinen Einfluss und auch keinen unmittelbaren Nutzen, da die Nützlichkeit dieser Ergebnisse erst noch wissenschaftlich untersucht und ggf. im Rahmen weiterer Studien bewiesen werden muss. Ein Befundbericht zu diesen Ergebnissen wird daher nicht erstellt. Die Blutentnahmen erfolgen im Rahmen von Routine-/ Kontrollabnahmen, die auch außerhalb dieser Studie erforderlich sind. Durch die Entnahme des zusätzlichen Blutes entsteht kein Risiko für Dich/ Ihr Kind.

Das Forschungsvorhaben ist ein interdisziplinäres Projekt, an dem Mitarbeiter der Kinderklinik und Kinderchirurgie, der Kinderradiologie, des Instituts für Laboratoriumsmedizin und der II. Medizinischen Klinik beteiligt sind.

Hiermit möchten wir Dich/ Sie einladen, an dieser Studie teilzunehmen. Die Teilnahme ist freiwillig und kann jederzeit ohne Angabe von Gründen und ohne Entstehung von Nachteilen für Deine Behandlung/ die Behandlung Ihres Kindes widerrufen werden.

Stelle/n Sie alle Fragen, die Dir/ Ihnen wichtig erscheinen und lass Dir/ lassen Sie sich ausreichend Zeit für die Entscheidung zur Teilnahme an dieser Studie. Wenn Du Dich entschließt/ Sie sich entschließen, an der Studie teilzunehmen, erteile/n Sie uns bitte Deine/ Ihre Einwilligung auf der beigefügten Einwilligungserklärung.

Für die Studie verantwortlich sind:

Regine Borchers

Kinderrheumatologie

Kinderklinik Augsburg

Universitätsklinikum Augsburg

Stenglinstr. 2

86156 Augsburg

Tel.: 0821/400-9210

Email: Regine.Borchers@uk-augsburg.de

PD Dr. med. Michaela Kuhlen

Schwäbisches Kinderkrebszentrum

Kinderklinik Augsburg

Universitätsklinikum Augsburg

Stenglinstr. 2

86156 Augsburg

Tel.: 0821/400-9300

Email: Michaela.Kuhlen@uk-augsburg.de

Information für Jugendliche von 12-15 Jahren

"Immunologische Charakterisierung bei chronisch nicht-bakterieller Osteomyelitis"

	7 ·			
Du bi	st an einer chronisch nicht-bakte	riellen Osteomyelitis erk	krankt und wirst in unserer	
IZ:l .		11. 1 10.00 11.00	A I I "O' I I I II	ъ.

Liehe/r

Kinderrheumatologischen Ambulanz am Universitätsklinikum Augsburg regelmäßig behandelt. Die chronisch nicht-bakterielle Osteomyelitis gehört zu den sogenannten seltenen Erkrankungen, für die wissenschaftliche Untersuchungen aufgrund ihrer Seltenheit besonders wichtig sind.

Da Du diese sehr seltene Erkrankung hast und wir mehr über diese Erkrankung lernen wollen, möchten wir Dich fragen, ob Du an einer sogenannten Studie teilnehmen möchtest.

Solltest Du nicht an einer chronisch nicht-bakteriellen Osteomyelitis erkrankt sein, kann es sein, dass wir Dich trotzdem fragen, ob Du an dieser Studie teilnehmen möchtest. Um Vergleiche machen zu können, suchen wir auch Patienten mit einer juvenilen idiopathischen Arthritis oder Patienten, die keine entzündliche Erkrankung haben und bereit sind, an dieser Studie teilzunehmen.

Was das für Dich genau bedeutet, erklären wir Dir in diesem Informationsschreiben. Wenn Du noch Fragen hast, kannst Du uns diese gerne in unserer Kinderrheumatologischen Ambulanz stellen.

Die chronisch nicht-bakterielle Osteomyelitis ist eine Erkrankung, die in Deinem Körper entsteht und eine sehr starke Entzündung, die vor allem die Knochen betrifft, verursacht. Diese entsteht durch Veränderungen in Deinem sogenannten Abwehrsystem (damit kann Dein Körper z.B. Bakterien oder ähnliches abwehren). Die genauen Ursachen und Vorgänge innerhalb des Abwehrsystems sind bei dieser Erkrankung weitestgehend unbekannt. Unklar ist auch, ob andere Bereiche des Abwehrsystems einen Einfluss auf die Erkrankung und deren Verlauf haben können. Daher möchten wir diese besser verstehen und wollen im Rahmen dieser Studie – über die übliche Routine hinausgehend – zum Beispiel bestimmte Abwehrzellen bei Patienten mit chronisch nicht-bakterieller Osteomyelitis sowie Kontrollgruppen (Patienten mit einer sogenannten idiopathischen Arthritis und gesunde Patienten) zum Vergleich untersuchen. Aus den gewonnenen Erkenntnissen hoffen wir, den Verlauf Deiner Erkrankung und die notwendige Behandlungsstärke bzw. -dauer besser einschätzen zu können.

Im Rahmen der Routine-Untersuchungen in unserer Kinderrheumatologischen Ambulanz wird Dir regelmäßig Blut zur Krankheits- und Therapieüberwachung abgenommen. Bei diesen Blutentnahmen möchten wir Dir, nachdem Du Dich zur Teilnahme an der Studie entschieden hast, zusätzlich wenig Blut (ca. 1 Teelöffel) abnehmen. Dafür musst Du keinen zusätzlichen Termin ausmachen und erhältst keinen zusätzlichen "Piekser".

Außerdem bekommst Du einen Fragebogen, den Du zusammen mit Deinen Eltern ausfüllst oder Deine Eltern auch alleine ausfüllen können. Wir sehen uns außerdem Deine kernspintomographischen Untersuchungen ("die Bilder, die in einer langen Röhre gemacht werden"), die schon gemacht wurden oder noch gemacht werden, genau an.

Deine Daten werden so auf dem PC in der Klinik gespeichert, dass keine fremde Person weiß, dass Du an der Studie teilnimmst. Wir benutzen dafür statt Deinem Namen einen Code zur Verschlüsselung

mit Zahlen und Buchstaben. Wenn wir über die Ergebnisse unserer Untersuchung einen wissenschaftlichen Artikel schreiben, wird Dein Name nicht genannt.

Du nimmst an der Studie nur teil, wenn Du dazu freiwillig und schriftlich Deine Einwilligung erklärst. Wenn Du nicht teilnehmen möchtest oder es Dir später anders überlegst und aufhören möchtest, entstehen Dir dadurch keine Nachteile. Du kannst deine Einwilligung jederzeit ohne Angabe von Gründen rückgängig machen.

Stelle alle Fragen, die Dir wichtig sind und lass Dir ausreichend Zeit für Deine Entscheidung zur Teilnahme an dieser Studie. Wenn Du Dich entschließt, an der Studie teilzunehmen, bestätige uns das bitte durch Deine Unterschrift auf der beigefügten Einwilligungserklärung.

Für die Studie verantwortlich sind: Regine Borchers Kinderrheumatologie Kinderklinik Augsburg Universitätsklinikum Augsburg Stenglinstr. 2, 86156 Augsburg

Tel.: 0821/400-9210

Email: Regine.Borchers@uk-augsburg.de

PD Dr. med. Michaela Kuhlen Schwäbisches Kinderkrebszentrum Kinderklinik Augsburg Universitätsklinikum Augsburg Stenglinstr. 2, 86156 Augsburg

Tel.: 0821/400-9300

Email: Michaela.Kuhlen@uk-augsburg.de

Wenn Du noch Fragen zur Studie hast, kannst Du diese hier aufschreiben:		

Information für Kinder von 6-11 Jahren

"Immunologische Charakterisierung bei chronisch nicht-bakterieller Osteomyelitis"

Liebe/r,
Du kommst regelmäßig zu uns in die Kinderrheumatologische Ambulanz, da Du aufgrund Deiner Erkrankung untersucht wirst und eventuell Medikamente einnehmen musst. Daher muss dir leider auch immer wieder Blut abgenommen werden.
Da du eine sehr seltene Erkrankung (Knochenentzündung) hast und wir mehr über diese Erkrankung lernen wollen, möchten wir dich fragen, ob du an einer sogenannten Studie teilnehmen möchtest.
Solltest Du eine andere Erkrankung haben (Gelenkentzündung) oder nicht die Kinderrheumatologische Ambulanz besuchen, kann es sein, dass wir Dich trotzdem fragen, ob Du mitmachst, da wir auch Kinder suchen, die wir mit den Kindern mit einer Knochenentzündung vergleichen können.
Was das für Dich genau bedeutet, erklären wir Dir in diesem Informationsschreiben.
Bisher wissen wir nicht, wie Deine Erkrankung genau entsteht bzw. warum die Krankheit bei jedem etwas anders verläuft. Daher wollen wir Dein Blut genauer untersuchen. Damit wir das tun können, nehmen wir Dir bei einer notwendigen Blutabnahme, die auch ohne diese zusätzliche Untersuchung gemacht wird, ein ganz wenig mehr Blut ab. Du bekommst also keinen zusätzlichen "Piekser" und musst selbst dafür auch nichts Besonderes machen. Das Blut untersuchen wir dann in einem Labor.
Außerdem bekommst Du einen Fragebogen, den Du zusammen mit Deinen Eltern ausfüllst oder Deine Eltern auch alleine ausfüllen können. Wir sehen uns außerdem die kernspintomographischen Untersuchungen ("Bilder, für die du in einer langen Röhre liegen musstest") genau an. Es erfolgen für diese Studie keine zusätzlichen Untersuchungen "in der Röhre".
Wir möchten Dich einladen, an dieser Studie teilzunehmen. Die Teilnahme ist freiwillig und Du kannst sie jederzeit beenden, wenn Du nicht mehr mitmachen möchtest.
Du hast Zeit, Dir zu überlegen, ob Du an der Studie teilnehmen möchtest. Wenn Du Dich für eine Teilnahme an dieser Studie entscheidest, kannst Du diese Entscheidung auch jederzeit wieder rückgängig machen. Das ist völlig in Ordnung.
Für die Studie verantwortlich sind:
R. Borchers, Tel.: 0821/400-9210, Email: Regine.Borchers@uk-augsburg.de PD. Dr. M. Kuhlen, Tel.: 0821/400-9300, Email: Michaela.Kuhlen@uk-augsburg.de
Wenn Du noch Fragen zur Studie hast, kannst Du diese hier aufschreiben:

Datenschutz-Information gemäß Datenschutzgrundverordnung (DSGVO)

Rechtsgrundlage für die Datenverarbeitung ist Ihre freiwillige Einwilligung (Art. 6 Abs. 1 Buchst. a, Art. 9 Abs. 2 Buchst. a) DSGVO). Die Daten werden also nur dann erhoben, gespeichert, ausgewertet und weitergegeben, wenn Sie dazu schriftlich Ihre Einwilligung erklären. Auch wenn Sie Ihre Einwilligung zunächst erteilen, können Sie sie ohne Angabe von Gründen widerrufen.

Der Verantwortliche für die Datenverarbeitung ist:

Regine Borchers. Kinderklinik Augsburg, Universitätsklinikum Augsburg, Stenglinstr. 2, 86199 Augsburg. Tel.: 0821/400-9210. Email: Regine.Borchers@uk-augsburg.de

Bei dieser Studie werden die Vorschriften über die ärztliche Schweigepflicht und den Datenschutz eingehalten. Es werden persönliche Daten und Befunde von Ihnen verschlüsselt (pseudonymisiert), d.h. weder Ihr Name noch Ihre Initialen oder das Geburtsdatum erscheinen im Verschlüsselungscode, verarbeitet und an den Initiator der Studie (Frau Regine Borchers) bzw. von ihm beauftragte Stellen zum Zweck der wissenschaftlichen Auswertung weitergeleitet. Zugriff auf die personenbezogenen Daten haben nur die Studienleiterin (Frau Regine Borchers) und ihre Stellvertreterin (PD Michaela Kuhlen) sowie von der Studienleiterin zur Verschwiegenheit verpflichtete Mitglieder des Studienteams.

Pseudonymisieren bedeutet, dass die erhobenen Daten ohne Hinzuziehung einer Liste nicht mehr einer spezifischen betroffenen Person zugeordnet werden können. Die personenbezogenen Daten, wie z. B. der Name und das Geburtsdatum, werden durch einen Nummerncode ersetzt. Im Studienzentrum ist eine Liste hinterlegt, auf der die Namen den Nummern- und/oder Buchstabencodes zugeordnet sind. Diese Liste wird im Studienzentrum gesondert aufbewahrt und unterliegt dort technischen und organisatorischen Maßnahmen, die gewährleisten, dass die von Ihnen erhobenen Daten Ihnen durch unbefugte Personen nicht zugeordnet werden können. Eine Entschlüsselung erfolgt nur in folgenden Situationen: Zur Überwachung der Studiensicherheit kann Einsicht in die Originaldaten (z.B. der Krankenakte) durch autorisierte Personen genommen werden.

Sofern der Forscher eine Entschlüsselung aus wissenschaftlichen Gründen vornehmen möchte, wird zuvor eine Zustimmung der Ethikkommission eingeholt.

Die pseudonymisierten Daten werden 10 Jahre nach Beendigung oder Abbruch der Studie an der Kinderklinik Augsburg, Universitätsklinikum Augsburg aufbewahrt. Sie sind gegen unbefugten Zugriff gesichert. Sie werden gelöscht, wenn sie nicht mehr benötigt werden. Spätestens nach 10 Jahren werden sie gelöscht.

Die Daten werden zu jeder Zeit (auch im Falle der Veröffentlichung der Studienergebnisse) vertraulich behandelt.

Sind mit der Datenverarbeitung Risiken verbunden?

Bei jeder Erhebung, Speicherung, Nutzung und Übermittlung von Daten bestehen Vertraulichkeitsrisiken (z.B. die Möglichkeit, die betreffende Person zu identifizieren). Diese Risiken lassen sich nicht völlig ausschließen und steigen, je mehr Daten miteinander verknüpft werden können. Der Initiator der Studie versichert Ihnen, alles nach dem Stand der Technik Mögliche zum Schutz Ihrer Privatsphäre zu tun und Daten nur an Stellen weiterzugeben, die ein geeignetes

Datenschutzkonzept vorweisen können. Medizinische Risiken sind mit der Datenverarbeitung nicht verbunden.

Sie können Ihre Einwilligung jederzeit ohne Angabe von Gründen schriftlich oder mündlich widerrufen, ohne dass Ihnen daraus ein Nachteil entsteht. Wenn Sie Ihre Einwilligung widerrufen, werden keine weiteren Daten mehr erhoben. Die bis zum Widerruf erfolgte Datenverarbeitung bleibt jedoch rechtmäßig. Sollten Sie im Verlauf der Studie Ihre Einwilligung widerrufen, werden Sie gefragt, ob Sie mit der anonymisierten Weiterverwendung Ihrer Daten und ggf. Proben einverstanden sind oder ob eine Löschung der Daten bzw. Vernichtung der Proben erfolgen soll.

Sie haben das Recht, vom Verantwortlichen Auskunft über die von Ihnen gespeicherten personenbezogenen Daten (einschließlich einer kostenlosen Überlassung einer Kopie der Daten) zu verlangen. Ebenfalls können Sie die Berichtigung unzutreffender Daten sowie gegebenenfalls eine Übertragung der von Ihnen zur Verfügung gestellten Daten und die Einschränkung ihrer Verarbeitung verlangen. Bitte wenden Sie sich im Regelfall an das Studienzentrum, denn allein das Studienzentrum kann aufgrund des Pseudonymisierungsprozesses vollumfänglich auf Ihre Daten zugreifen bzw. entsprechende Auskünfte geben. Der Initiator der Studie kann vor diesem Hintergrund nur sehr begrenzt helfen.

Name und Kontaktdaten des zuständigen behördlichen Datenschutzbeauftragten:

Herr Rainer Schrenk

Stabstelle Datenschutz

UK-Augsburg, Stenglinstr. 2, 86156 Augsburg

Email: datenschutz@uk-augsburg.de

Es besteht ein Beschwerderecht bei der Datenschutz-Aufsichtsbehörde:

Sie haben unbeschadet der genannten Rechte und der Möglichkeit der Geltendmachung anderer Rechtsbehelfe jederzeit die Möglichkeit, Ihr Recht auf Beschwerde bei einer Aufsichtsbehörde, insbesondere in dem Mitgliedstaat Ihres Aufenthaltsorts, Ihres Arbeitsplatzes oder des Orts des mutmaßlichen Verstoßes geltend zu machen, wenn Sie der Ansicht sind, dass die Verarbeitung der Sie betreffenden personenbezogenen Daten gegen datenschutzrechtliche Vorschriften verstößt (Art. 77 DSGVO).

Die grundsätzlich für den Studienstandort zustände Datenschutz-Aufsichtsbehörde ist:

Der Bayerische Landesbeauftragte für den Datenschutz, Datenschutz-Aufsichtsbehörde des Bundeslandes Bayern, Postfach 22 12 19, 80502 München, Tel.: 089 212672 0, Email: poststelle@datenschutz-bayern.de

Einwilligungserklärung

Zur Teilnahme an der Studie

"Immunologische Charakterisierung bei chronisch nicht-bakterieller Osteomyelitis"

Name der Patientin / des Patienten:
Geburtsdatum:
Die Patienten-/ Elterninformation habe ich erhalten. Durch meine Unterschrift bestätige ich, dass ich den Inhalt der Information gelesen und verstanden habe. Ich hatte Gelegenheit, alle mir wichtigen Fragen zu stellen, die zu meiner Zufriedenheit umfassend beantwortet wurden.
Ich bin mit der erweiterten Untersuchung durch Abnahme einer Blutprobe, Auswertung vorliegender oder noch geplanter kernspintomographischer Untersuchungen und Auswertung eines Fragebogens bzw. der Krankenakte einschließlich Speicherung meiner personenbezogenen Daten für wissenschaftliche Zwecke im Rahmen der Studie "Immunologische Charakterisierung bei chronisch nicht-bakterieller Osteomyelitis" einverstanden.
□ ja
□ nein
Bitte zutreffendes ankreuzen.
In der Studie "Immunologische Charakterisierung bei chronisch nicht-bakterieller Osteomyelitis" werden Mitarbeiter am Universitätsklinikum Augsburg und der Universität Augsburg auf die pseudonymisierten Daten von meinem Kind/mir Zugriff haben.
Datenschutz
Bezüglich des Datenschutzes willige ich ausdrücklich ein,
dass die Daten in der beschriebenen Art erhoben, gespeichert und verarbeitet werden, inklusive sogenannter besonderer Daten, wie z.B. Gesundheitsdaten:
□ ja
□ nein
Bitte zutreffendes ankreuzen.

Mir ist bekannt, dass die Teilnahme freiwillig ist und diese Einwilligung jederzeit schriftlich oder mündlich ohne Angaben von Gründen widerrufen werden kann, ohne dass mir/ meinem Kind dadurch Nachteile entstehen. Die Rechtmäßigkeit der bis zum Widerruf erfolgten Datenverarbeitung wird davon nicht berührt. In diesem Fall kann ich entscheiden, ob die von mir/ meinem Kind erhobenen Daten gelöscht werden sollen oder weiterhin für die Zwecke der Studie verwendet werden dürfen.

Ich erkläre mich einverstanden, dass ich/ mein Kind an der Studie "immunologische Charakterisierung bei chronisch nicht-bakterieller Osteomyelitis" teilnehme/ -nimmt und werde eine Kopie dieser Einwilligung erhalten, sobald ich diese unterschrieben habe.

Ich bin mit der Erhebung und Verwendung persönlicher Daten und Befunddaten nach Maßgabe der Patienten-/Elterninformation einverstanden.

Ort, Datum	Name, Vorname	Unterschrift des Patienten
		ab 16 Jahren rechtlich bindend
		für den datenschutzrechtlichen Tei
Ort, Datum	Name, Vorname	Unterschrift des Patienten
Sorgeberechtigte	(beide Elternteile):	
Wir versichern, so	orgeberechtigt zu sein und erteilen uns	ere Einwilligung.
	Name, Vorname	Unterschrift Sorgeberechtigter
Ort, Datum		5

Sorgeberechtigte	e (ein Elternteil bzw. nur ein Elte	rnteil anwesend):
Ich versichere, da	ass ich allein sorgeberechtigt bin	bzw. mit der Zustimmung meiner(es)
		die Einwilligung erteile.
Ort, Datum	Name, Vorname	Unterschrift Sorgeberechtigter
Aufklärende Pers	son:	
das Ziel und den	Ablauf der Studie sowie über die	e wurden von mir im Rahmen eines Gesprächs über Risiken aufgeklärt. Ein Exemplar der g habe ich den Eltern ausgehändigt.

Unterschrift Studienmitarbeiter

Name, Vorname

Ort, Datum

Studien-Identifikationsnu	mmer

Fragebogen Studienteilnehmer

"Immunologische Charakterisierung bei chronisch nicht-bakterieller Osteomyelitis"

Liebe Studienteilnehmer,

bitte füllen Sie/fülle diesen Fragbogen aus und geben/gib ihn an die Studienleitung (R. Borchers) zurück. Sollten Sie/Solltest Du Fragen nicht beantworten können, lassen Sie/lass diese frei und wenden Sie sich/wende Dich gerne an die Studienleitung, um diese Fragen klären zu können.

1.	Wie alt ist Ihr Kind/Wie alt bist Du aktuell (in Jahren und Geburtsmonat- und Jahr)?
2. 3.	Welches Geschlecht hat Ihr Kind/hast Du? weiblich männlich Aufgrund welcher Erkrankung wird Ihr Kind/wirst Du in der Kinderrheumatologischen Ambulanz betreut bzw. ist Ihr Kind/bist Du in ärztlicher Betreuung in der Kinderklinik.
	☐ Chronisch nicht-bakterielle Osteomyelitis
	□ Juvenile idiopathische Arthritis
	□ Andere Erkrankung; welche:
4.	Seit wann ist Ihr Kind/bist Du daran erkrankt (in Monaten/Jahren und Alter bei Erkrankungsbeginn)?
5.	Welche Symptome/Beschwerden hatte Ihr Kind/hattest Du, als Ihr Kind/du erkrankt ist/bist?

6.	Gibt es bekannte Vorerkrankungen oder Begleiterkrankungen? Wenn ja, welche:
7.	Sind seit Erkrankungsbeginn Begleiterkrankungen oder assoziierte Erkrankungen aufgetreter (z.B. Hautveränderungen, Darmentzündungen, Schuppenflechte, Akne)? Wenn ja, welche:
8.	Sind in der Familie immunologische bzw. rheumatologische Erkrankungen bekannt (z.B. Immundefekte, Gelenkrheuma, Weichteilrheuma, Schuppenflechte, chronisch entzündliche Darmerkrankungen, Fiebersyndrome, andere entzündliche Erkrankungen)? Wenn ja, welche und bei welchem Familienmitglied (z.B. Großvater mütterlicherseits)
9.	Welche medikamentöse Therapie erhielt Ihr Kind/erhieltst du seit Erkrankungsbeginn (Welches? Von-bis?)?
	Hat die Therapie geholfen? ighthat in
	Hat Ihr Kind/hast Du aktuell Beschwerden? □ ja □ nein Wie aktiv ist die Erkrankung aktuell (bitte ankreuzen): Keine Aktivität 0 1 2 3 4 5 6 7 8 9 10 maximale Aktivität
L4.	Welche Bildgebungen (Röntgen, MRT (Kernspintomographische Untersuchung)) gab es bisher und wann?
15.	Ist Ihr Kind/bist Du geimpft? Wenn ja, womit und wann (alternativ können Sie/kannst Du auch den Impfausweis zeigen/Kopie beilegen):
n [Dank! Datum: