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A B S T R A C T   

Accurate predictions of building energy consumption are essential for reducing the energy performance gap. 
While data-driven energy quantification methods based on machine learning deliver promising results, the lack 
of Explainability prevents their widespread application. To overcome this, Explainable Artificial Intelligence 
(XAI) was introduced. However, to this point, no research has examined how effective these explanations are 
concerning decision-makers, i.e., property owners. To address this, we implement three transparent models 
(Linear Regression, Decision Tree, QLattice) and apply four XAI methods (Partial Dependency Plots, Accumu
lated Local Effects, Local Interpretable Model-Agnostic Explanations, Shapley Additive Explanations) to an 
Artificial Neural Network using a real-world dataset of 25,000 residential buildings. We evaluate their Prediction 
Accuracy and Explainability through a survey with 137 participants considering the human-centered dimensions 
of explanation satisfaction and perceived fidelity. The results quantify the Explainability-Accuracy trade-off in 
building energy consumption forecasting and how it can be counteracted by choosing the right XAI method to 
foster informed retrofit decisions. For research, we set the foundation for further increasing the Explainability of 
data-driven energy quantification methods and their human-centered evaluation. For practice, we encourage 
using XAI to reduce the acceptance gap of data-driven methods, whereby the XAI method should be selected 
carefully, as the Explainability within the methods varies by up to 10 %.   

1. Introduction 

Anthropogenic climate change is one of humanity’s main challenges 
in the 21st century [1,2]. In the Paris Agreement, 193 states committed 
themselves to fighting climate change, including through energy 
reduction and efficiency [3,4]. Especially the building sector accounts 
for 36 % of total global energy consumption and, therefore, faces a need 
for decarbonization [5,6,7]. A large stock of old buildings [8] combined 
with decreasing demolition rates [9] necessitates both an increase in the 
stagnating rate [10] and depth of retrofits to reduce energy consumption 
effectively [11,12]. In addition to the environmental aspect, adequate 
retrofit measures are often cost-effective [13,14,15]. 

In practice, however, there is a gap between the projected cost- 
effective retrofit measures and those realized, referred to as the energy 
efficiency gap [16,17,18]. Uncertainty about the amount of cost savings 
and incomplete information for decision-makers (e.g., property owners) 

have been identified as inhibiting factors [19,20]. To mitigate this, it is 
crucial to provide decision-makers with credible information on the 
potential degree of energy consumption reduction from retrofit mea
sures [21]. Nevertheless, energy consumption prediction in buildings 
remains a challenge with widely reported inaccuracies in prediction, 
known as the energy performance gap [22,23]. Previous work shows 
that artificial intelligence (AI) and its dominant subset of machine 
learning (ML) methods can achieve more accurate predictions than 
conventional physical-based methods [24,25,26,11,27]. However, these 
methods come with the expense of lacking Explainability, referred to as 
the black-box problem, which leads decision-makers to distrust or even 
reject them [28,29,30,31]. Hence, while AI and ML can address the 
performance gap, it also requires the Explainability of the underlying 
models to address the efficiency gap since decision-makers need to un
derstand and trust the models [32,33]. Indeed, comprehending why a 
model makes certain decisions is often as important as its Prediction 

* Corresponding author at: Branch Business & Information Systems Engineering of the Fraunhofer FIT, Alter Postweg 101, 86159 Augsburg, Germany. 
E-mail address: daniel.leuthe@fit.fraunhofer.de (D. Leuthe).  

Contents lists available at ScienceDirect 

Energy & Buildings 

journal homepage: www.elsevier.com/locate/enb 

https://doi.org/10.1016/j.enbuild.2024.114426 
Received 30 January 2024; Received in revised form 28 April 2024; Accepted 16 June 2024   

mailto:daniel.leuthe@fit.fraunhofer.de
www.sciencedirect.com/science/journal/03787788
https://www.elsevier.com/locate/enb
https://doi.org/10.1016/j.enbuild.2024.114426
https://doi.org/10.1016/j.enbuild.2024.114426
https://doi.org/10.1016/j.enbuild.2024.114426
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2024.114426&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Energy & Buildings 318 (2024) 114426

2

Accuracy [34,35,29]. Explainable AI (XAI), being at the forefront of 
various research initiatives, can be leveraged to create this under
standing as it helps to comprehend how a model decides, predicts, and 
performs its operations [28,28,36,31]. In this vein, the previous work in 
building energy can be classified into three streams. First, the majority of 
papers apply XAI to understand the dependencies and patterns of ML 
methods depending on the input data, particularly for load and elec
tricity forecasting for time-series data, whereby these analyses are 
usually carried out by the authors and thus ML experts themselves (e.g., 
Gao and Ruan [37], Akhlaghi et al. [38], Li et al. [39]). Second, an 
increasing number of papers focus on thermal energy and energy per
formance, primarily to explain and evaluate data-driven building energy 
performance models (e.g., Chen et al. [40], Fan et al. [41], Tsoka et al. 
[11], Wenninger et al. [42]). Third, a specific subset of publications is 
concerned with optimizing ML-based methods using XAI to enhance 
both the transparency and efficacy to approach the energy efficiency gap 
(e.g., Arjunan et al. [43], Park and Park [44]). Besides the present work 
in building energy, especially the research area of computer sciences 
started to measure the effectiveness of XAI methods [45,46,29] by either 
using quantitative objective metrics such as sensitivity measures [47,48] 
or by conducting human-centered evaluations collecting end-users 
feedback [49,50]. Nevertheless, in contrast to this research area, pre
vious work in building energy analyzes XAI mainly from the perspective 
of ML experts and energy experts [24,11]. However, since the final de
cision on retrofit measures is up to the property owner and different 
stakeholders require different explanations [28], there is a need to 
investigate XAI methods not only from the perspective of experts (e.g., 
researchers, data scientists, or energy engineers) but from that of 
decision-makers [51,24]. Furthermore, around 70 % of research articles 
neglect evaluating XAI methods with potential users [52] or only 
emulate the user evaluation [49,53], leading to inaccurate human- 
centered insights [52,34]. Hence, these issues lead to the first 
Research Question (RQ). 

RQ1: What is the perceived degree of explainability of explainable arti
ficial intelligence methods in building energy consumption forecasting? 

Explainability is typically viewed as a trade-off with Prediction Ac
curacy [54,11]. While for addressing the performance gap, Prediction 
Accuracy is the sole fundamental property for managing the efficiency 
gap, both high Prediction Accuracy and a high degree of Explainability 
are needed. Therefore, it is crucial to consider these two properties in 
conjunction. Since the extent of this trade-off depends on the use case 
[55] and does not even necessarily apply in all cases [32], it is of interest 
to investigate this trade-off in the case of building energy consumption 
forecasting, leading to the second RQ. 

RQ2: To what extent does explainability affect the prediction accuracy of 
machine learning models in building energy consumption forecasting? 

To address these RQs, we use a real-world dataset of German single- 
and two-family residential buildings to implement seven XAI models 
and methods. We assess the model’s Prediction Accuracy with three 
commonly used Prediction Accuracy metrics for predicting annual 
building energy consumption [56]. Subsequently, we evaluate their 
degree of Explainability by conducting an online survey among mostly 
non-experts based on the two human-centered dimensions of Explana
tion Satisfaction and Perceived Fidelity [57,58]. Finally, we combine 
and analyze these results concerning the RQs to address the trade-off 
between Prediction Accuracy and Explainability in data-driven build
ing energy consumption forecasting and derive implications in the res
idential building sector. 

This work contributes to existing research in five ways. First, we 
close the existing research gap of the lack of evaluation of XAI methods 
by real end users, i.e., potential property owners, which leads to 
meaningful research results that can be applied in practice. Second, 
various XAI methods are applied to the prediction of the long-term en
ergy performance of buildings with the aim of explaining the prediction 
mechanisms, considering the influence of numerous input features. 
These XAI methods, on the one hand, reduce complexity while 

maintaining accuracy by removing less important input features and, on 
the other hand, provide guidance for decision-makers by revealing the 
key factors to focus on when determining appropriate retrofit measures 
[25,36]. Third, we demonstrate a practical approach for a human-based 
measurement and evaluation of the degree of Explainability of XAI 
methods based on two dimensions, which can be transferred to other 
fields [58]. Fourth, by addressing the research gaps and providing an 
analysis of the application of XAI methods to a Deep Learning (DL) 
model, which has been done insufficiently in the residential energy 
context [24,11]. Fifth, we transfer results interpretation into implica
tions and recommendations for research, policy, and decision-makers 
based on the quantified trade-off between Prediction Accuracy and 
Explainability – especially to leverage XAI potential target group specific 
for the use of data-driven energy quantification methods and the asso
ciated Energy Performance Certificates (EPCs) in practice. 

The remainder is structured as follows: Section 2 introduces the 
theoretical background and problem context of building energy pre
diction and XAI. Section 3 depicts the methodological tripartite research 
approach. Subsequently, Section 4 provides the result in three consec
utive subsections to answer the two RQs. Section 5 discusses the ob
tained results and derives the implications before the final Section 6 
concludes with limitations and prospects for further research. 

2. Theoretical background and problem context 

2.1. Building energy prediction and energy quantification methods 

The quantification and prediction of energy consumption is inevi
table when taking retrofit measures for energy savings in the building 
sector and addressing the energy efficiency gap [33,59]. Energy quan
tification methods (EQMs) are distinguished based on the dimensions of 
building types, the scope of energy performance, and the prediction time 
horizon [60,61]. It is relevant to consider the type of building, such as 
industrial, commercial, or residential, as these categories vary sub
stantially in terms of energy consumption and its dependencies on the 
building characteristics [62]. Further, the energy consumption of 
buildings is made up of various factors, primarily space heating and 
water heating, as well as electricity for household applications and 
lighting [63]. Factors, such as the electricity consumption for lighting, 
depend mainly on the behavior of occupants, while energy consumption 
for heating and cooling depends largely on the building’s characteristics 
[64]. Therefore, it is appropriate to analyze these factors separately 
[56]. Another dimension of using EQMs is the period and the frequency. 
Energy consumption can be constantly predicted in short time intervals 
by including historical consumption data in addition to building-related 
data [65]. Other approaches pursue the goal of forecasting long-term 
energy consumption, mainly based on the characteristics of the build
ing [61]. These approaches enable classifying buildings into energy 
classes and assessing the impact of retrofit measures [66]. Our work 
considers the case of long-term forecasting of space and water heating 
and cooling energy of residential buildings based on the metadata of the 
building. For simplicity, we will use the generalizing term energy con
sumption in the remainder of this work. 

A practical application of EQMs are EPCs [66]. EPCs are intended to 
provide a uniform rating of the energy efficiency of buildings and serve 
as a basis for decision-making on retrofitting measures [67,59]. In 
addition, a building’s energy efficiency and the EPC rating issued can 
affect house prices and rents [68,69,70,71]. Thus, accuracy in the 
issuance of precise ratings is important. However, the actual accuracy in 
practice is often low and exhibits high variations [66]. Recent work 
shows that the right choice of EQMs can vastly increase the energy 
Prediction Accuracy and hence the accuracy of EPCs 
[2,11,24,27,43,72,73]. 

Amasyali et al. [56] and Bourdeau et al. [74] divide EQMs into three 
categories: physical-based methods, data-driven methods, and hybrid 
methods. Physical-based methods, also referred to as engineering 
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methods, are created based on physical laws. They are called white-box 
models because the dependency between input and output is logically 
traceable [62]. Their main disadvantages are that the model construc
tion is costly, and the Prediction Accuracy is subject to high variations 
[56,64]. On the other hand, data-driven methods use the data without 
integrating any or only little knowledge about the physical relationships 
[60]. Data-driven methods, mainly ML methods, are often called black- 
box models as their dependency between input and output tends to be 
opaque [64,11]. They can further be distinguished into opaque black- 
box models and transparent data-driven models [32]. Hybrid methods 
combine physical-based and data-driven methods by adding statistical 
methods to physical-based models. Accordingly, they are referred to as 
grey box models [75]. While these models can produce accurate energy 
quantifications, they are complex in construction and costly [62]. 

Our work focuses on data-driven EQMs, which have their individual 
challenges. First, one challenge with all EQMs is data quality and 
availability [61]. Especially in older buildings, there is poor availability 
of useful data [60,61] and proper data collection comes at high costs 
[74]. This problem leads to the frequent use of synthetic data in 
research, raising concerns about the practical applicability of the results 
[76,62]. Second, another challenge with data-driven EQMs is the need 
for more transparency [24]. As mentioned, ML models go along with a 
black-box issue, which is also present in the energy context [43,51]. 

2.2. Explainable artificial intelligence and measuring Explainability 

XAI has been the focus of substantial research in recent years 
[40,77]. Since the term Explainability is not clearly defined [78], there 
is a plethora of different approaches to XAI in the literature [79], for 
instance, in the form of texts and visualizations, with contents of ex
amples, feature relevancies, and simplifying surrogate models [32]. In 
this context, the concept of feature importance, first introduced by 
Breiman [80], is fundamental for identifying which inputs – i.e., input 
features – most significantly impact a model’s output, thus explaining 
why certain model results were derived. Visual representations of the 
feature importance simplify the process for both developers and end- 
users to see how various input features affect the model, enabling 
transparency. This concept forms the basis of many of the following 
elaborated XAI methods [32]. Overall, XAI methods can be broken down 
into two categories: intrinsically transparent ML models and post-hoc 
XAI methods. Transparent ML models are comprehensible to humans 
regarding functionality and architecture [81]. They are methodologi
cally and mathematically uncomplex with a traceable operation that 
does not require further explanation for humans. These include methods 
such as Linear Regression (LR), Decision Trees (DT), and Naive Bayes 
Classifiers. Post-hoc XAI methods, on the other hand, are applied to ML 
models retrospectively. These are understood as an interface between 
the ML model and the human [82]. Post-hoc methods are further divided 
into model-agnostic methods, which can be applied to any ML model, 
and model-specific methods, which leverage the peculiarities of specific 
ML models [54]. We only use model-agnostic methods in this work 
because they are more general and widespread [54,83]. Within the 
model-agnostic methods, there is the group of global methods and the 
group of local methods. Global methods explain the model as a whole 
involving general patterns, the importance of features, and variable 
interdependencies [83]. For this purpose, the average behavior of the 
model is considered rather than individual predictions [28]. Notable 
methods are Partial Dependency Plots (PDP) [84] and Accumulated 
Local Effects (ALE) plots [85]. Local model-agnostic methods instead 
explain the emergence of individual predictions involving the individual 
feature importance [24]. The most common methods are Local Inter
pretable Model-Agnostic Explanations (LIME) [53] and Shapley Addi
tive Explanations (SHAP) [86,87]. 

Since there is a plethora of different XAI applications, measuring 
their effectiveness is complex and versatile, involving various ap
proaches in literature [57,46,88,29]. Those approaches especially 

emerged from the research fields of computer and cognitive science and, 
hereby, in particular, the subject area of human–computer interaction 
[45]. Evaluating the ML modelś Explainability can generally be distin
guished into two forms: the inherent quantitative complexity of the XAI 
method, which accounts for, e.g., the number of variables or the 
comprehensibility of the individual algorithms used, and the human- 
perceived and human-centered comprehensibility [89]. On the one 
hand, the first form primarily focuses on quantitative objective metrics 
and automated approaches to evaluate the XAI methods, so-called 
objective evaluations, or heuristic-based evaluations. This includes 
quantitative measures such as the sensitivity to input data perturbations, 
sensitivity to model parameter randomizations, or the explanation 
completeness [90,91,48]. In the first approach, several input features of 
the dataset are removed or changed, and the resulting explanations from 
the model are then compared based on both the original and the 
modified data input [92,47,93]. The second approach focuses on the 
same comparison strategy, whereby parameters in the model are 
changed with, e.g., random values and the resulting explanation is then 
compared with the original model [94]. The third approach enables to 
compare different XAI methods and analyzes which method generates 
explanations that describe the underlying data generation patterns to 
the highest extent[95,48]. On the other hand, the second form in
vestigates the human-centered evaluation of the XAI methods with a 
human-in-the-loop approach by including end-users and leveraging 
their feedback or formation of judgment. Those end-users can be of two 
types: either people randomly selected without any prior domain/ 
technical knowledge or domain experts to provide informed opinions 
regarding the explanations generated and to validate the coherence of 
the derived explanations with their pertinent domain expertise [50,48]. 
For both types, either qualitative questions (i.e., open-ended survey) 
aimed at achieving deeper insights or quantitative questions (i.e., close- 
ended survey) aimed to be statistically analyzed can be used [49,96]. 
According to the literature review of Vilone and Longo [48], analyzing 
70 research articles that conducted an XAI evaluation, around 54 % 
applied a quantitative approach, and 46 % applied a qualitative 
approach. In both approaches, the XAI evaluations are used to either 
validate the Explainability of individual XAI methods in certain do
mains, such as fraud detection, financial scoring, and disease diagnoses 
(cf. Irarrázaval et al. [97], Kumar et al. [98], Zhao et al. [99]) or to 
compare or rank different XAI methods with each other (cf. Allahyari 
and Lavesson [100], Huysmans et al. [101], Lee et al. [96], Silva et al. 
[102]). One step further, an emerging number of research articles star
ted to focus on the evaluation of imperfect XAI methods on human- 
decision making (cf. Riveiro and Thill [103], Morrison et al. [104], 
Schoeffer et al. [105]). To achieve the goal of evaluating Explainability 
in the practical use case in line with our two RQs, our focus is on the 
second form, i.e., the human-centered evaluation of Explainability 
considering human-in-the-loop approaches based on a close-ended sur
vey to quantify the different XAI methods. Here, when measuring 
Explainability, there are several dimensions to consider [49]. Löfström 
et al. [58] refer to the three qualitative criteria of Explanation Satis
faction, Perceived Fidelity, and Appropriate Trust [57,106]. Explanation 
Satisfaction indicates the extent to which users feel they understand the 
model explained to them [57]. Perceived Fidelity describes the 
perceived correctness of the explanation for the user and how much the 
user trusts that individual explanation. Appropriate Trust relates to long- 
term experience and involvement with a system. Given that Appropriate 
Trust is immaterial for the use case examined, we neglect it in this work 
and focus on the other two qualitative dimensions. 

2.3. Related work on explainable artificial intelligence in building energy 
Prediction 

The utilization of XAI has proven to be beneficial in the domain of 
building energy, notably in reducing the energy performance gap 
[24,33]. A substantial body of meta-studies underscores the growing 
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relevance of XAI within the building and energy sectors. Love et al. 
[107] provide a narrative review that proposes a taxonomy to enhance 
the transparency and adoption of ML models in the construction and 
building sectors, highlighting potential applications of XAI. They 
conclude that XAI should be levered to, on the one hand, increase the 
trust and transparency for end-user and, on the other hand, to ensure 
future consistency with compliance and regulations. Le et al. [108] 
examine the application of local XAI methods across various industrial 
contexts, including a detailed investigation of energy and building 
management systems. They especially observe that LIME and SHAP are 
frequently applied and emphasize the need for a more human-centric 
approach to XAI. Machlev et al. [24] analyze existing research on XAI 
in different power systems, with a comprehensive section specifically on 
its use in building energy management applications. Their survey re
veals a remarkable increase in XAI-related publications in power sys
tems since 2019, predominantly utilizing post-hoc, model-agnostic 
methods. Thereby, they identify a substantial opportunity for imple
menting and rigorously assessing intrinsic models, which could greatly 
enhance trust and transparency in specific energy system applications. 
Despite the increasing adoption of XAI in these fields, meta-studies that 
specifically target building energy are limited. To our knowledge, Chen 
et al. [40] have conducted the only comprehensive review focused 
exclusively on XAI in building energy management, meticulously 
examining the various dimensions of its use in this sector. Their work 
catalogs an extensive compilation of research, further emphasizing the 
critical importance and potential impact of XAI applications in 
enhancing the efficiency and effectiveness of building energy systems. 

In the realm of building energy, a large body of literature leverages 
XAI to clarify ML model functions, particularly in analyzing feature 
importance and the impact of various factors on the prediction, as well 
as in validating ML models. Most research focuses on load and electricity 
forecasting, often involving time-series data [108]. For instance, Akh
laghi et al. [38] employed SHAP on an ANN for a dew point cooler to 
interpret the contribution of the operating conditions. Gao and Ruan 
[37] introduced three ANN-based models to predict building energy 
consumption from time-series data and leverage XAI in the form of an 
attention mechanism and visualization to increase the interpretability of 
the models. Similarly, Li et al. [39] developed an ANN with an attention 
mechanism for building energy prediction, visualizing input impacts on 
predictions to better understand the model. Additionally, targeted 
literature exists specifically addressing thermal energy and energy per
formance, often in relation to EPCs. Fan et al. [41] introduced a new 
methodology incorporating LIME to explain and evaluate data-driven 
building energy performance models. In doing so, they proposed a 
metric called ’trust’ to assess prediction validity, whereby no end-user 
evaluation is carried out. However, they provide insights into the 
inference mechanisms of models, thus balancing complexity with 
interpretability for practical use in building energy forecasting. Tsoka 
et al. [11] developed a method for classifying EPCs using LIME and 
SHAP to analyze the significance of input features, proving the appli
cability of data-driven energy quantification methods using XAI. Galli 
et al. [109] proposed an XAI framework incorporating LIME to classify 
building energy performance using EPC data. Their approach provides 
insights into model behavior, particularly for understanding mis
classifications near performance class borders. Wenninger et al. [42] 
introduced the transparent model QLattice for predicting energy per
formance, exemplifying the application of transparent methodologies in 
practical settings. Moreover, a subset of the literature focuses more 
explicitly on optimizing models through the application of XAI. For 
instance, Arjunan et al. [43] developed a methodology that enhances the 
Energy Star rating calculation using LR and SHAP, demonstrating how 
XAI can improve both the transparency and efficacy of predictive 
models. In a similar vein, Park and Park [44] applied SHAP to an ANN 
and other ML models to improve model selection and performance, 
specifically targeting the predictability of natural ventilation rates and 
clarifying the influence of environmental features on model outputs. 

Table 1 summarizes these recent studies that explicitly focus on the 
application of XAI in building energy consumption to analyze the energy 
performance gap. 

As outlined here, numerous studies have utilized XAI to evaluate ML 
models. However, these evaluations often depend on interpretations 
that are rarely quantified and primarily focus on evaluating the ML 
models using XAI rather than assessing the effectiveness of the XAI 
methods themselves [40]. More crucially, in all instances known to us, 
these evaluations are conducted by ML experts, thereby overlooking the 
perspective of end-user evaluations, which are crucial for ensuring 
trustworthiness [52,34]. This gap is notable despite widespread 
acknowledgment of its importance [40,24]. Consequently, there is a 
specific need to compare and evaluate different XAI methods in terms of 
how a target user group of non-ML experts perceives them. This need 
arises because decisions, such as those regarding retrofits, are typically 
made by decision-makers who lack in-depth knowledge of ML [24,11]. 
Our work aims to contribute to addressing this gap by fostering a more 
nuanced understanding of XAI’s impact from a non-expert perspective. 

3. Methodology 

3.1. Research procedure 

To address the two RQs, we follow a three-step approach (Fig. 1). 

Table 1 
Overview of related work regarding XAI in building energy consumption (non- 
exhaustive).  

Source Focus ML models XAI 
approach 

Human- 
centered 
XAI 
evaluation 

Akhlaghi 
et al. [38] 

Cooler 
performance 
prediction on 
time-series 

ANN SHAP −

Gao and 
Ruan  
[37] 

Energy 
performance 
prediction on 
time-series 

ANN Feature 
importance 
through 
attention 

−

Li et al.  
[39] 

Building cooling 
load prediction 
on time-series 

ANN Feature 
importance 
through 
attention 

−

Fan et al.  
[41] 

Energy 
performance 
explanation 
methodology 

LR, RF, 
XGB, SVM, 
ANN 

LIME −

Tsoka et al.  
[11] 

EPC 
classification 

ANN LIME, SHAP −

Galli et al.  
[109] 

Energy 
performance 
benchmarking 
framework 

DT, RF, ET, 
BC, ANN 

LIME −

Wenninger 
et al. [42] 

Long-term 
energy 
performance 
prediction 

QLattice QLattice −

Arjunan 
et al. [43] 

Energy 
performance 
benchmarking 

LR, XGB LR, SHAP −

Park and 
Park [44] 

Natural 
ventilation rate 
prediction 

LR, RF, 
XGB, SVR, 
GBR kNN, 
ANN 

SHAP −

Our work Long-term 
energy 
performance 
prediction 

LR, DT, 
QLattice, 
ANN 

LR, DT, 
QLattice, 
PDP, ALE, 
LIME, SHAP 

✓ 

RF = Random forest; XGB = XGBoost; SVM = Support vector machine; 
ET = Extra trees; BC = Bagging classifier; SVR = Support vector regressor; 
GBR = Gradient boosting regressor; kNN = k-nearest neighbors. 
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First, we implement four ML models and four XAI methods on a real- 
world dataset of German one- and two-family residential buildings. 
Second, we evaluate the degree of Explainability of these models and 
XAI methods by conducting an online survey, thereby addressing RQ1. 
Moreover, we examine RQ2 by evaluating the Prediction Accuracy of the 
ML models while taking into account the Explainability based on the 
survey. Third, we analyze and critically discuss the results and derive 
implications. The following two subsections report on the details for 
each step. 

3.2. Modeling approach 

For the modeling, we follow a multi-step approach derived from the 
Cross Industry Standard Process for Data Mining (CRISP-DM), which 
involves a 6-phase cycle initially developed for data mining methods 
[110]. For this research, we apply it to EQMs and XAI and adapt it 
accordingly: 

The first step, Thematic and Business Understanding, fosters un
derstanding the building sector context and ML to identify the modeling 
requirements to best meet the RQs. To conduct a comprehensive ranking 
of different models, we examine both transparent models and an opaque 
model, to the latter of which XAI methods would then be applied. As 
representatives of the transparent models, we adopt the two most pop
ular types LR and DT [111], as well as QLattice, since previous work has 
proven its novel ability within data-driven EQMs to deliver high Pre
diction Accuracy while remaining explainable [42]. For the opaque 
model, we use an ANN since it is a typical representative of DL and 
exemplifies the need for Explainability [28,112]. For the XAI methods, 
we adopt two local and two global models: PDPs and ALEs on the one 
hand and LIME and SHAP on the other. We justify their choice by the 
empirical relevance in research and the popularity in practice [32,24]. 
In total, there are seven models or model-method combinations, which 
we will refer to as objects in the following. 

The second step, Data Understanding, is to obtain an overview of 
the data. The dataset consists of 25,000 single- and two-family houses in 
Germany and was collected between 2007 and 2014. It includes 74 
variables, mainly building characteristics such as physical building at
tributes and geometry, and no direct information on occupants. The 
dataset’s characteristics reflect a typical use case of EQM in the resi
dential building sector as it involves features such as those collected for 
EPC assessment or retrofit audits. Hence, they are intended to be 
reasonably representative of this research case. 

Subsequently, the third step, Data Preparation, is undertaken to 
appropriately prepare the dataset for modeling. Following the LANG 
approach for qualitative data conditioning from Zhang et al. [113], we 

clean the data by removing outliers and incomplete data points. More
over, we weather-normalize the target variable (annual) Total Energy 
Consumption with a climate factor applying the commonly known 
method of heating degree days to extract the effects of local climate 
conditions [114]. We refer to Wenninger and Wiethe [27] for further 
details on the weather normalization procedure. Additionally, we 
transform categorical variables into one-hot encoded variables, enabling 
us to use identical features and data points for all models and hence 
ensuring comparability. The final processed dataset comprises 20,421 
buildings with 22 input variables and the target variable Total Energy 
Consumption per square meter and year. An overview of these final 
variables used is provided in Appendix A. The associated linear corre
lation matrix in Appendix B, computed using the Pearson correlation 
coefficient, indicates that the variables are weakly linearly correlated, 
which underlines the complexity of predicting energy consumption. 

In the fourth step, Modeling, we implement, train, and optimize the 
selected ML models and XAI methods given the prepared dataset. We 
divide the prepared dataset into 80 % for training and 20 % for testing, 
applying the identical split consistently across all models. The primary 
objective of the modeling is to create representative models. We opti
mize the models regarding Prediction Accuracy using the Mean Squared 
Error as a loss function. While optimizing for Prediction Accuracy, we 
equally aim to keep reasonable model complexity to facilitate the sub
sequent interpretation of the models. For the LR, this is achieved by 
considering the Bayesian information criterion, adjusted R-squared, and 
p-values for feature selection. For the DT, we constrain the search space 
by configuring the parameters’ maximum depth, minimum required 
samples per split, and complexity parameters. Similarly, for the QLattice 
model, a complexity parameter manages the intricacy of the model. For 
the training of the ANN, we follow common optimization methods, 
including hyperparameter tuning for the number of layers and neurons. 
To justify this procedure, we also conducted experiments with different 
settings to allow for more complexity, but we did not observe significant 
changes in Prediction Accuracy. To ensure robustness and reduce 
overfitting risk, we employ a 10-fold cross-validation on the training set 
for each model. Additionally, for DT and ANN, we integrate nested cross- 
validation with three inner folds for fine-tuning hyperparameters. This 
step is omitted for LR and QLattice models due to the absence of 
hyperparameters. Once the best model for each method is identified, we 
train it again on the entire training set. To increase reproducibility, we 
document packages and parameter selection of each model in the 
acknowledged machine learning report card by Kühl et al. [115], which 
is found in Appendix C. Further, Appendix D provides the results of the 
transparent models. 

In the fifth step, we conduct an Evaluation of the results. First, we 

Fig. 1. Methodological three-step approach.  
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benchmark the Prediction Accuracies of the models against each other 
using three Prediction Accuracy metrics (Table 2) by using the testing 
set (20 % of the cleaned data not considered for model training). We 
consider the scale-dependent metrics Mean Absolute Error (MAE) as an 
unambiguous measure and Root Mean Square Error (RMSE) to better 
capture large errors alongside the percentage-error-based metric Mean 
Absolute Percentage Error (MAPE). Table 2 further displays for each 
metric the formula for calculation, the possible value range, and the 
optimal value. Here, ŷi and yi are the predicted and actual values of the 
target variable for an instance i part of sample size n. The value range 
represents a right-hand infinite closed interval including the value”0″ for 
each metric. The selected metrics are widely recognized [116] and 
frequently utilized in predicting building energy consumption [56] and 
sufficiently fulfill the needs of our straightforward use case. In line with 
Naser and Alavi [117], not only the selection of reasonable Prediction 
Accuracy metrics but also the combination with additional measures 
such as cross-validation is important to negate common issues in ML 
projects. Second, we visualize and prepare the models for the survey, e. 
g., plotting the decision tree, the QLattice model, or deriving variables’ 
effects on the prediction (i.e., variable importance), so that each 
respondent can comprehend the mechanics of each model (we refer to 
the following subchapter 3.3 and Appendix E for the outcomes as shown 
to the survey respondents). 

The sixth and final step, Deployment, places the findings from the 
evaluation in the context. We critically review the results and discuss the 
limitations of the approach. In particular, we analyze the results con
cerning the next step, the survey. 

3.3. Survey design 

Based on the modeling results, we evaluate their degree of Explain
ability for the target group of decision-makers (i.e., from the perspective 
of non-ML and non-energy experts). For this, we design an online survey 
in which respondents are asked to subjectively rate the different models 
and model-XAI-methods combinations (i.e., objects) in terms of their 
Explainability from the perspective of a property owner. Following a 
brief introduction to the subject matter, the survey displays the different 
objects to the respondents in random order in accordance with the 
within-subject study design. We additionally provided information on 
how to read and interpret each object in a comparable manner in case 
respondents are not aware of the objects’ nature (see also Appendix E). 
The within-subject design, in which all test objects are asked of each 
respondent, is suitable for smaller samples and is, therefore, appropriate 
for this survey [118]. To avoid bias and ensure comparability, we asked 
the same questions for each object and tried to show the same variables 
if applicable (e.g., for ALE and PDP). We further validated the suitability 
of our study design with some experts and trial testers prior to pub
lishing and inviting the study. We use a shortened version of the 
Explanation Satisfaction scale from Hoffman et al. [57] as a metric. The 
scale is adapted for the specific use case, i.e., for decision-makers 
without prior ML knowledge, and the two aforementioned dimensions 
(i.e., Explanation Satisfaction and Perceived Fidelity) are considered. 
Moreover, we extend the original five-point Likert scale to a seven-point 

Likert scale (“strongly disagree”, “disagree”, “somewhat disagree”, 
“neutral”, “somewhat agree”, “agree”, “strongly agree”) to increase 
exactness and quality [119]. All in all, the survey consists of seven ob
jects with four sub-questions each as listed in Table 3. The complete 
survey, as shown to the participants, is attached in Appendix E. 

The data collection took place online over a period of four weeks. In 
total, 144 participants completed the survey, and 137 passed the 
attention test, which gave the final number of observations. The average 
completion time was just below 16 min, with the majority (70 %) 
ranging from 5 to 20 min. Of the respondents, 59 % reported their 
gender as male, 40 % as female, and 1 % as diverse. The average age is 
30 years, ranging from 19 to 66. A large proportion of respondents were 
under 25 years old (42 %) and between 25 and 40 years old (41 %), and 
only 17 % were over 40 years old. In terms of degree, most participants 
indicated having a high school diploma (36 %) or a university degree 
(54 %), with the remaining 10 % holding an apprenticeship or other 
qualifications. We further requested the participants to self-assess their 
prior knowledge in the field of ML as well as in the field of energy in the 
building sector. Regarding ML, 11 % reported expert knowledge, 15 % 
advanced, 38 % basic, and 36 % none at all. Regarding energy in the 
building sector, 5 % reported expert knowledge, 18 % advanced, 47 % 
basic, and 30 % none at all. 

4. Results 

4.1. Models and Prediction Accuracy results 

We first evaluate the Prediction Accuracy and present the leveraged 
XAI techniques in this subsection. Afterward, in subsection 4.2, we 
discuss the survey outcome to evaluate the degree of Explainability 
before combining the outcomes of the Prediction Accuracy and the de
gree of Explainability from the survey in subsection 4.3. 

The results of the Prediction Accuracies are presented in Table 4 and 
in Fig. 2. Table 4 also includes the Prediction Accuracies of the models 
on the training set, indicating no significant overfitting and suggesting 
that all models demonstrate adequate generalization capabilities, which 
supports the validity of our findings. The final results of the models on 
the testing set confirm the findings of previous works that the ANN 
achieves better Prediction Accuracy results than the transparent models 
[54]. When looking at the MAE and the RMSE (MAE = 32.94, 
RMSE = 43.67), the ANN achieves a better value by about 4 % than the 
transparent models on average. With the transparent models, it is 
noticeable that they all produce very similar Prediction Accuracy re
sults, differing only in the details. The best transparent model is the DT 
(RMSE = 45.33), followed by the QLattice (RMSE = 45.49) and the LR 
(RMSE = 45.55). These deviations here are all less than 1 %. To statis
tically test these observations, we apply Wilcoxon-Signed-Rank tests 
[120] with a 1 % significance level. We use the absolute errors as the test 
variable. This test is a paired, non-parametric test. The latter property is 
necessary since we cannot assume a normal distribution of the variables. 
The results of the tests confirmed statistically significantly the assump
tion that there is a difference between the Prediction Accuracy of the 

Table 2 
Prediction Accuracy metrics.  

Metric Abbreviation Formula Value 
range 

Optimal 
value 

Mean Absolute 
Error 

MAE 1
n
∑n

i=1

⃒
⃒yi − ŷi

⃒
⃒ [0; ∞[ 0 

Mean Absolute 
Percentage 
Error 

MAPE 100%
n

∑n
i=1

⃒
⃒yi − ŷi

⃒
⃒

⃒
⃒yi

⃒
⃒

[0 %; 
∞[ 

0 % 

Root Mean 
Square Error 

RMSE ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

⃒
⃒yi − ŷi

⃒
⃒2

√ [0; ∞[ 0  

Table 3 
Survey questions per object.  

Nr. Question Dimension 

1 From the explanation, I understand how the model 
works and the way in which the input variables affect 
the total energy consumption. 

Explanation 
Satisfaction 

2 This explanation of how predictions are made by the 
model is satisfying. 

Explanation 
Satisfaction 

3 I can trust the predictions of the model by this 
explanation. 

Perceived Fidelity 

4 I would feel confident if recommendations for 
(remediation) measures were justified by this 
explanation. 

Perceived Fidelity  
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ANN and each of the transparent models, but not within the transparent 
models. Since there are no major differences in the results between the 
metrics, we will only use the RMSE to represent the Prediction Accuracy 
in the following. 

After implementing the ML models, we apply the four post-hoc XAI 
methods to the ANN. We select representative examples from these re
sults and prepare them graphically for the survey. Some of these we 
present in the following. 

For the global methods PDP and ALE, Figs. 3 and 4 show and contrast 
three exemplary plots each. Every plot describes how one data input 
feature, such as the Thickness of Exterior Thermal Insulation, the Con
struction Year, or the Availability of a Basement, affects the prediction of 
the ANN, i.e., the Total Energy Consumption, on average. The examples 
each show that the ANN and the corresponding XAI methods can capture 
the relationships and, above all, trends of the input variables well. First, 
the plots on the left-hand side of especially Fig. 3 and downstream Fig. 4 
verify that the ANN detects non-linear relationships, e.g., that Total 
Energy Consumption improves with higher Thickness of Exterior Thermal 
Insulation, whereas this effect diminishes with increasing thickness. 
Second, as observed in the central plots of Figs. 3 and 4, the procedure 
captures the underlying trends in the ordinal-scale input data well, e.g., 
that new buildings tend to have a lower Total Energy Consumption based 
on the Construction Year, although this effect can only be observed in 
very new buildings. Nevertheless, it must be mentioned that the 

methods may produce partly linear plots when the data across the value 
range of an observed variable is strongly unevenly distributed, as also 
depicted in the very early years of construction in the central plots 
[121]. Third, the ANN detects the relationships accurately, and the XAI 
methods effectively uncover them, which becomes obvious on the right- 
hand side of Figs. 3 and 4, e.g., that the Availability of a Basement (binary 
input variable) increases Total Energy Consumption. However, when 
applied to binary variables, these methods calculate outcomes that are 
visually represented with linear interpolations between the two binary 
states, although the relationships are recorded correctly [122]. 

For the local methods LIME and SHAP, Figs. 5 and 6 show one 
example each. In contrast to the global methods, it is not meant to draw 
general conclusions, as based on the essence of local methods, they only 
explain one single prediction. However, looking at multiple explana
tions, the two methods show similarities in interpreting corresponding 
individual samples. LIME and SHAP detect Living Area and Energy Source 
Oil as the most significant variables. This finding is consistent with those 
of the global XAI methods. 

All in all, the XAI methods applied give conclusive explanations of 
the ANN. In particular, we note that they are consistent regarding the 
variable significance and variable trends. Hence, we assume that the 
methods work well under their given limitations in this use case and do 
not provide misleading explanations. Given this, we evaluate and rank 
the degree of Explainability based on the survey. 

4.2. Survey results 

To preset the outcome of the survey, we first look at the plain results 
for the interrogated dimensions of Explanation Satisfaction and 
Perceived Fidelity, as well as the resulting overall Explainability score. 
To calculate those values, we apply the mean value of the sub-questions 
respectively. Thus, the factors are all weighted evenly. The results are 
detailed in Table 5 and depicted as grouped boxplots in Fig. 7. 

Table 4 
Prediction Accuracies of the models on training and testing sets.  

Model On Training Set On Testing Set 

MAE MAPE RMSE MAE MAPE RMSE 

ANN  32.41  26.46  43.21  32.94  27.87  43.67 
DT  33.88  29.18  44.51  34.42  29.70  45.33 
LR  33.85  29.28  44.54  34.42  29.81  45.55 
QLattice  33.87  28.25  44.86  34.51  30.01  45.49  

Fig. 2. Comparison of Prediction Accuracies of the models implemented.  

Fig. 3. PDPs of the implemented ANN (units are listed in Appendix A).  
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An initial finding is that the level of values is relatively high. The 
overall mean value is 4.80, and all individual mean values are above the 
neutral value of 4. Looking at the individual mean values of the total 
score, we can surmise significant differences between them. An ANOVA 
test [123], which tests the means of several groups for equality, shows at 
a significance level of 1 % that at least one mean is statistically signifi
cantly different from the others. To test the statistical significance of the 
differences in the mean values between the two respective groups, we 
applied the Mann-Whitney-U tests [124] with a significance level of 1 %. 
Since this non-parametrical test also applies to ordinal scaled values, it is 
well suited for the scale available here. The DT achieves the best results 

in terms of Explainability with a score of 5.21, followed by LR with a 
score of 5.07. Thus, the two common transparent models fare the best. 
However, they are closely followed by the XAI methods PDP (5.01) and 
SHAP (4.83), with some differences not even being statistically signifi
cant. Next in order, with a little distance, are ALE (4.55) and LIME 
(4.68). The QLattice falls off statistically significantly in total with a 
score of 4.28. What is remarkable here is that the QLattice shows a 
considerably higher variance in the sub-questions than other groups. 
This result is likely due to the mathematically complex formula of the 
method (s. Appendix D and E) and the dimensions used to measure the 
Explainability. Section 5 provides further discussion about this. It is also 
of interest to look at the three groups: transparent models, global XAI, 
and local XAI among themselves. DT and LR scores are not statistically 
significantly different, although DT scores are noticeably better. For the 
two similar global XAI methods, PDP scores statistically significantly 
better than ALE. This thus also corroborates the findings from the 
modeling process, where ALE produces partially skewed results, 
possibly leading to this grading. Within the local XAI methods, SHAP 
scores are significantly better than those of LIME. Looking at the 
Explanation Satisfaction and Perceived Fidelity, we generally see that 
the Explanation Satisfaction of all models (average score of 4.97) is rated 
higher than the Perceived Fidelity (4.63). This effect is particularly 
visible for the transparent models DT (5.65 vs. 4.77) and LR (5.42 vs. 
4.72). This is perhaps due to the perception that these models, while well 
understood, appear to be too simple. 

Lastly, we analyze the overall Explainability score together with the 
prior knowledge in ML and the energy domain and further check for 
differences in the respondent’s ages, as presented in Tables 6 to 8. 

First, it shows that the subgroup of respondents who indicated no 
prior knowledge rated the ANN in combination with the XAI methods 
substantially better than those who indicated their prior knowledge as 
expertise (Table 6). This clear separation disappears when looking at the 
subgroups with advanced and basic prior knowledge. Second, regarding 
the transparent models, the subgroups with expert and advanced prior 
knowledge assess the Explainability score higher than those with basic 
or no prior knowledge. 

Second, Table 7 shows relatively similar results for all combinations 
of prior ML and energy domain knowledge with a tendency for better 
explainability with LR, DT, and PDP, whereby the combination of high 
ML and little energy knowledge differs with SHAP being seen as 
explainable as well. 

Third, Table 8 depicts that the perceived explainability is relatively 
independent of the respondent’s age, showing similar results for all 
objects with only higher explainability for respondents younger than 
30 years and SHAP. Also, LR, DT, and PDP show high numbers for 
explainability compared to the other objects. 

All in all, the evaluation of the Explainability shows that the standard 
transparent models DT and LR score statistically significantly better than 
the ANN-XAI-method combinations. This becomes particularly evident 
when considering the ML’s prior knowledge at an expert or advanced 

Fig. 4. ALE plots of the implemented ANN (units are listed in Appendix A).  

Fig. 5. LIME example (units are listed in Appendix A).  

Fig. 6. SHAP example (units are listed in Appendix A).  

Table 5 
Results of the Explainability evaluation from the online survey.  

Dimension LR DT QLattice PDP ALE LIME SHAP 

Explanation 
Satisfaction  

5.42  5.65  4.33  5.10  4.61  4.78  4.92 

Perceived Fidelity  4.72  4.77  4.22  4.92  4.49  4.57  4.74 
Total  5.07  5.21  4.28  5.01  4.55  4.68  4.83  
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Fig. 7. Boxplot of the results of the Explainability evaluation from the online survey.  

Table 6 
Survey results by prior knowledge of ML.  

ML Knowledge Count LR DT QLattice PDP ALE LIME SHAP 

Expert 15  5.53  5.85  4.50  4.77  4.13  4.57  4.45 
Advanced 20  5.43  5.39  4.31  4.94  4.65  5.06  5.38 
Basic 52  5.04  5.31  4.36  4.90  4.63  4.60  5.40 
None 50  4.82  4.84  3.90  4.97  4.54  4.64  4.81  

Table 7 
Survey results by prior knowledge in ML and the energy domain (little contains none and basic, and high contains advanced and expert knowledge).  

ML Knowledge Energy Knowledge Count LR DT QLattice PDP ALE LIME SHAP 

Little Little 85  4.87  5.03  4.19  5.01  4.57  4.69  4.79 
Little High 17  5.24  5.32  4.46  5.29  4.66  4.26  4.68 
High Little 21  5.54  5.44  4.36  4.67  4.39  4.86  5.14 
High High 14  5.38  5.80  4.45  5.16  4.48  4.84  4.73  

Table 8 
Survey results by age groups below and above the average age of respondents (30 years).  

Age Count LR DT QLattice PDP ALE LIME SHAP 

Below 30 98  5.06  5.16  4.23  5.01  4.57  4.68  4.94 
Above 30 39  5.11  5.34  4.39  5.02  4.50  4.67  4.54  

Fig. 8. Results of the trade-off between Explainability and Prediction Accuracy.  
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level. However, there are no major differences and nearly all objects 
score high. 

4.3. Consolidated results 

Fig. 8 visualizes the result of the trade-off between Explainability and 
Prediction Accuracy. The aggregated Explainability score is plotted on 
the y-axis and the RMSE representing Prediction Accuracy is plotted on 
the x-axis. Of note is that the RMSE scores of the post-hoc XAI methods 
are those of the underlying ANN. 

Overall, we cannot identify a consistent trend for all objects, mainly 
due to the Explainability score of the QLattice. However, there are two 
outstanding aspects. 

First, we observe that for the transparent models LR (RMSE = 45.55) 
and DT (RMSE = 45.33), the higher Explainability is accompanied by 
poorer Prediction Accuracy compared to the opaque model ANN 
(RMSE = 43.67), as shown in Fig. 8, which counteracts the energy 
performance gap. As described in Chapter 4.1 and quantified in Table 4 
using the three different evaluation metrics MAE, MAPE, and RMSE, the 
Prediction Accuracy differs significantly between the transparent 
models and the ANN based on the Wilcoxon-Signed-Rank tests [120]. 
Second, the XAI methods elevate the ANN to a comparable level of 
Explainability as the transparent models. As stated in the previous two 
subsections, some differences in the Explainability scores are statisti
cally significant, analogous to the statistically significant differences in 
the Prediction Accuracy. Thus, the right choice of the post-hoc XAI 
methods based on the well-performing ANN enables an increase in the 
Explainability by 10 % (i.e., when considering ALE with 4.55 to the 
comparable global post-hoc method PDP with 5.01). This confirms the 
good functioning of the XAI methods concerning the goal of making 
opaque models more explainable to this specific use case of energy 
consumption forecasting and overcoming the energy performance gap. 

5. Discussion 

5.1. Results interpretation and discussion 

This section discusses the study’s results to answer the two RQs on 
the perceived degree of Explainability of XAI methods in the context of 
building energy consumption forecasting and how Explainability affects 
the Prediction Accuracy of ML models. The results show for RQ1 that all 
objects exhibit high scores for the human-centered perceived degree of 
Explainability. However, the standard transparent models DT and LR 
score slightly but statistically better than the ANN-XAI-method combi
nations. Regarding RQ2, we find a slight trend toward higher Prediction 
Accuracy for lower Explainability for all objects except the QLattice. 

Reasons for the QLattice deviating from the other objects might be in 
this work’s definition of Explainability. Not considering the technical 
aspects of Explainability probably also accounts for the poorer score of 
the QLattice. This model is outstanding for properties such as the small 
number of variables and mathematical operations. If the XAI metric 
introduced by Rosenfeld [125] was used, these properties would be 
considered, and the model would score substantially higher in 
Explainability [42]. However, this aspect is not primarily a limitation of 
this work but shows that Explainability is perceived differently 
depending on the perspective. The resulting formula of the QLattice is 
likely to appear complex for non-experts. Still, it offers several advan
tages in terms of transparency for experts [126] that do not come into 
play in this context and for the target group under consideration. Hence, 
a rating with a different target group and other dimensions of Explain
ability could produce different results. A similar effect, that more com
plex explanations that could capture relationships more accurately are 
rated lower than simple methods, can be observed in the visually similar 
PDP and ALE plots: The PDPs tend to be a bit more descriptive, which 
understandably might have led to a better rating. However, respondents 
could not consider the possibly more technically correct operation of 

ALE [85] because they were unaware of it. Put simply, these results 
suggest that non-experts, as most property owners tend to be, will be 
satisfied with illustrative explanations and may not be aware of the full 
scope of the issue’s complexity. This hypothesis is supported by the 
finding from Table 6, where experts rank the ANN explanations lower 
than non-experts, although or precisely because they have more prior 
knowledge of the topic. Nevertheless, this suggestion is not sufficiently 
supported by our findings and would need to be investigated with 
further research. The last point to remember regarding the target group 
of property owners is their needs in terms of XAI. Thus, the traceability 
of the models is probably primarily relevant to them, but not other 
properties of XAI, such as the gain of new knowledge or use for legal 
matters. This aspect relativizes the previously mentioned caveats 
regarding the technical correctness of the methods. 

5.2. Implications for research, practice, and policy 

While being effective regarding Prediction Accuracy, using AI and 
ML in energy consumption forecasting comes with the black-box issue, 
which can be problematic for non-ML and non-energy experts. Our work 
addresses this concern by examining XAI’s effectiveness in residential 
energy consumption forecasting and to what extent the Explainability 
affects Prediction Accuracy. We implement seven different XAI objects 
using a real-world dataset about German one- and double-household 
buildings, measure their Prediction Accuracy, and evaluate their 
Explainability by conducting an online survey. On the one hand, the 
results show that the transparent models LR and DT have better 
Explainability than the four ANN-XAI-method combinations, which is 
accompanied by poorer Prediction Accuracy. The Explainability score of 
the QLattice is unexpectedly low falling out of alignment, which we 
attribute to the methodology used and the survey’s target group. On the 
other hand, we found that the ANN-XAI-method combinations were all 
rated positively by the respondents and show hardly any shortcomings 
in Explainability compared to the transparent models. 

Our findings lead to four implications. First, except for the QLattice, 
our results support the general assumption of the Explainability- 
Prediction Accuracy trade-off, that Explainability comes at the 
expense of poorer Prediction Accuracy [32,40,127]. Thus, without using 
separate XAI methods, simpler, i.e., more transparent models such as 
DTs or LRs, are slightly behind their more complex counterparts in 
Prediction Accuracy. Second, given the good evaluations of the XAI 
methods, our results support the literature and provide evidence that the 
idea of counteracting the general trend of the Explainability-Prediction 
Accuracy trade-off with novel XAI methods is effective [32,77]. Hence, 
this paves the way to include more accurate data-driven EQMs sup
ported by XAI in the decision-making process to identify retrofit rec
ommendations. Third, interpreting our results from an application 
perspective, data-driven EQMs can benefit from XAI methods by 
increasing acceptance and minimizing the barrier of the often-perceived 
EQMs’ black-box nature. For instance, in the case of EPCs or retrofit 
consultancy, energy consultants could use XAI methods to gain better 
insight into their models and provide customers with explanations for 
the decision-making process to contribute effectively to the reduction of 
the Total Energy Consumption. As this target group is particularly 
characterized by low ML knowledge, they should leverage state-of-the- 
art ANN and post-hoc explainability methods simultaneously, 
increasing the Explainability by 10 %. Here, on the one hand, our results 
show that the state-of-the-art ANN has a good Prediction Accuracy, 
which helps tackle the energy performance gap. On the other hand, our 
results indicate that especially the appropriated post-hoc method helps 
to greatly increase the Explainability for people with no or only basic ML 
prior knowledge. Consequently, data-driven EQMs in general contribute 
to reducing the energy performance gap with more accurate predictions, 
and XAI methods simultaneously reduce the energy efficiency gap by 
increasing acceptance and understanding of building energy consump
tion forecasts. In this vein, chasing the goal of increasing the rate and 
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depth of retrofits, policymakers should additionally consider XAI 
methods in the current debate for the design of data-driven EQMs 
[128,66,18,4]. While data-driven EQMs in general seem to facilitate the 
process of data collection and can improve data quality aspects [18,30], 
design guidelines including XAI can address concerns about the trust of 
the models. This counteracts the drawbacks of data-driven EQMs, 
making them more compelling and widely accepted next to their 
established physical-based or engineering methods. However, aspects 
such as the governance and distribution of one or more legally accepted 
models for prediction or the shortcomings of data-driven EQM for new 
or non-reflective buildings in the underlying training data still need to 
be discussed and defined, which calls for further research. Fourth, our 
findings emphasize the importance of examining XAI individually in 
each specific use case and with each specific user group. In particular, 
the individual needs of the user group determine the requirements for 
the XAI method. This also leads to a relevant circumstance when 
considering data-driven EQMs within policymaking: Physical-based 
EQMs often stem from a technical-driven domain, making them hard 
to understand for non-experts. Data-driven EQMs developed by engi
neers and data scientists suffer from the same problem, so they should be 
treated as a socio-technical system that requires interdisciplinary 
research and user-centeredness – especially for data-driven EQMs used 
in EPCs. 

6. Limitations and future research 

Naturally, our work is subject to five superordinated limitations but 
likewise offers prospects for future research. First, focusing on data- 
based research, our work is limited by the dataset used and the model 
optimization conducted. For instance, the dataset is missing information 
about the insulation of certain components of the buildings and occu
pant behavior influencing energy consumption. This might lead to 
higher prediction variance and fewer interdependencies between vari
ables that could be accounted for by the ML methods (especially the 
ANN) and then explained by the post-hoc XAI methods. Further, other 
approaches exist to optimize each ML model, such as choosing a 
different cross-validation split, enhancing the hyperparameter space, or 
adjusting the optimization function, which might result in higher Pre
diction Accuracy. Future studies could address both aspects by collect
ing the necessary data and enhancing model optimization before XAI 
analysis. Second, the scope of the XAI methods considered is limited by 
examining each one individually. As the use of multiple XAI methods for 
one model is not mutually exclusive, using several XAI methods could 
presumably increase the total Explainability. Researchers could inves
tigate different combinations of XAI methods to find an optimal solution 
[52]. Third, the generalization of our results to other fields is limited by 
focusing on predicting energy consumption in residential buildings and 
the target group of property owners. The target group of property 
owners, i.e., mostly non-ML experts from the building domain, has in
dividual needs that must be accounted for, notably in interpreting the 
results. As such, the survey did not explain the details of the XAI 
methods used, which also kept limitations of the methods from the re
spondents. Hence, our work only examined mere human-perceived 
comprehensibility [89]. This limitation allows for further research 
applying our methodological approach to target groups of domain ex
perts or for other prediction tasks in industrial buildings [5]. Fourth, 
although we have created a rigorous survey design, there are some 
limitations. Aside from the limited number of participants, the re
spondents were not completely representative of the target group of 
homeowners and tended to be young with high levels of education. To 
obtain more representative results, this survey can be expanded to other 
sociodemographic groups. Additionally, the structure of the online 
survey offers some leeway. There are various ways of representing the 

different objects and selecting examples of the XAI methods, which can 
influence the perception. Another aspect of the survey methodology 
worth debating is that objects of different types were compared. For 
instance, we evaluated local and global XAI methods against each other 
despite having essentially different applications. However, this is diffi
cult to avoid when attempting an overall comparison. The survey 
explicitly noted the differences to improve comparability for re
spondents and the design of the work also aims to provide compara
bility. Hence, our work does not claim to give a general comparison 
design but offers an exemplary approach to compare the Explainability 
of different XAI methods in a concrete use case for a non-expert target 
audience since, to the best of our knowledge, such comparisons do not 
yet exist. Fifth, on the one hand, we assessed the ML models’ perfor
mance regarding their Prediction Accuracy but neglected dimensions 
such as training time, the dispersion of the errors, and the consistency of 
the predictions. Indeed, transparent models often perform better than 
complex models in some of these dimensions. On the other hand, 
Explainability is complex and there is no consistent approach making 
results hard to compare [57]. In this work, we reduced Explainability to 
human-centered Explainability with the two dimensions of Explanation 
Satisfaction and Perceived Fidelity. We did not include model-inherent 
complexity and technical factors, such as the number of variables and 
the performance. Consequently, a multi-dimensional study could be 
subject to future work as, e.g., policy making needs to consider further 
dimensions besides Prediction Accuracy and Explainability [129]. 

All in all, our results represent an initial evaluation of the application 
of XAI in the context of residential energy consumption forecasting. We 
recommend considering using XAI in the building sector and further 
researching XAI for regulatory EQMs when setting policies for the pre
diction of residential energy consumption to allow the use of data-driven 
EQMs. This can decrease the energy performance gap since decision- 
makers need to understand the models, hence fostering the imple
mentation of retrofit measures on existing buildings to reduce energy 
consumption effectively. 
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Appendix A  

Table A1 
Features of the dataset.  

Feature Type Value Range/Values Mean Value Unit/Assignment 

Living Area Continuous [109.3; 403.6] 217.1 m2 

Construction Year Continuous [1197; 2012] 1964 Date 
Last Window Renewal Year Continuous [1665; 2013] 1983 Date 
Last Facade Renovation Year Continuous [1197; 2013] 1973 Date 
Last Roofing Year Continuous [1197; 2013] 1977 Date 
Boiler Construction Year Continuous [1850; 2013] 1990 Date 
Exhaust Gas Loss Continuous [79; 100] 96.3 % 
Thickness of Exterior Thermal Insulation Continuous [0; 60] 0.8 cm 
Gas Port Available Binary {0, 1} 0.46 1 = yes 
Basement Available Binary {0, 1} 0.88 1 = yes 
Building Detached Binary {0, 1} 0.77 1 = yes 
Energy Source Oil Binary {0, 1} 0.45 1 = yes 
Energy Source Gas Binary {0, 1} 0.55 1 = yes 
Double Window Glazing and No Isolation Binary {0, 1} 0.11 1 = yes 
Double Window Glazing and Isolation Binary {0, 1} 0.79 1 = yes 
Triple Window Glazing and Isolation Binary {0, 1} 0.06 1 = yes 
Window Frame Type Wood Binary {0, 1} 0.57 1 = yes 
Window Frame Type Plastic Binary {0, 1} 0.39 1 = yes 
Window Frame Type Aluminum Binary {0, 1} 0.04 1 = yes 
Partial Roof Insulation Binary {0, 1} 0.45 1 = yes 
Full Roof Insulation Binary {0, 1} 0.22 1 = yes 
Additional Exterior Thermal Insulation Binary {0, 1} 0.82 1 = yes 
Total Energy Consumption Continuous [30.2, 349.8] 138.8 kWh/ (m2⋅a)  

Appendix B

Fig. B1. Pearson correlation matrix of the input variables and the target variable of Total Energy Consumption  
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Appendix C  

Table C1 
Model card based on Kühl et al. [115]  

General Information 

Problem statement Predict the Final Energy Performance of single- and two-family houses in Germany with multiple variables and apply XAI 
methods 

Data gathering The data originates from the nationwide “Modernisierungs-Kompass” (Modernization Compass) offered by the EN-OP Institute 
(enop.de) 

Sampling No sampling of data (post-stratification for Performance Accuracy evaluation measures) 
Data quality Generally high, partly missing or incorrect values 
Data preprocessing methods Data cleaning, normalization and one-hot encoding, c.f. Section 3.2 
Feature engineering and vectorizing Accounting for local climate factor to make Total Energy Consumption independent of location and weather effects 
ML Models 
ANN Parameter optimization Yes Search space n layers: [2;4],  

n neurons per layer: [1;200],  
learning rate: [0.01, 0.0001] 

Search 
algorithm 

Random Search 

Final parameters n layers = 3, n neurons per layer = (50, 60, 50), learning rate = 0.001 
Data split Nested cross-validation, 10 outer folds, 3 inner folds 
Loss function Mean Squared Error 
Package Python package “keras” with “tensorflow” 
Additional information Adam as optimizer; rectified linear units as activation functions for the hidden layers and a linear output function; batch size of 32; 100 

epochs with early callback; dropout of 0.5 
LR Parameter optimization Ordinary Least Squares 

Data split Cross-validation, 10 folds 
Loss function Mean Squared Error 
Package R package “Stats” 
Additional information Common linear regression; ordinary least squares; feature selection based on Bayesian Information Criterion, adjusted R-squared, and p- 

values 
DT Parameter optimization Yes Search space max depth: [4; 8],  

min samples per split: [5;20], complexity parameter: [0.001; 0.01] 
Search 
algorithm 

Grid Search 

Final parameters max depth = 5, min samples per split = 6, complexity parameter = 0.005 
Data split Nested cross-validation, 10 outer folds, 3 inner folds 
Loss function Mean Squared Error 
Package R package “rpart” 
Additional information CART algorithm with ANOVA as method 

QLattice Parameter optimization −

Data split Cross-validation, 10 folds 
Loss function Mean Squared Error 
Package Python package “feyn” from Abzu [130] 
Additional information Complexity parameter = 10 (default value) 

XAI methods 
PDP Package R package “DALEX” 

Additional information −

ALE Package R package “ALEPlot” 
Additional information −

LIME Package R package “lime” 
Additional information n permutations = 5,000 

SHAP Package R package “DALEX” 
Additional information n random orderings (B) = 20  

Appendix D 

Table D.1 contains the features used, the respective weights, and the statistical significance of the LR.  

Table D1 
Implementation result of the LR.  

Feature Weight p-Value 

Intercept  1492.01 <2⋅10−16 

Living Area  −0.23 <2⋅10−16 

Boiler Construction Year  −0.31 <2⋅10−16 

Last Facade Renovation Year  −0.19 <2⋅10−16 

Basement Available  6.74 2.57⋅10−10 

Last Roofing Year  −0.17 <2⋅10−16 

Additional Exterior Thermal Insulation  −11.34 <2⋅10−16 

Triple Window Glazing and Isolation  −12.70 <2⋅10−16 

Building Detached  12.66 <2⋅10−16 

Window Frame Type Aluminum  7.02 2.01⋅10−4  
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Fig. D.2 shows the final DT by limiting the maximum depth of the tree to 5 and setting the complexity parameter to 0.005. The latter means that a 
split is only made if it leads to an improvement of the overall R2 by at least 0.005.

Fig. D2. Implementation result of the DT.  

Fig. D.3 visualizes the QLattice containing four variables whose mathematical relationships are presented as the green input.

Fig. D3. Implementation result of the QLattice.  

Appendix E 

These are screenshots of all pages of the conducted online survey to evaluate the degree of Explainability of all objects. Page 2 to 8 were displayed 
in random order. 
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Fig. E1. Landing page of the survey with a brief introduction to the topic and a task description.  
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Fig. E2. Survey page of the LR.  
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Fig. E3. Survey page of the DT.  
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Fig. E4. Survey page of the QLattice.  
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Fig. E5. Survey page of PDP.  
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Fig. E6. Survey page of ALE.  
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Fig. E7. Survey page of LIME.  
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Fig. E8. Survey page of LIME.  
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Fig. E9. Last page of the survey with sociodemographic data inquiry.  

References 
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