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Abstract
In this paper we derive quantitative estimates in the context of stochastic homogenization
for integral functionals defined on finite partitions, where the random surface integrand is
assumed to be stationary. Requiring the integrand to satisfy in addition amultiscale functional
inequality, we control quantitatively the fluctuations of the asymptotic cell formulas defining
the homogenized surface integrand. As a byproduct we obtain a simplified cell formula where
we replace cubes by almost flat hyperrectangles.

Mathematics Subject Classification 49J55 · 49Q20 · 49J45 · 60G10

1 Introduction

In a nutshell, stochastic homogenization deals with (mostly physical) problems in an envi-
ronment that changes on a very small scale, but with a spatially heterogeneous distribution.
These scales can enter for instance through oscillating x-dependent coefficients of a PDE
or integrands of an integral functional. As the scale of random heterogeneous oscillations
gets smaller and smaller or, equivalently, the surrounding space invades the whole space, one
aims to derive an effective, averaged model in a spirit similar to the law of large numbers. In
the context of linear elliptic PDEs of the form

− div(A(x/ε, ω)∇u) = f , (1.1)

where ε denotes the scale of the fine oscillations and ω belongs to the sample space � of an
underlying probability space (�,F,P), the first qualitative results date back to the work of
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Kozlov [34] and Papanicolaou and Varadhan [37]. In a variational context, first qualitative
results in the nonlinear setting were obtained by Dal Maso and Modica [22,23], where the
authors derive an effective, averaged model for integral functionals of the form∫

D
L(x/ε, ω,∇u) dx (1.2)

defined for Sobolev functions. Starting from these qualitative results, the interest grew in
deriving error estimates for the homogenization approximation, which led to the development
of a quantitative theory for stochastic homogenization. In the context of linear elliptic PDEs as
in (1.1), first quantitative convergence results are already contained in [42] and an unpublished
preprint by Naddaf and Spencer [36], the latter being optimal in the regime of a small
ellipticity ratio. Then, in a non-perturbative regime there has been enormous progress in
recent years starting with the works of Gloria and Otto [29–31] and Gloria, Neukamm and
Otto [28] (partially for discrete equations on a lattice). In terms of stochastic integrability of
the error estimates, a breakthrough came with the work of Armstrong and Smart [9], which
also covers the behavior of minimizers of functionals as in (1.2) under the assumption of
uniform convexity, thus giving the first quantitative version of the results in [22,23]. Further
quantitative results in this nonlinear setting were obtained for instance in [8,26]. Finally, in
the linear elliptic setting (1.1) essentially optimal results in terms of scaling and stochastic
integrability of weighted averages of the first order corrector were obtained in [7,32]. This
list is by no means exhaustive as different assumptions on the statistics of the medium lead
to different results.

In the last decade, qualitative stochastic homogenization has been extended to variational
models involving discontinuities, namely, to functionals defined on the space of functions of
bounded variation. In particular, models for interfacial energies were studied first in discrete
environments where the underlying medium is either a periodic lattice with random interac-
tions [17] or a random point set [3,16,18]. The latter results then motivated the qualitative
analysis carried out in [11,40] for random discrete approximations of free-discontinuity func-
tionals (see also [27] for a discrete approximation of the total variation on point clouds). In
a continuum environment, the qualitative theory covers by now, among others, the stochas-
tic homogenization of free-discontinuity functionals with randomly oscillating integrands
[20,21] or defined on randomly perforated domains [38], of diffuse interface problems [35],
and of singularly-perturbed elliptic approximations of free-discontinuity functionals [12].

In this paper we derive first quantitative results for interfacial energies in a continuum
medium. Namely, we consider energies acting on finite partitions, i.e., functions of bounded
variation taking values in a finite set.More precisely, given an open set D ⊂ R

d withLipschitz
boundary and M ⊂ R

m finite, we consider energies of the form

Eg,ε(u, D) =
∫
D∩Su

g(ω, x/ε, u+ − u−, νu) dHd−1, u ∈ BV (D;M), (1.3)

where Su , u± and νu denote the jumpset of u, the traces of u on both sides of Su , and
the generalized normal to Su , respectively, while g is a jointly measurable and uniformly
bounded function (see Definition 2.1). From a deterministic point of view, i.e., when g is
independent of ω, functionals as in (1.3) have been studied by Ambrosio and Braides in
[4,5] and we refer to those two papers for more details. In particular, in [5] the authors
prove a periodic homogenization result for functionals as in (1.3). Although a corresponding
stochastic homogenization result for stationary random integrands g is, to the best of our
knowledge, not available in the literature, it follows from by now standard methods. Indeed,
the following result can be proved by following essentially the lines of [4, Theorem3.2] (using
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the integral representation result [15]) and [20, Theorem 3.12] (restricting to functions taking
only finitely many values):

Theorem 0.1 Let g be an admissible random surface tension in the sense of Definition 2.1
satisfying Assumption 1 (see Sect. 2). As ε ↘ 0 the sequence of functionals Eg,ε defined
in (1.3) �-converges with respect to the strong L1(D)-convergence to the functional

Eghom (u, D) =
∫
D∩Su

ghom(ω, u+, u−, νu) dHd−1, (1.4)

where ghom is as in (1.5). Moreover, if g is ergodic, then ghom is deterministic.

The effective integrand ghom in (1.4) does not depend on the spatial variable (but, depending
on the setM, it can loose the structural dependence on u+−u−). Moreover, it is given by an
asymptotic minimization problem involving boundary conditions on larger and larger cubes.
More precisely, denoting by ua,b,ν ∈ BVloc(Rd ,M) the function

ua,b,ν(x) =
{
b if 〈x, ν〉 > 0,

a otherwise,

the integrand ghom(ω, a, b, ν) is given by the following limit, which in particular exists almost
surely (see also Theorem 3.1):

ghom(ω, a, b, ν)= lim
t→+∞

1

td−1
inf
{
Eg,1(u, t Qν) : u=ua,b,ν in a neighborhood of ∂t Qν

}
,

(1.5)

where Qν is a unit cube with two sides orthogonal to ν.
The aim of the present paper is to analyze the asymptotic formula in (1.5) and give some

quantitative error estimates when the size of the box grows. Clearly, in order to obtain quan-
titative information, mere stationarity will not suffice and we certainly have to focus on the
ergodic setting, so that from now onwe assume in this introduction that ghom is deterministic.
Denoting the value of the normalized infimum in (1.5) for fixed t by Xa,b,ν

t,t (g)(ω) (the double

index t, t will become clear in a second), the error Xa,b,ν
t,t (g)(ω) − ghom(a, b, ν) naturally

splits into two parts, a deterministic error and the fluctuations of Xa,b,ν
t,t (g). More precisely,

we can write

Xa,b,ν
t,t (g)(ω)−ghom(a, b, ν)= Xa,b,ν

t,t (g)(ω)−E[Xa,b,ν
t,t (g)]︸ ︷︷ ︸

fluctuations

+E[Xa,b,ν
t,t (g)]−ghom(a, b, ν)︸ ︷︷ ︸

deterministic error

.

(1.6)

In this paper we give quantitative estimates for the fluctuations assuming that the integrand
g in (1.3) satisfies a multiscale functional inequality [24,25] of the form

Var(X(g)) ≤ C E

[∫ ∞

0

∫
Rd

(
∂oscg,Bs+1(x)X(g)

)2
dx (s + 1)−dπ(s) ds

]
,

for all measurable functions X , a non-negative weight π and the so-called oscillation
∂oscg,Bs+1(x)X(g). The latter measures the sensitivity of X(g)with respect to local perturbations
of g on Bs+1(x) (see Assumption 2 for the details and Remark 2.4 for further comments).
Under this additional assumption, one can show that

E
[∣∣Xa,b,ν

t,t (g)− E[Xa,b,ν
t,t (g)]∣∣2p] ≤ (Cp2)pt p(2−d)

∫ +∞

0
(s + 1)2p(d−1)π(s) ds for any p ≥ 1.
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However, this estimate does not imply any decay in t in dimension 2. For this reason, we first
move a step back and characterize ghom in a way which is more convenient for our purpose.
Namely, we prove that for any fixed ν ∈ S

d−1, in (1.5) one can reduce the height of the cubes
t Qν ( i.e., the side length along the direction ν) to an arbitrarily slowly diverging sequence
	t . Denoting the corresponding value of the minimization problem by Xa,b,ν

t,	t
(g)(ω) (see

Sect. 2.4 for a precise definition), we show that as long as 	t ≤ t diverges, it holds that

ghom(ω, a, b, ν) = lim
t→+∞ Xa,b,ν

t,	t
(g)(ω) (1.7)

almost surely. Note that this result just requires Rd -stationarity (the case of Zd -stationarity
causes problems along irrational directions, see Sect. 4.1 for how to circumvent this issue
under additional assumptions). With the formula using the flat hyperrectangles (we refer to
it also as almost plane-like formula) we can improve the estimate on the fluctuations to

E
[∣∣Xa,b,ν

t,	t
(g)− E[Xa,b,ν

t,	t
(g)]∣∣2p] ≤ (Cp2)pt p(1−d)	

p
t

∫ +∞

0
(s + 1)2p(d−1)π(s) ds, (1.8)

which decays in any dimension d ≥ 2 when 	t grows much slower than t . Depending on
the decay of the weight this bound can be summed with respect to p and we obtain strong
concentration estimates for the fluctuations. We present them in detail for an exponentially
decaying weight in Corollary 3.4.

Characterizing ghom via the almost plane-like formula in (1.7) is of interest on its own,
in particular in comparison with the periodic setting in the case of two phases. Namely,
when the function g is deterministic and 1-periodic in the spatial variable and M contains
only two values, Caffarelli and de la Llave have shown in [19] under a mild continuity and
ellipticity assumption that there always exist so-called plane-like minimizers, that means, the
jump set stays in a uniformly bounded neighborhood of the hyperplane orthogonal to ν. As
a consequence, in this setting the (deterministic) limit in (1.7) still holds when the height 	t
does not diverge, but is uniformly bounded. However, in the random setting such a property
is not expected to hold. Indeed, in Sect. 4.2 we construct an example of a stationary, ergodic
integrand g such that for any fixed 	 ∈ N the corresponding limit of Xa,b,ν

t,	 (g)(ω) as t →+∞
is strictly smaller than ghom. Moreover, for first passage percolation in dimension two (which
is equivalent to a lattice-based version of the problem defining Xa,b,ν

t,t (g)(ω)with two phases)
it is expected that the maximal deviation from the straight line connecting 0 and nν⊥ is of the
order n2/3 (see [10, Section 4.2] and references therein). Note that our result, which extends
to discrete models without significant changes, is no contradiction to this conjecture, since
we only speak about the minimal energy value instead of absolute minimizers.

We close this introduction by briefly commenting on our result together with our choice of
methods, its limitations and possible future problems. The strong concentration estimates for
the fluctuations obtained in the present paper allow to control the probabilistic error in (1.6).
Instead, a quantitative estimate for the deterministic error in (1.6) is beyond the scope of this
paper. In fact, such a control seems to be a rather difficult issue for subadditive processes
and one of the few general methods seems to be the theory developed in [2]. However, the
assumptions therein are not well-adaptable to random interfaces except in dimension two
where the duality to paths can be used. Let us also mention that in the case of two phases,
there is a similar problem to the minimization problem defining Xa,b,ν

t,	t
, which consists of

finding the maximal flow/minimal cut between the upper and lower parts of the boundary
of the cube with iid weighted edges given by nearest neighbors in the integer lattice Zd (the
problems are slightly different since the minimal cut does not have to be the discontinuity
set of a function). Under much weaker moment conditions on the weights than uniform
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boundedness from above and below, fluctuation estimates on the energy of a minimal cut
were obtained for instance in [39,41]. While parts of the analysis seems to be adaptable
to our continuum model assuming a finite range of dependence, some estimates use the
independence assumption through a logarithmic Sobolev inequality relying on [14]. For a
continuummodel, requiring a logarithmic Sobolev inequality and finite range of dependence
seems quite restrictive. Moreover, as shown in [25], many physical models satisfy a weighted
functional inequality since they are transformations of product structures. Finally, note that
in contrast to uniformly convex problems, quantitative results on the energy of minimizers do
not imply any quantitative estimates on the convergence rate of the minimizers of interfacial-
type energies. The latter seems to be a very challenging problem for the future.

2 Preliminaries and notation

2.1 General notation

Wefirst introduce somenotation thatwill be used in this paper.Given ameasurable set A ⊂ R
d

we denote by |A| its d-dimensional Lebesgue measure, and by Hk(A) its k-dimensional
Hausdorff measure. For x ∈ R

d we denote by |x | the Euclidean norm and Bρ(x0) denotes
the open ball with radius ρ > 0 centered at x0 ∈ R

d . If x0 = 0 we simply write Bρ . Given
x0 ∈ R

d and ν ∈ S
d−1 we let H ν(x0) be the hyperplane orthogonal to ν and passing through

x0 and for every (a, b) ∈ R
m × R

m , the piecewise constant function taking values a, b and
jumping across H ν(x0) is denoted by u

a,b,ν
x0 : Rd → R

m , i.e.,

ua,b,ν
x0 (x) :=

{
b if 〈x − x0, ν〉 > 0,

a otherwise,
(2.1)

where the brackets 〈·, ·〉 denote the standard scalar product. If x0 = 0 we write H ν and ua,b,ν

in place of H ν(0) and ua,b,ν
0 , respectively. Let {e1, . . . , ed} be the standard basis ofRd . Then

Oν is the orthogonal matrix induced by the linear mapping

x �→
⎧⎨
⎩
2
〈x, ν + ed〉
|ν + ed |2 (ν + ed)− x if ν ∈ S

d−1 \ {−ed},
−x otherwise.

(2.2)

In this way, Oνed = ν and the set {ν j := Oνe j : j = 1, . . . , d − 1} is an orthonormal basis
for H ν . Setting νd = ν, we define the cube Qν as

Qν =
{
x ∈ R

d : |〈x, ν j 〉| < 1/2 for j = 1, . . . , d
}

, (2.3)

and we set Qν
ρ(x0) = x0 + ρQν .

Finally, the letter C stands for a generic positive constant that may change every time it
appears.

2.2 BV-functions

The relevant function space in this paper is the space of finite partitions, i.e., the space of
functions of bounded variation taking only finitely many values. More precisely, we denote
by BV (D;Rm) the space of all functions u ∈ L1(D;Rm) whose distributional derivative
Du is a matrix-valued Radon measure. Moreover, given M ⊂ R

m , we set BV (D;M) :=
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{u ∈ BV (D;Rm) : u(x) ∈ M a.e. inD}. If M is finite, then Du can be represented as
Du(B) = ∫

B∩Su (u
+(x) − u−(x)) ⊗ νu(x) dHd−1 for any Borel set B ⊂ D. Here Su

is the so-called jumpset of u, which is Hd−1-rectifiable and coincides Hd−1-a.e. with the
complement in D of Lebesgue points of u. Moreover, νu(x) is the measure-theoretic normal
to Su and u+(x), u−(x) are the traces on both sides of Su . We refer the reader to [6] for more
details on functions of bounded variation.

2.3 Boundedness and probabilistic assumptions

In this subsection we give the precise assumptions we make on the random integrand. We
start fixing some notation in the deterministic setting. Namely, for a given parameter c ≥ 1
we denote byAc the class of all Borel measurable functions g : Rd×R

m×S
d−1 → [0,+∞)

satisfying

1

c
≤ g(x, ζ, ν) ≤ c, and g(x, ζ, ν) = g(x,−ζ,−ν) , (2.4)

for every (x, ζ, ν) ∈ R
d × R

m × S
d−1. To any g ∈ Ac and D ⊂ R

d open with Lipschitz
boundary we associate a functional Eg(·, D) defined on partitions by setting Eg(·, D) :
L1
loc(R

d ;Rm)→ [0,+∞],

Eg(u, D) :=
⎧⎨
⎩

∫
D∩Su

g(x, u+ − u−, νu) dHd−1 if u ∈ BV (D;M),

+∞ otherwise in L1
loc(R

d ;Rm).

(2.5)

Here M ⊂ R
m is a finite set that we fix throughout this paper. Note that Eg is well-

defined for g ∈ Ac thanks to the second condition in (2.4) and the fact that the triple
(u+(x), u−(x), νu(x)) is uniquely defined up to a permutation in (u+(x), u−(x)) and a
simultaneous change of sign in νu(x).

We are now in a position to rigorously introduce the random setting. Throughout the paper
(�,F,P) denotes a complete probability space.

Definition 2.1 (Admissible surface tensions) We say that a function g : � × R
d × R

m ×
S
d−1 → [0,+∞) is an admissible random surface tension, if it is jointly measurable and

there exists c ≥ 1 such that for everyω ∈ � the function g(ω) : Rd×R
m×S

d−1 → [0,+∞),
g(ω) := g(ω, ·, ·, ·) belongs to Ac.

For any admissible random surface tension g and for ω ∈ � we set Eg(ω) := Eg(ω), where
Eg(ω) is defined according to (2.5), i.e., Eg(ω)(u, D) = ∫D∩Su g(ω, x, u+−u−, νu) dHd−1

for D ⊂ R
d open, u ∈ BV (D;M).

We now introduce two further probabilistic assumptions. The first one concerns spatial
stationarity of the integrand, while the second one is a multi-scale functional inequality (or
weighted spectral gap). We start by recalling the notion of measure-preserving group actions.

Definition 2.2 (Measure-preserving group action) Let k ∈ N, k ≥ 1. A measure-preserving
additive group action on (�,F,P) is a family {τz}z∈Rk of mappings τz : � → � satisfying
the following properties:

(1) (measurability) τz is F-measurable for every z ∈ R
k ;

(2) (invariance) P(τz A) = P(A), for every A ∈ F and every z ∈ R
k ;

(3) (group property) τ0 = id¨ and τz1+z2 = τz2 ◦ τz1 for every z1, z2 ∈ R
k .
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If, in addition, {τz}z∈Rk satisfies the implication

P(τz A
A) = 0 ∀ z ∈ R
k �⇒ P(A) ∈ {0, 1},

then it is called ergodic.

Remark 2.3 (Discrete measure-preserving group action) If in Definition 2.2 the space Rk is
replaced by Z

k , we say that the corresponding family {τz}z∈Zk of mappings τz : � → �

satisfying (1)–(3) is a discrete measure-preserving group action.

We are now in a position to state our probabilistic assumptions on the random surface
tension g.

Assumption 1 The admissible random surface tension is Rd -stationary, i.e., there exists a
measure-preserving group action {τz}z∈Rd such that for all ω ∈ � and for all z ∈ R

d it holds
that

g(τzω, x, ζ, ν) = g(ω, x + z, ζ, ν) ∀ (x, ζ, ν) ∈ R
d × R

m × S
d−1.

It is called ergodic, if it is stationary and the group action {τz}z∈Rd is ergodic. We refer to
Assumption 1(E) if ergodicity holds.

Assumption 2 Let π ∈ L1((0,+∞)) be non-negative. The admissible random surface ten-
sion g satisfies a multiscale functional inequality with weight π and with respect to the
oscillation, i.e., for any function X : Ac → R such that ω �→ (X(g))(ω) := X(g(ω)) is
measurable we have

Var(X(g)) ≤ C E

[∫ ∞

0

∫
Rd

(
∂oscg,Bs+1(x)X(g)

)2
dx (s + 1)−dπ(s) ds

]
,

where the oscillation of X with respect to g on U ⊂ R
d is formally1 defined as

∂oscg,U X(g)(ω) := ess sup{X(g′) : g′ ∈ Ac, g
′|(Rd\U )×Rm×Sd−1 = g(ω)|(Rd\U )×Rm×Sd−1}

− ess inf{X(g′) : g′ ∈ Ac, g
′|(Rd\U )×Rm×Sd−1 = g(ω)|(Rd\U )×Rm×Sd−1}.

(2.6)

Remark 2.4 Our definition of multiscale functional inequality differs from [24,25], since we
consider functions g not just depending on x . However, to have some concrete examples we
can consider surface tensions of the form g(ω, x, ζ, ν) = a(ω, x)φ(ζ, ν) with a satisfying
a multiscale functional inequality in the spirit of [25]. We chose our framework to allow for
more general dependencies that are not present in the homogenization of linear elliptic PDEs.

2.4 Relevant quantities

We now introduce the quantities which are relevant for the analysis carried out in the present
paper.

For ν ∈ S
d−1 let Oν be the orthogonal matrix introduced in (2.2), ν j := Oνe j , j =

1, . . . , d − 1, and for every t, 	 > 0 set

Rν
t,	 := {x ∈ R

d : |〈x, ν〉| < 	/2, |〈x, ν j 〉| < t/2, j = 1, . . . , d − 1}. (2.7)

1 As already noted in [25] this definition is not measurable in general, so that one should define it either using
the conditional essential supremum [13] or as the measurable envelope of the above definition. However, in
this paper we will only use measurable bounds on the oscillation, so that these issues do not matter.
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Let g be an admissible random surface tension; for t, 	 > 0, (a, b) ∈ M ×M, ν ∈ S
d−1

and for every ω ∈ � we introduce the quantity

Xa,b,ν
t,	 (g)(ω) := t1−d inf

{
Eg(ω)(u, Rν

t,	) : u ∈ A (ua,b,ν , Rν
t,	)
}
, (2.8)

where for every D ⊂ R
d open with Lipschitz boundary and ū ∈ BV (D;M) we set

A (ū, D) := {u ∈ BV (D;M), u = ū in a neighborhood of ∂D}. (2.9)

Remark 2.5 Clearly, for 	 = t we have Rν
t,t = t Qν , so that in particular

Xa,b,ν
t,t (g)(ω) = t1−d inf

{
Eg(ω)(u, t Qν) : u ∈ A (ua,b,ν , t Qν)

}
. (2.10)

Moreover, it is immediate to see that for every (a, b) ∈ M ×M, t > 0 and ω ∈ � the
mapping 	 �→ Xa,b,ν

t,	 (g)(ω) is decreasing in 	. In fact, if 	′ ≥ 	 > 0, then any competitor

u ∈ A (ua,b,ν , Rν
t,	) can be extended to a competitor u ∈ A (ua,b,ν , Rν

t,	′) by setting u :=
ua,b,ν in Rν

t,	′ \ Rν
t,	. Since Sua,b,ν ∩ (Rν

t,	′ \ Rν
t,	) = ∅, by definition of Eg(ω) we have

Eg(ω)(u, Rν
t,	′) = Eg(ω)(u, Rν

t,	) and we conclude by minimization that

Xa,b,ν
t,	′ (g)(ω) ≤ Xa,b,ν

t,	 (g)(ω) for every 	′ ≥ 	 > 0. (2.11)

Using the same extension argument for fixed 	, but different parameters t, t ′, shows that the
mapping t �→ Xa,b,ν

t,	 (g)(ω) is almost decreasing. Namely, using (2.4) we obtain

Xa,b,ν
t ′,	 (g)(ω)≤

(
t

t ′

)d−1
Xa,b,ν
t,	 (g)(ω)+ c

(t ′ − t)(t ′)d−2

(t ′)d−1
≤Xa,b,ν

t,	 (g)(ω)+ c(t ′ − t)

t ′
for every t ′ ≥ t .

(2.12)

Finally, note that by testing the function u = ua,b,ν in the infimum problem, we deduce from
the boundedness of g that

0 ≤ Xa,b,ν
t,	 (g)(ω) ≤ c (2.13)

uniformly in all parameters. Eventually, thanks to [20, Proposition A.1], for any admissible
random surface tension g, the mapping ω �→ Xa,b,ν

t,	 (g)(ω) is measurable. Thus, we can

define the oscillation of Xa,b,ν
t,	 according to (2.6) and use (2.13) with g′ in place of g to

obtain the immediate bound

∂oscg,Bs+1(x)X
a,b,ν
t,	 (g)(ω) ≤ 2c, (2.14)

for any s > 0 and x ∈ R
d .

3 Statement of themain results

In this sectionwe present ourmain results. The corresponding proofs are postponed to Sect. 5.
Our first result provides a simpler formula to compute the asymptotic surface tension ghom.
More precisely, we show that instead of the full cube t Qν , we can reduce the size in the
direction ν taking an arbitrary slow diverging sequence 	t instead of t . This result is also
interesting from a numerical point of view.
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Theorem 3.1 Let g : � × R
d × R

m × S
d−1 → [0,+∞) be an admissible random surface

tension satisfying Assumption 1. Then there exists a function ghom : �×M×M×S
d−1 →

[0,+∞) such that almost surely for all (a, b) ∈M×M, ν ∈ S
d−1 we have

lim
t→+∞ Xa,b,ν

t,t (g)(ω) = ghom(ω, a, b, ν). (3.1)

In particular, the limit in (3.1) exists. Moreover, ghom is {τz}z∈Rd invariant. If, in addition,
{τz}z∈Rd is ergodic, then ghom is deterministic. Finally, let ν ∈ S

d−1 be fixed; then almost
surely, for every (a, b) ∈M×M we have

lim
t→+∞ Xa,b,ν

t,	t
(g)(ω) = ghom(ω, a, b, ν), (3.2)

under the assumption that 0 < 	t ≤ t satisfies lim
t→+∞ 	t = +∞.

Remark 3.2 (i) The exceptional set where the convergence in (3.2) might fail may depend
on ν, but not on the sequence 	t . In the particular case 	t = t it is possible to find
a set of full probability where the convergence in (3.1) holds for all directions ν.
Indeed, in this case it is sufficient to establish (3.1) on a countable dense subset of Sd−1
and extend the convergence to all directions via a deterministic continuity argument
(see, e.g., [20, Lemma 5.5]). Choosing the flat hyperrectangles rules out this possibility.
This poses additional problems when the medium satisfies only discrete stationarity (as
discrete environments on a lattice), since in this case we are only able to prove (3.2) for
rational directions. However, under Assumption 2 we obtain a slightly weaker version
of (3.2) also in the case of Zd -stationarity (see Sect. 4.1 and Corollary 4.3). The limit in
(3.1) holds without any extra assumption for Zd -stationary models thanks to the above
mentioned continuity argument.

(ii) Due to (2.13) the almost sure convergence implies convergence in L p(�) for any
1 ≤ p < +∞. Denoting by Finv the σ -algebra of {τz}z∈Rd -invariant sets, then by
subadditivity and stationarity (cf. Lemma 5.2 and its proof) the conditional expectations
satisfy E[Xa,b,ν

t,t |Finv](ω) ≥ ghom(ω, a, b, ν). Moreover, thanks to the monotonicity
Property (2.11) we have

E[Xa,b,ν
t,	t

|Finv](ω) ≥ E[Xa,b,ν
t,t |Finv](ω) ≥ ghom(ω, a, b, ν).

In the ergodic case the above estimate reduces to the expectation. In this sense, the
formula with the flat hyperrectangles produces a larger deterministic error, but allows
at the same time to obtain concentration estimates for the fluctuations (cf. Corollary 3.4).

Our next result gives a control of the variance (and higher moments) under the additional
Assumption 2. Note that in dimension 2 the flatness of the hyperrectangles is crucial to obtain
a decay rate.

Theorem 3.3 Let g be an admissible random surface tension satisfying Assumption 12 and
2. Then there exists a constant cd > 0 such that for all p ≥ 1 and every (a, b) ∈M×M,
ν ∈ S

d−1 the estimate

E
[(
Xa,b,ν
t,	t

(g)− E[Xa,b,ν
t,	t

(g)])2p] ≤ (cd p
2)pt p(1−d)	

p
t

∫ +∞

0
(s + 1)2p(d−1)π(s) ds (3.3)

2 Strictly speaking, Assumption 1 is not needed in the proof. However, usually Assumption 2 is established
for at least Zd -stationary media.
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holds whenever t ≥ 	t ≥ 1. In particular,

Var
(
Xa,b,ν
t,	t

(g)
)
≤ cd t

1−d	t
∫ +∞

0
(s + 1)2(d−1)π(s) ds.

We deduce asymptotic exponential concentration estimates for the fluctuations in case of an
exponential decay of the weight π . This is the case for many physical models of random
heterogeneities (cf. [25, Section 3]).

Corollary 3.4 Let g be an admissible random surface tension satisfying Assumptions 1(E)
and 2. Assume that the weight π satisfies π(s) ≤ C exp(−s/C) for some C > 0. Then there
exists Cd > 0 such that for all t ≥ 	t ≥ 1 and (a, b) ∈M×M, ν ∈ S

d−1 we have

E

⎡
⎢⎣exp

⎛
⎜⎝ 1

Cd

∣∣∣∣∣
Xa,b,ν
t,	t

(g)− E[Xa,b,ν
t,	t

(g)]√
t1−d	t

∣∣∣∣∣
1
d

⎞
⎟⎠
⎤
⎥⎦ ≤ 4.

In particular, for every η > 0 we have

lim sup
t→+∞

(
(t1−d	t )

1
2d log

(
P
(|Xa,b,ν

t,	t
(g)− ghom(a, b, ν)| > η

)))
< 0.

Remark 3.5 (On the (non)-optimality of the concentration estimates) In the proof of Theo-
rem 3.3we estimate the oscillation of the process Xa,b,ν

t,	t
(g) for all balls Bs+1(x) that intersect

the hyperrectangle Rν
t,	t

, which then leads by integration to the factor 	t . It would suffice

to consider all balls that intersect the jumpset of a minimizer for Xa,b,ν
t,	t

. However, there are
two problems: in general, minimizers do not exist. Moreover, choosing an almost minimizer,
one has then to estimate the measure of the 2(s + 1)-neighborhood of the jumpset for all
s > 0. If one assumes that the weight π has compact support, then one could try to use the
theory of Minkowski content. However, this needs to be done in a quantitative way since
(almost) minimizers depend on t and s > 0 is not infinitesimal, but finite. For the moment
this seems to be out of reach for non-smooth x-dependent integrands g. We remark that in
a discrete setting, this approach seems more plausible since there one just has to estimate
the number of edges used in a minimal interface (which is proportional to td−1 when the
weights are uniformly bounded from above and below). Finally, even with the best possible
assumption that the jumpset of an almost minimizer is flat, the improvement would be minor
since the factor 	t can diverge arbitrarily slow. Eventually, the exponent 1

2d in Corollary 3.4
is due to two facts: the factor 2 can be avoided if we use a functional derivative instead of the
oscillation together with a logarithmic Sobolev inequality instead of the variance control via
the spectral gap (see also [24, Proposition 1.10 i)]). The factor d disappears when we assume
that π is bounded and has compact support.

4 Further remarks

In this section we discuss how our strategy has to be adapted if one assumes only stationarity
with respect to integer translations in Z

d (cf. Remark 2.3). This is particularly relevant for
discrete interfacemodels, which are often defined on the latticeZd , where integer translations
provide a natural framework.Moreover, we give an example of a stationary, ergodic integrand
which shows that, in general, the assumption 	t →+∞ in Theorem 3.1 cannot be dropped.
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4.1 OnZd-stationary integrands

Assuming that stationarity of the random surface tension g is only satisfied for a discrete
measure preserving group action {τz}z∈Zd , our strategy of proof establishes the limit (3.2) in
Theorem 3.1 only for rational directions, i.e., for ν ∈ S

d−1 ∩ Q
d . In contrast to the process

Xa,b,ν
t,t (g), the hyperrectangles in the definition of Xa,b,ν

t,	t
do not allow to use deterministic

continuity arguments to extend the convergence to irrational directions (cf. Remark 3.2 (i)),
since a small, but fixed rotation does not lead to a uniformly small perturbation of the thin
hyperrectangles when t grows. However, under Assumption 2 with a certain decay of the
weight π we can extend the convergence to all directions using Theorem 3.3. Since Assump-
tion 2 only allows to control the variance of random variables, we first need to prove the
convergence of the expectation of the random variables Xa,b,ν

t,	t
(g). This will be achieved

again under the sole assumption of stationarity. A similar approach has been used in [39,
Proposition 3.5] for a maximal flow model on Zd .

Proposition 4.1 Let g : �×R
d ×R

m ×S
d−1 → [0,+∞) be an admissible random surface

tension satisfying Assumption 1 with a measure preserving group action {τz}z∈Zd . Then for
every (a, b) ∈M×M and every ν ∈ S

d−1 it holds that

lim
t→+∞E[Xa,b,ν

t,	t
(g)] = E[ghom(·, a, b, ν)]

under the assumption that 0 < 	t ≤ t satisfies limt→+∞ 	t = +∞. If g is ergodic, then
E[ghom(·, a, b, ν)] = ghom(a, b, ν) since ghom is deterministic.

Remark 4.2 Since the condition 	t ≤ t implies that Xa,b,ν
t,	t

(g) ≥ Xa,b,ν
t,t (g) (cf. Remark 2.5),

the convergence of the expectations to the same limit implies also convergence in L1(�)

and therefore also almost sure convergence after selecting a subsequence. From this one can
deduce the convergence in L p(�) for any 1 ≤ p < +∞ by the dominated convergence
theorem.

Combining the above result with the concentration estimate in Theorem 3.3, we obtain the
almost sure convergence along all directions also for Zd -stationary models.

Corollary 4.3 Let g be an admissible random surface tension satisfying Assumption 1(E) with
a measure preserving group action {τz}z∈Zd

3 and Assumption 2 with a weight π that satisfies
∫ +∞

0
(s + 1)rπ(s) ds < +∞ for some r > 2(d − 1).

Fix ν ∈ S
d−1 and let 	̄n → +∞ be an arbitrary diverging sequence. Then a.s. for all

(a, b) ∈M×M it holds that

lim
n→+∞ Xa,b,ν

tn ,	n
(g)(ω) = ghom(a, b, ν), (4.1)

whenever 	̄n ≤ 	n ≤ tn for every n ∈ N.

Remark 4.4 (Choice of 	̄n) The choice of the sequence 	̄n in Corollary 4.3 is only for technical
reasons to avoid that the exceptional set where (4.1) might fail may depend on the diverging
sequences 	n, tn . Instead, choosing an arbitrarily slowly diverging sequence 	̄n allows to
exclude an exceptional set dependingonly on ν and thefixed sequence 	̄n .As alreadyobserved
in Remark 3.2 (i), this procedure is not necessary for rational directions.

3 In [24] it was shown that the integrability ofπ already implies the ergodicity, so this assumption is redundant.
Even though the proof was given under the assumption of continuum stationarity, the proof remains unchanged
with Z

d -stationarity.
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4.2 Non-existence of plane-likeminimizing sequences in the ergodic setting

In light of Theorem 3.1 one might try to prove that the height of the flat hyperrectangles
can be taken to be bounded, still obtaining the same limit. Below we show that this is in
general not possible. To be more precise, let us introduce a notion of plane-like minimizing
sequences. In what follows we focus on the ergodic setting to simplify the formulas.

Definition 4.5 (Plane-like minimizing sequence) Let g be an admissible random surface
tension satisfying Assumption 1(E) and let ghom be as in Theorem 3.1 and ν ∈ S

d−1. Given a
realization ω ∈ � we say that a sequence (uω

t )t is a minimizing sequence for ghom(a, b, ν),
if uω

t ∈ A (ua,b,ν , t Qν) for every t > 0 and

ghom(a, b, ν) = lim
t→+∞ t1−d Eg(ω)(uω

t , t Qν). (4.2)

We say that a minimizing sequence for ghom(a, b, ν) is plane-like, if there exist 	 ∈ N

and t	 > 0 such that uω
t ∈ A (ua,b,ν , Rν

t,	) for all t > t	.

We will provide an example of a stationary, ergodic integrand g in dimension two such that
the probability of finding a plane-like minimizing sequence for the direction ν = (0, 1) is
zero.

Example 4.6 Let d = 2 andM = {0, 1}. There exists an admissible random surface tension g
satisfying Assumption 1(E) such that with probability 1 there exists no plane-like minimizing
sequence for ghom(0, 1, e2).

Remark 4.7 The restriction toM = {0, 1} is only for convenience. In fact, we will construct
an integrand depending only on x andω, so that the same construction works for any finite set
M. Moreover, it will be clear from the construction that it can be extended to any dimension
upon heavier notation and replacing e2 by ed .

Below we prove the claim made in Example 4.6 and construct an admissible ergodic random
surface tension g for which ghom(0, 1, e2) has no plane-like minimizing sequences in the
sense of Definition 4.5. We let u0,1 be as in (2.1) with (a, b) = (0, 1) and ν = e2.

Step 1. In this step we construct a suitable random surface integrand g. To this end, we
let {Xi }i∈Z be a sequence of independent and [1, 2]-uniformly distributed random variables
on a suitable probability space (�,F,P) equipped with a measure-preserving, ergodic map
τ : �→ � satisfying the following properties:

i) τ is bijective and the inverse map τ−1 : �→ � is again F-measurable;
ii) Xi (ω) = X0(τ

iω) for every i ∈ Z, where τ i denotes the i-times iterated composition of
the map τ for i ≥ 0 (with the convention τ 0 := id), respectively the −i-times iterated
composition of τ−1 for i < 0.

This setting can be realized on the product space � = [1, 2]Z with the shift operator (see
[33, Section 7.3]). We now define a random surface integrand g : �×R

2 × S
1 → [0,+∞)

by setting

g(ω, x, ν) := X�x2�(ω) for every x = (x1, x2) ∈ R
2, ω ∈ �, ν ∈ S

1, (4.3)

where �x2� denotes the upper integer part of x2. In this way, g is measurable, and since each
Xi takes values in [1, 2] it satisfies 1 ≤ g(ω, x, ν) ≤ 2, i.e., g(ω) ∈ A2. Moreover, both τ

and τ−1 are measure-preserving and ergodic. Thus, the family of maps τz := τ z2 , z ∈ Z
2
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defines a measure-preserving ergodic group action. Thanks to ii) it is immediate to see that
g is stationary with respect to {τz}z∈Z2 as above4, and we set

Eg(ω) :=
∫
Su∩D

g(ω, x, ν) dH1 =
∫
Su∩D

X�x2�(ω) dH1 for all u ∈ BV (D; {0, 1}).
(4.4)

Eventually, for every 	 ∈ N and t > 0 we let Xe2
t,	 be as in (2.8) with ν = e2, a = 0, b = 1,

and Eg as in (4.4).
Let us introduce the randomvariablesY	 : � → [1, 2]givenbyY	(ω) := mini∈[−	+1,	] Xi (ω),
which clearly satisfy Y	+1(ω) ≤ Y	(ω) for every 	 ∈ N. Moreover, for every 	 ∈ N there
exists �	 ∈ F with P(�	) > 0 such that

Y	(ω) > X	+1(ω) = Y	+1(ω) for every ω ∈ �	. (4.5)

Indeed, since all Xi are independent and uniformly distributed on the interval [1, 2], for any
s ∈ (1, 2) we have P

(
X−	 > s, . . . , X	 > s, X	+1 ≤ s

) = (2 − s)2	+1(s − 1) > 0, which
implies (4.5).

Step 2. In this step we show that almost surely we have

1) limt→+∞ Xe2
t,2	(g)(ω) = Y	(ω) for every 	 ∈ N;

2) lim	→+∞ Y	(ω) = 1.

We start proving 1): Since−	+ 1 ≤ �x2� ≤ 	 for every x ∈ Re2
t,2	 = (− t

2 ,
t
2 )× (−	, 	), we

clearly have that Eg(ω)(u, Re2
t,2	) ≥ Y	(ω)H1(Su ∩ Re2

t,2	) for every u ∈ BV (Re2
t,2	; {0, 1}),

which in particular yields

Xe2
t,2	(g)(ω) ≥ Y	(ω)

1

t
min

{H1(Su ∩ Re2
t,2	) : u ∈ A (u0,1, Re2

t,2	)
}

= Y	(ω)
1

t
H1(H ν ∩ Re2

t,2	) = Y	(ω). (4.6)

To estimate Xe2
t,2	(g)(ω) from above, let i	 ∈ (−	, 	] (depending also on ω) be such that

Xi	 (ω) ≤ Xi (ω) for every i ∈ (−	, 	].Without loss of generalitywe assume that i	 > 0.Then
the function u	 defined as the characteristic function of the set R

e2
t,2	 \ Re2

t−1,2i	−1 \ {x2 < 0}
(see Fig. 1) is admissible for Xe2

t,2	(g)(ω) and satisfies

Eg(ω)(u	, R
e2
t,2	) ≤

∫
{x2=i	− 1

2 , |x1|< t−1
2 }

X�x2�(ω) dH1

+ 2H1
({|x1| = t−1

2 , x2 ∈
(
0, i	 − 1

2

)} ∪ {|x2| = 0, |x1| ∈
( t−1

2 , t
2

)})

= (t − 1)Xi	 (ω)+ 4i	 ≤ tY	(ω)+ 4	.

Dividing the above inequality by t and using (4.6) we thus obtain

Xe2
t,2	(g)(ω) ≤ 1

t
Eg(u	, R

e2
t,2	) ≤ Y	(ω)+ 4	

t
≤ Xe2

t,2	(g)(ω)+ 4	

t
.

Passing in the above inequality to the limsup on the left-hand side and to the liminf on the
right-hand side yields that almost surely there exists

g	(ω, e2) := lim
t→+∞ Xe2

t,2	(g)(ω) = Y	(ω). (4.7)

4 This integrand is only Z
2-stationary. However, following the method in [33, Section 7.3] one can turn this

example in an Rd -stationary, ergodic medium that has pointwise the same stripe-like structure.
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Fig. 1 The rectangles Re2
t,2	, R

e2
t−1,2i	−1 and in gray the set Re2

t,2	 \ R
e2
t−1,2i	−1 \ {x2 < 0} where u	 = 1

We now come to prove 2); by construction we have P(Y	 > s) = (2 − s)2	 for every
s ∈ (1, 2), hence

∑
	 P(Y	 > s) < +∞, since 2 − s < 1. As a consequence, the monotone

continuity of P together with the Borel-Cantelli Lemma imply that

P
(
lim sup
	→+∞

Y	 > 1
) = lim

s↘1
P
(
lim sup
	→+∞

Y	 > s
) = 0.

Thus, 2) follows immediately from the existence of lim	 Y	(ω) = inf	 Y	(ω) ≥ 1.
Step 3. Conclusion and final remarks.

As a first consequence of 1) and 2) we deduce that almost surely there exists

ghom(e2) := lim
t→+∞ Xe2

t,t (g)(ω) = 1 ≤ g	(ω, e2), (4.8)

where g	 is as in (4.7). Indeed, arguing as in (4.6) we obtain 1 ≤ lim inf t X
e2
t,t (g)(ω),

while (2.11) together with 1) implies that lim supt X
e2
t,t (g)(ω) ≤ Y	(ω) for every 	 ∈ N.

Hence, (4.8) follows by letting 	 →+∞ and using 2).
As a consequence, with probability 1 minimizing sequences are not plane-like. In fact,

assume that for ω ∈ � there exists a plane-like minimizing sequence (uω
t )t in the sense of

Definition 4.5 with parameter 2	 = 2	(ω) ∈ N. Then by definition

1 = ghom(e2) = lim
t→+∞

1

t
Eg(ω)(uω

t , t Qν) = lim
t→+∞

1

t
Eg(ω)(uω

t , Rν
t,2	)

≥ lim
t→+∞ Xe2

t,2	(g)(ω) = Y	(ω) ≥ 1,

where we used (4.7). Hence Y	(ω) = 1, but we clearly have P(∃	 ∈ N : Y	 = 1) = 0.
We conclude this example by observing that for every 	 ∈ N the function g	(·, e2) is neither

deterministic nor invariant under the group action {τz}z∈Z2 . In fact, for any interval (s1, s2) ⊂
(1, 2) we have by definition that P(Y	 ∈ (s1, s2)) = (2 − s1)2	 − (2 − s2)2	 > 0, which
implies that g	(·, e2) still depends on the realization ω. This already implies that g	(·, e2)
cannot be invariant under the group action {τz}z∈Z2 . This can also be directly seen observing
that by construction, for any z = (z1, z2) ∈ Z

2 it holds that g	(τzω, e2) = g	+z2(ω, e2).
Thus, assuming that z2 > 0, from (4.7) and (4.5) we deduce that

g	(τzω, e2) = g	+z2(ω, e2) ≤ g	+1(ω, e2) < g	(ω, e2) for every ω ∈ �	.

��
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5 Proofs

5.1 Almost plane-like formulas in the stationary setting: proof of Theorem 3.1

As a preliminary step towards the proof of Theorem 3.1, for 	 ∈ N fixed we analyze the
asymptotic behavior of Xa,b,ν

t,	 (g)(ω) as t → +∞. This will be done by relating Xa,b,ν
t,	 (g)

in a suitable way to a subadditive stochastic process in dimension (d− 1). We recall here the
notion of such a process for the readers’ convenience.

For every p = (p1, . . . , pd−1), q = (q1, . . . , qd−1) ∈ R
d−1 with pi < qi for all

i ∈ {1, . . . , d − 1} we consider the (d − 1)-dimensional half-opens intervals

[p, q) := {x ∈ R
d−1 : pi ≤ xi < qi for i = 1, . . . , d − 1}

and we set

I := {[p, q) : p, q ∈ R
d−1 , pi < qi for i = 1, . . . , d − 1} .

Definition 5.1 (Subadditive process) A subadditive process with respect to a measure-
preserving additive group action {τz}z∈Rd−1 is a function μ : I × � → R satisfying the
following properties:

(1) (measurability) for every I ∈ I the function ω �→ μ(I , ω) is F-measurable;
(2) (stationarity) for everyω ∈ �, I ∈ I, and z ∈ R

d−1 we haveμ(I+z, ω) = μ(I , τz(ω));
(3) (subadditivity) for every I ∈ I and for every finite partition (I i )ki=1 of I , we have

μ(I , ω) ≤
k∑

i=1
μ(Ii , ω) for every ω ∈ � ;

(4) (boundedness) there exists M > 0 such that 0 ≤ μ(I , ω) ≤ MLd−1(I ) for every ω ∈ �

and I ∈ I.
In order to, relate Xa,b,ν

t,	 (g) to a subadditive process, we associate to each hyperrectangle

Rν
t,	 a set I ∈ I (and vice versa) as follows: For fixed ν ∈ S

d−1 we let Oν be the orthogonal
matrix induced by (2.2). For every I = [p1, q1) × · · · × [pd−1, qd−1) ∈ I we denote by
smax(I ) := maxi |qi − pi | its maximal side length and define the open set Q	,ν(I ) ⊂ R

d as

Q	,ν(I ) := Oν

(
int I ×min{	, smax(I )}(−1/2, 1/2)

)
, (5.1)

where int denotes the (d−1)-dimensional interior. For 	 = +∞we clearly have Q∞,ν(I ) =
Oν

(
int I × smax(I )(−1/2, 1/2)

)
. Then we define a function μ

a,b,ν
	 : I ×�→ R by setting

μ
a,b,ν
	 (I , ω) := inf{Eg(ω)(u, Q	,ν(I )) : u ∈ A (ua,b,ν , Q	,ν(I ))}. (5.2)

In this way, we have

μ
a,b,ν
	

([− t
2 , t

2 )d−1, ω
)

td−1
=Xa,b,ν

t,	 (g)(ω) if 	≤t, μ
a,b,ν
	

([− t
2 , t

2 )d−1, ω
)

td−1
=Xa,b,ν

t,t (g)(ω) if 	≥t .
(5.3)

Lemma 5.2 Let g : � × R
d × R

m × S
d−1 → [0,+∞) be an admissible random surface

tension satisfying Assumption 1. For every 	 ∈ N∪{+∞}, (a, b) ∈M×M, and ν ∈ S
d−1 let
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μ
a,b,ν
	 (I , ω) be as in (5.2). Then there exists a measure-preserving group action {τ ν

z }z∈Rd−1

such that μa,b,ν
	 is a subadditive process with respect to {τ ν

z }z∈Rd−1 satisfying

μ
a,b,ν
	 (I , ω) ≤ Eg(ω)(ua,b,ν , Q	,ν(I )) ≤ cLd−1(I ) (5.4)

for every ω ∈ �. Moreover, there exist �
a,b,ν
	 ⊂ � with P(�

a,b,ν
	 ) = 1 and a function

g	(·, a, b, ν) : �→ R such that for every ω ∈ �
a,b,ν
	 we have

g	(ω, a, b, ν) =
⎧⎨
⎩

lim
t→+∞ Xa,b,ν

t,	 (g)(ω) if 	 ∈ N,

lim
t→+∞ Xa,b,ν

t,t (g)(ω) if 	 = +∞.
(5.5)

Eventually, �
a,b,ν
	 and g	(·, a, b, ν) are invariant under the group action {τ ν

z }z∈Rd−1 , i.e.,

τ ν
z (�

a,b,ν
	 ) = �

a,b,ν
	 for every z ∈ R

d−1 and

g	(τ
ν
z ω, a, b, ν) = g	(ω, a, b, ν) for every ω ∈ �

a,b,ν
	 . (5.6)

Remark 5.3 For 	 = +∞ the corresponding function g∞(·, a, b, ν) given by (5.5) is invariant
under the whole group action {τz}z∈Rd associated to g (the invariance can be proven by a
deterministic argument as in [20, Theorem 6.2] similar to (5.11)). This is, in general, not true
for the functions g	(·, a, b, ν)with 	 ∈ N. In fact, Example 4.6 provides an admissible random
surface tension g where (5.6) fails if τ ν

z is replaced by τz . As a consequence, g∞(·, a, b, ν)

is deterministic if g is ergodic, while this is in general not true for g	.
If g is onlyZd -stationary, and ν ∈ S

d−1∩Qd×d , thenμ
a,b,ν
	 defines a subadditive process

with respect to a discrete measure-preserving group action. In particular, the limits in (5.5)
still exist for rational directions. The existence of the second limit can still be extended to
irrational directions via continuity (cf. Remark 3.2 (i)).

The sets of full probability for which (5.5) holds depend on 	, a, b, ν; for fixed ν ∈ S
d−1

we can define a set �ν of full probability by taking the countable intersection of �
a,b,ν
	 over

(a, b) ∈ M ×M, 	 ∈ N ∪ {+∞}. Then for every ω ∈ �ν the limits in (5.5) exist for all
(a, b) ∈M×M and every 	 ∈ N∪{+∞}. In particular, the monotonicity property in (2.11)
implies that for every ω ∈ �ν and every (a, b) ∈M×M we have

g∞(ω, a, b, ν) ≤ g	+1(ω, a, b, ν) ≤ g	(ω, a, b, ν) for every 	 ∈ N. (5.7)

Example 4.6 also shows that for every 	 ∈ N the above inequality can be strict on a set of
positive probability (depending again on 	, a, b, ν).

Proof of Lemma 5.2 Throughout this proof we fix (a, b) ∈M×M and ν ∈ S
d−1. In order

to not to overburden notation, for every I ∈ I and 	 ∈ N∪{+∞}we write Q	(I ) = Q	,ν(I )
for the d-dimensional interval introduced in (5.1) and for every ω ∈ � we set μ	(I , ω) :=
μ
a,b,ν
	 (I , ω) with μ

a,b,ν
	 as in (5.2).

Step 1. Stationarity and subadditivity of μ	

The fact that μ	(I , ·) is measurable follows from [20, Proposition A.1]. Moreover, since
g(ω) ∈ Ac for every ω ∈ �, we obtain the uniform bound (5.4) by taking ua,b,ν as a
candidate in the minimization problem defining μ	(I , ω) as in Remark 2.5.

We next prove stationarity of the process. To this end, given z ∈ R
d−1 we set zν :=

Oν(z, 0) ∈ R
d and define a measure-preserving group action {τ ν

z }z∈Rd−1 by setting τ ν
z :=

τ−zν , where {τz}z∈Rd is the group action associated to g. Note that for every I ∈ I and every
z ∈ R

d−1 we have Q	(I − z) = Q	(I ) − zν . Thus, for any u ∈ BV (Q	(I − z);M) the
function uz := u(·−zν) belongs to BV (Q	(I );M).Moreover, zν ∈ H ν due to the properties
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of Oν , which implies that ua,b,ν(· − zν) = ua,b,ν . Hence, for every u ∈ BV (Q	(I − z);M)

we have

u = ua,b,ν near ∂Q	(I − z) ⇐⇒ uz = ua,b,ν near ∂Q	(I ),

while the stationarity of g with respect to {τz}z∈Rd together with a change of variables yields

Eg(ω)(u, Q	(I − z)) = Eg(τ
ν
z ω)(uz, Q

	(I )).

Thus, we conclude by minimization that μ	(I − z, ω) = μ	(I , τ ν
z ω), which implies the

stationarity of the process with respect to the lower-dimensional group action {τ ν
z }z∈Rd−1 .

We conclude this step by showing that μ	 is subadditive. Let I ∈ I and let (I i )ki=1 ⊂ I
be pairwise disjoint and such that I = ⋃k

i=1 I i . Fix η > 0 and for any i ∈ {1, . . . , k} let
ui ∈ A (ua,b,ν , Q	(I i )) be such that

Eg(ω)(ui , Q	(I i )) ≤ μ	(I
i , ω)+ k−1η. (5.8)

Note that also the d-dimensional cuboids Q	(I i ) are pairwise disjoint, so that we can define
a function u ∈ BV (Q	(I );M) by setting

u(x) :=
{
ui (x) if x ∈ Q	(I i ) for some 1 ≤ i ≤ k,

ua,b,ν(x) otherwise.

Since smax(I i ) ≤ smax(I ) for all 1 ≤ i ≤ k, all cuboids Q	(I i ) are contained in Q	(I ),
so that the function u satisfies u = ua,b,ν near ∂Q	(I ). Moreover, since Sua,b,ν = H ν ,
thanks to the boundary conditions satisfied by each ui and the equality I =⋃k

i=1 I i we have
Su ∩ Q	(I ) = Su ∩

(⋃k
i=1 Q	(I i )

) = ⋃k
i=1 Sui . Thus, using the additivity of Eg(ω) as a

set function, from (5.8) we infer

μ	(I , ω) ≤ Eg(ω)(u, Q	(I )) =
k∑

i=1
Eg(ω)(ui , Q	(I i )) ≤ μ	(I

i , ω)+ η.

We then obtain the subadditivity of the process by the arbitrariness of η > 0.
Step 2. Existence of the limit

Suppose first that 	 ∈ N; for every t > 0 consider the sets It := [− t
2 ,

t
2 )

d−1. Thanks to the
first equality in (5.3) andStep 1we can apply themulti-parameter subadditive ergodic theorem
(cf. [20, Theorem 3.11] which is a slightly improved version of [1, Theorem 2.4]) to deduce
the existence of a set �a,b,ν

	 of full probability and a function g	(·, a, b, ν) : � → [0,+∞)

such that for every ω ∈ �
a,b,ν
	 we have

g	(ω, a, b, ν) = lim
t→+∞

μ	(It , ω)

td−1
= lim

t→+∞ Xa,b,ν
t,	 (g)(ω). (5.9)

If instead 	 = +∞, then the second equality in (5.3) is valid for all t > 0 and we obtain a set
�

a,b,ν∞ of full probability and a function g∞(·, a, b, ν) : � → [0,+∞) such that for every
ω ∈ �

a,b,ν∞ we have

g∞(ω, a, b, ν) = lim
t→+∞ Xa,b,ν

t,t (g)(ω). (5.10)

Gathering (5.9) and (5.10) we get (5.5) and it remains to show the shift invariance. To this
end, fix ω ∈ �

a,b,ν
	 and z ∈ R

d−1, let t →+∞, and set t± := t ± 2|zν |. Then, thanks to the
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stationarity of g, by an extension argument as in (2.12) on can show that

Xa,b,ν
t+,	

(g)(ω) ≤ Xa,b,ν
t,	 (g)(τ ν

z ω)+ c(t+ − t)

t+
≤ Xa,b,ν

t−,	
(g)(ω)+ c(t+ − t)

t+
+ c(t − t−)

t
.

(5.11)

Thus, from (5.9) and (5.10), respectively, we deduce that

lim
t→+∞ Xa,b,ν

t,	 (g)(τ ν
z ω) = g	(ω, a, b, ν), lim

t→+∞ Xa,b,ν
t,t (g)(τ ν

z , ω) = g∞(ω, a, b, ν),

that is, τ ν
z ω ∈ �

a,b,ν
	 and (5.6) holds true. ��

Based on Lemma 5.2 we now prove Theorem 3.1. Namely, having at hand the almost sure
existence of the limits in (5.5) we aim to show that we can switch the limit as t → +∞
and 	 → +∞ at least in conditional expectation to obtain (3.2). This will be done by
exploiting suitablemonotonicity properties of g	 andμ	 togetherwith the group-invariance of
conditional expectations with respect to the σ -algebra of τ -invariant sets. The latter property
might be well-known in probability theory but we include the short proof for the sake of
completeness. Recall that the conditional expectation of a random variable X ∈ L1(�) with
respect to a σ -algebraF ′ ⊂ F is the (almost surely) uniquely definedF ′-measurable function
E[X |F ′] such that for any F ∈ F ′ we have∫

F
X dP =

∫
F
E[X |F ′] dP.

Lemma 5.4 Let X ∈ L1(�) be a random variable and τ̃ : � → � be a measurable,
measure-preserving map. Let F1 ⊂ F be a σ -algebra containing only τ̃ -invariant sets, i.e.,
P(̃τ (F)
F) = 0 for all F ∈ F1. Then

E[X ◦ τ̃ |F1] = E[X |F1].
Proof First note that since τ̃ is measure preserving it follows that X ◦ τ̃ ∈ L1(�). Hence
E[X ◦ τ̃ |F1] is well-defined and in particular F1-measurable. Next fix F ∈ F1. By a change
of variables and τ̃ -invariance of F we have∫

F
E[X ◦ τ̃ |F1](ω) dP =

∫
F
X (̃τ (ω)) dP =

∫
τ̃ (F)

X(ω) dP =
∫
F
X(ω) dP,

where the first equality follows from the definition of the conditional expectation. This proves
the claim. ��
Proof of Theorem 3.1 The first part of the proof is an immediate consequence of Lemma 5.2
in the case 	 = +∞, Remark 5.3 and the fact that for every (a, b) ∈ M ×M and ω ∈ �

the restrictions of the mappings ν �→ lim inf t X
a,b,ν
t,t (g)(ω), ν �→ lim supt X

a,b,ν
t,t (g)(ω) to

S
d−1 \{−ed} are continuous (the latter can be shown arguing word by word as in [20, Lemma

5.5]). Namely, by setting

�̂ :=
⋂

(a,b)∈M×M
ν∈Sd−1∩Qd×d

�a,b,ν∞ and ghom(·, a, b, ν) := g∞(·, a, b, ν),

we clearly have that P(�̂) = 1, while (5.5) together the above mentioned continuity ensures
that (3.1) holds true for every (a, b) ∈M×M, ν ∈ S

d−1 and ω ∈ �̂. Eventually, in view of
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Remark 5.3, ghom = g∞ satisfies the required invariance property and hence is deterministic
in the case that g is ergodic.

We now come to prove the second part of Theorem 3.1. Let ν ∈ S
d−1 be fixed, �ν as in

Remark 5.3 and for every (a, b) ∈ M ×M and 	 ∈ N ∪ {+∞} let g	(ω, a, b, ν) be as in
Lemma 5.2. The main part of the proof consists in showing that there exists a set �̂ν ⊂ �ν

of full probability such that

lim
	→+∞ g	(ω, a, b, ν) = g∞(ω, a, b, ν) for every ω ∈ �̂ν . (5.12)

To this end, we fix (a, b) ∈M×M and we compute g	(ω, a, b, ν) using μ	([−2k, 2k), ω),
where we use the shorthand μ	 := μ

a,b,ν
	 . First note that (5.6) implies that g	(·, a, b, ν) is

measurable with respect to the σ -algebra of {τ ν
z }z∈Rd−1 -invariant sets defined by

Fν = {F ∈ F : P((τ ν
z F)
F) = 0 ∀ z ∈ R

d−1}.
Hence, g	(ω, a, b, ν) = E[g	(·, a, b, ν)|Fν ](ω) for a.e. ω. Together with the uniform
bound (5.4) and the dominated convergence theorem for the conditional expectation this
ensures that almost surely we have

g	(ω, a, b, ν) = E[g	(·, a, b, ν)|Fν ](ω) = lim
k→+∞

E[μ	([−2k, 2k)d−1, ·)|Fν](ω)

(2k+1)(d−1)
.

(5.13)

Thanks to (2.11) this in turn implies that almost surely

lim
	→+∞ g	(ω, a, b, ν) = inf

	∈N lim
k→+∞

E[μ	([−2k, 2k)d−1, ·)|Fν](ω)

(2k+1)(d−1)
. (5.14)

We now show that also the limit in k in (5.14) is an infimum,whichwill then allow us to switch
the infima in 	 and k. To this end, we notice that for every k ∈ N the cube [−2k+1, 2k+1)d−1
can be partitioned into nd := 2d−1 integer-translated disjoint copies of [−2k, 2k)d−1, i.e.,
there exist z1, . . . , znd ∈ Z

d−1 with

[−2k+1, 2k+1)d−1=
nd⋃
n=1

(
zn+[−2k , 2k)d−1

)
,
(
zn+[−2k , 2k)d−1

)
∩
(
zm+[−2k , 2k)d−1

)
=∅ for n �=m.

Hence, using the subadditivity of the stochastic process μ	 and its {τ ν
z }z∈Rd−1 -stationarity

we can write

μ	([−2k+1, 2k+1)d−1, ω) ≤
nd∑
n=1

μ	([−2k, 2k)d−1, τ ν
znω).

Taking the conditional expectation with respect to the σ -algebraFν and using that it is linear
and order preserving, by Lemma 5.4 we find that almost surely

E[μ	([−2k+1, 2k+1)d−1, ·)|Fν](ω) ≤
nd∑
n=1

E[μ	([−2k, 2k)d−1, ·) ◦ τ ν
zn |Fν](ω)

=ndE[μ	([−2k, 2k)d−1, ·)|Fν](ω).

Dividing this estimate by (2k+2)(d−1) we see that the map k �→ E[μ	([−2k ,2k )d−1,·)|Fν ](ω)

(2k+1)(d−1) is
almost surely decreasing. Together with (5.13) this implies that almost surely

g	(ω, a, b, ν) = inf
k∈N

E[μ	([−2k, 2k)d−1, ·)|Fν](ω)

(2k+1)(d−1)
for every 	 ∈ N ∪ {+∞}. (5.15)
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Eventually, from (2.11) and (5.3) we infer that also 	 �→ μ	([−2k, 2k), ω) is almost surely
decreasing. Since the monotonicity is preserved by the conditional expectation, gather-
ing (5.14) and (5.15) we obtain that

lim
	→+∞ g	(ω, a, b, ν)= inf

k,	∈N
E[μ	([−2k , 2k)d−1, ·)|Fν ](ω)

(2k+1)(d−1)
= inf

k∈N lim
	→+∞

E[μ	([−2k , 2k)d−1, ·)|Fν ](ω)

(2k+1)(d−1)

(5.16)

almost surely. For fixed k ∈ N we have μ	([−2k, 2k)d−1, ω) = μ∞([−2k, 2k)d−1, ω) for
	 > 2k+1. Thus, for fixed k ∈ N, on the right-hand side of (5.16) we can pass to the limit
with respect to 	 inside the conditional expectation using again the corresponding dominated
convergence theorem to deduce that almost surely

lim
	→+∞ g	(ω, a, b, ν) = inf

k∈N
E[μ∞([−2k , 2k)d−1, ·)|Fν ](ω)

(2k+1)(d−1)
= g∞(ω, a, b, ν) = ghom(ω, a, b, ν),

where the second equality follows from (5.15) applied with 	 = +∞. Hence, there exists
�̂ν with full probability such that (5.12) is satisfied.

Thanks to (5.12) we are now able to conclude as follows. We fix sequences 0 < 	t ≤ t
such that 	t →+∞ as t →+∞. Then for any fixed 	 ∈ N and t large (2.11) implies that

Xa,b,ν
t,t (g)(ω) ≤ Xa,b,ν

t,	t
(g)(ω) ≤ Xa,b,ν

t,	 (g)(ω).

Passing to the limit in t →+∞, the left-hand side converges to ghom(ω, a, b, ν) for ω ∈ �ν ,
while for the right-hand side we use (5.5), so that

ghom(ω, α, b, ν) ≤ lim inf
t→+∞ Xa,b,ν

t,	t
(g)(ω) ≤ lim sup

t→+∞
Xa,b,ν
t,	t

(g)(ω) ≤ g	(ω, a, b, ν),

for every ω ∈ �ν . Thus, letting 	 → +∞ and using (5.12) we deduce that for all ω ∈ �̂ν

we have (3.2), hence Theorem 3.1 is proved. ��

5.2 Estimating the oscillation and concentration inequalities: proof of theorem 3.3

Proof of Theorem 3.3 Throughout the proof (a, b) ∈ M ×M and ν ∈ S
d−1 will be fixed,

so we write Xt,	t (g) = Xa,b,ν
t,	t

(g) to reduce notation. Moreover, for every U ⊂ R
d let the

quantity ∂oscg,U Xt,	t (g) be as in (2.6) with X = Xt,	t . Let t ≥ 	t ≥ 1 be fixed; thanks to [24,
Proposition 1.10] and Assumption 2 there exists a constant C > 0 such that for every p ≥ 1
we have the estimate

E[(Xt,	t (g)− E[Xt,	t (g)])2p] ≤ (Cp2)pE

[ ∫ +∞

0

(∫
Rd

(
∂oscg,B2(s+1)(x)Xt,	t (g)

)2
dx

)p

(s + 1)−dpπ(s) ds

]
.

(5.17)

Thus, to obtain (3.3) we fix ω ∈ � and we suitably bound the term
∫ +∞

0

(∫
Rd

(
∂oscg,B2(s+1)(x)Xt,	t (g)(ω)

)2
dx

)p

(s + 1)−dpπ(s) ds. (5.18)

We first show that in (5.18) we can reduce the domain of integration in x . In fact, for given
s > 0 suppose that x ∈ R

d is such that

B2(s+1)(x) ∩ Rν
t,	t = ∅ (5.19)
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and let g′ ∈ Ac with g′ = g(ω) on Rd \ B2(s+1)(x)×R
m × S

d−1. Then clearly Xt,	t (g
′) =

Xt,	t (g)(ω), which implies that ∂oscg,B2(s+1)(x)Xt,	t (g) = 0. Thus, since (5.19) is satisfied for

all x ∈ R
d \ Rν(s, t) with

Rν(s, t) := Rν
t+4(s+1),	t+4(s+1),

we have∫
Rd

(
∂oscg,B2(s+1)(x)Xt,	t (g)(ω)

)2
dx =

∫
Rν (s,t)

(
∂oscg,B2(s+1)(x)Xt,	t (g)(ω)

)2
dx . (5.20)

We show that there exists a dimensional constant C = Cd > 0 such that for all t ≥ 	t ≥ 1
and for all s > 0 and x ∈ Rν(s, t) we have

∂oscg,B2(s+1)(x)Xt,	t (g)(ω) ≤ C
( s + 1

t

)d−1
. (5.21)

We distinguish the following two exhaustive cases:

(a) s > 0 and x ∈ Rν(s, t) are such that Rν
t,	t
⊂ B2(s+1)(x);

(b) s > 0 and x ∈ Rν(s, t) are such that Rν
t,	t
∩ (Rd \ B2(s+1)(x)) �= ∅.

Suppose that we are in the case (a) and let g′ ∈ Ac be such that g′ = g on Rd \ B2(s+1)(x)×
R
m × S

d−1. Then, to obtain (5.21) it suffices to use (2.14), since the inclusion Rν
t,	t

⊂
B2(s+1)(x) implies that 2(s + 1) ≥ t/2, from which we readily deduce that

∂oscg,B2(s+1)(x)Xt,	t (g)(ω) ≤ 2c ≤ 4d−12c
( s + 1

t

)d−1
.

We now prove (5.21) in the case (b), where the above construction is not optimal. Instead,
we choose u ∈ BV (Rν

t,	t
;M) such that u = ua,b,ν near ∂Rν

t,	t
and

∫
Su∩Rν

t,	t

g(ω, y, u+ − u−, νu) dHd−1 ≤ td−1Xt,	t (g)(ω)+ 1. (5.22)

Then we define a new function ũ ∈ BV (Rν
t,	t
;M) by setting

ũ :=
{
u in Rν

t,	t
\ B2(s+1)(x),

ua,b,ν in Rν
t,	t
∩ B2(s+1)(x).

By construction ũ = ua,b,ν near ∂Rν
t,	t

, hence for every g′ ∈ Ac with g′ = g on R
d \

B2(s+1)(x)× R
m × S

d−1 we have

td−1Xt,	t (g
′) ≤

∫
Sũ∩Rν

t,	t

g′(y, ũ+ − ũ−, νũ) dHd−1

≤
∫
Su∩Rν

t,	t

g(ω, y, u+ − u−, νu) dHd−1 + cHd−1(Sũ ∩ B2(s+1)(x)
)
.

(5.23)

By construction, we have

Hd−1(Sũ ∩ B2(s+1)(x)
) ≤ Hd−1(H ν ∩ B2(s+1))+Hd−1(∂B2(s+1))
≤ diam(B2(s+1))d−1 +Hd−1(∂B2(s+1)) ≤ C(s + 1)d−1, (5.24)
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for some C = Cd > 0. Thus, gathering (5.22), (5.23), and (5.24), and dividing by td−1, we
obtain

Xt,	t (g
′) ≤ Xt,	t (g)(ω)+ C

( s + 1

t

)d−1

with C only depending on d . Then, (5.21) follows by passing to the supremum in g′ and
using the triangular inequality.

Using (5.21) we can estimate the right-hand side in (5.20) via
∫
Rν (s,t)

(
∂oscg,B2(s+1)(x)Xt,	t (g)(ω)

)2
dx ≤ C

( s + 1

t

)2(d−1)|Rν(s, t)|. (5.25)

Moreover, since 1 ≤ 	t ≤ t , we can bound the volume |Rν(s, t)| = (t + 4(s + 1))d−1(	t +
4(s + 1)) via

|Rν(s, t)| ≤ C(s + 1)d td−1	t ,

hence the integral in (5.25) can be further estimated via
∫
Rν (s,t)

(
∂oscg,B2(s+1)(x)Xt,	t (g)(ω)

)2
dx ≤ Ct1−d	t (s + 1)3d−2.

Eventually, combining the above inequality with (5.20) and (5.17) and integrating over s ∈
(0,+∞) and ω ∈ � we obtain

E[|Xt,	t (g)− E[Xt,	t (g)]|2p] ≤ (cd p
2)pt p(1−d)	

p
t

∫ +∞

0
(s + 1)2p(d−1)π(s) ds

with cd > 0. ��

Finally, we derive strong concentration estimates in the case of an exponentially decaying
weight π .

Proof of Corollary 3.4 We first bound the integral appearing in Theorem 3.3. Without loss
of generality we can assume that π(s) = C exp(− s

C ) with C ≥ 1. Using two changes of
variables we have

∫ +∞

0
(s + 1)2p(d−1)π(s) ds

s+1=y= C
∫ +∞

1
y2p(d−1) exp(− y

C ) exp( 1
C ) dy

y/C=x≤ C2p(d−1)+2 exp( 1
C )

∫ +∞

0
x2p(d−1) exp(−x) dx=C p

d �(2p(d−1)+1).

In what follows the constantCd may change, but will only depend on d . We use the following
elementary bound on the�-function:�(x+1) ≤ 2

( 2x
e

)x
for all x > 0.Hencewe can estimate

the last factor by

�(2p(d − 1)+ 1) ≤ 2

(
4p(d − 1)

e

)2p(d−1)
= C p

d p
2p(d−1).

Hence from Theorem 3.3 we infer that (upon increasing the dimensional constant Cd )

E

[(
1

Cd

∣∣∣Xa,b,ν
t,	t

(g)− E[Xa,b,ν
t,	t

(g)]
∣∣∣2
)p]

≤ p2pd t p(1−d)	
p
t for all p ≥ 1. (5.26)
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We also need an estimate for p ∈ [0, 1). Since the function xx is bounded uniformly away
from zero on [0, 1], we have t p(1−d)	

p
t ≤ Cd p2pd t p(1−d)	

p
t upon further increasing Cd .

Thus, applying Jensen’s inequality with p ∈ [0, 1) and using (5.26) with p = 1 leads to

E

[(
1

Cd

∣∣∣Xa,b,ν
t,	t

(g)− E[Xa,b,ν
t,	t

(g)]
∣∣∣2
)p]

≤E
[

1

Cd

∣∣∣Xa,b,ν
t,	t

(g)− E[Xa,b,ν
t,	t

(g)]
∣∣∣2
]p

≤t p(1−d)	
p
t ≤ Cd p

2pd t p(1−d)	
p
t .

Therefore we conclude that

E

[(
1

Cd

∣∣∣Xa,b,ν
t,	t

(g)− E[Xa,b,ν
t,	t

(g)]
∣∣∣2
)p]

≤ Cd p
2pd t p(1−d)	

p
t ∀ p ≥ 0.

For n ∈ N we set pn = n
2d . Then the above estimate implies

E

[(
1

Cd

∣∣∣Xa,b,ν
t,	t

(g)− E[Xa,b,ν
t,	t

(g)]
∣∣∣
1
d
)n
]
≤Cd

( n

2d

)n
tn

(1−d)
2d 	

n
2d
t ≤Cd n!

(
3

2d

)n (
t1−d	t

) n
2d ∀ n ∈ N,

where we used the estimate nn ≤ 3nn! (valid for all n ∈ N). For n ∈ N we can absorb the
factor Cd in the left-hand side. Dividing by n!(t1−d	t ) n

2d , summing the resulting estimate
over n ∈ N and exchanging summation and expectation we deduce that

E

⎡
⎢⎣exp

⎛
⎜⎝ 1

Cd

∣∣∣∣∣
Xa,b,ν
t,	t

(g)− E[Xa,b,ν
t,	t

(g)]√
t1−d	t

∣∣∣∣∣
1
d

⎞
⎟⎠
⎤
⎥⎦ ≤∑

n≥0

(
3

2d

)n

= 1

1− ( 3
2d

) ≤ 4.

(5.27)

This proves the first estimate in Theorem 3.4. To prove the second one we observe that (3.2)
together with (2.13) and the dominated convergence theorem implies that E[Xa,b,ν

t,	t
(g)] →

ghom(a, b, ν). Thus, for any η > 0 we have

P

(
|Xa,b,ν

t,	t
(g)− ghom(a, b, ν)| > η

)
≤ P

(
|Xa,b,ν

t,	t
(g)− E[Xa,b,ν

t,	t
(g)]| > η/2

)
,

(5.28)

for t sufficiently large. Moreover, applying Markov’s inequality and using (5.27) we infer

P

(
|Xa,b,ν

t,	t
(g)− E[Xa,b,ν

t,	t
(g)]| > η/2

)

= P

(
exp

(
1

Cd

∣∣∣∣
Xa,b,ν
t,	t

(g)− E[Xa,b,ν
t,	t

(g)]√
t1−d	t

∣∣∣∣
1
d
)

> exp

(
1

Cd

(
η

2
√
t1−d	t

) 1
d
))

≤ 4 exp

(
− 1

Cd

(
η

2
√
t1−d	t

) 1
d )

.

(5.29)

Hence, gathering (5.28)–(5.29), taking the logarithm, and passing to the limsup in t wededuce
that

lim sup
t→+∞

(
(t1−d	t )

1
2d log

(
P

(
|Xa,b,ν

t,	t
(g)− ghom(a, b, ν)| > η

)))

≤ lim sup
t→+∞

(t1−d	t )
1
2d log(4)− 1

Cd

(η

2

) 1
d

.
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Note that t1−d	t ≤ t2−d ≤ 1 for t ≥ 	t ≥ 1. If along the particular sequence t1−d	t → 0,
then we conclude by the above estimate. If the limsup is realized by a sequence such that
t1−d	t ≥ c > 0, then the estimate in Corollary 3.4 is trivial since Xa,b,ν

t,	t
(g) converges in

probability to ghom(a, b, ν), so that the logarithmic term is negative for t large enough. ��

5.3 Almost plane-like formulas forZd-stationary integrands

In this subsection we show how to extend Theorem 3.1 to models withZd -stationarity assum-
ing quantitative concentration inequalities in form of a multi-scale functional inequality.

Proof of Proposition 4.1 Fix ν ∈ S
d−1, (a, b) ∈ M ×M and consider sequences tk, t ′n →

+∞ and 	k, 	
′
n → +∞ such that 0 < 	k ≤ tk and 0 < 	′n ≤ t ′n . For n ∈ N choose

K0 = K0(n) ≥ n ∈ N such that for all k ≥ K0 we have 	k ≥ 	′n + 2
√
d and tk ≥ t ′n + 2

√
d.

Consider the collection of integer vertices

In,k = {z ∈ Z
d−1 : Qn,z := t ′nz + (− t ′n

2 ,
t ′n
2 )d−1 ⊂ (− tk−2

√
d

2 ,
tk−2

√
d

2 )d−1}.
Note that with the orthogonal matrix Oν introduced in (2.2), for every z ∈ In,k it holds that

Oν(Qn,z × {0}) = t ′nOν(z, 0)+ t ′n(Qν ∩ H ν) ⊂ (tk − 2
√
d)(Qν ∩ H ν). (5.30)

Moreover, for t ′n ≥ 1 we also infer that
⋃
z∈I

Oν(Qn,z × {0}) ⊃ (tk − 4
√
dt ′n)(Qν ∩ H ν). (5.31)

For each z ∈ In,k we decompose the vector t ′nOν(z, 0) ∈ H ν into its integer part and a
remainder writing

t ′nOν(z, 0) = zn(z)− yn(z), (5.32)

with zn(z) ∈ Z
d , yn(z) ∈ R

d and |yn(z)| ≤
√
d. Then, combining (5.30) and (5.32) we

obtain that

Oν(Qn,z × {0})+ yn(z) = zn(z)+ t ′n(Qν ∩ H ν). (5.33)

Since |yn(z)| ≤
√
d , it follows from (5.30) that Oν(Qn,z × {0}) + yn(z) ⊂ tk Qν for all

z ∈ In,k . In particular, since 	k ≥ 	′n + 2
√
d we conclude that

An,ν(z) := Oν

(
Qn,z ×

(
− 	′n

2 ,
	′n
2

))
+ yn(z) ⊂⊂ Rν

tk ,	k . (5.34)

Moreover, (5.33) implies that An,ν(z) = zn(z) + Rν
t ′n ,	′n

is an integer translate of Rν
t ′n ,	′n

, so
that by stationarity of g the random variables Yn,z defined by setting

Yn,z(ω) := inf
{
Eg(ω)(u, An,ν(z)) : u ∈ A (ua,b,ν

yn(z)
, An,ν(z))

}

have the same distribution as (t ′n)d−1X
a,b,ν
t ′n ,	′n

(g) for all z ∈ In,k (and aremeasurable). Note that
the boundary value has changed since in general yn(z) /∈ H ν . Let us number these random
variables by numbering the finitely many elements in In,k , i.e., we write In,k = {z1, . . . , zr }
with r = r(n, k). Since the cubes Qn,z are pairwise disjoint, it follows that

r ≤
(
tk
t ′n

)d−1
. (5.35)
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For i = 1, . . . , r let uin be a candidate for the optimization problem defining Yn,zi (ω). We
now define v ∈ BV (Rν

tk ,	k
;M) by setting

v(x) :=
{
uin(x) if x ∈ An,ν(zi ) \⋃i−1

j=1 An,ν(z j ) for some i = 1, . . . , r ,

ua,b,ν(x) otherwise.

Thanks to (5.34) the function v is admissible for theminimum problem defining Xa,b,ν
tk ,	k

(g). In
order to estimate its energy, we split the jumpset into three different parts: the portion inside
a set An,ν(zi ), on the boundary of some An,ν(zi ), and in the complement of

⋃r
i=1 An,ν(zi ).

From the definition of v we infer that

Eg(ω)(v, Rν
tk ,	k ) ≤

r∑
i=1

Eg(ω)(uin, An,ν (z
i ))

+ c
r∑

i=1
Hd−1(∂An,ν (z

i ) ∩ Sv)+ cHd−1
((

Rν
tk ,	k \

r⋃
i=1

An,ν (zi )
)
∩ H ν

)
.

(5.36)

We argue that the terms in the second line are asymptotically negligible. We start with the
last term, which can be estimated using a purely geometrical argument. Note that when

x ∈
(
Rν
tk ,	k

\⋃r
i=1 An,ν(zi )

)
∩ H ν , then there are two exhaustive cases:

i) x ∈ tk(Q
ν ∩ H ν) \

r⋃
i=1

Oν(Qn,zi × {0}),

i i) x ∈ Oν(Qn,zi × {0}) \ An,ν(zi ) for some i .

In the first case we can use (5.31) and deduce that

Hd−1
(
tk(Q

ν ∩ H ν) \
r⋃

i=1
Oν(Qn,zi × {0})

)
≤ td−1k − (tk − 4

√
dt ′n)d−1 ≤ Ctd−2k t ′n .

(5.37)

In the second case, note that there exists a point y on the segment [0, yn(zi )] such that
x + y ∈ ∂An,ν(zi ) = zn(zi ) + ∂Rν

t ′n ,	′n
. In view of (5.32) we have zn(zi ) − yn(zi ) ∈ H ν .

Since also x ∈ H ν , we infer that

|〈x + y − zn(z
i ), ν〉| = |〈y − zn(z

i ), ν〉| = |〈y − yn(z
i ), ν〉| ≤ |〈yn(zi ), ν〉| ≤

√
d.

Thus, for t ′n large enough the condition x + y − zn(zi ) ∈ ∂Rν
t ′n ,	′n

implies that there exists
j ∈ {1, . . . , d − 1} such that

|〈x + y − zn(z
i ), Oνe j 〉| = t ′n

2
.

Since |y| ≤ |yn(zi )| ≤
√
d this give

t ′n
2
− 2
√
d ≤ |〈x − zn(z

i ), Oνe j 〉| ≤ t ′n
2
+ 2
√
d.

In particular,

Hd−1(Oν(Qn,zi × {0}) \ An,ν(zi )) ≤ C(t ′n)d−2.
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Taking into account the bound (5.35), we conclude that

r∑
i=1

Hd−1(Oν(Qn,zi × {0}) \ An,ν(zi )) ≤ C
td−1k

t ′n
. (5.38)

Gathering (5.37) and (5.38) we finally obtain

Hd−1
((

Rν
tk ,	k \

r⋃
i=1

An,ν(zi )
)
∩ H ν

)
≤ C

(
td−2k t ′n +

td−1k

t ′n

)
. (5.39)

Next we treat the term Hd−1(∂An,ν(zi ) ∩ Sv). Consider x ∈ ∂An,ν(zi ) ∩ Sv such that it is
in the relative interior of ∂An,ν(zi ) (the measure of the remaining part is negligible). Then
without loss generality we can assume that

v+(x) = u+i (x) = ua,b,ν
yn(zi )

(x) = b,

v−(x) = ua,b,ν
yn(z j )

(x) = a for some j �= i or v−(x) = ua,b,ν(x) = a.

This implies that

〈x − yn(z
i ), ν〉 > 0,

〈x − yn(z
j ), ν〉 ≤ 0 or 〈x, ν〉 ≤ 0.

If 〈x, ν〉 ≤ 0, we have 0 < 〈x−yn(zi ), ν〉 ≤ 〈−yn(zi ), ν〉 ≤
√
d. If instead 〈x−yn(z j ), ν〉 ≤

0, we deduce that

0 < 〈x − yn(z
i ), ν〉 = 〈x − yn(z

j ), ν〉 + 〈yn(z j )− yn(z
i ), ν〉 ≤ 〈yn(z j )− yn(z

i ), ν〉 ≤ 2
√
d.

Since zn(zi )− yn(zi ) ∈ H ν , the above estimates yield as well

0 < 〈x − zn(z
i ), ν〉 ≤ 2

√
d.

If instead v+(x) = a and v−(x) = b, we deduce by the same argument that −2√d ≤
〈x − zn(zi ), ν〉 ≤ 0. Thus we obtain for 	′n large enough that

Hd−1(∂An,ν(z
i ) ∩ Sv) ≤Hd−1(∂An,ν(z

i ) ∩ {x : |〈x − zn(z
i ), ν〉| ≤ 2

√
d})

=Hd−1(∂Rν
t ′n ,	′n ∩ {y : |〈y, ν〉| ≤ 2

√
d}) ≤ C(t ′n)d−2,

where we used a change of variables taking into account that ∂An,ν(zi )− zn(zi ) = ∂Rν
t ′n ,	′n

.
Summing over all i = 1, . . . , r we deduce from (5.35) that

r∑
i=1

Hd−1(∂An,ν(z
i ) ∩ Sv) ≤ C

td−1k

t ′n
. (5.40)

Inserting (5.39) and (5.40) in (5.36) we infer that

Eg(ω)(v, Rν
tk ,	k ) ≤

r∑
i=1

Eg(ω)(uin, An,ν(z
i ))+ C

(
td−2k t ′n +

td−1k

t ′n

)
.

123



Fluctuation estimates for the multi-cell... Page 27 of 30 84

Note that thanks to (5.34), v is admissible for theminimization problemdefining Xa,b,ν
tk ,	k

. Thus,

since uin(ω) was arbitrary by minimization and using that Yn,zi have the same distribution as

(t ′n)d−1X
a,b,ν
t ′n ,	′n

(g), we can take the expectation of the above estimate to deduce that

E[Xa,b,ν
tk ,	k

(g)] ≤ 1

td−1k

E[Eg(·)(v, Rν
tk ,	k )] ≤ r

(
t ′n
tk

)d−1

︸ ︷︷ ︸
≤1

E[Xa,b,ν
t ′n ,	′n

(g)] + C

td−1k

(
td−2k t ′n +

td−1k

t ′n

)

≤E[Xa,b,ν
t ′n ,	′n

(g)] + C

(
t ′n
tk
+ 1

t ′n

)
.

Now letting first k →+∞ and then n →+∞ we obtain

lim sup
k→+∞

E[Xa,b,ν
tk ,	k

(g)] ≤ lim inf
n→+∞ E[Xa,b,ν

t ′n ,	′n
(g)].

Since the sequences t ′n, 	′n and tk, 	k were arbitrary, the limit of the expectations exists. By
setting 	k = tk , we deduce the claim from Theorem 3.1 and the dominated convergence
theorem. ��
Nowwecan prove the almost sure convergence of the process Xa,b,ν

t,	t
(g) towards ghom(a, b, ν)

under the Assumption 2 when the weight π has higher integrability.

Proof of Corollary 4.3 Let us fix ν ∈ S
d−1, (a, b) ∈ M ×M, and let 	̄n → +∞ be an

arbitrary diverging sequence. We first show that almost surely we have

lim
n→+∞

(
Xa,b,ν
n,	̄n

(g)(ω)− E[Xa,b,ν
n,	̄n

(g)]
)
= 0. (5.41)

To this end, let r > 2(d − 1) be as in the assumptions and let p := r
2(d−1) > 1, so that

2p(d−1) = r . Moreover, let α > 0 be sufficiently small such that p α ∈ (0, p (d−1)−1) �=
∅; upon decreasing 	̄n and taking its lower integer part it is not restrictive to assume that
	̄n ≤ nα and 	̄n ∈ N for every n ∈ N, so that

(	nn
1−d)p ≤ n p α−p (d−1). (5.42)

The choice of α ensures that p α − p (d − 1) < −1. Hence, for every δ > 0 an application
of Chebyshev’s inequality together with Theorem 3.3 and (5.42) gives

∑
n∈N

P

(
|Xa,b,ν

n,	̄n
(g)(ω)− E[Xa,b,ν

n,	̄n
(g)]| ≥ δ

)
≤
∑
n∈N

1

δ2p
E
[∣∣Xa,b,ν

n,	̄n
(g)− E[Xa,b,ν

n,	̄n
(g)]∣∣2p]

≤C(δ, p)
∑
n∈N

n p α−p (d−1)
∫ +∞

0
(s + 1)rπ(s) ds < +∞.

Thus, the sequence Xa,b,ν
n,	̄n

(g)(ω) − E[Xa,b,ν
n,	̄n

(g)] converges completely and hence almost

surely to 0, i.e., (5.41) follows. As a consequence, using Proposition 4.1 and Remark 3.2 (i)
we find a set �′ ⊂ � of full probability such that

lim
n→+∞ Xa,b,ν

n,	̄n
(g)(ω) = lim

n→+∞ Xa,b,ν
n,n (g)(ω) = ghom(a, b, ν) for every ω ∈ �′. (5.43)

Note that for any n ∈ N and any 	 ∈ [	̄n, n] the monotonicity property (2.11) implies that

Xa,b,ν
n,n (g)(ω) ≤ Xa,b,ν

n,	 (g)(ω) ≤ Xa,b,ν
n,	̄n

(g)(ω) for every ω ∈ �.
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In particular, in view of (5.43), for any δ > 0 and any ω ∈ �′ there exists n0 = n0(ω, δ) ∈ N

such that

|Xa,b,ν
n,	 (g)(ω)− ghom(a, b, ν)| < δ for all n ≥ n0 and all 	 ∈ [	̄n, n].

From this we immediately deduce that

lim
tn→+∞
tn∈N

Xa,b,ν
tn ,	n

(g)(ω) = ghom(a, b, ν) for every ω ∈ �′, (5.44)

provided tn ≥ 	n ≥ 	̄n for every n ∈ N.
The case of arbitrary sequences tn →+∞, 	n →+∞with tn ≥ 	n ≥ 	̄n for every n ∈ N

can be treated by combining (2.11) and (2.12). Namely, we consider the auxiliary sequences
t−n := "tn#, t+n := �tn�. Then (2.12) yields

Xa,b,ν
t+n ,	n

(g)(ω) ≤ Xa,b,ν
tn ,	n

(g)(ω)+ c(t+n − tn)

t+n
.

Since 	n ≤ t+n , we deduce from (5.44) that

lim inf
n→+∞ Xa,b,ν

tn ,	n
(g)(ω) ≥ lim inf

n→+∞ Xa,b,ν
t+n ,	n

(g)(ω) ≥ ghom(a, b, ν).

To prove the reverse inequality for the limit superior, we combine (2.12) with (2.11) to deduce
that

Xa,b,ν
tn ,	n

(g)(ω) ≤ Xa,b,ν
tn ,	̄n

(g)(ω) ≤ Xa,b,ν
t−n ,	̄n

(g)(ω)+ c(tn − t−n )

tn
.

By assumption 	̄n ∈ N, so that 	̄n ≤ t−n . Thus, applying (5.44) yields

lim sup
n→+∞

Xa,b,ν
tn ,	n

(g)(ω) ≤ lim sup
n→+∞

Xa,b,ν
t−n ,	̄n

(g)(ω) ≤ ghom(a, b, ν),

which concludes the proof. ��
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