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Abstract

We investigate the relationship between the N -clock model (also known as pla-
nar Potts model or ZN -model) and the XY model (at zero temperature) through
a � -convergence analysis of a suitable rescaling of the energy as both the num-
ber of particles and N diverge. We prove the existence of rates of divergence
of N for which the continuum limits of the two models differ. With the aid of
Cartesian currents we show that the asymptotics of the N -clock model in this
regime features an energy that may concentrate on geometric objects of various
dimensions. This energy prevails over the usual vortex-vortex interaction en-
ergy. © 2022 The Authors. Communications on Pure and Applied Mathematics
published by Wiley Periodicals LLC.

1 Introduction
Classical ferromagnetic spin systems on lattices represent fundamental models

to understand phase transition phenomena. On the one hand, the study of their
properties has motivated the introduction of new mathematical tools which have
provided useful insights for a number of problems arising in different fields. On
the other hand, many techniques borrowed from probability theory, mathematical
analysis, topology, and geometry have contributed to a better understanding of the
properties of these systems.

In this paper we make use of fine concepts in geometric measure theory and in
the theory of Cartesian currents to understand the relationship between the XY
model and the N -clock model (also known as the planar Potts model or ZN -
model) within a variational framework. The N -clock model is a two-dimensional
nearest-neighbors ferromagnetic spin model on the square lattice in which the spin
field is constrained to take values in a set of N equispaced points of S1 . For N
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large enough, it is usually considered as an approximation of the XY (planar rota-
tor) model, for which the spin field can attain all the values of S1 . The asymptotic
behavior of the N -clock model for large N has been considered by Fröhlich and
Spencer in the seminal paper [34]. There the authors have proved that both the
N -clock model (for N large enough) and the XY model present Berezinskii-
Kosterlitz-Thouless transitions, i.e., phase transitions mediated by the formation
and interaction of topological singularities. The microscopic picture leading to the
emergence of such topological phase transitions (first introduced in [16, 45, 46]) is
a result of a nontrivial interplay between entropic and energetic effects that takes
place at different length scales.

This paper contributes to precisely relating the N -clock model and the XY
model at zero temperature. Specifically, we show that the enhancement of symme-
try, from the discrete one of the N -clock model to the continuous one of the XY
model, comes along with concentration of energy on geometric objects of various
dimension. This is achieved by studying a suitably rescaled version of the energy
of the N -clock model as N diverges, through a coarse graining procedure that is
made rigorous by � -convergence; see [20, 32]. A crucial step of this analysis is
the choice of the topologies that best identify the relevant variables of the coarse-
grained model and lead to the effective description of the microscopic/mesoscopic
geometry of the spin field. In contrast to the XY model, the sole study of the dis-
tributional Jacobian of the spin field turns out to provide not enough information
on the concentration effects of the energy; we shall see how these effects can be
detected by Cartesian currents, for the first time introduced in the context of lattice
spin models.

In what follows we present the model and our main result. We consider a
bounded, open set with Lipschitz boundary � � R

2 . Given a small parameter
" > 0 , we consider �" WD � \ "Z2 . The classical XY model is defined on spin
fields uW�" ! S

1 by

(1.1) �
X
hi;j i

"2u."i/ � u."j / ;

where the sum is taken over ordered pairs of nearest neighbors hi; j i , i.e., .i; j / 2
Z
2�Z2 such that ji � j j D 1 and "i; "j 2 �" . The variational analysis of the

XY model is part of a larger program devoted to the study of systems of spins with
continuous symmetry [4, 5, 8, 13–15, 25, 27, 30, 31, 50].

Here we consider an additional parameter N" 2 N or, equivalently, �" WD 2�
N"

.
The admissible spin fields we consider here are only those taking values in the
discrete set S" WD fexp.�k�"/W k D 0; : : : ; N" � 1g � S

1 ; i.e., we consider the
energy

F".u/ WD �
X
hi;j i

"2u."i/ � u."j / if uW�" ! S";

extended to C1 otherwise. For N" D N 2 N , with N independent of " , the
spin system described by the energy F" is usually referred to as N -clock model;
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2281

cf. [34]. The particular case where N D 2 is the so-called Ising system, recently
analyzed in [3, 19, 23, 26, 42]. See also [2, 6, 9, 21] for the long-range case.

As (1.1) is minimized on constant spin fields, one refers the energy to its mini-
mum

XY".u/ D �
X
hi;j i

"2
�
u."i/ � u."j / � 1� D 1

2

X
hi;j i

"2ju."i/ � u."j /j2:

Analogously, we set

(1.2) E".u/ WD F".u/ �minF" D XY".u/ if uW�" ! S" ;
extended to C1 otherwise, and we find the scalings �" ! 0 for which 1

�"
E" has

a nontrivial variational limit. These are affected by N" , as it emerges in the two
limiting scenarios N" D 2 and S" D S

1 (formally corresponding to N" D C1).
If N" D 2 , 1

"
E".u"/ approximates an anisotropic interfacial energy between the

phases .1; 0/ and .�1; 0/ ; see [3]. In contrast, for the XY system (i.e., S" D S
1 ),

it has been shown in [4, example 1] that no interfacial-type energy emerges at any
scaling �" � "2 . Indeed, if u" interpolates (linearly in the angle) from u� D
exp.�'�/ to uC D exp.�'C/ on a length-scale of size �" , the energy amounts to

(1.3)
1

�"
XY".u"/ �

�
1 � cos

�
"

�"
.'C � '�/

��
�"

�"
� "2

�"�"
;

which goes to 0 if �" � "2

�"
. This construction may not be feasible when S" ¤ S

1

if the minimal angle �" satisfies �" & �"
"

. In the constrained case, choosing the
largest possible length-scale �" D j'C � '�j "

�"
, one gets (denoting by dS1 the

geodesic distance on S1 )

(1.4)

1

�"
E".u"/ �

�
1 � cos.�"/

� "

�"�"
j'C � '�j � "�"

�"
j'C � '�j

� "�"

�"
dS1.u

C; u�/;

which suggests that �" D "�" leads to an energy proportional to a BV total vari-
ation (in the sense of [11, formula (2.11)]). In fact, in Proposition 4.1, we prove
that sublevel sets of 1

"�"
E" are precompact in BV .�IS1/ equipped with the L1

topology.
Given u"W�" ! S" with 1

"�"
E".u"/ � C we have

(1.5)
1

"2jlog "jXY".u"/ D
"�"

"2jlog "j
1

"�"
E".u"/ � �"

"jlog "j :
As is known from the theory of the XY model [4, 5] (see also [1, 10, 18, 43, 44,
47–49] for the Ginzburg-Landau theory), boundedness of 1

"2jlog "jXY".u"/ implies
flat compactness(i.e., with respect to the norm induced by duality with compactly
supported Lipschitz functions) of the discrete vorticity measure �u" , which counts
the winding number of u" at each point of "Z2 , cf. (2.4). If "jlog "j � �" , (1.5)
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2282 M. CICALESE, G. ORLANDO, AND M. RUF

gives no bound on 1
"2jlog "jXY".u"/ and suggests that �u" does not play a role in

the asymptotics of 1
"�"
E" . In fact, in [28] we prove that 1

"�"
E" � -converges to

an anisotropic total variation in BV .�IS1/ , while in [29] we identify the � -limit
for N fixed and the asymptotic behavior of the limit functionals when N ! C1
in any dimension. Here we are interested in regimes for which the limit cannot be
exhaustively described in BV .

We start by assuming �" � "jlog "j , which by (1.5) implies �u"
f! 0 . This

constraint will induce a � -limit (possibly strictly) larger than the anisotropic total
variation in BV .�IS1/ . To prove this fact, our idea is to associate to u" with
1
"�"
E".u"/ � C the current Gu" given by the extended graph in ��S1 of its

piecewise constant interpolation; see Section 3.5. Since @Gu" D ��u"�JS1K1 and
�u"

f!0 , the limit T of the currents Gu" satisfies @T D 0 and, more precisely,
is a Cartesian current in cart.��S1/ . For this reason, the limit of 1

"�"
E" in this

regime shares strong similarities with the L1 -relaxation of the W 1;1 -norm of maps
in C 1.�IS1/ ; cf. [35, 38]. The � -limit, cf. Propositions 4.8 and 4.16, features a
term reminiscent of the BV -type concentration of jDu"j possibly induced by the
topological constraint �u"

f!0 . This term is, in general, not expressible as an
integral functional on the limit of u" .

Our main theorem concerns the regime in which u" displays simultaneously
vortex-type and BV -type concentration effects. The discretization (in the domain
and the codomain) v"W�" ! S" of a vortex x�x0

jx�x0j satisfies

1

"�"
E".v"/ � 2�jlog "j "

�"
!C1 if �" � "jlog "j I

cf. (4.73).
To obtain a finer description of the limit, we renormalize E" by removing the

diverging energy of M vortices and by studying the excess energy 1
"�"
E".u"/ �

2�M jlog "j "
�"

. A bound on the latter energy yields (cf. Proposition 4.10)

�u"
f!� D

NX
hD1

dh�xh ; dh 2 Z;

and j�j.�/ � M . If j�j.�/ D M , the diverging energy 2�M jlog "j "
�"

has been
saturated by � and a finite energy 1

"�"
E" is still accessible to the system. This

might lead to BV -type concentration effects, detected by the current T , the limit
of the extended graphs Gu" . Since @Gu" D ��u"�JS1K and �u"

f!� , T satisfies
the nontrivial constraint @T D ���JS1K . This condition couples the vortex-type

1 By JS1K we mean the current given by the integration over S1 oriented counterclockwise.
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2283

and BV -type concentration effects displayed by the spin field, resulting in a term
J .�; uI�/ in the � -limit.2 This leads to our main result.3

THEOREM 1.1. Assume that " � �" � "jlog "j . Then the following results hold
true:

(i) Compactness. Let M 2 N and let u"W�" ! S" be such that

1

"�"
E".u"/ � 2�M jlog "j "

�"
� C:

Then there exists a measure � D PN
hD1 dh�xh , xh 2 � , dh 2 Z such

that (up to a subsequence) �u"
f!� and j�j.�/ � M . If, in addition,

j�j.�/ D M , then there exists a function u 2 BV .�IS1/ such that (up
to a subsequence) u" ! u in L1.�IR2/ .

(ii) � -liminf inequality. Let u"W�" ! S" and let

� D
NX
hD1

dh�xh ; xh 2 �; dh 2 Z with j�j.�/ DM .

Assume that �u"
f! � . Let u 2 BV .�IS1/ be such that u" ! u in

L1.�IR2/ . ThenZ
�

jruj2;1 dx C jD.c/uj2;1.�/C J .�; uI�/ � lim inf
"!0

�
E".u"/

"�"
� 2�M jlog "j "

�"

�
:

(iii) � -limsup inequality. Let � D PN
hD1 dh�xh ; xh 2 �; dh 2 Z with

j�j.�/ D M , and let u 2 BV .�IS1/ . Then there exists a sequence

u"W�" ! S" such that �u"
f! � , u" ! u in L1.�IR2/ , and

lim sup
"!0

�
E".u"/

"�"
� 2�M jlog "j "

�"

�
�
Z
�

jruj2;1 dx C jD.c/uj2;1.�/C J .�; uI�/:

The case �" � "jlog "j is studied in [28]. If �" � " , in [28] we prove that
1
"2
E".u"/�2�M jlog "j approximates the renormalized and core energies obtained

in the first-order analysis of the XY model carried out in [8]. Instead, Theorem 1.1
points out that the N -clock and XY models exhibit different asymptotic behaviors
if "� �" � "jlog "j . This is due to the arising of a surprising interaction between

2 It is given by J .�; uI�/ WD inff
R
JT

`T .x/j�T .x/j1 dH1.x/WT 2 Adm.�; uI�/g , where
Adm.�; uI�/ , defined in (4.18), is a suitable class of currents T satisfying, in particular, the con-
straint @T D ���JS1K . Here JT is the 1 -codimensional jump-concentration set of T oriented by
the normal �T . At each point x 2 JT , the current T has a vertical part, given by a (not necessarily
geodesic) arc in S1 of length `T .x/ which connects the traces of u on the two sides of JT . The
set-function J .�; uI � / is not subadditive.

3 In Theorem 1.1 the matrix norm j � j2;1 reflects the anisotropy of the lattice, see Section 2.
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2284 M. CICALESE, G. ORLANDO, AND M. RUF

vortex-type and BV -type concentration effects. Coexistence of singularities of
two different dimensions has been already observed in other models, e.g. [15, 39].
The difference is that here they naturally appear as a result of both the dependence
on " of the codomain and of topological obstructions.

We highlight here some of the main technical difficulties in the very delicate
construction of the recovery sequence in the proof of Theorem 1.1. Given u 2
BV .�IS1/ , we define its recovery sequence following a gradual approximation
procedure, which involves a series of steps of increasing complexity. At each of
these steps, the map u is modified without essentially changing the energy.

The first main issue is to regularize the map u . Maps in BV .�IS1/ cannot
always be approximated in energy by S1 -valued smooth functions (in general they
cannot be lifted without increasing the BV -norm [24,41]). Nonetheless, the result
in [17] (see also [7]) guarantees the density of S1 -valued maps that are smooth out-
side finitely many point-singularities. These are related to the vorticity measure �
using the approximation theorem for Cartesian currents; cf. Lemma 4.17. The next
main issue is to construct a recovery sequence u" for such a regularization of u .
Close to each singularity, u" is defined by discretizing (in domain and codomain)
a proper translation of x

jxj . The energy carried by this discrete spin field close to a
singularity diverges as 2�jlog "j "

�"
. Far from the singularities, the problem reduces

to the construction of a recovery sequence for a smooth S1 -valued map. This can
be further simplified to the case of a piecewise constant S1 -valued map by intro-
ducing a mesoscopic scale into the problem; see Lemma 4.13. For such maps, the
construction is a refinement of the one described above to obtain (1.4).

The most delicate step is to merge the different parts of the recovery sequence
close to and far from the singularities. This is achieved in the proof of Proposi-
tion 4.22 (step 2) by a careful interpolation on dyadic layers of mesoscopic squares,
whose size is chosen to be smaller for layers closer to the singularity. At each layer
generation, x

jxj is sampled at a different mesoscopic length-scale. The latter is op-
timized in order to provide the correct control on the energy in progressing from
each layer to the next one.

2 Notation and Preliminaries
We denote the imaginary unit by � . We shall identify R2 with C . Given a D

.a1; a2/ 2 R2 , its 1-norm is jaj1 D ja1j C ja2j . We define the j � j2;1 -norm of a
matrix A D .aij / 2 R2�2 by jAj2;1 WD .a211 C a221/

1=2 C .a212 C a222/
1=2 .

If u; v 2 S1 , their geodesic distance on S1 is denoted by dS1.u; v/ . It is given
by the angle in �0; �� between the vectors u and v , i.e., dS1.u; v/ D arccos.u �v/ .
Observe that

(2.1) 1
2
ju � vj D sin

�
1
2

dS1.u; v/
�

and ju � vj � dS1.u; v/ �
�

2
ju � vj:

Given two sequences �" and �" , we write �" � �" if lim"!0
�"
�"
D 0 . We will

use the notation deg.u/.x0/ to denote the topological degree of a continuous map
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2285

u 2 C.B�.x0/ n fx0gIS1/ , i.e., the topological degree of its restriction uj@Br .x0/ ,
independent of r < � . We let I�.x/ be the half-open square given by I�.x/ D
x C �0; �/2 .

By BV .�IS1/ we denote the space of S1 -valued BV -functions. We refer the
reader to [12] for a detailed introduction to the theory of BV -functions.

2.1 Results for the classical XY model
We recall here some results when the spin field u"W�" ! S

1 is not constrained
to take values in a discrete set. Following [5], in order to define the discrete vortic-
ity of u" , we introduce the projection QWR! 2�Z defined by

(2.2) Q.t/ WD argminfjt � sj W s 2 2�Zg;
with the convention that, if the argmin is not unique, then we choose the one with
minimal modulus. Then for every t 2 R we define �.t/ WD t �Q.t/ 2 ���; �� .

Let uW "Z2 ! S
1 , and let 'W "Z2 ! �0; 2�/ be the phase of u defined by the

relation u D exp.�'/ . The discrete vorticity of u is defined for every "i 2 "Z2
by

(2.3)
du."i/ WD 1

2�

h
�
�
'."i C "e1/ � '."i/

�C�
�
'."i C "e1 C "e2/ � '."i C "e1/

�
C�

�
'."i C "e2/ � '."i C "e1 C "e2/

�C�
�
'."i/ � '."i C "e2/

�i
:

As already noted in [5], it holds that du 2 f�1; 0; 1g ; i.e., only singular vortices
can be present in the discrete setting. The discrete vorticity measure associated
to u is given by

(2.4) �u WD
X

"i2"Z2
du."i/�"iC.";"/:

We recall the following compactness and lower bound for the XY model.

PROPOSITION 2.1. Let u"W�" ! S
1 and assume that 1

"2jlog "jXY".u"/ � C

for some C > 0 . Then there exists a measure � 2 Mb.�/ of the form � DPN
hD1 dh�xh with dh 2 Z and xh 2 � , and a subsequence (not relabeled) such

that �u" �
f! � . Moreover,

2�j�j.�/ � lim inf
"!0

1

"2jlog "jXY".u"/:

Remark 2.2. Observe that in the regime �" � "jlog "j the bound 1
"�"
E".u"/ � C

and Proposition 2.1 imply that �u" �
f! 0 .

3 Currents
For the theory of currents we refer to [33, 36, 37]. We recall here some basic

facts.
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2286 M. CICALESE, G. ORLANDO, AND M. RUF

3.1 Definitions and basic facts
Given an open set O � R

d , we denote by Dk.O/ the space of k -forms
!WO 7! �k

R
d with C1

c .O/-coefficients. A k -current T 2 Dk.O/ is an el-
ement of the dual of Dk.O/ and we write T .w/ for the duality. The boundary of
a k -current T is the .k�1/-current @T 2 Dk�1.O/ defined by @T .!/ WD T .d!/
for every ! 2 Dk�1.O/ (or @T WD 0 if k D 0). The support of a current T is
the smallest relatively closed set K in O such that T .!/ D 0 if ! is supported
outside K . Given a smooth map f WO ! O 0 � R

N 0 such that f is proper,4

f #! 2 Dk.O/ denotes the pull-back of a k -form ! 2 Dk.O 0/ through f . The
push-forward of a k -current T 2 Dk.O/ is the k -current f#T 2 Dk.O

0/ de-
fined by f#T .!/ WD T .f #!/ . Given a k -form ! 2 Dk.O/ , we can write it via
its components ! D P

j�jDk !� dx� with !� 2 C1
c .O/ , where the expression

j�j D k denotes all multi-indices � D .�1; : : : ; �k/ with 1 � �i � d , and
dx� D dx�1^� � �^dx�k . The norm of !.x/ is denoted by j!.x/j , and it is the
Euclidean norm of the vector with components .!�.x//j�jDk . The total variation
of T 2 Dk.O/ is defined by

jT j.O/ WD supfT .!/ W ! 2 Dk.O/; j!.x/j � 1g:
If T 2 Dk.O/ with jT j.O/ <1 , then we can define the measure jT j 2Mb.O/

by

jT j. / WD supfT .!/ W ! 2 Dk.O/; j!.x/j �  .x/g;  2 C0.O/;  � 0:
Due to Riesz’s representation theorem (see [36, 2.2.3, theorem 1]) there exists a
jT j-measurable function ET WO 7! �kR

d with j ET .x/j D 1 for jT j-a.e. x 2 O
such that

(3.1) T .!/ D
Z
O

h!.x/; ET .x/i djT j.x/

for every ! 2 Dk.O/ . If T has finite total variation, then it can be extended to a
linear functional acting on all forms with bounded, Borel-measurable coefficients
via the dominated convergence theorem. In particular, in this case the push-forward
f#T can be defined also for f 2 C 1.O;O 0/ with bounded derivatives; cf. the
discussion in [36, p. 132].

A set M � O is a countably Hk -rectifiable set if it can be covered, up to
an Hk -negligible subset, by countably many k -manifolds of class C 1 . As such,
it admits at Hk -a.e. x 2 M a tangent space Tan.M; x/ in a measure-theoretic
sense. A current T 2 Dk.O/ is an integer multiplicity (i.m.) rectifiable current if
it is representable as

(3.2) T .!/ D
Z
M
h!.x/; �.x/i�.x/dHk.x/ for ! 2 Dk.O/;

4 This means that f �1.K/ is compact in O for all compact sets K � O 0 .
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2287

where M � O is an Hk -measurable and countably Hk -rectifiable set, � WM !
Z is locally Hk M-summable, and �WM ! �kR

d is a Hk -measurable map
such that �.x/ spans Tan.M; x/ and j�.x/j D 1 for Hk -a.e. x 2 M . We use
the short-hand notation T D �.M; �; �/ . One can always remove from M the set
��1.f0g/ , so that we may always assume that � ¤ 0 . Then the triple .M; �; �/ is
uniquely determined up to Hk -negligible modifications. Moreover, one can show,
according to the Riesz’s representation in (3.1), that ET D � and the total variation5

is given by jT j D j� jHk M .
If Tj are i.m. rectifiable currents and Tj * T in Dk.O/ with supj .jTj j.V /C

j@Tj j.V // < C1 for every V b O , then by the closure theorem [36, 2.2.4,
theorem 1] T is an i.m. rectifiable current, too. By JMK we denote the current
defined by integration over M .

3.2 Currents in product spaces
We recall some notation for currents defined on the product space Rd1�Rd2 .

Let us denote by .x; y/ the points in this space. The standard basis for Rd1 is
fe1; : : : ; ed1g , while fxe1; : : : ; xed2g is the standard basis for Rd2 . Given O1 �
R
d1 ; O2 � Rd2 open sets, T1 2 Dk1.O1/ , T2 2 Dk2.O2/ , and a .k1C k2/-form

! 2 Dk1Ck2.O1�O2/ of the type

!.x; y/ D
X

j�jDk1
j� jDk2

!�� .x; y/ dx�^dy� ;

the product current T1 � T2 2 Dk1Ck2.O1�O2/ is defined by

T1�T2.!/ WD T1

� X
j�jDk1

T2

� X
j� jDk2

!�� .x; y/dy
�

�
dx�

�
;

while T1�T2.� dx�^dy� / D 0 if j�j C j�j D k1 C k2 but j�j ¤ k1 , j�j ¤ k2 .

3.3 Graphs
Let O � R

d be an open set and uW� ! R
2 a Lipschitz map. Then we can

consider the d -current associated to the graph of u given by Gu WD .id�u/#JOK 2
D2.O�R2/ , where id�uWO ! O�R2 is the map .id�u/.x/ D .x; u.x// . Note
that

Gu.!/ D
Z
O

h!.x; u.x//;M.ru.x//idx

for all ! 2 Dd .O �R2/ , with the d -vector

(3.3) M
�ru� D �

e1C@x1u1xe1C@x1u2xe2
�^ � � �^ �ed C@xdu1xe1C@xdu2xe2�:

5 For i.m. rectifiable currents, the total variation coincides with the so-called mass. Hence, we
will not distinguish between these two concepts.
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2288 M. CICALESE, G. ORLANDO, AND M. RUF

Later on we use the orientation of the graph of a smooth function uWO � R2 !
S
1 (cf. [36, 2.2.4]). For such maps we have jGuj D H2 M , where M D
. id�u/.�/ , and

(3.4)

q
1C jru.x/j2 EGu.x; y/

D e1 ^ e2 C @x2u
1.x/e1 ^ xe1 C @x2u

2.x/e1 ^ xe2
� @x1u1.x/e2 ^ xe1 � @x1u2.x/e2 ^ xe2 for all .x; y/ 2M:

3.4 Cartesian currents
Let O � R

d be a bounded, open set. We recall that the class of Cartesian
currents in O�R2 is defined by

cart.O�R2/ WD �
T 2 Dd .O�R2/ W T is i.m. rectifiable, @T jO�R2 D 0;

�O# T D JOK; T j dx � 0; jT j < C1; kT k1 < C1	;
where �O WO�R2 ! O denotes the projection on the first component, T j dx � 0
means that T .�.x; y/dx/ � 0 for every � 2 C1

c .O�R2/ with � � 0 , and

kT k1 D supfT .�.x; y/jyjdx/ W � 2 C1
c .O�R2/; j�j � 1g:

Note that, if for some function u

(3.5) T .�.x; y/dx/ D
Z
O

�.x; u.x//dx then kT k1 D
Z
O

jujdx:

The class of Cartesian currents in O�S1 is

cart.O�S1/ WD fT 2 cart.O�R2/ W supp.T / � xO�S1g
(cf. [37, 6.2.2] for this definition). We recall the following approximation theorem
which explains that Cartesian currents in O�S1 are precisely those currents that
arise as limits of graphs of S1 -valued smooth maps. The proof can be found in [35,
theorem 7].6

THEOREM 3.1 (Approximation theorem). Let T 2 cart.O�S1/ . Then there exists
a sequence of smooth maps uh 2 C1.OIS1/ such that

Guh * T in Dd .O�R2/ and jGuh j.O�R2/! jT j.O�R2/:

We state an extension result for Cartesian currents, which we could not find in
the literature. For a proof we refer the interested reader to [28].

LEMMA 3.2 (Extension of Cartesian currents). Let O � R
d be a bounded, open

set with Lipschitz boundary, and let T 2 cart.O�S1/ . Then there exist an open
set zO c O and a current T 2 cart. zO�S1/ such that

zT jO�R2 D T and j zT j.@O�R2/ D 0:

6 Notice that some results in [35] require O to have smooth boundary. This is not the case for
this theorem, which is based on a local construction regularizing a local lifting of T .
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2289

We will also use the structure theorem for Cartesian currents in O�S1 [35,
sec. 3, theorems 1, 5, 6].7 To simplify notation, from now on we focus on di-
mension 2 . Recall that � � R

2 is a bounded, open set with Lipschitz bound-
ary. To state the theorem, we recall the following decomposition for a current
T 2 cart.��S1/ . Letting M be the countably H2 -rectifiable set where T is
concentrated, we denote by M.a/ the set of points .x; y/ 2 M at which the
tangent plane Tan.M; .x; y// does not contain vertical vectors (namely, the Ja-
cobian of the projection �� restricted to Tan.M; .x; y// has maximal rank), by

M.jc/ WD .M nM.a// \ .JT�S1/ , where JT WD fx 2 � W d��# jT j
dH1 .x/ > 0g ,

and by M.c/ WD M n .M.a/ [ M.jc// . Then we can split the current via
T D T .a/ C T .c/ C T .jc/ , where T .a/ WD T M.a/ , T .c/ WD T M.c/ ,
T .jc/ WD T M.jc/ are mutually singular measures, and we denote by the
restriction of the Radon measure T . Hereafter we use the notation yx1 D x2 and
yx2 D x1 .

THEOREM 3.3 (Structure theorem for cart.��S1/). Let T 2 cart.��S1/ . Then
there exists a unique map uT 2 BV .�IS1/ and a (not unique) i.m. rectifiable
1-current LT D �.L; k; ELT / 2 D1.�/ such that T .jc/ D T .j / C LT�JS1K and

T .�.x; y/ dx/ D T .a/.�.x; y/ dx/ D
Z
�

�.x; uT .x//dx;(3.6)

T .a/.�.x; y/ dyxl^dym/ D .�1/2�l
Z
�

�.x; uT .x// de.a/
xl
umT .x/dx;(3.7)

T .c/.�.x; y/ dyxl^dym/ D .�1/2�l
Z
�

�.x; zuT .x// d@.c/
xl
umT .x/;(3.8)

(3.9)
T .j /.�.x; y/ dyxl^dym/

D .�1/2�l
Z
JuT

� Z

x

�.x; y/dym
�
�luT .x/dH

1.x/

for every � 2 C1
c .��R2/ , 
x being the (oriented) geodesic arc in S1 that con-

nects u�T .x/ to uCT .x/ and uT being the precise representative of uT .8

7 As for the approximation theorem, no boundary regularity is required for this result.
8 In [35, theorem 6] the structure of T .j / is formulated slightly differently with the counter-

clockwise arc 
'�;'C between .cos.'�/; sin.'�// , .cos.'C/; sin.'C// , '� < 'C , and replac-
ing JuT by J' , where ' 2 BV .�/ is such that T D �#G' , where �.x; #/ D .x; cos.#/; sin.#//
and G' 2 cart.��R/ is the boundary of the subgraph of ' . To explain (3.9), we recall the lo-
cal construction in [35]: for every x 2 J' one chooses pC.x/ 2 R and k0.x/ 2 N such that
'C.x/ D pC.x/ C 2�k0.x/ and 0 � pC.x/ � '�.x/ < 2� . Then, locally, the 1 -current L0

T

in [35, theorem 6] is given by L0
T
D �.L0; k0.x/; EL0

T
/ , where L0 � J' is the set of points with

k0.x/ � 1 and EL0
T
D �2'e1 � �1'e2 . To obtain the representation via geodesics, we let

.qC.x/; k.x// D

(
.pC.x/; k0.x// if pC.x/ � '�.x/ < �;

.pC.x/ � 2�; k0.x/C 1/ if pC.x/ � '�.x/ > � ;
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2290 M. CICALESE, G. ORLANDO, AND M. RUF

It is convenient to recast the jump-concentration part of T 2 cart.��S1/ in
the following way. Let LT D �.L; k; ELT / as in Theorem 3.3. We introduce for
H1 -a.e. x 2 JT the normal �T .x/ to the 1-rectifiable set JT D JuT [ L as

(3.10) �T .x/ D
(
�uT .x/ if x 2 JuT ;
.�EL2T .x/; EL1T .x// if x 2 L n JuT ;

where we choose �uT .x/ D .�EL2T .x/; EL1T .x// if x 2 L \ JuT . For H1 -a.e.
x 2 JT we consider the curve 
Tx given by the following arcs:

� if x 2 JuT nL , the (oriented) geodesic arc 
x connecting u�T .x/ to uCT .x/
(in the sense of footnote 8 for antipodal points);

� if x 2 L n JuT , the whole S1 turning k.x/ times;
� if x 2 JuT \L , the sum (in the sense of currents)9 of the oriented geodesic

arc 
x and of S1 with multiplicity k.x/ .

Then

(3.11)
T .jc/.�.x; y/ dyxl^dym/

D .�1/2�l
Z
JT

� Z

Tx

�.x; y/ dym
�
�lT .x/dH

1.x/:

The integration over 
Tx with respect to the form dym in the formula above is
intended with the correct multiplicity of the curve 
Tx defined for H1 -a.e. x 2 JT
by the integer

(3.12) m.x; y/ WD

8���<���:
�1; if x 2 JuT n L; y 2 supp.
x/;
k.x/; if x 2 L n JuT ; y 2 S1;
k.x/� 1; if x 2 L \ JuT ; y 2 supp.
x/;
k.x/; if x 2 L \ JuT ; y 2 supp.
Tx / n supp.
x/;

The case pC.x/ � '�.x/ D � needs special care. In this case we let z'�.x/ WD '�.x/ mod 2� 2
�0; 2�/ , and we set

.qC.x/; k.x// D

(
.pC.x/; k0.x// if z'C.x/ � z'�.x/ D �;

.pC.x/ � 2�; k0.x/C 1/ if z'C.x/ � z'�.x/ D ��:

Replacing .pC.x/; k0.x// by .qC.x/; k.x// , one proves (3.9) as in [35, pp. 107–108]. The curves

'�;'C are then replaced by the more intrinsic geodesic arcs 
x . Exchanging u�

T
.x/ and uC

T
.x/

will change the orientation of the arc and of the normal �uT .x/ , making (3.9) invariant.
9 In this case, a more elementary definition of 
Tx is the following: let 
x W �0; 1� ! S

1 be the
geodesic arc, and let 'x W �0; 1�! R be a continuous function (unique up to translations of an integer
multiple of 2� ) such that 
x.t/ D exp.�'x.t// . Then 
Tx .t/ D exp

�
�.1 � t /'x.0/C �t.'x.1/C

2�k.x//
�

.
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2291

where � D C=� if the geodesic arc 
x is oriented counterclockwise/clockwise,
respectively. More precisely,

(3.13)
Z

Tx

�.y/ dym D .�1/m
Z

supp.
Tx /

�.y/yymm.x; y/dH1.y/:

Remark 3.4. Note that we constructed m.x; y/ based on the orientation (3.10)
of �T . As discussed in footnote 8, changing the orientation of �uT changes the
orientation of the geodesic 
x , while a change of the orientation of ELT switches
the sign of k.x/ . Hence changing the orientation of �T .x/ changes m.x; y/ into
�m.x; y/ . If we choose locally �T D �' as in footnote 8, our construction above
yields m.x; y/ � 0 .

Finally, we recall the following result, proven in [35, sec. 4].

PROPOSITION 3.5. For u 2 BV .�IS1/ there exists T 2 cart.��S1/ such that
uT D u a.e.

3.5 Currents associated to discrete spin fields
We introduce the piecewise constant interpolations of spin fields. For every

set S , we put

PC".S/ WD fuWR2 ! S W u.x/ D u."i/ if x 2 "i C �0; "/2 for some i 2 "Z2g:
Given uW�" ! S

1 , we can always identify it with its piecewise constant interpo-
lation belonging to PC".S1/ , arbitrarily extended to R2 .

To u 2 PC".S1/ we associate the current Gu 2 D2.��R2/ defined by

Gu.�.x; y/ dx1^dx2/ WD
Z
�

�.x; u.x//dx;(3.14)

Gu.�.x; y/ dyxl^dym/

WD .�1/2�l
Z
Ju

� Z

x

�.x; y/dym
�
�lu.x/dH1.x/;

(3.15)

Gu.�.x; y/ dy1^dy2/ WD 0;(3.16)

for every � 2 C1
c .��R2/ , where Ju is the jump set of u , �u.x/ is the normal to

Ju at x , and 
x � S
1 is the (oriented) geodesic arc that connects the two traces

u�.x/ and uC.x/ . If uC.x/ and u�.x/ are opposite vectors, the choice of the
geodesic arc 
x � S

1 is done consistently with the choice made in (2.2) for the
values �.�/ and �.��/ as follows: let '�.x/ 2 �0; 2�/ be the phase of u�.x/ ;
if �.'C.x/ � '�.x// D � , then 
x is the arc that connects u�.x/ to uC.x/
counterclockwise; if �.'C.x/ � '�.x// D �� , then 
x is the arc that connects
u�.x/ to uC.x/ clockwise. Note that the choice of the arc 
x is independent of
the orientation of the normal �u.x/ .

We define for H1 -a.e. x 2 Ju the integer number m.x/ D �1 , where � D
C=� if the geodesic arc 
x is oriented counterclockwise/clockwise, respectively.

 10970312, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22033 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [01/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



2292 M. CICALESE, G. ORLANDO, AND M. RUF

Then

(3.17)
Z

x

�.y/dym D .�1/mm.x/

Z
supp.
x/

�.y/yym dH1.y/:

The proof of the following proposition is standard.

PROPOSITION 3.6. Let u 2 PC".S1/ and let Gu 2 D2.��R2/ be the current
defined in (3.14)–(3.16). Then Gu is an i.m. rectifiable current and, according to
the representation formula (3.1), Gu D EGujGuj , where jGuj D H2 M ,

M DM.a/ [M.j / D f.x; u.x// W x 2 � n Jug [ f.x; y/ W x 2 Ju; y 2 
xg;
and, for H2 -a.e. .x; y/ 2M.a/ ,

(3.18) EGu.x; y/ D e1 ^ e2
while for H2 -a.e. .x; y/ 2M.j / we have

(3.19)
EGu.x; y/ D sign.m.x//

�� �2u.x/y2e1 ^ xe1 C �2u.x/y
1e1 ^ xe2

C �1u.x/y
2e2 ^ xe1 � �1u.x/y1e2 ^ xe2

�
:

We now relate the boundary of the current Gu with the discrete vorticity �u .
The interested reader can find a detailed proof in [28].

PROPOSITION 3.7. Let u 2 PC".S1/ and let Gu 2 D2.��R2/ be the current
defined in (3.14)–(3.16). Then @Guj��R2 D ��u�JS1K , where �u is the discrete
vorticity measure defined in (2.4) for uj"Z2 W "Z2 ! S

1 .

The proof of the following fact follows essentially from the definitions.

LEMMA 3.8. Assume �"
f!� in � . Then �"�JS1K * ��JS1K in D1.��R2/ .

4 Proofs
Now we give the proof of our main Theorem 1.1. In what follows, for A � R2

we shall use the localized energy

E".uIA/ WD 1

2

X
hi;j i

"i;"j2A

"2ju."i/ � u."j /j2:

4.1 Compactness and lower bound in absence of vortices
In this subsection we consider a generic sequence u"W "Z2 ! S" such that

1
"�"
E".u"/ is bounded. First we prove that such sequences are compact in L1.�/

with limits in BV .�IS1/ .
PROPOSITION 4.1 (Compactness in BV ). Assume that �" � 1 and 1

"�"
E".u"/ �

C . Then there exists a subsequence (not relabeled) and a function u 2 BV .�IS1/
such that u" ! u in L1.�/ and u"

�
* u in BV loc.�IR2/ .
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2293

PROOF. Fix A b � . Since dS1.u."i/; u."j // � �" when u."i/ ¤ u."j / ,
(2.1) implies that

(4.1)

C � 1

"�"
E".u"/ D 1

2"�"

X
hi;j i

"2ju."i/ � u."j /j2

D 1

2"�"

X
hi;j i

"22 sin
�
1

2
dS1

�
u."i/; u."j /

��ju."i/ � u."j /j
� sin.�"

2
/

�"

X
hi;j i

"ju."i/ � u."j /j � 2 sin.�"
2
/

�"
jDu"j.A/:

Hence u" is bounded in BV .AIS1/ and we conclude that (up to a subsequence)
u" ! u in L1.A/ and u"

�
*u in BV .AIR2/ for some u 2 BV .AIS1/ with

jDuj.A/ � C . Since A b � was arbitrary and the constant C does not depend
on A , the claim follows from a diagonal argument and the equi-integrability of u" .

□

In the next lemma we prove a lower bound for the energy still at the discrete
level.

LEMMA 4.2. Assume that �" � 1 and let � 2 .0; 1/ . Then for " small enough
we have

(4.2) ju"."i/ � u"."j /j2 � .1 � �/�"dS1
�
u"."i/; u"."j /

�
:

In particular,

(4.3)
1

"�"
E".u"/ � .1 � �/1

2

X
hi;j i

"dS1
�
u"."i/; u"."j /

�
:

PROOF. By (2.1) we have that ju"."i/�u"."j /j D 2 sin.1
2

dS1.u"."i/; u"."j // .
Since u" takes values in S" there exists k 2 N (depending on i , j , and ") such
that dS1.u"."i/; u"."j // D k�" . We can assume k ¤ 0 . Moreover, note that
k�" � � .

Due to Taylor’s formula there exists a � 2 �0; k �"
2
� such that

sin
�
k �"
2

� D k �"
2
� 1

6
cos.�/

�
k �"
2

�3 � k �"
2
� 1

6

�
k �"
2

�3
Dividing by

p
k �"
2

we get that

(4.4)
sin
�
k �"
2

�
p
k �"
2

�
p
k

�
1 � 1

6

�
k �"
2

�2�
If k � 9 , using the fact that k�" � � � 4 we obtain that

(4.5)
sin
�
k �"
2

�
p
k �"
2

�
p
k 1
3
� 1:
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2294 M. CICALESE, G. ORLANDO, AND M. RUF

Otherwise, if k � 8 , (4.4) directly implies

(4.6)
sin
�
k �"
2

�
p
k �"
2

� 1 � 3�2" � 1 � �;

for " small enough. Squaring both sides in (4.5) and (4.6) (notice that k�" 2 �0; ��
implies sin

�
k �"
2

� � 0) we have that 4 sin2
�
k �"
2

� � .1� �/k�2" . We conclude the
proof of (4.2) by replacing k�" D dS1.u"."i/; u"."j // in the last inequality and
by (2.1). The estimate (4.3) follows from (4.2) by summation. □

We now recast the energy as a parametric integral of the currents Gu" . To do so,
we define the convex and positively 1-homogeneous function �W�2.R

2�R2/ 7!
R by

(4.7) �.�/ WD
q
.�21/2 C .�22/2 C

q
.�11/2 C .�12/2

for every � D �
x00e1^ e2C �21e1^ xe1C �22e1^ xe2C �11e2^ xe1C �12e2^ xe2C

�0
x0xe1 ^ xe2 .

LEMMA 4.3. For every open set A b � and " small enough we have

1

2

X
hi;j i

"dS1
�
u"."i/; u"."j /

� � Z
A�R2

�. EGu"/djGu" j:

PROOF. By the explicit formulas (3.18)–(3.19) for the orientation of Gu" , we
infer that

�. EGu"/.x; y/ D 1Ju" .x/
h
j�2u".x/j

q
.y2/2 C .y1/2 C j�1u".x/j

q
.y2/2 C .y1/2

i
D 1Ju" .x/j�u".x/j1:

Moreover, we recall that jGu" j D H2 M" , where

M" DM.a/
" [M.j /

"

D f.x; u".x// W x 2 � n Ju"g [ f.x; y/ W x 2 Ju" ; y 2 supp.
"x/g;

"x being the geodesic arc that connects u�" .x/ to uC" .x/ . ThereforeZ

A�R2

�. EGu"/djGu" j D
Z
A�R2

j�u" j1 dH2 M.j /
"

D
Z
Ju"\A

� Z
supp.
"x/

dH1.y/

�
j�u".x/j1 dH1.x/

D
Z
Ju"\A

dS1
�
u�" ; u

C
"

�j�u" j1 dH1

� 1

2

X
hi;j i

"dS1
�
u"."i/; u"."j /

�
: □
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2295

Next we show that energy bounds also yield compactness for the associated
currents Gu" .

PROPOSITION 4.4 (Compactness in cart.��S1/). Assume that �" � "jlog "j as
well as 1

"�"
E".u"/ � C . Let Gu" 2 D2.��R2/ be the currents associated to u"

defined as in (3.14)–(3.16). Then there exists a subsequence (not relabeled) and
a current T 2 D2.��R2/ such that Gu" * T in D2.��R2/ . Moreover, T 2
cart.��S1/ and uT D u a.e. in � , where uT is the BV function associated to T
given by Theorem 3.3 and u 2 BV .�IS1/ is the function given by Proposition 4.1.

PROOF. Let us fix an open set A b � . From the elementary inequality �.�/ �p
.�21/2 C .�22/2 C .�11/2 C .�12/2 , we deduce the estimate

jGu" j.A�R2/

D jGu" j.M.a/ \ A�R2/C jGu" j.M.j / \ A�R2/

� jAj C
Z
A�R2

�. EGu"/djGu" j � j�j C 1

2

X
hi;j i

"dS1
�
u"."i/; u"."j /

�
� j�j C 2

"�"
E".u"/ � C;(4.8)

where in the last inequality we employed (4.3) with � D 1=2 . By the com-
pactness theorem for currents [36, 2.2.3, prop. 2, theorem 1-(i)] we deduce that
there exists a subsequence (not relabeled) and a current T 2 D2.��R2/ with
jT j < 1 such that Gu" * T in D2.��R2/ . Due to Proposition 3.7 we
have @Gu" j��R2 D ��u"�JS1K . By Remark 2.2 and Lemma 3.8, and since
@Gu" * @T in D1.��R2/ , we conclude that @T j��R2 D 0 . The other proper-
ties to show that T 2 cart.��S1/ follow from [28, prop. 4.1]. Finally, it is easy
to see that u D uT a.e. in � . □

PROPOSITION 4.5 (Lower bound for the parametric integral). Assume that �" �
"jlog "j and that 1

"�"
E".u"/ � C . Let Gu" 2 D2.��R2/ be the currents as-

sociated to u" defined as in (3.14)–(3.16) and assume that Gu" * T , where
T 2 cart.��S1/ is a current given by Proposition 4.4, represented as T D ET jT j .
Then for every open set A b �

(4.9)
Z
A�R2

�. ET /djT j � lim inf
"!0

Z
A�R2

�. EGu"/djGu" j:

PROOF. The statement is a consequence of the lower semicontinuity of paramet-
ric integrals with respect to mass bounded weak convergence of currents, [37, 1.3.1,
theorem 1]. □

We can write explicitly the parametric integral in the left-hand side of (4.9) in
terms of the limit u of the sequence u" . By (3.11) the jump-concentration part of

 10970312, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22033 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [01/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



2296 M. CICALESE, G. ORLANDO, AND M. RUF

T is given by

T .jc/.�.x; y/ dyxl^dym/ D .�1/2�l
Z
JT

� Z

Tx

�.x; y/dym
�
�lT .x/dH

1.x/:

For H1 -a.e. x 2 JT we define the number

(4.10) `T .x/ WD length.
Tx / D
Z

supp.
Tx /

jm.x; y/jdH1.y/;

where m.x; y/ is the integer defined in (3.12). Notice that by length.
Tx / we mean
the length of the curve 
Tx counted with its multiplicity and not the H1 Hausdorff
measure of its support. Observe that, in particular, `T .x/ D dS1

�
u�.x/; uC.x/

�
if x 2 Ju n L , whilst `T .x/ D 2�jk.x/j if x 2 L n Ju . The full form of the
parametric integral is contained in the lemma below. For a detailed proof, see [28].

LEMMA 4.6. Let T 2 cart.��S1/ and u 2 BV .�IS1/ be as in Proposition 4.4,
and let � be the parametric integrand defined in (4.7). ThenZ
��R2

�. ET /djT j D
Z
�

jruj2;1 dx C jD.c/uj2;1.�/C
Z
JT

`T .x/j�T .x/j1 dH1.x/:

Remark 4.7. In the presence of vortices, we will work with Cartesian currents on
punctured open sets. Given a measure � D PN

hD1 dh�xh and an open set A , we
adopt the notation

A� WD A n supp.�/ D A n fx1; : : : ; xN g
and A�� WD A nSN

hD1B�.xh/ . We observe that a current T 2 cart.���S1/ can
be extended to a current T 2 D2.��R2/ . Indeed, since T 2 cart.���S1/ , it can
be represented as

T .!/ D
Z
���R2

h!; �i� dH2 M for ! 2 D2.���R2/;

according to the notation in (3.2), where M � ���S1 H2 -a.e. The integral
above can be extended to a linear functional on forms ! 2 D2.��R2/ , namely,

T .!/ D
Z
��R2

h!; �i� dH2 M for ! 2 D2.��R2/:

To prove the continuity of this extension, fix ! 2 D2.��R2/ with supx j!.x/j �
1 . Then

jT .!/j � jT ..1 � �/!/j C
���� Z

��R2

�h!; �i� dH2 M
����

� jT j.���R2/C
NX
hD1

Z
B�.xh/�R2

j� jdH2 M(4.11)

where � 2 C1
c .�/ is such that 0 � � � 1 , supp.�/ � SN

hD1B�.xh/ , and � � 1

on B�=2.xh/ for every h D 1; : : : ; N . Letting � ! 0 in the inequality above, we
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2297

get jT .!/j � jT j.���R2/ since H2.M\.fxhg�R2// � H2.fxhg�S1/ D 0 for
h D 1; : : : ; N and � is H2 M-summable. This shows that T 2 D2.��R2/ .

Moreover, from the arbitrariness of ! in (4.11) we deduce that jT j.��R2/ D
jT j.���R2/ andZ
��R2

�. ET /djT j D
Z
���R2

�. ET /djT j

D
Z
�

jruj2;1 dx C jD.c/uj2;1.�/C
Z
JT

`T .x/j�T .x/j1 dH1.x/:

To state the final lower bound result when M D 0 , for every u 2 BV .�IS1/
we introduce

(4.12) J .uI�/ WD inf
� Z

JT

`T .x/j�T .x/j1 dH1.x/ W T 2 cart.��S1/; uT D u a.e. in �
�
:

PROPOSITION 4.8 (M D 0 , lower bound). Assume

�" � "jlog "j and
1

"�"
E".u"/ � C:

If u" ! u in L1.�/ , where u 2 BV .�IS1/ is as in Proposition 4.1, then

(4.13)
Z
�

jruj2;1 dx C jD.c/uj2;1.�/C J .uI�/ � lim inf
"!0

1

"�"
E".u"/:

PROOF. Let � 2 .0; 1/ and A b � be open. By Lemma 4.2 and Lemma 4.3,
we deduce that

.1 � �/
Z
A�R2

�. EGu"/djGu" j �
1

"�"
E.u"/:

Passing to the limit as "! 0 , Proposition 4.5 implies

.1 � �/
Z
A�R2

�. ET /djT j � lim inf
"!0

1

"�"
E.u"/:

Letting � ! 1 and A! � , by Lemma 4.6 we conclude that (4.13) holds true. □

Remark 4.9. The lower bound (4.13) dominates the anisotropic total variation;
namely, for u 2 BV .�IS1/ it holds that

J .uI�/ �
Z
Ju

dS1.u
�; uC/j�uj1 dH1:

This can be seen using the definition of `T .x/ for a given T 2 cart.��S1/ with
uT D u : for H1 -a.e. x 2 Ju \ L , we have dS1.u

�.x/; uC.x// � length.
Tx / D
`T .x/ , since 
Tx is a curve connecting u�.x/ and uC.x/ in S1 .
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2298 M. CICALESE, G. ORLANDO, AND M. RUF

4.2 Compactness and lower bound in presence of vortices
Next we extend the results of the previous subsection to the case of M vortices.

Again we consider a general sequence u"W "Z2 ! S" and the associated current
Gu" .

PROPOSITION 4.10 (M vortices, compactness). Assume that " � �" � "jlog "j
and that there exist M 2 N and C > 0 such that

(4.14)
1

"�"
E".u"/ � 2�M jlog "j "

�"
� C:

Then there exists � D PN
hD1 dh�xh with dh 2 Z such that �u"

f!� (up to a
subsequence) and j�j.�/ � M . If, in addition, j�j.�/ D M , then there exist
u 2 BV .�IS1/ and T 2 D2.��R2/ such that

(i) u" ! u in L1.�IR2/ and u"
�
*u weakly* in BV loc.��IR2/ ;

(ii) T 2 cart.���S1/ and uT D u a.e. in � ;
(iii) Gu" * T in D2.���R2/ (up to a subsequence);
(iv) @T j��R2 D ���JS1K .

PROOF. From (4.14) it follows that 1
"2jlog "jE".u"/ � 2�M C C �"

"jlog "j , so that
by Proposition 2.1 we get that (up to a subsequence)

�u"
f!� D

NX
hD1

dh�xh and j�j.�/ �M:

From now on we assume that j�j.�/ DM , that is
PN

hD1 jdhj DM .
Let � > 0 small enough such that the balls B�.xh/ are pairwise disjoint and

B�.xh/ � � . Recall the localized lower bound for the XY -model [8, theorem
3.1], which states that

(4.15) lim inf
"!0

�
1

"2
E".u"IB�.xh// � 2�jdhjlog

�

"

�
� zC for some zC 2 R:

From this inequality and the fact that "� �" we deduce that

(4.16)

lim inf
"!0

�
1

"�"
E".u"IB�.xh// � 2�jdhjjlog "j "

�"

�
D lim inf

"!0

�
1

"�"
E".u"IB�.xh// � 2�jdhjjlog "j "

�"
� 2�jdhj log �

"

�"

�
D lim inf

"!0

"

�"

�
1

"2
E".u"IB�.xh// � 2�jdhj log

�

"

�
� 0:

Summing over h D 1; : : : ; N , the superadditivity of the lim inf yields

(4.17) lim inf
"!0

"
NX
hD1

1

"�"
E".u"IB�.xh// � 2�M jlog "j "

�"

#
� 0:
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2299

Therefore the bound (4.14) implies

lim sup
"!0

E".u"I��
�/

"�"

� C � lim inf
"!0

� NX
hD1

1

"�"
E".u"IB�.xh// � 2�M jlog "j "

�"

�
� C;

so that, for " small enough, 1
"�"
E".u"I��

�/ � 2C , where C is independent of � .
By Proposition 4.1 and Proposition 4.4, with a diagonal argument we obtain that
there exist u 2 BV .�IS1/ and T 2 cart.���S1/ such that u"

�
*u weakly* in

BV loc.��IS1/ , Gu" * T in D2.���R2/ up to a subsequence, and uT D u

a.e. in � . Since u" is equi-integrable, the local weak* BV -convergence implies
strong L1.�/-convergence. Thus (i)–(iii) hold true.

By Remark 4.7, the current T can be extended to a current T 2 D2.��R2/ .
Thus, it only remains to prove (iv). The argument is local, and we can work close
to a single atom xh of � . Without loss of generality, assume that xh D 0 and
� D B WD B1.0/ . First of all, let us note that supp.@T / � f0g�S1 . In-
deed, on the one hand if ! 2 D1.B�R2/ is such that supp.!/ � .B�R2/ n
.f0g�R2/ , then @T .!/ D 0 , since T 2 cart..B n f0g/�S1/ ; on the other hand,
if ! 2 D1.B�R2/ is such that supp.!/ � .B�R2/ n .B�S1/ , then supp.d!/ �
.B�R2/ n .B�S1/ and thus @T .!/ D T .d!/ D 0 , since supp.T / � B�S1 . In
conclusion supp.@T / � .f0g�R2/ \ .B�S1/ D f0g�S1 . Being @T a bound-
aryless 1-current with support in a 1-dimensional manifold, the constancy theo-
rem [36, 5.3.1, theorem 2] gives that @T jB�R2 D �c �0�JS1K for some c 2 R .

Now fix a function � 2 C1
c .B/ with � � 1 in the ball B1=2.0/ and define

the 1-form ! D �!S1 , !S1 being the 0-homogeneous extension of the volume
form of S1 to R2 n f0g . Since d! 2 D2..B n f0g/�R2/ , the convergence in

(ii), Proposition 3.7, and the flat convergence �u"
f!� yield the claimed equality

c D �.f0g/ . Indeed,

�c2� D @T .!/ D T .d!/ D lim
"!0

Gu".d!/ D lim
"!0

@Gu".!/

D lim
"!0

�h�u" ; �i2� D �h�; �i2�: □

We now prove the lower bound for M vortices. Let us define the set of admis-
sible currents:

(4.18)

Adm.�; uI�/
WD �

T 2 D2.��R2/WT 2 cart.���S1/; @T j��R2 D ���JS1K;
uT D u a.e.
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2300 M. CICALESE, G. ORLANDO, AND M. RUF

and, similarly to (4.12), the energy

(4.19) J .�; uI�/ WD inf
� Z

JT

`T .x/j�T .x/j1 dH1.x/ W T 2 Adm.�; uI�/
�

for every � DPN
hD1 dh�xh and u 2 BV .�IS1/ with `T .x/ defined in (4.10)10.

PROPOSITION 4.11 (M vortices, lower bound). Assume that �" � "jlog "j and

(4.14) holds. Assume further that �u"
f!� D PN

hD1 dh�xh with j�j.�/ D M ,
u" ! u in L1.�IR2/ with u 2 BV .�IS1/ as in Proposition 4.10. Then

(4.20)

Z
�

jruj2;1 dx C jD.c/uj2;1.�/C J .�; uI�/

� lim inf
"!0

�
E".u"/

"�"
� 2�M jlog "j "

�"

�
:

PROOF. Let us fix A b �� and � 2 .0; 1/ . Then there exists � > 0 such that
A b �

�
� . Thanks to (4.3) and Lemma 4.3, for " small enough, we infer that

.1 � �/
Z
A�R2

�. EGu"/djGu" j �
1

"�"
E".u"I��

�/:

Passing to a subsequence, we have that Gu" * T in D2.�� � R2/ for some
T 2 D2.��R2/ given by Proposition 4.10. As in Proposition 4.5 and from (4.17)
we infer that

.1 � �/
Z
A�R2

�. ET /djT j

� lim inf
"!0

.1 � �/
Z
A�R2

�. EGu"/djGu" j

� lim inf
"!0

1

"�"
E".u"I��

�/ � lim inf
"!0

�
1

"�"
E".u"/ � 2�M jlog "j "

�"

�
:

Letting A! �� and � ! 0 we conclude thatZ
��

�. ET /djT j � lim inf
"!0

�
1

"�"
E".u"/ � 2�M jlog "j "

�"

�
:

By Proposition 4.10 (ii) and (iv), we have T 2 Adm.�; uI�/ , so that (4.20) is a
direct consequence of Lemma 4.6 and Remark 4.7. □

10 Adm.�; uI�/ is nonempty. Indeed, by Proposition 3.5 there exists T 2 cart.��S1/ such that
uT D u . Let 
1; : : : ; 
N be pairwise disjoint unit speed Lipschitz curves such that 
h connects
xh to @� . Define Lh to be the 1-current �.supp.
h/;�dh; P
h/ , so that @Lh D dh�xh . Then
T C

PN
hD1 Lh�JS1K 2 Adm.�; uI�/ .
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2301

4.3 Upper bound in the absence of vortices
To reduce notation, for u 2 BV .�IS1/ we set

E.u/ WD
Z
�

jruj2;1 dx C jD.c/uj2;1.�/C J .uI�/
with J .uI�/ given by (4.12). The proof of the � -limsup inequality is done in
several steps, which gradually simplify the map u 2 BV .�IS1/ that we want to
approximate.

In the next proposition we approximate the map u with a sequence of smooth
maps.

PROPOSITION 4.12. Let u 2 BV .�IS1/ . Then there exist an open set z� c �

and a sequence uh 2 C1. z�IS1/ \ W 1;1. z�IS1/ such that uh ! u strongly in
L1.�IR2/ and

lim sup
h!C1

Z
�

jruhj2;1 dx �
Z
�

jruj2;1 dx C jD.c/uj2;1.�/C J .uI�/:

PROOF. Let � > 0 and let T 2 cart.��S1/ with uT D u a.e. in � be such
that

(4.21)
Z
JT

`T .x/j�T .x/j1 dH1.x/ � J .uI�/C �:

Note that by Lemma 4.6Z
�

jruj2;1 dxCjD.c/uj2;1.�/C
Z
JT

`T .x/j�T .x/j1 dH1.x/ D
Z
��R2

�. ET /djT j;
where � is the parametric integrand defined in (4.7). By Lemma 3.2 we can ex-
tend the current T to z��S1 for some z� c � such that T 2 cart. z��S1/ and
jT j.@��R2/ D 0 .

Thanks to the approximation theorem 3.1 we find a sequence uh 2 C1. z�IS1/
such that Guh * T in D2. z��R2/ and jGuh j. z��R2/! jT j. z��R2/ . In partic-
ular, since jT j does not charge @� �R2 , we have jGuh j.��R2/! jT j.��R2/

and the convergence uh ! uT D u in L1.�IR2/ . Therefore, by Reshetnyak’s
continuity theorem [12, theorem 2.39] we haveZ

��R2

�. EGuh/djGuh j !
Z
��R2

�. ET /djT j:
By (3.4) and the area formula, we can writeZ

��R2

�. EGuh/djGuh j D
Z
�

jruhj2;1.x/dx:
This implies that

lim sup
h!C1

Z
�

jruhj2;1.x/dx �
Z
�

jruj2;1 dx C jD.c/uj2;1.�/C J .uI�/C �:

Since � > 0 was arbitrary, we conclude the proof. □
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2302 M. CICALESE, G. ORLANDO, AND M. RUF

The next lemma states that we can discretize on a lattice �nZ2 any smooth map
with values in S1 in such a way that the anisotropic BV norm does not increase.
The discretized maps un satisfy in addition an “almost continuity property”, cf.
(4.23), which states that for �n small enough the constant values of un in two
neighboring cubes are close.

LEMMA 4.13 (Discretization of smooth S1 -valued maps). Assume that �n WD
2�n , n 2 N , and let O , zO be bounded, open sets such that O b zO . Assume that
u 2 C1. zOIS1/\W 1;1. zOIS1/ . Then there exist a sequence of piecewise constant
maps un 2 PC�n.S1/ such that un ! u strongly in L1.OIR2/ as n ! C1
and

(4.22) lim sup
n!C1

Z
Jun\O�n

dS1.u
C
n ; u

�
n /j�un j1 dH1 �

Z
O

jruj2;1 dx;

where O�n is the union of half-open squares given by

O�n WD
[
fI�n.�n´/W ´ 2 Z2 such that I�n.�n´/ \O ¤ ¿g:

Moreover , for every � > 0 there exists xn D xn.u; �; zO/ such that for every n � n

and for every ´1; ´2 2 Z2 with I�n.�n´1/ \ I�n.�n´2/ ¤ ¿ and I�n.�n´i / \
O ¤ ¿ we have

(4.23) dS1
�
un.�n.´1//; un.�n.´2//

� � �:
PROOF. Let O 0 be an open set such that O b O 0 b zO and let xn be so large that

for every n � xn we have O�n � O 0 . For every ´ 2 Z2 such that I�n.�n´/\O ¤
¿ we define

un.�n´/ WD u

�
�n

�
´C e1

2
C e2

2

��
;

�n.´C e1
2
C e2

2
/ being the center of the square I�n.�n´/ . The definition is well-

posed, since �n.´C e1
2
C e2

2
/ 2 zO . Then we extend un to �nZ2 by choosing an

arbitrary value in S1 . This defines a piecewise constant map un 2 PC�n.S1/ .
Since u is continuous on O 0 , it follows that un ! u pointwise on O and thus

also strongly in L1.OIR2/ by dominated convergence. Next we show (4.22). For
i 2 f1; 2g define

Zi .�n/ WD
�
´ 2 Z2W I�n.�n´/ \O ¤ ¿ and I�n.�n.´C ei // \O ¤ ¿g:

Let ´ 2 Zi .�n/ . Since u is C1 in the interior of the rectangle I�n.�n´/ [
I�n.�n.´C ei // , it admits a C1 lifting ' such that u D exp.�'/ in the interior
of I�n.�n´/ [ I�n.�n.´ C ei // . Then, by the fundamental theorem of calculus
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2303

and the definition of un ,

(4.24)

dS1
�
un.�n.´C ei //; un.�n´/

�
�
����'��n�´C ei C e1

2
C e2

2

��
� '

�
�n

�
´C e1

2
C e2

2

������
� �n

Z 1

0

����@i'��n�´C tei C e1

2
C e2

2

������dt
D �n

Z 1

0

��@iu��n�´C tei C e1

2
C e2

2

����dt:
We notice, in addition, that for every t 2 �0; 1� and ´ 2 Zi .�n/ ,���� Z

I�n .�n´/

��@iu.x/��dx � �2n����@iu��n�´C tei C e1

2
C e2

2

����������
�
Z
I�n .�n´/

����@iu.x/ � @iu��n�´C tei C e1

2
C e2

2

������dx
� 2�3nkr2ukL1.O 0/ DW C.u/�3n:

From (4.24) and the previous estimate it follows thatZ
Jun\O�n

dS1.u
C
n ; u

�
n /j�un j1 dH1

�
2X

iD1

X
´2Zi .�n/

�ndS1
�
un.�n.´C ei //; un.�n´/

�
�

2X
iD1

Z 1

0

X
´2Zi .�n/

�2n

����@iu��n�´C tei C e1

2
C e2

2

������ dt

�
2X

iD1

Z 1

0

X
´2Zi .�n/

� Z
I�n .�n´/

��@iu.x/��dx C C.u/�3n

�
dt

�
Z
O 0
jruj2;1 dx C C.u/jO 0j�n:

We conclude the proof of (4.22) by letting n!C1 and then O 0 & O .
In order to prove (4.23), observe that the condition xI�n.�n´1/\ xI�n.�n´2/ ¤ ¿

implies that j�n.´1 C 1
2
e1 C e2/ � �n.´2 C 1

2
e1 C 1

2
e2/j �

p
2�n , so the claim

follows from the Lipschitz continuity of u on the larger set zO . □

Now we can construct a recovery sequence u"W "Z2 ! S" . Due to the previous
simplifications, it suffices to approximate the energy of piecewise constant maps
on the lattice �nZ2 that come from Lemma 4.13. To define the recovery sequence,
we shall construct a minimal transition (in S1 ) between two constant values of S1 .
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2304 M. CICALESE, G. ORLANDO, AND M. RUF

First we introduce some notation about geodesics in S1 and state an elementary
stability property, whose proof we omit.

DEFINITION 4.14. For u1; u2 2 S1 denote by Geo�u1; u2�W �0; dS1.u1; u2/� !
S
1 the (in case of nonuniqueness counterclockwise rotating) unit speed geodesic

between u1 and u2 that we extend by Geo�u1; u2�.t/ D u1 for t < 0 and
Geo�u1; u2�.t/ D u2 for t > dS1.u

1; u2/ . As such the geodesics are 1-Lipschitz
continuous functions on R . We further set mid.u1; u2/ D Geo.1

2
dS1.u

1; u2// as
the midpoint on that geodesic.

LEMMA 4.15. There exists a constant c > 0 such that whenever u1; u2; b 2 S1
are such that u1; u2 2 Bc.b/ , then for all t 2 R

jGeo�u1; b�.t/ � Geo�u2; b�.t/j � dS1.u
1; u2/:

We introduce a map that will be used to project vectors of S1 on S" . Given
u 2 S1 we let 'u 2 �0; 2�/ be the unique angle such that u D exp.�'u/ . We
define P"WS1 ! S" by

(4.25) P".u/ D exp
�
��"

�
'u

�"

��
:

Combined with Propositions 4.1 and 4.8 the next result completes the proof of
Theorem 1.1 when M D 0 .

PROPOSITION 4.16 (M D 0 , upper bound). Assume " � �" � 1 . Let u 2
BV .�IS1/ . Then there exist u" 2 PC".S"/ such that u" ! u strongly in
L1.�IR2/ and

lim sup
"!0

1

"�"
E".u"/ �

Z
�

jruj2;1 dx C jD.c/uj2;1.�/C J .uI�/:

PROOF. By Proposition 4.12, Lemma 4.13, and the L1 -lower semicontinuity of
the � -limsup, it is enough to prove that for un 2 PC�n.S1/

(4.26) �- lim sup
"!0

1

"�"
E".un/ �

Z
Jun\��n

dS1.u
C
n ; u

�
n /j�un j1 dH1:

Since un is fixed in the following discussion, to simplify the notation we denote
un by u and �n by � , always assuming that �� 1 .

We will define a recovery sequence locally on each half-open cube I�.�´/ for
´ 2 Z

2 . First, we define a boundary condition on @I�.�´/ . For a side S D
f�´0 C tei W t 2 �0; ��g with ´0 2 Z

2 and i 2 f1; 2g , and three values v D
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2305

.v1; v2; v3/ 2 .S1/3 , we set b"S �v�WS ! S
1 for x D �´0 C tei as

(4.27)

b"S �v�.x/ D8���������<���������:

v1 if t 2 c0 "
�"
�0; 1/;

Geo�v1; v2�
�

d
S1

.v1;v2/�"
c0"

.t � c0 "
�"
/

�
if t 2 c0 "

�"
�1; 2/;

v2 if t 2 �2c0 "
�"
; � � 2c0 "

�"
/;

Geo�v2; v3�
�

d
S1

.v2;v3/�"
c0"

.t � �C 2c0
"
�"
/

�
if t 2 � � c0 "

�"
.1; 2�;

v3 if t 2 � � c0 "
�"
�0; 1�:

The particular choice of the constant c0 is not important. For this proof it suffices
that c0 > 2� . This condition will be clear only after (4.35). (However, to apply
this construction also in the proof of Proposition 4.22, we need to choose a larger
constant, namely c0 D 393 .) Since "

�"
! 0 by assumption, the function bS �v�

can be interpreted as follows: in a small neighborhood of the two endpoints of S
we set the two values v1 and v3 , while in a contiguous small neighborhood we
use the geodesic for a transition to the value v2 , which is taken on most of the side.

Next, given u 2 PC�.S1/ and a side S as above, we specify the values

(4.28) vS .u/ D
�
u.�´0/;mid.u�S ; u

C
S /; u.�.´

0 C ei //
�
;

where u�S and uCS denote the (constant) traces of u along the side S and the
midpoint is given by Definition 4.14. The boundary values b´;"W @I�.�´/ ! S

1

are then defined by

b´;".x/ D b"S �vS .u/�.x/ if x D �´0 C tei 2 S for some ´0 2 Z2 and t 2 �0; ��:
Note that this function is also well-defined in the corners with b´;".�´0/ D u.�´0/

for all ´0 2 Z2 . Moreover, since we have chosen unit speed geodesics and c0 >
2� , on each side S the function b"S �vS .u/� satisfies a Lipschitz-estimate of the
form

(4.29) jb"S �vS .u/�.x/ � b"S �vS .u/�.y/j �
1

2

�"

"
jx � yj; x; y 2 S:

Repeating the construction on every half-open cube we obtain a continuous func-
tion on the skeleton

S
´2Z2 @I�.�´/ .

We are now in a position to define the recovery sequence of u . We will inter-
polate between the constant u.�´/ and the boundary value b´;" in I�.�´/ . This
will be done on a mesoscale towards the boundary @I�.�´/ . Let P W I�.�´/ !
@I�.�´/ be a function satisfying jP.x/�xj D dist.x; @I�.�´// for all x 2 I�.�´/
(such a function can be defined globally by periodicity). To reduce notation, let
u´ D u.�´/ . Set xu"W "Z2 \ I�.�´/! S

1 as

(4.30) xu"."i/ D Geo�b´;".P."i//; u´�
�
�""

�1dist."i; @I�.�´//
�
;

with the extended geodesics given by Definition 4.14. Note that in general xu"."i/ �
S" . Hence we define u" 2 PC".S"/ by u" WD P".xu"/ with P" given by (4.25).
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2306 M. CICALESE, G. ORLANDO, AND M. RUF

We claim that u" converges to u in L1.�IR2/ . Indeed, for all "i 2 I�.�´/ we
have by Definition 4.14

(4.31) u"."i/ D P".u´/ if dist."i; @I�.�´// � � "
�"
;

so that the assumptions "
�"
! 0 and �" ! 0 yield that u" ! u´ in measure on

I�.�´/ . Here we used that jP" � I j � �" . Vitali’s theorem then implies u" ! u

in L1.�IR2/ . Next we bound the differences u"."i/ � u"."j / for all i; j 2 Z2
with ji � j j D 1 .

Step 1. Interactions within one cube.
We start with "i; "j 2 "Z2 \ I�.�´/ for the same ´ and ji � j j D 1 . Let us

write I D I�.�´/ for short. One has to distinguish several cases:

Case 1. If dist."i; @I / � �"��1" and dist."j; @I / � �"��1" , then (4.31) yields

ju"."i/ � u"."j /j D 0:

Since for neighboring lattice points it holds that

(4.32)
�"

"
jdist."i; @I / � dist."j; @I /j � �";

for the remaining cases we can assume that

(4.33) maxfdist."i; @I /; dist."j; @I /g < .� C 1/"��1" :

Case 2. We next analyze when P."i/ and P."j / lie on different 1-dimensional
boundary segments Si ¤ Sj of I . We claim that P."i/ and P."j / are then close
to a node of the lattice �Z2 . Indeed, denote by �Si and �Sj the projections onto
the subspaces spanned by the segments Si and Sj , respectively. Since by (4.33)

jP."i/ � P."j /j � "ji � j j C dist."i; @I /C dist."j; @I / � .2� C 2/"��1" C ";

for " small enough the sides Si and Sj cannot be parallel. Hence the point
�´i;j WD �Si .�Sj ."i// belongs to Si \Sj � �Z2 and therefore the 1-Lipschitz
continuity of �Si and �Sj combined with (4.33) implies

dist.P."i/; �Z2/ D dist.�Si ."i/; �Z
2/ � j"i ��Sj ."i/j

� j"i � "j j C j"j ��Sj ."j /j C j�Sj ."j / ��Sj ."i/j
� 2"C .� C 1/"��1" :(4.34)

Exchanging the roles of i and j we derive by the same argument the bound

(4.35) dist.P."j /; �Z2/ � 2"C .� C 1/"��1" :

For " small enough both terms can be bounded by 2�"��1" . In particular, the
distance to �Z2 of both P."i/ and P."j / is realized by the point �´i;j , which is
an endpoint of both the sides Si and Sj . Hence from the definition of the boundary
condition b´;" in (4.27) and (4.28) and the fact that c0 > 2� , we deduce that

b´;".P."i// D b´;".P."j // D u´i;j :
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2307

Equation (4.32), the 1-Lipschitz continuity of Geo�u´i;j ; u´� , and the construction
of xu" yield jxu"."i/ � xu"."j /j � �" . Due to the definition of the function P" this
inequality implies

(4.36) ju"."i/ � u"."j /j � �":
Moreover, note that by (4.33), (4.34), and (4.35), for " small enough,

(4.37)

dist."j; �Z2/ � jP."j / � "j j C dist.P."j /; �Z2/

� .2� C 2/ "
�"
C 2" < 2c0

"
�"
;

dist."i; �Z2/ � jP."i/ � "i j C dist.P."i/; �Z2/

� .2� C 2/ "
�"
C 2" < 2c0

"
�"
:

These inequalities will be used in Step 3 to count how many interactions fall under
Case 2.

Case 3. Now consider points i and j such that P."i/ D �Si ."i/ and P."j / D
�Si ."j / and assume additionally that dist.P."j /; �Z2/ � 3c0"�

�1
" . Since �Si

is 1-Lipschitz, this implies that dist.P."i/; �Z2/ � 2c0"��1" for " small enough.
Hence by the definition of the boundary condition (cf. (4.27) and (4.28))

b´;".P."i// D b´;".P."j // D mid
�
u�Si ; u

C
Si

�
:

Using again the 1-Lipschitz-continuity of the geodesic Geo�mid.u�Si ; u
C
Si
/; u´� ,

similarly to (4.36) we obtain that

(4.38) ju"."i/ � u"."j /j � �":
However, we need to analyze more accurately which points yield a nonzero differ-
ence. On the one hand, the projection property of P and the definition of xu" yield
the implication

(4.39)
if dist."j; Si / D dist."j; @I / � dS1.mid.u�Si ; u

C
Si
/; u´/"�

�1
"

then xu"."j / D u´:

The same conclusion holds true for "i . Hence for Case 3 the estimate (4.38) needs
to be taken into account only for .i; j / such that one of them violates the condition
in (4.39), while for other couples "i; "j the difference vanishes as in Case 1.

On the other hand, using that P."i/ D �Si ."i/ and P."j / D �Si ."j / , one
can show the following implication (where k means parallel):

(4.40)
."i � "j / k Si D 0 H) dist."i; @I / D dist."j; @I /

H) ju"."i/ � u"."j /j D 0:

Case 4. It remains to treat the case of points i and j such that P."i/ D
�Si ."i/ and P."j / D �Si ."j / , but dist.P."j /; �Z2/ < 3c0"�

�1
" . Here we

use the Lipschitz-continuity of b´;" on Si and the stability estimate of Lemma
4.15. For the latter, we need that b´;".P."i// and b´;".P."j // are sufficiently
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2308 M. CICALESE, G. ORLANDO, AND M. RUF

close to u´ . Since on Si the boundary condition b´;" is defined by geodesic inter-
polation between the elements of the vector vSi .u/ 2 .S1/3 defined in (4.28) and
u´ 2 fu�Si ; uCSi g , we know that

jb´;".P."i// � u´j
� dS1.b´;".P."i//; u´/

� max
rD1;3

dS1..vSi .u/; er/;mid.u�Si ; u
C
Si
//C dS1.mid.u�Si ; u

C
Si
/; u´/

D max
rD1;3

dS1..vSi .u/; er/;mid.u�Si ; u
C
Si
//C 1

2
dS1.u

�
Si
; uCSi /

� max
rD1;3

dS1..vSi .u/; er/; u´/C dS1.u
�
Si
; uCSi /:

Recall that the first and third component of vSi �u� are given by the evaluation of u
at the endpoints of Si . Hence by the almost continuity estimate (4.23) we deduce
for �� 1 that jb´;".P."i// � u´j < c , where c is the constant given by Lemma
4.15. Repeating the argument one proves the analogue estimate for P."j / . To
reduce notation, we set d";i D �""

�1dist."i; @I / and d";j D �""
�1dist."j; @I / .

Then by (4.29) and the applicable Lemma 4.15 we have

jxu"."i/ � xu"."j /j �
��Geo�b´;".P."i//; u´�.d";i / � Geo�b´;".P."i//; u´�.d";j /

��
C ��Geo�b´;".P."i//; u´�.d";j / � Geo�b´;".P."j //; u´�.d";j /

��
� jd";i � d";j j C dS1.b´;".P."i//; b´;".P."j ///

� �" C �

4
�""

�1j�Si ."i/ ��Si ."j /j � 2�":
Hence in Case 4 we deduce the slightly weaker bound

(4.41) ju"."i/ � u"."j /j � 2�":
Finally, the location condition on j and (4.33) imply that

(4.42) dist."j; �Z2/ � jP."j / � "j j C dist.P."j /; �Z2/ < 4c0"��1" :

Step 2. Interactions between different cubes.

Now we consider points "i 2 I�.�´i / and "j 2 I�.� j́ / with ´i ¤ j́ and
ji�j j D 1 . By the definition of xu" via geodesics and by the 1-Lipschitz continuity
of the latter we have

jxu"."i/ � b´i ;".P."i//j D jxu"."i/ � Geo�b´i ;".P."i//; xu´i �.0/j
� �"

"
dist."i; @I�.�´i //;

jxu"."j / � b j́ ;".P."j //j D jxu"."j / � Geo�b
j́ ;".P."j //; xu j́

�.0/j
� �"

"
dist."j; @I�.� j́ //:
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2309

Note that there exists a boundary segment Sij of @I�.� j́ / such that the line seg-
ment �"i; "j � intersects Sij orthogonally and moreover Sij � @I�.�´i / . In par-
ticular,

dist."i; @I�.�´i //C dist."j; @I�.� j́ // � ":
Summing the previous two estimates then yields

(4.43) jxu"."i/ � b´i ;".P."i//j C jxu"."j / � b j́ ;".P."j //j � �":
We claim that either P."i/ 2 Sij and P."j / 2 Sij or that both P."i/ and
P."j / are close to �Z2 . Indeed, first assume that P."j / � Sij . Then there
exists another facet Sj of I�.� j́ / such that P."j / 2 Sj . Since dist."j; Sj / � "

and dist."j; Sij / � " , the sides Sj and Sij cannot be parallel. Denoting by
�S the projection onto the subspace spanned by a segment S , we deduce that
�Sj .�Sij ."j // 2 Sj \ Sij � �Z2 . Hence

dist.P."j /; �Z2/ D dist.�Sj ."j /; �Z
2/ � j"j ��Sij ."j /j � ":

For P."i/ we check two possibilities. First consider P."i/ 2 Sij . Then we
may assume that P."j / � Sij as above. From the Lipschitz-continuity of �Sij

we infer

dist.P."i/; �Z2/ D dist.�Sij ."i/; �Z
2/ � j�Sij ."i/ ��Sij .�Sj ."j //j

� j"i � "j j C j"j ��Sj ."j /j � 2":
On the contrary, if P."i/ � Sij , then there exists a facet Si ¤ Sij of I�.�´i /
such that P."i/ 2 Si . Since Si and Sij are both sides of the cube I�.�´i / that
cannot be parallel, we deduce that �Si .�Sij ."i// 2 span.Si /\ span.Sij / � �Z2

and thus the defining property of Sij implies that

dist.P."i/; �Z2/ D dist.�Si ."i/; �Z
2/ � j"i ��Sij ."i/j � ":

It remains to establish an estimate for dist.P."j /; �Z2/ when P."i/ � Sij and
P."j / 2 Sij . In this case we have

dist.P."j /; �Z2/ D dist.�Sij ."j /; �Z
2/ � j�Sij ."j / ��Sij .�Si ."i/j
� j"j � "i j C j"i ��Si ."i/j � 2":

To sum up, we have proved the following two alternatives:
(i) P."i/; P."j / 2 Sij ;

(ii) maxfdist.P."i/; �Z2/; dist.P."j /; �Z2/g � 2" .
Again we treat the two cases separately.

Case 5. Note that the condition in (ii) above implies that the unique points
�x́i ; �x́j 2 �Z2 realizing the minimal distance satisfy

j�x́i � �x́j j
� j�x́i � P."i/j C jP."i/ � "i j C "ji � j j C j"j � P."j /j C jP."j / � �x́j j
� 7";
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2310 M. CICALESE, G. ORLANDO, AND M. RUF

so that necessarily x́i D x́j for " small enough. In particular, the construction of
the boundary condition forces b´i ;".P."i// D b

j́ ;".P."j // D ux́i . From (4.43)
we infer

jxu"."i/ � xu"."j /j � jxu"."i/ � ux́i j C jxu"."j / � ux́j j � �";
which by the definition of P" allows to conclude that

(4.44) ju"."i/ � u"."j /j � �":
Furthermore, we know that

(4.45) dist."j; �Z2/ � dist.P."j /; �Z2/C dist."j; @I�.�´// � 3":

Case 6. We now analyze the case P."i/; P."j / 2 Sij . By the symmetric defi-
nition, b´i ;" and b

j́ ;" coincide on Sij . Since by assumption the segment �"i; "j �
is orthogonal to Sij and Sij � @I�.�´i / \ @I�.� j́ / , we have

P."i/ D �Sij ."i/ D �Sij ."j / D P."j /:

Hence estimate (4.43) yields

jxu"."i/ � xu"."j /j D jxu"."i/ � b´i ;".P."i//j C jb
j́ ;".P."j // � xu"."j /j � �";

which again can be turned into an estimate for u" that reads

(4.46) ju"."i/ � u"."j /j � �":
Moreover, we can give an estimate for the location of "j by

(4.47) dist."j; Sij / D dist."j; @I�.� j́ // � ":
Step 3. Energy estimates.

Let us first sum up our analysis hitherto. The interactions of couples ."i; "j / with
ji � j j D 1 and at least one point in an half-open cube I�.�´/ can be grouped as
follows:

(1) In Case 1 it holds that ju"."i/ � u"."j /j D 0 .
(2) In Cases 2, 4, and 5 we have for " small enough dist."j; �Z2/ � 4c0"�

�1
"

(see (4.37), (4.42), and (4.45)) and by (4.36), (4.41), and (4.44) the continuity
estimate

ju"."i/ � u"."j /j � 2�":
(3) In Cases 3 and 6, according to (4.38)–(4.40), respectively (4.46)–(4.47), we

know that there exists a side S of I�.�´/ such that, setting

�S .´/ WD 1
2

dS1.u
�
S ; u

C
S / D dS1.mid.u�S ; u

C
S /; u´/;

it holds that

ju"."i/ � u"."j /j �
(
�" if dist."j; S/ < �S .´/ "�" C " and .i � j / ? S;

0 otherwise.

 10970312, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22033 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [01/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2311

Now we can estimate the discrete energy. Due to (1)–(3) above it is bounded by
E".u"/

"�"

�
X

I�.�´/\�¤¿

X
S�@I�.�´/

"�"#
�
"Z2 \ I�.�´/ \

�
dist. � ; S/ < "

�"
�S .´/C 2"

��
C C"�"#

�
�" \

�
dist. � ; �Z2/ � C"��1"

	�
;

where we used that each point in Z2 has four neighbors, but for (3) we have to
count only half of the interactions. We claim that the first right-hand side term
vanishes when " ! 0 . To this end, fix a large cube Q such that � b Q . For "
small enough we have

"2#
�
�" \

�
dist. � ; �Z2/ � C"��1"

	� � X
x2�Z2\Q

jB2C"��1"
.x/j � C jQj��2"2��2" :

Inserting this estimate into the first term, we obtain

(4.48) "�"#
�
�" \

�
dist. � ; �Z2/ � C"��1"

	� � C jQj��2 "
�"
;

which vanishes when "! 0 due to the assumption "� �" .
Now we treat the second term. Since each segment S has length � , for any

fixed � > 0 it holds that

"�"#
�
"Z2\I�.�´/\

�
dist. � ; S/ < "

�"
� C 2"

��
� �"

"

�
�C2"

�"
�C6"

��
"

�"
�C4"

�
and, for only finitely many cubes I�.�´/ intersecting � , we can insert this esti-
mate with � D �S .´/ , pass to the limit in " , and obtain by (4.48) that

lim sup
"!0

1

"�"
E".u"/ �

X
I�.�´/\�¤¿

X
S�@I�.�´/

�

2
dS1.u

�
S ; u

C
S /

D
Z
Ju\��

dS1.u
�; uC/j�uj1 dH1:(4.49)

This estimate agrees with (4.26) and hence concludes the proof. □

4.4 Upper bound in the presence of vortices
Also in the case of vortices the construction of the recovery sequence is done by

gradually simplifying the map u 2 BV .�IS1/ , following the main idea of Sec-
tion 4.3. However, due to the presence of the vortex measure � D PN

hD1 dh�xh ,
in general the map u cannot be approximated by smooth maps with values in S1 .
This requires additional steps in the simplification of u . For notational conve-
nience, set

E.�; u/ D
Z
�

jruj2;1 dx C jD.c/uj2;1.�/C J .�; uI�/
with J .�; uI�/ given by (4.19).
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2312 M. CICALESE, G. ORLANDO, AND M. RUF

We start with the approximation result for currents T with boundary @T D
���JS1K , which appear in the definition of the limit functional.

LEMMA 4.17 (Approximations creating finitely many singularities). Let the mea-
sure � D PN

hD1 dh�xh and T 2 D2.��R2/ be such that T 2 cart.���S1/
and @T j��R2 D ���JS1K . Then there exist an open set z� c � and a sequence
uk 2 C1. z��IS1/ \W 1;1. z�IS1/ such that

uk ! uT in L1.�IR2/;(4.50)

Guk * T in D2.���R2/;(4.51)

jGuk j.��R2/! jT j.��R2/;(4.52)

deg.uk/.xh/ D dh for h D 1; : : : ; N:(4.53)

PROOF. Let �0 and �00 be open sets with Lipschitz boundary such that �0 b
�00 b � and fx1; : : : ; xN g � �0 , and let us define the open set O WD � n x�0 .
Since @T jO�R2 D 0 , we have T 2 cart.O�S1/ . By Lemma 3.2 there exist an
open set zO c O and a current zT 2 cart. zO�S1/ such that zT jO�R2 D T jO�R2

and j zT j.@O�R2/ D 0 . In particular,

(4.54) zT j.�00nx�0/�R2 D T j.�00nx�0/�R2 :

This allows us to glue together the currents T and zT . To do so, we define the
set z� WD �[ zO and the current S 2 D2. z��R2/ as follows. Fix a cutoff function
� 2 C1

c .�00/ such that 0 � � � 1 and � � 1 on a neighborhood of x�0 . For
every ! 2 D2. z��R2/ we put S.!/ WD T .�!/C zT ..1 � �/!/ . Then by (4.54) it
follows that S j��R2 D T , S j

.z�nx�0/�R2 D zT j
.z�nx�0/�R2 , and jS j.@��R2/ D 0 .

In particular, using the product rule for the exterior derivative, for any 1-form
! 2 D1. z��S1/ we find that

@S.!/ D T .� d!/C zT ..1 � �/ d!/

D @T .�!/ � T . d� ^ !/C @ zT ..1 � �/!/C zT . d� ^ !/ D ���JS1K.!/;

where we used that � � 1 on supp.�/ and d� ^ ! 2 D2.�00 n x�0�R2/ . Hence
S 2 cart. z���S1/ and @S jz��R2 D ���JS1K .

Since S 2 cart. z���S1/ , by the approximation theorem for Cartesian currents
(Theorem 3.1) there exists a sequence uk 2 C1. z��IS1/\W 1;1. z�IS1/ such that
Guk * S in D2. z���R2/ and jGuk j. z���R2/ ! jS j. z���R2/ . In particular,
we get (4.51) and thus (4.50). Moreover,

(4.55) jGuk j. z��R2/! jS j. z��R2/;

since Guk and S do not charge the sets fxhg�R2 (being i.m. rectifiable 2-currents
concentrated on a subset of R2�S1 , see also Remark 4.7).
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2313

Thanks to the convergence in (4.51) we can prove (4.53). Indeed, let h D
1; : : : ; N . For � > 0 small enough we have (e.g., by [35, sec. 6, prop. 1])

@Guk jB�.xh/�R2 D � deg.uk/.xh/�xh�JS1K:

Fix a cutoff function � 2 C1
c .B�.xh// such that � � 1 on B�=2.xh/ and define

the 1-form ! D �!S1 , !S1 being the 0-homogeneous extension of the volume
form of S1 to R2 n f0g . Observing that d! 2 D2

�
.B�.xh/ n fxhg/�R2

�
, the

convergence in (4.51) implies that

� deg.uk/.xh/ D @Guk .!/ D Guk .d!/! T .d!/ D @T .!/ D �dh:
Then deg.uk/.xh/ is a sequence of integer numbers that converges to the integer
number dh . Thus for k large enough deg.uk/.xh/ D dh . To conclude, we observe
that (4.55) and jS j.@��R2/ D 0 imply (4.52). □

The next result shows how to reduce the analysis to singularities with degree
�1 .

LEMMA 4.18 (Splitting of the degree). Let V WD fx1; : : : ; xN g � � and let u 2
C1.� n V IS1/ \W 1;1.�IS1/ be such that deg.u/.xh/ ¤ 0 for h D 1; : : : ; N .
Then for 0 < � � 1 there exist a set V� D fx�1 ; : : : ; x�N�

g � � and a function
u� 2 C1.� n V� IS1/ \W 1;1.�IS1/ such that u� ! u strongly in L1.�IR2/ ,
jdeg.u� /.x�

h
/j D 1 for h D 1; : : : ; N� and

lim
�!0

Z
�

jru� j2;1 dx D
Z
�

jruj2;1 dx;(4.56)

N� D
N�X
hD1

jdeg.u� /.x�h/j D
NX
hD1

jdeg.u/.xh/j:(4.57)

Moreover, defining the measures �� DPN�

hD1 deg.u� /.x�
h
/�x�

h
, we have that

��
f!

NX
hD1

deg.u/.xh/�xh as � ! 0:

Finally, if u 2 C1. z� n V IS1/ \ W 1;1. z�IS1/ for some z� c � , then one can
additionally choose u� 2 C1. z� n V IS1/ \W 1;1. z�IS1/ .
Remark 4.19. In this section we shall apply Lemma 4.18 to functions given by
Lemma 4.17; cf. (4.53). In [28] we consider u 2 C1.� n V IS1/ \W 1;1.�IS1/
without assuming that deg.u/.xh/ ¤ 0 for every h D 1; : : : ; N . In that case, the
statement of the lemma holds true, but (4.57) needs to be adapted to

N� D
NX
hD1

jdeg.u/.xh/j C 2#fxh W deg.u/.xh/ D 0g:

The argument in the proof remains unchanged.
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2314 M. CICALESE, G. ORLANDO, AND M. RUF

PROOF OF LEMMA 4.18. Via an iterative construction we create jdeg.u/.xh/j
different singularities out of one singularity whenever jdeg.u/.xh/j > 1 in such a
way that the new function is close in energy. To reduce notation, we assume that
x1 D 0 and deg.u/.x1/ > 1 (the case of a negative degree less than �1 can be
treated similarly). We equip R2 with the complex product, which we denote by
� . Given 0 < � � 1 we set u� 2 C1.� n .V [ f�e1g/IS1/ as

u� .x/ D u.x/�
�
x

jxj
��1

� .x � �e1/
jx � �e1j :

Defined as above, it follows that u� ! u in L1.�IR2/ by dominated conver-
gence. Next, we estimate its anisotropic gradient norm. By the product rule, for
i D 1; 2 we obtain

@iu
� .x/ D @iu.x/�

�
x

jxj
��1

� .x � �e1/
jx � �e1j

C u.x/�
(
@i

�
x

jxj
��1

� .x � �e1/
jx � �e1j C

�
x

jxj
��1

� @i
.x � �e1/
jx � �e1j

)
:

A straightforward computation shows that, for a.e. x 2 � , we have

lim
�!0

@iu
� .x/ D @iu.x/C u�

(
@i

�
x

jxj
��1

� x

jxj C
�
x

jxj
��1

� @i
x

jxj

)

D @iu.x/C u� @i

(�
x

jxj
��1

� x

jxj

)
D @iu.x/:

In order to use dominated convergence, we observe that . xjxj/
�1 D 1

jxj.x1;�x2/ ,
so that

j@iu� .x/j � j@iu.x/j C
�����@i
�
x

jxj
��1�����C

����@i� x � �e1
jx � �e1j

�����
� j@iu.x/j C 2

jxj C
2

jx � � j :

The right-hand side is equi-integrable on � � R2 , so that we conclude

lim
�!0

Z
�

jru� j2;1 dx D
Z
�

jruj2;1 dx:

Finally, we need to compute the degree of u� . Let us introduce the complex-
valued functions

zu.x/ D u1.x/C �u2.x/; f .x/ D 1

jxj.x1 � �x2/;

g.x/ D 1

jx � �e1j
�
.x1 � �/C �x2

�
:
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2315

In R2 the degree around a point xx can be expressed via the winding number, which
means

.2��/ deg.u� /.xx/ D
Z
@Br .xx/

d.zufg/
zufg D

Z
@Br .xx/

.dzu/fg C zu.df /g C zuf .dg/
zufg

D 2��.deg.u/.xx/ � �0.xx/C ��e1.xx//:
We deduce that the degree of u� is of the form (recalling that x1 D 0)

deg.u� /.xx/ D

8�<�:
deg.u/.x1/ � 1 if xx D x1;

1 if xx D x1 C �e1;

deg.u/.xx/ otherwise;

where for the second equality we used that deg.u/.x1C �e1/ D 0 due to the local
smoothness of u around x1 C �e1 (see [22, cor. 8]). Repeating this construction
(with �=2 , �=4 , and so on) we find a finite set V� D fx�1 ; : : : ; x�N�

g and a se-
quence u� 2 C1.� n V� IS1/ \W 1;1.�IS1/ such that u� ! u in L1.�IR2/ ,
deg.u� /.x�

h
/ 2 f�1g , and (4.56)–(4.57) hold true. The claim on the flat conver-

gence follows by the construction. □

In the next lemma we move the singularities onto a lattice �nZ2 that makes
them compatible with a piecewise constant approximation un 2 PC�n.S1/ .

LEMMA 4.20 (Moving singularities on a lattice). Let V WD fx1; : : : ; xN g � � , let
z� c � , and let u 2 C1. z� n V IS1/\W 1;1. z�IS1/ . Then for every � > 0 there
exist a set V� D fx�1 ; : : : ; x�N g � �Z2 \� and a map u� 2 C1. z� n V�IS1/ \
W 1;1. z�IS1/ such that u� ! u strongly in W 1;1. z�IS1/ as � ! 0 . Moreover,
deg.u�/.x�

h
/ D deg.u/.xh/ for h D 1; : : : ; N for � small enough and, defining

the measures

�� D
NX
hD1

deg.u�/.x�h /�x�
h
;

it holds that ��
f!PN

hD1 deg.u/.xh/�xh .

PROOF. We set u� WD u� � , where  �W z�! z� is a suitable diffeomorphism
with  �.x

�
h
/ D xh (see, e.g., [40, p. 210] for a construction). The details are

omitted as they are standard. □

We modify the target sequence one last time close to the singularities.

LEMMA 4.21 (Modification near a singularity). Let � � 1 and let

u 2 C1.B� n f0gIS1/ \W 1;1.B�IS1/ with jdeg.u/.0/j D 1:

Then for every � > 0 there exist zu 2 C1.B� n f0gIS1/ \ W 1;1.B�IS1/ and a
radius �0 2 .0; �2/ such that

(i) zu.x/ D .x1;�x2/
jxj for every x 2 xB�0 n f0g ;
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2316 M. CICALESE, G. ORLANDO, AND M. RUF

(ii) zu.x/ D u.x/ for every x 2 B� n xBp�0 ;
(iii) it holds that Z

B�

jrzuj2;1 dx �
Z
B�

jruj2;1 dx C �:

PROOF. We give a proof in the case deg.u/.0/ D 1 , the case deg.u/.0/ D
�1 being completely analogous. We also assume, without loss of generality, that
� D 1 , and we denote B� simply by B . Let us consider the set � WD f.x1; 0/ W
0 � x1 � 1g . To modify the map u we will actually modify its lifting ' . We start
by discussing some useful properties of ' .

Since B n � is simply connected, the map uWB n � ! S
1 admits a lifting

'WB n�! R , i.e., a function satisfying u D exp.�'/ . The function ' is unique
up to integer multiples of 2� and has the same regularity of u , namely,

' 2 C1.B n�IR/ \W 1;1.B n�IR/:
The fact that u 2 C1.B nf0gIS1/ can be translated in terms of the regularity of '
as follows: for every x 2 � \ .B n f0g/ and r > 0 such that Br.x/ b B n f0g ,
we have

(4.58) 1 xBCr .x/
' C 1B�r .x/.' � 2�/ 2 C1.Br.x//;

where B�
r .x/ D fx 2 Br.x/W �x2 > 0g .

To show this, note that u 2 C1.Br.x/IS1/ ; thus it admits a lifting 'x 2
C1.Br.x// . Up to adding an integer multiple of 2� to 'x , by the uniqueness of
the lifting up to integer multiples of 2� we have ' D 'x in BC

r .x/ , and there
exists a kx 2 Z such that ' D 'x C 2�kx in B�

r .x/ , thus

1 xBCr .x/
' C 1B�r .x/.' � 2�kx/ D 'x 2 C1.Br.x//:

To prove that kx D 1 , we observe that the proven regularity implies, in particular,
that the restrictions 'j

B�r .x/
admit traces '� on � in the classical sense. To

compute the jump 'C � '� D �2�kx at a point x 2 �\ .B n f0g/ , we parame-
trize the circle @Bjxj counterclockwise with the closed path 
.t/ D jxj exp.�2�t/ ,
t 2 �0; 1� . Observing that r' D u1ru2 � u2ru1 in B n� , we infer that

'C.x/ � '�.x/ D '.
.0C// � '.
.1�// D �
Z 1

0

r'.
.t// � P
.t/ dt

D �
Z



.u1ru2 � u2ru1/ � � dH1 D �2� deg.u/.0/ D �2�:

This proves kx D 1 , and in turn (4.58).
Finally, it holds that ' 2 L2.B/ due to the Sobolev embedding theorem.
We are now in a position to define a modification z' of ' . Let us fix � > 0 . By

a classical capacity argument, we find �0 > 0 small enough and a cutoff function

 10970312, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22033 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [01/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2317

� 2 C1
c .Bp�0/ , 0 � � � 1 , � � 1 on xB�0 satisfying

kr�k2
L2.B/

� C

log
p
�0
�0

� C

j log �0j < �
2:

We use the cutoff � to interpolate between ' and the principal argument arg.
The function arg is defined in polar coordinates .�; #/ by arg.�; #/ D # and
satisfies x

jxj D exp.� arg.x// in B n f0g . In particular, also arg 2 C1.B n�IR/\
W 1;1.B n�IR/ , and it satisfies the regularity property as in (4.58). Let us define

z' WD � argC.1 � �/'; zu WD exp.�z'/:
Since z' 2 C1.B n �IR/ and for every x 2 � \ .B n f0g/ and r > 0 such that
Br.x/ b B n f0g , we have 1 xBCr .x/

z' C 1B�r .x/.z' � 2�/ 2 C1.Br.x/IR/ , we
deduce that zu 2 C1.B n f0gIS1/ . By definition zu satisfies (i) and (ii). To prove
(iii), let us computeZ

B

jrzuj2;1 dx D
Z
Bn�

jr z'j1 dx �
Z
Bn�

jr z' � r'j1 dx C
Z
Bn�

jr'j1 dx

D
Z
Bn�

jr z' � r'j1 dx C
Z
B

jruj2;1 dxI

thus it only remains to estimate the first integral in the right-hand side. We haveZ
Bn�

jr z' � r'j1 dx

� p
2

Z
Bn�

jr�jj arg�'jdx Cp
2

Z
Bn�

�jr arg�r'jdx

� p
2kr�kL2.B/

�k arg kL2.B/ C k'kL2.B/

�
Cp

2

Z
Bp�0

n�

�jr arg j C jr'j�dx
� �p

2k arg kL2.B/ C
p
2k'kL2.B/ C 1

�
�;

if �0 > 0 is also chosen small enough such that
p
2

Z
Bp�0

n�

�jr arg j C jr'j�dx < �: □

Now we are in a position to construct the discrete recovery sequence.

PROPOSITION 4.22. Assume that " � �" � "jlog "j . Let �n WD 2�n , n 2 N ,
and let V WD fx1; : : : ; xN g � �nZ

2 \ � . Assume that u 2 C1. z� n V IS1/ \
W 1;1. z�IS1/ with z� c � has the following structure: jdeg.u/.xh/j D 1 for all
1 � h � N and

u.x/ D
�
1 0

0 deg.u/.xh/

�
x � xh
jx � xhj in B�0.xh/
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2318 M. CICALESE, G. ORLANDO, AND M. RUF

for some �0 > 0 . Set moreover � D PN
hD1 deg.u/.xh/�xh . Then there exists a

sequence u"W�" ! S" such that �u"
f!� , u" ! u in L1.�IR2/ , and

lim sup
"!0

�
1

"�"
E".u"/ � 2�j�j.�/jlog "j "

�"

�
�
Z
�

jruj2;1 dx:

Remark 4.23. We emphasize that the construction presented below also works un-
der the sole assumption "� �" . The scaling �" � "jlog "j will be used only after
(4.123) on, where we identify the flat limit of the discrete vorticity measure. This
observation will be useful to study the regimes �" � "jlog "j and "jlog "j � �"
in [28].

PROOF OF PROPOSITION 4.22. We divide the proof into several steps. First
we define a good approximation very close to the singularity. Then we define an
interpolation between this construction and the piecewise constant approximations
provided by Lemma 4.13 far from the singularities. In the third step we estimate
the energy of this interpolation. In a final step we bound the energy and identify
the flat limit of the discrete vorticity measures.

Step 1. Local discrete approximation of (degree �1)-singularities.
We define a local recovery sequence close to the first singularity x1 . In the

whole proof we will assume that deg.u/.x1/ D 1 so that

(4.59) u.x/ D x � x1
jx � x1j in B�0.x1/:

(If, instead, deg.u/.x1/ D �1 , we have u.x/ D �
1 0
0 �1

�
x�x1
jx�x1j and the construc-

tion below is adapted accordingly.) For simplification, we specify u.x1/ WD e1 .
Next we partition R2 nf0g according to the value of the angle in polar coordinates.
More precisely, for k D 0; 1; : : : ; N" � 1 we set

(4.60) Sk;" WD fx D r exp.�'/ 2 R2 W r > 0; ' 2 �k�"; .k C 1/�"/g:
Based on this partition, we approximate the functions u with sequences v" 2
PC".S"/ defined on "Z2 n fx1g by

(4.61) v"."i/ D exp.�k�"/ if "i � x1 2 Sk;"
while v"."i/ D e1 if "i D x1 . Note that v" D P".u/ by definition of P" ;
see (4.25). Then, writing "i �x1 D j"i �x1j exp.�.k"i �"C�"i // with �"i 2 �0; �"/ ,
it holds that

(4.62) ju."i/ � v"."i/j � jexp.�.k"i �" C �"i // � exp.�k"i �"/j � �"
for "i 2 B�0.x1/ . We define the radius r" D 4"��1" (its role will become clear
below). We start estimating the energy of v" in B2r".x1/ . By a change of variables
we may assume that x1 D 0 in order to reduce the notation. Observe that for any
two vectors a; b 2 R2 we have

(4.63) jaj2 � jbj2 � ja � bj.jaj C jbj/ � 2jbjja � bj C ja � bj2:
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2319

Hence, using also (4.62), we obtain
E".v"IB2r"/

"�"

� E".uIB2r"/
"�"

C 1

2"�"

X
hi;j i

"i;"j2B2r"

"2
�
jv"."i/ � v"."j /j2 � ju."i/ � u."j /j2

�

� E".uIB2r"/
"�"

C C

"�"

X
hi;j i

"i;"j2B2r"

"2
�
�"ju."i/ � u."j /j C �2"

�
:

(4.64)

We prove that the last sum vanishes, while the first right-hand side term scales
as 2�j log "j "

�"
in the sense that the difference vanishes. To this end, we estimate

finite differences of u away from the singularity. Since for t 2 �0; 1� and i; j 2 Z2
with ji � j j D 1 we have

j.1 � t /"i C t "j j � j"i j � " ;
the regularity of u in B�0 n f0g implies that for any "i; "j 2 "Z2 n B2" with
ji � j j D 1

ju."i/ � u."j /j �
Z 1

0

jru.t"i C .1 � t /"j /."i � "j /j dt :
Since i � j 2 f�e1;�e2g , a direct computation yields the two cases

(4.65) ju."i/ � u."j /j �
8<:
R 1
0

ji �e2j
jtiC.1�t/j j2 dt if .i � j / k e1 ;R 1

0
ji �e1j

jtiC.1�t/j j2 dt if .i � j / k e2 :

Q6"

"Q.C;C/
3

"Q.C;�/
3

"Q.�;C/
3

"Q.�;�/
3

B2r"

2r"

� �
2r"
"

�

FIGURE 4.1. The trimmed quadrants "Qs
3 used to bound the energy in (4.67).

To further simplify the energy, given a couple of signs s D .s1; s2/ 2 f�g2 and
n 2 N , we define the trimmed quadrants Qs

n as

(4.66) Qs
n WD fx 2 R2 W s1 x � e1 � n; s2 x � e2 � ng:
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2320 M. CICALESE, G. ORLANDO, AND M. RUF

Applying Jensen’s inequality in (4.65) and specifying n D 3 , we can bound the
energy via

(4.67)

1

"�"
E".uIB2r"/ �

X
s

1

"�"
E".u; "Q

s
3 \ B2r"/C

1

"�"
E".uIQ6"/

C C

"�"

d2r"="eX
kD2

"2k2

.k � 1/4 I

see Figure 4.1. The last sum is converging with respect to k , so that the second
and third terms can be estimated by

(4.68)
1

"�"
E".uIQ6"/C C

"�"

d2r"="eX
kD2

"2
k2

.k � 1/4 � C
"

�"
;

where for the first term we used the estimate ju."i/�u."j /j2 � 4 . On the trimmed
quadrants Qs

3 we can use again Jensen’s inequality in (4.65) and a monotonicity
argument to deduce

E".uI "Qs
3 \ B2r"/ D

X
"i2"Z2\B2r"

i2Qs
3

X
rD1;2

"2ju.".i C sre1// � u."i/j2

�
X

"i2"Z2\B2r"

i2Qs
3

"2
"2

j"i j2 �
Z
"Qs

2
\B2r"

"2

jxj2 dx:(4.69)

Note that we shifted the trimming in the last inequality to pass from discrete to
continuum. We sum (4.69) over all possible s and, after multiplying with 1

"�"
, we

infer that

(4.70)
X
s

1

"�"
E".uI "Qs

3 \ B2r"/ �
1

"�"

Z
B2r"nB"

"2

jxj2 dx � 2�jlog "j "
�"
;

since r" D 4"��1" < 1 . The combination of (4.67), (4.68), and (4.70) yields

(4.71)
1

"�"
E".uIB2r"/ � 2�jlog "j "

�"
� C "

�"
:

To bound the remaining sum in (4.64), note that on the one hand r" D 4"��1"

implies that

(4.72)
1

"�"

X
hi;j i

"i;"j2B2r"

"2�2" � C
�"

"
.2r" C 2"/2 � C "

�"
:
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2321

On the other hand, using the trimmed quadrants Qs
3 to split the sum as in (4.67)

yields

1

"�"

X
hi;j i

"i;"j2B2r"

"2�"ju."i/ � u."j /j

�
p
2

"�"

Z
B2r"nB"

�"
"

jxj dx C C"C C

"�"

d2r"="eX
kD2

"2�"k

.k � 1/2 :

Note that due to the nonquadratic structure we have the additional constant
p
2 in

front of the integral. Moreover, the last sum diverges logarithmically, but we have
an additional factor �" that compensates this growth. We conclude that

1

"�"

X
hi;j i

"i;"j2B2r"

"2�"ju."i/ � u."j /j � C
�
r2" C "C "jlog �"j

�
:

Since "� �" � 1 , the right-hand side vanishes when "! 0 . Thus this estimate,
(4.64), (4.71), and (4.72) imply that

(4.73) lim sup
"!0

�
1

"�"
E".v"IB2r"/ � 2�jlog "j "

�"

�
� 0:

Next we control the energy in B�.x1/ n Br".x1/ for 0 < � < �0 , where �0 is
given by the assumptions. To this end, we need to examine the precise behavior of
the sequence v" for i; j 2 Z2 satisfying ji�j j D 1 and j"j �x1j; j"i �x1j � r" .
The basic idea is that for many such pairs the energy contribution vanishes. Indeed,
write such points as

(4.74) "i � x1 D r"i exp
�
�.k"i �" C �"i /

�
; "j � x1 D r"j exp

�
�.k"j �" C �"j /

�
;

with k"i ; k
"
j 2 f0; : : : ; N" � 1g and �"i ; �

"
j 2 �0; �"/ . By (2.1) we obtain

" D ��r"i exp.�.k"i �" C �"i // � r"j exp.�.k"j �" C �"j //
��

� r"
��exp.�.k"i �" C �"i // � exp.�.k"j �" C �"j //

�� � jr"i � r"j j
� min

n2f0;�1g
2r"

�

��.k"i � k"j /�" C �"i � �"j C 2�n
�� � "

� min
n2f0;�1g

2r"�"

�

�jk"i � k"j CN"nj � 1
� � ":

Inserting r" D 4"��1" , the above estimate can be rearranged into
�

4
� min

n2f0;�1g
�jk"i � k"j CN"nj � 1

�
:

Since k"i � k"j CN"n is an integer, we get the following two possibilities:
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2322 M. CICALESE, G. ORLANDO, AND M. RUF

(i) k"i � k"j � N"n D 0 , which is possible only for n D 0 since 0 � k"i ; k
"
j �

N" � 1 . This yields v"."i/ D v"."j / since "i and "j belong to the same
sector;

(ii) k"i � k"j D �1 mod .N"/ , which implies jv"."i/ � v"."j /j � �" . Moreover,
since k"i ¤ k"j we infer that dist."i � x1; @Sk"

i
;"/ � " .

With this information, we can estimate the energy by bounding the number of all
points in "Z2 \B�.x1/ that are "-close to one of the lines in

SN"�1
kD0 @Sk;"C x1 .

Since N" � C��1" , this leads to

E".v"IB�.x1/ n Br".x1//

� C�2"
N"�1X
kD0

"2#."Z2 \ B�.x1/ \ fdist. � ; @Sk;" C x1/ � "g/

� C�".�C 2"/":

Dividing the inequality by "�" we obtain for " small enough that

1

"�"
E".v"IB�.x1// � 1

"�"
E".v"IB2r".x1//C

1

"�"
E".v"IB�.x1/ n Br".x1//

� 1

"�"
E".v"IB2r".x1//C C�;

where we used that r" � " to split the energy via changing the inner radius from
r" to 2r" . Subtracting the term 2�jlog "j "

�"
and using (4.73), we proved that for

some C < C1
(4.75) lim sup

"!0

�
1

"�"
E".v"IB�.x1// � 2�jlog "j "

�"

�
� C�:

Step 2. An interpolation between singular and piecewise constant approxima-
tions.

We do the construction in the case where the singularity lies in the origin. The
case of singularities contained in �Z2 will be treated with a translation argument.
Consider a cube Q.�/ D ��2m.�/�; 2m.�/��2 , where � D �k with k � n will
be small, but fixed in this step, and 1 � m.�/ 2 N is chosen maximal such
that Q.�/ � B�=2 with fixed 0 < � < �0 . Note that the corners of Q.�/
belong to �Z2 . Define then a sequence of dyadically shrinking cubes by Qk D
�.�2m.�/C.2�2�k//�; .2m.�/�.2�2�k//��2 for k � 0 . Here the factor 2�2�k
is chosen as the value of the geometric sum

Pk
lD0 2�l . For notational reasons we

also set Q�1 WD Q.�/ and Q�2 WD ��.2m.�/ C 1/�; .2m.�/ C 1/�� . Then for
k � 0 the layer Lk D Qk�1 nQk can be decomposed into finitely many closed
cubes with disjoint interior and side lengths 2�k� . Indeed, those cubes are given
by the closures of the half-open cubes belonging to the family

Qk WD
�
q´
k
D �

2�k�´C �0; 2�k�/2
� W ´ 2 Z2; q´

k
� Lk

	
:
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2323

With a slight abuse of notation we also set

Q�1 WD
�
q´�1 D

�
�´C �0; �/2

� W ´ 2 Z2; q´�1 � L�1
	
:

For k � �1 , a generic element of Qk is of the form

q´
k
D 2�maxfk;0g�´C �0; 2�maxfk;0g�/2 � Lk

(see Figure 4.2). We introduced the square Q�2 and the family of cubes Q�1
since they will be useful later to glue in the layer L�1 D Q�2 nQ�1 the con-
struction of the recovery sequence u" inside Q.�/ and outside Q.�/ . The con-
struction of u" outside Q.�/ will be based, as in Proposition 4.16, on a piecewise
constant approximation of u on the �Z2 lattice, and its boundary value on @Q.�/
will agree with that of the construction from the inside. For this reason the cubes in
Q�1 have volume �2 , like those of Q0 , instead of the notationally more consistent
volume .2�/2 .

We further choose k" 2 N as the unique number such that

(4.76) 2�k" � �" < 2�k"C1:
Note that, in particular, we have that

(4.77) Qk" � B.2m.�/�2/�:

Q�2Q�1 D Q.�/

0

2m.�/�

�

�=2

q´
k
2 Qk

2�k�´

2�k�

Lk

@Qk

q´
k

Lk�1

@Qk�1

LkC1

FIGURE 4.2. On the left: Dyadic decomposition of Q.�/ and example
of a square belonging to the family Qk (in the picture, k D 1 ). The ball
contained in all squares Qk is given by (4.77). On the right: Sides of a
cube q´

k
contained in the layer Lk where we define the boundary condi-

tions.

To each (nonempty, half-open) cube

q´
k
D 2�maxfk;0g�´C �0; 2�maxfk;0g�/2 \ Lk 2 Qk;

we associate the value

u´
k;"

D u

�
2�maxfk;0g�

�
´C 1

2
e1 C 1

2
e2

��
;
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2324 M. CICALESE, G. ORLANDO, AND M. RUF

where 2�maxfk;0g�.´C 1
2
e1 C 1

2
e2/ is the midpoint of the cube q´

k
. We use these

values u´
k;"

to define an interpolation similar to the one in the proof of Proposi-
tion 4.16, but on a family of shrinking cubes. In order to obtain quantitative energy
estimates, we need a bound on the differences of the values u´

k;"
between cubes

that touch at their boundaries. A key ingredient will be the estimate

(4.78)
���� xjxj � y

jyj
���� �

��xjyj � xjxj C xjxj � yjxj��
jxjjyj � 2 jx � yjjyj ;

which is valid for x; y 2 R2 n f0g . Due to (4.77) it holds that 0 � q´
k

for �1 �
k � k" . Hence, for two touching cubes q´1

k1
and q´2

k2
with �1 � k1; k2 � k" (i.e.,

xq´1
k1
\ xq´2

k2
¤ ¿), the estimate (4.78) implies the bound

(4.79)
��u´1

k1;"
� u´2

k2;"

�� � 2 p
2�.2�k1 C 2�k2/

min
lD1;2

��2�maxfkl ;0g�
�
´l C 1

2
e1 C 1

2
e2
��� ;

where we used that the distance between midpoints is bounded by the sum of the
diameters of the cubes. Assuming that m.�/ � 2 , the inclusion (4.77) implies that
the denominator can be estimated from below via����2�maxfkl ;0g�

�
´l C 1

2
e1 C 1

2
e2

����� � .2m.�/ � 2/� � 2m.�/�1�:
In combination with (4.79) and the bound 2�k" � �" (cf. (4.76)), we obtain

(4.80)
��u´1

k1;"
� u´2

k2;"

�� � 23�m.�/.2�k1 C 2�k2/ � 16 max
lD1;2

2k"�kl�m.�/�":

Next, we define the piecewise constant function xw"WQ�2 nQk" ! S" via

(4.81) xw".x/ D u´
k;"

if x 2 �2�maxfk;0g�´C �0; 2�maxfk;0g�/2
� \ Lk; �1 � k � k":

Note that this function is pointwise well-defined except on parts of @Q�2 since we
consider half-open cubes. In order to define an interpolation between cubes that
approximates the piecewise constant function xw" , we introduce again boundary
conditions. In each cube q´

k
2 Qk , we define the boundary conditions only on

those sides that are not contained in @Qk (recall that @Qk is the inner part of the
boundary of the layer Lk ). On the side contained in @Qk (if there is any) we
define the boundary condition via the cubes in LkC1 (cf. Figure 4.2). To fix ideas,
in what follows one can use an iterative definition starting with k D k" , for which
we neglect the inner boundary.

For a generic side S D f2�k�´0 C tei W t 2 �0; 2�k��g with ´0 2 Z2 , k � 0 ,
and i 2 f1; 2g , and three values w D .w1; w2; w3/ 2 .S1/3 , we set b"

S;k
�w�WS !

S
1 as

b"S;k�w�.x/ D b"
2kS

�w�.2kx/;
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2325

where b"S 0 �w� is defined in (4.27) for every side S 0 D f�´0 C tei W t 2 �0; ��g . In
this proof we work with the constant c0 WD 393 in (4.27); this choice will be clear
only after formula (4.97). Given a side S as above satisfying additionally S � Lk
with k � 0 and S ª @Qk (recall that the layer Lk is closed), we specify the three
values w D w"

S on S by

(4.82) w"
S D

� xw".2
�k�´0/;mid

�
. xw"/

�
S ; . xw"/

C
S /; xw".2

�k�.´0 C ei /
��
;

where . xw"/
�
S and . xw"/

C
S denote the (constant) traces along the side S of the func-

tion xw" defined in (4.81) (note that on sides in @Qk the trace from outside Lk
may be nonconstant because the cubes shrink). It is only here where we have to
use the values in the layer L�1 .

Fix a cube q´
k
2 Qk (k � 0) and define the boundary values bk;"�´�W @q´k n

@Qk ! S
1 by

bk;"�´�.x/ D b"S;k�w
"
S �.x/

if x D 2�k�´0 C tei 2 S for some ´0 2 Z2, t 2 �0; 2�k��:
Having in mind the definition (4.27), on each side S the function bk;"�´� satisfies
the Lipschitz-estimate��bk;"�´�.x/ � bk;"�´�.y/�� D ��b"

2kS

�
w"
S

�
.2kx/ � b"

2kS

�
w"
S

�
.2ky/

��
� max

iD1;3
dS1

��
w"
S

�i
; .w"

S

�2�2k�"
c0"

jx � yj

� max
iD1;3

���w"
S

�i � �w"
S

�2���2k�1
c0

�"

"
jx � yj;(4.83)

where we used (2.1) in the last inequality. We continue with estimating the right-
hand side of (4.83). On the one hand, equation (4.80) implies���w"

S

�2 � . xw"/
�
S

�� � dS1
�
mid.. xw"/

C
S ; . xw"/

�
S /; . xw"/

�
S

� D 1

2
dS1

�
. xw"/

C
S ; . xw"/

�
S

�
� �

4
j. xw"/

C
S � . xw"/

�
S j � C12k"�k�m.�/�";(4.84)

with C1 D 32 , where in the last inequality we also used that due to the definition
(4.81) and the fact that S � @q´

k
we have . xw"/

�
S D u

´�
k�;"

for some ´� 2 Z2
and �1 � k� � k" with jk � k�j � 1 . On the other hand, observe that in
the definition of w"

S in (4.82) the points 2�k�´0 and 2�k�.´0 C ei / belong to S .
Thus the cubes q´1

k1
and q´3

k3
used in the definition (4.81) for .w"

S /
1 D xw".2

�k�´0/
and .w"

S /
3 D xw".2

�k�.´0 C ei // , respectively, must touch both the cubes q
´�
k�

used in the definition (4.81) for . xw"/
�
S . Hence, again due to (4.80),���w"

S

�i � . xw"/
�
S

�� � C12k"�k�m.�/�" for i D 1; 3:(4.85)
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2326 M. CICALESE, G. ORLANDO, AND M. RUF

Combining the last two estimates with (4.83) and the bound 2k"�" � 2 yields

(4.86) jbk;"�´�.x/ � bk;"�´�.y/j � �"

"
jx � yj;

where we used that 2C12k"�k�m.�/�" �2
k�1
c0

� 1 . Next observe that the locally
defined boundary values yield a function

(4.87) b"W
[

0�k�k"

[
q´
k
2Qk

@q´
k
n @Qk" ! S

1;

x 7! b".x/ WD bk;"�´�.x/ if x 2 @q´
k
n @Qk :

We briefly explain the idea how to construct the recovery sequence. In Qk"

we put the value of the function v" used in Step 1 and defined in (4.61), namely,
we approximate x

jxj close to its singularity. In the first layer Lk" we keep this
construction and then we start an interpolation scheme with respect to the cubes
q´
k

, where we put the value u´
k;"

in most of the cube. The boundary conditions
bk;"�´� help to control interactions between different cubes. In the estimates we can
allow for multiplicative constants since the total contribution will be proportional
to 2m.�/� � � . However, a precise dependence on the energy with respect to the
layer number k is crucial since we have to sum over all layers.

Now let us start with the details. For the moment fix 0 � k < k" . Given a
cube q´

k
2 Qk , let Pk;´W q´k ! @q´

k
be any function such that jPk;´.x/ � xj D

dist.x; @q´
k
/ for all x 2 q´

k
. Set xu"W "Z2 \ q´

k
! S

1 as

xu"."i/ D Geo
�
b".Pk;´."i//; u

´
k;"

��
�""

�1dist
�
"i; @q´

k

��
;

with the extended geodesics given by Definition 4.14 and b" given by (4.87). Since
in general xu"."i/ � S" , we project it. The function u" in the square Q.�/ is then
given by

(4.88) u"."i/ WD
(
v"."i/ if "i 2 Qk"�1;
P".xu"."i// if "i 2 q´

k
for some q´

k
2 Qk with 0 � k < k";

with the operator P" defined in (4.25). In this step we are interested in the en-
ergy restricted to Q.�/ , and for this reason we defined u" only in Q.�/ . The
sequence u" will be defined later in Step 4 outside Q.�/ , that means, far from the
singularity, as in Proposition 4.16.

First let us identify the L1.Q.�//-limit of u" . To this end, observe that for all
"i 2 q´

k
with 0 � k < k" we have by Definition 4.14

(4.89) u"."i/ D P".u
´
k;"
/ if �""�1dist

�
"i; @q´

k

� � dS1
�
b".Pk;´."i//; u

´
k;"

�
:

We need to quantify the dependence on k in the right-hand side. Let S � @q´
k

be a side such that Pk;´."i/ 2 S . Since the boundary datum b" restricted to S
interpolates via geodesic arcs between the three elements of the vector w"

S defined
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2327

in (4.82) and by construction u´
k;"

2 f. xw"/
�
S ; . xw"/

C
S g , it follows from (4.84) and

(4.85) (with k C 1 in place of k if S � @Qk , which improves the estimate) that

dS1
�
b".Pk;´."i//; u

´
k;"

�
� dS1

�
b".Pk;´."i//;mid.. xw"/

C
S ; . xw"/

�
S /
�C C12

k"�k�m.�/�"

� max
iD1;3

dS1
��
w"
S

�i
;mid.. xw"/

C
S ; .w"/

�
S /
�C C12

k"�k�m.�/�"

� C22k"�k�m.�/�";(4.90)

for C2 D
�
�
2
C 1

�
C1 � 96 . In particular, the condition (4.89) implies that

(4.91) u"."i/ D P".u
´
k;"
/ if dist."i; @q´

k
/ � C2 2k"�k":

Since 2k"�" � 2 (cf. (4.76)), the term 2k"" vanishes when " ! 0 . As the mea-
sure of each q´

k
is 2�k� , we deduce from (4.62) that a.e. in Q.�/ (and thus in

L1.Q.�//) it holds that

(4.92)

u" ! u�0 D8<:
x
jxj on Q1 WD �.�2m.�/ C 2/�; .2m.�/ � 2/��2,

2�k�1�.2´Ce1Ce2/
j2�k�1�.2´Ce1Ce2/j if x 2 q´

k
\ Lk for some k 2 N [ f0g:

Notice that Q1 D T1
kD0Qk and that u�0 D x

jxj except in the layer Q.�/ nQ1 ,
whose thickness is 2� , thus infinitesimal when �! 0 .

Below we bound the differences u"."i/ � u"."j / for all "i; "j 2 "Z2 \Q.�/
with ji � j j D 1 .

Substep 2.1 (Interactions within a single cube)
Consider first "i; "j 2 "Z2 \ q´

k
with 0 � k < k" and ji � j j D 1 . We treat

several cases:

Case 1. If dist."i; @q´
k
/ � C2 2

k"�k" and dist."j; @q´
k
/ � C2 2

k"�k" , then by
(4.91)

ju"."i/ � u"."j /j D jP".u
´
k;"
/ �P".u

´
k;"
/j D 0:

By the Lipschitz continuity of dist. � ; @q´
k
/ , we can from now on assume that

(4.93) maxfdist."i; @q´
k
/; dist."j; @q´

k
/g < .C2 C 1/2k"�k":

Case 2. We first analyze when Pk;´."i/ and Pk;´."j / lie on different 1-dimen-
sional boundary segments Si ¤ Sj of q´

k
. We claim that Pk;´."i/ and Pk;´."j /

are then close to a node of the lattice 2�k�Z2 . Indeed, denote by �Si and �Sj

the projections onto the subspaces spanned by the segments Si and Sj , respec-
tively. Assumption (4.93) and the defining property of Pk;´ imply that

Pk;´."i/ � Pk;´."j /j � "ji � j j C dist."i; @q´
k
/C dist."j; @q´

k
/ � 2.C2 C 1/2k"�k"C ":
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2328 M. CICALESE, G. ORLANDO, AND M. RUF

Hence for " small enough the sides Si and Sj cannot be parallel because 2k""� � .
Therefore the point �Si .�Sj ."i// belongs to Si \ Sj � 2�k�Z2 . We claim that

(4.94) b".Pk;´."i// D b".Pk;´."j // D xw".�Si .�Sj ."i///:

Indeed, denote by 0 � k�i ; k
�
j � k" the layer numbers and by S�i � Si and

S�j � Sj the sides satisfying

b".Pk;´."i// D b"
2
k�
i S�

i

�
w"
S�
i

��
2k
�
i Pk;´."i/

�
;

b".Pk;´."j // D b"

2
k�
j S�

j

�
w"
S�
j

��
2k
�
j Pk;´."j /

�
:

(The sides S�i and S�j are needed due to the fact that Si or Sj may be contained
in @Qk , where b" is defined using the cubes that decompose the layer LkC1 ; if,
for instance, Si is not contained in @Qk , then k�i D k and S�i D Si .) Since
by the dyadic construction S�i either agrees with Si or is exactly one-half of the
side Si , it follows that �Si .�Sj ."i// is an endpoint of S�i .

By the same reasoning it is also an endpoint of S�j . Since �Si .�Sj ."i// D
�Sj .�Si ."j // , it then suffices to show that 2k

�
i Pk;´."i/ and 2k

�
j Pk;´."j / are

sufficiently close to 2k
�
i �Si .�Sj ."i// and 2k

�
j�Sj .�Si ."j // , respectively, since

by construction the boundary datum is constant in a neighborhood of the endpoints
of a side. The 1-Lipschitz continuity of �Si and �Sj combined with (4.93)
yields

jPk;´."i/ ��Si .�Sj ."i//j
� j"i ��Sj ."i/j
� j"i � "j j C j"j ��Sj ."j /j C j�Sj ."i/ ��Sj ."j /j
� 2"C .C2 C 1/2k"�k":(4.95)

Similarly, we can derive the estimate

(4.96) jPk;´."j / ��Sj .�Si ."j //j � 2"C .C2 C 1/2k"�k":

By (4.76), both terms can be bounded by 2�kC1.C2 C 2/"��1" for " that is small
enough. Since k � k�i ; k�j � k C 1 , multiplying (4.95) by 2k

�
i and (4.96) by 2k

�
j

yields

(4.97)
max

���2k�i Pk;´."i/ � 2k�i �Si .�Sj ."i//
��;��2k�j Pk;´."j / � 2k�j�Sj .�Si ."j //
��	 � C3"��1" ;

where C3 D 4.C2C 2/ D 392 < c0 , c0 being the constant in the definition (4.27)
(thus explaining the choice c0 D 393). The estimate (4.97) thus implies (4.94).

Having in mind that �"
"
jdist."i; @I /� dist."j; @I /j � �" , the 1-Lipschitz conti-

nuity of Geo� xw".�Si .�Sj ."i///; u
´
k;"
� and the formula for xu" yield that jxu"."i/�
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2329

xu"."j /j � �" . From the definition of the function P" and the previous estimate
we infer that

(4.98) ju"."i/ � u"."j /j � �":

Case 3. It remains to treat the case of points i and j such that Pk;´."i/ D
�Si ."i/ and Pk;´."j / D �Si ."j / . Here we use the Lipschitz-continuity of b"
on Si . Note that b" might be defined separately on two smaller sides contained
in Si , but nevertheless the Lipschitz property (4.86) holds on the whole Si due to
convexity. Moreover, we want to apply the stability estimate of Lemma 4.15. To
this end, observe that by (4.90) and (4.76) we have��b".Pk;´."i// � u´k;"�� � C22k"�k�m.�/�" � 2C22�m.�/;
and the right-hand side can be made arbitrarily small (specifically, 2C22�m.�/ < c ,
where c is the constant given in Lemma 4.15) since m.�/ � 1 for small � . The
same estimate holds with i replaced by j . To reduce notation, we set d";i D
�""

�1dist."i; @q´
k
/ and d";j D �""

�1dist."j; @q´
k
/ . Then by the triangle inequal-

ity, (4.86), and Lemma 4.15 we have

jxu"."i/ � xu"."j /j
� ��Geo

�
b".Pk;´."i//; u

´
k;"

�
.d";i / � Geo

�
b".Pk;´."i//; u

´
k;"

�
.d";j /

��
C ��Geo

�
b".Pk;´."i//; u

´
k;"

�
.d";j / � Geo

�
b".Pk;´."j //; u

´
k;"

�
.d";j /

��
� jd";i � d";j j C dS1

�
b".Pk;´."i//; b".Pk;´."j //

�
� �" C �

2
�""

�1j�Si ."i/ ��Si ."j /j �
�
1C �

2

�
�":

Hence we deduce the weaker but still sufficient bound

(4.99) ju"."i/ � u"."j /j � 3�":
Substep 2.2 (Interactions between different cubes)

Now we consider lattice points "i 2 q´i
ki

and "j 2 q j́

kj
with q´i

ki
¤ q j́

kj
and

ji � j j D 1 . In this substep we assume that 0 � ki ; kj � k" � 1 , that means, we
consider only the layers where we interpolate. Assume without loss of generality
that ki � kj . We also have to consider the numbers k�i and k�j characterized by
the property

Pki ;´i ."i/ 2 Lk�i n @Qk�
i
; Pkj ; j́

."j / 2 Lk�
j
n @Qk�

j
;

that means, those values which determine the rescaling of the boundary conditions.
Note that from the definition of Pk;´ it follows that

(4.100) ki � k�i � ki C 1; kj � k�j � kj C 1:
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2330 M. CICALESE, G. ORLANDO, AND M. RUF

Since all cubes q´
k

are half-open and oriented along the coordinate axes, there
exists a side Sij of @q j́

kj
such that the segment �"i; "j � intersects Sij orthogonally

and additionally

(4.101) Sij � @q´i
ki
\ @q j́

kj
;

where we used that kj � ki to ensure the inclusion. In particular,

(4.102) dist
�
"i; @q´i

ki

�C dist
�
"j; @q j́

kj

� � ";
which implies that

(4.103)
jPki ;´i ."i/ � Pkj ; j́

."j /j
� jPki ;´i ."i/ � "i j C j"i � "j j C j"j � Pkj ; j́

."j /j � 2":
Moreover, in analogy to the estimate (4.43), we deduce the bound

(4.104) jxu"."i/ � b".Pki ;´i ."i//j C jxu"."j / � b".Pkj ; j́
."j //j � �":

Note that the above estimate does not give information on jxu"."i/� xu"."j /j since,
a priori, b".Pki ;´i ."i// might differ from b".Pkj ; j́

."j // . We will show that this
is not the case. To this end, we shall prove two alternatives:

(4.105)

.i/ Pki ;´i ."i/ 2 Sij and Pkj ; j́
."j / 2 Sij ;

.ii/ dist
�
2k
�
i Pki ;´i ."i/; �Z

2
� � 2kiC3"

and dist.2k
�
j Pkj ; j́

."j /; �Z2/ � 2kjC2":
Indeed, first assume that Pkj ; j́

."j / � Sij . Then there exists another facet Sj
of q j́

kj
, Sj ¤ Sij , such that Pkj ; j́

."j / 2 Sj . Since dist."j; Sij / � " and
dist."j; Sj / � " , the sides Sij and Sj cannot be parallel since the distance between
parallel sides of @q j́

kj
is given by 2�kj� � 1

2
�"� � " . Hence �Sj .�Sij ."j // 2

Sj \ Sij � 2�kj�Z2 , so that

(4.106)
dist.Pkj ; j́

."j /; 2�kj�Z2/ D dist.�Sj ."j /; 2
�kj�Z2/

� j"j ��Sij ."j /j � ":
In particular, applying (4.100) we deduce from the above estimate that

(4.107)

dist.2k
�
j Pkj ; j́

."j /; �Z2/

D 2k
�
j dist.Pkj ; j́

."j /; 2�k
�
j �Z2/

� 2kjC1dist.Pkj ; j́
."j /; 2�kj�Z2/ � 2kjC1";

where we used that 2�kj�Z2 � 2�k
�
j �Z2 . For the point Pki ;´i ."i/ consider first

the case Pki ;´i ."i/ 2 Sij . Due to what we aim to prove, we then assume that
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2331

Pkj ; j́
."j / 2 Sj n Sij as above, so that (4.107) holds. Hence (4.103) and (4.106)

imply

dist.Pki ;´i ."i/; 2
�kj�Z2/ � dist.Pkj ; j́

."j /; 2�kj�Z2/C 2" � 3" < 22":
In order to conclude the claimed estimate, observe that the condition Pki ;´i ."i/ 2
Sij � @q j́

kj
� Lkj forces k�i � kj so that

dist.2k
�
i Pki ;´i ."i/; �Z

2/

D 2k
�
i dist.Pki ;´i ."i/; 2

�k�
i �Z2/

� 2kiC1dist.Pki ;´i ."i/; 2
�kj�Z2/ � 2kiC3";(4.108)

where we used that 2�kj�Z2 � 2�k
�
i �Z2 . On the contrary, if Pki ;´i ."i/ � Sij ,

denote by Si a facet of q´i
ki

such Pki ;´i ."i/ 2 Si , Si ¤ Sij . Then Si and Sij do
not lie on the same straight line. To show this, we argue by contradiction. Assume
that Si � span.Sij / . Since the segment �"i; "j � is orthogonal to Sij , this would
imply the false statement

�Si ."i/ D �Sij ."i/ D �Sij ."j / 2 Sij ;
where the last inclusion holds since "j 2 q j́

kj
and Sij is a side of the cube q j́

kj
.

Since neither Si nor Sij can be parallel for " small enough, we conclude that
�Si .�Sij ."i// 2 span.Si / \ span.Sij / . Since, by (4.101), Sij � @q´i

ki
, we know

that �Si .�Sij ."i// 2 2�ki�Z2 . Thus the defining property of Sij yields

dist.Pki ;´i ."i/; 2
�ki�Z2/

D dist.�Si ."i/; 2
�ki�Z2/ � j�Sij ."i/ � "i j � j"i � "j j D ":

Again in combination with (4.100) this inequality implies the estimate

(4.109)
dist

�
2k
�
i Pki ;´i ."i/; �Z

2
�

� 2kiC1dist.Pki ;´i ."i/; 2
�ki�Z2/ � 2kiC1":

What remains is to establish an estimate for dist.2k
�
j Pkj ; j́

."j /; �Z2/ when
Pki ;´i ."i/ � Sij and Pkj ; j́

."j / 2 Sij . In this case we have

dist.Pkj ; j́
."j /; 2�kj�Z2/ D dist.�Sij ."j /; 2

�ki�Z2/
� j�Sij ."j / ��Sij .�Si ."i//j
� j"j � "i j C j"i ��Si ."i/j � 2";

where we used the inclusion 2�ki�Z2 � 2�kj�Z2 (recall the assumption ki � kj
at the beginning of Substep 2.2). From the above inequality we deduce the estimate

(4.110)
dist.2k

�
j Pkj ; j́

."j /; �Z2/

� 2kjC1dist.Pkj ; j́
."j /; 2�kj�Z2/ � 2kjC2":
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2332 M. CICALESE, G. ORLANDO, AND M. RUF

Combining the estimates (4.107), (4.108), (4.109), and (4.110) we have proved the
claimed alternatives (i) or (ii) in (4.105). We analyze them separately below.

Case 5. Assume

dist
�
2k
�
i Pki ;´i ."i/; �Z

2
� � 2kiC3" and dist.2k

�
j Pkj ; j́

�
"j
�
; �Z2/ � 2kjC2"

(that means, alternative (ii)) and denote by �x́i ; �x́j 2 �Z2 points realizing the
minimal distance. We start by observing that 2�k

�
i �x́i D 2�k

�
j �x́j . Indeed, on

the one hand we use (4.103) to estimate��2�k�i �x́i � 2�k�j �x́j �� � ��2�k�i �x́i � Pki ;´i ."i/j C jPkj ; j́
."j / � 2�k�j �x́j

��C 2"

� 14":
On the other hand, since both 2�k

�
i �x́i and 2�k

�
j �x́j belong to

2�maxfk�
i
;k�
j
g�Z2 � 2�kj�1�Z2 and 2�kj�1� � 1

2
�"�� "

by (4.76), we infer that 2�k
�
i �x́i D 2�k

�
j �x́j . We set pij WD 2�k

�
i �x́i D

2�k
�
j �x́j .

Let now Si and Sj be the sides of the cubes in Qk�
i

and Qk�
j

, respectively,
such that Pki ;´i ."i/ 2 Si , Pkj ; j́

."j / 2 Sj , and

(4.111)
b".Pki ;´i ."i// D b"

2
k�
i Si

�
w"
Si

��
2k
�
i Pki ;´i ."i/

�
;

b".Pkj ; j́
."i// D b"

2
k�
j Sj

�
w"
Sj

��
2k
�
j Pkj ; j́

."j /
�
:

We claim that pij 2 Si \ Sj . Indeed, since by assumption

jpij � Pki ;´i ."i/j � 8"; jpij � Pkj ; j́
."j /j � 4";

and for a side S � @q´
k

with 0 � k < k" and ´ 2 Z2 it holds that

dist.S; 2�k�Z2 n S/ � 2�k�� ";

the claim follows by a triangle inequality argument. Moreover, recalling that
ki ; kj � k"�1 , property (4.76) yields 2kiC3" � 4"��1" < c0"�

�1
" and 2kjC2" �

2"��1" < c0"�
�1
" , c0 being the constant used in the definition (4.27). Thus we

conclude from (4.111) and the definition of the boundary condition that

b".Pki ;´i ."i// D b".pij / D b".Pkj ; j́
."j //;

where we used that pij must be an endpoint of Si and Sj . Combined with (4.104)
we infer
jxu"."i/ � xu"."j /j � jxu"."i/ � b".Pki ;´i ."i//j C jxu"."j / � b".Pkj ; j́

."j //j
� �";

which by the definition of P" allows us to conclude that

(4.112) ju"."i/ � u"."j /j � �":
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2333

Case 6. Finally, we analyze the case Pki ;´i ."i/ 2 Sij and Pkj ;´i ."j / 2 Sij
(that means, alternative (i)). Since by assumption the line segment �"i; "j � in-
tersects Sij orthogonally and Sij is a side of both cubes q´i

ki
and q j́

kj
, we know

that Pki ;´i ."i/ D Pkj ; j́
."j / . In combination with estimate (4.104) we therefore

obtain

jxu"."i/� xu"."j /j D jxu"."i/� b".Pki ;´i ."i//j C jb".Pkj ; j́
."j //� xu"."j /j � �";

which yields the estimate

(4.113) ju"."i/ � u"."j /j � �":

Substep 2.3 (Interactions between Qk"�1 and the layers)

In this step we consider the case where "i 2 "Z2\Qk"�1 but "j 2 "Z2 nQk"�1 .
Since j"i � "j j D " , it follows that "i 2 Lk" and "j 2 Lk"�1 , that means, the
last and the last but one layers. Indeed, the thickness of the last layer is 2�k"� �
1
2
�"� � " , so that the claim follows by a triangle inequality argument. Let j́ 2
Z
2 be such that "j 2 q j́

k"�1 . From the definition of u" in (4.88) and (4.62) we
infer

ju"."i/ � u"."j /j
D jv"."i/ �P".xu"."j //j
� jv"."i/ � xu"."j /j C �"

� jv"."i/ � b".P j́ ;k"�1."j //j C jb".P j́ ;k"�1."j // � xu"."j /j C �"

� jv"."i/ � b".P j́ ;k"�1."j //j C 2�";

where the last inequality can be proven like the estimates (4.43) and (4.104). Using
the general estimate (4.90) with k D k" � 1 we can further bound the last term to
conclude that

ju"."i/ � u"."j /j
� ��v"."i/ � u j́

k"�1;"
��C C�"

D ��v"."i/ � u�2�k"C1�� j́ C 1
2
e1 C 1

2
e2
��j C C�":(4.114)

Recall that 2�k"C1�. j́ C 1
2
e1 C 1

2
e2/ is the midpoint of the cube q j́

k"�1 , so that
by (4.76) ��"i � 2�k"C1�� j́ C 1

2
e1 C 1

2
e2
���

� j"i � "j j C ��"j � 2�k"C1�� j́ C 1
2
e1 C 1

2
e2
���

� "C 2�k"C1� � "C 2�"�:
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2334 M. CICALESE, G. ORLANDO, AND M. RUF

We insert this bound with the estimates (4.62) and (4.78) in (4.114) to obtain

ju"."i/ � u"."j /j �
��u."i/ � u�2�k"C1�� j́ C 1

2
e1 C 1

2
e2
��j C C�"

� 2
��"i�2�k"C1�� j́C1

2
e1C1

2
e2

�����2�k"C1�� j́C1
2
e1C1

2
e2

��� C C�"

� C "C2�"�
.2m.�/�2/� C C�";

where for the last inequality we used the set inclusion (4.77). Since " � �" , for
� > 0 fixed we can assume that " � �"� , so that the last estimate turns into the
bound

(4.115) ju"."i/ � u"."j /j � C�":

Step 3. (Energy estimates in Q.�/)
Let us first summarize what we have proven so far. By our choice of m.�/ at the
beginning of Step 2 we have Q.�/ � B�=2 and (4.77). Hence we can use the
bound (4.75) of Step 1 to control the energy due to interactions with both points in
Qk"�1 , where u" D v" ; cf. (4.88). For the interactions with at least one point in
Q.�/nQk"�1 , we showed in Substeps 2.1–2.3 (cf. (4.98), (4.99), (4.112), (4.113),
and (4.115)) that the bound

(4.116) ju"."i/ � u"."j /j � C�"
holds with a uniform constant C < C1 . In order to obtain precise estimates on
the energy due to interactions with at least one point in Q.�/ n Qk"�1 , we have
to count the number of lattice points "i; "j satisfying u"."i/ ¤ u"."j / . For such
points (4.116) will suffice.

Fix such "i; "j . Then there exists a cube q´
k
2 Qk with 0 � k < k" and

´ 2 Z2 with

(4.117) dist
�
"i; @q´

k

� � C 2k"�k":
Indeed, if "i; "j 2 Q.�/ nQk"�1 and they belong to the same cube of Qk (Sub-
step 2.1), then this is a consequence of (4.93). If "i; "j 2 Q.�/ n Qk"�1 , but
they belong to two different cubes (Substep 2.2), then this follows from (4.102).
Finally, if, for instance, "i 2 Qk"�1 and "j 2 Q.�/ nQk"�1 (Substep 2.3), then
this is a consequence of the fact that "i 2 Lk" and "j 2 Lk"�1 (see also (4.102)).
Therefore it suffices to count lattice points that satisfy (4.117).

From a covering argument with cubes of volume "2 and (4.76) we infer that

"2#
�
"Z2 \ fdist

� � ; @q´
k

� � C2k"�k"g�
� 8.2�k�C 2.C2k"�k"C "//.C2k"�k"C "/

� C.2�k�C ".2�k��1" C 1//.2�k��1" C 1/"

� C2�2k�"��1" ;
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2335

where in the last inequality we also used that "��1" � � for " small enough. Next
recall that the number of cubes q´

k
in the layer Lk can be roughly bounded by

#Qk � C2m.�/2k :
Combining the previous two estimates with (4.116) we can estimate the energy of
u" via

1

"�"
E".u"IQ.�// � 1

"�"
E".v"IB�/C C�2"

"�"
2m.�/�

k"X
kD0

2�k"��1"

� 1

"�"
E".v"IB�/C C2m.�/�:

Due to the choice of m.�/ it holds that 2m.�/� � � . Subtracting the diverging
term 2�jlog "j "

�"
and inserting the upper bound (4.75) we conclude that

(4.118) lim sup
"!0

�
1

"�"
E".u"IQ.�// � 2�jlog "j "

�"

�
� C�:

We emphasize that Q.�/ implicitly depends on � through the quantity 2m.�/� .

Step 4. (From local to global constructions)

We are now in a position to define u" globally. In this step we stress again the
dependence on n of �n . We start by repeating the construction presented in Step 2
around each singularity xh of u , by defining u" as in (4.88) (combined with a
reflection if deg.u/.xh/ D �1) in the squares Q.�n; xh/ D Q.�n/C xh .

To define u" outside the squares Q.�n; xh/ , we first observe that the square
xhC ��2m.�n/C1�n; 2m.�n/C1�n� is not contained in B�=2.xh/ , since m.�n/ has
been chosen as the maximal integer such that

Q.�n; xh/ D xh C
��2m.�n/�n; 2m.�n/�n� � B�=2.xh/:

This yields �=4 � 2m.�n/C1�n and thus, by (4.77),

(4.119) Q
�n
k
.xh/ D xh CQk � B.2m.�n/�2/�.xh/ � B�=16.xh/:

Note that here we stress the dependence of Q�n
k
.xh/ on �n , in contrast to the

notation adopted for Qk in Step 2. We recall that Q�n
�1.xh/ D Q.�n; xh/ .

Applying Lemma 4.13 with

O D � n
N[
hD1

xB�=16.xh/ and zO D z� n
N[
hD1

xB�=32.xh/
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2336 M. CICALESE, G. ORLANDO, AND M. RUF

to u 2 C1. z� nSN
hD1 xB�=32.xh/IS1/ , we get a sequence of piecewise constant

functions un 2 PC�n.S1/ such that un ! u strongly in

L1

 
� n

N[
hD1

xB�=16.xh/IR2

!
and, by (4.119),

(4.120)
lim sup
n!C1

Z
Jun\.�n

SN
hD1Q

�n
0

.xh//�n
dS1.u

�
n ; u

C
n /j�un j1 dH1

�
Z
�

jruj2;1 dx:

Notice that the squares Q�n
0 .xh/ have vertices on the lattice �nZ2 .

Let us fix n large enough. For "i 2 "Z2 nSN
hD1Q

�n
0 .xh/ we define u0"."i/

as the recovery sequence given in the proof of Proposition 4.16 for the piecewise
constant function un 2 PC�n.S1/ with the constant c0 D 393 in (4.27). Then we
define u"."i/ WD u0"."i/ for

"i 2 "Z2 n
N[
hD1

Q.�n; xh/ D "Z2 n
N[
hD1

Q
�n
�1.xh/:

This completes the definition of u" in "Z2 .
We claim that

(4.121)
"i 2 "Z2 \Q�n

�1.xh/ and

dist."i; @Q�n
�1.xh// � " H) u"."i/ D u0"."i/;

which means that the two constructions given by Step 2 and Proposition 4.16 are
identical. Indeed, first note that the assumptions on "i above imply that "i 2 L0 .
Hence we find q´00 2 Q0 such that "i 2 q´00 . We now consider the two cases
P0;´0."i/ 2 @q´00 n @Q�n

�1.xh/ and P0;´0."i/ 2 @Q�n
�1.xh/ . If P0;´0."i/ 2 @q´00 n

@Q
�n
�1.xh/ , let Si � @q´00 be the side such that P0;´0."i/ 2 Si . By the assumption

in (4.121), Si is not contained in @Q�n
0 .xh/ and thus it intersects a side S0 of q´00

such that S0 � @Q
�n
�1.xh/ . In particular, �Si .�S0."i// 2 �nZ2 is an endpoint

of Si and, by (4.121),

jP0;´0."i/ ��Si .�S0."i//j D j�Si ."i/ ��Si .�S0."i//j
� j"i ��S0."i/j � "� c0

"

�"
;

where we used that S0 is the side such that dist."i; S0/ D dist."i; @Q�n
�1.xh// � " .

Since P0;´0."i/ is close enough to the corner pi;0 WD �Si .�S0."i// 2 �nZ
2 ,
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VARIATIONAL ANALYSIS OF THE N -CLOCK MODEL 2337

the boundary condition used for the definition of u" at P0;´0."i/ agrees with its
value at the corner; cf. (4.27). Thus

u"."i/ D Geo
�
b".pi;0/; u

´0
0;"

��
�""

�1dist
�
"i; @q´00

��
D Geo

�
u
�
pi;0 C �n

�
1
2
e1 C 1

2
e2
��
; u
�
�n
�
´0 C 1

2
e1 C 1

2
e2
���

� ��""�1dist
�
"i; @q´00

��
:

The same holds true for u0" . This concludes the proof of (4.121) when P0;´0."i/ 2
@q´00 n @Q�n

�1.xh/ . If, instead, P0;´0."i/ 2 @Q�n
�1.xh/ , let Si be the side of q´00

such that P0;´0."i/ 2 Si . Then the two 3-tuples of values vSi .u/ and w"
Si

defined
in (4.28) and (4.82), respectively, coincide (note that, by definition, both cubes in
Q0 and Q�1 have size �). Then (4.121) follows in this case too.

Taking into account (4.92) on each Q.�n; xh/ , the function u" 2 PC".S"/
converges in L1.�IR2/ to the function Vun 2 L1.�IS1/ defined by

Vun.x/ WD
(
un.x/ if x 2 � nSN

hD1Q.�n; xh/;�
1 0
0 deg.u/.xh/

�
u
�n
0 .x � xh/ if x 2 Q.�n; xh/ for some 1 � h � N:

We remark that the precise structure for fixed �n is not important. Just note

that due to the fact that Q.�n; xh/ � B�=2.xh/ and (4.92), the layer in each

Q.�n; xh/ where Vun differs from
�
x�xh
jx�xhj

��1 , and thus from u , is of thickness

2�n . Consequently,

(4.122) Vun ! u in L1.�IR2/ as n!C1:
It remains to estimate the energy of u" in terms of �n and � . In particular, we

need to estimate the interactions between the square Q.�n; xh/ and the exterior.
Thanks to (4.121) we can split the energy as

1

"�"
E".u"I�/ � 2�N jlog "j "

�"

� 1

"�"
E"

�
u0"I� n

N[
hD1

Q
�n
0 .xh/

�

C
NX
hD1

�
1

"�"
E".u"IQ.�n; xh// � 2�jlog "j "

�"

�
:

By (4.118) and (4.49) we can pass to the limit in " and conclude that

lim sup
"!0

�
E".u"I�/
"�"

� 2�N jlog "j "
�"

�
�
Z
Jun\.�n

SN
hD1Q

�n
0

.xh//�n
dS1.u

�
n ; u

C
n /j�un j1 dH1 C C�:
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2338 M. CICALESE, G. ORLANDO, AND M. RUF

Before we can conclude, we have to identify the flat limit of the vorticity mea-
sures �u" associated with the sequence u" . Since the right-hand side in (4.123)
is finite, Proposition 4.10 implies that (up to a subsequence) �u"

f!x� for some
x� D PN

kD1 dk�yk with dk 2 Z and jx�j.�/ � N (we allow dk D 0 in order to
sum from 1 to N ). We claim that x� D � with � defined in the statement of the
proposition.

Here comes the argument. Fix x0 2 � n fx1; : : : ; xN g . Since the singular part
2�N jlog "j "

�"
of the estimate (4.123) is concentrated in the set

SN
hD1B2r".xh/

(cf. (4.73)) and r" ! 0 , we deduce that for 0 < � � � small enough we
have lim sup"!0

1
"�"
E".u"IB�.x0// < C1 . Since we assume here that �" �

"jlog "j , Remark 2.2 yields that �u" B�.x0/
f!0 . Testing this convergence with

a Lipschitz-function ' 2 C
0;1
c .B�.x0// such that '.x0/ D 1 we obtain that

x0 � fy1; : : : ; yN g (or x0 D yk for some k with dk D 0). Since x0 2
� n fx1; : : : ; xN g was arbitrary, we can write x� DPN

hD1 dh�xh .
It remains to prove that dh D deg.u/.xh/ for all 1 � h � N . Note that for

� � � it holds that u" D v" on each B�.xh/ , where v" is defined in (4.61). Due
to (4.75) we have for " small enough

(4.123)
1

"2
E".v"IB�.xh// � C��"

"
C 2�jlog "j � C jlog "j:

Hence we can apply [5, Proposotion 5.2], which states that in dimension 2 the flat
convergence of �v" B�.xh/ is equivalent to the flat convergence of the (normal-
ized) Jacobians of the piecewise affine interpolation of v" on B�.xh/ . Denote this
piecewise affine interpolation and the one associated to the function u on B�.xh/
by yv" and bu ."/ , respectively. Inserting the estimate (4.62) in the definition of the
piecewise affine interpolation one can show that

(4.124) jyv".x/ � bu ."/.x/j � C�" for all x 2 B�.xh/:
Taking into account one more time the estimate (4.123), we conclude that

kyv" �bu."/kL2.B�=2.xh//

�kryv"kL2.B�=2.xh//
C krbu."/kL2.B�=2.xh//

�
� C�"

�
1

"2
E".v"IB�.xh//C 1

"2
E".uIB�.xh//

�1
2 � C�"jlog "j 12 ;(4.125)

where the bound 1
"2
E".uIB�.xh// � C jlog "j can be proven with similar argu-

ments used to show (4.71). The above right-hand side vanishes when " ! 0 .
Thus [5, lemma 3.1] implies that the Jacobians fulfill Jyv" � Jbu ."/ f!0 . Recalling
that u D �

x�xh
jx�xhj

��1 on B�.xh/ , it follows from Step 1 of the proof of [4, theorem

5.1(ii)] that 1
�

Jbu ."/ f! deg.u/.xh/�xh . Fixing again ' 2 C 0;1
c .B�.xh// such that

'.xh/ D 1 , the above arguments imply

dh D h�; 'i D lim
"!0

h�u" ; 'i D lim
"!0

h 1
�

Jyv"; 'i D lim
"!0

h 1
�

Jbu ."/; 'i D deg.u/.xh/
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as claimed.
Since the limit measure equals � for all � , we deduce from the L1.�/-lower

semicontinuity of the �- lim sup, (4.122), and (4.120) that

�- lim sup
"!0

�
1

"�"
E" � 2�N jlog "j "

�"

�
.u; �/ � C�C

Z
�

jruj2;1 dx:

The claim then follows by the arbitrariness of 0 < � < �0 (recall that j�j.�/ D
N ). □

Together with Propositions 4.10 and 4.11 the next result finishes the proof of
Theorem 1.1.

PROPOSITION 4.24 (M vortices, upper bound). Assume that "� �" � "jlog "j .
Let � DPN

hD1 dh�xh with j�j.�/ DM 2 N and let u 2 BV .�IS1/ . Then

�- lim sup
"!0

�
1

"�"
E" � 2�M jlog "j "

�"

�
.u; �/ �

Z
�

jruj2;1 dx C jD.c/uj2;1.�/
C J .�; uI�/:

PROOF. Fix � > 0 . By definition (4.19) of J there exists a T 2 D2.��R2/ ,
with T 2 cart.���S1/ , @T j��R2 D ���JS1K , and uT D u , such that

(4.126)
Z
��R2

�. ET /djT j �
Z
�

jruj2;1 dx C jD.c/uj2;1.�/C J .�; uI�/C �:

In the previous inequality we applied Lemma 4.6 with �� in place of � (cf.
Remark 4.7).

Due to Lemma 4.17 we find an open set z� c � and a sequence of maps uk 2
C1. z��IS1/\W 1;1. z�IS1/ such that uk ! u in L1.�IR2/ , jGuk j.��R2/!
jT j.��R2/ , and deg.uk/.xh/ D dh for h D 1; : : : ; N . Reshetnyak’s continuity
theorem implies that

(4.127)
Z
�

jrukj2;1 dx D
Z
��R2

�. EGuk /djGuk j �
Z
��R2

�. ET /djT j C �

for k large enough. In the first equality we applied Lemma 4.6 and Remark 4.7 to
uk in �� . Applying Lemmata 4.18, 4.20, and 4.21 we reduce to the assumptions
in Proposition 4.22. By the lower semicontinuity of the � -lim sup with respect to
the strong L1 -convergence of u and the flat convergence of � , we conclude the
proof. □
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