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Abstract

A polymer-chain network is a collection of interconnected polymer-chains,
made themselves of the repetition of a single pattern called a monomer. Our first
main result establishes that, for a class of models for polymer-chain networks, the
thermodynamic limit in the canonical ensemble yields a hyperelastic model in con-
tinuum mechanics. In particular, the discrete Helmholtz free energy of the network
converges to the infimum of a continuum integral functional (of an energy density
depending only on the local deformation gradient) and the discrete Gibbs mea-
sure converges (in the sense of a large deviation principle) to a measure supported
on minimizers of the integral functional. Our second main result establishes the
small temperature limit of the obtained continuum model (provided the discrete
Hamiltonian is itself independent of the temperature), and shows that it coincides
with the �-limit of the discrete Hamiltonian, thus showing that thermodynamic and
small temperature limits commute. We eventually apply these general results to a
standard model of polymer physics from which we derive nonlinear elasticity. We
moreover show that taking the �-limit of the Hamiltonian is a good approximation
of the thermodynamic limit at finite temperature in the regime of large number
of monomers per polymer-chain (which turns out to play the role of an effective
inverse temperature in the analysis).
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1. Introduction and Statement of the Main Results

1.1. Polymer Physics and Nonlinear Elasticity

As opposed to (standard) fluids and to crystalline solids, the interesting proper-
ties of rubber stem from statistical physics rather than from quantum or molecular
physics. As Rubinstein and Colby write in the chapter “Networks and gels” of their
reference monograph [43] on polymer physics, Such networks, with either chemi-
cal or strong physical bonds, are important soft solids. (…) The entropic nature of
elasticity in rubbers is the origin of their remarkable mechanical properties.

The aim of the present work is to rigorously relate the “remarkable mechanical
properties” of rubber (best described by hyperelasticity at large deformation in
continuum mechanics) to “the entropic nature of elasticity” (best described at the
level of the statistical physics of polymer-chain networks). This question is a typical
instance of the general program of deriving macroscopic models from microscopic
descriptions in the vein of the sixth Hilbert problem.

Our contribution is twofold:

• On the one hand, we perform a rigorous thermodynamic limit of a general
class of statistical physics models towards nonlinear elasticity, which raises
interesting questions in mathematical analysis and probability.

• On the other hand, we present the state-of-the-art models of polymer-chain
physics, that we rewrite in a form suitable for the analysis, emphasizing the
modeling aspects, the physical aspects, and the relevant orders of magnitude
involved (as needed in asymptotic analysis). This enables us to justify standard
approaches in polymer physics in some relevant regimes, and to establish the
validity of a two-temperature model introduced in [30].

This work rigorously derives nonlinear elasticity from a polymer physics model
at finite temperature for the first time. It constitutes the first interaction between
polymer physics andmathematical analysis at a level that allows to answer questions
of interest to both communities. In particular, the use of mathematical analysis
allows one to turn qualitative physical insight into quantitative statements, which
is what this contribution is about. We expect further such interactions to develop.

This article is written in such a way that physics and mathematics can be read
separately. In the rest of this introduction, we focus on themathematical aspects: we
introduce the notation, themathematical (and statistical) description of the network,
and state the main results of the paper on the thermodynamic limit of the Gibbs
measure and the free energy, and discuss the structure of the proofs. Section 2 is
dedicated to physical aspects, and gives a gentle introduction to the polymer physics
of rubber-like materials. Not only does this allow us to motivate the class of models
considered in the analysis part of this contribution, but it also allows us to apply
these results to specific models of interest in polymer physics.
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1.2. Discrete Free Energies and Gibbs Measures

We start with the definition of admissible Euclidean graphs, and first fix once
and for all constants R, r, C0 > 0, and dimensions d, n. For technical reasons
we assume that 6R < C0. For more details on point processes, we refer to the
monograph [39].

Definition 1.1. Let P ⊂ R
d be a countable set.

(i) P is said to be in general position if there are no k + 1 points contained in a
common k − 1-dimensional affine subspace (1 � k � d) and no d + 2 points
lie on the boundary of the same sphere.

(ii) ADelaunay tessellationT = {Ti }i∈N associated withP is a partition ofRd into
d-simplices Ti whose vertices are inP and such that no point ofP is contained
inside the circumsphere of any simplex in T.

Recall that Delaunay tessellations are dual to Voronoi tessellations (if the point
set is in general position—otherwise one has to choose a specific representative, as
onewould do forZd ). Thiswill only be used to define piecewise affine interpolations
as needed for the volumetric part of the Hamiltonian—this definition does not
restrict generality.

We now introduce our model for the reference configuration of a polymer net-
work.

Definition 1.2. AnextendedEuclideangraphG = (L, E, S) ∈ (Rd)N×{0, 1}N×N×
{0, 1}N is a set of points L = {xi }i∈N ⊂ (Rd)N, an associated connectivity graph
E ∈ {0, 1}N×N, and a subset of points L1 := ∪i |Si=1{xi }. If Ei j = 1, we say that
(xi , x j ) is an edge of the graph, whereas if Si = 1 we say that xi is a “volumetric
point” (this wording will be clear later). We call B the set of edges of (L, E, S),
and T the Delaunay tessellation of Rd associated with ∪i |Si=1{xi }.1 We say that
G = (L, E, S) is an admissible extended Euclidean graph (graph in short) if it
satisfies

(i) dist(z,L1) � R for all z ∈ R
d ;

(ii) dist(x,L \ {x}) � r for all x ∈ L;
(iii) for all x ∈ L : {y ∈ L : (x, y) ∈ B} ⊂ BC0(x);
(iv) For all x, y ∈ L there exists a path P(x, y) of edges of B connecting x to y

with

P(x, y) ⊂ [x, y] + BC0(0),

where [x, y] = {x + t (y − x) : t ∈ [0, 1]};
(v) L1 is in general position.

We denote by G the set of graphs for which (i)–(v) hold.

1 Uniqueness fails when points are not in general position, which we rule out by condition
(v) of this definition.
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In the above definition one can obviously choose L1 = L. The wording “vol-
umetric points” is chosen in reference to the volumetric part of the Hamiltonian
which will be defined using points in L1—and not necessarily all the points of L.
This is related to the scale at which one wishes to impose incompressibility in the
physical model, and we refer the reader to Paragraph 2.2.4 for details. In mathemat-
ical terms, considering L1 on top of L adds some degree of freedom to define the
Hamiltonian—it does not yield any additional difficulty in the analysis, and should
be seen as a requirement of physical modeling only. Note that the set of vertices
L also satisfies (i). Point sets with the properties (i) and (ii) are sometimes called
Delone sets. This class of point sets has already been used as a reference config-
uration for atomistic models in elasticity in [4]—albeit at zero temperature. Other
assumptions have also been considered in the literature for different models. In [8],
the authors define random perturbations of periodic lattices and study the limit of
the ground state of the electronic cloud associated with atoms that are placed at
the vertices of this perturbed lattice. In [9], the authors address a similar model
(where electrons interact via a Coulomb potential) at finite temperature. The main
difference between [8,9] and [4] and the present contribution (besides the assump-
tions on the graphs, which is not essential for our analysis) is the type of unknown.
In [8,9] the authors characterize the density of electrons, whereas in [4] and in
the present contribution we characterize the deformation of the lattice points. Note
next that (ii) and (iii) imply that the degree of each vertex is bounded uniformly
(this is one of the physical constants of the model). Assumption (iv) is technical
and ensures a coercivity property (see Lemma 4.3). Assumption (v) is to avoid the
non-uniqueness of Delaunay tessellations—this is not essential but convenient to
simplify measurability issues.

Next we endow G with a probabilistic structure, and consider on G ⊂ (Rd)N×
{0, 1}N×N × {0, 1}N the σ -algebra � given by the trace σ -algebra of B(Rd )N ⊗
B{0,1}N×N ⊗ B{0,1}N , where each factor denotes the Borel σ -algebra given by the
product topology on the factors. We do not distinguish between (L, E, S) and
(L,B,T), which we will both denote by G. We then give ourselves a statistics on
this set of Euclidean graphs described by a measure E on (G, �), and address the
minimal assumptions on this distribution E. They are related to the operation of the
shift group (Zd ,+) onG, that is, for any shift vector z ∈ Z

d and anyEuclidean graph
G = (L,B,T), the shifted graph G+z = (L+z,B+z,T+z) is again a Euclidean
graph. The first assumption is stationarity, which means that for any shift z ∈ Z

d

the random Euclidean graphs G and G + z have the same (joint) distribution. The
second assumption is ergodicity, whichmeans that any (integrable) randomvariable
F(G) (that is a measurable map of the random graph) that is shift invariant, in the
sense that F(G+z) = F(G) for all shift vectors z ∈ Z

d and almost-everyEuclidean
graph G is actually constant, that is F = E[F] for almost every Euclidean graph
G. Throughout this paper we will tacitly assume stationarity and ergodicity. Our
results (except Remark 2) remain valid under the mere assumption of stationarity,
but all asymptotic quantities may still be random.

We are now in the position to introduce the Hamiltonian and the free energy
at the microscopic level. Let D ⊂ R

d be an open bounded reference domain with
Lipschitz boundary. Given a small parameter 0 < ε � 1 and any U ⊆ R

d we
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set Uε = U
ε
, and use the short-hand notation UL

ε := L ∩ Uε—with this choice
the microscopic scale is set to 1 and the macroscopic scale to 1

ε
. We consider

microscopic deformations u : DL
ε → R

n , whose internal energy takes the form

Hε(D, u) =
∑

(x,y)∈B
x,y∈Dε

f (x − y, u(x)− u(y))+ Hvol,ε(D, u), (1.1)

for some map f and a volumetric term that penalizes large changes of volume and
change of “orientation” (if it is not identically zero we always consider the case
n = d). In order to define such a term we need to introduce some further notation.
Denote by V1 = {C1(x)}x∈L1 the Voronoi tessellation of Rd with respect to the
volumetric points L1, and recall that

C1(x) := {z ∈ R
d : |z − x | � |z − y| ∀y ∈ L1}.

We define the interior Voronoi cells by

V1,ε(D) = {C1(x) ∈ V1 : T ⊂ Dε for all T ∈ T such that T ∩ C1(x) �= ∅}.

The intuition behind these cells is that we want to define Hvol,ε(D, ·) using only
the volumetric points inside the domain Dε. Given u : DL

ε → R
d we denote by

uaff : ⋃T⊂Dε
T → R

d the continuous and piecewise affine interpolation with
respect to the triangulation T and the values of {u(x)}x∈L1 . With these quantities
at hand the volumetric term takes the form

Hvol,ε(D, u) =
∑

C1(x)∈V1,ε(D)

|C1(x)|W
(
detC1(x)(∇uaff)

)
(1.2)

for somemapW and the short-handnotationdetC1(x)(∇uaff) :=
ffl
C1(x)

det(∇uaff) dz.
By definition of the interior Voronoi cells, this sum is well-defined and, since uaff is
piecewise affine, the integrals over the Voronoi cells can be rewritten as finite sums.
The random character of this Hamiltonian Hε is encoded by B and T (which is a
more descriptive notation of the actual event—a random graph—than the standard
“ω”). We make three assumptions on the discrete energy densities f and W . The
first set of assumptions is used for the general results.

Hypothesis 1. The functions f : Rd × R
n → R+ and W : R → R+ are (jointly)

measurable, nonnegative and there exist a constant C > 0 and an exponent p > 1
such that for all z ∈ R

d , ξ, ζ ∈ R
n, λ ∈ R we have the (two-sided) p-growth

condition

1

C
|ξ |p − C � f (z, ξ) � C(1+ |ξ |p), 0 � W (λ) � C(1+ |λ| p

d ). (1.3)

Some of our results require a slightly stronger set of assumptions.
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Hypothesis 2. The function f : Rd × R
n → R+ is jointly measurable, W : R →

R+ is continuous, and there exist a constantC > 0 and an exponent p > 1 such that
for all z ∈ R

d , ξ, ζ ∈ R
n, λ, λ′ ∈ R we have the (two-sided) p-growth condition

1

C
|ξ |p − C � f (z, ξ) � C(1+ |ξ |p), 0 � W (λ) � C(1+ |λ| p

d ), (1.4)

and the local Lipschitz conditions

| f (z, ξ)− f (z, ζ )| � C |ξ − ζ |(1+ |ξ |p−1 + |ζ |p−1),
|W (λ)− W (λ′)| � C |λ− λ′|(1+ |λ| p

d −1 + |λ′| p
d −1). (1.5)

If W �≡ 0, then we assume in addition that n = d and p � d.

The third set of assumptions is similar to Hypothesis 2, but is tuned for our
applications to polymer physics, and exploits the specific form of the model.

Hypothesis 3. The function f : R
d × R

d → R+ is jointly measurable, W :
R → R+ is continuous, and there exist an exponent p � d and constants 0 <

C p, C2, C ′
p, C ′

2, C, C ′ such that for all z ∈ R
d , ξ, ζ ∈ R

d , λ, λ′ ∈ R we have the
(two-sided) p-growth condition

C2|ξ |2 + C p|ξ |p � f (z, ξ) � C ′
2|ξ |2 + C ′

p|ξ |p, 0 � W (λ) � C(1+ |λ| p
d ),

(1.6)

and the local Lipschitz conditions

| f (z, ξ)− f (z, ζ )| � |ξ − ζ |(C ′
2(|ξ | + |ζ |)+ C ′

p(|ξ |p−1 + |ζ |p−1)),
|W (λ)− W (λ′)| � C ′|λ− λ′|(1+ |λ| p

d −1 + |λ′| p
d −1).

(1.7)

Note that the second condition in (1.7) follows automatically from (1.6) if W
is assumed to be convex.

Under the above Hypotheses the passage from discrete Hamiltonians to con-
tinuum energies is well-understood at zero temperature (e.g. by �-convergence in
[3,4,19]; see also [18] for results on local minimizers). In this paper we are inter-
ested in the asymptotic behavior of the free energy (that is, at positive temperature)
when we prescribe boundary conditions. To this end, given ϕ ∈ Lip(D,Rn) we
define the class of states associated with ϕ at scale 1

ε
as

Bε(D, ϕ) = {u : Dε ∩ L→ R
n, |u(x)− 1

ε
ϕ(εx)| < 1 if dist(x, ∂ Dε) � C0}.

(1.8)

We denote by V := {C(x)}x∈L the Voronoi tessellation of Rd associated with L
(note that this is not necessarily the dual tessellation of T—the latter is given by V1
which could andwill be coarser).We shall identify functions ofBε(D, ϕ)with their
piecewise constant extensions on the union of Voronoi cells C(x) for x ∈ Dε ∩ L.
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The partition function Zβ
ε,D,ϕ at inverse temperatureβ > 0with boundary condition

ϕ ∈ Lip(D,Rn) is defined as

Zβ
ε,D,ϕ :=

ˆ

Bε(D,ϕ)

exp(−βHε(D, u)) du, (1.9)

where the integration is understood in the sense of the product measure du =∏
x j∈Dε∩L du(x j ), whereas the Helmholtz free energy writes

Eβ
ε (D, ϕ) := − 1

β|Dε| log
(
Zβ

ε,D,ϕ

)
. (1.10)

We conclude this section by the definition of the Gibbs measure. For all ε > 0
and v ∈ L p(D), we introduce the rescaled version u := 
1/εv of v as


1/εv : Dε → R
n, z �→ 1

ε
v(εz).

We define the Gibbs measure μ
β
ε,D,ϕ at temperature β associated with the Hamilto-

nian Hε(D, ·) and theboundary conditionϕ as theprobabilitymeasure on L p(D,Rn)

characterized by

L p(D) � V �→ μ
β
ε,D,ϕ(V ) := 1

Zβ
ε,D,ϕ

ˆ


1/εV∩Bε(D,ϕ)

exp(−βHε(D, u)) du,

(1.11)

where we divided by the partition function to ensure that μβ
ε,D,ϕ(L p(D)) = 1 (see

Section 5 for a rigorous definition). The main aim of this article is to study the
thermodynamic limit of Eβ

ε (D, ϕ) and μ
β
ε,D,ϕ , that is their asymptotic behavior as

1
ε
↑ ∞ (large-volume limit).
In all the results to come, and in the proofs, quantities of interest are random

variables (or randommeasures or functionals). As such, they depend on the realiza-
tion of the random graph. We do not make this dependence explicit in the notation,
except when it is strictly necessary (in which case we put an additional argument,
e.g. we write Hε(D, u, G) instead of Hε(D, u)).

1.3. Thermodynamic Limit

The following analysis is essentially an extension to general random graphs
of the inspiring results [34] by Kotecký and Luckhaus on the Zd lattice. We start
with the convergence of the Helmholtz free energy for linear boundary conditions
ϕ� : x �→ �x and the definition of the limiting (free) energy density of the contin-
uum hyperelastic model.

Theorem 1.3. Assume Hypothesis 1. Then for all β > 0 there exists a determin-

istic quasiconvex function W
β : Rn×d → R satisfying the two-sided p-growth

condition

∀� ∈ R
n×d : 1

C
|�|p − C � W

β
(�) � C(1+ |�|p),
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and for all bounded Lipschitz domains D ⊂ R
d , the Helmholtz free energy defined

in (1.10) satisfies almost surely

∀� ∈ R
n×d : lim

ε↓0 E
β
ε (D, ϕ�) = W

β
(�).

Theorem 1.3 is only an existence result. It is essentially of no use for numerical
purposes. Part of the rest of the present analysis is dedicated to the justification of

approximations of W
β
that are “computable” numerically. This concerns the small

temperature limit (cf. Theorem 1.6 below) and the case of a quadratic Hamiltonian
(cf. Section 6.4 below).

The extension of this result to general boundary conditions ϕ ∈ Lip(D,Rn) is
as follows, and implies the convergence of theHelmholtz free energy to the infimum

of an energy functional associated with the free energy density W
β
—a continuum

hyperelastic model.

Theorem 1.4. Assume Hypothesis 1 and for all β > 0, let W
β

be the well-defined
energy density of Theorem 1.3. Then for all bounded Lipschitz domains D ⊂ R

d

we have almost surely for all boundary conditions ϕ ∈ Lip(D,Rn)

lim
ε↓0 E

β
ε (D, ϕ) = inf

{  

D
W

β
(∇u(x))dx : u ∈ ϕ + W 1,p

0 (D)
}
,

where
ffl

D is a short-hand notation for 1
|D|

´
D .

We conclude the study of the thermodynamic limit by establishing a large-
deviation principle which ensures that the Gibbs measure concentrates as ε ↓
0 on states that minimize the energy functional associated with W

β
in the set

of continuum deformations that satisfy the boundary condition ϕ. For a general
introduction to the subject we refer to [24].

Theorem 1.5. Assume Hypothesis 1 and for all β > 0, let W
β

be the well-defined
energy density of Theorem 1.3. Then for all bounded Lipschitz domains D ⊂ R

d ,
almost surely, and for all boundary conditions ϕ ∈ Lip(D,Rn), the measure μ

β
ε,D,ϕ

satisfies a strong large deviation principle with speed (β|Dε|)−1 and good rate
functional Iβ

D,ϕ : L p(D,Rn) → [0,+∞] finite only on ϕ + W 1,p
0 (D,Rn) and

characterized by

ϕ + W 1,p
0 (D,Rn) � u �→ Iβ

D,ϕ(u) :=
 

D
W

β
(∇u(x)) dx

− inf
v∈ϕ+W 1,p

0 (D,Rn) D
W

β
(∇v(x)) dx .

More precisely, for every open and closed setsU ⊂ L p(D,Rn)and V ⊂ L p(D,Rn),
we have

lim inf
ε↓0

1

|Dε| log(μ
β
ε,D,ϕ(U )) � − inf

u∈U
Iβ

D,ϕ(u),

lim sup
ε↓0

1

|Dε| log(μ
β
ε,D,ϕ(V )) � − inf

u∈V
Iβ

D,ϕ(u).
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Remark 1. In the scalar case in some regimes the strict convexity of W
β
is known

(see, e.g., [1,21,22,25]). Given such a result the large deviation principle immedi-
ately implies that the Gibbs measures converge to the Dirac measure supported on
the unique minimizer of the rate functional. However, in our vectorial setting, in

general we don’t even expect convexity of W
β
; see also [34, Lemma 8].

Remark 2. From a continuum mechanics point of view the energy density W
β

should be frame-indifferent, that is, W
β
(R�) = W

β
(�) for all deformation gra-

dients� ∈ R
n×d and all rotations R ∈ SO(n). Ourmodel yields a frame-indifferent

energydensitywhenever thediscrete interactions are of the form f (z, ξ) = f̃ (z, |ξ |)
for some function f̃ : Rd × R → R. Indeed, in this case one can use the change
of variables ϕ �→ Rϕ to show that Eβ

ε (D, ϕR�) = Eβ
ε (D, ϕ�), which implies

frame-indifference of the limit. In case of rubber elasticity it is also customary to

assume that W
β
is isotropic, that is, W

β
(�R) = W

β
(�) for all deformation gra-

dients � ∈ R
n×d and all rotations R ∈ SO(d). In order for W

β
to be isotropic it is

enough to assume that the discrete interactions are of the form f (z, ξ) = f̂ (|z|, ξ)

for some function f̂ : R×R
n → R and that in addition the graph G is isotropic in

law (that is, the random variable RG := (RL, RB, RT) has the same (joint) distri-

bution as G for all R ∈ SO(d)). Under this assumptions W
β
is isotropic. The proof

of this result, which proceeds as that of [4, Theorem 9] up to minor modifications,
uses a change of variables in probability in the formula

W
β
(�R) = lim

ε↓0 E[E
β
ε (B1(0), ϕR�)],

where B1(0) denotes the unit ball. The following two facts should be stressed. First,
from a modeling point of view the isotropy of the polymer network is a natural
assumption (otherwise no isotropy of the model should be expected). Second, the
assumptions above do not involve the volumetric part (which plays a role in our
models only in the case n = d) since it has the correct invariant structure by
definition.

In the following section we complete the study of the thermodynamic limit by

analyzing the behavior of W
β
and Iβ

D,ϕ when the temperature tends to zero, that
is in the regime β ↑ ∞.

1.4. Zero-Temperature Limit

A natural guess for the zero-temperature limit of the Helmholtz free energy

W
β
is the large-volume limit of the infimum of the Hamiltonian Hε(D, ·). The

following result, which is new even for periodic lattices, establishes rigorously
the �-convergence of the rate functional Iβ

D,ϕ towards the �-limit of the discrete
Hamiltonian studied in [4], and therefore indeed implies the commutation of the
limits β ↑ +∞ and ε ↓ 0. In a nutshell, this relates the large deviation principle to
�-convergence of the Hamiltonian at vanishing temperature. Note that we require
the stronger Hypothesis 2.
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Theorem 1.6. Assume Hypothesis 2 and for all β > 0, let W
β

be the well-defined
energy density of Theorem 1.3 and for all Lipschitz domains D and boundary condi-
tions ϕ ∈ Lip(D,Rn), let Iβ

D,ϕ : L p(D,Rn) → [0,+∞] be the rate functional of

Theorem 1.5. Then, as β ↑ +∞, Iβ
D,ϕ almost-surely �(L p)-converges towards the

integral functional I∞D,ϕ : L p(D,Rn) → [0,+∞] finite only on ϕ+W 1,p
0 (D,Rn)

and characterized by

ϕ + W 1,p
0 (D,Rn) � u �→ I∞D,ϕ(u) :=

 

D
W

∞
(∇u(x)) dx

− inf
v∈ϕ+W 1,p

0 (D,Rn) D
W

∞
(∇v(x)) dx,

where W
∞

is an almost-surely well-defined quasiconvex energy density satisfying
the two-sided growth condition

∀� ∈ R
d×n : 1

C
|�|p − C � W

∞
(�) � C(|�|p + 1), (1.12)

and given for all � ∈ R
n×d by

W
∞

(�) := lim
ε↓0 inf

u∈Bε(D′,ϕ�)

1

|D′
ε|

Hε(D′, u)

for any Lipschitz bounded domain D′ ⊂ R
d , where Bε(D′, ϕ�) is defined in (1.8).

In addition, for all � ∈ R
n×d ,

|W∞
(�)− W

β
(�)| � logβ

β
C
(
1+ |�|p−1). (1.13)

Remark 3. Theorem 1.6 implies in particular that the minimizers of the rate func-
tionals Iβ

D,ϕ given by Theorem 1.5 at inverse temperature β converge weakly in

W 1,p(D,Rn) to minimizers of I∞D,ϕ . Moreover, due to equicoercivity of both func-
tionals, from [12, Proposition 1.18] we infer that for every open and closed sets
U ⊂ L p(D,Rn) and V ⊂ L p(D,Rn)

(i) lim supβ↑+∞ infu∈U Iβ
D,ϕ(u) � infu∈U I∞D,ϕ(u);

(ii) lim infβ↑+∞ infu∈V Iβ
D,ϕ(u) � infu∈V I∞D,ϕ(u).

Those inequalities allow to pass to the limit β → +∞ in the inequalities of the
large deviation principle. For quadratic functionals we shall prove a much stronger
statement in Corollary 2, namely the limit free energy and the density of the�-limit
differ only by a β-dependent constant (which does not affect minimization). This
provides a rigorous justification of the so-called phantom model (for which the
free energies of polymer-chains are assumed to be Gaussian), an elementary linear
model of polymer physics (see e.g. [43, Section 7.2.2]).
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Remark 4. If Hypothesis 2 is replaced by Hypothesis 3, the conclusion (1.13) can
be strengthened to

|W∞
(�)− W

β
(�)| � logβ

β
(C ′′

2 |�|2 + C ′′
p|�|p + d

)
, (1.14)

for some C ′′
2 and C ′′

p depending on d, p, C, C ′, C2, C ′
2, C p, C ′

p.

1.5. Relation to the Literature

This contribution belongs to the large body of literature that aims at deriving
macroscopic models from microscopic descriptions of solids. To classify these
works, one needs to distinguish between

• solids: crystals versus disordered solids;
• geometric description: Eulerian (in which case a point set is enough to describe
the Hamiltonian) or Lagrangian (in which case, one needs a graph on top of a
point set to describe the Hamiltonian);

• interactions: long-range interactions (typically via a two-body Lennard–Jones
potential) or short-range;

• temperature: ground-states or Gibbs measures.

For crystalline solids (like metals), typical questions concern crystallization,
the Cauchy–Born rule, phase transitions, etc. Despite many contributions andmuch
progress, there is still yet no complete picture on how to pass fromquantummechan-
ical descriptions to linear elasticity (and plasticity, etc.). The mathematical tools
developed in this context are completely different from the tools used in the present
contribution, which makes these works and the present work quite unrelated.

Disordered solids—like rubber—have received much less attention from the
mathematical community than crystals (for related contributions from the physics
and engineering literature, we refer the reader to Section 2). The twist for such
models is that the microscopic description is not that of the atoms and of the quan-
tum world, but the statistical physics of random graphs. At zero temperature this
reduces the problem to taking a large-scale limit of a ground state of some graph.
Such problems are reminiscent of the homogenization theory, and their study us-
ing the framework of �-convergence was pioneered by Braides and collaborators
[14–17], etc. For periodic lattices, the first result treating Hamiltonians of the form
considered here at zero temperature was obtained in [3], whereas the case of pos-
itive temperature was successfully analyzed by Kotecký and Luckhaus in [34], as
we already mentioned. Such Hamiltonians are however not meant to describe crys-
talline solids at the atomic length scale, and are more reminiscent of Hamiltonians
used in polymer physics, which is however the realm of disordered materials rather
than crystals. In this context, the work [3] was extended to stochastic lattices in [4],
whereas the extension of [34] is the aim of the present contribution.

1.6. Structure of the Paper and of the Proofs

Assume momentarily that the volumetric term W ≡ 0 vanishes. Our main two
results are Theorems 1.5 and 1.6.
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The general structure of the proof of Theorem 1.5 follows that of Kotecký and
Luckhaus in [34], and adaptations are mainly technical (due to the randomness and
the general structure of the graph). One of the most important quantities to study
is the localized partition function defined for a Lipschitz domain O ⊂ R

d and for
subsets of deformations V ⊂ {u : OL

ε → R
n} by

Zβ
ε,O(V ) :=

ˆ

V
exp(−βHε(O, u)) du.

For v ∈ L p
loc(R

d ,Rn) and O ∈ AR(Rd) we then define

F−
κ (O, v) = lim inf

ε↓0 − 1

β|Oε| log(Zβ
ε,O(Np(v, O, ε, κ))),

F+
κ (O, v) = lim sup

ε↓0
− 1

β|Oε| log(Zβ
ε,O(Np(v, O, ε, κ))),

where

Np(v, O, ε, κ) := {u : OL
ε → R

n,
∑

OL
ε

εd |vε(x)− εu(x)|p < κ p|O|1+ p
d }

is a rescaled discrete L p-neighborhood of some discrete approximation of v (see
Section 3.1 for details). Both quantities are decreasing in κ , so that wemay consider
their limits as κ ↓ 0

F−(O, v) = lim
κ→0

F−
κ (O, v),

F+(O, v) = lim
κ→0

F+
κ (O, v).

In view of [24, Theorem 4.1.11] these quantities (if equal) are a natural candidate
for the rate functional of a large deviation principle for the Gibbsmeasures—except
that they do not take into account the boundary values. Incidentally, notice that if
we would replace the integral in the localized partition function by the infimum
of the Hamiltonian over the set V , the quantities F−(O, v) and F+(O, v) would
coincide with the �(L p(D))-liminf and �(L p(D))-limsup, respectively, of the
rescaled Hamiltonian H̃ε : L p(D,Rn) → [0,+∞] defined by

H̃ε(v, O) =

⎧
⎪⎪⎨

⎪⎪⎩

1

|Oε|
∑

(x,y)∈B
εx,εy∈O

f

(
x − y,

v(εx)− v(εy)

ε

)
if v ∈ PCε.

+∞ otherwise,

(1.15)

where PCε denotes a suitable class of piecewise constant functions that can be
identified with functions v : εL → R

n (see Section 6.1 where we make this
connection rigorous in the small temperature regime).

Let us now describe the main steps of the proof of the main results and the
related flow of lemmas.

Section 3: Preliminary estimates. In this section we extend some auxiliary results
of [34] to the setting of random graphs. More precisely,
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• We first prove a discrete Poincaré inequality on bounded subsets of an admis-
sible graph (L, E) for functions with zero boundary values (Lemma 3.1).

• In Lemmata 3.2 and 3.3 we obtain a control on the localized partition function
Zβ

ε,O(V ) for sets V of deformations satisfying a discrete boundary condition.
This estimate is particularly useful because it scaleswith the size of the reference
set O . (The only difference with [34, Lemma 12] is that the restriction of the
graph to OL

ε might not be connected in the random setting.)
• Lemma 3.4 (similar to [34, Lemma 1]) shows that one can neglect deformations
with large energy in the computation of the localized partition function. More
precisely, this estimate will imply an exponential tightness on the sublevel sets
of the Hamiltonian and allows to restrict most of the analysis to deformations
with a uniformly bounded discrete p-Dirichlet energy.

• The final technical ingredient, Proposition 1 (similar to [34, Lemma 2]), is
an interpolation inequality which is to large deviation principles what the so-
called ‘fundamental estimate’ is to homogenization of integral functionals by
�-convergence (cf. [13, Chapter 11], and Proposition 11.7 therein). In a nutshell
this result ensures that one can compute the quantities F±

κ (O, v) either with or
without an imposed soft boundary condition as long as the (rescaled) boundary
condition is L p-close to the function v. For the reader’s convenience we display
in the appendix a proof of that technical result that we hope to be slightly more
transparent than the original version presented in [34].

Section 4: Definition and properties of the Helmholtz free energy. This section
is dedicated to the analysis of the Helmholtz free energy defined in (1.10) with
linear boundary conditions. This is a necessary step to be able to treat more general
boundary conditions by localizing the partition function via a suitable partition of
the reference set D (that allows to treat deformations locally as affine functions).
More precisely, defining the linear deformation of the boundary as the linear map
x �→ �x :

• We first prove the almost sure (with respect to the randomness of the graph)
existence of the limit of the Helmholtz free energy Eβ

ε (D, ϕ�) as ε → 0, that

this limit W
β
(�) is deterministic, and that it does not depend on the reference

set D (cf. Proposition 2). To this end, we replace the classical (deterministic)
subadditivity arguments used in [34] by the subadditive ergodic theorem [2].

• In Lemma 4.1 we give several equivalent formulas for the limit W
β
(�) of the

Helmholtz free energy, that will be convenient in different steps of the proof.
On the one hand, we show that we can restrict the class of deformations to
any discrete L p-ball centered at the linear map x �→ �x rather than only
imposing this deformation at the boundary. On the other hand, we prove that

W
β
(�) = F+(O, ϕ�), which provides a formula that only takes into account

deformations that are L p-close to the linear deformation but this time without
imposing boundary conditions. Again the main difference with [34, Lemma 3]
is the use of the ergodic theorem.

• The first significant difference in this random setting comes with Proposition

3, which is related to null sets. Since we want to use the values W
β
(�) to
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reconstruct the limit of the free energy for general boundary conditions, we have
to ensure that we do not take an uncountable union of null sets when applying
the ergodic theorem to linear deformations �. This requires to establish some
uniform stability of Eβ

ε (D, ϕ�) with respect to � as ε → 0.

• Lemma 4.2 establishes the p-growth of � �→ W
β
(�) from above (which

follows again from the subadditive ergodic theorem). Lemma 4.3 deals with
the p-growth from below (and indeed quantifies the statement of [34, Lemma 3
(c)]). This is where the geometric assumptions (i)–(iv) of Definition 1.2 come
into play, which is the price to pay to consider general graphs as we do here.

• Next we show that the functions v �→ F±(O, v) are L p(O)-lower semicontin-
uous (Lemma 4.4).

• Finally, in Theorem 4.5 we establish the identity

F−(D, v) = F+(D, v) =
 

D
W

β
(∇v) dx, (1.16)

which then implies the quasiconvexity of the map � �→ W
β
(�) (that is Theo-

rem 1.3) by the previously proven lower semicontinuity results. For the upper

bound F+(D, v) �
ffl

W
β
(∇v) dx we may restrict the analysis to piecewise

affine function by a density argument using the continuity and p-growth condi-

tions of the map � �→ W
β
(�) as well as the lower semicontinuity of the LHS

established above. At this point it is crucial to put additional soft boundary
conditions on the boundary of each triangle on which the macroscopic defor-
mation is affine tomake the partition function almost superadditive. Herewe use

the alternative characterization of W
β
(�) from Lemma 4.1. The lower bound

F−(D, v) �
ffl

D W
β
(�) dx is achieved via blow-up which allows to treat v

locally as an affine function. Although the basic idea is the same as in [34], the
disorder of the graph introduces nontrivial additional boundary terms. Note that
the equality (1.16) is reminiscent of a �-convergence result without boundary
conditions.

Section 5: Proof of the large deviation principle. With the identity (1.16) at
hand the large deviation principle for the Gibbs measure is rather standard (cf. [24,
Theorem 4.1.11]) using that the interpolation estimate (Proposition 1) allows one to
remove or impose boundary conditions without changing the value of the logarithm
of the partition function too much. Again, note the similarity with �-convergence
problems in terms of addition of boundary conditions once the �-limit is known
and a fundamental estimate is available (e.g. [13, Proposition 11.7]).

• In Lemma 5.1 we show that rescaled sublevel sets of the Hamiltonian are com-
pact in L p (which relies on the discrete Poincaré inequality). Combined with
Lemma 3.4 this yields the exponential tightness of the Gibbs measures (cf.
Lemma 5.2) which allows to show the upper bound of the large deviation prin-
ciple for compact sets.

• We conclude by proving Theorem 1.5 following the standard approach up to
some minor modifications (our topological neighborhoods indeed depend on
ε). As a corollary we deduce Theorem 1.4.
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We then turn to Theorem 1.6.
Section 6: The small temperature limit. From themathematical point of view, this
section contains themain novelty of this contribution. It relates the rate functional of
the large deviation principle to the �-limit of the rescaled Hamiltonians H̃ε defined
in (1.15) in the small temperature regime. This makes a rigorous connection (for
the models under consideration) between the variational and the statistical physics
approaches (which should not come as a surprise neither from a physical point
of view, nor from the mathematical side in view of the similarities between large
deviation principles and �-convergence pointed out above in this context).

• In Theorems 6.1 and 6.2 we first briefly recall the variational results on the
Hamiltonian proven in [4].

• in Lemma 6.3 we argue that the density of the �-limit can be calculated either
with clamped boundary conditions or the softer ones considered for the Gibbs
measures.

• In Lemmata 6.4 and 6.5 we prove upper and lower bounds for the difference

W
β
(�) − W

∞
(�), where W

∞
(�) denotes the density of the �-limit of the

rescaled Hamiltonians. From those bounds Theorem 1.6 easily follows.
• We conclude this section by considering the so-called phantom model which
corresponds to a quadratic Hamiltonian. In Corollary 2 we prove that in this

case the density of the �-limit differs from the limit free energy W
β
(�) only

by a temperature-dependent constant. Hence minimizing the rate functional or
the �-limit yields the same optimal deformation.

Section 7: Volumetric effects In this last section we show how to incorporate the
volumetric term in the analysis, which was not considered in [34] and is crucial for
our applications to polymer physics. More precisely,

• in Lemma 7.1 we prove a local upper bound for the volumetric part in terms
of finite differences on the graph while in Lemma 7.2 we show that also the
volumetric term leads to a stationary Helmholtz free energy when we impose
linear boundary conditions.

• Lemma 7.3 provides the global continuity estimate of the volumetric part of the
Hamiltonian that was needed to obtain the estimates in the small temperature
regime.

2. From Polymer Physics to Rubber Elasticity

2.1. Continuum Mechanics and Phenomenology

Rubber-like materials are the realm of continuum mechanics and constitute the
paradigmatic example of hyperelasticmaterials at large deformations—that is, their
energy density and stress tensor only depend locally on the gradient of deformation.

2.1.1. Kinematics and Hyperelasticity Consider a piece of material that occu-
pies a domain D at rest, andwhich is deformed according to somemap u : D → R

3



1142                          

(in Lagrangian coordinates). The energy of the deformed configuration then takes
the form

I(D, u) :=
ˆ

D
W (∇u(x)) dx,

where W : R3×3 → [0,+∞],� �→ W (�) is the energy density of the material
(minimal at � = Id), and is referred to as its constitutive law. The associated Piola
stress tensor is given by D�W (�). A crucial physical requirement on the map W is
frame-indifference, that is, for all rotations R ∈ SO3(R) and deformation gradients
� ∈ R

3×3, W (R�) = W (�). Rubber materials are also usually isotropic, which
reads as follows on W : For all rotations R ∈ SO3(R) and deformation gradients
� ∈ R3×3, W (�R) = W (�). Finally, rubber materials are nearly-incompressible,
which typically requires that W (�) gets large when | det�− 1| � 1, and should
not allow interpenetration of matter, which at least imposes that W (�) = +∞ if
det� � 0. For a given deformation ϕ : ∂ D → R

3 of the boundary, the piece of
deformedmaterial (that occupied D in the reference configuration) has now energy

E(ϕ) := inf

{ˆ

D
W (∇u) | u : D → R

3, u|∂ D ≡ ϕ

}
, (2.1)

and its deformation is given by the minimizer of this functional (if attained and
unique). We refer to [20] for classical mathematical aspects of nonlinear elastic-
ity. Standard mechanical experiments illustrate the complexity of the nonlinear
response of these materials at large deformations—see Fig. 1 for the Treloar exper-
iments in uniaxial traction [45].

2.1.2. PhenomenologicalConstitutiveLawsandTheirLimitations Thechoice
of the energy density W depends on the actual material considered. The energy
densities used in practice in applied mechanics and in the rubber industry are
phenomenological—see e.g. the survey [6] on constitutive laws for rubber. De-
riving suitable constitutive laws in applied mechanics and engineering remains a
hot topic in the field. A fair statement is that discrepancies between experiments
and numerical simulations are due to the choice of the constitutive laws rather than
the numerical accuracy achieved. Discrepancies are not only quantitative but also
qualitative. An example of such a qualitative discrepancy is the so-called Rivlin
effect. For uniaxial deformations

�λ := diag(λ, λ−1/2, λ−1/2)

with λ > 0, consider the Mooney plot

λ �→ M(λ) = σ11(λ)− σ22(λ)

2(λ2 − 1/λ)
,

where σ is the Cauchy stress tensor (that is, ∇W written in the deformed configu-
ration). A material displays the Rivlin effect if this map is concave around λ = 1.
Rubber materials generically exhibit such a Rivlin effect, see for instance Figure 9
in [42]. However, for all of the constitutive laws listed in [6], the map M is convex
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around λ = 1, which shows that something is missing in the phenomenological
understanding of rubber in this regime. The common interpretation is that phe-
nomenological models at the continuum level are missing physical insight, which
is however only available at the scale of the polymer-chain network. This raises the
question: How can one upscale polymer physics models to the continuum level in
a quantitative way?

2.1.3. Towards Constitutive Laws Based on Polymer Physics Before we turn
more thoroughly to polymer physics, let us quickly describe some specific ap-
proaches to upscaling. So far, all these approaches take as a “discrete model” a
network of elastic springs (the elasticity of which is reminiscent of that of a poly-
mer chain at a given temperature), and propose a way to upscale it. Some further
assumptions are made to that end. In some works, an additional phenomenological
assumption is made at the discrete level to be able to explicitly upscale the model
(e.g. [5,33,38,44] to cite a few). In some other works [10,11], a numerical model
is introduced based on finite elements, which imposes that the discrete network
be a Delaunay tessellation, and does not give rise to an effective model (no limit
is taken). From the mathematical point of view, none of these works are satis-
factory: they either shift the phenomenological assumptions from the continuum
scale to the discrete scale, or they remain at a discrete level (finite elements e.g.).
The model which has least phenomenological assumptions is the two-temperature
model introduced, analyzed, and numerically investigated in [4,30]. As in [10,11],
it is based on a simplified polymer physics model. But as opposed to [10,11], the
“thermodynamic limit” thereof is established (see below for details), and gives rise
to a continuum model. Incidentally, the numerical simulations of the energy den-
sity associated with the two-temperature model display the desired Rivlin effect,
cf. [30].

This state-of-the-art of constitutive laws for rubber-like materials constitutes
the starting point of the series of works [4,26,30,31] in the field. We believe that
rigorous upscaling methods can be of added value to the quantitative and practical
modeling of rubber elasticity. In particular, although the two-temperature model
of [4,30] yields promising results, it does not appear yet as a consistent approx-
imation of a consensual polymer physics model. Our analysis (and in particular
Theorem 1.6) establishes this result in the regime of large number of monomers per
polymer-chain (which will play the role of an effective inverse temperature)—see
details in Section 2.3. In order to draw the link between the analytical results of
this paper and the derivation of actual rubber-like materials from actual polymer
physics models, we need to give some background on polymer physics.

2.2. Polymer Physics

Rubber-like materials are also the realm of the statistical physics of polymer-
chain networks and constitute the paradigmatic example of materials for which
elastic properties are purely entropic—that is, they are only due to thermal fluctu-
ations. The following constitutes a gentle introduction to polymer physics with the
thermodynamic limit in mind.
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Fig. 2. Polymer-chain network (balls represent cross-links, lines represent polymer-chains)

Fig. 3. Polymer-chain: end-to-end vector (red arrow) between two cross-links (large balls)
and monomers (thick edges)

2.2.1. The Network We first start with some vocabulary. A network of cross-
linked polymer-chains is a set of polymer-chains attached to each other through
cross-links, cf. Fig. 2. Polymer-chains can be represented as the edges of a graph,
and cross-links should be thought of as the vertices of a graph.

Each polymer-chain is itself a sequence of monomers. The edges of the graph
only represent the so-called end-to-end vectors of the polymer-chains. In particular,
the state of a polymer-chain is fully described by the end-to-end vector and the
positions of all the physical (or chemical) bonds between monomers, see Fig. 3.

The rest of this section aims at

• introducing the statistical physics of such networks (in the canonical ensemble),
• presenting a coarse-grained version where the effect of the positions of the
monomers are averaged out, and only the positions of the cross-links matter.

Before we turn to the kinematics of polymer-chain networks, let us comment on the
notion of network. As customary in polymer physics, one considers a network to be
given once and for all: the network is obtained through a chemical process of cross-
linking, and the obtained cross-links are permanent (the energy needed to break
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a cross-link is much larger than mechanical forces). This cross-linking process
gives rise to several statistical properties of such networks: their connectivity (how
many chains are attached to the same cross-links), the typical distance between
two neighboring cross-links, the typical length of an end-to-end vector, the typical
number of monomers per polymer-chain.Wewill come to orders of magnitude later
on. In this contribution we consider the network to be given. In the mathematical
description of a network, we need to have the freedom to choose the above four
geometric properties and we assume stationarity and ergodicity (which are mild
assumptions). In particular, the network cannot be described as the Delaunay graph
of a point set (the connectivity would be forced upon us), whence the larger class of
graphs we consider here. We shall not discuss the cross-linking process further, and
consider the probability measure describing the graph as a choice of the specific
polymer-chain model under investigation—our assumptions are general enough for
this.

Let us now be more specific and describe the network as a set of labels and
relations between these labels. We call Ñ a finite network of cross-linked polymer-
chains, described by a (finite) set L̃ ⊂ N of cross-links i , a subset L̃b ⊂ L̃ of
boundary cross-links, a (finite) set B̃ ⊂ L̃ × L̃ of undirected chains ci j = (i, j)
(such that L̃ has one single connected component via B̃). Each chain ci j is itself
made of a sequence of Ni j ∈ N monomers, characterized by i , j and M̃i j =
{(i, j, 1), . . . , (i, j, Ni j −1)}. Up to this point, the above only describes a graph and
quantities attached to it, that is, how labeled monomers, cross-links, and polymer-
chains are organized together. The next nontrivial step is to define the kinematics
of a network by specifying the position of the monomers, cross-links, and polymer-
chains in the physical space R3. We have to specify the scale of the observer: we
place ourselves at the physical scale of a monomer (the smallest constituent of
matter considered in our description), which has from now on size unity.

2.2.2. The Kinematics and the Helmholtz Free Energy As usual in statistical
physics, one may simplify a model by making the state space discrete—this makes
the notion of partition function easier to grasp. This is what we do now by assuming
that monomers can only be placed on the edges of the canonical graph Z3 (instead
of anywhere in R3—this is only done for convenience in this presentation, and not
in the rest of the paper). Here comes the kinematics of a network: a deformation
ũ of the polymer-chain network Ñ is a map L̃ ∪ ⋃

(i, j)∈B̃ M̃i j → Z
3 with the

following properties. The map ũ is edge-injective (that is, two distinct monomers
cannot occupy the same edge of Z3) and has unit increments in the sense that for
all (i, j) ∈ B̃ and all 0 � k � Ni j − 1 we have with the notation ũ(i, j,0) = ũi and
ũ(i, j,Ni j ) = ũ j :

|ũ(i, j,k) − ũ(i, j,k+1)| = 1. (2.2)

Given a boundary map ϕ̃b : L̃b → Z
3, we denote by �(Ñ, ϕ̃b) the cardinality of

the set {ũ deformation : L̃∪⋃
(i, j)∈B̃ M̃i j → Z

3 | ũ|L̃b
≡ ϕ̃b}. The Helmholtz

free energy Eβ(Ñ, ϕ̃b) of the network Ñ with boundary deformation ϕ̃b at inverse
temperature β is then given by
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Eβ(Ñ, ϕ̃b) := − 1

β
log�(Ñ, ϕ̃b), (2.3)

with the understanding that Eβ(Ñ, ϕb) = +∞ if �(Ñ, ϕ̃b) = 0. Before we make
further restrictions on L̃ and B̃, observe that if the network B̃ is made of one single
polymer-chain (1, 2) with N monomers, then given ϕ̃b : {1, 2} �→ {ũ(1), ũ(2)} ∈
(Z3)2,�(Ñ, ϕ̃b) is explicit and obviously only depends on N and the length |ũ(1)−
ũ(2)|. Indeed, for large N , (2.3) can be explicitly computed (and typically leads to
(2.5), see below).

2.2.3. The Lagrangian Description and the Reference Configuration So far,
we have defined the notion of network, its kinematics, and the Helmholtz free en-
ergy. In order to relate this description to continuum mechanics, it is convenient to
have a Lagrangian description of the network, and thus a reference configuration.
This is usually not presented in monographs on polymer physics [27,43,45]. Al-
though this is elementary and pedestrian, we display this construction in detail since
it is at the very origin of the passage from the network description to the kinematics
of continuum media. A reference configuration for Ñ is a specific deformation,
which we denote by x (see below for the physical interpretation). In particular, for
all (i, j) ∈ B̃, xi and x j are the reference positions of the cross-links i and j , for
all 0 � k � Ni j −1, (xk

i j , xk+1
i j ) is the reference position (an edge) of the (k+1)-th

monomer of the polymer-chain ci, j (and with x0i j = xi , x
Ni j
i j = x j ). We then now

denote by N = {Ñ, x} the network and its reference configuration (which we still
abusively call network), and let L, Lb, B denote the sets of reference positions of
cross-links, boundary cross-links, and end-to-end points of polymer-chains. This
description allows us to view deformations ũ of the graph as deformations u of
the reference configuration x via the relation u(xk

i j ) := ũ(i, j,k). As above, for all

(xi , x j ) ∈ B, μi j : {x0i j , . . . , x
Ni j
i j } → Z

3 is an admissible deformation of the
polymer-chain (xi , x j ) if it is edge-injective and has unit increments in the sense
of (2.2).

2.2.4. The Coarse-Grained Helmholtz Free Energy The next classical step in
polymer physics is to relax to some extent the edge-injectivity condition between
monomers from different chains. Given a deformation u : L→ Z

3 and a polymer-
chain (xi , x j ) ∈ B, we denote by �i j (u) the cardinality of the set of admissible
deformations μi j such that μi j (xi ) = u(xi ) and μi j (x j ) = u(x j ). This accounts
for local injectivity within each chain. Given a boundary map ϕb : Lb → Z

3,
we define U(ϕb) := {u : L → Z

3 | u|Lb ≡ ϕb} the subset of deformations
of cross-links that coincide with the boundary map ϕb on Lb. We finally replace
the edge-injectivity assumption between monomers of different chains by some
steric effect between chains (that is, the monomers of a polymer-chain, and thus
the polymer-chain itself, occupy some volume in which the monomers of other
chains, and thus the other polymer-chains themselves, are excluded), that can be
accounted for by restricting admissible deformations to a suitable subset V of
{u : L → Z

3} (which does not describe the positions of monomers any longer),
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and define Û(ϕb) := U(ϕb)∩V. This assumption allows one to coarsen the model
by factorizing the number of admissible deformations in the form

�(N, ϕb) ∼
∑

u∈Û(ϕb)

∏

(xi ,x j )∈B
�i j (u).

Of course, this step is not rigorous in the sense that � does not exactly factorize.
It is however considered to be a good approximation in polymer physics. This
procedure has the effect to integrate out the positions of the monomers and to
reduce the characterization of the model to (L,B) and the definition of the state
space Û(ϕb) for any boundary deformation ϕb : Lb → Z

3. There is quite some
flexibility and arbitrariness in this choice. Since these quantities only depend on
distances (and/or angles) between cross-links, �(N, ϕb) does not depend on the
frame of the Lagrangian description.

We now enrich the physics: On top of the non-interpenetrability of matter,
polymer-chains feel the effect of a solvent which yields an internal energy that
penalizes changes of volume with respect to the reference network, which we
model in the form of Ĥ(u), an internal energy that only depends locally on u at a
scale larger than that of a polymer-chain (in a frame-indifferent way). Again there
is flexibility and arbitrariness in the choice of that scale (which is accounted for
in Definition 1.1). The Helmholtz free energy of the network N with boundary
deformation ϕb at inverse temperature β is then given by the following modified
version of (2.3)

Eβ(N, ϕb) = − 1

β
log

⎛

⎝
∑

u∈Û(ϕb)

⎛

⎝
∏

(xi ,x j )∈B
�i j (u)

⎞

⎠ exp(−β Ĥ(u))

⎞

⎠

= − 1

β
log

⎛

⎝
∑

u∈Û(ϕb)

exp

⎛

⎝−β

⎛

⎝Ĥ(u)+
∑

(xi ,x j )∈B

−1
β

log(�i j (u))

⎞

⎠

⎞

⎠

⎞

⎠ ,

which we rewrite as

Eβ(N, ϕb) := − 1

β
log

( ∑

u∈U(ϕb)

exp

(
− β

(
H(u)+

∑

(xi ,x j )∈B

−1
β

log(�i j (u))

)))
,

(2.4)

by setting H(u) = Ĥ(u) + H̃(u) where H̃(u) = +∞ if u /∈ V and H̃(u) = 0 if
u ∈ V. The latter rewriting amounts to penalizing that a deformation u : L → Z

3

be admissible rather than restricting the set of states. The thermally fluctuating
network with imposed boundary deformation ϕb has then free Helmholtz energy
Eβ(N, ϕb), and its configuration is described by a probability measure μ

β
ϕb on the

set of admissible deformations defined as follows: for all V ⊂ U(ϕb),

μβ
ϕb

(V ) :=
∑

u∈V exp
(
− β

(
H(u)+∑

(xi ,x j )∈B
−1
β

log(�i j (u)
))

∑
u∈U(ϕb) exp

(
− β

(
H(u)+∑

(xi ,x j )∈B
−1
β

log(�i j (u)
)) .
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The above consensual model of polymer physics is of the form studied in the anal-
ysis part of the present contribution. There is however a fundamental difference
between (1.1) and (2.4): In the former the Hamiltonian has no dependence with
respect to β, whereas in the latter the “effective” Hamiltonian of a polymer chain
has a dependence on β and vanishes in the limit of small temperature (this is,
again, not surprising since rubber elasticity is an entropic effect solely due to tem-
perature). This is not an issue for the application of Theorem 1.5 since β is a
parameter there. This is different for Theorem 1.6 since we do not wish to take a
limit 1/β → 0 at which elasticity disappears. In this respect, let us quickly an-
ticipate on Paragraph 2.3.4, and mention that the two-temperature model analyzed
below introduces two temperatures, the inverse physical temperature β (which is
arbitrary yet fixed) and an “effective temperature”, which turns out to be small in
the regime of large number of monomers per polymer-chain. In this context, taking
the small temperature limit means taking the “effective temperature” small (while
keeping the physical temperature unchanged), which is the way Theorem 1.6 will
be used in Paragraph 2.3.4.

To conclude this paragraph, let us emphasize that the only phenomenological
aspect of this model lies in the choice of H and �i j , and in particular on the fact
that they can be chosen not depending on the positions of the monomers inside
a chain. Classical choices are as follows. The Hamiltonian H is often chosen to
reflect incompressibility, albeit at a scale slightly larger than that of a polymer-chain
(because chains can intertwin and extend to distances that are larger than the end-to-
end distance). Evaluating�i j reduces to counting the number of states of a polymer-
chain given its end-to-end vector (that is, the number of sequences of monomers
that lead fromone end to the other) and given some rules (e.g. twomonomers cannot
overlap, the monomers must lie in some tube, and so on), which often leads to semi-
explicit formulas, cf. the several choices discussed in [43, Chapter 3]. Establishing
the regime of validity of such an assumption and specific forms for H and �i j

should definitely be investigated using molecular dynamics. Again, our analysis
makes rather general assumptions on H and �i j .

2.2.5. Towards Constitutive Laws Based on Polymer Physics Let us quickly
revisit some classical models and some of the models of Paragraph 2.1.3. For
simplicity, assume that the boundary condition is linear: ϕb(x) = � · x for some
matrix �.

• Treloar (or affine) model: (2.4) is approximated by evaluating H(u)

+∑
(xi ,x j )∈B

−1
β

log(�i j (u)) at u(x) = � · x ;
• Arruda-Boyce model: (2.4) is approximated by replacing the network by a
representative element made of 8 chains which spontaneously align with the
principal directions of �, and use the affine deformation;

• Path-bases, non-affine micro-sphere (etc.) models: (2.4) is approximated by
restricting the class of test-functions u in the average using some form of rep-
resentative element;
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• Two-temperature model: (2.4) is approximated by

inf
u

⎧
⎨

⎩H(u)+
∑

(xi ,x j )∈B

−1
β

log(�i j (u))

⎫
⎬

⎭ ,

which amounts to replacing the Helmholtz free energy by the ground state
(whence thewording: cross-links are taken at zero temperature, butmonomers—
via �i j—are taken at inverse temperature β).

Let us quickly interpret Treloar’s experiments and the three regimes of Fig. 1
in terms of polymer physics. The linear regime essentially represents the fact that
for ϕb close to the identity map, (2.4) is close to quadratic. The regimes of strain
softening and strain hardening are related to the entropic term, the geometry of the
network, and H . Let us give some intuition on the entropic term by considering a
system of two cross-linked polymer-chains of possibly different length, for which
the deformation of the boundary of the system (that is, the end points of the two
polymer-chains except the cross-link) is fixed. For large boundary deformations,
monomers tend to align so that there are less configurations available and the free
energy of the system gets large and ultimately blows up. For moderately large
boundary deformations, among the possible deformations of the cross-link, the
one with the largest number of configurations is the linear interpolation of the
deformation of the boundary only if the chains have the same length—otherwise
it is advantageous to deform the longer chain more, which yields redistribution of
strain and therefore leads to softening.

2.2.6. Orders of Magnitude We conclude with some orders of magnitude, and a
discussion of the reference configuration. The reference configuration is obtained
after cross-linking (that is, attach together) polymer-chains thatwere evolving freely
in a solvent, cf. Fig. 4. First, as measured in physical experiments, the connectiv-
ity of such obtained polymer-chain networks is between 3 and 4 (depending on
the polymer). Indeed, the cross-linking process takes place when a cross-linker
meets several polymer-chains together: the probability that more than two polymer-
chains are within range of the cross-linker is small. Second, the end-to-end vector
of a polymer-chain in the reference configuration is a function of the number of
monomers it has. Assume that the polymer-chain is a sequence of N monomers
(recall that monomers have size unity in this discussion). Then the length of the
end-to-end vector of this chain in the reference configuration is random itself and
obeys some distribution which is peaked at

√
N . This is not surprising since one

can think of a polymer-chain as a random walk after N steps (in which case the
expectation of the distance to the origin is

√
N ). In our analysis, although we have

assumed that�i j is a deterministic function of the network, our arguments can treat
this additional randomness (provided it is chosen as an iid process on each chain).
Finally, N ranges from 25 to 1000 in practical examples.

2.3. Application of the Main Results to Polymer Physics

In this second main part of this contribution, we apply our analysis to the
physical model (2.4) of polymer physics recast in the form of (1.10), which allows
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us to justify the two-temperaturemodel. In this section, we use physical parameters.
In particular, monomers have length � (a few nanometers at most).

2.3.1. The Precise Hamiltonian We need to make precise the form of the free
energies of isolated polymer-chains in function of the number of monomers in the
chain. The Kuhn and Grün formula (see e.g. [35] and [43, Section 3.4]) for the free
energy of an isolated chain made of N monomers of size � with end-to-end length
L at temperature β is given by

f β(L , N ) := 1

β
N

(
L

N�
θ

(
L

N�

)
+ log

θ
( L

N�

)

sinh θ
( L

N�

)
)

,

where θ is the inverse of the Langevin function t �→ coth t − 1
t . In particular,

L �→ f β(L , N ) is a non-negative convex increasing function in the variable L2,
that vanishes at L = 0 and blows up as L ↑ N�. This formula is based on a
self-avoiding random bridge. For technical considerations (cf. discussion in [26]
Paragraph 2.3.5), we replace this function by a function with p-growth from above
and below, which yields our starting point

f β,(p)(L , N ) := N

β
f (p)

(
L

N�

)
, (2.5)

where f (p) is a suitable approximation of t �→ f (t) := tθ (t) + log θ(t)
sinh θ(t) (that

remains convex and increasing). At order p = 10, a Taylor-expansion (cf. [30])
simply yields

f β,(10)(L , N ) = N

β

[
3

2

(
L

N�

)2

+ 9

20

(
L

N�

)4

+ 9

350

(
L

N�

)6

+ 81

7000

(
L

N�

)8

+ 243

673750

(
L

N�

)10
]

.

Consider now an ergodic random graph G◦ = (L,B,T), a fixed inverse tem-
perature β◦ � 1, and fix p (say, p = 10). Recall that we assume that the length of
an edge b ∈ B of the random graph writes

√
N ◦

b �, which we use to define the num-
ber N ◦

b of monomers in the polymer-chain b. We denote by N ◦ := E[N ◦
b : b ∈ B]

the average number of monomers per polymer-chain in the graph. We then rewrite
(2.5) in terms of the deformation ratio λ = L√

N◦
b �

as

f β◦(L , N ◦
b ) := N ◦

b

β◦
f (p)

(
λ

1√
N ◦

b

)
,

and make the volumetric term more precise by considering for some K > 0

W (�) := 1

K
Wvol(det�),

where Wvol : R → R+ is a convex function that is minimal at t = 1 and satisfies
the growth condition

∀t � 0 : Wvol(t) � 1+ t
p
d . (2.6)
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For all Lipschitz domains Dε > 0 andmicroscopic deformations u : L∩Dε → R
d ,

the discrete Hamiltonian takes the form

H◦
ε (D, u) =

∑

(x,y)∈B
x,y∈Dε

N ◦
xy

β◦
f (p)

⎛

⎝ |u(x)− u(y)|
|x − y|

1√
N ◦

xy

⎞

⎠

+
∑

C∈V1,ε(D)

|C| 1
K

Wvol

(
detC(∇uaff)

)
,

which we rewrite in the equivalent form

H◦
ε (D, u) = N ◦

β◦
H̃◦

ε (D, u), (2.7)

where H̃◦
ε (D, u) is given by

H̃◦
ε (D, u) :=

∑

(x,y)∈B
x,y∈Dε

f ◦,(p)
xy

( |u(x)− u(y)|
|x − y|

)
+

∑

C∈V1,ε(D)

|C|W ◦
vol

(
detC(∇uaff)

)
,

and for all λ � 0, t ∈ R,

f ◦,(p)
xy (λ) := N ◦

xy

N ◦ f (p)

⎛

⎝λ
1√
N ◦

xy

⎞

⎠ , W ◦
vol(t) :=

β◦

N ◦
1

K
Wvol(t).

In terms of scaling, since volumetric and entropic terms compete, we choose β◦
K ∼

1, in which case (1.6) and (1.7) are valid for p = 10 with the constants

C ∼ 1

N ◦ , C2 ∼ 3

2N ◦ , C10 ∼ 243

673750
√

N ◦5
, (2.8)

where ∼ means � c× and � 1
c× for some constant c independent of N ◦. We are

in the position to apply our general results. In what follows, β◦ and N ◦ are fixed
physical quantities, whereas β1 and N1 are dummy variables.

2.3.2. Thermodynamic Limit for H◦
ε (D, u) By Theorems 1.3, 1.4, and 1.5, for

all temperatures β1 there exists a macroscopic energy density W
◦,β1
N◦ associated

with the Hamiltonian H◦
ε (D, u) (recall that β◦ and N ◦ are fixed parameters) via

∀� ∈ R
d×d : lim

ε↓0 −
1

β1|Dε| log
ˆ

Bε(D,ϕ�)

exp(−β1H◦
ε (D, u)) du = W

◦,β1
N◦ (�).

(2.9)

For the physical choice β1 = β◦, this implies that the free energy of the discrete
network of polymer-chains and the associated Gibbs measure are well-described



1154                          

at the thermodynamic limit (with given Dirichlet boundary data ϕ) by the infimum
of the continuum energy functional

ϕ + W 1,p
0 (D) � u �→ I◦,β1N◦ (u) :=

 

D
W

◦,β1
N◦ (∇u(x))dx,

and by the Dirac mass at the set of minimizers. Next we argue that a direct ap-
plication of Theorem 1.6 does not allow to justify the two-temperatures model
which amounts to taking the limit β1 ↑ ∞ while keeping β◦ fixed. In this setting,
Theorem 1.6 yields the existence of some energy density W

◦,∞
N◦ such that

∀� ∈ R
d×d : lim

β1↑∞
W

◦,β1
N◦ (�) = W

◦,∞
N◦ (�).

However, the quantitative estimate (1.13) of Theorem 1.6, that takes the form

|W ◦,β1
N◦ (�)− W

◦,∞
N◦ (�)| � logβ1

β1
(d + 1

β◦
C(1+ |�|p)), (2.10)

is not precise enough for β1 = β◦ since W
◦,∞
N◦ is itself of order 1

β◦ C(1 + |�|p).
The rest of this section aims at justifying the two-temperatures model in the regime
N ◦ � 1 rather than β◦ � 1.

2.3.3. Thermodynamic Limit for H̃◦
ε (D, u) We denote by W

◦,N1 the macro-
scopic free energy at temperature “N1” (the number of monomers will indeed play
the role of an inverse physical temperature in what follows) associated with the
Hamiltonian H̃◦

ε via Theorem 1.3, that is,

∀� ∈ R
d×d : lim

ε↓0 −
1

N1|Dε| log
ˆ

Bε(D,ϕ�)

exp(−N1 H̃◦
ε (D, u)) du = W

◦,N1
(�).

In view of (2.7) and (2.9), we have the identity

W
◦,β1
N◦ |β1=β◦ = N ◦

β◦
W

◦,N1 |N1=N◦ . (2.11)

Whereas the W
◦,β1
N◦ is well-suited to take the zero-temperature limit β1 ↑ ∞, W

◦,N1

is well-suited to take the limit of large number of monomers per chain N1 ↑ ∞. By
Theorem 1.6 (in form of (1.14)), there exists a macroscopic energy density W

◦,∞

such that for all N1 � 1

∀� ∈ R
d×d : |W ◦,∞

(�)− W
◦,N1

(�)| � log N1

N1

(
C ′′
2 |�|2 + C ′′

p|�|p + d
)
,

(2.12)

and so that the integral functional u �→ I◦,N1 := ffl
D W

◦,N1
(∇u(x))dx �(L p)-

converges towards u �→ I◦,∞(u) := ffl
D W

◦,∞
(∇u(x))dx on ϕ + W 1,p

0 (D) as
N1 ↑ ∞. Note that the lower and upper bounds in (1.12) are crude and could be
largely improved if more precise assumptions are made on the random graph—in
particular, we expect the coefficients of the terms of order |�|p to be comparable in
both sides of the two-sided estimate, so that the RHS of (2.12) would indeed scale
like log N1

N1
times the order of magnitude of W

◦,N1
(�).
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2.3.4. Justification of the Two-TemperaturesModel in theRegime N◦ � 1 and
the Effective Temperature The combination of (2.12) and (2.11) yields

∀� ∈ R
d×d : |N ◦

β◦
W

◦,∞
(�)− W

◦,β◦
N◦ (�)|

�
( log N ◦

N ◦
)
× N ◦

β◦
(

C ′′
2 |�|2 + C ′′

p|�|p + d
)
. (2.13)

In view of the parameters (2.8) and lower bounds for the �-limit, for deformations
� such that |�| ∼ √

N ◦ (that is, in the nonlinear regime), we have

W
◦,∞

(�) ∼ C2|�|2 + (C p + C)|�|p
∼ C ′′

2 |�|2 + C ′′
p|�|p � 1 �⇒ N ◦

β◦
W

◦,∞
(�)

� N ◦

β◦
(

C ′′
2 |�|2 + C ′′

p|�|p + d
)
,

so that (2.13) shows that the relative error between W
◦,β◦
N◦ and its approximation

N◦
β◦ W

◦,∞
is of order log N◦

N◦ � 1 in the regime N ◦ � 1 of large number ofmonomers
per polymer-chain. Combinedwith the observation that the identity (2.7) also yields

∀� ∈ R
d×d : N ◦

β◦
W

◦,∞
(�) = lim

β1↑∞
W

◦,β1
N◦ (�) = W

◦,∞
N◦ (�),

(2.13) takes the form

∀� ∈ R
d×d : |W ◦,∞

N◦ (�)− W
◦,β◦
N◦ (�)| �

( log N ◦

N ◦
)
× N ◦

β◦
(

C ′′
2 |�|2

+C ′′
p|�|p + d

)
,

|�| ∼ √
N ◦ �⇒ W

◦,∞
N◦ (�) � N ◦

β◦
(

C ′′
2 |�|2 + C ′′

p|�|p + d
)
,

which improves on (2.10). The above applications of Theorems 1.3, 1.4, 1.5, and
1.6 therefore yield a rigorous justification of the two-temperatures model W

◦,∞
N◦ ,

which consists in assuming that the monomers of the polymer-chains fluctuate at
inverse temperature β◦, whereas cross-links are considered at zero temperature
(β1 = +∞). In particular, one can interpret log N◦

N◦ as the effective temperature of
the cross-links. This sets on rigorous ground the approach introduced and analyzed
in [4,30] to derive nonlinear elasticity from polymer physics.

2.3.5. Extensions and Comments We conclude this section on the derivation of
rubber elasticity from statistical polymer physics with a list of possible extensions
and open problems.

• The process of vulcanization of rubber generates metallic inclusions (zinc ox-
ides) in the matrix phase, which modifies the elastic behavior of rubber-like
materials at large deformation since the former are more rigid than the polymer-
chains. This can be included in the discrete model as follows. Enrich the prob-
ability space by adding a state Z ∈ {0, 1}N, and say that a vertex i is in the
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set of zinc oxides if Z(i) = 1. If an edge b = (xi , x j ) ∈ B is such that
Z(i) + Z( j) � 1, then the free energy of the polymer-chain fi j is multiplied
by some large constant K � 1 (which encodes the larger rigidity of the zinc
oxides). We may then perform the same analysis as above.

• We now comment on the two main analytical simplifications of this work,
namely that fi j and W have p-growth from above. We believe that at least parts
of the results should survive if we let fi j blow up at finite deformation. For the
homogenization of multiple integrals, such a result was recently obtained by
Duerinckx and the second author in [26]. Whereas �-convergence focuses on
minimizers, large-deviation principles focus on neighborhoods of minimizers,
so that one needs finer quantitative control for the latter. Since such quantitative
control is already quite subtle in [26], the extension of our analysis to this
setting might hold, but not without additional and substantial work. In contrast,
the growth condition on W is crucial for our arguments to work. Relaxing this
assumption constitutes the major open problem of homogenization of integral
functionals with quasiconvex integrands. For first results in that direction (with
small data) we refer to [41].

• Both in (2.1) and in (2.4), the setting is time-independent. Although this is
correct at first approximation, rubber-like materials also display some visco-
elastic effects in practice, which find their origin in a feature of the discrete
network we have not touched upon: when a polymer-chain gets extended, it
needs to “un-entangle”, and there is some friction at that level. This could
be included in the two-temperature model following the recent work [37] by
Lequeux and collaborators.

• The model (2.4) also neglects one feature of polymer-chain networks: topo-
logical constraints. Indeed, chains can be prevented from extending too much
because they cannot pass through other chains. Such topological constraints are
not taken into account, and partly contribute to the strain hardening of Fig. 1.
It is not yet clear to us how to enrich the model in that direction.

• Last there is yet no satisfactory explanation of the origin of the volumetric term
H , which, according to polymer-physicists, comes from a smaller scale than
that of the monomer. Not unrelated to this, one could hope to better understand
cavitation phenomena at the scale of the polymer-chain network. This is not
clear, even for polymer-physicists. However, let us emphasize that the growth
condition on the �i j ’s (which are expected to blow up at finite deformation)
rules out the classical results of cavitation à la Müller [40]. It would be worth
investigating possible relations to the recent interpretation of cavitation as a
healing process, cf. [29,36].

Next to the analysis side of this work, our results also raise interesting questions at
the level of physical experiments and numerical simulations.

• As already mentioned, some explicit form for �i j and H could be obtained by
direct molecular simulations of a polymer-chain network of moderate size.

• For applications to polymer physics, one needs input on the polymer-chain
network, such as the connectivity, the typical number ofmonomers per polymer-
chains, the typical distance between cross-links, etc.
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• The question of the experimental validation of the models is of particular in-
terest. Next to standard mechanical experiments at the level of W , one can also
“validate” the model at the discrete level. Indeed, small-angle diffraction ex-
periments give access to local deformation at the scale of polymer-chains [7].
These could be compared to the output of a direct numerical simulation of the
two-temperature model. This can be done at the qualitative level—for instance
regarding the so-called butterfly effect, and at the quantitative level (which
would require a close collaboration with physicists). The butterfly effect for the
two-temperature model is currently under investigation [31].

3. Notation and Preliminary Geometric Estimates

Let us fix some notation. Given a measurable set B ⊂ R
d we denote by |B|

its d-dimensional Lebesgue measure. The same notation is used to denote the
cardinality of B whenever it is a finite set. More generally we denote by Hk(B)

the k-dimensional Hausdorff measure of B. Given x ∈ R
d we let |x | denote its

Euclidean norm and we let Br (x) be the open ball with center x and radius r .
Moreover, Q(x, r) = x+(−r/2, r/2)d denotes the open cubewith center x and side
length r . We set dist(x, B) = inf y∈B |x − y|. Given an open set U ⊂ R

d we define
AR(U ) to be the family of open, bounded subsets of U with Lipschitz boundary.
We denote by L p(U,Rn), W 1,p(U,Rn) the usual vector-valued Lebesgue and
Sobolev spaces. We use the short-hand notation L p(U ) or W 1,p(U ) when we refer
to convergence in these spaces and no confusion about the co-domain is possible.
In the proofs C denotes a generic constant (depending only on the dimension or
other fixed parameters) that may change every time it appears.

3.1. Geometric Considerations

In this subsection we establish some geometric properties of admissible ex-
tended Euclidean graphs that will be useful throughout this article. Recall that
given G = (L, E, S), we denote by V = {C(x)}x∈L the Voronoi tessellation as-
sociated to the vertices L. Note that if the vertices fulfill conditions (i) and (ii) of
Definition 1.2, then the Voronoi cells satisfy B r

2
(x) ⊂ C(x) ⊂ BR(x) for all x ∈ L.

In particular it holds that

∀x ∈ L : 1

C
� |C(x)| � C (3.1)

and, for fixed O ∈ AR(D) and ε small enough, we have the estimate

1

C
|O|ε−d � |OL

ε | � C |O|ε−d . (3.2)

In some geometric constructions we will also need a bound on the cardinality of
sets of the form

{x ∈ L : dist(x, ∂Oε) � C0}.
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For x in this set the rescaled Voronoi cells εC(x) are contained in the (C0 + R)ε-
tubular neighbourhood of ∂O . Since for Lipschitz boundaries, the Minkowski con-
tent agrees (up to a dimensional constant) with Hd−1(∂O), we deduce that for ε

small enough we have

|{x ∈ L : dist(x, ∂Oε) � C0}| � Cε1−dHd−1(∂O). (3.3)

Similar estimates hold for finite unions or intersections of Lipschitz sets.
We shall identify functions u : L→ R

n with their piecewise constant interpola-
tions on the Voronoi tessellation V associated with L. Conversely, given a function
u ∈ L p

loc(R
d ,Rn) we define a (random) discrete approximation uε : L→ R

n via

uε(x) := 1

|εC(x)|
ˆ

εC(x)

u(z) dz. (3.4)

Remark 5. The rescaled (piecewise constant) functions ũε(εx) := uε(x) converge
to u in L p

loc(R
d ,Rn). Indeed, given any bounded set B ⊂ R

d we choose another
bounded, open set U ⊂ R

d such that B ⊂⊂ U and redefine u ≡ 0 on R
d\U .

This does not affect the values of ũε and u on B, but now u ∈ L p(Rd ,Rn).
Assume that n = 1. From (3.1) and Lebesgue’s differentiation Theorem we infer
that ũε → u almost everywhere in B. Moreover, again by definition (3.4), we have
|ũε| � CMu, whereMu denotes the Hardy-Littlewood maximal function. Hence
ũε → u in L p(B,Rd) by dominated convergence. The general case n � 1 follows
by treating each component separately.

For notational convenience we also define discrete �p norms as follows: for all
ε > 0 and u : L→ R

n

‖u‖
�

p
ε (O)

:=
⎛

⎜⎝
∑

x∈OL
ε

|u(x)|p
⎞

⎟⎠

1
p

, ‖∇Bu‖
�

p
ε (O)

:=

⎛

⎜⎜⎜⎝
∑

(x,y)∈B
x,y∈OL

ε

|u(x)− u(y)|p

⎞

⎟⎟⎟⎠

1
p

,

where ∇B denotes the gradient on the graph, which maps functions on vertices to
functions on edges (and is convenient to estimate the Hamiltonian).

As we show now, admissible graphs enjoy discrete Poincaré-type inequalities
with respect to these norms. Recall that for any set O ⊂ R

d and ϕ ∈ Lip(O,Rn)

we let

Bε(O, ϕ) = {u : Oε ∩ L→ R
n, |u(x)− 1

ε
ϕ(εx)| < 1 if dist(x, ∂ Dε) � C0}.

Lemma 3.1. Let G ∈ G and let O ∈ AR(Rd). Then there exists a constant C =
CO,p such that for all ε small enough and all u ∈ Bε(O, 0) we have

‖u‖p
�

p
ε (O)

� C

ε p

(
‖∇Bu‖p

�
p
ε (O)

+ ε1−d
)

.
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Proof of Lemma 3.1. We extend u setting u(x) = 0 for x ∈ L\OL
ε . Take any cube

Q ⊂ R
d such that O ⊂⊂ Q. For x ∈ OL

ε , define the ray Rx := {x + te1 : t � 0}.
Then there exists a smallest number t∗ > 0 such that x + t∗e1 ∈ C(z) for some z ∈
L\OL

ε . We let zx ∈ L be (one of) such point(s). Then zx ∈ Qε for ε small enough
and moreover |x − zx | � ε−1diam O + 2R. As G is admissible, there exists a path
P(x) connecting x and zx such that P(x) ⊂ [x, zx ]+ BC0(0). By (3.1) the number
of edges in such a path is bounded by #{(x ′, x ′′) ∈ P(x)} � Cε−1diam O and
moreover we may assume that P(x) ⊂ Qε for ε small enough. Jensen’s inequality
then yields

|u(x)|p = |u(x)− u(zx )|p �

⎛

⎝
∑

(x ′,x ′′)∈P(x)

|u(x ′)− u(x ′′)|
⎞

⎠
p

� C

(
diam O

ε

)p−1 ∑

(x ′,x ′′)∈P(x)

|u(x ′)− u(x ′′)|p, (3.5)

where we used that u(zx ) = 0. Next, for any edge (x ′, x ′′) ∈ B we set

Kε(x ′, x ′′) := {x ∈ OL
ε : (x ′, x ′′) ∈ P(x)}.

We need to bound the cardinality of this set. If x ∈ Kε(x ′, x ′′), then there exists
λ ∈ [0, 1] such that the point xλ = x + λ(zx − x) satisfies |xλ − x ′| � C0. Hence
we infer

x = x − xλ + x ′ + (xλ − x ′)
= −λ(zx − x)+ x ′ + (xλ − x ′) ∈ (−R−x ′ + BR+C0(0)) ∩ ε−1O.

By (3.1) we conclude that #Rε(x ′, x ′′) � Cε−1diam O , so that summing (3.5) over
x ∈ OL

ε yields

‖u‖p
�

p
ε (O)

� C

(
diam O

ε

)p

‖∇Bu‖p
�

p
ε (Q)

. (3.6)

Due to the constant extension and the soft boundary conditions, for small ε the
contributions on the large cube Q can be bounded via the estimate

‖∇Bu‖p
�

p
ε (Q)

� ‖∇Bu‖p
�

p
ε (O)

+
∑

(x,y)∈B
[x,y]∩∂Oε �=∅

|u(x)− u(y)|p

� ‖∇Bu‖p
�

p
ε (O)

+ Cε1−dHd−1(∂O),

where we used (3.3). Inserting this estimate in (3.6) concludes the proof. � 
Remark 6. In the discrete setting there is also a trivial reverse Poincaré inequal-
ity. Indeed, as the degree of every vertex in L is equibounded due to (3.1), there
exists C = C p such that for all O ∈ AR(Rd) and u : L → R

n , ‖∇Bu‖p
�

p
ε (O)

�
C‖u‖p

�
p
ε (O)

.
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Next we prove a technical Lemma which is the analogue of Lemma 12 in [34]
for non-periodic graphs.

Lemma 3.2. Let G ′ = (L′,B′) be a finite connected subgraph of G and x̄ ∈ L′.
Then there exists a dimensional constant C1 such that, for all z ∈ R

n and α, γ > 0,

ˆ

(Rn)L′ 1{|u(x̄)−z|<γ } exp

⎛

⎝−α
∑

(x,y)∈B′
|u(x)− u(y)|p

⎞

⎠ du � C1γ
n
(
α
− n

p C1

)|L′|−1
.

Proof of Lemma 3.2. As G ′ is connected, there exists a rooted spanning tree Tx̄ =
(L′,Bx̄ ) with root x̄ (note that here we exceptionally consider a directed graph).
We now prove inductively that we can integrate out all the vertices except the root.
Since Tx̄ has less edges than G ′, it holds that

∑

(x,y)∈B′
|u(x)− u(y)|p �

∑

(x,y)∈Bx̄

|u(x)− u(y)|p.

Consider any leaf x0 ∈ L′, that means x0 has no outgoing edges and only one
incoming edge (x1, x0) ∈ Bx̄ . Then, by Fubini’s Theorem and a change of variables,
we deduce that

ˆ

(Rn)L′ 1{|u(x̄)−z|<γ } exp

⎛

⎝−α
∑

(x,y)∈B′
|u(x)− u(y)|p

⎞

⎠ du

�
ˆ

(Rn)L′ 1{|u(x̄)−z|<γ } exp

⎛

⎝−α
∑

(x,y)∈Bx̄

|u(x)− u(y)|p
⎞

⎠ du

�
ˆ

(Rn)L′\x0
1{|u(x̄)−z|<γ } exp

⎛

⎜⎜⎝−α
∑

(x,y)∈Bx̄
(x,y)�=(x1,x0)

|u(x)

−u(y)|p
⎞

⎟⎟⎠

ˆ

Rn
exp(−α|u(x1)− u(x0)|p) du(x0) du

=
(

α
− n

p

ˆ

Rn
exp(−|ζ |p) dζ

)ˆ

(Rn)L′\x0
1{|u(x̄)−z|<γ } exp

⎛

⎜⎜⎝−α
∑

(x,y)∈Bx̄
(x,y)�=(x1,x0)

|u(x)

−u(y)|p
⎞

⎟⎟⎠ du.

The (directed) graph (L′\{x0},Bx̄\(x1, x0)) is still a rooted tree for the set of edges
L′\{x0} with root x̄ . By iteration we thus obtain the claim upon setting

C1 = max

{ˆ

B1(0)
dζ,

ˆ

Rn
exp(−|ζ |p) dζ

}
,
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where the volume of the unit ball is the remaining term when we integrated out the
contributions of all the edges in Bx̄ . � 
Remark 7. Given a set U ∈ AR(Rd), the graph GU = (U ∩ L, {(x, y) ∈ B :
x, y ∈ U }) is in general not connected but can be decomposed into its connected
components. If NU denotes the number of such components, then it follows that

NU � #{x ∈ L : dist(x, ∂U ) � C0}.
Indeed, for any component G j = (V j ,B j ) take x ∈ V j and y ∈ L\U . As G is
connected we find a path in G connecting x and y. Starting at x , let y j be the
first vertex of the path such that y j /∈ U . Then its preceding vertex x j satisfies
dist(x j , ∂U ) � C0 because G is admissible. By construction x j ∈ V j .

Combining Remark 7, Lemma 3.2, and Fubini’s theorem, we immediately ob-
tain the following bound for possibly disconnected subgraphs.

Lemma 3.3. Let ε > 0. Given O ∈ AR(Rd), we define the graph G O,ε =
(OL

ε , {(x, y) ∈ B : x, y ∈ OL
ε }). Consider a set V such that there exist γ > 0

and {zx }{x∈L: dist(x,∂Oε)�C0} ⊂ R
n with

V ⊂ {u : OL
ε → R

n : |u(x)− zx | < γ for all x ∈ L such that dist(x, ∂Oε) � C0}.
Then there exists C1 > 0 such that for all α > 0

ˆ

V
exp(−α‖∇Bu‖p

�
p
ε (O)

) du �
(

C1γ
n
)NO,ε

(
α
− n

p C1

)|OL
ε |−NO,ε

,

where NO,ε denotes the number of connected components of the graph G O,ε.

3.2. Estimates on the Partition Function

For the analysis, we need to introduce further functional spaces. Given O ∈
AR(Rd), v ∈ L p

loc(R
d ,Rn),w : OL

ε → R
n , and κ, M > 0, we define the following

three sets:

Np(v, O, ε, κ) := {u : OL
ε → R

n,
∑

OL
ε

εd |vε(x)− εu(x)|p < κ p|O|1+ p
d },

N∞(w, O, ε) := {u : OL
ε → R

n : ‖w − u‖∞ < 1},
SM (O, ε) := {u : OL

ε → R
n : Hε(O, u) � M |OL

ε |}.

(3.7)

The first two sets define neighborhoods of ϕε (defined via (3.4)) and v, respectively,
in a suitable topology.The third set contains deformations of uniformlyfinite energy.

Next, we introduce a localized version of the partition function (1.9), and define
for all sets V ⊂ {u : OL

ε → R
n}

Zβ
ε,O(V ) :=

ˆ

V
exp(−βHε(O, u)) du,
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and two (β-dependent) quantities that play a major role in the analysis: For v ∈
L p
loc(R

d ,Rn) and O ∈ AR(Rd) we set

F−
κ (O, v) = lim inf

ε↓0 − 1

β|Oε| log(Zβ
ε,O(Np(v, O, ε, κ))),

F+
κ (O, v) = lim sup

ε↓0
− 1

β|Oε| log(Zβ
ε,O(Np(v, O, ε, κ))).

Since both quantities are decreasing in κ , we can consider their limits as κ ↓ 0 and
define

F−(O, v) = lim
κ→0

F−
κ (O, v) = sup

κ>0
F−

κ (O, v),

F+(O, v) = lim
κ→0

F+
κ (O, v) = sup

κ>0
F+

κ (O, v).

We conclude this section with two results. The first one rules out concentration
on high energy configurations, and the second is an interpolation result, which will
both be crucial to prove the exponential tightness at the origin of the large deviation
principle for the Gibbs measure.

Lemma 3.4. Assume Hypothesis 1 and let G ∈ G. Fix O ∈ AR(Rd), v ∈ L p
loc

(Rd ,Rn) and ϕ ∈ Lip(O,Rn). Then there exists a constant Cβ > 0 such that for
all κ > 0, ε = ε(κ) > 0 small enough, all β > 0 and M � Cβ ,

Zβ
ε,O(Np(v, O, ε, κ)\SM (O, ε)) � exp

(
−M

2
β|OL

ε |
)
exp(Cβ |OL

ε |),

Zβ
ε,O(Bε(O, ϕ)\SM (O, ε)) � exp

(
−M

2
β|OL

ε |
)
exp(Cβ |OL

ε |).

The constant Cβ can be chosen as

Cβ =
{

C if β � 1
2 ,

−C log(β) 0 < β < 1
2 .

Proof of Lemma 3.4. Note that by Hypothesis 1, for any u /∈ SM (O, ε) it holds
that

Hε(u, O) � 3M

4
|OL

ε | +
1

4
Hε(u, O) � 3M

4
|OL

ε | +
1

4C
‖∇Bu‖p

�
p
ε (O)

− C

4
|OL

ε |.
Hence we obtain that

Zβ
ε,O(Np(v, O, ε, κ)\SM (O, ε))

� exp

(
−M

2
β|OL

ε |
) ˆ

Np(v,O,ε,κ)

exp

(
−β

1

C
‖∇Bu‖p

�
p
ε (O)

)
du,

up to redefining C . In order to bound the last integral, first note that for every
u ∈ Np(v, O, ε, κ) the definition (3.7) implies that for all x ∈ OL

ε we have

|u(x)− ε−1vε(x)| < κ(|O|ε−d)
1
p+ 1

d .
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Therefore we may apply Lemma 3.3 with the family zx = ε−1vε(x) and obtain the
estimate

ˆ

Np(v,O,ε,κ)

exp(−β
1

C
‖∇Bu‖p

�
p
ε (O)

) du

�
(

Cκn
(
|O|ε−d

) n
p+ n

p
)NO,ε (

Cβ
− n

p

)|OL
ε |−NO,ε

, (3.8)

where the graph G O,ε is defined as in Lemma 3.3. By Remark 7 and (3.3), taking
ε small enough (depending on O) the number of connected components of G O,ε

can be bounded via

NO,ε � CHd−1(∂O)ε1−d .

Set Cβ as in the statement. Up to further decreasing ε = ε(O, κ), we deduce from
(3.8) the estimate

ˆ

Np(v,O,ε,κ)

exp

(
− 1

C
‖∇Bu‖p

�
p
ε (O)

)
du � exp(Cβ |OL

ε |).

This proves the first estimate. The second one is easier as we have a better control
for Lemma 3.3 using the boundary conditions.We leave the details to the reader. � 
Remark 8. Observe that in Lemma 3.4 the condition on ε is independent of M , so
that the estimate holds uniformly with respect to M � C .

The last result we state in this section is one of the main tools in [34] to prove
large deviation principles for the Gibbs measures associated with elastic energies
on periodic lattices. It is an interpolation inequality that allows to impose additional
boundary conditions.We extend the validity of this inequality to admissible graphs.
Although there are only minor changes in the argument, we display the proof with
our notation in the appendix. Since it is a technical tool, we don’t quantify the
dependence on β here. However, we stress that we have to keep track of how the
estimate depends on the set O after letting ε ↓ 0 (see Remark 14 in the appendix).

Proposition 1. Assume Hypothesis 1 and let G ∈ G. Fix O ∈ AR(D) and β > 0.
Let v ∈ L p

loc(R
d ,Rn). For δ > 0 we set Oδ = {x ∈ O : dist(x, ∂O) < 2δ}.

Then for all δ > 0 small enough, N ∈ N and κ > 0 there exists ε0 > 0 and
C = Cβ < +∞ such that for all 0 < ε < ε0 and all ϕ ∈ Np(v, O, ε, κ) we have

(
Zβ

ε,O(Np(v, O, ε, κ))
) N−C

N � 2N Zβ
ε,O(Np(v, O, ε, 3κ) ∩ Bε(O, ϕ))

× exp

(
C
(|(Oδ)ε| +

(
(Nκ|O| 1d )p

δ p
+ 1

N

)
|OL

ε |

+Hε(Oδ, ϕ)
)
)

.
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4. Thermodynamic Limit of the Free Energy: Proof of Theorem 1.3

As made clear in the statements of the main result, linear boundary conditions
are the basic ingredients to define the continuum free energy density. Let� ∈ R

n×d ,
and D be a Lipschitz subset of Rd . We denote by ϕ� : L → R

n the function de-
fined by ϕ�(x) = �x and by ϕ� : Rd → R

n its continuum version x �→ �x (this
distinction will be needed when we identify ϕ� with its piecewise constant interpo-
lation on the Voronoi tessellation; see below). In this section we better characterize
the asymptotic behavior of the functionals Eβ

ε (D, ϕ�). We first show that for sta-
tionary graphs there exists a limit of the free energy when ε → 0 and, following
the approach of [34], we give some useful equivalent characterizations. Then we
show that the limit inherits the p-growth conditions of Hypothesis 1. Finally, we
prove its quasiconvexity and conclude with Theorem 1.3.

4.1. Existence of W
β

and Equivalent Definitions

We shall prove the almost sure existence of the limit limε↓0 Eε(D, ϕ�) using
the subadditive ergodic theorem, cf. [2, Theorem 2.7]. We set I = {[a, b) : a, b ∈
R

d , a �= b}, where [a, b) := {x ∈ R
d : ai � xi < bi ∀i}.

Proposition 2. Assume Hypothesis 1. Fix � ∈ R
n×d . Then there exists a deter-

ministic constant W
β
(�) such that for all Lipschitz domains D we have almost

surely

W
β
(�) = lim

ε↓0 E
β
ε (D, ϕ�).

Remark 9. In the above statement the exceptional set may depend on � (and β).
Later on we shall prove that W is continuous, which implies that the set can be
taken independent of � (and β).

Proof of Proposition 2. Wedrop the superscriptβ, and start with defining a suitable
stochastic process (that is, a measurable function on the set of graphs G). Given
I ∈ I, set

σ(I ) := − log

(ˆ

B1(I,ϕ�)

exp
(− H1(I, u)

)
du

)
+ C� Hd−1(∂ I ), (4.1)

where C� will be chosen later to make the process subadditive. In order to apply
the subadditive ergodic Theorem it is enough to prove:

(a) that |σ(I, G)| is bounded uniformly with respect to G,
(b) that G �→ σ(I, G) is a stationary process,
(c) that I �→ σ(I, G) is subadditive.

We split the rest of the proof into four steps, prove (a), (b), and (c) separately, and
then conclude.
Step 1. Proof of (a).
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In order to show that σ(I, ·) is integrable, we use Hypothesis 1, (3.1), and Remark 6
in the form

H1(I, u) � C‖∇Bu‖p
�

p
1 (I )

+ C |I | � C‖∇B(u − ϕ�)‖p
�

p
1 (I )

+ C‖∇Bϕ�‖p
�

p
1 (I )

+ C |I |
� C‖u − ϕ�‖p

�
p
1 (I )

+ C(|�|p + 1)|I |.

SinceB1(I, ϕ�)−ϕ� = B1(I, 0), we obtain by a change of variables,monotonicity,
Fubini’s theorem, and (3.1) again,

σ(I ) � C(|�|p + 1)|I | − log

(ˆ

B1(I,0)
exp

(− C‖u‖p
�

p
1 (I )

)
du

)
+ C�Hd−1(∂ I )

� C(|�|p + 1)|I | − #{x ∈ L ∩ I : dist(x, ∂ I )

> C0} log
(ˆ

Rn
exp(−C |ζ |p) dζ

)

− #{x ∈ L ∩ I : dist(x, ∂ I ) � C0} log
(ˆ

B1(0)
exp(−C |ζ |p) dζ

)

+ C�Hd−1(∂ I )

� C(|�|p + 1)|I | + C |I |∣∣ logC
∣∣+ CHd−1(∂ I )

∣∣ logC
∣∣+ C�Hd−1(∂ I ).

(4.2)

From Hypothesis 1 and Lemma 3.3 applied with V = B1(I, ϕ�), zx = �x , γ = 1
and α = 1

C , we also deduce that

Z1,I,ϕ� �
ˆ

B1(I,ϕ�)

exp

(
− 1

C
‖∇Bu‖p

�
p
1 (I )

+ C |I |
)

du � exp(C |I |)C |L∩I | � C |I |.

Taking minus the logarithm we obtain that

σ(I ) � −|I | logC. (4.3)

The desired estimate (a) follows from the combination of (4.2) and (4.3).
Step 2. Proof of (b).
Let z ∈ Z

d . By definition of a graph and of B1, we have the equivalence

u ∈ B1(I, ϕ�, G + z) ⇐⇒ w(·) = u(· + z)−�z ∈ B1(I − z, ϕ�, G)

and H1(I, u, G + z) = H1(I − z, w, G). This implies stationarity of σ in the form
σ(I, z + G) = σ(I − z, G).
Step 3. Proof of (c).
In order to prove subadditivity, let I ∈ I and consider a finite partition I = ⋃

i Ii

with Ii ∈ I. By definition,

B1(I, ϕ�) ⊃ {u : L ∩ I → R
n : u|L∩Ii ∈ B1(Ii , ϕ�)} =

∏

i

B1(Ii , ϕ�).

(4.4)
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Moreover, for any u ∈∏i B1(Ii , ϕ�) the monotonicity of H1(·, u) with respect to
set inclusion yields the (almost) subadditivity estimate

H1(I, u) �
∑

i

H1(Ii , u|L∩Ii )+
∑

i

∑

(x,y)∈B
[x,y]∩∂ Ii\∂ I �=∅

C(|�|p + 1)

�
∑

i

H1(Ii , u|L∩Ii )+ C(|�|p + 1)
∑

i

Hd−1(∂ Ii\∂ I ). (4.5)

From (4.4) and (4.5) we conclude by Fubini’s Theorem that for C� � C(|�|p +1)
we have

σ(I ) �
∑

i

(
σ(Ii )− C�Hd−1(∂ Ii )

)+ C(|�|p + 1)
∑

i

Hd−1(∂ Ii\∂ I )

+ C�Hd−1(∂ I )

�
∑

i

σ(Ii )+
(
C(|�|p + 1)− C�

)∑

i

Hd−1(∂ Ii\∂ I ) �
∑

i

σ(Ii ),

that is, the desired subadditivity.
Step 4. Conclusion.
By the subadditive ergodic Theorem (combined with an elementary approximation
argument to pass from integer rectangles to general rectangles and Lipschitz do-
mains, see for instance Step 4 of the proof of Theorem 3.1 in [32]), we obtain the
existence of the deterministic field W (�) satisfying almost surely for all Lipschitz
domains D

W (�) = lim
t↑∞

1

td
E1(t D, ϕ�).

� 
Following [34] we next prove two equivalent characterizations of W

β
.

Lemma 4.1. Assume Hypothesis 1. Fix � ∈ R
n×d . Then W

β
(�) defined in Propo-

sition 2 almost surely satisfies: For all κ > 0 and all O ∈ AR(Rd),

W
β
(�) = lim

ε↓0 −
1

|Oε| log
(

Zβ
ε,O(Np(ϕ�, O, ε, κ) ∩ Bε(O, ϕ�))

)
(I)

= F+(O, ϕ�). (II)

Proof of Lemma 4.1. We split the proof into 4 steps. Again we drop the superscript
β.
Step 1. Existence of the limit.
We first prove that the right hand side of (I) is well-defined. Again we use the
subadditive ergodic theorem. To this end, note that due to (3.1) and the definition of
the setsNp in (3.7) there exists a deterministic length of the form lκ = #C1(|�| +
1)/κ$ ∈ N such that, for any I ∈ I,

ϕ� ∈ Np

(
ϕ�, lκ I, 1,

κ

2

)
∩ B1(lκ I, ϕ�). (4.6)
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We fix such C1 from now on and define the stochastic process σκ : I → L1(G) by

σκ(I ) = − log
(
Z1,I (Np(ϕ�, lκ I, 1, κ) ∩ B1(lκ I, ϕ�))

)+ CσκHd−1(∂(lκ I )),

(4.7)

where Cσκ will be chosen later to obtain subadditivity. To show integrability, we
first note that σκ(I ) � σ(lκ I ) − (C� − Cσκ )lκHd−1(∂ I ), where σ is the process
defined in the proof of Proposition 2. In order to prove an upper bound, observe
that there exists a constant c > 0 such that

ϕ� + {
u : lκ I ∩ L→ R

n : |u(x)|
� min

{
1, c(|�| + 1)|I | 1d

}}
⊂ Np(ϕ�, lκ I, 1, κ) ∩ B1(lκ I, ϕ�).

Indeed, the set on the left hand side clearly satisfies the boundary conditions and
is thus contained in B1(lκ I, ϕ�). The remaining inclusion follows by the triangle
inequality since (3.1) and (4.6) yield

‖(ϕ�)1 − ϕ� − u‖�
p
1 (lκ I ) <

κ

2
|lκ I | 1p+ 1

d + C |lk I | 1p ‖u‖∞ � κ

2
|lκ I | 1p+ 1

d

+ C |lκ I | 1p c(|�| + 1)|I | 1d
� κ

2
|lκ I | 1p+ 1

d + C |lκ I | 1p c

C1
κ|lκ I | 1d � κ|lκ I | 1p+ 1

d ,

provided that c � C1
2C . Having in mind the established set-inclusion, the argument

for (4.2) also yields a deterministic upper bound, the proof of which we omit.
Concerning stationarity, we recall that the interpolation in (3.4) is random as it

depends on theVoronoi cells. By stationarity ofG, which is inherited by theVoronoi
tessellation, for every z ∈ Z

d we have (ϕ�)1(x + z, G + z) = (ϕ�)1(x, G)+�z.
Hence, with a slight abuse of notation,

(
Np(ϕ�, lκ(I − z), 1, κ, G) ∩ B1(lκ(I − z), ϕ�, G)

)+ lκ�z

= Np(ϕ�, lκ I, 1, κ, G + lκ z) ∩ B1(lκ I, ϕ�, G + lκ z).

where we used that lκ ∈ N. By a change of variables we obtain the lκZd -stationarity
condition

σκ(I − lκ z, G) = σκ(I, G + lκ z).

From now on the proof is very similar to the one of Proposition 2. Just note that for
proving subadditivity, given a partition I =⋃

i Ii it holds that

Np(ϕ�, lκ I, 1, κ) ∩ B1(lκ I, ϕ�) ⊃
∏

i

Np(ϕ�, lκ Ii , 1, κ) ∩ B1(lκ Ii , ϕ�).

(4.8)

This is clear for the boundary conditions, while for the discrete neighbourhoods
it follows from the inequality

∑
j |I j |1+ p

d � |I |1+ p
d , which is due to the fact that

the discrete �p-norms are maximal for p = 1. With (4.8) at hand and choosing a
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suitable Cσκ , we conclude, as we did for Proposition 2, that with probability one
the following limit exists

Wκ(�) = lim
ε→0

− 1

|Oε| log
(
Zε,O(Np(ϕ�, O, ε, κ) ∩ Bε(O, ϕ�))

)
,

and is independent of the Lipschitz domain O (note that (3.4) and the definition of
the sets Np(ϕ�, O, ε, κ) in (3.7) are compatible with rescaling in the sense that
(ϕ�)ε = ε(ϕ�)1 and therefore u ∈ Np(ϕ�, O, ε, κ) ∩ Bε(O, ϕ�) if and only if
u ∈ Np(ϕ�, O/ε, 1, κ) ∩ B1(O/ε, ϕ�)).

Step 2. Independence with respect to κ .
Let us prove that the limit is independent of κ which turns out to be useful for
proving (I) in the next step. We may assume that the limit of Step 1 exists almost
surely for all positive κ ∈ Q. As in [34] we compute the energy on a half-open cube
O = [0, 1)d which we subdivide again into 2d smaller half-open cubes {Oi }2d

i=1 of
equal size. In this case we can improve the rescaled version (4.8) in the sense that

Np(ϕ�, O, ε,
κ

2
) ∩ Bε(O, ϕ�) ⊃

∏

i

Np(ϕ�, Oi , ε, κ) ∩ Bε(Oi , ϕ�).

Indeed, the boundary conditions on the large cube hold by the boundary conditions
on the smaller cubes and, for each function u belonging to the right hand side set,
the discrete norms in the definition (3.7) can be estimated via

∑

x∈OL
ε

εd |(ϕ�)ε(x)− εu(x)|p � 2dκ p|O1|1+ p
d

=
(κ

2

)p
(2d)1+

p
d |O1|1+ p

d =
(κ

2

)p |O|1+ p
d .

A rescaled version of the almost subadditivity estimate (4.5) and Fubini’s Theo-
rem then yield

2d∑

i=1

(
C(|�|p + 1)Hd−1(∂Oi )ε

− 1

|(Oi )ε| log
(
Zε,Oi (Np(ϕ�, Oi , ε, κ) ∩ Bε(Oi , ϕ�))

) |(Oi )ε|
|Oε|

)

� − 1

|Oε| log
(

Zε,O(Np(ϕ�, O, ε,
κ

2
) ∩ Bε(O, ϕ�))

)
.

Passing to the limit when ε → 0 we obtain by definition

Wκ(�) � Wκ/2(�),

where used that the limit is indeed also given by half-open cubes because the
contributions at the boundary are negligible. Since the reverse inequality is obvious
this proves that the two terms actually agree. In particular, by a sandwich argument
we deduce that for a set of full probability the limit exists for all κ > 0 and is
independent of κ .
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Step 3. Proof of (I).
We argue by letting κ → +∞. Since we shall use this equality to show that the
exceptional set can be taken independent of�, we only use deterministic arguments.

On the one hand, by Hypothesis 1, for any u ∈ Bε(O, ϕ�) and ε small enough
we have by the discrete Poincaré inequality of Lemma 3.1

Hε(u, O) � 1

C
‖∇Bu‖p

�
p
ε (O)

− C |OL
ε | �

1

C
‖∇B(u − ϕ�)‖p

�
p
ε (O)

− C(|�|p + 1)|OL
ε |

� 1

C
‖εu − εϕ�‖p

�
p
ε (O)

− C(|�|p + 1)|OL
ε |.

On the other hand, if u /∈ Np(ϕ�, O, ε, κ) then from the definition in (3.4) and
(3.1) we infer that

κ p|O|1+ p
d � C

∑

x∈OL
ε

εd (|εu(x)− ε�x |p + |�|pε p) � Cεd‖εu − εϕ�‖p
�

p
ε (O)

+C |�|pε p+d |OL
ε |.

Combining these inequalities, we infer that, given M > 0 there exists κ0 > 0
such that for all κ > κ0 it holds that Bε(O, ϕ�)\Np(ϕ�, O, ε, κ) ⊂ Bε(O, ϕ�)\
SM (O, ε). Now we choose

M > 2

(
C + log(2)|OL

ε |−1 +
1

|OL
ε |

log
(

Zε,O(Bε(O, ϕ�))
))

, (4.9)

where C denotes the constant from Lemma 3.4. Note that due to (4.3), such M can
be chosen independent of 0 < ε � ε0 for some ε0 = ε0(O) which depends not on
the graph G. The second estimate of Lemma 3.4 yields for κ large enough and this
choice of M

Zε,O(Bε(O, ϕ�)\Np(ϕ�, O, ε, κ)) � Zε,O(Bε(O, ϕ�)\SM (O, ε))

� exp

(
−M

2
|OL

ε |
)
exp(C |OL

ε |)

� 1

2
Zε,O(Bε(O, ϕ�))

or equivalently

Zε,O(Bε(O, ϕ�)) � Zε,O(Bε(O, ϕ�) ∩Np(ϕ�, O, ε, κ)) � 1

2
Zε,O(Bε(O, ϕ�)).

Taking logarithms and dividing by −|Oε| we obtain the claim letting ε → 0 and
using Step 2.

Step 4. Proof of (II).
We apply the interpolation inequality in Proposition 1 with ϕ = ϕ� and φ = ϕ�.
Note that for ε small enough it holds thatϕ� ∈ Np(ϕ�, O, ε, κ). Taking logarithms
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in the interpolation inequality and dividing by −|Oε|, we obtain by Steps 2 and 3,
and Hypothesis 1

N − C

N
F+

κ (O, ϕ�) � W (�)− C

((
(Nκ|O| 1d )p

δ p
+ 1

N

)
+ (|�|p + 1)

|Oδ|
|O|

)
.

The claim now follows taking first the limit κ → 0 and then N →+∞ and δ → 0.
On the other hand the reverse inequality follows by Step 3 and a monotonicity
argument based on set inclusion. � 
Remark 10. The estimates of Step 3 in the proof of Lemma 4.1 show that the limit

defining W
β
(�) exists whenever G is admissible and the limit defining Wκ(�)

exists.

Using the observation of the previous remark, we now show that the exceptional
set where convergence of the free energy may fail can be taken independent of the
macroscopic boundary condition�. As a byproduct we obtain the continuity of the

maps � �→ W
β
(�).

Proposition 3. Assume Hypothesis 1. Then for almost all G ∈ G, all � ∈ R
n×d ,

all β > 0 and all bounded Lipschitz domains D ⊂ R
d there exists the limit

W
β
(�) = lim

ε→0
Eβ

ε (D, ϕ�)

and the further statements of Proposition 2 and the equivalent characterizations of

Lemma 4.1 remain true. In addition the map � �→ W
β
(�) is continuous.

Proof of Proposition 3. In view of Remark 10, the first claim proven once we show
that there exists a common set G′ ⊂ G of full probability such that the limit

Wκ(�) = lim
ε→0

− 1

|Oε| log
(
Zε,O(Np(ϕ�, O, ε, κ) ∩ Bε(O, ϕ�))

)
(4.10)

exists for all G ∈ G′, all κ > 0, all � ∈ R
n×d and all O ∈ AR(Rd). By Step 3 of

the proof of Lemma 4.1 we know that for any � ∈ Q
n×d we find a set G� ⊂ G of

full probability such that the limit in (4.10) exists for all κ > 0, all G ∈ G� and all
O ∈ AR(Rd). Let us set G′ =⋂

�∈Qn×d G�. We fix G ∈ G′ and set

W κ(�, O) = lim sup
ε→0

− 1

|Oε| log
(
Zε,O(Np(ϕ�, O, ε, κ) ∩ Bε(O, ϕ�))

)
,

W κ(�, O) = lim inf
ε→0

− 1

|Oε| log
(
Zε,O(Np(ϕ�, O, ε, κ) ∩ Bε(O, ϕ�))

)
.

Wefirst argue by rational approximation that these two terms actually agree. To this
end fix �,�′ ∈ R

n×d and O ∈ AR(Rd). For δ > 0 we define the set Oδ = {x ∈
O : dist(x, ∂O) > δ}. Taking δ small enough, we may assume that O2δ ∈ AR(D)
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(see, for instance, [32, Lemma 2.2]). We now define suitable interpolations. Let
θδ : O → [0, 1] be the Lipschitz-continuous cut-off function

θδ(z) = min

{
max

{
1

δ
dist(z, ∂O)− 1, 0

}
, 1

}
.

By constructionwe have θδ ≡ 1 on O2δ , θδ ≡ 0 on O\Oδ and theLipschitz constant
is bounded by Lip(θδ) � 1

δ
. Given ϕ : OL

ε → R
n and ψ : (O\O2δ)ε → R

n we
define the interpolation Tε,δ(ϕ, ψ) : OL

ε → R
n setting

Tε,δ(ϕ, ψ)(x) = θδ(εx)ϕ(x)+ (1− θδ(εx))ψ(x).

Assume in addition thatϕ ∈ Bε(O2δ, ϕ�)×N∞(ϕ�, O\O2δ, ε) andψ ∈ N∞(ϕ�′,
O\O2δ, ε). Then Hypothesis 1 implies that

Hε(O, Tε,δ(ϕ, ψ)) � Hε(O2δ, ϕ)

+C
∑

(x,y)∈B
εx∈O\O2δ,εy∈O

(|Tε,δ(ϕ, ψ)(x)− Tε,δ(ϕ, ψ)(y)|p + 1)

(4.11)

To bound the last term we use the algebraic formula

Tε,δ(ϕ, ψ)(x)− Tε,δ(ϕ, ψ)(y) = θδ(εy)(ϕ(x)− ϕ(y))+ (1− θδ(εy))(ψ(x)− ψ(y))

+ (θδ(εx)− θδ(εy))(ϕ(x)− ψ(x)).

For all (x, y) ∈ E such that εx ∈ O\O2δ and εy ∈ O , the boundary values of ϕ

and the L∞-restrictions on ϕ,ψ combined with the bound on Lip(θδ) yield

|Tε,δ(ϕ, ψ)(x)− Tε,δ(ϕ, ψ)(y)| � C(1+ |�| + |�′|)
+Cε

δ
|�−�′||x | � C(1+ |�| + |�′|)+ C

δ
|�−�′|,

where we used that εx ∈ O has equibounded norm for fixed O . Taking the pth

power in this inequality, we can further estimate (4.11) by

Hε(O, Tε,δ(ϕ, ψ)) � Hε(O2δ, ϕ)+
(

C(1+ |�| + |�′|)p

+ C

δ p
|�−�′|p

)
|(O\O2δ)

L
ε |. (4.12)

To reduce notation, we set σδ(�,�′) := (1 + |�| + |�′|)p + 1
δ p |� − �′|p and

define the set

S =
(
Np(ϕ�, O2δ, ε, κ) ∩ Bε(O2δ, ϕ�)

)
×N∞(ϕ�, O\O2δ, ε).

Using (4.12) and the fact that |N∞(ϕ�, O\O2δ, ε)| × |N∞(ϕ�′ , O\O2δ, ε)| �
exp(−C |(O\O2δ)

L
ε |), we deduce from Fubini’s Theorem that

Zε,O2δ (Np(ϕ�, O2δ, ε, κ) ∩ Bε(O2δ, ϕ�)) exp
(− Cσδ(�,�′)|(O\O2δ)

L
ε |
)
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�
ˆ

S×N∞(ϕ�′ ,O\O2δ,ε)

exp(−Hε(O, Tε,δ(ϕ, ψ)) dϕ dψ. (4.13)

In order to provide an upper bound for the integral on the right hand side, we change
the variables. A computation yields for any (ϕ, ψ) ∈ S ×N∞(ϕ�′, O\O2δ, ε) the
estimate

ε
d
p ‖(ϕ�′)ε − εTε,δ(ϕ, ψ)‖�

p
ε (O)

� κ|O2δ|
1
d + 1

p + C |�−�′||O| 1p + Cε(1+ |�| + |�′|)|(O\O2δ)ε|
1
p ε

d
p .

Hence we find ηκ = ηκ(O) > 0 such that for all ε small enough we have the
implication

|�−�′| < ηκ ⇒ Tε,δ(ϕ, ψ) ∈ Np(ϕ�′ , O, ε, 3κ) ∩ Bε(O, ϕ�′)

(4.14)

for all (ϕ, ψ) ∈ S×N∞(ϕ�′ , O\O2δ, ε). In particular this implication is indepen-
dent of δ. Introducing the function b : (O\O2δ)

L
ε → R

n defined by

b(x) =
{

�′x if θδ(εx) � 1
2 ,

�x if θδ(εx) < 1
2 ,

for ε small enough and |� − �′| < ηκ we can define the linear mapping �ε,δ :
S × N∞(ϕ�′ , O\O2δ, ε) → Np(ϕ�′, O, ε, 3κ) × N∞(b, O\O2δ, ε) by setting
(with a slight abuse of notation)

�ε,δ(ϕ, ψ)(x) =
{

(Tε,δ(ϕ, ψ)(x), ψ(x)) if θδ(εx) � 1
2 ,

(Tε,δ(ϕ, ψ)(x), ϕ(x)) if θδ(εx) < 1
2 .

Note that�ε,δ is well-defined due to (4.14) and bijective onto its rangeR(�ε,δ). In
order to calculate the Jacobian, it is convenient to number the points x ∈ OL

ε and
view the state space as large vectors by putting as first component the value ϕ(x(1))
and as second either ψ(x(1)) if x(1) ∈ O\O2δ or ϕ(x(2)) otherwise. Continuing
this procedure the matrix representation of �ε,δ has non-zero entries only in 2× 2-
matrices around the diagonal. Thus the determinant splits into products and we
obtain

| det(D�ε,δ(ϕ, ψ))|−1 =
⎛

⎜⎝
∏

x :θδ(εx)� 1
2

|θδ(εx)|n
∏

x :θδ(εx)< 1
2

|1− θδ(εx)|n
⎞

⎟⎠

−1

� exp(C |(O\O2δ)
L
ε |).

Via the change of variables (g, h) = �ε,δ(ϕ, ψ) and (4.14) we can estimate the
right hand side integral in (4.13) by

ˆ

S×N∞(ϕ�′ ,O\O2δ,ε)

exp(−Hε(O, Tε,δ(ϕ, ψ)) dϕ dψ
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� Zε,O(Np(ϕ�′ , O, ε, 3κ) ∩ Bε(O, ϕ�′))

× |N∞(b, O\O2δ, ε)| exp(C |(O\O2δ)
L
ε |). (4.15)

Combining (4.13) and (4.15) we conclude the estimate

Zε,O2δ (Np(ϕ�, O2δ, ε, κ) ∩ Bε(O2δ, ϕ�))

� Zε,O(Np(�
′x, O, ε, 3κ) ∩ Bε(O, ϕ�′))

× exp
(
Cσδ(�,�′)|(O\O2δ)

L
ε |
)
.

Taking logarithms, dividing by −|Oε| and taking the limes superior on both sides
yields

|O2δ|
|O| W κ(�, O2δ) � W 3κ(�′, O)− Cσδ(�,�′) |O\O2δ|

|O| . (4.16)

Replacing O2δ and O by the sets O and O2δ respectively, where O2δ = {x ∈ R
d :

dist(x, O) < 2δ}, and switching the roles of � and �′ we can prove in exactly the
same way the estimate

W 3κ(�′, O) � |O2δ|
|O| W 9κ(�, O2δ)− Cσδ(�,�′) |O

2δ\O|
|O| . (4.17)

Further we may assume that O2δ ∈ AR(Rd). Choosing � = � j ∈ Q
n×d such that

� j → �′, the two inequalities (4.16) and (4.17) yield

0 � W 3κ(�′, O)− W 3κ(�′, O) � |O2δ\O2δ|
|O|

(
|W (� j )| + Cσδ(� j ,�

′)
)
.

Letting first j →+∞ and then δ → 0 the right hand side vanishes since W (�) is
locally bounded (see the estimates (4.2) and (4.3)). Hence the limit in (4.10) indeed
exists.

We now show that it is independent of O and κ . Choosing � j as above, we
infer again from (4.16) that

W3κ(�′, O) � lim inf
j

W (� j )+
(
1− |O2δ|

|O|
)
sup

j
|W (� j )|

+C
|O\O2δ|
|O| (1+ 2|�′|p).

Letting δ → 0 we obtain W3κ(�′, O) � lim inf j W (� j ). On the other hand, (4.17)
and a similar reasoning yield W3κ(�′, O) � lim sup j W (� j ), so that

W3κ(�′, O) = lim
j

W (� j )

is independent of κ and O . Repeating the deterministic argument from Step 3 of
the proof of Lemma 4.1 one can show that W3κ(�′, O) = W (�′) for all κ > 0.
Thus continuity can be proven using again (4.16) and (4.17) since there is no κ-
dependence any more.
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Finally, as the only random construction in the proof of Lemma 4.1 was the
existence of the limits in (4.10) it is clear that the characterizations still hold true
and, by continuity, so do the additional properties stated in Proposition 2. � 
Remark 11. As we intend to vary the temperature in Section 6, let us observe
that the set G′ ⊂ G of full probability given by Proposition 3 can be chosen also
independent of β > 0. Indeed, first we choose a set of full probability such that
Proposition 3 holds for all rational β � 1. Then for given β � 1 we take a rational
sequence β j > β such that β j ↓ β. The remaining argument relies on Remark 10:
Fix κ > 0 and a set O ∈ AR(Rd). Then by monotonicity and Lemma 3.4 with a
suitable M = M(β,�) (see e.g. (4.9)), we have for all ε small enough the inequality

Z
β j
ε,O(Np(ϕ�, O, ε, κ) ∩ Bε(O, ϕ�))

� Zβ
ε,O(Np(ϕ�, O, ε, κ) ∩ Bε(O, ϕ�))

� Zβ
ε,O(Bε(O, ϕ�)) � 2Zβ

ε,O(Bε(O, ϕ�) ∩ SM (O, ε))

� 2Z
β j
ε,Q(Bε(O, ϕ�) ∩ SM (O, ε))× exp(M(β j − β)|OL

ε |)
� 2Z

β j
ε,O(Bε(O, ϕ�))× exp(M(β j − β)|OL

ε |).
Taking the logarithm and dividing −β|Oε|, we obtain by Lemma 4.1 and Propo-
sition 3 that the limit corresponding to β exists and is independent of κ and O .
Moreover, as a by-product, we proved a continuous dependence on β.

4.2. p-Growth From Above and Below

For the limit free energy W (�) we now prove suitable two-sided growth esti-
mates. Here we keep track of the dependence on the inverse temperature β.

Lemma 4.2. Assume Hypothesis 1. Let W
β

be given by Proposition 2. Then there
exists a constant C > 0 such that for all � ∈ R

n×d and all β > 0

W
β
(�) � C |�|p + C

(
1+ 1+ | log(β)|

β

)
.

Proof of Lemma 4.2. This estimate as an immediate consequence of the bound (4.2)
taking into account that there is a prefactor β in the exponential functions. � 

We now turn to the lower bound. Here we use the full assumptions on the graph
in Definition 1.2.

Lemma 4.3. Assume Hypothesis 1 and let G ∈ G. Let v ∈ L p
loc(R

d ,Rn). Then
F−(O, v) < +∞ only if v ∈ W 1,p(O,Rn). In this case there exists a constant
c > 0 such that

F−(O, v) � c

|O|
ˆ

O
|∇v(z)|p dz − 1

c

(
1+ 1+ log(β)|

β

)
.

In particular

W
β
(�) � c|�|p − 1

c

(
1+ 1+ | log(β)|

β

)
.
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Proof of Lemma 4.3. First observe that the lower bound on W (�) follows by the
first estimate and Lemma 4.1. To prove the first estimate, we split the free energy in
a purely variational part and an integral part over a translated neighborhood. Given
ε, κ fixed, we first choose uε,κ ∈ Np(v, O, ε, κ) such that

‖∇Buε,κ‖p
�

p
ε (O)

� inf
u∈Np(v,O,ε,κ)

‖∇Bu‖p
�

p
ε (O)

+ 1.

By convexity, for every u ∈ Np(ϕ, O, ε, κ)we have 1
2uε,κ + 1

2u ∈ Np(v, O, ε, κ).
Hence by Lemma A.1 there exists C p < 2p such that

‖∇Buε,κ‖p
�

p
ε (O)

− 1 � ‖1
2
∇Buε,κ + 1

2
∇Bu‖p

�
p
ε (O)

� C p

2p
‖∇Buε,κ‖p

�
p
ε (O)

+ C p

2p
‖∇Bu‖p

�
p
ε (O)

− 1

2p
‖∇B(uε,κ − u)‖p

p
ε (O)

.

Subtracting the first and the last term on the right hand side, we infer that
(
1− C p

2p

)
‖∇Buε,κ‖p

�
p
ε (O)

+ 1

2p
‖∇B(uε,κ − u)‖p

�
p
ε (O)

− 1 � C p

2p
‖∇Bu‖p

�
p
ε (O)

.

As C p
2p < 1, this estimate combined with Hypothesis 1 yields

Hε(O, u) � 1

C
‖∇Bu‖p

�
p
ε (O)

− C |OL
ε | �

1

C
‖∇Buε,κ‖p

�
p
ε (O)

− C |OL
ε |

+ 1

C
‖∇B(uε,κ − u)‖p

�
p
ε (O)

.

As the function uε,κ − u belongs to Np(0, O, ε, 2κ), after a change of variables
we obtain

− 1

β|Oε| log(Zβ
O,ε(Np(v, O, ε, κ))) � 1

C |Oε| ‖∇Buε,κ‖p
�

p
ε (O)

− C

− 1

β|Oε| log
( ˆ

Np(0,O,ε,2κ)

exp
(
− β

C
‖∇Bu‖p

�
p
ε (O)

)
du

)
(4.18)

Step 1. Estimate of the first right hand side term of (4.18).
Let us start with estimating |Oε|−1‖∇Buε,κ‖p

�
p
ε (O)

. Here we follow [4] and use a

difference quotient estimate. To this end, let O ′ ⊂⊂ O and fix h ∈ R
d with 2|h| �

dist(O ′, ∂O). For any y ∈ L we set U h
ε (y) = {x ∈ L : C(x) ∩ (C(y)+ h

ε
) �= ∅}.

Then
ˆ

O ′/ε
|εuε,κ(z + h/ε)− εuε,κ(z)|p dz

�
∑

y∈L
C(y)∩ O′

ε
�=∅

ˆ

C(y)

ε p|uε,κ(z + h/ε)− uε,κ(y)|p dz
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=
∑

y∈L
C(y)∩ O′

ε
�=∅

ˆ

C(y)+ h
ε

ε p|uε,κ(z)− uε,κ(y)|p dz

�
∑

y∈L
C(y)∩ O′

ε
�=∅

∑

x∈U h
ε (y)

ˆ

C(x)

ε p|uε,κ(x)− uε,κ(y)|p dz. (4.19)

We next derive a pointwise estimate of ε p|uε,κ(x) − uε,κ(y)|p for x ∈ U h
ε (y).

Let P(x, y) be a path connecting x, y satisfying the properties of Definition 1.2
(iv). From (3.1) we deduce that |x − y| � |h|ε−1 + 2R and thus #P(x, y) �
C(|h|ε−1 + 1). Using Jensen’s inequality we obtain

ε p|uε,κ(x)− uε,κ(y)|p � ε p (#P(x, y))p−1 ∑

(x ′,x ′′)∈P(x,y)

|uε,κ(x ′)− uε,κ(x ′′)|p

� (Cε|h|p−1 + Cε p)
∑

(x ′,x ′′)∈P(x,y)

|uε,κ(x ′)− uε,κ(x ′′)|p.

(4.20)

Moreover note that C(y) ∩ O ′
ε �= ∅ and x ∈ U h

ε (y) imply that x ′, x ′′ ∈ OL
ε for ε

small enough. Indeed, applying the triangle inequality several times one can show
that for any v ∈ [x ′, x ′′] one has

dist

(
v,

O ′

ε

)
� |h|

ε
+ (2C0 + 3R),

where C0 is given by Definition 1.2. Conversely, given any (x ′, x ′′) ∈ B, we define
the sets

K h
ε (x ′, x ′′) := {y ∈ L : ∃x ∈ U h

ε (y) such that (x ′, x ′′) ∈ P(x, y)}.
As G is admissible, for any (x ′, x ′′) ∈ P(x, y) there exists λ ∈ [0, 1] such that
z = y+λ(x − y) satisfies |z− x ′| � C0. Hence for any y ∈ K h

ε (x ′, x ′′) we obtain

y = y − z + x ′ + (z − x ′) = −λ
h

ε
+ x ′ + λ

(
h

ε
− (x − y)

)

+(z − x ′) ∈
[
−h

ε
, 0

]
+ x ′ + B2R+C0(0),

where we have used that |x − y − h
ε
| � 2R for any x ∈ U h

ε (y). Using again
(3.1) we conclude that #K h

ε (x ′, x ′′) � C(|h|ε−1 + 1). Furthermore the set U h
ε (y)

has equibounded cardinality, so that the inequalities (4.19), (4.20) and the uniform
bound on the measure of the Voronoi cells imply

ˆ

O ′/ε
|εuε,κ(z + h/ε)− εuε,κ(z)|p dz
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� C(|h|p + |h|ε p−1 + ε|h|p−1 + ε p)
∑

(x,y)∈B
x,y∈OL

ε

|uε,κ(x)− uε,κ(y)|p

= C(|h|p + |h|ε p−1 + ε|h|p−1 + ε p)‖∇Buε,κ‖p
�

p
ε (O)

. (4.21)

As uε,κ ∈ Np(v, O, ε, κ), the function vε,κ : O → R
n defined by vε,κ(x) :=

εuε,κ (x/ε) satisfies

ˆ

O ′
|vε,κ(z)− vε(z/ε)|p dz � Cεd‖εuε,κ − vε‖p

�
p
ε (O)

� Cκ p|O|1+ p
d .

In particular, by Remark 5 it is bounded in L p(O ′) and thus there exists a subse-
quence (not relabeled) such that vε,κ ⇀ vκ in L p(O ′). Moreover, by Remark 5 and

lower semicontinuity of the L p-norm it holds that ‖vκ − v‖L p(O ′) � Cκ|O| 1p+ 1
d .

By a change of variables in the left hand side of (4.21) we further obtain that
ˆ

O ′
|vε,κ(z + h)− vε,κ(z)|p dz � C(|h|pεd + |h|ε p+d−1

+εd+1|h|p−1 + ε p+d)‖∇Buε,κ‖p
�

p
ε (O)

. (4.22)

Applying weak lower semicontinuity in the above estimate we deduce

lim inf
κ→0

lim inf
ε→0

1

|Oε| ‖∇Buε,κ‖p
�

p
ε (A)

� 1

C |O|
ˆ

O ′

∣∣∣∣
v(z + h)− v(z)

|h|
∣∣∣∣

p

dz. (4.23)

Before we conclude Sobolev-regularity of v, we have to ensure that the third right
hand side term in (4.18) remains finite.
Step 2. Control of the third right hand side term of (4.18).
We want to apply Lemma 3.3. To this end, we observe that

|u(x)| � 2κ

( |O|
εd

) 1
p+ 1

d

for any u ∈ Np(0, O, ε, 2κ) and all x ∈ OL
ε . Hence, setting γ = 2κ

( |O|
εd

) 1
p+ 1

d
,

zx = 0 and α = β
C , Lemma 3.3 yields

log

(ˆ

Np(0,O,ε,2κ)
exp(− β

C
‖∇Bu‖p

�
p
ε (O)

) du

)
� NO,ε log

(
C(2κ)n

( |O|
εd

) n
p+ n

d
)

+ C
(|OL

ε | − NO,ε

)
(1+ | log(β)|),

(4.24)

where NO,ε denotes the number of connected components of the graph G O,ε. Since
O has Lipschitz boundary, by Remark 7 and (3.3) it holds that

NO,ε � Cε1−dHd−1(∂O)
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for ε small enough. Dividing (4.24) by −β|Oε| and letting ε → 0 we find that

lim inf
ε→0

− 1

β|Oε| log
(ˆ

Np(0,O,ε,2κ)

exp

(
− 1

C
‖∇Bu‖p

�
p
ε (O)

)
du

)

� −C

(
1+ | log(β)

∣∣
β

)
.

From (4.18), (4.23) and the previous inequality we finally obtain

F−(O, v) � 1

C |O|
ˆ

O ′

∣∣∣∣
v(z + h)− v(z)

|h|
∣∣∣∣

p

dz − C

(
1+ 1+ | log(β)|

β

)

for every h ∈ R
d such that 2|h| � dist(O ′, ∂O). Using the difference quotient

characterization of W 1,p-spaces we conclude that v ∈ W 1,p(O,Rn) and letting
|h| → 0 yields by the arbitrariness of O ′ that

F−(O, v) � 1

C |O|
ˆ

O
|∇v|p dz − C

(
1+ 1+ log(β)|

β

)
.

� 

4.3. Quasiconvexity of the Limit Free Energy

For the proof of Theorem 1.3 we next establish a lower semicontinuity result
that we use to show the quasiconvexity of the free energy by soft arguments.

Lemma 4.4. Let G ∈ G and let O ∈ AR(Rd). If v, v̂ ∈ L p
loc(R

d ,Rn) are such
that v = v̂ almost everywhere on O, then F±(O, v) = F±(O, v̂). Hence the
maps L p(O,Rn) � v �→ F±(O, v) are well-defined. Moreover both are lower
semicontinuous with respect to the strong L p(O,Rn)-topology.

Proof of Lemma 4.4. Let v j , v ∈ L p
loc(R

d ,Rn) such that v j → v in L p(O,Rn).
Both claims follow if we establish the lower semicontinuity along such sequences.
Given u ∈ Np(v j , O, ε, κ), by (3.1) we have

ε
d
p ‖vε − εu‖�

p
ε (O) � ε

d
p ‖vε − (v j )ε‖�

p
ε (O) + ε

d
p ‖(v j )ε − εu‖�

p
ε (O)

� C

⎛

⎝
∑

x∈OL
ε

ˆ

εC(x)

|v(z)− v j (z)|p dz

⎞

⎠

1
p

+ κ|O| 1p+ 1
d

� C

(
‖u − u j‖p

L p(O) +
ˆ

∂O+BRε(0)
|v(z)− v j (z)|p dz

) 1
p

+ κ|O| 1p+ 1
d .
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Since O ∈ AR(D) we deduce that for all j = j (κ) large enough there exists
ε0 = ε0( j) such that for all ε < ε0 we have Np(v j , O, ε, κ) ⊂ Np(v, O, ε, 2κ).
For every fixed κ0 and j = j (κ0) large enough this yields

F+(O, v j ) = sup
κ>0

F+
κ (O, v j ) � F+

κ0
(O, v j ) � F+

2κ0
(O, v).

Letting first j →+∞ and then κ0 → 0 we conclude that

lim inf
j

F+(O, v j ) � lim
κ0→0

F+
2κ0

(O, v) = F+(O, v).

The proof for F−(O, v) is similar. � 

We now state an important intermediate result that will imply by more or less
standard arguments a large deviation principle for large volume Gibbs measures
under clamped boundary conditions. Due to that reason, we postpone its proof to
the end of Section 5 on the large deviation principle.

Theorem 4.5. Assume Hypothesis 1. Then for a set of full probability and for any
v ∈ W 1,p(D,Rn) it holds that

F−(D, v) = F+(D, v) = 1

|D|
ˆ

D
W

β
(∇v) dx,

where W is given by Proposition 2.

Proof of Theorem 1.3. The almost sure existence of the limit of the free energy
for all � ∈ R

n×d , all β > 0 and all bounded Lipschitz domains D follows from
Proposition 3 and Remark 11. The claimed p-growth conditions have been proven
in the Lemmata 4.2 and 4.3. Quasiconvexity is a standard result on necessary
conditions for weak lower semicontinuity of integral functionals on W 1,p(D,Rn),
provided the integrand is continuous (as proven in Proposition 3) and satisfies the

proven p-growth. Thus quasiconvexity of the map � �→ W
β
(�) is a consequence

of Theorem 4.5, Lemma 4.4 and the Sobolev embedding theorem. Finally the claim
on the ergodic case is contained in Proposition 2. � 

5. Large Deviation Principle for the Gibbs Measures: Proof of
Theorems 1.4 and 1.5

We now turn our attention to the announced large deviation principle for Gibbs
measures associated with the discrete Hamiltonian Hε. As a by-product we shall
prove Theorem 1.4.



1180                          

5.1. Notation for Gibbs Measures and Exponential Tightness

In order to avoid technical issues when discretizing the gradient of a Sobolev
functiononavanishing set,we restrict our analysis to boundarydataϕ ∈ Lip(Rd ,Rn).
Moreover, in order to identify the discrete variables with a function defined on the
continuum we proceed as follows: Recall that given any v : D → R

n , we have set
u := 
1/εv : Dε → R

n as


1/εv(z) = 1

ε
v(εz).

Given such v, with a slight abuse of notation we write u = 
1/εv ∈ Bε(D, ϕ) if
and only if the following conditions are met:

(i)
(

1/εv

)
|C(x)∩Dε

is constant for all x ∈ L;
(ii)

(

1/εv

)
|DL

ε
∈ Bε(D, ϕ) in the usual sense;

(iii)
(

1/εv

)
|C(x)∩Dε

= (

1/εϕ

)
(x) whenever x ∈ L \ Dε

Then the Gibbs measure μ
β
ε,D,g with respect to the Hamiltonian Hε and boundary

value ϕ is the probability measure on L p(D,Rn) given by the formula (1.11), that
is,

μ
β
ε,D,ϕ(V ) = 1

Zβ
ε,D,ϕ

ˆ


1/εV∩Bε(D,ϕ)

exp(−βHε(D, u)) du,

where the partition function Zβ
ε,D,ϕ is the normalizing factor that ensure that

μ
β
ε,D,ϕ(L p(D,Rn)) = 1. With what we have proved so far, we are now in a posi-

tion to state and prove a large deviation principle for these Gibbs measures in the
many-particle limit. As usual, we first have to establish an exponential tightness
estimate. This will be achieved in the two lemmata below.

Lemma 5.1. Assume Hypothesis 1 and let G ∈ G. Fix O ∈ AR(Rd) and ϕ ∈
Lip(Rd ,Rn). If uε ∈ Bε(O, ϕ) ∩ SM (O, ε), then there exists a subsequence uε j

and v ∈ ϕ + W 1,p
0 (O,Rn) such that 
ε j u

ε j := ε j uε j (ε−1j ·) → v in L p(O,Rn).

Proof of Lemma 5.1. We just sketch the argument. First extend uε to the whole
vertex setL setting uε(x) = (


1/εϕ
)
(x)whenever x ∈ L\OL

ε . Now take O1, O2 ∈
AR(Rd) such that O ⊂⊂ O1 ⊂⊂ O2. To reduce notation, we introduce vε : O2 →
R

n as vε = 
εuε. Since uε ∈ Bε(O, ϕ) ∩ SM (O, ε) and ϕ is Lipschitz, one can
show that

sup
ε>0

|(O2)ε|−1Hε(u
ε, O2) < +∞.

Using the same construction as for the proof of (4.22) we obtain that, for h ∈ R
d

such that 2|h| � dist(O1, ∂O2), it holds that
ˆ

O1

|vε(z + h)− vε(z)|p dz � C(|h|p + |h|ε p−1 + ε|h|p−1 + ε p). (5.1)
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According to [32, Lemma 4.6], strong L p(O1)-compactness follows if we prove
that vε is bounded in L p(O2). This can be achieved combining the energy bound
with the growth assumptions from Hypothesis 1 and the properly scaled discrete
Poincaré inequality stated in Lemma 3.1. The regularity of any limit function v

follows again by the difference quotient characterization of W 1,p(O1,R
n) and

(5.1). Since ϕ is Lipschitz, it can be shown that v = ϕ on O1\O and therefore v

has trace ϕ on ∂O . � 
Lemma 5.2. Assume Hypothesis 1 and let G ∈ G. Then, for each N ∈ N there
exists a compact set KN ⊂ L p(D,Rn) such that

lim sup
ε→0

1

β|Dε| log
(
μ

β
ε,D,ϕ(L p(D,Rn)\KN )

)
� −N .

Proof of Lemma 5.2. For agivennumber M > 0wedefine the set KM ⊂ L p(D,Rn)

by

KM :=
⋃

0<ε<1

{
v : D → R

n : 
1/εv ∈ Bε(D, ϕ), Hε(D,
1/εv) � M |Dε|
}
,

where we identify again discrete functions with piecewise constant function on
Voronoi cells. We argue that the set KM is precompact in L p(D,Rn). To this end
consider a sequence {v j } ⊂ KM . Then for each j we find ε j such that v j is defined
on the nodes of ε jL. First let us extend the functions to all of ε jL setting v j (ε j x) =
ϕ(ε j x) for x ∈ L\Dε j . We distinguish two cases: If lim inf j ε j > 0, then we
can use the boundary conditions and the energy bound to prove that v j contains a
converging subsequence since it canbe identifiedwith an equibounded sequence in a
finite dimensional space. Here we use again the fact that each connected component
of G D,ε contains a vertex with active boundary conditions. Next we treat the case
when lim inf j ε j = 0. In that case we can apply Lemma 5.1 to conclude that KM

is precompact for every M .
For the claimed estimate we have to control the contribution from the partition

function. Using the upper bound from Hypothesis 1, Remark 6, (3.2) and a change
of variables, for ε small enough we obtain

−1
β|Dε| log

(
Zβ

ε,D,ϕ

)

� −1
β|Dε| log

(ˆ

Bε(D,ϕ)

exp
(− Cβ(‖∇Bu‖p

�
p
ε (D)

+ |DL
ε |)

)
du

)

� −1
β|Dε| log

(ˆ

Bε(D,ϕ)

exp
(− Cβ(‖∇B(u −
1/εϕ)‖p

�
p
ε (D)

+(‖∇ϕ‖p∞ + 1)|DL
ε |)

)
du
)

� C(‖∇ϕ‖p∞ + 1)− 1

β|Dε| log
( ˆ

Bε(D,0)
exp(−Cβ‖u‖p

�
p
ε (D)

) du

)

� C(‖∇ϕ‖p∞ + 1)+ C

β

∣∣∣∣log
(ˆ

B1(0)
exp(−Cβ|ζ |p) dζ

)∣∣∣∣ . (5.2)
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Combining this bound with Lemma 3.4 we obtain the claim choosing KM with
M = M(N , β) large enough and taking the L p-closure of this set. � 

5.2. Proof of the Large Deviation Principle

Having established the exponential tightness we can now prove a strong large
deviation principle for the large volumeGibbsmeasures as stated in themain results.
Theorem 1.4 will then be a straightforward consequence of the proof.

Proof of Theorem 1.5. Observe first that the term − 1
β|Dε | log(Zβ

ε,D,ϕ) is bounded
from above as shown in (5.2). A corresponding lower bound can be achieved using
the lower bound of Hypothesis 1 and Lemma 3.3. Hence we may assume that,
passing to a subsequence (not relabeled), it holds that

lim
ε→0

− 1

β|Dε| log(Zβ
ε,D,ϕ) = cϕ,β

for some constant cϕ,β ∈ R. To reduce notation, we define the functional Ig :
L p(D,Rn) → (−∞,+∞] via

I β
D,ϕ(v) =

⎧
⎨

⎩

1

|D|
ˆ

D
W

β
(∇v) dx if v ∈ ϕ + W 1,p

0 (D,Rn),

+∞ otherwise.

Note that by the upper and lower bounds established in Lemmas 4.2 andLemma4.3,
respectively, as well as the quasiconvexity proven in Theorem 4.5, we know that
I β

D,ϕ is lower-semicontinuous with respect to strong L p(D,Rn)-convergence.

Step 1. Proof of the lower bound on open sets.
We start the proof with the case of an open set U ⊂ L p(D,Rn). If U ∩ (ϕ +
W 1,p

0 (D,Rn)) = ∅, then there is nothing to prove. Therefore consider v ∈ U∩(ϕ+
W 1,p

0 (D,Rn)). SinceU is open, givenη > 0wecanfindvη ∈ U∩(ϕ+C∞
c (D,Rn))

such that ‖vη−v‖W 1,p(D) < η.We claim that, for fixed η > 0, there exist κ0, ε0 > 0
such that for all κ < κ0 and ε < ε0 it holds that


ε

(
Np(v

η, D, ε, 3κ) ∩ Bε(D, ϕ)
)
⊂ U. (5.3)

Indeed, recalling the definition of ṽη
ε in Remark 5, for every u ∈ Np(v

η, D, ε, 3κ)∩
Bε(D, ϕ) we have that

‖vη −
εu‖L p(D)

� ‖vη − ṽη
ε ‖L p(D) + C

⎛

⎝
∑

x∈Dε

εd |vη
ε (x)− εu(x)|p

+
∑

εC(x)∩∂ D �=∅
εd |ṽη

ε (εx)− ϕ(εx)|p
⎞

⎠

1
p
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� ‖vη − ṽη
ε ‖L p(D) + C

⎛

⎝(3κ)p|D|1+ p
d

+
∑

εC(x)∩∂ D �=∅
εd |ṽη

ε (εx)− ϕ(εx)|p
⎞

⎠

1
p

. (5.4)

The ε-dependent terms vanish by Remark 5 combined with an equiintegrability
argument for the last sum. Hence (5.3) holds provided we choose ε0, κ0 small
enough. Then from the definition of the Gibbs measure we infer for κ < κ0 that

lim inf
ε→0

log(μβ
ε,D,ϕ(U ))

β|Dε|
� lim inf

ε→0

1

β|Dε| log
(

Zβ
ε,D(Np(v

η, D, ε, 3κ) ∩ Bε(D, ϕ)
)
+ cϕ,β .

Applying Proposition 1, we deduce that for any δ > 0 small enough and any N ∈ N

it holds that

lim inf
ε→0

log(μβ
ε,D,ϕ(U ))

β|Dε| � −N − C

N
F+

κ (D, vη)− C(‖∇ϕ‖p∞ + 1)
|Dδ|
|D|

−
(

Nκ|D| 1d
δ

)p

− C

N
+ cϕ,β .

Letting first κ → 0 and then N → +∞ as well as δ → 0, from Theorem 4.5 we
infer

lim inf
ε→0

log(μβ
ε,D,ϕ(U ))

β|Dε| � − 1

|D|
ˆ

D
W

β
(∇vη) dx + cϕ,β .

As η > 0 was arbitrary, the continuity of � �→ W
β
(�) and its growth condition

allow to pass from vη to v and since v ∈ U ∩ (ϕ + W 1,p
0 (D,Rn)) was arbitrary

too, we conclude the lower bound

lim inf
ε→0

log(μβ
ε,D,ϕ(U ))

β|Dε| � − inf
v∈U

I β
D,ϕ(v)+ cϕ,β .

Step 2. Proof of the upper bound on closed sets.
In order to prove an upper bound, we first recall that due to the exponential tightness
established in Lemma 5.2, it suffices to consider the case when V is compact (see
for example Lemma 1.2.18 in [24]). Then, for δ > 0 we define the truncated energy
via

Fδ(D, v) = min

{
F−(D, v)− δ,

1

δ

}
.
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Note that by definition of F−(D, v), for every v ∈ V there exists κ > 0 such that

− lim sup
ε→0

1

β|Dε| log(Zβ
ε,D(Np(v, D, ε, κ)) � Fδ(D, v). (5.5)

Let us fix C1 such that |C(x)| 1p � C1 for all x ∈ L. By lower semicontinuity of the
functional I β

D,ϕ , up to reducing κ we may assume that

I β
D,ϕ(v) � I β

D,ϕ(w)+ 1 (5.6)

for all w ∈ L p(D,Rn) such that ‖v − w‖L p(D,Rn) � C1κ|D|
1
p+ 1

d . As we show
now, for a suitable 0 < κ ′ < κ and all ε small enough, we have the inclusion

Bκ ′(v) ∩
ε(Bε(D, ϕ)) ⊂ 
ε

(
Np(v, D, ε, κ) ∩ Bε(D, ϕ)

)
, (5.7)

where here we denote by Bκ ′(v) the L p(D,Rn)-ball centered at u with radius κ ′.
Indeed, from (3.1) we deduce that any u ∈ Bε(D, ϕ) with 
εu ∈ Bκ ′(v) satisfies

∑

x∈DL
ε

εd |vε(x)− εu(x)|p

� C‖ṽε −
εu‖p
L p(D) + C

∑

εC(x)∩∂ D �=∅
εd (|vε(x)− ϕ(εx)|p + ε p)

� C‖ṽε − v‖p
L p(D) + Cκ ′ +

∑

εC(x)∩∂ D �=∅
εd (|vε(x)− ϕ(εx)|p + ε p)

and again the ε-dependent terms converge to zero by Remark 5 and an equiinte-
grability argument for the sum in the second line. Since V is compact, we can find
a finite covering by the open balls Bκ ′(u), that is there exist v1, . . . , vm such that
V ⊂⋃m

i=1 Bκ ′i (vi ). Together with the the inclusion (5.7) this covering implies

lim sup
ε→0

log(μβ
ε,D,ϕ(V ))

β|Dε|

� lim sup
ε→0

1

β|Dε| log
(

m∑

i=1
μ

β
ε,D,ϕ(Bκ ′i (vi ))

)

� max
i

lim sup
ε→0

1

β|Dε|
(
log(Zβ

ε,D(Np(vi , D, ε, κi ) ∩ Bε(D, ϕ))
)
+ cϕ,β (5.8)

and therefore it remains to bound the term for a fixed vi0 . First note that if

lim sup
ε→0

1

β|Dε|
(
log(Zβ

ε,D(Np(vi0 , D, ε, κi0) ∩ Bε(D, ϕ))
)
= −∞,

then there is nothing left to prove. Otherwise, Lemma 3.4 implies that, for a suitable
large M , it holds that

Np(vi0 , D, ε, κi0) ∩ Bε(D, ϕ) ∩ SM (D, ε) �= ∅
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along some infinitesimal sequence ε → 0 (not relabeled). Applying Lemma 5.1 to
this element, we deduce that there exists v ∈ ϕ + W 1,p

0 (D,Rn) such that, similar
to estimate (5.4), it holds that

‖vi0 − ϕ‖L p(D) � C1κi0 |D|
1
p+ 1

d

Together with (5.6) this implies that vi0 ∈ ϕ+W 1,p
0 (D,Rn), too. Therefore, using

also (5.5), we can further estimate (5.8) by

lim sup
ε→0

log(με,g(A))

β|Dε| � lim sup
ε→0

1

β|Dε| log
(

Zβ
ε,D(Np(vi0 , D, ε, κi0))

)
+ cϕ,β

� −Fδ(D, vi0)+ cϕ,β

� − inf
v∈V∩g+W 1,p

0 (D,Rn)

Fδ(D, v)+ cϕ,β .

Letting δ → 0, by monotonicity and Theorem 4.5 we obtain the estimate

lim sup
ε→0

1

β|Dε| log(μ
β
ε,D,ϕ(V )) � − inf

v∈V
I β

D,ϕ(u)+ cϕ,β .

Step 3. Identification of cϕ,β and conclusion.
It remains to show that cϕ,β does not depend on the subsequence. Testing the open

and closed set L p(D,Rn) it immediately follows that cϕ,β = infv∈L p(D,Rn) I β
D,ϕ(v)

and this proves the large deviation principle with rate functional Iβ
D,ϕ as claimed

in Theorem 1.5. � 
Proof of Theorem 1.4. Observe that, by the definitions in (1.9) and (1.10), in Step 3
above we also proved the claim on the Helmholtz free energy with boundary con-
dition ϕ. � 

From the large deviation principle we obtain the following qualitative behavior
of the Gibbs measures.

Corollary 1. Let ε j → 0. Under the assumptions of Theorem 1.5, for a set of full

probability the sequence of measures μ
β
ε j D,ϕ is compact with respect to weak∗-

convergence and each cluster point as ε j → 0 is a probability measure whose

support is contained in the set of minimizers of the rate functional Iβ
D,ϕ .

5.3. Asymptotic Analysis of the Localized Partition Function

At the end of this section we now give the technical proof of Theorem 4.5,
which was used in the proof of the large deviation principle.

Proof of Theorem 4.5. Let G ∈ G′ with G′ the set of full probability implicitly
given by Proposition 3. The argument consists of two steps.
Step 1. Proof of the upper bound.
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We show that

F+(D, v) � 1

|D|
ˆ

D
W

β
(∇v) dx . (5.9)

By the lower semicontinuity of v �→ F+(D, v) established in Lemma 4.4 and the

p-growth conditions and continuity of W
β
(�) (cf. the Lemmata 4.2 and 4.3 and

Proposition 3) it is enough to prove the estimate for continuous piecewise affine
functions. More precisely, we consider a locally finite triangulation T = {T } ofRd

and a Lipschitz function v ∈ W 1,∞(Rd ,Rn) such that for all T ∈ T there exists
�T ∈ R

n×d and bT ∈ R
n with v|T (y) = �T y + bT . To simplify notation we

introduce the almost lower-dimensional set

S =
⋃

T∈T
(∂T ∩ D) ∪

⋃

T∩∂ D �=∅
(T ∩ D).

A direct computation shows that, for fixed κ > 0 we find ε0 such that for all ε < ε0
we have the inclusion
∏

T⊂D

(
Np

(
v, T, ε,

κ

2

)
∩ Bε(T, ϕ�T + bT )

)
×N∞(ε−1vε, S, ε) ⊂ Np(v, D, ε, κ).

(5.10)

We aim to establish a kind of subadditivity estimate. To this end, observe that when
u belongs to the set on the left hand side and x, x ′ ∈ DL

ε are such that |x−x ′| � C0,
we have the following bounds:

(i) If x ∈ Tε and x ′ ∈ T ′
ε for T �= T ′, then

|u(x)− u(x ′)| � 2+ 1

ε
|v(εx)− v(εx ′)| � 2+ C0‖∇v‖∞.

(ii) If x ∈ Tε and x ′ ∈ Sε, then by definition of vε in (3.4) and (3.1)

|u(x)− u(x ′)| � 2+ 1

ε
|v(εx)− vε(x ′)| � 2+ R‖∇u‖∞ + 1

ε
|v(εx)− v(εx ′)|

� 2+ (R + C0)‖∇v‖∞.

(iii) If x, x ′ ∈ Sε, then by same reasoning as for (ii)

|u(x)− u(x ′)| � 2+ 1

ε
|vε(x)− vε(x ′)| � 2+ (2R + C0)‖∇v‖∞.

By Hypothesis 1, the above bounds, (3.2) and (3.3) there exists a constant Cv

depending only on ‖∇v‖p∞ such that, for ε sufficiently small,

Hε(D, u) �
∑

T⊂D

Hε(T, u)+ Cv

⎛

⎝ε1−d
∑

T∩D �=∅
Hd−1(∂T )+ ε−d

∑

T∩∂ D �=∅
|T ∩ D|

⎞

⎠ .

Upon taking the inverse exponential, integrating the above inequality over the left
hand side set in (5.10) and applying Fubini’s Theorem yields the estimate

Zβ
ε,D(Np(v, D, ε, κ))
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�
∏

T⊂D

Zβ
ε,T (Np(v, T, ε,

κ

2
) ∩ Bε(T, ϕ�T + bT ))

× exp

(
− Cvβε1−d

∑

T∩D �=∅
Hd−1(∂T )− Cvβε−d

∑

T∩∂ D �=∅
|T ∩ D|

)
,

where we incorporated the measure ofN∞(ε−1vε, S, ε) in the exponential term in
the last line, possibly increasing the value of Cv by a multiplicative factor. On each
simplex T ⊂ D we use the translation invariance of the Hamiltonian to get rid of
the constant bT and obtain

Zβ
ε,D(Np(v, D, ε, κ))

�
∏

T⊂D

Zβ
ε,T (Np(ϕ�T

, T, ε,
κ

2
) ∩ Bε(T, ϕ�T ))

× exp

⎛

⎝−Cvβε1−d
∑

T∩D �=∅
Hd−1(∂T )− Cvβε−d

∑

T∩∂ D �=∅
|T ∩ D|

⎞

⎠ ,

Taking logarithms and dividing by−β|Dε|, when ε → 0 we infer from Lemma 4.1
and Proposition 3 that

F+
κ (D, v) �

∑

D⊂T

|T |
|D|W

β
(∇v|T )+ Cv

∑

T∩∂ D �=∅

|T ∩ D|
|D|

� 1

|D|
ˆ

D
W

β
(∇v) dx +

∑

T∩∂ D �=∅

(
Cu − W

β
(�T )

) |T ∩ D|
|D| .

Now keeping v fixed, we let first κ → 0 and then we refine the triangulation T
and by the regularity of ∂ D the last sum can be made arbitrarily small. This proves
(5.9).

Step 2. Proof of the lower bound.
We now turn to the argument for the inequality

F−(D, v) � 1

|D|
ˆ

D
W

β
(∇v) dx .

Let us assume without loss of generality that W
β
(�) � 0. Due to Lemma 4.3 this

can be achieved by adding a large constant to the discrete energy density f . This
perturbation yields a (random) additive constant on both sides due to the superaddi-
tive version of the ergodic theorem. We want to apply the blow-up Lemma proven
in [34] that allows to treat v locally as an affine function. To this end, we need some
notation. First we extend the target function v ∈ W 1,p(D,Rn) (without relabeling)
to a function v ∈ W 1,p(Rd ,Rn) with compact support. Next, given ρ > 0 and
ξ ∈ R

d we define the periodic lattice Lρ,ξ = ξ + ρZd . Note that for fixed ρ, for
almost all ξ ∈ R

d the set Lρ,ξ consists of Lebesgue points of ∇v. Hence we can
define for such ξ a (not necessarily continuous) piecewise affine approximation as

Lρ,ξv(y) = ∇v(z)(y − z)+ 1

ρd

ˆ

Q(z,ρ)

v(x) dx if y ∈ Q(z, ρ), z ∈ Lρ,ξ .
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The main object will be the local difference between the linearization and the
function itself defined for z ∈ Lρ,ξ as

φz
ρ,ξ (y) = 1

ρ

(
v(z + ρy)− Lρ,ξv(z + ρy)

)
if y ∈ Q(0, 1).

Note that due the bounds in Lemma 4.2, for any D′ ⊂⊂ D the function x �→
W

β
(∇v(x))1D′(x) is integrable on R

d . Hence we are in the position to use the
blow-up Lemma by Kotecký and Luckhaus (see [34, Corollary 1]). Note that we
apply it also for the function itself which follows simply by the Poincaré inequality
since the function φz

ρ,ξ has mean value zero on Q(0, 1). It states that for each η > 0
we find ρ0 > 0 such that for each ρ < ρ0 there exists ξ ∈ Q(0, ρ) with

∑

z∈Lρ,ξ

ρd
(ˆ

Q(0,1)
|∇φz

ρ,ξ (y)|p dy +
ˆ

Q(0,1)
|φz

ρ,ξ (y)|p dy

)
< η

∑

z∈Lρ,ξ

ρd W
β
(∇v(z))1D′(z) >

ˆ

D′
W (∇v) dx − η.

(5.11)

Next, if u ∈ Np(v, D, ε, κ), then for all cubes Q(z, ρ) ⊂ D and ε = ε(ρ) small
enough the triangle inequality, the definition (3.4) and a change of variables imply

⎛

⎝
∑

x∈Q(z,ρ)Lε

εd |εu(x)− (Lρ,ξv)ε(x)|p
⎞

⎠

1
p

� κ|D| 1p+ 1
d +

⎛

⎝
∑

x∈Q(z,ρ)Lε

εd |vε(x)− (Lρ,ξv)ε(x)|p
⎞

⎠

1
p

� κ|D| 1p+ 1
d + Cρ

1+ d
p

⎛

⎜⎜⎜⎝
∑

z′∈Lρ,ξ

|z−z′|�ρ

ˆ

Q(0,1)
|φz′

ρ,ξ (y)|p dy

⎞

⎟⎟⎟⎠

1
p

= κ|D| 1p+ 1
d + C |Q(z, ρ)| 1p+ 1

d

⎛

⎜⎜⎜⎝
∑

z′∈Lρ,ξ

|z−z′|�ρ

ˆ

Q(0,1)
|φz′

ρ,ξ (y)|p dy

⎞

⎟⎟⎟⎠

1
p

.

On setting Sρ = S1
ρ ∪ S2

ρ , where S1
ρ =

⋃

z∈Lρ,ξ

(∂ Q(z, ρ)∩D) and S2
ρ =

⋃

Q(z,ρ)∩∂ D �=∅
(Q(z, ρ) ∩ D) as well as

κz = max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2C

⎛

⎜⎜⎜⎝
∑

z′∈Lρ,ξ

|z−z′|�ρ

ˆ

Q(0,1)
|φz′

ρ,ξ (y)|p dy

⎞

⎟⎟⎟⎠

1
p

, ρ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,
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we obtain for κ = κ(ρ) small enough the set inclusion

Np(v, D, ε, κ) ⊂
∏

z∈Lρ,ξ

Q(z,ρ)⊂D

Np(Lρ,ξv, Q(z, ρ), ε, κz)×
2∏

i=1
Si
ε(κ, ρ),

(5.12)

where for i = 1, 2 we define the sets

Si
ε(κ, ρ) :=

{
u : (Si

ρ)Lε → R
n : ‖u − ε−1vε‖∞ � κ|ε−1D| 1p+ 1

d

}
.

In order to control the integration over these two sets, we note that for ε small
enough

log

(ˆ

S1ε (κ,ρ)

du

)
� C log

(
Cκnε

− nd
p −n

) ∑

Q(z,ρ)∩D �=∅
ρd−1ε1−d

� C log
(

Cκnε
− nd

p −n
)

ρ−1ε1−d . (5.13)

To treat the contributions from the points in (S2
ρ)ε we have to use once again

Lemma 3.3. To this end we observe that

∂S2
ρ ⊂ ∂ D ∪

⋃

Q(z,ρ)∩∂ D �=∅
(∂ Q(z, ρ) ∩ D).

As the union on the right hand side is finite, we can argue as for Remark 7 and (3.3)
to show that, for ε small enough, the number of connected components Nε,ρ of the
graph GS2ρ ,ε can be bounded by

Nε,ρ � Cε1−d
(
Hd−1(∂ D)+ ρ−1

)
. (5.14)

Due to Hypothesis 1 and Lemma 3.3 we deduce the bound

log

(ˆ

S2ε (κ,ρ)

exp(−βHε(S2
ρ, u) du)

)

� log

(ˆ

S2ε (κ,ρ)

exp

(
− β

C
‖∇Bu‖p

�
p
ε (S2ρ )

)
du

)
+ Cβ|(S2

ρ)Lε |

� log
(

Cκnε
− nd

p −n
)

Nε,ρ + C(1+ | log(β)| + β)|(S2
ρ)Lε | (5.15)

Together with the inequality Hε(D, u) �
∑

Q(z,ρ)⊂D Hε(Q(z, ρ), u)+Hε(S2
ρ, u),

the inclusion in (5.12) and Fubini’s Theorem imply

Zβ
ε,D(Np(v, D, ε, κ)) �

∏

z∈Lρ,ξ

Q(z,ρ)⊂D

Zβ

ε,Q(z,ρ)(Np(Lρ,ξv, Q(z, ρ), ε, κz))
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×
ˆ

S1ε (κ)

du1

ˆ

S2ε (κ,ρ)

exp(−Hε(S2
ρ, u2) du2.

Taking logarithms and dividing by −β|Dε| we infer from (5.13), (5.14) combined
with (5.15) that

F−(D, v) �
∑

z∈Lρ,ξ

Q(z,ρ)⊂D

ρd

|D|F
−
κz

(Q(z, ρ), ϕ∇v(z))

−C

(
1+ | log(β)| + β

β

) |∂ D + Q(0, 2ρ)|
|D| ,

where we also used that the energy is invariant under constant shifts so that we
can pass from the affine approximation to the linear one. Since we assume that
W (�) � 0, using Remark 14 and (5.11) we infer that for arbitrary N ∈ N and δ, ρ

sufficiently small

F−(D, v)

�
∑

z∈Lρ,ξ

Q(z,ρ)⊂D

ρd

|D|
(

W
β
(∇v(z))− C

(
(1+ |∇v(z)|p)δ + (Nκz)

p

δ p
+ 1

N

))

− Cβ

|∂ D + Q(0, 2ρ)|
|D|

� 1

|D|
ˆ

D′
W

β
(∇v) dx − η

|D|
−

∑

z∈Lρ,ξ

Q(z,ρ)⊂D

C
ρd

|D|
(

(1+ |∇u(z)|p)δ + (Nκz)
p

δ p
+ 1

N

)

− Cβ

|∂ D + Q(0, 2ρ)|
|D| . (5.16)

Using again (5.11) we can bound the sum of the gradients. Indeed, by a change of
variables it holds that

∑

z∈Lρ,ξ

Q(z,ρ)⊂D

ρd |∇v(z)|p � C
∑

z∈Lρ,ξ

Q(z,ρ)⊂D

ˆ

Q(z,ρ)

|∇v(y)− ∇v(z)|p + |∇v(y)|p dy

� C
∑

z∈Lρ,ξ

ρd
ˆ

Q(0,1)
|∇φz

ρ,ξ (y)|p dy + C‖∇v‖p
L p(D)

� C(η + ‖∇v‖p
L p(D)). (5.17)

To control the sum over κ
p
z , note that by (5.11) and the definition of κz we have

∑

z∈Lρ,z
Q(z,ρ)⊂D

ρd

|D|κ
p
z � Cρ p + C

|D|
∑

z∈Lρ,ξ

ρd
ˆ

Q(0,1)
|φz

ρ,ξ (y)|p dy � C(ρ p + η

|D| ).
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(5.18)

Putting together (5.16), (5.17) and (5.18) we obtain

F−(D, v) � 1

|D|
ˆ

D′
W

β
(∇v) dx

− C

|D|
((
|D| + η + ‖∇v‖p

L p(D)

)
δ + N p

δ p
(ρ p|D| + η)+ |D|

N

)

− Cβ

|∂ D + Q(0, ρ)|
|D| .

The last inequality concludes the proof after letting first ρ → 0, then η → 0
followed by N →+∞ and δ → 0 and finally using the arbitrariness of D′ ⊂⊂ D

(recall the integrability of W
β
(∇v)). � 

6. Zero Temperature Limit of the Elastic Free Energy: Proof of Theorem 1.6

In this section we investigate the asymptotic behavior of the rate functional
from the large deviation principle when the temperature vanishes, or equivalently
when β → +∞. To this end, we bound from above and below the entropic part
whenever we consider the energy difference between a general configuration of
the system and the ground state when we prescribe linear boundary conditions. We
shall prove that, under the standard p-growth conditions (1.3) and an additional
local Lipschitz property (see Hypothesis 2) we indeed recover the density of the �-
limit of the rescaled versions of the Hamiltonians Hε(D, v). Since �-convergence
focuses on the convergence of global minimizers of the Hamiltonian Hε(D, ·) (for
a general reference on the subject we refer to the standard literature [12,23]), our
result shows that at low temperatures entropic effects can be neglected and energy
minimization is indeed meaningful also from a statistical physics point of view.

6.1. Variational Results Neglecting Temperature

For completeness we briefly recall �-convergence results at zero temperature.
First we rescale the Hamiltonian and its domain as for the definition of the Gibbs
measure. Given ε > 0 and a function u : L→ R

n we define the function v : εL→
R

n setting v(εx) = εu(x). As usual this function can be identified with a function
that is constant on the scaled Voronoi cells, so that it belongs to the class

PCε := {v : Rd → R
n : u|εC(x) is constant for all x ∈ L}.

We may embed PCε ⊂ L p(D,Rn). Then, for every O ∈ AR(D), we introduce
the rescaled Hamiltonian H̃ε(O, ·) : L p(D,Rn) → [0,+∞] setting

H̃ε(v, O) =

⎧
⎪⎪⎨

⎪⎪⎩

1

|Oε|
∑

(x,y)∈B
εx,εy∈O

f

(
x − y,

v(εx)− v(εy)

ε

)
if v ∈ PCε.

+∞ otherwise
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We then define the set of clamped displacements

BCε(O, ϕ�) = {u : OL
ε → R

n : u(x) = �x if dist(x, ∂Oε) � C0}.
Note that in contrast to the soft boundary conditions defining the set Bε(O, ϕ�′)
here the boundary conditions are exactly satisfied. The density of the �-limit is
then given by the formula

W
∞

(�) = lim
ε→0

1

|Qε| inf{Hε(u, Q) : u ∈ BCε(Q, ϕ�)},

where Q = (− 1
2 ,

1
2 )

d . The existence of this limit is a consequence of the subaddi-
tive ergodic Theorem, as for Proposition 2. By [4, Theorems 2 & 3] we have the
following �-convergence result:

Theorem 6.1. Assume (1.3) and let G be an admissible, stationary random Eu-
clidean graph. Assume in addition that f is continuous in the second variable.
Then almost surely the functionals H̃ε �-converge with respect to the L p(D,Rn)-
topology to the functional H : L p(D,Rn) → [0,+∞] finite only on W 1,p(D,Rn)

and characterized by

H(v) = 1

|D|
ˆ

D
W

∞
(∇v(x)) dx .

Moreover, for any O ∈ AR(D) and any v ∈ W 1,p(D,Rn) we have the local
version

�- lim
ε→0

H̃ε(O, v) = 1

|O|
ˆ

O
W

∞
(∇v(x)) dx .

The map � �→ W
∞

(�) is quasiconvex and satisfies the p-growth condition

1

C
|�|p − C � W

∞
(�) � C(|�|p + 1).

In order to also incorporate Dirichlet boundary conditions ϕ ∈ Lip(Rd ,Rn),
we introduce the class

PCε,ϕ = {v ∈ PCε : v(εx) = ϕ(εx) for all x ∈ L such that dist(εx, ∂ D) � C0ε}.

We restrict the domain of the discrete Hamiltonian H̃ε to PCε,ϕ setting H̃ε,ϕ :
L p(D,Rn) → [0,+∞] as

H̃ε,ϕ(v) =
{

H̃ε(v) if v ∈ PCε,ϕ,

+∞ otherwise.

Then [4, Theorem 4] yields the following �-convergence result under Dirichlet
boundary conditions.
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Theorem 6.2. Under the assumptions of Theorem 6.1, the functionals H̃ε,ϕ �-
converge with respect to the L p(D,Rn)-topology to the functional Hϕ : L p(D,Rn)

→ [0,+∞] finite only for ϕ + W 1,p
0 (D,Rn) and characterized by

Hϕ(v) = 1

|D|
ˆ

D
W

∞
(∇v(x)) dx .

Remark 12. From Lemma 5.1 and the fundamental property of �-convergence we
deduce in particular the convergence of (almost-)minimizers to minimizers of the
limit energy. Moreover it follows that

lim
ε→0

(
inf

v∈L p(D,Rn)
H̃ε,ϕ(v)

)
= min

v∈L p(D,Rn)
Hϕ(v). (6.1)

Before comparing the �-limit and the limit free energy we prove that one can
replace the clamped boundary conditions by the soft version considered for the free
energies and obtains the same limit. Note that in what follows both definitions will
be used.

Lemma 6.3. Assume Hypothesis 1. Fix � ∈ R
n×d . Then almost surely it holds that

W
∞

(�) = lim
ε→0

1

|Qε| inf{Hε(u, Q) : u ∈ Bε(Q, ϕ�)}.

Proof of Lemma 6.3. The result is a special case of �-convergence. Indeed, con-
sider the auxiliary functional Hε,� : L p(Q,Rn) → [0,+∞] defined by

Hε,�(v) =
{

H̃ε(Q, v) if v ∈ PCε and 
1/εv ∈ Bε(Q, ϕ�),

+∞ otherwise.

Due to Lemma 5.1 we know that the �-limit of Hε,� can be finite only for v ∈
ϕ�+W 1,p

0 (Q,Rn). From Theorems 6.1 and 6.2 applied with D = Q and ϕ = ϕ�,
for any such v we deduce from monotonicity that

ˆ

Q
W

∞
(∇v(x)) dx � �- lim inf

ε→0
Hε,�(v) � �- lim sup

ε→0
Hε,�(u)

� �- lim sup
ε→0

H̃ε,ϕ�
(v) �

ˆ

Q
W

∞
(∇v(x)) dx .

Using (6.1), which holds by the same arguments for the functionals Hε,�, the
result follows by quasiconvexity of� �→ W

∞
(�) and a rescaling since 1

|Qε | Hε(Q,


1/ε(·)) = H̃ε(Q, ·). � 
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6.2. Quantitative Comparison Between W
β

and W
∞

As announced earlier, in this section we replace Hypothesis 1 by the stronger
assumptions of Hypothesis 2. In the following two lemmata we establish a quan-

titative estimate between W
β
(�) and W

∞
(�) in the regime β � 1. Note that the

additional properties of Hypothesis 2 are only needed for Lemma 6.4 below.

Lemma 6.4. Assume Hypothesis2. Then for every � ∈ R
n×d there exists a constant

0 < C� � C(1+ |�|p−1) such that, for all β � exp(1),

W
β
(�)− W

∞
(�) � C�

log(β)

β
.

Proof of Lemma 6.4. Due to Proposition 2 we can consider the free energy on the
unit cube Q. First note that due to the assumptions, the discrete energy Hε(Q, ·) is
equicoercive and continuous on the closed set BCε(Q, ϕ�). Hence the minimum
is attained and we denote by ûε a minimizer. By testing the function ϕ� and using
the p-growth conditions of Hypothesis 2, we obtain the a priori bound

‖∇Bûε‖p
�

p
ε (Q)

� C Hε(ûε)+ C |QL
ε | � C(1+ |�|p)|QL

ε |. (6.2)

According to the continuity property in Hypothesis 2, for any u ∈ Bε(Q, ϕ�) we
have the estimate

Hε(Q, u)− Hε(Q, ûε)

�
∑

(x,y)∈B
x,y∈Qε

| f (x − y, u(x)− u(y))− f (x − y, ûε(x)− ûε(y))|

� C
∑

(x,y)∈B
x,y∈Qε

(1+ |u(x)− u(y)|p−1 + |ûε(x)− ûε(y)|p−1)|(u − ûε)(x)

− (u − ûε)(y)|
� C

(|QL
ε |

p−1
p + ‖∇B(u − ûε)‖p−1

�
p
ε (Q)

+ ‖∇Bûε‖p−1
�

p
ε (Q)

)‖∇B(u − ûε)‖�
p
ε (Q)

� C |QL
ε |

p−1
p (1+ |�|p−1)‖∇B(u − ûε)‖�

p
ε (Q) + C‖∇B(u − ûε)‖p

�
p
ε (Q)

� C |QL
ε |

p−1
p (1+ |�|p−1)‖u − ûε‖�

p
ε (Q) + C‖u − ûε‖p

�
p
ε (Q)

,

where we have used Hölder’s inequality, (6.2) and Remark 6. From the change of
variables u �→ u − ûε, which maps one-to-one from Bε(Q, ϕ�) to Bε(Q, 0), we
infer that the discrete error can be bounded by

eε,β : = Eβ
ε (Q, ϕ�)− 1

|Qε|Hε(ûε)

= − 1

β|Qε| log
(ˆ

Bε(Q,ϕ�)

exp
(−β(Hε(Q, u)− Hε(Q, ûε))

)
du

)
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� − 1

β|Qε| log
(ˆ

Bε(Q,0)
exp

(
−βC(|QL

ε |
p−1

p (1+ |�|p−1)‖u‖�
p
ε (Q)

+‖u‖p
�

p
ε (Q)

)
)
du

)
. (6.3)

In this last integral we aim to get rid of the boundary conditions. To this end, let us
write the domain of integration as a product and implicitly define the numbers dε,i

and dε,b via

Bε(Q, 0) =

⎛

⎜⎜⎜⎝
∏

x∈QL
ε

dist(x,∂ Qε)>C0

R
n

⎞

⎟⎟⎟⎠×

⎛

⎜⎜⎜⎜⎝

∏

x∈QL
ε

dist(x,∂ Qε)�C0

B1(0)

⎞

⎟⎟⎟⎟⎠

= (Rn)dε,int × (B1(0))
dε,bd .

With a slight abuse of notation,wewrite any u ∈ Bε(Q, 0) as a sumvia u = u1+u2,
where u1 ∈ BCε(Q, 0) and |u2(x)| � 1 with support contained in {x ∈ Qε :
dist(x, ∂ Qε) � C0}. Interpreting a deformation as a large vector u ∈ R

n|QL
ε | we

denote its standard p-norm by |u|p. As onRn all norms are equivalent, it holds that
‖u‖�

p
ε (Q) � C |u|p. By the triangle inequality and the structure of u2 we get

|QL
ε |

p−1
p (1+ |�|p−1)‖u‖�

p
ε (Q) + ‖u‖p

�
p
ε (Q)

� C

(
|QL

ε |
p−1

p (1+ |�|p−1) (|u1 + u2|p
)+ (|u1 + u2|pp)

)

� C
(
|QL

ε |
p−1

p (1+ |�|p−1)(|u1|p + (dε,bd)
1
p )+ |u1|pp + dε,bd

)
.

Using Fubini’s Theorem we can factorize the integral and therefore (6.3) yields

eε,β � − 1

β|Qε| log
(ˆ

R
ndε,int

exp
(− βC(|QL

ε |
p−1

p (1+ |�|p−1)|u1|p + |u1|pp)
)
du1

)

− 1

β|Qε| log
(
|B1(0)|dε,bd exp

(− βC((1+ |�|p−1)|QL
ε |

p−1
p d

1
p

ε,bd + dε,bd)
))

=: eintε,β + ebdε,β .

We first argue that ebdε,β vanishes when ε → 0. Indeed, as dε,bd � Cε1−d by (3.3)
and the Lipschitz regularity of ∂ Q, for ε small enough it holds that

|ebdε,β | � (Cβ−1 + C)ε + C(1+ |�|p−1)ε 1
p . (6.4)

To treat the contribution of eintε,β , we make use of the coarea formula. Therefore

we consider the Lipschitz-continuous function fε : Rndε,int → [0,+∞) defined

by y �→ fε(y) = |QL
ε |−

1
p |y|p. For y �= 0 it is differentiable and, since fε is
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|QL
ε |−

1
p -Lipschitz with respect to the p-norm, for ε small enough we have the

rough estimate

|∇ fε(y)|2 = sup
|x |2=1

〈∇ fε(y), x〉 = sup
|x |2=1

lim
t→0

fε(y + t x)− fε(y)

t

� sup
|x |2=1

|QL
ε |−

1
p |x |p � |QL

ε |−
1
p max{1, (ndε,int)

1
p− 1

2 } � 1. (6.5)

Using (6.5), we deduce from the coarea formula that for arbitrary t∗ > 0

eintε,β � − 1

β|Qε| log
(ˆ

R
ndε,int

|∇ fε(u1)|2 exp
(− βC(|QL

ε |(1+ |�|p−1) fε(u1)

+|QL
ε | fε(u1)

p)
)
du1

)

= − 1

β|Qε| log
(ˆ ∞

0
Hndε,int−1({ fε = t}) exp (− βC |QL

ε |((1+ |�|p−1)t
+t p)

)
dt
)

� − 1

β|Qε| log
(ˆ t∗

0
Hndε,int−1({|y|p = |QL

ε |
1
p t}) exp (− βC |QL

ε |((1

+|�|p−1)t + t p)
)
dt
)

, (6.6)

We next bound from below the surface measure inside the integral. To this end,
we make the restriction t∗ � 1. By Lemma A.2 and the scaling properties of the
Hausdorff measure, for some small constant c = c(n, p) we have the lower bound

Hndε,int−1
({
|y|p = |QL

ε |
1
p t
})

� (|QL
ε |

1
p t)ndε,int−1

(
cp

ndε,int

) ndε,int
p

� |QL
ε |−

1
p (ct)ndε,int

(
|QL

ε |
dε,int

) ndε,int
p

� |QL
ε |−

1
p (ct)n|QL

ε |,

where we used that t � 1. Plugging this bound into (6.6), for any t∗ � 1 we can
further estimate

eintε,β � − 1

β|Qε| log
( ˆ t∗

0
exp

(
|QL

ε |
(
n log(ct)− βC((1+ |�|p−1)t + t p)

))
dt

)

+ 1

pβ|Qε| log(|Q
L
ε |). (6.7)

We now choose an appropriate t∗ � 1. More precisely, we try to find t∗ and
C = C(�, n, p) such that for all t � t∗

n log(ct)− βC((1+ |�|p−1)t + t p) � C log(t).
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To this end, first observe that the function t �→ (n−C) log(ct)−βC((1+|�|p−1)t+
t p) is decreasing whenever C � n. Moreover, if we set C = n + C(2 + |�|p−1)
and t∗ = 1

β
, then for β > exp(1) and c � 1 we have

(n − C) log(ct∗)− βC((1+ |�|p−1)t∗ + t p∗ )

� (n − C)(log(t∗)− βC(2+ |�|p−1)t∗
� C(log(β)− 1)(2+ |�|p−1) > 0.

Thus with our choice of t∗ and C we infer from (6.7) that

eintε,β � − 1

β|Qε| log
(ˆ t∗

0
tC |QL

ε | dt

)
+ 1

pβ|Qε| log(|Q
L
ε |)

= − 1

β|Qε| log
⎛

⎝ t
C |QL

ε |+1∗
C |QL

ε | + 1

⎞

⎠+ 1

pβ|Qε| log(|Qε|)

and we can conclude from (6.4) and (3.1) that

W (�, β)− W
∞

(�)) = lim
ε→0

eε,β � lim sup
ε→0

C |QL
ε | + 1

β|Qε| | log(t∗)|

� C

(
2R

r

)d log(β)

β
.

This proves the claim by our definition of C . � 
Lemma 6.5. Assume Hypothesis1. Then for every � ∈ R

n×d there exists a constant
0 < C� � C(1+ log(1+ |�|)) such that, for all β � 1,

W
β
(�)− W

∞
(�) � −C�

β
.

Proof of Lemma 6.5. Again we compute the energy densities with respect to the
unit cube Q. Having in mind Lemma 6.3, we let ũε be a minimizer of the Hamilto-
nian Hε on the setBε(Q, ϕ�). Note that we assume without loss of generality that a
minimizer exists, otherwisewe could take an almostminimizerwith an energy close
to the infimum at a rate that vanishes much faster than εd . For any u ∈ Bε(Q, ϕ�),
by the p-growth condition in Hypothesis 2 and (6.2), we have the inequality

Hε(Q, u)− Hε(Q, ũε) � 1

C
‖∇Bu‖p

�
p
ε (Q)

− C(1+ |�|p)|QL
ε |

� 1

C
‖∇B(u − ϕ�)‖p

�
p
ε (Q)

− C(1+ |�|p)|QL
ε |.

While this estimate turns out to be useful for deformations with large energy, we
also need a suitable lower bound for deformations with small energy. To this end
we observe that by minimality Hε(Q, u)− Hε(Q, ũε) � 0, so that we can write

Hε(Q, u)− Hε(Q, ũε) � max

{
0,

1

C
‖∇B(u − ϕ�)‖p

�
p
ε (Q)

− C(1+ |�|p)|QL
ε |
}

.
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(6.8)

This inequality motivates the partition Bε(Q, 0) = B1,ε ∪ B2,ε, where

B1,ε :=
{
ϕ ∈ Bε(Q, 0) : ‖∇Bu‖p

�
p
ε (Q)

� 2C2(1+ |�|p)|QL
ε |
}
,

B2,ε := Bε(Q, 0) \ B1,ε.

With the change of variables u �→ u − ϕ� and (6.8) we then obtain

e1ε,β : = Eβ
ε (ϕ�)− 1

|Qε|Hε(Q, ũε)

= − 1

β|Qε| log
(ˆ

Bε(Q,ϕ�)

exp
(− β(Hε(Q, u)− Hε(Q, ũε)

))
du

)

� − 1

β|Qε| log
(
|B1,ε| +

ˆ

Bε(Q,0)
exp

(− β

2C
‖∇Bu‖p

�
p
ε (Q)

)
du
)
. (6.9)

We treat the two terms inside the logarithm separately. Let us start with the integral.
Using Lemma 3.3, for ε small enough (independent of β) and β � 1, we obtain
the bound

ˆ

Bε(Q,0)
exp

(− β

2C
‖∇Bu‖p

�
p
ε (Q)

)
du � C NQ,ε

((
β

2C

)− n
p

C

)|QL
ε |−NQ,ε

�
(

C(p, n)
)n|QL

ε |
. (6.10)

In order to provide a bound for the measure of B1,ε we first enlarge the set and then
perform a suitable change of variables. To this end we number the vertices by the
following algorithm: For every connected component G j = (V j ,B j ) of the graph
G Qε we choose a minimal spanning tree ST j = (V j ,B

′
j ) and a vertex where the

boundary conditions are active (see Remark 7 for the existence of such a vertex).

To this vertex we assign the number k j :=
(∑

i< j |Vi |
)
+ 1. Then we start any

path in the spanning tree and number the vertices consecutively until we cannot go
on. If we have numbered all vertices of the connected component we go to the next
one, otherwise we continue at the first (with respect to the numbering) vertex with
multiple path possibilities and continuewith the same procedure. Sincewe consider
a minimal spanning tree, every vertex gets assigned a unique number. Moreover,
for each vertex number l\{k j }, we find a number l ′ < l such that (xl ′ , xl) ∈ B

′
j .

Then we have the following set inclusion:

B1,ε ⊂
⎧
⎨

⎩ u ∈ (Rn)|QL
ε | : |uk j | < 1 for all j and

∑

j

k j+1−1∑

l=k j+1
|ul − ul ′ |p

� 2C2(1+ |�|p)|QL
ε |
⎫
⎬

⎭ =: U1,ε
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We now define a linear transformation on Uε,1 setting T : U1,ε → (Rn)|QL
ε | as

(T ϕ)l =
{

ϕl if l = k j for some j,

ϕl − ϕl ′ otherwise.

Note that the mapping l �→ l ′ is independent of ϕ, so that T is indeed linear. More-
over, it is straightforward to check that T is injective and thus a diffeomorphism
onto its image allowing to perform a change of variables. Observe that its derivative
DT admits a lower triangle matrix representation since the l th component of T ϕ

depends only on entries with smaller index. On the diagonal we have all entries
equal to 1. Hence it holds that det(DT ) = 1. By a change of variables we conclude
that

|Bε,1| � |Uε,1| = |T (Uε,1)|,
and by construction it holds that

T (Uε,1) =
⎛

⎝
NQ,ε∏

j=1
B1(0)

⎞

⎠×
{
ϕ ∈ (Rn)|Qε |−NQ,ε : ‖ϕ‖p

p � 2C2(1+ |�|p)|QL
ε |
}

⊂
{

u ∈ R
n|QL

ε | : |u|p � C ′(1+ |�|p) 1
p |QL

ε |
1
p

}
,

where the larger constantC ′ contains a factor derived from the equivalence of norms
on R

n . The last set is a high-dimensional ball with respect to the corresponding
�p-norm, for which there exist exact formulas for the volume. Denoting (just in this
proof) by � Euler’s Gamma-function we deduce that, for ε small enough,

|Bε,1| �

(
C(p)(1+ |�|p)|QL

ε |
) n|QL

ε |
p

�
(

n|QL
ε |

p + 1
)

�
(

C(p, n)(1+ |�|)
)n|QL

ε |
, (6.11)

where we used the lower bound �(z + 1) � (z/e)z for all z � 1. Combining
(6.9), (6.10) and (6.11) we infer that, for ε small enough (but independent of β)
and β � 1,

e1ε,β � − 1

β|Qε| log
(
(C(p, n)(1+ |�|))n|QL

ε |
)

= −C(p, n)

(
2R

r

)d
(1+ log(1+ |�|)

β
.

Thanks due Lemma 6.3 and the definition of e1ε,β the claim now follows after letting
ε → 0. � 
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6.3. �-Convergence of the LDP Rate Functionals

The estimates proved in Lemmata 6.4 and 6.5 lead to Theorem 1.6 that also re-
lates the support of the limits of Gibbs measures (see Corollary 1) to the minimizers
of the �-limit at small temperatures.

Proof of Theorem 1.6. We let G ∈ G′, where G′ is given by Proposition 3 (see also
Remark 11). Fix an arbitrary sequence β j → +∞. For the moment we consider

the functionals F j , F : L p(D,Rn) → R∪ {+∞} finite only on ϕ+W 1,p
0 (D,Rn)

and characterized by

F j (v) =
 

D
W

β j
(∇v) dx, F(v) =

 

D
W

∞
(∇v) dx .

By Lemmata 6.4 and 6.5 we have that F j → F pointwise when j →+∞. Hence
for all v ∈ L p(D,Rn)

�- lim sup
j→+∞

F j (v) � F(v).

In order to prove the lim inf-inequality, consider v ∈ L p(D,Rn) and a sequence
(v j ) ⊂ L p(D,Rn) such that v j → v in L p(D,Rn) and sup j F j (u j ) < +∞. Since
Lemma 6.5 yields

W
β j

(�)− W∞
hom(�) � −C

β
(1+ log(1+ |�|),

where the constant C is independent of � and for j large enough it holds that

W
β j

(�) � 1
C |�|p − C , we infer that v ∈ ϕ + W 1,p

0 (D,Rn) and

lim inf
j→+∞ F j (v j ) � lim inf

j→+∞ F(v j ) � F(v),

where we used that F is lower semicontinuous due to the quasiconvexity of the
map � �→ W

∞
(�). is quasiconvex, the lower bound follows from weak lower

semicontinuity. Thus F j �-converges to F with respect to the L p(D < R
n)-

topology. Since the �-convergence implies the convergence of the infimum values
lim j infv F j (v) = infv F(v), Theorem 1.6 is proven. � 

6.4. The Phantom Model

The convergence result proved in this section can be made much more precise
when the discrete Hamiltonian is quadratic, that is,

Hε(O, u) =
∑

(x,y)∈B
x,y∈Oε

〈u(x)− u(y), A(x − y)(u(x)− u(y))〉 (6.12)

with a function A : Rd → M
d×d
sym uniformly positive definite and bounded on

BC0(0), where C0 is the maximal range of interactions given by Definition 1.2. The
phantom model (see e.g. [43, Section 7.2.2]), which is an approximation of rubber
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elasticity of polymer-chain networks at small deformation and finite temperature,
indeed corresponds to the homogenization of this energy density (using a self-
consistent approach rather than the usual cell-formula). As the following shows,
the limit free energy agrees with the density of the�-limit up to an additive constant
which depends on β but not on �. In particular, this justifies the use of the self-
consistent approach in [43, Section 7.2.2] even at finite temperature.

Corollary 2. Assume that Hε is given by (6.12). Then it holds that

W
β
(�) = W

∞
(�)+ W

β
(0).

In particular the function � �→ W
β
(�) is uniformly convex and quadratic.

Proof of Corollary 2. We consider the free energy on the unit cube Q and first find
a uniqueminimizer of u �→ Hε(Q, u) on the setBCε(Q, ϕ�), that we denote by ûε.
We extend it to L setting ûε(x) = ϕ�(x) for all x ∈ L\Qε. Given u ∈ Bε(Q, ϕ�),
we decompose it as u = u1 + u2 with u1 ∈ BCε(Q, ϕ�) and u2 : Qε → R

n

satisfying |u2(x)| � 1 for all x ∈ L and u2(x) = 0 for all x ∈ L such that
dist(x, ∂ Qε) > C0. By the quadratic structure we have

Hε(Q, u)− Hε(Q, ûε) = Hε(Q, u − ûε)

+ 2
∑

(x,y)∈B
x,y∈Qε

〈
(u − ûε)(x)− (u − ûε)(y), A(x − y)(ûε(x)− ûε(y))

〉

= Hε(Q, u − ûε)+ 2
∑

(x,y)∈B
x,y∈Qε

〈
u2(x)− u2(y), A(x − y)(ûε(x)− ûε(y))

〉
,

(6.13)

where we used pointwise symmetry of A(z), the weak Euler-Lagrange equation
satisfied by ûε and that u1− ûε ∈ BCε(Q, 0) is an admissible test function for this
equation. In order to bound the last term, we first introduce the set ∂ε Q = {z ∈
Qε : dist(z, ∂ Qε) � 2C0}. Then by the properties of u2 and boundedness of A(z)
we have ∣∣∣2

∑

(x,y)∈B
x,y∈Qε

〈
u2(x)− u2(y), A(x − y)(ûε(x)− ûε(y))

〉∣∣∣

� C
∑

(x,y)∈B
x,y∈∂ε Q

c0|ûε(x)− ûε(y)|,

where c0 is a lower bound for the smallest eigenvalue of A(z) for all z ∈ BC0(0).
Note that the right hand side does not depend on u any more. Since the change of
variables u �→ u − ûε maps Bε(Q, ϕ�) one-to-one to Bε(Q, 0), we conclude by

the very definition of the terms W
β
(�) and W

∞
(�) and equation (6.13) that

|W β
(�)− W

∞
(�)− W

β
(0)| � C lim sup

ε→0

1

|Qε|
∑

(x,y)∈B
x,y∈∂ε Q

c0|ûε(x)− ûε(y)|.
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It remains to prove that the right hand side is zero. To this end, we note that due to
Lemma 5.1 we can assume that vε ∈ PCε defined by vε(εx) = εûε(x) converges
in L p(D,Rn) to some function v ∈ ϕ� + W 1,p

0 (Q,Rn) (actually one can prove
that v = ϕ�, but this is not needed here). Given δ > 0, Jensen’s inequality and
(quasi)convexity of � �→ W

∞
(�) imply

lim sup
ε→0

⎛

⎜⎜⎝
1

|Qε|
∑

(x,y)∈B
x,y∈∂ε Q

c0|ûε(x)− ûε(y)|

⎞

⎟⎟⎠

2

� lim sup
ε→0

1

|Qε|
∑

(x,y)∈E
x,y∈∂ε Q

c0|ûε(x)− ûε(y)|2

� W
∞

(�)− |(1− δ)Q|
|Q| lim inf

ε→0
H̃ε((1− δ)Q, uε) �

ˆ

Q\(1−δ)Q
W

∞
(∇v(x)) dx,

where for the last estimate we also used the local �-convergence result on (1−δ)Q
stated in Theorem 6.1. Letting δ → 0 we deduce the claim since the right hand side
vanishes. The quadratic structure follows by the general theory of �-convergence
of quadratic functionals (see [23, Theorem 11.10]) while the uniform coercivity of

A is conserved in the limit, too. This proves uniform convexity of � �→ W
β
(�). � 

7. Penalizing Volume Changes

Having in mind the model presented in the introduction, we now explain how
to include the volumetric term defined in (1.2) in our previous analysis. We assume
throughout this whole section that n = d and p � d. For the notation we also refer
to Section 1.2.

In order to estimate the volumetric part of the Hamiltonian, it is convenient to
rewrite the integral as sums over d-simplices, that is,

Hvol,ε(O, u) =
∑

C1(x)∈V1,ε(O)

|C1(x)|W
⎛

⎝
∑

T∩C1(x) �=∅

det(∇uaff|T)|T ∩ C1(x))|
|C1(x)|

⎞

⎠ .

(7.1)

The Hamiltonian has a different structure than in the previous sections since
it depends on multi-body interactions through the volumetric term. However, we
emphasize that for our analysis in the previous sections, the precise structure was
needed only for proving stationarity. The reader might remember that elsewhere
we just used bounds from above and below and a certain locality given by the finite
range of interactions (see also Remark 13). As we will prove in the lemmata below,
the bounds from Hypothesis 1 lead to similar local bounds for the Hamiltonian and
stationarity of the corresponding stochastic processes is preserved, too. To extend
the validity of the results of Section 6, it then suffices to reprove a global continuity
estimate. These technical details then allow to include the multi-body volumetric
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term in the proofs of the previous sections and in that sense complete the proofs of
Theorems 1.3, 1.4, 1.5 and 1.6. We leave the details to the reader.

Lemma 7.1. Assume that W satisfies Hypothesis 1 and let G ∈ G. Then there exists
a constant C > 0 such that, for every u : L→ R

d and all x ∈ L1, it holds that

W

( 

C1(x)

det(∇uaff) dz

)
� C

⎛

⎝1+
∑

T∩C1(x) �=∅

∑

y,y′∈L1∩T

|u(y)− u(y′)|p
⎞

⎠ .

Remark 13. Points y, y′ appearing in the above upper bound satisfy |x − y|, |x −
y′| � 3R. Hence the condition 6R < C0 allows to establish almost subadditivity
estimates using boundary values by the definition of the interior Voronoi cells
V1,ε(O).

Proof of Lemma 7.1. We rewrite the left hand side term similar to (7.1). Since
L1 ⊂ L, the volume of the Voronoi cells is uniformly bounded from below. Hence
from the upper bound in Hypothesis 1 and the area formula we deduce

W

( 

C1(x)

det(∇uaff) dz

)
� C + C

⎛

⎝
∑

T∩C1(x) �=∅
| det(∇uaff|T ||T ∩ C1(x))|

⎞

⎠

p
d

� C + C

⎛

⎝
∑

T∩C1(x) �=∅
|uaff(T )|

⎞

⎠

p
d

. (7.2)

We claim that for each T ∈ T with |T ∩ C1(x)| > 0 it holds that

|uaff(T )| � C

⎛

⎝
∑

y,y′∈L1∩T

|u(y)− u(y′)|
⎞

⎠
d

. (7.3)

Indeed, if det(∇uaff|T) = 0, then there is nothing to prove.Otherwise, the set uaff (T )

is again a d-simplex with vertices {u(y)}y∈L1∩T . By convexity its diameter can be
bounded by

diam(uaff(T )) �
∑

y,y′∈L1∩T

|u(y)− u(y′)|,

so that the bound |uaff(T )| � diam(uaff(T ))d implies (7.3). Combining (7.2) and
(7.3) we conclude that

W

( 

C1(x)

det(∇uaff) dz

)
� C + C

⎛

⎝
∑

T∩C1(x) �=∅

∑

y,y′∈L1∩T

|u(y)− u(y′)|
⎞

⎠
p

and the statement follows by Jensen’s inequality since the number of terms in the
above sum is equibounded with respect to x ∈ L1 and G ∈ G. � 
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We continue our series of lemmas with the proof of stationarity as used when
applying the ergodic theorem.

Lemma 7.2. Let u : L → R
d and let G ∈ G. Then, for all z ∈ Z

d , all I ∈ I and
every α ∈ R

n , it holds that

Hvol,1(u(· + z)+ α, I, G − z) = Hvol,1(u, I + z, G).

Proof of Lemma 7.2. Since we assume thatL1 is stationary and in general position,
the Delaunay tessellation T of Rd with respect to L1 is unique and hence also
stationary. The claim then follows by the stationarity of L1 and T combined with
the linearity of piecewise affine interpolations, a discrete change of variables and
translation invariance of the Lebesgue measure. � 

The last point left in order to repeat the analysis of the previous sections for the
volumetric term concerns the quantitative continuity in order to prove the conver-
gence in the zero temperature limit.

Before we prove the latter, we introduce some further notation. Define the set
of neighbours for the volumetric points L1 by

N1 := {(x, y) ∈ L1 × L1 : dim(C1(x) ∩ C1(y)) = d − 1}.
Since we assume L1 to be in general position, two points x, y ∈ L1 belong to the
same simplex T ∈ T if and only if they are neighbours. Given u : L→ R

d we set

‖∇N u‖�
p
ε (D) =

⎛

⎜⎜⎝
∑

(x,y)∈N1
εx,εy∈D

|u(x)− u(y)|p
⎞

⎟⎟⎠

1
p

.

Then the continuity estimate reads as follows:

Lemma 7.3. Assume that W satisfies Hypothesis 2 and let G ∈ G. Then, for any
u, ζ : L → R

d and any bounded Lipschitz domain D ⊂ R
d , we have the global

continuity estimate

|Hvol,ε(D, u)− Hvol,ε(D, ζ )|
� C

(
|DL

ε |
p−1

p + ‖∇N u‖p−1
�

p
ε (D)

+ ‖∇N ζ‖p−1
�

p
ε (D)

)
‖∇N (u − ζ )‖�

p
ε (D).

Proof of Lemma 7.3. Fix x ∈ L1. Applying (1.5) we infer from the area formula
and Jensen’s inequality (recall that p � d) that

∣∣∣∣W
(  

C1(x)

det(∇uaff) dz
)
− W

(  

C1(x)

det(∇ζaff) dz
)∣∣∣∣

� C
(
1+

∑

T∩C1(x) �=∅
|uaff(T ∩ C1(x))| p

d −1 + |ζaff(T ∩ C1(x))| p
d −1

)

×
 

C1(x)

| det(∇uaff)− det(∇ζaff)| dz
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� C
(
1+

∑

T∩C1(x) �=∅
|uaff(T )| p

d −1 + |ζaff(T )| p
d −1

)

×
∑

T∩C1(x) �=∅
| det(∇uaff|T)− det(∇ζaff|T)||T |.

Taking into account (7.3), we can again use Jensen’s inequality to further estimate

∣∣∣∣W
(  

C1(x)

det(∇uaff) dz
)
− W

(  

C1(x)

det(∇ζaff) dz
)∣∣∣∣

� C
(
1+

∑

T∩C1(x) �=∅

∑

y,y′∈L1∩T

(
|u(y)− u(y′)|p−d + |ζ(y)− ζ(y′)|p−d

))

×
∑

T∩C1(x) �=∅
| det(∇uaff|T)− det(∇ζaff|T)||T |. (7.4)

We bound the difference in each term of the last sum. Write T = co(x0, . . . , xd).
Then by the volume formula for simplices

det(∇uaff|T)|T | =
1

d! det(∇uaff|T) det
(
x1 − x0| . . . |xd − x0

)

= 1

d! det
(
u(x1)− u(x0)| . . . |u(xd)− u(x0)

)
.

The same formula holds with ζ in place of u. From the standard continuity estimate
for determinants, we deduce that

| det(∇uaff|T)− det(∇ζaff|T)||T | � C max
i

(
|u(xi )− u(x0)| + |ζ(xi )− ζ(x0)|

)d−1

×
∑

y,y′∈L1∩T

|u(y)− u(y′)− ζ(y)+ ζ(y′)|

Recall that d � p. Hence inserting the above estimate into (7.4) it follows that

∣∣∣W1

⎛

⎝
∑

T∩C1(x) �=∅

|uaff(T ∩ C1(x))|
|C1(x)|

⎞

⎠− W1

⎛

⎝
∑

T∩C1(x) �=∅

|ζaff(T ∩ C1(x))|
|C1(x)|

⎞

⎠
∣∣∣

� C

(
1+

∑

T∩C1(x) �=∅

∑

y,y′∈L1∩T

(
|u(y)− u(y′)|p−1 + |ζ(y)− ζ(y′)|p−1

))

×
∑

T∩C1(x) �=∅

∑

y,y′∈L1∩T

|u(y)− u(y′)− ζ(y)+ ζ(y′)|. (7.5)

Note that each T ∈ T can intersect only a uniformly bounded number of Voronoi
cells C1. Hence, summing (7.5) over all C1(x) ∈ V1,ε(D) and using Hölder’s in-
equality for the products yields
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|Hvol,ε(D, u)− Hvol,ε(D, ζ )|

� C

(
|DL

ε |
p−1

p +
( ∑

T⊂Dε

∑

y,y′∈L1∩T

|u(y)− u(y′)|p
) p−1

p

+
( ∑

T⊂Dε

∑

y,y′∈L1∩T

|ζ(y)− ζ(y′)|p
) p−1

p
)

×
( ∑

T⊂Dε

∑

y,y′∈L1∩T

|u(y)− u(y′)− ζ(y)+ ζ(y′)|p
) 1

p

� C

(
|DL

ε |
p−1

p + ‖∇N u‖p−1
�

p
ε (D)

+ ‖∇N ζ‖p−1
�

p
ε (D)

)
‖∇N (u − ζ )‖�

p
ε (D),

where we used in the last inequality that each element in T has as vertices only
nearest neighbours and that a vertex can belong to only a uniformly bounded number
of different cells. The last estimate yields the claim. � 
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Appendix A

In this appendix we collect and prove some of the results we used in the paper. We
start with the technical proof of the interpolation inequality.

Proof of Proposition 1. We set β = 1 to reduce the notation. Given δ > 0 and
N ∈ N, for i ∈ {1, . . . , N + 1} we introduce the open sets

Oi =
{

x ∈ O : dist(x, ∂O) > (i + 1)
δ

2N

}
.

Then the stripes Si := Oi−1\Oi+2 fulfill Si ∩ S j = ∅ whenever |i − j | > 2. Thus
for every u : OL

ε → R
n we obtain by averaging

1

N

N∑

i=1
Hε(Si , u) � 3

N
Hε(O, u),
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so that we can decompose the setNp(v, O, ε, κ) =⋃N
i=1 Pi,ε (we omit the depen-

dence on O and κ), where

Pi,ε =
{

u ∈ Np(v, O, ε, κ) : Hε(Si , u) � 3

N
Hε(O, u)

}
.

Let θi : O → [0, 1] be the Lipschitz-continuous cut-off function defined by

θi (z) = min

{
max

{
2N

δ
dist(z, ∂O)− (i + 1), 0

}
, 1

}
,

so that θi ≡ 1 on Oi+1, θi ≡ 0 on O\Oi and its Lipschitz constant can be bounded
by Lip(θi ) � 2N

δ
. We then define an interpolation between functions u, ψ : OL

ε →
R

n as

Ti,ε(u, ψ)(x) = θi (εx)u(x)+ (1− θi (εx))ψ(x).

Observe that ifu ∈ Pi,ε aswell asϕ ∈ Np(v, O, ε, κ) andψ ∈ N∞(ϕ, O\Oi+1, ε),
by the Minkowski inequality we have

ε
d
p ‖vε − εTi,ε(u, ψ)‖�

p
ε (O) � 2κ|O| 1p+ 1

d + ε
d
p ‖εψ − εϕ‖�

p
ε (O\Oi+1)

� 2κ|O| 1p+ 1
d + Cε|O| 1p ,

so that Ti,ε(u, ψ) ∈ Np(v, O, ε, 3κ) for ε small enough.
For technical reasons the interpolations will not suffice to prove the estimates. For
every i let us choose ti ∈ [ 14 , 3

4 ] such that, setting St
i = {x ∈ O : θi (x) = t}, the

coarea formula implies

1

2
Hd−1(Sti

i ) �
ˆ 3

4

1
4

Hd−1(St
i ) dt �

ˆ 1

0
Hd−1(St

i ) dt =
ˆ

O
|∇θi | � 2N

δ
|Oi\Oi+1|.

(A.1)

We set S∗i = {x ∈ O : θi (x) < ti }. Note that for δ small enough (depending only
on O), we have S∗i ∈ AR(D) (see for instance [32, Lemma 2.2]). Let us introduce
the product set

U i
ε(M) := (

Pi,ε ∩ SM (O, ε)
)×N∞(ϕ, O\Oi+1, ε),

as well as the integral

ei
ε(M) :=

( ˆ

U i
ε(M)

exp
(
− Hε(O, Ti,ε(u, ψ))− c0‖∇Bu‖p

�
p
ε (S∗i )

)
du dψ

)
,

where c0 > 0 is a small constant such that c0|ξ |p � f (·, ξ) + c−10 (cf. Hypothe-
sis 1). This integral quantity will be the main ingredient to prove the interpolation
inequality. We split the remaining argument into several steps.
Step 1. Energy bounds for the interpolation.
To bound the energy of Ti,ε(u, ψ), we use the pointwise inequality

|ψ(x)− ψ(y)|p � C |(ψ − ϕ)(x)− (ψ − ϕ)(y)|p + C |ϕ(x)− ϕ(y)|p
� C + C |ϕ(x)− ϕ(y)|p,

which is valid for all x, y ∈ (O\Oi+1)ε. Combined with the two-sided growth
condition in Hypothesis 1 we infer that



1208                          

Hε(O, Ti,ε(u, ψ)) � Hε(Oi+1, u)+ Hε(O\Oi , ψ)+ Hε(Si , Ti,ε(u, ψ))

� Hε(Oi+1, u)+ C Hε(Oδ, ϕ)+ C |(Oδ)Lε | + Hε(Si , Ti,ε(u, ψ)),

(A.2)

where Oδ is defined in the statement of Proposition 1. In order to estimate the last
term on the right hand side we use the formula

Ti,ε(u, ψ)(x)− Ti,ε(u, ψ)(y) = (
θi (εx)− θi (εy)

)(
u(x)− ψ(x)

)

+ θi (εy)
(
u(x)− u(y)

)

+ (1− θi (εy))
(
ψ(x)− ψ(y)

)

and the bound on the Lipschitz constant of θi to estimate the energy on the inter-
polation stripe via

Hε(Si , Ti,ε(u, ψ))

� C‖∇BTi,ε(u, ψ)‖p
�

p
ε (Si )

+ C |(Si )
L
ε |

� C

(
‖∇Bu‖p

�
p
ε (Si )

+ ‖∇Bψ‖p
�

p
ε (Si )

+ (Nε)p

δ p
‖u − ψ‖p

�
p
ε (Si )

+ |(Si )
L
ε |
)

� C

N
Hε(O, u)+ C Hε(Oδ, ϕ)+ C |(Oδ)Lε | +

C N p

δ p
κ p|O|1+ p

d ε−d , (A.3)

where we have used again that the degree of each vertex is equibounded and that,
after suitable extension,ψ ∈ Np(v, O, ε, 2κ) for ε small enough. Combining (A.2)
and (A.3) we infer that

Hε(O, Ti,ε(u, ψ)) � Hε(Oi+1, u)+ C

N
Hε(O, u)+ C Hε(Oδ, ϕ)+ C |(Oδ)Lε |

+C N p

δ p
κ p|O| p

d |OL
ε |. (A.4)

Step 2. Lower bound for ei
ε(M).

In order to prove a lower bound for the integral, first note that due to Hypothesis 1
and the definition of S∗i

c0‖∇Bu‖p
�

p
ε (S∗i )

� Hε(O \ Oi+1, u)+ C |(Oδ)Lε |,
so that, up to increasing C , we can add this inequality to (A.4) and obtain the
estimate

Hε(O, Ti,ε(u, ψ))+ c0‖∇Bu‖p
�

p
ε (S∗i )

�
(
1+ C

N

)
Hε(O, u)+ C Hε(Oδ, ϕ)

+C |(Oδ)Lε | +
C N p

δ p
κ p|O| p

d |OL
ε |

Rearranging the terms we obtain by Fubini’s Theorem that

ei
ε(M) � exp

(
− C

(
|(Oδ)Lε | +

(Nκ|O| 1d )p

δ p
|OL

ε | +
M

N
|OL

ε |
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+ Hε(Oδ, ϕ)
)) ˆ

N∞(ϕ,O\Oi+1,ε)
dψ

×
ˆ

Pi,ε∩SM (O,ε)

exp(−Hε(O, u)) du

� exp

(
− C

(
|(Oδ)Lε | +

(Nκ|O| 1d )p

δ p
|OL

ε | +
M

N
|OL

ε | + Hε(Oδ, ϕ)
))

× Zε,O(Pi,ε ∩ SM (O, ε)) (A.5)

where we used that the measure ofN∞(ϕ, O\Oi+1, ε) can be bounded from below
by exp(−C |(Oδ)Lε |).
Step 3. Upper bound for ei

ε(M) and conclusion.
To estimate ei

ε(M) from above, similar to [34] we perform a suitable change of vari-
ables. Define �i,ε : Np(v, O, ε, κ) ×N∞(ϕ, O\Oi+1, ε) → Np(u, O, ε, 3κ) ×
Np(u, O\Oi+1, ε, 3κ) by

�i,ε(u, ψ)(x) =
{

(Ti,ε(u, ψ)(x), ψ(x)) if θi (εx) � ti ,

(Ti,ε(u, ψ)(x), u(x)) if θi (εx) < ti .

Note that for ε small enough �i,ε is well-defined and bijective onto its range
R(�i,ε). For the idea how to calculate the Jacobian, we refer to the proof of Propo-
sition 3. As ti ∈ [ 14 , 3

4 ], it holds that

| det(D�i,ε(u, ψ))|−1 =
⎛

⎝
∏

x :θi (εx)�ti

|θi (εx)|n
∏

x :θi (εx)<ti

|1− θi (εx)|n
⎞

⎠
−1

� exp(C |(Oδ)Lε |).
Setting (g, h) = �i,ε(u, ψ), by construction of the interpolation we have

g ∈ Np(u, O, ε, 3κ) ∩ Bε(O, ϕ),

h = (h1, h2) ∈ N∞(ϕ, O\(Oi+1 ∪ S∗i ), ε)

× {h : (S∗i )ε → R
n : ‖h − ε−1vε‖∞ � Cκ|Oε|

1
p+ 1

d }︸ ︷︷ ︸
=:Ri,ε

.

As the measure of the set N∞(ϕ, O\(Oi+1 ∪ S∗i ), ε) can be bounded by
exp(C |(Oδ)Lε |), the above change of variables and Fubini’s Theorem imply

ei
ε(M) � exp(C |(Oδ)Lε |)

ˆ

R(�i,ε)

exp
(
− Hε(g, O)− c0‖∇Bh‖p

�
p
ε (S∗i )

)
dg dh

� exp(C |(Oδ)Lε |)
ˆ

N∞(ϕ,O\(Oi+1∪S∗i ),ε)

dh1

ˆ

Ri,ε

exp(−c0‖∇Bh2‖p
�

p
ε (S∗i )

) dh2

× Z(Np(u, O, ε, 3κ) ∩ Bε(O, ϕ))

� exp(C |(Oδ)Lε |)
ˆ

Ri,ε

exp(−c0‖∇Bh2‖p
�

p
ε (St

i )
) dh2
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× Zε,O (Np(u, O, ε, 3κ) ∩ Bε(O, ϕ)). (A.6)

In order to bound the integral on the right hand side, we apply Lemma 3.3 to the

graph GS∗i ,ε with α = c0 and γ = Cκ|Oε|
1
p+ 1

d and infer

ˆ

Ri,ε

exp(−c0‖∇Bh2‖p
�

p
ε (S∗i )

) dh2 �
(

Cκn|Oε|
n
p+ n

d

)Ni,ε
C |(S∗i )Lε |−Ni,ε ,

where we denoted by Ni,ε the number of connected components of the graph GS∗i ,ε.
For ε small enough (possibly depending on N , δ), by Remark 7, (3.3) and the fact
that S∗i ∈ AR(D) we can bound the number of components via

Ni,ε � #{x ∈ OL
ε : dist(x, ∂(S∗i )ε) � C0} � Cε1−d(Hd−1(Sti

i )+Hd−1(∂O)).

In particular, for N , δ and κ > 0 fixed, due to (A.1) there exists ε0 such that for all
ε < ε0

ˆ

Ri,ε

exp(−c0‖∇Bh2‖p
�

p
ε (S∗i )

) dh2 � exp(C |(Oδ)Lε |).

Plugging this bound into (A.6) and comparing with (A.5) yields

Zε,O(P i
ε ∩ SM (O, ε)) � Zε,O(Np(v, O, ε, 3κ) ∩ Bε(O, ϕ))

× exp
(

C
(|(Oδ)Lε | +

(Nκ|O| 1d )p

δ p
|OL

ε | +
M

N
|OL

ε | + Hε(Oδ, ϕ)
))

Summing this inequality over i , by the definition of the sets Pi,ε we infer that

Zε,O(Np(v, O, ε, κ) ∩ SM (O, ε)) �
N∑

i=1
Zε,O(P i

ε ∩ SM (O, ε))

� Zε,O(Np(v, O, ε, 3κ) ∩ Bε(O, ϕ))

× N exp
(

C
(|(Oδ)Lε | +

(Nκ|O| 1d )p

δ p
|OL

ε | +
M

N
|OL

ε | + Hε(Oδ, ϕ)
))

(A.7)

Now, choosing

M = 2

(
1

|OL
ε |

log
(

Zε,O(Np(v, O, ε, κ))
)
+ C + log(2)

|OL
ε |

)
,

whereC is the constant of Lemma 3.4, we obtain by the same Lemma and Remark 8
that, for any κ > 0 fixed and all ε small enough,

Zε,O(Np(v, O, ε, κ)\SM (O, ε)) � 1

2
Zε,O(Np(v, O, ε, κ)).

Thus (A.7) and the definition of M yield the final estimate

Zε,O(Np(v, O, ε, κ))
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� 2Zε,O(Np(v, O, ε, κ) ∩ SM (O, ε))

� Zε,O(Np(v, O, ε, 3κ) ∩ Bε(O, ϕ)) Zε,O(Np(v, O, ε, κ))
C
N

× 2N exp
(

C
(|(Oδ)Lε | +

( (Nκ|O| 1d )p

δ p
+ C

N

)|OL
ε | + Hε(Oδ, ϕ)

))
.

� 
Remark 14. Note that the restriction on δ in the interpolation inequality comes
only from the requirement that tubular neighbourhoods of the boundary have again
Lipschitz boundary. In particular, if δ satisfies the condition for a set O ⊂ R

d , then
δ′ = δρ satisfies the condition for all sets of the form O ′ = z + ρO . Applying this
fact to the family of cubes Q(z, ρ) with z ∈ D and ρ > 0, we obtain that there
exists δ0 > 0 such that for all δ < δ0, all N ∈ N and all κ > 0 it holds that

N − C

N
F−

κ (Q(z, ρ), ϕ�) � W (�)− C(1+ |�|p) |Q(z, ρ)δρ |
|Q(z, ρ)|

− C

(
(Nκ|O(z, ρ)| 1d )p

(δρ)p
+ 1

N

)

� W (�)− C

(
(1+ |�|p)δ + (Nκ)p

δ p
+ 1

N

)

P-almost surely. Here we used Lemma 4.1, Proposition 3 and (3.1) in order to pass
to the limit as ε → 0 in the interpolation inequality almost surely. Note that the
last bound is independent of ρ and z.

Lemma A.1. Let p ∈ (1,+∞). For all u, v ∈ R
n it holds that

|u − v|p + |u + v|p � max{2p−1, 2}(|u|p + |v|p).
Proof of Lemma A.1. For p � 2 the claimed estimate follows from Clarkson’s

inequality. If p < 2, then (x p
1 + x p

2 )
1
p � (x21 + x22 )

1
2 for all x1, x2 � 0. Moreover,

with elementary analysis one can show that (x p
1 + x p

2 )
1
p � 2

1
p− 1

2 (x21 + x22 )
1
2 .

Applying these two inequalities first with x1 = |u − v| and x2 = |u + v| and then
with x1 = |u| and x2 = |v| we obtain

(|u − v|p + |u + v|p) 1
p � 2

1
p− 1

2 (|u − v|2 + |u + v|2) 1
2 = 2

1
p (|u|2 + |v|2) 1

2

� 2
1
p (|u|p + |v|p) 1

p .

� 
Lemma A.2. Let p ∈ (1,+∞). Then there exists a constant cp such that the
Hausdorff measure of the sphere Sn−1

p = {y ∈ R
n : |y|p = 1} fulfills

Hn−1(Sn−1
p ) �

(cp

n

) n
p
.
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Proof of Lemma A.2. Note that Sn−1
p is a compact smooth (n − 1)-dimensional

manifold. Hence we can characterize its Hausdorff measure by its Minkowski con-
tent. To be more precise, it holds that

Hn−1(Sn−1
p ) = lim

ε→0

Hn(Sn−1
p + Bε(0))

2ε
, (A.8)

where the factor 2 comes from the Lebesgue measure of the 1D unit ball [−1, 1].
Note however that Bε(0) is a ball with respect to the Euclidean metric on R

n . We
now give a lower bound for the nominator on the right hand side of (A.8). To this

end, set cn,p = max{1, n
1
2− 1

p }. Then, for y �= 0, we have
∣∣∣∣y −

y

|y|p
∣∣∣∣
2

� ||y|p − 1| |y|2|y|p � ||y|p − 1|cn,p,

where we used that by definition |y|2 � cn,p|y|p for all y ∈ R
n . We conclude that

{y ∈ R
n : 1− c−1n,pε < |y|p < 1+ c−1n,pε} ⊂ Sn−1

p + Bε(0).

Hence we deduce from (A.8) and the well-know formula for the volume of p-norm
balls that

Hn−1(Sn−1
p ) � lim inf

ε→0

Hn({|y|p < 1+ c−1n,pε})−Hn({|y|p < 1− c−1n,pε})
2ε

= (2�( 1p + 1))n

�( n
p + 1)

lim
ε→0

(1+ c−1n,pε)
n − (1− c−1n,pε)

n

2ε

= (2�( 1p + 1))n

�( n
p + 1)

nc−1n,p �
(2�( 1p + 1))n

�( n
p + 1)

n
1
2 .

We conclude the proof using Stirling’s formula in the form of the upper bound

�

(
n

p
+ 1

)
�
(
2πn

p

) 1
2
(

n

pe

) n
p

exp(p/12).

� 
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