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1. Introduction

The Mumford–Shah functional has its origin in image segmentation problems [50]. Given a rectangle (or more 
generally a bounded domain D ⊂R2) and a function g :D→R representing the gray level of an image, one aims at 
minimizing the functional

MS(u,K)=
ˆ

D\K
|∇u|2 dx + β H1(K)+ γ

ˆ

D

|u− g|2 dx.
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Here K is the union of a finite number of points and a finite set of smooth arcs joining these points with no other 
intersections. The function u is supposed to be differentiable on D\K , but may have discontinuities on K . Then the 
pair (u, K) is an approximation of the image. K represents the sharp edges in the image, while the smooth part u
yields a cartoon-like total image since it rules out fine textures away from K . Existence and regularity of minimizing 
pairs (u, K) is far from being trivial. In [38] it was shown that there exists a minimizing pair (u, K) among all 
closed sets K and u ∈ C1(D\K) provided g ∈ L∞(D). As commonly done in variational problems, one first has to 
enlarge the set of competitors in order to obtain compactness of minimizing sequences. This leads to the nowadays 
well-known formulation of the Mumford–Shah functional for SBV -functions, which was first introduced in [10]: 
given u ∈ SBV (D), the Mumford–Shah functional takes the form

MS(u)=
ˆ

D

|∇u|2 dx + βH1(Su)+ γ

ˆ

D

|u− g|2 dx. (1)

Here Su denotes the discontinuity set of u. The closed set K then can be recovered setting K = Su since minimizers 
have an essentially closed discontinuity set (see [38, Lemma 5.2]). However it is still unknown if K can be taken as 
a finite union of regular arcs. We refer the interested reader to the recent survey articles [39,49] for known regularity 
results for minimizers.

Besides the regularity of minimizers, there is the natural question how to minimize the Mumford–Shah functional 
(1) in practice. A very popular approach is given by the Ambrosio–Tortorelli approximation [12,13], where the surface 
term is replaced by a Modica–Mortola-type approximation with an additional variable. More precisely, given a small 
parameter ε > 0 and 0 < ηε � ε one defines an elliptic approximation ATε :W 1,2(D) ×W 1,2(D) →[0, +∞] by

ATε(u, v)=
ˆ

D

(ηε + v2)|∇u|2 dx + β

2

ˆ

D

ε|∇v|2 + 1

ε
(v− 1)2 dx + γ

ˆ

D

|u− g|2 dx.

In [13] it is shown that the family ATε approximates the Mumford–Shah functional (1) in the sense of �-convergence 
(we refer to the monographs [21,35] for details on this type of convergence). In particular, up to subsequences, the 
u-component of any global minimizer (uε, vε) of ATε converges to a global minimizer of MS. This approach was 
recently extended to second order penalizations, that means to replace the term ε|∇v|2 either by ε3|∇2v|2 or ε3(�v)2, 
where in the second case one puts additional boundary conditions on v (see [27] for more details or [14] for an 
anisotropic version).

Instead of introducing a second variable, Braides and Dal Maso constructed non-local approximations. In [23] they 
showed that the sequence of functionals NLε :W 1,2(D) →[0, +∞) defined by

NLε(u)= 1

ε

ˆ

D

f
(
ε −

ˆ

Bε(x)∩D

|∇u(y)|2 dy
)

dx + γ

ˆ

D

|u− g|2 dx

�-converges to MS provided f is continuous, increasing and satisfies

lim
t→0

f (t)

t
= 1, lim

t→+∞f (t)= f∞ <∞. (2)

In this case it turns out that β = 2f∞.
Note that both approximations are defined on more regular, but still infinite-dimensional spaces. Hence one has to 

discretize these spaces to numerically solve the minimization problems for the approximating functionals. On the one 
hand, ε should be taken very small in order to obtain almost sharp interfaces. On the other hand, to guarantee that 
finite elements/differences yield the same asymptotic behavior as the continuum approximations, it is proposed to take 
the mesh-size to be infinitesimal with respect to ε (see [16,19]). Indeed, for the Modica–Mortola approximation of 
the perimeter, such a choice is known to be necessary to preserve isotropy [26]. Very recently, in [15] this result was 
extended to finite difference discretizations of the Ambrosio–Tortorelli functional. Thus continuum approximations 
require in general a very fine mesh, which increases the computational effort. However, in dimension one there exists 
a direct approximation based on finite differences. In this case the small parameter ε represents the mesh-size of a 
one-dimensional grid εZ. Given a function u : εZ ∩ (0, 1) →R, we define the functional Fε by
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Fε(u)=
	1/ε
−2∑

i=1

min

{
ε

∣∣∣u(ε(i + 1))− u(εi)

ε

∣∣∣2, β}+ γ

	1/ε
−1∑
i=1

ε|u(εi)− gε(εi)|2,

where gε is a suitable discretized version of g ∈ L∞. The proof of convergence to the one-dimensional version of 
the Mumford–Shah functional can be found for example in [21, Chapter 8.3]. The functional Fε above has a natural 
extension to higher dimensions. Indeed, given u : εZd ∩D→R, one sets

Fε(u)= 1

2

∑
εi,εj∈εZd∩D
|i−j |=1

εd−1 min

{
ε

∣∣∣u(εi)− u(εj)

ε

∣∣∣2, β}+ γ
∑

εi∈εZd∩D

εd |u(εi)− gε(εi)|2. (3)

However, in higher dimensions the anisotropy of the lattice Zd leads to anisotropic surface integrals. For d = 2 Cham-
bolle proved in [29] that the functionals Fε �-converge to an anisotropic version of the Mumford–Shah functional 
given by

F(u)=
ˆ

D

|∇u|2 dx + β

ˆ

Su

|νu|1 dH1 + γ

ˆ

D

|u− g|2 dx,

where | · |1 denotes the l1-norm of the normal vector νu at x ∈ Su (we remark that with the results obtained in this 
paper the �-convergence above can be extended to any dimension).

In order to avoid the anisotropy, there have been found two approaches: on the one hand, inspired by the nonlocal 
approximation of the Mumford–Shah functional studied in [45], one can consider long-range interactions in (3) instead 
of only nearest neighbors. This has been analyzed in [30] and indeed anisotropy can be reduced but the functional to 
be minimized gets more complex as the number of interactions grows. On the other hand, Chambolle and Dal Maso 
considered functionals defined on piecewise affine functions with respect to a whole class of two-dimensional triangu-
lations. More precisely, let Tε(D, θ) be the set of all finite triangulations containing D such that for each triangle the 
inner angles are at least θ and the side lengths are between ε and w(ε), where w(ε) ≥ 6ε satisfies limε→0 w(ε) = 0. 
Denote by Vε(D, θ) the set of continuous functions that are piecewise affine with respect to some T ∈ Tε(D, θ). In 
[31] it is shown that there exists 0 < θ0 < 60◦ such that for all 0 < θ < θ0 the functionals Fε,θ defined on Vε(D, θ) by

Fε,θ (u)= 1

ε

ˆ

D

f (ε|∇u|2)dx + γ

ˆ

D

|u− g|2 dx

�-converge to the Mumford–Shah functional when f satisfies (2). In this case it holds that β = f∞ sin(θ). We remark 
that the triangulation is not fixed, so it is part of the minimization problem to find the optimal one (see [20] for details 
on numerical minimization for slightly modified functionals). Moreover, in contrast to the approximations mentioned 
before, this result is restricted to dimension two.

There are also different approaches to minimize the Mumford–Shah functional, for instance level-set methods, 
graph cut algorithms or convex relaxation techniques. We do not go into details but refer the reader to [52] and 
references therein.

The motivation for this work relies on the more recent paper [53], in which Cremers and Strekalovskiy propose 
another discrete functional based on finite differences along with a very fast algorithm to compute its minimizers in 
real-time. Although convergence of the algorithm has not been proven so far, it is demonstrated that it works well 
in practice. The discrete functional has a similar form to (3), but takes into account non-pairwise interactions and 
suitably scaled it reads as

F̃ε,g(u)=
∑

εx∈εZd∩D

εd−1 min
{
αε

d∑
i=1

∣∣∣u(εx + εei)− u(εx)

ε

∣∣∣2,1
}
+ γ

∑
εx∈εZd∩D

εd |u(εx)− gε(εx)|2. (4)

The authors of [53] conjecture that F̃ε,g approximates the Mumford–Shah functional.
In this paper we analyze the asymptotic behavior of a more general family of discrete functionals. Inspired by 

the structure of F̃ε,g above, we allow the functionals to depend not only on pairwise but general finite differences. 
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Furthermore, we replace the periodic lattice by so-called stochastic lattices. As a first consequence of our analysis, 
which is described more in detail below, we can identify the �-limit of the functionals F̃ε,g for d = 2. In particular, 
we show that it differs from the Mumford–Shah functional due to an anisotropic surface integral (the last point can be 
verified in any dimension; see Remark 4.2). Motivated by the fast algorithm for discrete approximations presented in 
[53], we then construct a random family of discrete functionals for that we can prove �-convergence to the Mumford–
Shah functional almost surely (a.s.). The basic idea is quite simple: since the anisotropy in the �-limit of the family 
of functionals in (3) stems mostly from the lattice, we replace Zd by a more isotropic point set. Since there exist no 
isotropic, countable sets, we need to go beyond deterministic models and consider realizations of random point sets. 
Those have the flexibility to be isotropic at least in distribution.

The main approximation result
We consider random, countable point sets L(ω) ⊂Rd that satisfy the following geometric constraints:

(i) There exists R > 0 such that dist(x, L(ω)) < R for all x ∈Rd ;
(ii) There exists r > 0 such that dist(x, L(ω)\{x}) ≥ r for all x ∈ L(ω).

Given a small parameter ε > 0 (again representing a kind of mesh-size) and q > 1, one possible approximation is the 
family of random functionals Fε,g(ω) defined on functions u : εL(ω) ∩D→Rm by

Fε,g(ω)(u)=
∑

(x,y)∈N (ω)
εx,εy∈D

εd−1f
(
ε

∣∣∣u(εx)− u(εy)

ε

∣∣∣2)+ ∑
εx∈εL(ω)∩D

εd |u(εx)− gε(ω)(εx)|q , (5)

where N (ω) denotes the set of Voronoi neighbors (see Definition 2.6), f is a function satisfying (2) and gε(ω) is 
a suitable discretization of some given g ∈ Lq(D, Rm). We require that the random point set L is stationary and 
isotropic, that means L and RL + z have the same statistics for all z ∈ Zd and all R ∈ SO(d). If the shift operation is 
realized by an ergodic group action and gε(ω) → g in Lq(D, Rm), our main result, which is stated in full generality 
in Theorem 4.3, can be summarized as follows:

Theorem. Under the above assumptions, there exist three positive constants c1, c2, c3 such that with probability 1 the 
functionals Fε,g(ω) �-converge with respect to the L1(D, Rm)-topology to the deterministic functional Fg defined by

Fg(u)=

⎧⎪⎨
⎪⎩

c1

ˆ

D

|∇u|2 dx + c2Hd−1(Su)+ c3

ˆ

D

|u− g|q dx if u ∈ Lq(D,Rm)∩GSBV 2(D,Rm),

+∞ otherwise.

Given the probabilistic assumptions above, the result is quite robust. For example, the same limit (with different 
constant c2) can be proven for the random version of (4) given by

F̃ε,g(ω)=
∑

εx∈εL(ω)∩D

εd−1f
( ∑

(x,y)∈N (ω)
εy∈D

ε

∣∣∣u(εx)− u(εy)

ε

∣∣∣2)+ ∑
εx∈εL(ω)∩D

εd |u(εx)− gε(ω)(εx)|q .

Some remarks are in order:

(i) A point process that satisfies all our assumptions is given by the random parking process [44,51].
(ii) The coefficients ci are not explicit but are derived from three abstract homogenization formulas. However, for 

fixed L one can still tune them since c1 and c2 are proportional to f ′(0) and f∞ respectively, while for c3 we 
can multiply the second term in (5) by some factor.

(iii) We will prove the convergence for more general finite differences (see Section 2). Those require more technical 
notation that we want to avoid in this introduction. Hence we restrict the description of our analysis below to 
pairwise interactions via Voronoi neighbors.



                                        891
(iv) In the proof we will identify u with a piecewise constant function on Voronoi cells. However this is not needed 
for minimizing the functional Fε,g(ω). In particular one only has to determine the Voronoi neighbors, but no 
volume of cells or piecewise affine interpolations on Delaunay triangulations. One can also avoid the determi-
nation of the Voronoi neighbors using a k-NN algorithm, but k should not be too small (see also Remark 2.7 (ii) 
& (iii)).

(v) We prove that global minimizers of Fε,g converge to minimizers of Fg in Lq(D, Rm). Note that this is not the 
natural compactness to be expected from finite energy sequences.

(vi) The discrete functionals are still non-convex which cannot be avoided since the �-limit of any sequence of 
convex functionals remains convex.

(vii) In our setting the case of vector-valued u corresponds to color images. Our arguments cannot be generalized 
straightforward to models for linearized elasticity.

(viii) A different randomization of the functional (3) has been considered in another context in [25], where a ran-
dom choice between the potential f (s) = min{s, 1} and f̃ (s) = s is analyzed. However, isotropy of the limit 
functional remained an open problem.

(ix) Another approach to construct discrete approximations could be based on random point clouds similar to [42], 
where the authors prove an approximation result for total variation-type functionals. Point clouds have the ad-
vantage that they can be generated very fast. However, for point clouds one usually needs interactions with range 
∼ (log(n)/n)

1
d for n points compared to ∼ (1/n)

1
d for stochastic lattices. Otherwise the corresponding graph 

will not be connected. Besides the nonlocal structure there are also many redundant points due to clustering.

Plan of the paper
We now give a short overview of the paper and explain briefly the steps to prove our main approximation theorem. 

Section 2 is divided into three preliminary parts. First we recall the necessary function spaces that we need for our 
analysis. In the second part we introduce in a rigorous way the stochastic point sets that we use to define our approx-
imating functionals Fε,g(ω). In the last part we introduce the class of functionals under consideration (we omit the 
fidelity term in most parts of the paper). For this introduction we assume the functionals to be of the form

Fε(ω)(u)=
∑

(x,y)∈N (ω)
εx,εy∈D

εd−1f

(
ε

∣∣∣u(εx)− u(εy)

ε

∣∣∣p) ,

where for the sake of generality we take a general exponent p > 1. The localized versions of these functionals will be 
the main objects to be studied in the subsequent sections.

In Section 3 we present three general results that we prove on the way towards the main approximation result 
and which might be of independent interest. Assuming only the geometric properties of a single realization L(ω), 
we prove in Theorem 3.3 that (up to subsequences) the �-limit of the family Fε(ω) always has the form of a free 
discontinuity functional, that means it is finite only on GSBV p(D, Rm), where it can be written as

F(ω)(u)=
ˆ

D

h(x,∇u)dx +
ˆ

Su

ϕ(x, νu)dHd−1. (6)

Moreover, the density h of the �-limit coincides with the density of the �-limit of the convex functionals

Eε(ω)(u)= f ′(0)
∑

(x,y)∈N (ω)
εx,εy∈D

εd
∣∣∣u(εx)− u(εy)

ε

∣∣∣p,

while the surface density ϕ of the functional F(ω) in (6) is given by surface density of the �-limit of the Ising-type 
energies defined on functions u : εL(ω) →{±e1} by

Iε(ω)(u)= f∞
2

∑
(x,y)∈N (ω)

εd−1|u(εx)− u(εy)|.

εx,εy∈D
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In Theorem 3.5 we state a general stochastic homogenization result for the functionals Fε(ω) in the case of stationary, 
ergodic stochastic lattices. In particular, the �-limit of Fε(ω) exists a.s., is deterministic and on its domain it is of the 
form

F(u)=
ˆ

D

h(∇u)dx +
ˆ

Su

ϕ(νu)dHd−1,

that means in contrast to (6) the densities h and ϕ do not depend on x and are deterministic. Theorem 3.8 contains 
the �-convergence including the convergence of minimizers when we add the discrete fidelity term in the stationary, 
ergodic setting.

In Section 4 we apply the results of Section 3. On the one hand, we identify the �-limit of the functionals in (4). 
On the other hand, with Theorem 4.3 we obtain our main approximation result about the Mumford–Shah functional 
when we assume additionally that the stochastic lattice is isotropic in distribution.

Section 5 contains the proof of Theorem 3.3. While the integral form (6) of any �-limit is obtained by standard 
techniques combining the abstract methods of �-convergence with an integral representation theorem, the character-
izations of the integrands h and ϕ by the �-limits of the sequences Eε(ω) and Iε(ω) is the most delicate step in this 
paper. Although similar results have been obtained in a continuum setting (see [24,28,43]), we cannot use interpola-
tion and copy the argument. This has several reasons: on the one hand, in dimensions larger than two, piecewise affine 
interpolations on Delaunay tessellations might be degenerate due to very flat tetrahedrons. On the other hand, even 
in a planar setting Voronoi cells can have very short boundary sides, so that the discrete functional overestimates the 
length of interfaces. Moreover, fine constructions based on geometric measure theory can be incompatible with the 
prescribed lattice structure. Thus our arguments, which are nevertheless inspired by the continuum case, need to use 
the discrete environment as long as possible. The complete strategy is explained more in detail at the beginning of 
Section 5.

In Section 6 we prove the remaining results of Section 3. With the characterizations proven in the previous section, 
Theorem 3.5 is a straightforward consequence of the results on discrete-to-continuum stochastic homogenization for 
elastic and Ising-type energies obtained in the two papers [5,6], respectively. Also adding the fidelity term is quite 
straightforward.

The appendix contains a technical argument how to choose �-converging diagonal sequences in our special setting 
when the functionals are not equicoercive.

2. Setting of the problem and preliminaries

We first introduce some notation that will be used in this paper. Given a measurable set B ⊂Rd we denote by |B| its 
d-dimensional Lebesgue measure, while more generally Hk(A) stands for the k-dimensional Hausdorff measure. We 
denote by 1B the characteristic function of B . If B is finite, #B means its cardinality. Given an open set O ⊂Rd , we 
denote by A(O) the family of all bounded, open subsets of O , while AR(O) means the bounded, open subsets with 
Lipschitz boundary. For x ∈ Rd or y ∈ Rm we denote by |x| and |y| the Euclidean norm. Given a matrix ξ ∈ Rm×d , 
we let |ξ | be its Frobenius norm. As usual B�(x0) denotes the open ball with radius � centered at x0 ∈Rd . We simply 
write B� when x0 = 0. Given ν ∈ Sd−1, we let ν1 = ν, ν2, . . . , νd be an orthonormal basis of Rd and we define the 
cube Qν as

Qν =
{
z ∈Rd : |〈z, νi〉|< 1/2

}
,

where the brackets 〈·〉 denote the scalar product. Given x0 ∈Rd and � > 0, we set Qν(x0, �) = x0+�Qν . For x0 ∈Rd , 
ν ∈ S1 and a, b ∈Rm we define the function ua,b

x0,ν by the formula

ua,b
x0,ν

(x) :=
{

a if 〈x − x0, ν〉> 0,

b otherwise.
(7)

The notation co(x1, . . . , xd) means the convex hull of finitely many points in Rd . We will use ‖u‖Lp(A) for the 
Lp(A, Rm)-norm. There should be no confusion about the dimension m. The symbol ⊗ stands for the outer product 
of vectors, that is, for any a ∈ Rm, b ∈ Rd we have a ⊗ b ∈ Rm×d with (a ⊗ b)ij := aibj . Finally, the letter C stands 
for a generic positive constant that may change every time it appears.
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2.1. Generalized special functions of bounded variation

We briefly recall the function spaces we are going to use in this paper. We refer to [7,11,36] for more details.
Let O ⊂ Rd be an open set. We denote by BV (O, Rm) ⊂ L1(O, Rm) the space of vector-valued functions of 

bounded variation. We write Du for the matrix-valued distributional derivative of u, which can be decomposed as

Du(B)=
ˆ

B

∇udx +
ˆ

Su∩B

(u+(x)− u−(x))⊗ νu(x)dHd−1 +Dcu(B).

In the above formula ∇u denotes the absolutely continuous part of Du with respect to the Lebesgue measure, Su is 
the so-called jump set of u with (measure-theoretic) normal vector νu ∈ Sd−1 and u−, u+ denote the one-sided traces 
of u at Hd−1-a.e. x ∈ Su. The remainder Dcu is called the Cantor-part, but it will play no role in this paper.

Indeed, the space of special functions of bounded variation is defined as the set of those u ∈ BV (O, Rm) such 
that Dcu = 0. We write u ∈ SBV (O, Rm). Given p ∈ (1, +∞), we define SBV p(O, Rm) ⊂ SBV (O, Rm) as the 
set of those functions such that ∇u ∈ Lp(O, Rm×d) and Hd−1(Su) < +∞. Due to a lack of compactness in many 
free discontinuity problems, we have to enlarge this class. We say that a Borel-function u : O → Rm is a gen-
eralized special function of bounded variation, if � ◦ u ∈ SBVloc(O, Rm) for every function � ∈ C1(Rm, Rm)

such that ∇� has compact support and write u ∈GSBV (O, Rm). In this case, the approximate differential ∇u(x)

still exists a.e. and there is a well-defined jump set Su, which is countably (d − 1)-rectifiable. Finally, we set 
GSBV p(O, Rm) as those functions u ∈ GSBV (O, Rm) such that ∇u ∈ Lp(O, Rm×d) and Hd−1(Su) < +∞. As 
shown in [36, Section 2], the set GSBV p(O, Rm) is a vector space and, if � ∈C1(Rm, Rm) is such that ∇� has com-
pact support, then � ◦ u ∈ SBV p(O, Rm). Moreover, given u ∈ GSBV p(O, Rm), one can define a Borel-function 
νu : Su → Sd−1 and two Borel-functions u+, u− : Su → Rm still satisfying a weak trace condition for Hd−1-a.e. 
x ∈ Su.

For our analysis we make use of a special family of smooth truncations as in [28] which essentially allows to reduce 
many proofs to the space SBV p . Consider a function φ ∈ C∞c (R) such that φ(t) = t for all |t | ≤ 1, φ(t) = 0 for t ≥ 3
and ‖φ′‖∞ ≤ 1. We define the function � ∈C∞c (Rm, Rm) by

�(u)=
{

φ(|u|) u
|u| if u �= 0,

0 if u= 0.

As shown at the beginning of [28, Section 4] the function � is 1-Lipschitz. Given k > 0 we further set �k(u) = k�(u
k
), 

which is still 1-Lipschitz. Then we have the following approximation result, which is a consequence of dominated 
convergence and [7, Propositions 1.1-1.3 & Theorem 3.7].

Lemma 2.1. Let u ∈GSBV p(D, Rm) ∩L1(D, Rm) and let k > 0. Defining the truncation Tku =�k(u), the function 
Tku belongs to SBV p(D, Rm) ∩L∞(D, Rm) and

(i) lim
k→+∞Tku = u a.e. and in L1(D, Rm);

(ii) ∇Tku(x) =∇�k(u(x))∇u(x) for a.e. x ∈D;
(iii) STku ⊂ Su, limk→+∞Hd−1(STku) =Hd−1(Su) and νu =±νTku Hd−1-a.e. on STku.

2.2. Stochastic lattices

Next we introduce the random point sets that we use for the discrete approximations. Throughout this paper we 
let � be a probability space with a complete σ -algebra F and probability measure P. We call a random variable 
L : � → (Rd)N a stochastic lattice. The following definition, which has been introduced in [17] in the context of 
quantum models (and is known in a deterministic setting as Delone sets), essentially forbids clustering of points as 
well as arbitrarily big empty regions in space.

Definition 2.2 (Admissible lattices). Let L be a stochastic lattice. L is called admissible if there exist R > r > 0 such 
that the following two conditions hold a.s.:
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(i) dist(x, L(ω)) < R for all x ∈Rd ;
(ii) dist(x, L(ω)\{x}) ≥ r for all x ∈ L(ω).

Remark 2.3. We also make use of the associated Voronoi tessellation V(ω) = {C(x)}x∈L(ω), where the (random) 
Voronoi cells with nuclei x ∈ L(ω) are defined as

C(x)= {z ∈Rd : |z− x| ≤ |z− y| for all y ∈ L(ω)}.
If L(ω) is admissible, then [6, Lemma 2.3] yields the inclusions B r

2
(x) ⊂ C(x) ⊂ BR(x).

Next we introduce some notions from ergodic theory that build the basis for stochastic homogenization.

Definition 2.4. We say that a family of measurable functions {τz}z∈Zd , τz :� →�, is an additive group action on �
if

τ0 = id and τz1+z2 = τz2 ◦ τz1 for all z1, z2 ∈ Zd .

An additive group action is called measure preserving if

P(τ−1
z B)= P(B) for all B ∈F, z ∈ Zd .

Moreover, {τz}z∈Zd is called ergodic if, in addition, for all B ∈F we have the implication

(τz(B)= B ∀z ∈ Zd) ⇒ P(B) ∈ {0,1}.

In terms of a stochastic lattice the probabilistic properties read as follows:

Definition 2.5. A stochastic lattice L is said to be stationary if there exists an additive, measure preserving group 
action {τz}z∈Zd on � such that for all z ∈ Zd

L ◦ τz = L+ z.

If in addition {τz}z∈Zd is ergodic, then L is called ergodic, too.
We call L isotropic, if for every R ∈ SO(d) there exists a measure preserving function τ ′R :� →� such that

L ◦ τ ′R =RL.

In order to define gradient-like structures, we equip a stochastic lattice with a set of directed edges. We summarize 
the necessary properties in a separate definition:

Definition 2.6 (Admissible edges). Let L be an admissible stochastic lattice and E ⊂ L2. We call E admissible edges 
if for all i, j ∈N the set {ω ∈� : (L(ω)i, L(ω)j ) ∈ E(ω)} is F -measurable and

(i) there exists M > R such that a.s.

sup{|x − y| : (x, y) ∈ E(ω)}< M; (8)

(ii) the Voronoi neighbors defined by N (ω) := {(x, y) ∈ L(ω)2 : Hd−1(C(x) ∩ C(y)) ∈ (0, +∞)} are contained in 
E(ω) up to symmetrizing, that means

N (ω)⊂ E(ω)∪ {(y, x) ∈ L(ω)2 : (x, y) ∈ E(ω)}. (9)

If L is stationary or isotropic, we say that the edges E are stationary or isotropic if E ◦ τz = E + (z, z) for all z ∈ Zd or 
E ◦ τ ′R =RE for all R ∈ SO(d).

Up to enlarging M , by Remark 2.3 we may assume in addition that

sup
x∈L(ω)

#{y ∈ L(ω) : (x, y) ∈ E(ω) or (y, x) ∈ E(ω)} ≤M. (10)
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Remark 2.7.

(i) In the proof of [6, Lemma A.2] it is shown, that the choice E(ω) =N (ω) satisfies the measurability assumption. 
Then we can add for example non-Voronoi neighbors by selecting them based on a maximal distance.

(ii) In order to avoid the computation of the Voronoi neighbors (or the Delaunay triangulation), one can also use 
a k-NN algorithm (taking all points in case of a tie to avoid anisotropy). By a naive volume bound based on 
Remark 2.3 it suffices to take

k =
⌈(

4Rr−1 + 1
)d − (2Rr−1 − 1

)d⌉− 2.

Indeed, if (x, y) ∈N (ω) is a pair of Voronoi neighbors, then for any point z ∈ C(x) ∩ C(y) it holds that |z− x| <
R and the ball B|x−z|(z) is contained in B2|x−z|(x) and contains no other point of L(ω). For all other points 
x′ ∈ L(ω) with |x′ − x| ≤ |y − x| (including x) the balls B r

2
(x′) are pairwise disjoint and contained in the set 

B2|x−z|+ r
2
(x)\B|x−z|− r

2
(z). The volume of this set is monotone in |x − z| ≥ r/2, which implies the claimed 

bound. For the random parking model we have the optimal ratio R/r = 2 at the packing limit, which yields 
k = 70 for d = 2. This bound is far from being optimal. Nevertheless, a more detailed treatment of numerical 
issues is beyond the scope of this paper.

(iii) We use (9) only for proving Lemma 5.1. Hence in (9) the set N (ω) can be replaced by any set of edges such that 
this lemma remains valid.

Having introduced the random framework, we will need it again only in Section 6. To simplify the notation, we will 
drop the dependence on ω for some quantities. If so, we tacitly assume that we have a realization satisfying properties 
(i) and (ii) of both Definitions 2.2 and 2.6.

2.3. A generalized weak-membrane energy

In order to discretize vectorial Mumford–Shah-type functionals we basically follow the approach used on periodic 
lattices for the scalar case. However we go beyond pairwise interactions. Due to the possibly non-ordered edges E(ω)

this requires some notation. For M ∈N satisfying (10) we denote by

P+(M)= {p : [0,+∞)→N0 : #p−1(N) <+∞,
∑

v∈p−1(N)

p(v)≤M}

the set of all multisets over [0, +∞) with at most M elements. Note that if v1, . . . , vk ∈ [0, +∞) with k ≤ M , 
then up to permutation we can identify these points with a unique p ∈ P+(M) setting p(vi) = #{j : vj = vi} for 
all 1 ≤ i ≤ k and zero elsewhere. In this sense we sometimes use the more common notation p = {vi}b, where the 
b indicates a badge in which elements can occur several times in contrast to ordinary sets. For p ∈ P+(M) we set 
‖p‖1 =∑v∈p−1(N) p(v)v. In this paper we fix a bounded function f : P+(M) → [0, +∞) satisfying the following 
two structural assumptions: there exists 0 < α <+∞ such that

lim‖p‖1→0

f (p)

‖p‖1
= α (11)

and f is monotone increasing in the following sense: for all v, v′ ∈ [0, +∞)M with vi ≤ v′i for all 1 ≤ i ≤M and for 
any 1 ≤ k ≤M we have

f ({v1, . . . , vk}b)≤ f ({v′1, . . . , v′k}b). (12)

We also assume that f is lower semicontinuous in the sense that for all sequences (vn)n ⊂ [0, +∞)M converging to 
some v ∈ [0, +∞)M and for all 1 ≤ k ≤M it holds that

f ({v1, . . . , vk}b)≤ lim inf
n→+∞f ({vn

1 , . . . , vn
k }b). (13)

Remark 2.8. Note that from the boundedness of f , the monotonicity assumption and the property (11) it follows that 
there exist constants Cf > cf > 0 such that
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cf min{‖p‖1,1} ≤ f (p)≤ Cf min{‖p‖1,1}. (14)

Moreover, again by boundedness and monotonicity, for every 1 ≤ l ≤ k ≤M there exists the limit

β(l, k)= lim
N→+∞f (l1{N} + (k − l)1{0}) > 0. (15)

While we will frequently use the property (12) for our analysis, the lower semicontinuity (13) will just guarantee the 
existence of minimizers for the discrete approximations.

In order to define the discrete approximation of a continuous functional we scale a stochastic lattice by a small 
parameter ε > 0. Let us fix a reference set D ⊂ Rd , which we assume to be a bounded Lipschitz domain, and a 
growth exponent p ∈ (1, +∞). Given u : εL(ω) → Rm, an open set A ∈ A(D) and η > 0, we define the function 
η|∇ω,ε(u, A)|p : εL(ω) → P+(M) by

η|∇ω,ε(u,A)|p(εx)=
{
η

∣∣∣u(εx)− u(εy)

ε

∣∣∣p : (x, y) ∈ E(ω), εx, εy ∈A
}

b
.

Then we define the localized discrete approximations (which we also call energies) as

Fε(ω)(u,A)=
∑

εx∈εL(ω)∩A

εd−1f
(
ε|∇ω,ε(u,A)|p(εx)

)
.

We simply write Fε(ω) for Fε(ω)(·, D), which will be the functional of interest in this paper.

Remark 2.9. We chose the abstract framework above for two reasons.

(i) We take directed edges to define η|∇ω,ε(u, A)|p(εx) in order to include the functional (4);
(ii) we define the function f on multisets to handle pairwise and non-pairwise gradients simultaneously. For pairwise 

interactions, we set f (p) =∑v∈p−1(N) p(v)f0(v) with f0 satisfying (2). The other example of the introduction is 
given by f (p) = f0(‖p‖1).

As we aim at using the abstract theory of �-convergence, we will identify a discrete variable with its piecewise 
constant interpolation on the Voronoi cells, that means with functions of the class

PCω
ε = {u :Rd →Rm : u|εC(x) is constant for all x ∈ L(ω)}.

With a slight abuse of notation we extend the functional to Fε(ω) : L1(D, Rm) ×A(D) →[0, +∞] by

Fε(ω)(u,A)=
{

Fε(ω)(u,A) if u ∈ PCω
ε ,

+∞ otherwise.
(16)

Remark 2.10. We work in the space L1 due to the applications we have in mind. A priori there is no equicoercivity in 
this space and therefore it seems more natural to define the functionals for example on measurable functions. However, 
we will show in Lemma 5.6 that this can be circumvented using a fidelity term that is part of the Mumford–Shah 
functional anyway.

3. Presentation of the general results

Having introduced the necessary notation, we now give an overview of the theoretical results that we prove on 
the way to obtain the discretization of the Mumford–Shah functional. Readers who are interested specifically in the 
Mumford–Shah functional can go to Section 4.2.
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3.1. Integral representation and separation of bulk and surface effects

Our first result establishes a general �-convergence result (up to subsequences), which holds without any prob-
abilistic assumptions on the lattice, but pointwise for admissible lattices and edges. We show that any �-limit has 
an integral representation which is characterized by the separate �-limits of an associated bulk energy and a surface 
energy. More precisely, a formal linearization of Fε(ω) at u = 0 yields the bulk energy Eε(ω)(·, A) : PCω

ε →[0, +∞]
defined by

Eε(ω)(u,A)= α
∑

(x,y)∈E(ω)
εx,εy∈A

εd
∣∣∣u(εx)− u(εy)

ε

∣∣∣p, (17)

where α is given by (11). At least when u is the discretization of a Lipschitz function, the functional Eε(ω)(u, A)

should be a good approximation of Fε(ω)(u, A) since ‖ε|∇ω,ε(u, A)|p‖1 vanishes when ε → 0. On the contrary, 
when u is the discretization of a (macroscopically) piecewise constant function, the elements in ε|∇ω,ε(u, A)|p either 
equal zero or blow up. Hence one expects that Fε(ω)(u, A) should be well-approximated by the functional Iε(ω) : {v :
εL(ω) →{±e1}} →[0, +∞] given by the formula

Iε(ω)(v,A)=
∑

εx∈εL(ω)∩A

εd−1β
( ∑

εy∈εL(ω)∩A
(x,y)∈E(ω)

1

2
|v(εx)− v(εy)|,#{εy ∈ εL(ω)∩A : (x, y) ∈ E(ω)}

)
, (18)

where the function β is given by (15) and β(0, k) := 0 for all 1 ≤ k ≤M . Indeed, the function β takes into account 
how many components of the discrete gradient blow up while all others remain zero.

In order to formulate the theorem we recall the �-convergence results obtained for the energies Eε(ω) and Iε(ω)

(both extended to Lp(D) via +∞). The following result was proven in [5, Theorem 3]1:

Theorem 3.1 ([5]). For every sequence ε → 0 there exists a subsequence εn such that for every A ∈ AR(D) the 
functionals Eεn(ω)(·, A) �(Lp(D, Rm))-converge to a functional E(ω) : Lp(D, Rm) × AR(D) → [0, +∞] that is 
finite only on W 1,p(A, Rm), where it takes the form

E(ω)(u,A)=
ˆ

A

q(x,∇u)dx

for some non-negative Carathéodory-function q that is quasiconvex in the second variable for a.e. x ∈D and satisfies 
the growth conditions

1

C
|ξ |p −C ≤ q(x, ξ)≤ C(|ξ |p + 1).

The �-convergence of functionals of the type (18) was treated in [6, Theorem 3.2]2:

Theorem 3.2 ([6]). For every sequence ε → 0 there exists a subsequence εn such that for every A ∈ AR(D) the 
functionals Iεn(ω)(·, A) �(Lp(D, Rm))-converge to a functional I (ω) : Lp(D, Rm) × AR(D) → [0, +∞] that is 
finite only on BV (A, {±e1}), where it takes the form

I (ω)(u,A)=
ˆ

A

s(x, νu)dHd−1

for some measurable function s that satisfies the growth conditions

1 Interactions via a random edge set E(ω) are not covered by the results in [5]. However, the proof works for general finite range interactions 
with p-growth and coercive Voronoi neighbor interactions. Due to (9) those assumptions are fulfilled.

2 In [6] the proofs are given only for pairwise interactions, but as already mentioned in [6, Section 6.3], up to minor modifications they cover also 
multi-body interactions. Hence we decided not to repeat the arguments.
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C
≤ s(x, ν)≤ C.

Our first main result states that the �-limit of Fε(ω) can be characterized by the �-limits of Eε(ω) and Iε(ω) in the 
following sense:

Theorem 3.3. Let εn → 0. The �(L1(D))-limit of Fεn(ω) exists if and only if the �(Lp(D))-limits of Eεn(ω)(·, D)

and Iεn(ω)(·, D) exist. In this case the �-limit F(ω) is finite only GSBV p(D, Rm), where it is given by

F(ω)(u)=
ˆ

D

q(x,∇u(x))dx +
ˆ

Su

s(x, νu)dHd−1

with the integrands given by Theorems 3.1 and 3.2.

Remark 3.4. Both Theorems 3.1 and 3.2 provide asymptotic formulas for the integrands q and s, respectively. To 
state them, we need some notation. Given a set A ∈AR(D) and δ > 0, we set

∂δA := {x ∈Rd : dist(x, ∂A)≤ δ}. (19)

For a pointwise well-defined function ū ∈ L∞loc(R
d , Rm), we define the set of discrete functions taking the boundary 

value ū on ∂δA as

PCω
ε,δ(ū,A)= {u ∈PCω

ε : u(εx)= ū(εx) for all εx ∈ εL(ω)∩ ∂δA}. (20)

Then, as shown in Step 1 of the proof of [5, Theorem 2], for a.e. x0 ∈D and every ξ ∈Rm×d it holds that

q(x0, ξ)= lim
�→0

�−d lim
n→+∞

(
inf
{
Eεn(ω)(v,Qe1(x0, �)) : v ∈PCω

εn,Mεn
(ξ(· − x0),Qe1(x0, �))

})
,

where M denotes the maximal range of interactions given by Definition 2.6.
The formula we use for s can be found at the beginning of the proof of [22, Theorem 5.8]. It states that for all 

x0 ∈D and ν ∈ S1 we have

s(x0, ν)= lim sup
�→0

1

�d−1 lim
δ→0

lim sup
n→+∞

(
inf
{
Iεn(ω)(v,Qν(x0, �)) : v ∈ PCω

εn,δ(u
−e1,e1
x0,ν

,Qe1(x0, �))
})

,

where u−e1,e1
x0,ν is defined in (7). Note that the minimization problem defining s is automatically restricted to functions 

with values in {±e1}.

3.2. Stochastic homogenization

The second main result uses the statistical properties of the lattice and the edges (more precisely only station-
arity and ergodicity) in order to avoid passing to subsequences for the �-convergence result. It is a straightforward 
consequence of Theorem 3.3 and the homogenization results proven in [5,6].

Theorem 3.5. Assume that L is a stationary and ergodic stochastic lattice with admissible stationary edges in the 
sense of Definitions 2.2 and 2.6. Then P-a.s. the functionals Fε(ω) �-converge in the L1(D, Rm)-topology to a deter-
ministic functional F : L1(D, Rm) →[0, +∞] with domain L1(D, Rm) ∩GSBV p(D, Rm), where it is given by
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F(u)=
ˆ

D

h(∇u)dx +
ˆ

Su

ϕ(νu)dHd−1

for some convex, p-homogeneous function h and some convex, one-homogeneous function ϕ.

Remark 3.6.

(i) By Theorem 3.3 the functions h and ϕ are given by the formulas in Remark 3.4 for q(0, ·) and s(0, ·), respectively. 
However, we can take �= 1 in both formulas and in the formula for s(0, ·) one can avoid the additional limit in 
δ by setting δ = 2Mε. Moreover, every remaining lim sup-expression can be replaced by a limit.

(ii) The above �-convergence result also holds locally on each A ∈AR(D) for the same set of ω.
(iii) Theorem 3.5 still holds if we drop the ergodicity assumption. Then the integrands are τ -invariant, but possibly 

random.

3.3. Convergence of minimizers in the stationary, ergodic setting

Now we add a discrete fidelity term to our approximating functional Fε(ω), which will approximate the continuum 
fidelity term that penalizes the distance to the measured image.

In order to define the discrete approximation, we consider a discrete measurement of a given continuum function. 
More precisely, throughout this section we fix an exponent q > 1 and consider a sequence gε(ω) : εL(ω) → Rm, for 
which we assume that there exists g ∈ Lq(D, Rm) such that P-a.s.

gε(ω)→ g in Lq(D,Rn). (21)

Remark 3.7. For every given g ∈Lq(D, Rm), we find a sequence with this approximation property by first extending 
g = 0 on Rd\D and then setting

gε(ω)(εx)= 1

|Bε(εx)|
ˆ

Bε(εx)

g(z)dz.

To see this, we may assume that m = 1. It is a consequence of the (generalized) Lebesgue differentiation theorem (see 
[40, Remark 1.160]) that gε(ω) → g a.e. on D. Since gε is bounded in modulus by the maximal function of g (which 
belongs itself to Lq(Rd)), we deduce (21) from dominated convergence.

Given a sequence gε(ω) satisfying (21), we introduce Fε,g(ω) : L1(D, Rm) →[0, +∞] defined by

Fε,g(ω)(u)=

⎧⎪⎨
⎪⎩

Fε(ω)(u)+
∑

εx∈εL(ω)∩D

εd |u(εx)− gε(ω)(εx)|q if u ∈ PCω
ε ,

+∞ otherwise,
(22)

where Fε(ω) is defined in (16). Note that we chose a discrete fidelity term not depending on the measure of the 
Voronoi cells. The identification of the �-limit of Fε,g(ω) is contained in the following theorem.

Theorem 3.8. Let q ∈ (1, +∞) and gε(ω) satisfy (21). Under the assumptions of Theorem 3.5, there exists a constant 
γ > 0 such that P-a.s. the functionals Fε,g(ω) defined in (22) �-converge with respect to the L1(D, Rm)-topology to 
the functional Fg :L1(D, Rm) →[0, +∞] with domain Lq(D, Rm) ∩GSBV p(D, Rm), where it is defined by

Fg(u)=
ˆ

D

h(∇u)dx +
ˆ

Su

ϕ(νu)dHd−1 + γ

ˆ

D

|u− g|q dx

with the functions h and ϕ given by Theorem 3.5.
Moreover, for each ε > 0 there exists a global minimizer ûε ∈ PCω

ε of the functional Fε,g(ω) and if uε ∈ PCω
ε is 

any sequence such that
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lim
ε→0

(
Fε,g(ω)(uε)− min

u∈PCω
ε

Fε,g(ω)(u)
)
= 0,

then a.s. it is compact in Lq(D, Rm) and each cluster point as ε→ 0 is a global minimizer of Fg .

Remark 3.9. Up to a further subsequence, the statement of Theorem 3.8 remains valid in the non-stationary setting of 
Theorem 3.3. However, the �-limit contains a heterogeneous fidelity term of the form 

´
D

γ (x)|u − g|q dx for some 
positive function γ ∈ L∞(D) such that also 1/γ ∈ L∞(D). In the case of a stationary, but non-ergodic group action 
the function γ does not depend on x, but might be random.

4. Applications and the main result

We postpone the technical proofs of the results of Section 3 to the last two sections. First we use them to derive the 
�-limit of the functionals in (4) and prove our main result, that is, the approximation of the Mumford–Shah functional 
announced in the introduction.

4.1. The �-limit for forward differences on Z2

Our aim is to analyze the asymptotic behavior of the discrete functional proposed in [53]. It is based on the square 
lattice L = Z2 with edges that yield standard forward differences, that is, EFD = {(x, x+ei) : x ∈ Z2, i = 1, 2}, where 
{ei}i=1,2 denotes the standard basis of R2. The discrete approximation is then defined for functions u : εZ2 →Rm and 
after rescaling and dropping the fidelity term it reads as

F̃ε(u,A)=
∑

εx∈εZ2∩A

ε min{αε−1(|u(εx + εe1)− u(εx)|2 + |u(εx + εe2)− u(εx)|2),1}. (23)

The set of edges satisfies (9) as the Voronoi neighbors are given by all x, y ∈ Z2 such that |x − y| = 1. Moreover F̃ε

has the required structure to apply our results which can be seen by setting f (p) = min{α‖p‖1, 1}. In [53] Cremers 
and Strekalovskiy conjectured that F̃ε approximates the Mumford–Shah functional. With the results of Section 3 we 
can identify the �-limit of F̃ε, which differs from the Mumford–Shah functional due to an anisotropic surface integral.

Corollary 4.1. The functionals F̃ε defined in (23) �-converge with respect to the L1(D, Rm)-topology to the functional 
F0 : L1(D, Rm) with domain L1(D, Rm) ∩GSBV 2(D, Rm), where it is given by

F0(u)= α

ˆ

D

|∇u|2 +
ˆ

Su

ϕ0(ν)dH1,

with the function ϕ0 :R2 →[0, +∞) defined by

ϕ0(ν)=
{
|ν1| + |ν2| if ν1 · ν2 < 0,

max{|ν1|, |ν2|} if ν1 · ν2 ≥ 0.

Proof. As outlined above, we can apply Theorem 3.5 to the sequence F̃ε . Moreover, from Theorem 3.3 we deduce 
that the function h in Theorem 3.5 is given by the density of the �-limit of the sequence Eε defined in (17). With our 
choice of f and EFD the functional Eε takes the form

Eε(u)= α
∑

εx,εy∈εZ2∩D
|x−y|=1

ε2

2

∣∣∣u(εx)− u(εy)

ε

∣∣∣2.

In this case [4, Remark 5.3] yields that

�(Lp(D))- lim
ε→0

Eε(u)= α

ˆ
|∇u|2 dx
D
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for all u ∈W 1,2(D, Rm), so that h(ξ) = α|ξ |2 and it remains to identify the surface integrand ϕ in Theorem 3.5 as ϕ0. 
By convexity, the function ϕ is continuous, so it suffices to treat the case ν1 · ν2 �= 0. Note that for forward differences 
the functional Iε defined in (18) is given by

Iε(u,A)= 1

2

∑
εx∈εZ2∩A

ε max{|u(εx + εei)− u(εx)| : i ∈ {1,2} with εx + εei ∈A},

where u : εZ2 →{±e1}. From Remarks 3.4 and 3.6 we know that ϕ is given by the formula

ϕ(ν)= lim
ε→0

(
inf
{
Iε(v,Qν(0,1)) : v ∈ PCε,4ε(u

−e1,e1
0,ν ,Qν(0,1))

})
. (24)

Consider for fixed ε << 1 any function v ∈ PCε,4ε(u
−e1,e1
0,ν , Qν(0, 1)) with values in {±e1}. We locally construct a 

function ṽ ∈ BV (Qν(0, 1), {±e1}) as follows: on Qe1(εx, ε) with x ∈ Z2 such that Qe1(εx, ε) ⊂Qν(0, t) we set

ṽ(y)=

⎧⎪⎨
⎪⎩

v(εx) if
∏2

i=1 |v(εx + εei)− v(εx)| = 0,

v(εx) if
∏2

i=1 |v(εx + εei)− v(εx)| �= 0 and 〈y − εx, e1 + e2〉 ≤ 0,

v(εx + εe1) if
∏2

i=1 |v(εx + εei)− v(εx)| �= 0 and 〈y − εx, e1 + e2〉> 0,

while we define ṽ = u
−e1,e1
0,ν on all cubes Qe1(εx, ε) with Qe1(εx, ε) ∩ ∂Qν(0, 1) �= ∅. The latter implies ṽ = u

−e1,e1
0,ν

on ∂Qν(0, 1) in the sense of traces. Moreover we modified the jump set away from the boundary in such a way that it 
contains diagonal lines of length 

√
2 instead of corners formed by the upper and the right hand side of a cube. Setting 

Qε := {y ∈Qν(0, 1) : dist(y, ∂Qν(0, 1)) > 2ε}, the above construction and the boundary conditions for v imply

Iε(v,Qν(0,1))≥
ˆ

Sṽ∩Qε

ϕ0(νṽ)dH1 ≥
ˆ

Sṽ∩Qν (0,1)

ϕ0(νṽ)dH1 −Cε. (25)

Observe that ϕ0 is convex. Hence the functional on the right hand side is BV -elliptic in the sense thatˆ

Sṽ∩Qν (0,1)

ϕ0(νṽ)dH1 ≥ ϕ0(ν)

for all ṽ ∈ BV (Qν(0, 1), {±e1}) such that ṽ = u
−e1,e1
0,ν on ∂Qν(0, 1) in the sense of traces (see [9] for more details). 

Since v ∈ PCε,4ε(u
−e1,e1
0,ν , Qν(0, 1)) was arbitrary, we conclude from (24) and (25) that ϕ(ν) ≥ ϕ0(ν).

In order to prove the reverse inequality, first note that

Iε(u,A)≤ 1

4

∑
εx,εy∈εZ2∩A
|x−y|=1

ε|u(εx)− u(εy)|. (26)

The �-limit of the right hand side of (26) is well-known. It is finite only on BV (D, {±e1}) and given by 
´
Su
|ν|1 dH1

(see [3]). By comparison we obtain ϕ(ν) ≤ |ν1| + |ν2|. This finishes the proof in the case ν1 · ν2 < 0. If ν1 · ν2 > 0, 
denote by i0 the index such that |νi0 | =max{|ν1|, ν2|} and set i1 = {1, 2}\{i0}. We define a candidate for the minimum 
problem in (24) setting uν(εx) = u

−e1,e1
0,ν (εx) for all x ∈ Z2. By definition it satisfies the correct boundary conditions. 

A straightforward analysis shows that for any x ∈ Z2 with uν(εx) �= uν(εx + εei1) we have uν(εx) �= uν(εx + εei0). 
Thus it suffices to count just the interactions along the direction ei0 . Those can be bounded by ε−1|νi0 | +C, so that

Iε(uν,Qν(0,1))≤ |νi0 | +Cε =max{|ν1|, |ν2|} +Cε.

From (24) we conclude that ϕ(ν) ≤ ϕ0(ν) which finishes the proof. �
Remark 4.2. For the d-dimensional version of F̃ε (defined in the introduction), one still has the existence of the 
�-limit with an anisotropic surface integrand. To see the latter, one first shows that ϕ(e1) = 1. Then for the vector 
ν0 = ( 1√

2
, 1√

2
, 0) the discretization of u−e1,e1

0,ν0
yields an upper bound ϕ(ν0) ≤ 1√

2
(actually equality holds). The precise 

�-limit in higher dimensions is beyond the scope of this paper.
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4.2. Approximations of the Mumford–Shah functional

Now we use our general results to provide a discretization of the vector-valued Mumford–Shah functional. To this 
end, we need to take our parameters p = q = 2. However, it might be of interest to obtain also other exponents for 
the fidelity term and therefore we consider the general case q > 1 and just fix p = 2 to focus on the isotropy issue. 
We suggest to take as stochastic lattice the so-called random parking process. For the precise geometric construction 
of this process by suitably choosing projected points of a homogeneous Poisson point process in dimension d + 1, 
we refer the reader to the two papers [51,44]. Here we recall that the random parking process defines a stochastic 
lattice LRP that is admissible, stationary, ergodic and, most important for our applications, isotropic in the sense of 
Definition 2.5. Moreover, we can choose for instance E(ω) =N (ω) to obtain stationary and isotropic edges (see also 
Remark 2.7 for other possible choices). We prove our result for general stochastic lattices satisfying these assumptions. 
Note that the following theorem covers in particular the two functionals presented in the introduction.

Theorem 4.3. Fix p = 2 and let q ∈ (1, +∞) and gε(ω) satisfy (21). Assume that L is an admissible stochas-
tic lattice that is stationary, ergodic and isotropic with admissible stationary and isotropic edges. Then there exist 
constants c1, c2, c3 > 0 such that P-a.s. the functionals Fε,g(ω) defined in (22) �-converge with respect to the 
L1(D, Rm)-topology to the functional Fg : L1(D, Rm) → [0, +∞] with domain Lq(D, Rm) ∩ GSBV 2(D, Rm), 
where it is defined by

Fg(u)= c1

ˆ

D

|∇u|2 dx + c2Hd−1(Su)+ c3

ˆ

D

|u− g|q dx.

Remark 4.4. In the scalar case m = 1, the statement of Theorem 4.3 is valid for every p > 1. Indeed, we already 
know that the function h has to be p- homogeneous. Following the proof below, stochastic isotropy implies that it is 
constant on Sd−1. Hence h(ξ) = c1|ξ |p for some c1 > 0. The formula for the surface term does not depend on p.

Remark 4.5. Theorem 4.3 and the convergence of minimizers in Theorem 3.8 yield the full discretization of the 
Mumford–Shah functional. In practice it is of course impossible to create the stochastic lattice on the whole space but 
one has to take a finite particle approximation. Moreover the minimization of the discrete functionals Fε(ω) is still 
nontrivial due to non-convexity. However, first numerical tests have shown promising results and we plan to further 
investigate our approach in the future.

Proof of Theorem 4.3. Due Theorem 3.8 it only remains to show that h(ξ) = c1|ξ |2 and ϕ(ν) = c2 for some constants 
c1, c2 > 0. By Theorem 3.3 the function h is also the density of the �-limit of the functionals Eε(ω) defined in (17). 
For p = 2 these are non-negative quadratic forms, so we deduce from [35, Theorem 11.1] that h is a non-negative 
quadratic form, too. We write it explicitly as

h(ξ)=
m∑

i,k=1

d∑
j,l=1

hijklξij ξkl,

where the coefficients satisfy the symmetry condition hijkl = hklij . Since the discrete functional is invariant under 
orthogonal transformations u �→Qu it holds that h(Qξ) = h(ξ) for all ξ ∈Rm×d and Q ∈O(m). Moreover, reasoning 
exactly as for the case m = d treated in [5, Theorem 9] one can further show that ergodicity and isotropy imply 
h(ξR) = h(ξ) for all ξ ∈ Rm×d and all R ∈ SO(d). We argue that h depends only on the singular values. To this 
end, we fix a matrix ξ ∈ Rm×d and consider any singular value decomposition ξ =Q�V T with orthogonal matrices 
Q ∈O(m) and V ∈O(d) and a diagonal matrix � ∈Rm×d . If V ∈ SO(d) then h(ξ) = h(�). Otherwise we replace 
V by a rotation observing that

A=QP 1,2
m P 1,2

m �P
1,2
d P

1,2
d V T ,

where P 1,2
n denotes the n ×n-matrix which differs from the identity by exchanging the first and the second column. In 

this case h(ξ) = h(P
1,2
m �P

1,2
) since the matrix P 1,2

V T belongs to SO(d). Set l =min{d, m} and write the singular 
d d
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values as λ(ξ) ∈Rl with non-negative coefficients. We conclude that there exists a permutation P(ξ) ∈ {I, P 1,2
l } such 

that

h(ξ)=
l∑

i,k=1

hiikk

(
P(ξ)λ(ξ)

)
i

(
P(ξ)λ(ξ)

)
k
.

Thus it is enough to characterize the coefficients hiikk. We will test several diagonal matrices ξ . To simplify notation, 
given v ∈Rl we denote by diag(v) ∈Rm×d the diagonal matrix with elements v. As a first step, note that we can find 
Q ∈O(m) and R ∈ SO(d) such that diag(ei) =Q diag(−ej )R. Thus by invariance hiiii = hjjjj for all i, j = 1, . . . , l. 
Now consider i �= k. We argue that hiikk = 0. To this end, we use that there exists a matrix Q ∈ O(m) such that 
diag(ei + ek) =Q diag(ei − ek), which yields again by invariance that

hiiii + hkkkk + hiikk + hkkii = hiiii + hkkkk − hiikk − hkkii .

Due the symmetry condition on the coefficients of h we obtain hiikk = 0. Setting c1 = h1111 we have shown that

h(ξ)= c1

l∑
i=1

λi(ξ)2 = c1|ξ |2.

It follows from Theorem 3.1 that c1 > 0.
We now turn to the surface integrand ϕ and prove that ϕ(Rν) = ϕ(ν) for all R ∈ SO(d). Since ϕ is deterministic 

by ergodicity, we can take expectations in the asymptotic formula given by Remark 3.4 and simplified via Remark 3.6. 
Since τ ′R is measure preserving, dominated convergence and a change of variables yield

ϕ(Rν)= lim
ε→0

ˆ

�

inf{Iε(ω)(v,QRν(0,1)) : v ∈PCω
ε,2Mε(u

−e1,e1
0,Rν ,QRν(0,1))}dP(ω)

= lim
ε→0

ˆ

�

inf{Iε(τ
′
RT ω)(v,Qν(0,1)) : v ∈ PC

τ ′
RT ω

ε,2Mε(u
−e1,e1
0,ν ,Qν(0,1))}dP(ω)

= lim
ε→0

ˆ

�

inf{Iε(ω
′)(v,Qν(0,1)) : v ∈ PCω′

ε,2Mε(u
−e1,e1
0,ν ,Qν(0,1))}dP(ω′)= ϕ(ν),

where we used from the first to the second line that by isotropy of L and E the discrete functional in (18) satisfies 
Iε(τ

′
Rω)(u, QRν(0, 1)) = Iε(ω)(u ◦ R, Qν(0, 1)) for every R ∈ SO(d). We finish the proof setting c2 = ϕ(e1) since 

Theorem 3.2 implies c2 > 0. �
5. Separation of scales: proof of Theorem 3.3

This section is devoted to the proof of Theorem 3.3, which will constitute the most involved part of the paper. In a 
first part we use [18, Theorem 1] to represent (up to subsequences) the �-limit on SBV p as an integral functional. In a 
second and third part we study asymptotic formulas for the integrands of that representation which allow to conclude 
the proof. Several times we will need the following property of Voronoi neighbors in a stochastic lattice.

Lemma 5.1. Let L(ω) be an admissible set of points with constants R > r > 0 as in Definition 2.2. Then for all 
x, y ∈ L(ω) there exists a path P(x, y) = {x0 = x, x1, . . . , xn = y} such that (xi−1, xi) ∈N (ω) for all 1 ≤ i ≤ n and

P(x, y)⊂ co(x, y)+B2R(0).

In particular, there exists a constant Cr,R <+∞ such that #P(x, y) ≤Cr,R|x − y|.

Proof. For 0 < δ� 1 consider the collection of segments

Gδ(x, y)= {z+ λ(y − x) : z ∈ Bδ(x), 0≤ λ≤ 1}.
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We argue that there exists a segment s∗ = {z0 + λ(y − x) : 0 ≤ λ ≤ 1} ⊂Gδ(x, y) that does not intersect any Voronoi 
facet of the tessellation V(ω) of dimension less than d − 1. Indeed, assume by contradiction that the claim is false for 
all z0 ∈ Bδ(x). By Remark 2.3 we find finitely many Voronoi facets of dimension less than d − 1 whose projections 
onto the hyperplane containing x and orthogonal to y − x cover a d − 1-dimensional set. Since projections onto 
hyperplanes are Lipschitz continuous, we obtain a contradiction. Hence, for δ small enough, we can construct a path 
of Voronoi neighbors connecting x, y by suitably numbering the set

P(x, y)= {z ∈ L(ω) : C(z)∩ s∗ �= ∅},
which satisfies P(x, y) ⊂ co(x, y) +BR+δ(0) as claimed. Combining Remark 2.3 with a covering argument we obtain 
in addition

#P(x, y)≤ |B r
2
(0)|−1(|x − y| + 2R)(2R)d−1 ≤ |B r

2
(0)|−1 2(2R)d

r
|x − y| =: Cr,R|x − y|. �

5.1. Integral representation on SBVp

We are going to prove the following intermediate result:

Proposition 5.2. Given any sequence ε → 0 there exists a subsequence εn such that for all A ∈ AR(D) the func-
tionals Fεn(ω)(·, A) �-converge in the L1(D, Rm)-topology to a functional F(ω)(·, A) : L1(D, Rm) → [0, +∞]. If 
u ∈ SBV p(A, Rm) then F(ω)(u, A) can be written as

F(ω)(u,A)=
ˆ

A

h(x,∇u)dx +
ˆ

Su∩A

ϕ(x,u+ − u−, ν)dHd−1,

where, for x0 ∈D, ν ∈ S1, a ∈Rm and ξ ∈Rd×m, the integrands are given by

h(x0, ξ)= lim sup
�→0

1

�d

m(ω)(ξ(· − x0),Qν(x0, �)),

ϕ(x0, a, ν)= lim sup
�→0

1

�d−1 m(ω)(ua,0
x0,ν

,Qν(x0, �))

with the function ua,0
x0,ν defined in (7) and the function m(ω)(ū, A) defined for any ū ∈ SBV p(D, Rm) and A ∈AR(D)

by

m(ω)(ū,A)= inf{F(ω)(v,A) : v ∈ SBV p(A,Rm), v = ū in a neighborhood of ∂A}.

In order to prove this result we will analyze the localized �- lim inf and �- lim sup F ′(ω), F ′′(ω) : L1(D, Rm) ×
A(D) →[0, +∞] of the functionals Fε(ω), which are defined by

F ′(ω)(u,A)= inf{lim inf
ε→0

Fε(ω)(uε,A) : uε → u in L1(D,Rm)},
F ′′(ω)(u,A)= inf{lim sup

ε→0
Fε(ω)(uε,A) : uε → u in L1(D,Rm)}.

Remark 5.3. It is well-known that both functionals are L1(D, Rm)-lower semicontinuous. Moreover, note that for 
any u ∈ L1(D, Rm) there exists indeed a sequence uε ∈ PCω

ε such that uε → u in L1(D, Rm). For u ∈ Cc(D, Rm)

this follows from Remark 2.3. In the general case one can use a density argument and construct suitable diagonal 
sequences.

Our aim is to apply the integral representation of [18, Theorem 1] to a slightly modified functional. To this end, 
below we establish several properties of F ′(ω) and F ′′(ω) which are necessary in the context of integral representation. 
However, at first we prove a truncation lemma that allows to reduce many arguments to the case of bounded functions.
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Lemma 5.4. Let uε ∈ PCω
ε . For any k > 0 set Tkuε as in Lemma 2.1. Then, for any A ∈ A(D), it holds 

that Fε(ω)(Tkuε, A) ≤ Fε(ω)(uε, A). In particular, whenever u ∈ L∞(D, Rm) we can compute F ′(ω)(u, A) and 
F ′′(ω)(u, A) considering sequences uε ∈ PCω

ε such that |uε(εx)| ≤ 3‖u‖∞ for all x ∈ L(ω). Moreover, for all 
u ∈ L1(D, Rm) we have

lim
k→+∞F ′(ω)(Tku,A)= F ′(ω)(u,A),

lim
k→+∞F ′′(ω)(Tku,A)= F ′′(ω)(u,A).

Proof. For the estimate at the discrete level, it suffices to combine the fact that |Tkuε(εx) − Tkuε(εy)| ≤ |uε(εx) −
uε(εy)| for all x, y ∈ L(ω) with the monotonicity assumption (12). In order to restrict the class of approximating 
sequences, we use the first estimate and the fact that any truncated sequence Tkuε with k = ‖u‖∞ still converges to u
in L1(D, Rm). The continuity property at the limit follows from L1(D, Rm)-lower semicontinuity of both functionals 
and the fact that the discrete upper bound is conserved in the limit. �

We next show that F ′′(ω) is local.

Lemma 5.5 (Locality of F ′′). Let A ∈ AR(D). If u, v ∈ L1(D, Rm) and u = v a.e. on A, then F ′′(ω)(u, A) =
F ′′(ω)(v, A).

Proof. Due to Remark 5.3 there exist sequences uε, vε ∈PCω
ε converging to u and v in L1(D, Rm), respectively, and 

such that

lim sup
ε→0

Fε(ω)(uε,A)= F ′′(ω)(u,A), lim sup
ε→0

Fε(ω)(vε,A)= F ′′(ω)(v,A).

Define ũε ∈PCω
ε by

ũε(εx)= 1A(εx)uε(εx)+ (1− 1A(εx))vε(εx).

Since |∂A| = 0 and uε and vε are equiintegrable, it follows that ũε → v in L1(D, Rm). Then by definition

F ′′(ω)(v,A)≤ lim sup
ε→0

Fε(ω)(ũε,A)= lim sup
ε→0

Fε(ω)(uε,A)= F ′′(ω)(u,A).

Exchanging the roles of u and v concludes the proof. �
The following two lemmata provide a lower bound for F ′ and an upper bound for F ′′. Together with the lower 

bound we obtain an equicoercivity property under an additional equiintegrability assumption.

Lemma 5.6 (Compactness and lower bound). Assume that A ∈AR(D) and uε ∈PCω
ε are such that

sup
ε>0

Fε(ω)(uε,A) <+∞.

If uε is equiintegrable on A, then there exists a subsequence (not relabeled) such that uε→ u in L1(A, Rm) for some 
u ∈ L1(A, Rm) ∩GSBV p(A, Rm). Moreover we have the estimate

1

c

⎛
⎝ˆ

A

|∇u|p dx +Hd−1(Su ∩A)

⎞
⎠≤ F ′(ω)(u,A)

for some constant c > 0 independent of ω, A and u.

Proof. We first construct a suitable function vε ∈ SBV p(A, Rm) that is asymptotically close to uε . Given a triangu-
lation T d of the cube [0, 1]d we construct a periodic triangulation of Rd via

T = {T = z+ Td : z ∈ Zd , Td ∈ T d}.
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We may assume that diam(T ) < R for all T ∈ T . Define uaff
ε as a continuous piecewise affine interpolation of uε on 

εT as follows: for each z ∈ Zd we choose a point x(z) ∈L(ω) such that z ∈ C(x) and set

uaff
ε (εz)= uε(εx(z)).

Next we decompose the scaled lattice as εL(ω) =L0,ε ∪L1,ε , where

L0,ε = {εx ∈ εL(ω) : ‖ε|∇ω,ε(u,A)|p(εx)‖1 ≤ 1}.
Let us also group the simplices overlapping with A according to

T1 = {T ∈ T : T ∩A �= ∅, inf
z∈εT

dist(z, ∂A)≤ 8Rε},
T2 = {T ∈ T : T ∩A �= ∅, inf

z∈εT
dist(z, ∂A) > 8Rε and inf

z∈εT
dist(z,L1,ε)≤ 6Rε},

T3 = {T ∈ T : T ∩A �= ∅, inf
z∈εT

dist(z, ∂A) > 8Rε and inf
z∈εT

dist(z,L1,ε) > 6Rε}.

Given uaff
ε we define vε on the interior of each simplex εT ∈ εT setting

vε|εT =
{

uaff
ε|εT if T ∈ T3,

0 otherwise.

Note that vε ∈ SBV p(A, Rm). We start estimating the difference of uε and vε on A. Consider any simplex εT with 
T ∈ T1. Then εT ⊂ ∂A + B9Rε(0). Since ∂A is a Lipschitz boundary it admits a (d − 1)-dimensional Minkowski 
content. Hence there exists a constant C = CR > 0 such that for ε small enough we have∣∣∣ ⋃

T ∈T1

εT ∩A

∣∣∣≤ |{z ∈A : dist(z, ∂A)≤ 9Rε}| ≤ CHd−1(∂A)ε. (27)

Next, if T ∈ T2, then there exists εx ∈ L1,ε ∩ A such that εT ⊂ B7Rε(εx). From (14) and the definition of L1,ε we 
deduce∣∣∣ ⋃

T ∈T2

εT ∩A

∣∣∣≤Cεd #{εx ∈ εL(ω)∩A : ‖ε|∇ω,ε(u,A)|p(εx)‖1 > 1} ≤ CεFε(ω)(uε,A)≤ Cε. (28)

Finally, if z ∈ εT ∩ A for some T ∈ T3, then by definition dist(z, L1,ε) > 6Rε and dist(z, ∂A) > 8Rε. Let us write 
T = co(z0, . . . , zd) ∈ T and z=∑i λ

z
i z

i . Choosing x ∈ L(ω) such that z ∈ ε(C(x) ∩ T ), Remark 2.3 yields

|vε(z)− uε(z)| ≤
d∑

i=0

λz
i |uaff

ε (εzi)− uε(εx)| ≤
∑

y∈L(ω)∩B3R(x)

|uε(εy)− uε(εx)| (29)

except for a null set where uε is not well-defined. Given y ∈ L(ω) ∩B3R(x), we let P(y, x) = {y = x0, x1, . . . , xn = x}
be the path of Voronoi neighbors given by Lemma 5.1. Since |x − y| ≤ 3R, we have

|xi − ε−1z| ≤ dist(xi, co(x, y))+ |y − x| + |x − ε−1z|< 2R + 3R +R = 6R.

In particular we conclude that εxi ∈ L0,ε ∩ A for all 0 ≤ i ≤ n. Using (9), the definition of the set L0,ε implies that 

|uε(εxi) − uε(εxi+1)| ≤ ε
1− 1

p for all 0 ≤ i ≤ n − 1. By Remark 2.3 the number of Voronoi neighbors in B6R(ε−1z)

is uniformly bounded, so that from (29) we infer the bound

|vε(z)− uε(z)| ≤ Cε
1− 1

p . (30)

Since we have set vε = 0 on all εT ∈ ε(T1 ∪ T2) and uε is equiintegrable by assumption, we conclude from (27), (28)
and (30) that

lim ‖vε − uε‖L1(A) = 0. (31)

ε→0
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Moreover, the sequence vε is still equiintegrable on A. We will show the convergence for the sequence vε. We start 
estimating the size of its jump set. We have at most two contributions. The first one comes from discontinuities along 
edges of simplices in T1. For those we have, again for ε small enough, the estimate

Hd−1

⎛
⎝ ⋃

T ∈T1

∂εT ∩A

⎞
⎠≤ Cε−1|{z ∈Rd : dist(z, ∂A)≤ 9Rε}| ≤ CHd−1(∂A),

where we used the Lipschitz regularity of ∂A and a reverse isoperimetric inequality for the finitely many simplices in 
T d . The other contribution is given by

Hd−1

⎛
⎝ ⋃

T ∈T2

∂εT ∩A

⎞
⎠≤ ∑

T ∈T2

Cεd−1 ≤ CFε(ω)(uε,A)≤C,

where the second inequality follows by the same reasoning used in the lines preceding (28). The last two estimates 
imply that

Hd−1(Svε ∩A)≤Hd−1

⎛
⎝ ⋃

T ∈T1∪T2

∂εT ∩A

⎞
⎠≤C. (32)

To estimate the gradient it suffices to consider simplices T = co(z0, . . . , zd) ∈ T3. Write any basis vector ek as ek =∑d
i=1 λk

i (z
i − z0). Due to the periodicity of the triangulation T the coefficients λk

i are equibounded with respect to 
the simplices. Take x ∈ L(ω) such that uaff

ε (εz0) = uε(εx). Since vε is affine on εT we have

|∂kvε|εT | =
∣∣∣ d∑

i=1

λk
i

vε(εz
i)− vε(εz

0)

ε

∣∣∣≤ C

d∑
i=0

∣∣∣uaff
ε (εzi)− uaff

ε (εz0)

ε

∣∣∣
≤ C

∑
y∈L(ω)∩B3R(x)

ε−1
∣∣uε(εy)− uε(εx)

∣∣≤ C
∑

xi ,xj∈B5R(x)

(xi ,xj )∈N (ω)

ε−1|uε(εxi)− uε(εxj )|,

where the last inequality follows by the same reasoning we used for proving (30). Now observe that if T ∈ T3 and 
|xi −x| < 5R, then εxi ∈ L0,ε ∩A. Thus taking the p-th power of the above estimate and using (9) and (14) we obtain

|∇vε|εT |p ≤C
∑

xi ,xj∈B5R(x)

(xi ,xj )∈N (ω)

ε−p|uε(εxi)− uε(εxj )|p ≤ Cε−1
∑

xi∈L(ω)∩B5R(x)

‖ε|∇ω,ε(u,A)|p(εxi)‖1

≤Cε−1
∑

xi∈L(ω)∩B5R(x)

f (ε|∇ω,ε(u,A)|p(εxi)).

We sum the last estimate over all T ∈ T3. Since T ⊂ B7R(xi) we count each lattice point xi at most C times and thus 
concludeˆ

A

|∇vε(z)|p dz≤ C
∑

εx∈εL(ω)∩A

εd−1f (ε|∇ω,ε(u,A)|p(εx))= CFε(ω)(uε,A)≤ C. (33)

By (32) and (33), the compactness theorem for GSBV (A, Rm)-functions [7, Theorem 2.2] implies that, up to subse-
quences, vε → u ∈GSBV (A, Rm) in measure and by equiintegrability also in L1(A, Rm). Moreover ∇vε ⇀ ∇u in 
Lp(A, Rm×d) and from lower semicontinuity [7, Theorem 3.7] we deduceˆ

A

|∇u|p dz+Hd−1(Su ∩A)≤ C lim inf
ε→0

Fε(ω)(uε,A)+CHd−1(∂A)≤ C.

Thus by definition u ∈GSBV p(A) which finishes the proof of compactness. In order to prove the lower bound, note 
that the argument above shows that for any open set A′⊂⊂A it holds that
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ˆ

A′
|∇u|p dz+Hd−1(Su ∩A′)≤C lim inf

ε→0
Fε(ω)(uε,A),

provided the right hand side is finite and uε → u in L1(D, Rm). By the definition of F ′(ω) and the arbitrariness of A′
we obtain the desired estimate. �

As a next step we estimate F ′′(ω) from above.

Lemma 5.7 (Upper bound). Let u ∈ L1(D, Rm). There exists a constant c > 0 independent of ω and u such that for 
all A ∈AR(D) with u ∈GSBV p(A, Rm) it holds that

F ′′(ω)(u,A)≤ c

⎛
⎝ˆ

A

|∇u|p dx +Hd−1(Su ∩A)

⎞
⎠ .

Proof. Take any ball BL such that D ⊂⊂ BL. For the moment let us assume that u ∈ SBV p(BL, Rm) is such that

(i) Hd−1(Su\Su ∩BL) = 0,
(ii) Su is the intersection of BL with a finite number of pairwise disjoint (d–1)-simplices,

(iii) u ∈W k,∞(BL\Su, Rm) for all k ∈N.

We define an admissible sequence to bound F ′′(ω)(u|D, A) setting

uε(εx)=
{

u(εx) if εx ∈ BL\Su,

0 otherwise.

Using the properties (ii) and (iii) from above it follows by Remark 2.3 that uε → u|D in L1(D, Rm). To bound the 
energy, consider first the case that εx ∈ εL(ω) ∩ A is such that dist(εx, Su) ≥ 3Mε. Then for all y ∈ L(ω) with 
(x, y) ∈ E(ω) we have by Jensen’s inequality and the regularity of u that

∣∣∣∣uε(εx)− uε(εy)

ε

∣∣∣∣
p

=
∣∣∣∣∣∣

1ˆ

0

∇u(εx + sε(y − x))(y − x)ds

∣∣∣∣∣∣
p

≤ |y − x|p
1ˆ

0

|∇u(εx + sε(y − x))|p ds.

Integrating both sides over εC(x) we infer from Fubini’s theorem and Remark 2.3 the bound

εd
∣∣∣uε(εx)− uε(εy)

ε

∣∣∣p ≤ C

ˆ

εC(x)

1ˆ

0

|∇u(εx + sε(y − x))|p ds dz

≤ C

⎛
⎜⎝ ˆ

εC(x)

1ˆ

0

|∇u(z+ sε(y − x))|p ds dz+ c
p
u

ˆ

εC(x)

|z− εx|p dz

⎞
⎟⎠

≤ C

⎛
⎜⎝

1ˆ

0

ˆ

ε(C(x)+s(y−x))

|∇u(z)|p dz ds + c
p
u εd+p

⎞
⎟⎠ , (34)

where cu denotes the L∞-norm of D2u on BL\Su. Here we used that by Remark 2.3 we have

t
(
εx + sε(y − x)

)+ (1− t)
(
z+ sε(y − x)

) ∈ B2Mε(εx)⊂ BL\Su, (35)

for all z ∈ εC(x) and s, t ∈ [0, 1], so that cu indeed provides Lipschitz estimates for ∇u. Due to (14) we have f (p) ≤
Cf ‖p‖1, so that (10), (34) and (35) imply
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εd−1f
(
ε|∇ω,ε(u,A)|p(εx)

)≤ C

⎛
⎜⎝ ˆ

B2Mε(εx)

|∇u(z)|p dz+ c
p
u εd+p

⎞
⎟⎠ . (36)

In order to control the contribution from the remaining lattice points, fix a set A′ ∈AR(Rd) such that A ⊂⊂ A′. 
Then, for ε small enough, Remark 2.3 yields the estimate

εd−1#
{
εx ∈ εL(ω)∩A : dist(εx, Su) < 3Mε

}≤ |(Su ∩A′)+B4Mε(0)|
ε|B r

2
(0)| .

Recall that Su is the intersection of BL with a finite union of pairwise disjoint (d–1)-simplices, so that Su ∩A′ admits 
a (d − 1)-dimensional Minkowski content. Hence, letting ε→ 0, it holds that

lim sup
ε→0

|(Su ∩A′)+B4Mε(0)|
ε|B r

2
(0)| ≤ CHd−1(Su ∩A′)=Hd−1(Su ∩A′),

where we used assumption (i) in the second identity. Since f is bounded, from (36) and the bound above we conclude 
that

lim sup
ε→0

Fε(ω)(uε,A)≤ lim sup
ε→0

∑
εx∈εL(ω)∩A

C

⎛
⎜⎝ ˆ

B2Mε(εx)

|∇u(z)|p dz+ c
p
u εd+p

⎞
⎟⎠+CHd−1(Su ∩A′)

≤ C

ˆ

A′
|∇u(z)|p dz+CHd−1(Su ∩A′).

Letting A′ ↓A in this estimate yields by definition of F ′′(ω) that

F ′′(ω)(u|D,A)≤ C

ˆ

A

|∇u(z)|p dz+CHd−1(Su ∩A). (37)

From this estimate we can now prove the claim by density. First we assume that u ∈ SBV p(A, Rm) ∩ L∞(A, Rm). 
Due to the Lipschitz regularity of ∂A we can use a local reflection argument to extend u to a function ũ ∈
SBV p(BL, Rm) ∩L∞(BL, Rm) such that Hd−1(Sũ ∩ ∂A) = 0. By [33, Theorem 3.1] applied to the large set BL we 
find a sequence un ∈ SBV p(BL, Rm) fulfilling assumptions (i)-(iii) of the first part such that un→ ũ in L1(BL, Rm), 
∇un →∇ũ in Lp(BL, Rm×d) and lim supn Hd−1(Sun ∩ A) ≤Hd−1(Sũ) ∩ A) =Hd−1(Su ∩ A). From locality and 
lower semicontinuity of F ′′(ω)(·, A) and (37) we deduce

F ′′(u,A)= F ′′(ũ|D,A)≤ lim inf
n

F ′′(ω)(un|D,A)≤ C

ˆ

A

|∇u(z)|p dz+CHd−1(Su ∩A).

It remains to remove the L∞-bound. To this end, given any u ∈ GSBV p(A, Rm) ∩ L1(D, Rm), we consider the 
truncated sequence Tku ∈ SBV p(A, Rm) ∩L∞(A, Rm). Then uk → u in L1(D, Rm) and, as in the previous reasoning, 
the claim follows by lower semicontinuity of F ′′(ω)(·, A), Lemma 2.1 and the estimate established for bounded 
functions. �

The following technical lemma establishes an almost subadditivity of the set function A �→F ′′(ω)(u, A).

Proposition 5.8 (Almost subadditivity). Let A, B ∈AR(D). Moreover let A′ ∈AR(D) be such that A′ ⊂⊂ A. Then, 
for all u ∈L1(D, Rm),

F ′′(ω)(u,A′ ∪B)≤ F ′′(ω)(u,A)+ F ′′(ω)(u,B).

Proof. We can assume that F ′′(u, A) and F ′′(u, B) are both finite. Since A′ ∪ B ∈ A(D), Lemma 5.4 allows us to 
reduce the proof to the case u ∈L∞(D, Rm). Let uε, vε ∈PCω

ε both converge to u in L1(D, Rm) such that
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lim sup
ε→0

Fε(ω)(uε,A)= F ′′(ω)(u,A), lim sup
ε→0

Fε(ω)(vε,B)= F ′′(ω)(u,B). (38)

By Lemma 5.4 we may assume that ‖uε‖∞, ‖vε‖∞ ≤ 3‖u‖∞, so that both sequences actually converge to u in 
Lp(D, Rm). Fix h ≤ dist(A′, Ac) and N ∈N. For i = 1, . . . , N we define the sets

Ai :=
{
x ∈A : dist(x,A′) < i

h

2N

}
.

Let 0 ≤�i ≤ 1 be a cut-off function between the sets Ai and Ai+1, that means �i = 1 on Ai and �i = 0 on Rd\Ai+1. 
We may assume that ‖∇�i‖∞ ≤ 4N

h
. Then define wi

ε ∈PCω
ε by

wi
ε(εx)=�i(εx)uε(εx)+ (1−�i(εx))vε(εx).

Note that for fixed i ∈ {1, . . . , N} it holds that wi
ε → u in Lp(D, Rm). We define the layer-like set

Si
ε := {x ∈A′ ∪B : dist(x,Ai+1\Ai−1) < 3Mε}.

Then by the definition of the localized functionals we can decompose Fε(ω)(wi
ε, A

′ ∪B) via

Fε(ω)(wi
ε,A

′ ∪B)≤ Fε(ω)(uε,Ai)+ Fε(ω)(vε,B\Ai+1)+ Fε(ω)(wi
ε, S

i
ε)

≤ Fε(ω)(uε,A)+ Fε(ω)(vε,B)+ Fε(ω)(wi
ε, S

i
ε). (39)

We show that the last term is negligible. This will be done by averaging. Observe that

wi
ε(εy)−wi

ε(εx)=�i(εy)(uε(εy)− uε(εx))+ (1−�i(εy))(vε(εy)− vε(εx))

+ (�i(εy)−�i(εx))(uε(εx)− vε(εx))

for all x, y ∈ L(ω). Applying the convexity inequality (a+b+c)p ≤ 3p−1(ap+bp+cp) and the mean value theorem 
for �i , we obtain for all (x, y) ∈ E(ω) the bound

ε

∣∣∣wi
ε(εy)−wi

ε(εx)

ε

∣∣∣p
≤ 3p−1ε

∣∣∣uε(εy)− uε(εx)

ε

∣∣∣p + 3p−1ε

∣∣∣vε(εy)− vε(εx)

ε

∣∣∣p + (12MN)p

3hp
ε|uε(εx)− vε(εx)|p.

Summing this estimate over all εy ∈ εL(ω) ∩ Si
ε with (x, y) ∈ E(ω) we infer

‖ε|∇ω,ε(w
i
ε, S

i
ε)|p(εx)‖1 ≤ 3p−1‖ε|∇ω,ε(uε, S

i
ε)|p(εx)‖1 + 3p−1‖ε|∇ω,ε(vε, S

i
ε)|p(εx)‖1

+CNpε|uε(εx)− vε(εx)|p. (40)

Note that for all λ ≥ 1 and x, y ∈R it holds that

min{λx + y,1} ≤ λmin{x,1} +min{y,1}.
We combine this estimate with the bound (14) and the monotonicity of x �→min{x, 1} to deduce from (40) that

εd−1f (ε|∇ω,ε(w
i
ε, S

i
ε)|p(εx))≤ Cεd−1f (ε|∇ω,ε(uε, S

i
ε)|p(εx))+Cεd−1f (ε|∇ω,ε(vε, S

i
ε)|p(εx))

+CNpεd |uε(εx)− vε(εx)|p.

Summing this inequality yields

Fε(ω)(wi
ε, S

i
ε)≤C

(
Fε(ω)(uε, S

i
ε)+ Fε(ω)(vε, S

i
ε)
)+CNp

∑
εx∈εL(ω)∩Si

ε

εd |uε(εx)− vε(εx)|p.

For ε small enough we have Si
ε ∩ S

j
ε = ∅ for |i − j | ≥ 3. Moreover, Si

ε ⊂A ∩B for i ≥ 2 as well as Si
ε ⊂⊂A with a 

uniform distance to ∂A. Thus averaging the last inequality and applying (38) gives
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1

N − 1

N∑
i=2

Fε(ω)(wi
ε, S

i
ε)≤

C

N
(Fε(ω)(uε,A)+ Fε(ω)(vε,B))+CNp−1

∑
εC(x)⊂A

εd |uε(εx)− vε(εx)|p

≤ C

N
+CNp−1‖uε − vε‖pLp(D).

Since we have uε−vε → 0 also in Lp(D, Rm), the last term vanishes when ε→ 0. For every ε > 0 let iε ∈ {2, . . . , N}
be such that

Fε(ω)(wiε
ε , Si

ε)≤
1

N − 1

N∑
i=2

Fε(ω)(wi
ε, S

i
ε)≤

C

N
+CNp−1‖uε − vε‖2

Lp(D) (41)

and set wε := w
iε
ε . Note that wε still converges to u strongly in Lp(D, Rm). Hence, using (38), (39) and (41), we 

conclude that

F ′′(ω)(u,A′ ∪B)≤ lim sup
ε→0

Fε(ω)(wε,A
′ ∪B)≤ F ′′(ω)(u,A)+ F ′′(ω)(u,B)+ C

N
.

The claim follows by letting N →+∞. �
In the lemma below we state the last property that we need to prove Proposition 5.2.

Lemma 5.9 (Inner regularity). Let u ∈L1(D). Then for any A ∈AR(D) it holds that

F ′′(ω)(u,A)= sup
A′⊂⊂A

F ′′(ω)(u,A′).

Proof. It suffices to prove one inequality since A �→ F ′′(ω)(u, A) is monotone with respect to set inclusion. For k ∈N

define the set Ak = {x ∈A : dist(x, ∂A) > 2−k}. Then for k large enough we have that Ak, A\Ak ∈AR(D) (see [44, 
Lemma 2.2]). We first treat the case u /∈GSBV p(A, Rm) and prove that lim supk F ′′(ω)(u, Ak) =+∞. Assume by 
contradiction that this sequence is bounded. Then, for each k we have u ∈ GSBV p(Ak, Rm) by Lemma 5.6 and 
thus u ∈GSBV (A, Rm). Since the measure of the jump set and the Lp-norm of the gradient in Ak are equibounded 
with respect to k, we reach the contradiction u ∈GSBV p(A, Rm). Now assume that u ∈GSBV p(A, Rm). Note that 
A =Ak+1 ∪A\Ak . Hence Lemma 5.7 and Proposition 5.8 imply

F ′′(ω)(u,A)≤ F ′′(ω)(u,Ak+2)+C
(
‖∇u‖p

Lp(A\Ak)
+Hd−1(Su ∩ (A\Ak))

)
≤ sup

A′⊂⊂A

F ′′(ω)(u,A′)+C
(
‖∇u‖p

Lp(A\Ak)
+Hd−1(Su ∩ (A\Ak))

)
.

Letting k→+∞ proves the claim since u ∈GSBV P (A, Rm). �
Proof of Proposition 5.2. Given a sequence ε→ 0+, by the compactness property of �-convergence on separable 
metric spaces (see [21, Proposition 1.42]) we find a subsequence εn such that

�- lim
n

Fεn(ω)(u,R)=: F̃ (ω)(u,R)

exists for every u ∈ L1(D, Rm) and all sets R ∈R, where R denotes the class of all subsets of D that are finite unions 
of rectangles with rational vertices. Due to Lemma 5.9 and monotonicity, for every u ∈ L1(D, Rm) and A ∈AR(D)

we conclude that

�- lim sup
n

Fεn(ω)(u,A)≤ sup
R∈R

F̃ (ω)(u,R)≤ �- lim inf
n

Fεn(ω)(u,A),

so that we can define F̃ (ω)(u, A) := �- limn Fεn(u, A) also for all u ∈ L1(D, Rm) and A ∈ AR(D). We extend 
F̃ (ω)(u, ·) to A(D) via its inner regular envelope

F(ω)(u,A) := sup {F̃ (ω)(u,A′) : A′ ⊂⊂A, A′ ∈AR(D)}.
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By Lemma 5.9 this functional indeed extends F̃ (ω)(u, ·). Next we need to slightly perturb the functional. Given η > 0, 
for any u ∈ SBV p(D, Rm) and A ∈A(D) we define the auxiliary functional Fη : SBV p(D, Rm) ×A(D) →[0, +∞)

as

Fη(u,A)= F(ω)(u,A)+ η

ˆ

Su∩A

|u+ − u−|dHd−1.

We argue that Fη satisfies the assumptions of [18, Theorem 1], that means,

(i) Fη(u, ·) is the restriction to A(D) of a Radon measure;
(ii) Fη(u, A) =Fη(v, A) whenever u = v a.e. on A ∈A(D);

(iii) Fη(·, A) is L1(D, Rm)-lower semicontinuous;
(iv) there exists c > 0 such that

1

c

⎛
⎜⎝ˆ

A

|∇u|p dx +
ˆ

Su∩A

(1+ |u+ − u−|)dHd−1

⎞
⎟⎠≤Fη(u,A)

≤ c

⎛
⎜⎝ˆ

A

(1+ |∇u|p)+
ˆ

Su∩A

(1+ |u+ − u−|)dHd−1

⎞
⎟⎠ .

(i): We verify the De Giorgi–Letta criterion (see [40, Theorem 1.62]). Clearly A �→ Fη(u, A) is a non-negative, 
increasing and inner regular set function with Fη(u, ∅) = 0. Moreover, discrete superadditivity on disjoint sets is 
transfered from Fε(ω)(u, ·) to F ′(ω)(u, ·), which implies that Fη(u, A ∪B) ≥Fη(u, A) +Fη(u, B) whenever A ∩B =
∅. In order to prove subadditivity, let A, B ∈A(D) and consider S ⊂⊂A ∪B such that S ∈AR(D). Let us define the 
set Ak = {x ∈A : dist(x, ∂A) > 2−k} and similarly we define Bk . Then the family {Ak ∪Bk}k forms an open cover of 
S. By compactness we find an index k0 such that S ⊂Ak0 ∪Bk0 . Next we regularize the sets A2k0, B2k0 and A4k0, B4k0

by standard methods to find further sets A0, A1, B0, B1 ∈AR(D) such that S ⊂ A0 ∪ B0 and A0 ⊂⊂ A1 ⊂⊂ A and 
B0 ⊂⊂ B1 ⊂⊂ B . Then by Proposition 5.8

F̃ (ω)(u,S)≤ �- lim sup
n

Fεn(ω)(u,A0 ∪B0)≤ F̃ (ω)(u,A1)+ F̃ (ω)(u,B1)≤ F(ω)(u,A)+ F(ω)(u,B).

Taking the supremum over such S yields the subadditivity of A �→ F(ω)(u, A). The corresponding property for the 
perturbation term is straightforward. Thus the De Giorgi–Letta criterion applies and we infer that Fη(u, ·) is the trace 
of a Borel measure. By Lemma 5.7 this measure is finite, so it is a Radon measure.

(ii)+(iii): The locality property follows from Lemma 5.5 and the definition of F(ω) by inner approximation as 
well as locality of the perturbation term. By the properties of �-limits we know that F̃ (ω)(·, A) is L1(D, Rm)-lower 
semicontinuous and so is F(ω)(·, A) as the supremum of lower semicontinuous functionals. L1(D, Rm)-lower semi-
continuity of the perturbation term along sequences such that F(ω)(un, A) remains bounded follows from the bounds 
established in Lemma 5.6 that still hold for F(ω)(u, A). Indeed those bounds yield stronger compactness so that we 
can combine [7, Theorems 2.2 and 3.7] to conclude lower semicontinuity. Hence F(·, A) is lower semicontinuous as 
the sum of (finite) lower semicontinuous functionals.

(iv): The bounds follow from Lemmata 5.6 and 5.7, which still hold for F(ω) in place of F̃ (ω), and the definition 
of the perturbation term.

From [18, Theorem 1] and the fact that Fε(ω)(u + z, A) = Fε(ω)(u, A) for all z ∈ Rm we deduce that Fη has the 
representation

Fη(u,A)=
ˆ

A

hη(x,∇u)dx +
ˆ

Su∩A

ϕη(x,u+ − u−, νu)dHd−1 (42)

for all u ∈ SBV p(D, Rm) and A ∈A(D) with the integrands given by the asymptotic formulas
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hη(x0, ξ)= lim sup
�→0

1

�d
inf{Fη(v,Qν(x0, �)) : v = ξ(· − x0) in a neighborhood of ∂Qν(x0, �)},

ϕη(x0, a, ν)= lim sup
�→0

1

�d−1 inf{Fη(v,Qν(x0, �)) : v = ua,0
x0,ν

in a neighborhood of ∂Qν(x0, �)}.

Hence, due to locality, for every u ∈L1(D, Rm) and A ∈AR(D) such that u ∈ SBV p(A, Rm) we have

�- lim
n

Fεn(ω)(u,A)= F(ω)(u,A)=
ˆ

A

hη(x,∇u)dx +
ˆ

Su∩A

(ϕη(x,u+ − u−, νu)− η|u+ − u−|)dHd−1.

It remains to prove the formulas for the integrands stated in Proposition 5.2. Note that the mapping η �→ ϕη(x0, a, ν) is 
increasing and non-negative on (0, +∞). Hence there exists the limit ϕ(x0, a, ν) = limη→0 ϕη(x0, a, ν). By the same 
reasoning there exists h(x0, ξ) = limη→0 hη(x0, ξ), so that monotone convergence implies that

F(ω)(u,A)=
ˆ

A

h(x,∇u)dx +
ˆ

Su∩A

ϕ(x,u+ − u−, νu)dHd−1

for every A ∈ AR(D) and every u ∈ L1(D, Rm) such that u ∈ SBV p(A, Rm). Since F(ω)(u, A) ≤ Fη(u, A), we 
further know by the definition of m(ω)(v, A) (cf. the statement of Proposition 5.2) that

lim sup
�→0

�1−dm(ω)(ua,0
x0,ν,Qν(x0, �))≤ lim

η→0
ϕη(x0, a, ν)= ϕ(x0, a, ν).

In order to show the reverse inequality, we note that Lemma 5.4 implies a very weak maximum principle for 
F(ω): there exists u� ∈ SBV p(Qν(x0, �), Rm) admissible for the definition of m(ω)(u

a,0
x0,ν, Qν(x0, �)) and satisfying 

‖u‖∞ ≤ 3|a| such that

�1−dF(ω)(u�,Qν(x0, �))≤m(ω)(ua,0
x0,ν

,Qν(x0, �))+ �.

Then clearly |u+� − u−� | ≤ 6|a| for Hd−1-a.e. x ∈ Su� . With the lower bound of Lemma 5.6 we obtain

ϕη(x0, a, ν)≤ lim sup
�→0

�1−d
(
F(ω)(u�,Qν(x0, �))+ 6|a|ηHd−1(Su� ∩Qν(x0, �))

)

≤ lim sup
�→0

�1−d
(
m(ω)(ua,0

x0,ν
,Qν(x0, �))+C|a|ηF(ω)(u�,Qν(x0, �))

)
≤ (1+C|a|η) lim sup

�→0
�1−dm(ω)(ua,0

x0,ν
,Qν(x0, �)).

Since the term on the right hand side is finite, we conclude by taking the limit as η→ 0. The proof of the formula for 
h is the same except that we can choose u� even such that ‖u�‖∞ ≤C|ξ |�, so that there is no need to let η→ 0 at the 
end. This finishes the proof of Proposition 5.2. �
5.2. Characterization of the bulk density

In this section we show that the function h given by Proposition 5.2 agrees with the density of the �-limit of the 
discrete functionals defined in (17).

Let us briefly explain the strategy: for both functionals Fε(ω) and Eε(ω) we consider recovery sequences for 
affine functions instead of minimization problems with affine boundary conditions since this approach shortens the 
proof. Our aim is to modify those sequences on a small set such that ‖ε|∇ω,ε(uε, A)|p‖1 is equiintegrable because 
at that level Fε(ω) and Eε(ω) become comparable. It is well-known that if a sequence is bounded in W 1,p, then up 
to a subsequence one can modify it on a set whose measure goes to zero in such a way that the gradients become 
p-equiintegrable (see [41, Lemma 1.2]). This is usually achieved via an abstract Lipschitz-extension on the set where 
the maximal function of the norm of the gradient is very large. Indeed, this classical strategy goes back at least to [1]. 
To control the size of the set where the function is modified, one estimates the maximal function by the gradient itself, 
which is possible only for p > 1. In our case no a priori Lp-bounds on the gradient are available. However, in [48] the 
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modification procedure was extended to BV -sequences with vanishing singular part. In our setting the basic idea is 
the following observation: on a ball of radius � the energy of a recovery sequence can be trivially bounded by ∼ �d . 
Morally speaking, this shows that the set where no Lp-bounds are available is relatively small with a quantitative 
rate in �. In suitable diagonal regimes of � and ε this can be exploited to still perform a modification on small sets 
which makes the gradients equiintegrable. However, we emphasize that we have to transfer these ideas to the discrete 
environment.

The analysis splits into three different parts. As a first step, we argue that affine functions indeed fully characterize 
the function h and establish the framework for the diagonal argument on small balls B�(x0). Then we introduce the 
notion of discrete maximal functions on stochastic lattices and prove the doubling property of the counting measure 
as well as a Poincaré inequality. Those properties allow to perform modifications on small sets by abstract Lipschitz 
extensions. Finally, with these tools at hand, we can carefully modify recovery sequences on smaller and smaller balls 
to conclude by a blow-up argument.

Although it is just a technical detail, we first prove that h is a Carathéodory function, which is necessary to conclude 
its quasiconvexity.

Lemma 5.10. Let h :D × Rm×d → [0, +∞) be given by Proposition 5.2. Then, for every ξ ∈ Rm×d the map x �→
h(x, ξ) is measurable and, for every x ∈D, the map ξ �→ h(x, ξ) is continuous.

Proof. Denoting by ux0,ξ the affine function ux0,ξ (x) = ξ(x − x0), the function x �→ hη(x, ξ) defined in the proof of 
Proposition 5.2 is the Radon-Nikodym derivative of the measure Fη(ux0,ξ , ·) with respect to the Lebesgue-measure. 
Hence it is measurable and so is x �→ h(x, ξ) as the pointwise limit. In order to prove continuity in ξ , let us write 
Q� =Qν(x0, �) and fix ξ1, ξ2 ∈ Rm×d and η > 0. Consider a smooth function 0 ≤ � ≤ 1 such that � = 1 on Q�

and supp(�) ⊂Q(1+η)� satisfying in addition ‖∇�‖∞ ≤ 2
�η

. Given u1 ∈ SBV p(Q�, Rm) such that u1 = ux0,ξ1 in a 
neighborhood of ∂Q� (extended to the whole space) we define u2 ∈ SBV p(Q(1+2η)�, Rm) by

u2 =�u1 + (1−�)ux0,ξ2 .

Then Hd−1(Su2 ∩ (Q(1+2η)�\Q�)) = 0 and u2 = ux0,ξ2 in a neighborhood of ∂Q(1+2η)�. Hence by Lemma 5.7

m(ω)(ux0,ξ2,Q(1+2η)�)

((1+ 2η)�)d
≤ F(ω)(u2,Q(1+2η)�)

�d
≤ F(ω)(u1,Q�)

�d
+C�−d

ˆ

Q(1+2η)�\Q�

|∇u2|p dz

≤ F(ω)(u1,Q�)

�d
+C((1+ 2η)d − 1)

(
(|ξ1|p + |ξ2|p)+ �p

(�η)p
|ξ1 − ξ2|p

)
.

Since u1 was arbitrary, by the definition of h we obtain for fixed 0 < η < 1
2 the inequality

h(x0, ξ2)= lim sup
�→0

m(ω)(ux0,ξ2,Q(1+2η)�)

((1+ 2η)�)d
≤ h(x0, ξ1)+Cη

(
(|ξ1|p + |ξ2|p)+ 1

ηp
|ξ1 − ξ2|p

)
.

Exchanging the roles of ξ1 and ξ2, for any 0 < η < 1
2 we infer

|h(x0, ξ1)− h(x0, ξ2)| ≤ Cη
(
(|ξ1|p + |ξ2|p)+ 1

ηp
|ξ1 − ξ2|p

)
.

This estimate implies continuity since the right hand side can be made arbitrarily small on bounded sets by first 
adjusting η and then the difference |ξ1 − ξ2|. �

In the next lemma we prove that h is determined by the behavior of F(ω)(ux0,ξ , B�(x0)) for �→ 0.

Lemma 5.11. Let εn and F(ω) be as in Proposition 5.2. Then there exists a null set N ⊂ D such that for every 
x0 ∈D\N and all ξ ∈Rm×d it holds that

|B1|h(x0, ξ)= lim
�→0

�−dF(ω)(ux0,ξ ,B�(x0)),

where ux0,ξ denotes the affine function x �→ ξ(x − x0).
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Proof. It follows from the definition of F(ω) that

�−dF(ω)(ux0,ξ ,B�(x0))= |B1| −
ˆ

B�(x0)

h(z, ξ)dz.

Due to Lebesgue’s differentiation theorem there exists a null set Nξ ⊂D such that for any x0 ∈D\Nξ we have

|B1|h(x0, ξ)= lim
δ→0

�−dF(ω)(ux0,ξ ,B�(x0)). (43)

It remains to show that the null sets can be chosen independent of ξ . To this end, observe that the restriction of 
F(ω) to W 1,p(D, Rm) is L1(D, Rm)-lower semicontinuous. Using the defining formula provided by Proposition 5.2
and testing an affine function, by Lemma 5.7 we find that 0 ≤ h(x0, ξ) ≤ C|ξ |p and Lemma 5.10 yields that h is a 
Carathéodory-function. Hence by standard results (see [34, Theorem 1.13]) there exists a null set N ′ ⊂D such that for 
every x ∈D\N ′ the function ξ �→ h(x, ξ) is quasiconvex on Rm×d and therefore locally Lipschitz continuous. More-
over the Lipschitz constant is uniformly bounded on compact sets. Let us define the null set N =N ′ ∪⋃ξ∈Qm×d Nξ . 
Then for any x0 ∈D\N it holds that h(x0, ξ) = limn h(x0, ξn), where Qm×d � ξn → ξ . On the other hand, whenever 
ξn→ ξ , then without loss of generality supn |ξn| ≤ (|ξ | + 1) and by the uniform local Lipschitz continuity we obtain

−
ˆ

B�(x0)

|h(x, ξn)− h(x, ξ)|dx ≤ Cξ |ξ − ξn|.

Thus, for x0 ∈D\N we can pass to the limit in n on both sides in (43) finishing the proof. �
Motivated by the previous lemma we analyze the limit functional F(ω)(ux0,ξ , B�(x0)) by studying recovery se-

quences for the affine function ux0,ξ . As explained at the beginning of this subsection, we have to localize the analysis 
to small balls B�(x0) and consider diagonal sequences (ε�, �). Therefore we need the auxiliary result below, which is 
an immediate consequence of a change of variables. We omit its proof.

Lemma 5.12. Let εn and E(ω) be as in Theorem 3.1. For � > 0 and x0 ∈ D such that B�(x0) ⊂ D, define the 
functional Gεn,�(x0, ω) : Lp(B1, Rm) →[0, +∞] to be finite only for u : εn

�
(L(ω) − x0

εn
) →Rm with value

Gεn,�(x0,ω)(u)= α
∑

(x,y)∈E(ω)− x0
εn

εn
�

x,
εn
�

y∈B1

(εn

�

)d ∣∣∣u( εn

�
x)− u( εn

�
y)

εn�−1

∣∣∣p.

Then Gεn,�(x0, ω) �(Lp(B1, Rm))-converges to the functional E�(x0, ω) : Lp(B1, Rm) → [0, +∞] with domain 
W 1,p(B1, Rm), where it is given by

E�(x0,ω)(u)=
ˆ

B1

q(x0 + �y,∇u(y))dy.

In order to use diagonal sequences of the functionals Gε,�(x0, ω), we first identify the �-limit of the functionals 
E�(x0, ω)(u, A) when �→ 0. This is already contained in [43, Lemma 2.1] for scalar problems. Here we provide a 
short proof in the vectorial case. We essentially follow the lines of [35, Theorem 5.14] up to some necessary modifi-
cations.

Lemma 5.13 (Blow-up by �-convergence). Let E�(x0, ω) be a functional as in Lemma 5.12. Then there exists a null 
set N ⊂D such that for all x0 ∈D\N it holds that

�(Lp(B1,R
m))- lim

�→0
E�(x0,ω)(u)=

⎧⎪⎨
⎪⎩
ˆ

B1

q(x0,∇u(y))dy if u ∈W 1,p(B1,R
m),

+∞ otherwise.
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Proof. By coercivity, the �-liminf can be finite only on W 1,p(B1, Rm). Let N ′ ⊂D be the null set where the func-
tion ξ �→ q(x, ξ) is not quasiconvex or does not fulfill the bound 1

C
|ξ |p − C ≤ q(x, ξ) ≤ C(|ξ |p + 1). We redefine 

q(x, ξ) = |ξ |p for all x ∈N ′ not changing the functional E�(x0, ω). Then, according to [34, Proposition 2.32], there 
exists a constant Cq such that

|q(x, ξ)− q(x, ζ )| ≤ Cq(1+ |ξ |p−1 + |ζ |p−1)|ξ − ζ | (44)

for all x ∈D and all ξ, ζ ∈ Rm×d . Moreover, by Lebesgue’s differentiation theorem, for every ξ ∈ Rm×d there exists 
a null set Nξ such that for every x0 ∈D\Nξ we have

lim
�→0

−
ˆ

B1

|q(x0 + �y, ξ)− q(x0, ξ)|dy = lim
�→0

−
ˆ

B�(x0)

|q(z, ξ)− q(x0, ξ)|dz= 0. (45)

Set N = N ′ ∪⋃ξ∈Qm×d Nξ , fix x0 ∈ D\N and consider a sequence �j → 0. We first prove that, along a suitable 
subsequence, for each ξ ∈Rm×d the functions y �→ qj (y, ξ) = q(x0+�jy, ξ) converge a.e. on B1 to q(x0, ξ). Indeed, 
due to (45) the convergence holds true in L1(B1) for every ξ ∈ Qm×d . Thus we find a (ξ -dependent) subsequence 
such that qjk

(·, ξ) → q(x0, ξ) a.e. on B1. Enumerating the ξ ∈Qm×d we can ensure that the subsequences are nested. 
Then, by a diagonal argument, we find a common subsequence jk such that qjk

(·, ξ) → q(x0, ξ) a.e. on B1 for every 
ξ ∈Qm×d . Using (44) we can extend the convergence to all ξ ∈Rm×d .

We now prove the �-convergence along this subsequence. By dominated convergence the existence of a recovery 
sequence is provided through the pointwise limit. In order to prove the lower bound, we can assume that uj → u in 
Lp(B1, Rm) and that uj is bounded in W 1,p(B1, Rm). By [41, Lemma 1.2] there exists a subsequence (not relabeled) 
and another sequence zj ∈W 1,p(B1, Rm) such that |∇zj |p is equiintegrable and

lim
j

∣∣{zj �= uj or ∇zj �= ∇uj }
∣∣= 0. (46)

Note that the above property implies that zj is also bounded in W 1,p(B1, Rm). Otherwise, along a subsequence, 
wj = zj

‖zj ‖Lp
converges in W 1,p(B1, Rm) to a non-zero constant, but the sequence vj = uj

‖zj ‖Lp
converges to 0 strongly 

in W 1,p(B1, Rm). This contradicts (46) which remains valid for wj and vj . Thus we deduce from (46) that zj ⇀ u in 
W 1,p(B1, Rm). Moreover, equiintegrability of |∇zj |p , the bound 0 ≤ q(x, ξ) ≤ C(|ξ |p + 1) and (46) imply that

lim inf
j

E�j
(x0,ω)(uj )≥ lim inf

j
E�j

(x0,ω)(zj ). (47)

Next, for any δ > 0 we find again by equiintegrability and the upper bound on q a number ηδ > 0 such that for any 
measurable set G ⊂ B1 with |G| ≤ ηδ it holds that

sup
j

ˆ

G

q(x0,∇zj (y))dy < δ. (48)

Hence let us choose tδ > 0 such that supj |{|∇zj | > tδ}| ≤ ηδ and set Kδ = Cq(1 + 2t
p−1
δ ) with Cq given by (44). By 

a compactness argument we find ξ1, . . . , ξN ∈Rm×d such that |ξi | < tδ and

{ξ ∈Rm×d : |ξ | ≤ tδ} ⊂
N⋃

i=1

{ξ ∈Rm×d : |ξ − ξi |< δ

Kδ

}.

Due to Egorov’s theorem there exists a set G ⊂B1 with |G| ≤ ηδ such that the sequences qj (y, ξi) converge uniformly 
to q(x0, ξi) on B1\G. Hence there exists jδ ∈ N such that for all j ≥ jδ , all i and all y ∈ B1\G we have |qj (y, ξi) −
q(x0, ξi)| < δ. Using (44) and the triangle inequality we obtain

|qj (y, ξ)− q(x0, ξ)| ≤ 2Cq(1+ 2t
p−1
δ )min

i
|ξi − ξ | + δ ≤ 3δ

for all y ∈ B1\G, all ξ ∈Rm×d with |ξ | ≤ tδ and all j ≥ jδ . Since q(x, ξ) ≥ 0, we infer that for those j
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E�j
(x0,ω)(zj )≥

ˆ

{|∇zj |≤tδ}\G
qj (y,∇zj (y))dy ≥

ˆ

{|∇zj |≤tδ}\G
q(x0,∇zj (y))dy − 3|B1|δ

≥
ˆ

B1

q(x0,∇zj (y))dy − (3|B1| + 2)δ,

where we used (48) and the definition of tδ . By quasiconvexity and the growth conditions on q the last term is lower 
semicontinuous with respect to weak convergence in W 1,p(B1, Rm). Hence (47) implies

lim inf
j

E�j
(x0,ω)(uj )≥

ˆ

B1

q(x0,∇u(y))dy −Cδ.

By the arbitrariness of δ we obtain the lower bound. Since the limit functional is independent of any subsequence, we 
established the full �-convergence result. �
Remark 5.14. Taking the same null set N ⊂D as in Lemma 5.13, the convergence (45) holds for all x0 ∈D\N and 
all ξ ∈Rd again by (44).

Now we are almost in a position to use a diagonal sequence to recover the function q(x0, ξ). However, in general 
there exists no metric characterizing the �-convergence when equicoercivity fails, so that diagonal arguments are not 
always available. Therefore we provide an explicit construction similar to [37] in the appendix. With this metric at 
hand we can derive the following result.

Lemma 5.15. Under the assumptions of Lemma 5.12, let x0 ∈D\N where N is given by Lemma 5.13. For every �
there exists ε(�) > 0 such that whenever we chose εn(�) ≤ ε(�) it holds that

�(Lp(B1,R
m))- lim

�→0
Gεn(�),�(x0,ω)(u)=

⎧⎪⎨
⎪⎩
ˆ

B1

q(x0,∇u(y))dy if u ∈W 1,p(B1,R
m),

+∞ otherwise.

.

Proof. This result is an immediate consequence of Lemma A.1 and Remark A.2, which allow to combine Lemma 5.13
and a diagonal argument with respect to the metric d constructed in the appendix. �

We now come to the second part and derive Lipschitz-estimates from bounds on the gradient’s discrete maximal 
function. For the remainder of this subsection it will be convenient to view a stochastic lattice also as an undirected 
graph G = (L(ω), B(ω)) with edges B(ω) = E(ω) ∪ {(y, x) ∈ L(ω)2 : (x, y) ∈ E(ω)}. We say that P is a path of 
length n if P = {x0, . . . , xn} with (xi−1, xi) ∈ B(ω) for all i = 1, . . . , n. Given x, y ∈ L(ω), we define the graph 
distance as

dG(x, y)= inf{length of a path P such that x, y ∈ P }.
We denote by BG(x, η) = {y ∈ L(ω) : dG(x, y) ≤ η} the closed ball with radius η with respect to the graph metric. In 
the next lemma we establish a doubling property of the counting measure and a weak Poincaré inequality that allow us 
to relate Lipschitz continuity to discrete maximal functions of gradients. Given ε > 0 and u : εL(ω) →Rm we define 
the length of its edge gradient |∇e,εu| : εL(ω) →R by

|∇e,εu|(εx)=
∑

(x,y)∈B(ω)

∣∣∣u(εx)− u(εy)

ε

∣∣∣. (49)

Note that in the above definition we take into account the undirected edges e ∈ B(ω) (hence the subscript).

Lemma 5.16. Let G = (L(ω), B(ω)) be a graph associated to an admissible stochastic lattice. Then there exists a 
constant C = C(r, R, M) > 0 such that for all x ∈ L(ω), η > 0 and u : L(ω) →Rm it holds that
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(i) #BG(x, 2η) ≤ C#BG(x, η),

(ii) ∑
y∈BG(x,η)

|u(y)− uBG(x,η)| ≤Cη
∑

y∈BG(x,Cη)

|∇e,1u|(y),

where the average uBG(x,η) is defined as

uBG(x,η) = 1

#BG(x, η)

∑
y∈BG(x,η)

u(y).

Remark 5.17. Given η > 0 and a scalar function v : εL(ω) →R we define the maximal function Mε
ηv : εL(ω) →R

as

Mε
ηv(εx)= sup

0<s<η

( 1

#BG(x, s
ε
)

∑
y∈BG(x, s

ε
)

|v(εy)|
)
. (50)

Then, assuming the doubling property, the Poincaré inequality is equivalent to the estimate∣∣∣u(εx)− u(εy)

ε

∣∣∣≤ C dG(x, y)
(
Mε

CεdG(x,y)
|∇e,εu|(εx)+Mε

CεdG(x,y)
|∇e,εu|(εy)

)
, (51)

where C is a constant independent of u : εL(ω) →Rm and x, y ∈ L(ω). For ε, m = 1 this fact can be found in a much 
more general context in [46, Lemma 5.15]. For ε > 0 and m = 1 it follows by applying the inequality to v : L(ω) →R

defined as v(x) = ε−1u(εx) upon noticing that M1
η|∇e,1v|(x) =Mε

εη|∇e,εu|(εx). In particular the constant C is 
independent of ε. For m ≥ 2 the inequality remains true arguing for each component and increasing the constant C by 
at most a factor of m.

Proof of Lemma 5.16. (i): We may assume that η ≥ 1
2 . Our aim is to compare the graph-metric with the Euclidean 

one. Given x, y ∈ L(ω) and an optimal path P = {x0 = x, x1, . . . , xn = y}, by (8) we have

|x − y| ≤
dG(x,y)∑

i=1

|xi−1 − xi |< M dG(x, y). (52)

On the other hand, it follows from (9) and Lemma 5.1 that

dG(x, y)≤Cr,R|x − y|. (53)

Using again Remark 2.3 and (52), for η≥ 1
2 we deduce that

#BG(x,2η)≤ #(L(ω)∩B2Mη(x))≤ |B r
2
|−1|B4Mη(x)|,

while due to (53) for any � > 0 it holds that

|B�(x)| ≤ |BR(0)|#(L(ω)∩B2�(x))≤ |BR(0)|#BG(x,2Cr,R�). (54)

The claim now follows from the scaling properties of the Lebesgue measure by choosing �= η
2Cr,R

.
(ii): We can assume that η≥ 1. Due to the triangle inequality we have∑

y∈BG(x,η)

|u(y)− uBG(x,η)| ≤ 1

#BG(x, η)

∑
y,z∈BG(x,η)

|u(y)− u(z)|. (55)

Fix y, z ∈ BG(x, η) and consider the path P(y, z) = {x0 = y, x1, . . . , xn = z} given by Lemma 5.1. Then

|u(y)− u(z)| ≤
n∑

i=1

|u(xi−1)− u(xi)|. (56)

The triangle inequality, Lemma 5.1 and (52) imply that for all xi ∈ P(y, z)
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dG(xi, x)≤ dG(xi, y)+ dG(y, x)≤ #P(y, z)+ η ≤ Cr,R|y − z| + η

≤ Cr,R(|y − x| + |x − z|)+ η ≤ (2MCr,R + 1)η.

Setting C = 2MCr,R + 1, we deduce that P(y, z) ⊂ BG(x, Cη). Conversely, given an edge (x′, y′) ∈ B(ω) with 
x′, y′ ∈ BG(x, Cη), we denote by

N(x′, y′)= #{(y, z) ∈ BG(x, η)×BG(x, η) : x′, y′ ⊂ P(y, z)}
the number of pairs (y, z) such that this edge is contained in the path given by Lemma 5.1. As a consequence of (54), 
(55), (56) and (9) we have

∑
y∈BG(x,η)

|u(y)− uBG(x,η)| ≤ 1

#BG(x, η)

∑
(x′,y′)∈B(ω)

x′,y′∈BG(x,Cη)

N(x′, y′)|u(x′)− u(y′)|

≤C sup
(x′,y′)∈B(ω)

x′,y′∈BG(x,Cη)

N(x′, y′)
ηd

∑
y∈BG(x,Cη)

|∇e,1u|(y). (57)

It remains to prove a suitable upper bound for N(x′, y′). Since x′, y′ ∈ BG(x, Cη), it follows by (52) that x′, y′ ∈
BMCη(x) and therefore

N(x′, y′)≤ #{(y, z) ∈ B2MCη(x
′)×B2MCη(x

′) : x′, y′ ⊂ P(y, z)},
where we used that C ≥ 1. Consider then the boundary-like set � = {b ∈ L(ω) : C(b) ∩ ∂B2MCη(x

′) �= ∅} and for 
each b ∈ � let us define the cylinder-type set

Z(b, x′)= {a + λ(x′ − b) : λ ∈ [0,2], a ∈ B6R(b)}.
For the moment fix any y, z ∈ B2MCη(x

′) such that x′, y′ ∈ P(y, z). By Lemma 5.1 there exists a point x∗ ∈ co(y, z)
such that |x∗ − x′| ≤ 2R. Without loss of generality we assume that |y − x∗| ≤ |z− x∗| and denote by p the unique 
point p ∈ {x′+λ(z− x′) : λ ≥ 0} ∩ ∂B2MCη(x

′). Then we find b ∈ � with |p− b| ≤R. We argue that y, z ∈Z(b, x ′). 
For z this follows upon writing z= p+ λz(x

′ − p) with λz ∈ [0, 1] and choosing a = λzb+ (1 − λz)p and λ = λz in 
the definition of Z(b, x′). Regarding y, recall that we assume |y − x∗| ≤ |z− x∗|, so that for some λy ∈ [1, 2] we can 
write

y = z+ λy(x∗ − z)= p+ λz(x
′ − p)+ λy(x∗ − p− λz(x

′ − p)).

Setting λ = λz + λy − λzλy ∈ [0, 2] and using the ansatz a = b+ ξ in the definition of Z(b, x′), we find

ξ = (p− b)(1− λy)+ λy(x∗ − x′),

so that |ξ | ≤ 5R and therefore y ∈ Z(b, x ′) as well. Thus we have proven that

N(x′, y′)≤ 2(#�)
(

sup
b∈�

#(L(ω)∩Z(b,x′))
)2

. (58)

Now we use again Remark 2.3 combined with a covering argument and the fact that η≥ 1 to find

#�≤ |B r
2
(0)|−1

(
|B2MCη+R(x′)| − |B2MCη−R(x′)|

)
≤ C
(
(2MCη+R)d − (2MCη−R)d

)
≤Cηd−1.

With the same technique we obtain the bound

#(L(ω)∩Z(b,x′))≤ 2|B r
2
(0)|−1(14R)d−1(|x′ − b| + 7R)≤ Cη.

Combining the last two estimates with (57) and (58) we conclude the proof. �
The next lemma is a discrete analogue of [41, Lemma 1.2].
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Lemma 5.18. Let G = (L(ω), B(ω)) be admissible, let x0 ∈ Rd , λ > 0 and set k̄ = 3 + 6CCr,RM with C and Cr,R

given by (51) and Lemma 5.1, respectively. If ε ↓ 0 and uε : εL(ω) →Rm is a sequence such that

sup
ε>0

∑
εx∈εL(ω)∩Bk̄λ(x0)

εd |∇e,εuε|p(εx)≤ C,

then there exists a subsequence εj and a sequence wj : εjL(ω) → Rm such that |∇e,εj
wj |p is equiintegrable on 

B2λ(x0) and moreover

lim
j

εd
j #
{
εjx ∈ εjL(ω)∩B2λ(x0) : uεj

�≡wj on εjBG(x,1)
}= 0.

Proof. Define a function Vε : εL(ω) →[0, +∞) by

Vε(εx)=
{
|∇e,εuε|(εx) if εx ∈ Bk̄λ(x0),

0 otherwise.

By piecewise constant interpolation on the Voronoi cells {εC(x)} of εL(ω) we can view Vε as an element of Lp(Rd). 
From our assumption we deduce that

‖Vε‖pLp(Rd )
≤ C

∑
εx∈εL(ω)∩Bk̄λ(x0)

εd |∇e,εuε|p(εx)≤ C.

Hence the sequence Vε is bounded in Lp(Rd). We claim that Mε∞Vε is also bounded in Lp(Rd), where Mε∞Vε is 
the discrete maximal function of Vε defined in (50). To this end, we show that it can be pointwise controlled by the 
standard Hardy–Littlewood maximal function. Indeed, by (52), (54) and Remark 2.3, for any function v : εL(ω) →R

we can estimate

|Mε∞v(εx)| ≤ sup
η> ε

2

( 1

εd#BG(x,
η
ε
)

∑
y∈BG(x,

η
ε
)

εd |v(εy)|
)
≤ sup

η> ε
2

( C

|Bη(x)|
∑

y∈B
M

η
ε
(x)

εd |v(εy)|
)

≤ sup
η> ε

2

( C

|Bη(εx)|
ˆ

B3Mη(εx)

|v(z)|dz
)
≤ C sup

η>0

( 1

|Bη(εx)|
ˆ

Bη(εx)

|v(z)|dz
)
.

Thus boundedness of the Hardy–Littlewood maximal function operator on Lp(Rd) (see [40, Theorem 2.91]) implies 
that

‖Mε∞Vε‖pLp(Rd )
≤ C‖Vε‖pLp(Rd )

≤ C. (59)

For l > 0 we introduce the scalar truncation operator δl : R → R given by δl(x) = min{l, |x|} x
|x| (with δl(0) = 0). 

Applying [40, Lemma 2.31], we know that there exists a subsequence εj and an increasing sequence of positive 
integers lpj →+∞ such that the sequence δl

p
j
◦ (|Mεj∞Vεj

|p) = (δlj ◦ |Mεj∞Vεj
|)p is equiintegrable on Rd . Define the 

sets

R′j := {x ∈ L(ω) : Mεj∞Vεj
(εjx)≤ lj },

Rj :=
⋃

x∈R′j

BG(x,1).

Note that R′j ⊂Rj . By Remark 2.3 and (59) we have

εd
j #(L(ω)\Rj )≤ εd

j #(L(ω)\R′j )≤
C

l
p
j

ˆ

Rd

|Mεj∞Vεj
(z)|p dz≤ C

l
p
j

. (60)

Next we bound Mεj∞Vεj
on the set Rj . Given y ∈ BG(x, 1) with x ∈R′j , for η ≥ 2εj it holds that

BG

(
x,

η

2ε

)
⊂ BG

(
x,

η

ε
− 1

)
⊂ BG

(
y,

η

ε

)
⊂ BG

(
x,

η

ε
+ 1

)
⊂ BG

(
x,

2η

ε

)
.

j j j j j
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Hence applying twice the doubling property proven in Lemma 5.16 (i) we conclude that

sup
η≥2εj

( 1

#BG(y,
η
εj

)

∑
z∈BG(y,

η
εj

)

|Vεj
(εjz)|

)
≤ C
(
Mεj∞Vεj

(εjx)
)
≤Clj .

If η < 2εj , then by Remark 2.3 and (8) we still have the inequality and inclusion

1

C
#BG(x,2)≤ #BG

(
y,

η

εj

)
and BG

(
y,

η

εj

)
⊂ BG(x,2),

so that for y ∈Rj we obtain the estimate

Mεj∞Vεj
(εjy)≤ Clj . (61)

Next we want to use (51) and Kirszbraun’s extension theorem on εjL(ω) ∩B3λ(x0). To this end, note that by (52) and 
(53), for all x, y ∈Rj ∩ ε−1

j B3λ(x0) and z ∈ BG(y, CdG(x, y)), it holds that

|εjz− x0|< 3λ+ εj |z− y| ≤ 3λ+ εjMCdG(x, y)≤ 3λ+ 6λMCCr,R = k̄λ.

Since Vεj
agrees with |∇e,εj

uεj
| on εjL(ω) ∩ Bk̄λ(x0), it follows from (61) that for εjy ∈ εjRj ∩ B3λ(x0) we have 

the estimate

Mεj

Cεj dG(x,y)
|∇e,εj

uεj
|(εjy)=Mεj

Cεj dG(x,y)
Vεj

(εjy)≤Mεj∞Vεj
(εjy)≤ Clj .

Combining (51) and Kirszbraun’s extension theorem we find Lipschitz-functions wj : εjL(ω) → Rm that agree with 
uεj

on the set εjRj ∩B3λ(x0) and with Lipschitz constant bounded by Clj (up to enlarging C due to (53)). We claim 
that |∇e,εj

wj |p is equiintegrable on B2λ(x0). To verify this assertion, we observe that for j = j (λ) large enough, by 
the definition of Rj we have that |∇e,εj

wj | = |∇e,εj
uεj
| on εjR

′
j ∩B5λ/2(x0). Hence for εjx ∈ εjR

′
j ∩B5λ/2(x0) we 

deduce

|∇e,εj
wj |p(εjx)= |∇e,εj

uεj
|p(εjx)= |Vεj

(εjx)|p ≤ |Mεj∞Vεj
(εjx)|p = (δlj ◦ |Mεj∞Vεj

|)p(εjx),

while on εj

(
L(ω)\R′j

)
the bound on the Lipschitz constant implies

|∇e,εj
wj |p(εjx)≤ Cl

p
j = C

(
δlj ◦ |Mεj∞Vεj

|)p(εjx).

Hence equiintegrability on B2λ(x0) transfers from 
(
δlj ◦ |Mεj∞Vεj

|)p to |∇e,εj
wj |p . Finally, note that

{
εjx ∈ εjL(ω)∩B2λ(x0) : uεj

�≡wj on εjBG(x,1)
}⊂ εj

(
L(ω)\R′j

)
,

so that the second claim of the lemma follows from (60). �
Now we are finally in a position to compare the two discrete functionals Fε(ω) and Eε(ω).

Proposition 5.19 (Separation of bulk effects). Let εn and F(ω) be as in Proposition 5.2. Then for a.e. x0 ∈ D and 
every ξ ∈Rm×d it holds that

|B1|h(x0, ξ)= lim
�→0

�−dF(ω)(ux0,ξ ,B�(x0))= |B1|q(x0, ξ),

where q is an (equivalent) integrand given by the �-limit of Eεn(ω)(·, D), which in particular exists.

Proof. The first equality follows from Lemma 5.11, so we turn to the proof of the second one. We apply Theorem 3.1, 
so that, passing to a further subsequence (not relabeled), we may assume that Eεn(ω) �-converges to some integral 
functional E(ω) with density q(x, ξ). Let us fix x0 ∈D satisfying the first equality and such that Lemmata 5.13 and 
5.15 hold. Choose 0 < �0 < 1 such that B�0(x0) ⊂D. Lemma 5.4 yields a sequence uεn ∈ PCω

εn
that is equibounded 

in L∞(Rd , Rm), uεn → ux0,ξ in Lp(D, Rm) and
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lim
εn→0

Fεn(ω)(uεn ,B�0(x0))= F(ω)(ux0,ξ ,B�0(x0)).

Now consider 0 < � < �0. By discrete superadditivity and �-convergence on AR(D) we find that

lim sup
εn→0

Fεn(ω)(uεn ,B�(x0))≤ lim
εn→0

Fεn(ω)(uεn ,B�0(x0))− lim inf
εn→0

Fεn(ω)(uεn ,B�0(x0)\B�(x0))

≤ F(ω)(ux0,ξ ,B�0(x0))− F(ω)(ux0,ξ ,B�0(x0)\B�(x0))

= F(ω)(ux0,ξ ,B�(x0)), (62)

where in the last equality we used that the limit energy of ux0,ξ does not concentrate on ∂B�(x0). (62) shows that uεn

is also a recovery sequence on each B�(x0) for 0 < � < �0. Next we introduce a constant whose value will become 
clear later in the proof (cf. the constant k̄ in Lemma 5.18). Choose k satisfying

3+ 6C Cr,RM + |ξ | ≤ k,

where C and Cr,R are given by (51) and Lemma 5.1, respectively. Since |ux0,ξ | ≤ |ξ |� on B�(x0), Lemma 5.4 implies 
that the truncated functions Tk�uεn also yield a recovery sequence on B�(x0). Now consider a sequence �j → 0. For 

any � = �j ∈ (0, (3Mk2)−1�0) we choose ε� = εn(�) ≤ min{� p
p−1 , �2} non-decreasing in �, satisfying Lemma 5.15

and such that

Fε� (ω)(Tk�uε� ,B3Mk2�(x0))≤ C|ξ |p�d ,

−
ˆ

B�(x0)

|Tk�uε� − ux0,ξ |p dx ≤ �p+1. (63)

Note that the first estimate is realizable due to Lemma 5.4 and the fact that uεn is a recovery sequence also on 
B3Mk2�(x0). Finally, we can also require that

lim
�→0

�−dF(ω)(ux0,ξ ,B�(x0))= lim
�→0

�−dFε� (ω)(Tk�uε� ,B�(x0)). (64)

Our analysis relies on several modifications of the sequence Tk�uε� and a rescaling to B1.

Step 1 Construction of Lipschitz competitors
The following argument is well-known for continuum functionals and we adapt it carefully to the discrete setting. 

Let us set v� : L(ω) →Rm as v�(x) = ε−1
� Tk�uε� (ε�x). Then, for given � > 0, we define the sets

R�
� := {x ∈ L(ω)∩ ε−1

� Bk�(x0) : M1
k2�ε−1

�
|∇e,1v�|(x)≤�},

S�
� := {x ∈ L(ω) : |∇e,1v�|(x)≥ �

2
},

where M1
η denotes the discrete maximal function operator defined in (50) and the norm of the discrete gradient is 

given by the formula (49). First we estimate the cardinality of (L(ω) ∩ ε−1
� Bk�(x0))\R�

� . To this end, note that for 
every x ∈ (L(ω) ∩ ε−1

� Bk�(x0))\R�
� there exists a number 0 < ηx ≤ k2�ε−1

� such that

�#BG(x, ηx) <
∑

y∈BG(x,ηx )

|∇e,1v�|(y)=: |∇1v�|(BG(x, ηx)).

Applying Vitali’s covering lemma on separable metric spaces we find a (finite) collection of disjoint balls BG(xi, ηi)

with xi ∈ (L(ω) ∩ ε−1
� Bk�(x0))\R�

� satisfying the above inequality and

(L(ω)∩ ε−1
� Bk�(x0))\R�

� ⊂
⋃
i

BG(xi,5ηi).

Since the balls are disjoint we conclude that

�#
(⋃

BG(xi, ηi)
)

< |∇1v�|
(⋃

BG(xi, ηi)
)
≤ |∇1v�|

(⋃
BG(xi, ηi)∩ S�

�

)
+ �

2
#
(⋃

BG(xi, ηi)
)
,

i i i i
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where we used the definition of S�
� in the last estimate. Rearranging terms we obtain

#
(⋃

i

BG(xi, ηi)
)

<
2

�
|∇1v�|

(⋃
i

BG(xi, ηi)∩ S�
�

)
. (65)

To reduce notation, for x ∈ L(ω) we set Nx = {y ∈ L(ω) : (x, y) ∈ B(ω)}. Moreover define

J� = {x ∈ L(ω) : ε�|∇e,1v�|p(x)≥ 1}.
Note that for any x ∈ J� there exists a point y ∈Nx with ε�|v�(x) − v�(y)|p ≥ 1

Mp . Hence the growth condition (14)
implies the inequality

1≤ C
(
f (ε�|∇ω,1(v�,Rd)|p(x))+ f (ε�|∇ω,1(v�,Rd)|p(y))

)
. (66)

In order to control the location of such y, observe that by (52) we have BG(xi, ηi) ⊂ BMηi
(xi), which in turn implies 

(for M ≥ 1) that⋃
i

⋃
x∈BG(xi ,ηi )

Nx ⊂ ε−1
� B3Mk2�(x0). (67)

Here we also used (8) and that Mk2� ≥Mε� . Next we sum the estimate (66) over x. Note that due to (10) every term 
can appear at most M + 1 times. By the definition of v� we obtain

εd−1
� #

(⋃
i

BG(xi, ηi)∩J�

)
≤ CFε� (ω)(Tk�uε� ,B3Mk2�(x0))≤ C|ξ |p�d ,

where we applied the first bound in (63). By truncation we further know that |∇e,1v�|(x) ≤ Cε−1
� k� for all x ∈ L(ω), 

so that

|∇1v�|
(⋃

i

BG(xi, ηi)∩J�

)
≤ C|ξ |p

( �

ε�

)d
�. (68)

In order to estimate the remaining contributions in the right hand side of (65) we use Hölder’s inequality in the form

|∇1v�|
(⋃

i

BG(xi, ηi)∩ S�
� \J�

)
≤ #
(⋃

i

BG(xi, ηi)∩ S�
� \J�

) p−1
p
( ∑

x∈⋃i BG(xi ,ηi )\J�

|∇e,1v�|p(x)
) 1

p
. (69)

In the last term we have to pass from the undirected gradient to the directed version: for x /∈ J� and y ∈Nx it holds 
that ε�|v�(x) − v�(y)|p ≤ 1. Hence we infer from the bound (14) that for x ∈⋃i BG(xi, ηi)\J�

|∇e,1v�(x)|p(x)≤C
∑
y∈Nx

|v�(x)− v�(y)|p = C

ε�

∑
y∈Nx

min{ε�|v�(x)− v�(y)|p,1}

≤ C

ε�

∑
y∈Nx

f (ε�|∇ω,1(v�, ε−1
� B3Mk2�(x0))|p(x))+ f (ε�|∇ω,1(v�, ε−1

� B3Mk2�(x0))|p(y)),

where we used again (67). We sum this estimate and by (10) each term is counted at most 2M times. Thus in combi-
nation with the first estimate in (63) we have( ∑

x∈⋃i BG(xi ,ηi )\J�

|∇e,1v�|p(x)
) 1

p ≤ Cε
− d

p
�

(
Fε� (ω)(Tkuε� ,B3Mk2�(x0))

) 1
p ≤
( �

ε�

) d
p
C|ξ |. (70)

Combining this estimate with (69) leads to

|∇1v�|
(⋃

i

BG(xi, ηi)∩ S�
� \J�

)
≤ C#

(⋃
i

BG(xi, ηi)∩ S�
� \J�

) p−1
p
( �

ε�

) d
p |ξ |.

In order to bound the cardinality term, note that by the definition of S�
� and (70) it holds that
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#
(⋃

i

BG(xi, ηi)∩ S�
� \J�

)(�

2

)p ≤ ∑
x∈⋃i BG(xi ,ηi)\J�

|∇e,1v�|p(x)≤C|ξ |p
( �

ε�

)d
.

Plugging this estimate into the previous one yields

|∇1v�|
(⋃

i

BG(xi, ηi)∩ S�
� \J�

)
≤ C�1−p|ξ |p

( �

ε�

)d
. (71)

Applying trice the doubling property of Lemma 5.16 and combining (65), (68) and (71) we infer that

#
(
(L(ω)∩ ε−1

� Bk�(x0))\R�
�

)≤ #
(⋃

i

BG(xi,5ηi)
)
≤C#

(⋃
i

BG(xi, ηi)
)
≤ C|ξ |p

( �

ε�

)d(
��−1 +�−p

)
.

We choose � =�� as �p−1 = �−1, so that the last inequality can be written as

#
(
(L(ω)∩ ε−1

� Bk�(x0))\R��
�

)≤ C|ξ |p
( �

ε�

)d
�−p

� . (72)

With this choice of ��, we now construct the Lipschitz competitor. First observe that for any x, y ∈ L(ω) ∩ε−1
� Bk�(x0)

the definition of k yields

CdG(x, y)≤ C Cr,R|x − y| ≤ 2C Cr,Rk�ε−1
� ≤ k2�ε−1

� ,

so that (51) and (53) imply for any x, y ∈R
��
� the Lipschitz estimate

|v�(x)− v�(y)| ≤ 2C Cr,R��|x − y| ≤ k��|x − y|.
Using Kirszbraun’s extension theorem we find a Lipschitz function ṽ� : L(ω) →Rm with Lipschitz constant k�� that 

agrees with v� on R
��
� . Moreover, by truncation via the operator T3ε−1

ρ kρ
we can additionally assume that ‖ṽ�‖∞ ≤

9ε−1
� k�.

Step 2 From Lipschitz continuity to equiintegrability of discrete gradients
It will be convenient to rescale the function ṽ� constructed in the first step onto B1. First we introduce some 

notation. We set σ� = ε�

�
and L(ω)� := L(ω) − x0

ε�
. For any x ∈ L(ω)� we further denote by Nx,� =N

x+ x0
ε�

− x0
ε�

the 

set of adjacent points in the undirected shifted graph. In the notation for the discrete gradients we will replace e by e0
and ω by ω0, respectively. Define u� : σ�L(ω)� →Rm via

u�(σ�x)= σ�ṽ�

(
x + x0

ε�

)
.

By the properties of ṽ� established in the first step, the function u� satisfies

(i) ‖u�‖∞ ≤ 9k;
(ii) |u�(σ�x) − u�(σ�y)| ≤ k��σ�|x − y| for all x, y ∈ L(ω)�;

(iii) u�(σ�x) = σ�v�(x + x0
ε�

) = �−1Tk�uε� (ε�x + x0) for all x ∈R
��
� − x0

ε�
.

We aim at applying Lemma 5.18 with x0 = 0, λ = 1 and the vanishing sequence σρ (note that the shift of the graph 
preserves admissibility). Due to (ii) we have the bound |∇e0,σ�u

�|p(σ�x) ≤ C�
p
� . In combination with (iii) and a 

change of variables we derive the bound∑
σ�x∈σ�L(ω)�∩Bk

Nx,�\(R��
� − x0

ε�
)�=∅

σ d
� |∇e0,σ�u

�|p(σ�x)+
∑

σ�x∈σ�L(ω)�∩Bk

Nx,�⊂(R
��
� − x0

ε�
)

σ d
� |∇e0,σ�u

�|p(σ�x)

≤ C�p
�σ d

� #
(
(L(ω)∩ ε−1

� Bk�(x0))\R��
�

))+ ∑
x∈R

��
ε,�

σ d
� |∇e,1v�|p(x).
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By definition of the maximal function operator it holds that ε�|∇e,1v�|p(x) ≤ ε��
p
� ≤ 1 for x ∈ R

��
� , so that we can 

use (72) and the same reasoning as for (70) to obtain the estimate∑
σ�x∈σ�L(ω)�∩Bk

σ d
� |∇e0,σ�u

�|p(σ�x)≤ C|ξ |p +C�−dFε(ω)(Tk�uε� ,B3Mk2�(x0))≤C|ξ |p.

Hence our choice of k allows to apply Lemma 5.18 and we obtain a subsequence �j and a sequence wj : σ�j
L(ω)�j

→
Rm such that, setting σj = σ�j

, the sequence |∇e0,σj
wj |p is equiintegrable on B2 and

lim
j

σ d
j #{σjx ∈ σjL(ω)�j

∩B2 : u�j �≡wj on σjBG�j
(x,1)} = 0, (73)

where G�j
denotes the undirected shifted graph. Finally, by a truncation argument based on the operator T9k we can 

assume that ‖wj‖∞ ≤ 27k.

Step 3 Proof of lim
�→0

�−dF(ω)(ux0,ξ , B�(x0)) ≥ |B1|q(x0, ξ)

Let wj be the sequence constructed in Step 2. First we estimate the Lp(B1)-norm of the sequence wj − u0,ξ . 
Define the set

Uj =
{
σjx ∈ σjL(ω)�j

: BG�j
(x,1)⊂R

��j
�j

− x0ε
−1
�j

}
\R′j ,

where R′j denotes the set in (73). Then by construction wj (σjx) = �−1
j Tk�j

uε�j
(x0 + εjx) for all σjx ∈ B2 ∩ Uj . 

Moreover, by (10) and (72) we can bound the cardinality of the complement via

σ d
j #
(
σjL(ω)�j

∩B2\Uj

)≤ σ d
j #R′j +Cσ d

j #

(
L(ω)∩ ε−1

�j
Bk�j

(x0)\R
��j
�j

)
≤ σ d

j #R′j +C|ξ |p�p
�j

,

so that by (73) and the choice of ��j
we have

lim
j→+∞σ d

j #
(
σjL(ω)�j

∩B2\Uj

)= 0. (74)

Due to the L∞-bound on wj , for j large enough a change of variables yields

‖wj − u0,ξ‖pLp(B1)
≤ C

�
p
j

−
ˆ

B�j
(x0)

|Tk�j
uε�j

− ux0,ξ |p dz+Cσ d
j #
(
σjL(ω)�j

∩B2\Uj

)
.

Hence (63) and (74) imply that wj → u0,ξ in Lp(B1, Rm). Now we turn to the energy estimates. Fix η > 0. Since 
|∇e0,σj

wj |p is piecewise constant with respect to the Voronoi tessellation of σjL(ω)�j
, Remark 2.3, (74) and the 

equiintegrability of |∇e0,σj
wj |p on B2 imply that there exists jη such that for all j ≥ jη∑

σj x∈σjL(ω)�j
∩B1\Uj

σ d
j |∇e0,σj

wj |p(σjx)≤ η. (75)

For t > 0 let us further introduce the sets

Sj (t)= {σjx ∈ σjL(ω)�j
∩B1 : |∇e0,σj

wj |p(σjx) > t}.
Again due to the equiintegrability of |∇e0,σj

wj |p on B2 we find tη > 0 such that for j ≥ jη we have

∑
σj x∈Sj (tη)

σ d
j |∇e0,σj

wj |p(σjx)≤ C

ˆ

B2∩{|∇e0,σj
wj |p>tη}

|∇e0,σj
wj |p(z)dz≤ η. (76)

Moreover, if ε�j
x ∈ (x0 + �j (B1 ∩Uj\Sj (tη)), then

‖ε�j
|∇ω,ε�j

(Tk�j
uε�j

,B�j
(x0))|p(εjx)‖1 ≤ ε�j

|∇e0,σj
wj |p(σjx − �−1

j x0)≤ ε�j
tη. (77)

The right hand side converges to zero. Thus, after enlarging jη, assumption (11) yields
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f
(
ε�j
|∇ω,ε�j

(Tk�j
uε�j

,B�j
(x0))|p(εjx)

)≥ (1− η)α ‖ε�j
|∇ω,ε�j

(Tk�j
uε�j

,B�j
(x0))|p(ε�j

x)‖1

for all j ≥ jη and all ε�j
x ∈ (x0 + �j (B1 ∩Uj\Sj (tη)). For the remaining lattice points we can use (75) and (76), so 

that from a change of variables we deduce the lower bound

�−d
j Fε�j

(ω)(Tk�j
uε�j

,B�j
(x0))≥ (1− η)α

∑
σj x∈σjL(ω)�j

∩B1

σ d−1
j ‖σj |∇ω0,σj

(wj ,B1)|p(σjx)‖1 − 2η

= (1− η)Gε�j
,�j

(x0,ω)(wj )− 2η

with the functional Gε,�(x0, ω) defined in Lemma 5.12. Since we have chosen x0 and ε� such that Lemma 5.15 holds, 
we deduce from (64) and the convergence wj → u0,ξ in Lp(B1, Rm) that

lim
�→0

�−dF(ω)(ux0,ξ ,B�(x0))= lim
j

�−d
j Fε�j

(ω)(Tk�j
uε�j

,B�j
(x0))≥ lim inf

j
(1− η)Gε�j

,�j
(x0,ω)(wj )− 2η

≥ (1− η)

ˆ

B1

q(x0, ξ)dz− 2η= (1− η)|B1|q(x0, ξ)− 2η.

Since η > 0 was arbitrary, we conclude that for a.e. x0 ∈D and all ξ ∈Rm×d

lim
�→0

�−dF(ω)(ux0,ξ ,B�(x0))≥ |B1|q(x0, ξ). (78)

Note that the exceptional set may depend on the subsequence chosen at the beginning.

Step 4 Proof of lim
�→0

�−dF(ω)(ux0,ξ , B�(x0)) ≤ |B1|q(x0, ξ)

To prove the reverse inequality in (78) we take a sequence uεn ∈PCω
εn

converging to ux0,ξ in Lp(D, Rm) and such 
that

lim
εn→0

Eεn(ω)(uεn ,B�0(x0))=E(ω)(ux0,ξ ,B�0(x0)).

The arguments are very similar to Steps 2 and 3, so we just sketch them. As in (62) one can show that the truncated 
functions Tk�uεn form a recovery sequence on all balls B�(x0) with 0 < � < �0. This time we apply Lemma 5.18 to 
Tkρuεn with the chosen x0 and λ = �. Note that the assumptions are satisfied since for �≤ �0/(2k) we have that∑

εnx∈εnL(ω)∩Bk�(x0)

εd
n |∇e,εnTk�uεn |p(εnx)≤ CEεn(ω)(Tk�uεn ,B2k�(x0))≤ CEεn(ω)(uεn ,B�0(x0)).

Hence we find a subsequence εnj
and a sequence vj ∈ PCω

εnj
(both depending on �) such that, setting εj = εnj

, the 

sequence |∇e,εj
vj |p is equiintegrable on B2�(x0) and

lim
j

εd
j #
{
εjx ∈ εjL(ω)∩B2�(x0) : Tk�uεj

�≡ vj on εjBG(x,1)
}= 0. (79)

By truncation we may further assume that ‖vj‖∞ ≤ 9k�. Fix η > 0 and for t > 0 define the sets Sj (t) by

Sj (t) :=
{
εjx ∈ εjL(ω)∩B�(x0) : |∇e,εj

vj |p(εjx) > t
}
.

We choose tη > 0 (possibly depending on �) such that, keeping in mind the inequality f (p) ≤ Cf ‖p‖1, for j large 
enough it holds that

�−d
∑

εj x∈Sj (tη)

εd−1
j f

(
εj |∇ω,εj

(vj ,B�(x0))|p(εjx)
)
≤Cρ−d

ˆ

B2�(x0)∩{|∇e,εj
vj |p>tη}

|∇e,εj
vj |p(z)dz≤ η, (80)

which is possible due to the equiintegrability of |∇e,εj
vj |p on B2�(x0). Denoting by Wj the set in (79), the same 

arguments yield jη ∈N such that for all j ≥ jη we have

�−d
∑

εj x∈Wj∩B�(x0)

εd−1
j f

(
εj |∇ω,εj

(vj ,B�(x0))|p(εjx)
)
≤ η. (81)
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Similar to (77), for εjx ∈ εjL(ω) ∩ B�(x0)\(Wj ∪ Sj (tη)) we know that ‖εj |∇w,εj
(vj , B�(x0))|p‖1 ≤ εj tη . Hence 

assumption (11) and the bounds (80) and (81) imply for large enough j the estimate

�−dEεj
(ω)(Tk�uεj

,B�(x0))≥ �−d(1− η)Fεj
(ω)(vj ,B�(x0))− 2η.

From (79) and the uniform boundedness of vj we infer that vj → ux0,ξ in L1(B�(x0), Rm). By a modification on 
εjL(ω)\B�(x0) not affecting the energy, this convergence also holds in L1(D, Rm) and therefore we deduce from 
�-convergence along the subsequence εj and the previous inequality that

�−dE(ω)(ux0,ξ ,B�(x0))= lim
j

�−dEεj
(ω)(Tk�uεj

,B�(x0))≥ �−d(1− η)F (ω)(ux0,ξ ,B�(x0))− 2η.

In view of Remark 5.14 and the arbitrariness of η we conclude that

|B1|q(x0, ξ)= lim
�→0

�−dE(ω)(ux0,ξ ,B�(x0))≥ lim
�→0

�−dF(ω)(ux0,ξ ,B�(x0)).

Combined with (78), this estimate yields the claim along the chosen subsequence. In the general case, we obtain that 
along any subsequence of εn the �-limit of Eε(ω) is uniquely defined by the integrand h(x, ξ), so that the �-limit 
along the sequence εn exists by the Urysohn-property of �-convergence, although the integrand might differ on a 
negligible set depending on the subsequence. �
5.3. Characterization of the surface density and conclusion

Having identified the bulk term, we now show that the computation of the surface integrand ϕ(x, a, ν) can be 
performed with the discrete functional Fε(ω) restricted to functions taking only the two values a and 0. Then we 
prove that the surface density ϕ agrees with the function s defined in Remark 3.4 via the energy Iε(ω).

We study the asymptotic minimization problems given by Proposition 5.2 and their connection to boundary value 
problems for the discrete functionals Fε(ω). More precisely, as a first step we compare the two quantities

mδ
ε(ω)(ū,A)= inf{Fε(ω)(v,A) : v ∈PCω

ε,δ(ū,A)},
m(ω)(ū,A)= inf{F(ω)(v,A) : v ∈ SBV p(A,Rm), v = ū in a neighborhood of ∂A},

where the limit functional F(ω) is given (up to subsequences) by Proposition 5.2 and the set PCω
ε,δ(ū, A), which takes 

into account discrete boundary conditions, is defined in (20). We restrict the class of boundary conditions to pointwise 
well-defined functions ū ∈ SBV p(D, Rm) ∩L∞(D, Rm) such that, setting ūε ∈ PCω

ε as ūε(εx) = ū(εx), it holds that

lim sup
ε→0

Fε(ūε,B)≤ C

ˆ

B

|∇ū|p dx +CHd−1(Sū ∩B),

ūε → ū in L1(D,Rm), Hd−1(Sū ∩ ∂A)= 0

(82)

for some C > 0 uniformly for B ∈AR(D). In particular, as seen in the proof of Lemma 5.7, we allow for piecewise 
smooth functions with polyhedral jump set that has no mass on ∂A. We have the following convergence result.

Lemma 5.20 (Approximation of minimum values). Let εn and F(ω) be as in Proposition 5.2. Then, for any A ∈AR(D)

and ū as in (82), it holds that

lim
δ→0

lim inf
n

mδ
εn

(ω)(ū,A)= lim
δ→0

lim sup
n

mδ
εn

(ω)(ū,A)=m(ω)(ū,A).

Proof. First note that by monotonicity the limits with respect to δ exist. Moreover, from the first assumption in 
(82) it follows that mδ

ε(ω)(ū, A) is equibounded. For n ∈ N let un ∈ PCω
εn,δ(ū, A) be such that mδ

εn
(ω)(ū, A) =

Fεn(ω)(un, A). Since ū ∈ L∞ we can apply Lemma 5.4 and assume without loss of generality that |un(εnx)| ≤ 3‖ū‖∞
for all x ∈ L(ω). By Lemma 5.6 we know that, up to a subsequence (not relabeled), un → u in L1(A, Rm) for 
some u ∈ L1(A, Rm) ∩GSBV p(A, Rm). Using Remark 2.3 and again (82) we infer that u = ū on ∂δA. Note that 
u ∈ L∞(A, Rm), which implies u ∈ SBV p(A, Rm). Up to extension we can assume that u is admissible in the infi-
mum problem defining m(ω)(ū, A) and Proposition 5.2 yields
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m(ω)(ū,A)≤ F(ω)(u,A)≤ lim inf
n

Fεn(ω)(un,A)≤ lim inf
n

mδ
εn

(ω)(ū,A).

As δ was arbitrary, we conclude that m(ω)(ū, A) ≤ limδ→0 lim infn mδ
εn

(ω)(ū, A).
In order to prove the remaining inequality, for given θ > 0 we let u ∈ SBV p(A, Rm) be such that u = ū in a 

neighborhood of ∂A and F(ω)(u, A) ≤m(ω)(ū, A) +θ . Take un ∈PCω
εn

converging to u in L1(D, Rm) and satisfying

lim
n

Fεn(ω)(un,A)= F(ω)(u,A). (83)

We will modify un such that it fulfills the discrete boundary conditions. The argument follows the proof of Proposi-
tion 5.8. Since u = ū in a neighborhood of ∂A, there exist sets A′ ⊂⊂A′′ ⊂⊂A such that A′, A′′ ∈AR(D) and

u= ū on A\A′. (84)

Fix N ∈N. For h ≤ dist(A′, ∂A′′) and i ∈ {1, . . . , N} we define the sets

Ai =
{
x ∈A : dist(x,A′) < i

h

2N

}
.

Let �i be a cut-off function between the sets Ai and Ai+1 with ‖∇�i‖∞ ≤ 4N
h

and define ui
n ∈PCω

εn
by

ui
n(εnx)=�i(εnx)un(εnx)+ (1−�i(εnx))ū(εnx).

Up to extending u on D\A via u|D\A = ū, by (82) and (84) we can assume that for each i ∈ {1, . . . , N} it holds that 
ui

n→ u in L1(D, Rm). Setting Si
n := {x ∈A : dist(x, Ai+1\Ai−1) < 3Mεn}, we have

Fεn(ω)(ui
n,A)≤ Fεn(ω)(un,A)+ Fεn(ω)(ūεn ,A\A′)+ Fεn(ω)(ui

n, S
i
n). (85)

Using the same arguments as in the proof of Proposition 5.8 we infer that

Fε(ω)(ui
n, S

i
n)≤ C

(
Fεn(ω)(un, S

i
n)+ Fεn(ω)(ūεn , S

i
n)
)
+CNph−p

∑
εnx∈εnL(ω)∩Si

n

εd
n |un(εx)− ūεn(εx)|p.

By construction Si
n ∩ S

j
n = ∅ for |i − j | ≥ 3 and Si

n ⊂⊂A\A′ for i ≥ 2. Averaging the previous inequality and using 
(82) and (83) yields

1

N − 1

N∑
i=2

Fε(ω)(ui
n, S

i
n)≤

C

N
+CNp−1h−p‖un − ūεn‖pLp(A\A′).

By equiboundedness, properties (82) and (84) imply that un − ūεn → 0 in Lp(A\A′, Rm). For every n we choose 
in ∈ {2, . . . , N} such that

Fεn(ω)(uin
n , Si

n)≤
C

N
+CNp−1h−p‖un − ūεn‖pLp(A\A′). (86)

Note that uin
n still converges to u in L1(D, Rm). Moreover, uin

n (εnx) = ū(εnx) for all εnx ∈ εnL(ω) ∩A\A′′. Hence 
u

in
n ∈PCω

εn,δ(ū, A) for all δ > 0 small enough. From (83), (85) and (86) we obtain

lim sup
n

mδ
εn

(ω)(ū,A)≤ lim sup
n

Fεn(ω)(uin
n ,A)≤ F(ω)(u,A)+ lim sup

n
Fεn(ω)(ūεn ,A\A′)+

C

N

≤m(ω)(ū,A)+ θ +C

ˆ

A\A′
|∇ū|p dx +CHd−1(Sū ∩A\A′)+ C

N
,

where we used (82) with B =A\A′. As θ > 0 was arbitrary, the claim follows letting first δ→ 0, then N →+∞ and 
finally A′ ↑A. �



                                        929
In view of Proposition 5.2 and Lemma 5.20 we can further characterize the surface densities of possible �-limits 
of the family Fε(ω) by analyzing the quantities mδ

ε(ω)(u
a,0
x0,ν, Qν(x0, �)). To this end, we define the class of interfaces

Sω
ε,δ(u

a,0
x0,ν

,Qν(x0, �))= {u ∈ PCω
ε,δ(u

a,0
x0,ν

,Qν(x0, �)) : u(εx) ∈ {a,0} for all x ∈ L(ω)}.
We have the following important result, which also implies that the minimization defining the surface energy density 
can be performed on characteristic functions of sets of finite perimeter instead of general Caccioppoli partitions.

Proposition 5.21 (Separation of surface effects). Let εn → 0. Then, for all x0 ∈ D, all a ∈ Rm and all ν ∈ Sd−1 it 
holds that

lim sup
�→0

�1−d lim
δ→0

lim sup
n

(
inf
{
Fεn(ω)(u,Qν(x0, �)) : u ∈ Sω

εn,δ(u
a,0
x0,ν

,Qν(x0, �))
})

= lim sup
�→0

�1−d lim
δ→0

lim sup
n

mδ
εn

(ω)(ua,0
x0,ν

,Qν(x0, �)).

Proof. Note that it suffices to bound the first term by the second one. To reduce notation, we set Q� :=Qν(x0, �) and 
write ε instead of εn. If a = 0 then both sides are zero. Thus assume that a �= 0. Fix uε ∈ PCω

ε,δ(u
a,0
x0,ν, Q�) such that

Fε(ω)(uε,Q�)≤ Fε(ω)(ua,0
x0,ν

,Q�)≤ C�d−1, (87)

where the last inequality is a consequence of Remark 2.3 and the boundedness of the discrete density f (provided ε is 
small enough). In what follows we construct a sequence vε ∈ Sω

ε,δ(u
a,0
x0,ν, Q�) that has almost the same energy. Given 

θ > 0, due to the monotonicity (12) one can choose Lθ ≥ 1 such that

|β(k, k)− f (p)|< θf (p) ∀p ∈P+(M) with p−1(N)⊂ [Lθ ,+∞) and
∑

v∈p−1(N)

p(v)= k (88)

for all 1 ≤ k ≤M , where β(k, k) is given by (15). We fix Lθ from now on and consider the set of edges

Juε = {(x, y) ∈ E(ω) : εx, εy ∈Q� and ε1−p|uε(εx)− uε(εy)|p ≥ Lθ }.
Denote by ui

ε the ith component of uε . If ai = 0 we set vi
ε(εx) = 0 for all x ∈ L(ω). Otherwise, we assume that ai > 0. 

The remaining case requires only minor modifications. For t ∈R we define

Si
ε(t) := {εx ∈ εL(ω)∩Q� : ui

ε(εx) > t}.
To reduce notation, we also introduce the set

Ri
ε(t)= {(x, y) ∈ E(ω) : εx ∈Q� ∩ Si

ε(t), εy ∈Q�\Si
ε(t) or vice versa}.

Observe that for (x, y) ∈ E(ω) with εx, εy ∈Q� we have (x, y) ∈Ri
ε(t) if and only if t ∈ [ui

ε(εx), ui
ε(εy)) or t ∈

[ui
ε(εy), ui

ε(εx)). Hence for such x, y the following coarea-type estimate holds true:

aiˆ

0

1{(x,y)∈Ri
ε(t)} dt ≤ |uε(εx)− uε(εy)|.

Summing this estimate, we infer from (10) and Hölder’s inequality that

aiˆ

0

εd−1#
(
Ri

ε(t)\Juε

)
dt ≤

∑
(x,y)∈E(ω)\Juε

εx,εy∈Q�

εd−1|uε(εx)− uε(εy)|

≤ Cε
dp−d

p (#(εL(ω)∩Q�))
p−1
p

( ∑
(x,y)∈E(ω)\Juε

εx,εy∈Q�

εd
∣∣∣uε(εx)− uε(εy)

ε

∣∣∣p∣∣∣)
1
p

.
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In order to estimate the last sum, recall that Lθ ≥ 1. Thus the definition of the set Juε , (10) and assumption (14) imply 
for εx ∈ εL(ω) ∩Q� the uniform bound

∑
εy∈εL(ω)∩Q�

(x,y)∈E(ω)\Juε

ε

∣∣∣uε(εx)− uε(εy)

ε

∣∣∣p ≤ CLθ min
{
ε

∑
εy∈εL(ω)∩Q�

(x,y)∈E(ω)\Juε

∣∣∣uε(εx)− uε(εy)

ε

∣∣∣p,1
}

≤ CLθ min{‖ε|∇ω,ε(uε,Q�)|p(εx)‖1,1} ≤ CLθf
(
ε|∇ω,ε(uε,Q�)|p(εx)

)
.

Moreover, for ε = ε(�) small enough the cardinality term can be bounded by #(εL(ω) ∩Q�) ≤ C(�ε−1)d , so that

aiˆ

0

εd−1#
(
Ri

ε(t)\Juε

)
dt ≤ C�

dp−d
p
(
LθFε(ω)(uε,Q�)

) 1
p ≤CLθ�

dp−1
p ,

where we applied (87) in the second inequality. Hence there exists t iε ∈ (0, ai) such that

εd−1#
(
Ri

ε(t
i
ε)\Juε

)≤ C|ai |−1Lθ�
dp−1

p . (89)

Define vi
ε by its values on εL(ω) setting

vi
ε(εx)=

{
0 if uε(εx)≤ t iε ,

ai if uε(εx) > t iε .

As t iε ∈ (0, ai), the boundary conditions imposed on uε imply that the function vε satisfies vε(εx) = u
a,0
x0,ν(εx) for all 

εx ∈ εL(ω) ∩ ∂δQ� , so that vε ∈ Sω
ε,δ(u

a,0
x0,ν, Q�). In order to estimate the energy difference, let εx ∈ εL(ω) ∩Q�

be such that ‖ε|∇ω,ε(vε, Q�)|p(εx)‖1 �= 0. We distinguish two exhaustive cases: either (x, y) ∈ Juε for all εy ∈
εL(ω) ∩Q� with (x, y) ∈ E(ω), so that (12) and (88) yield

f
(
ε|∇ω,ε(vε,Q�)|p(εx)

)≤ (1+ θ)f
(
ε|∇ω,ε(uε,Q�)|p(εx)

)
, (90)

or there exists y ∈ L(ω) with (x, y) ∈Ri
ε(t

i
ε)\Juε for some i. In this case we can use the estimate (89) to bound the 

number of such x. Since f is bounded by assumption, we deduce from (90) that

�1−dFε(ω)(vε,Q�)≤ (1+ θ)�1−dFε(ω)(uε,Q�)+C
∑

i:ai �=0

|ai |−1Lθ�
p−1
p .

Taking the appropriate infimum on each side, then letting ε→ 0 before δ→ 0 and �→ 0, we conclude the proof as 
θ > 0 was arbitrary. �

Now we can relate the surface density ϕ to the �-limit of the functionals Iε(ω) defined in (18).

Proposition 5.22. Let εn and F(ω) be as in Proposition 5.2. Then for every x0 ∈D, a ∈Rm \ {0} and ν ∈ S1 it holds 
that

ϕ(x0, a, ν)= s(x0, ν),

where s is the surface tension of the �-limit of Iεn(ω)(·, D), which in particular exists.

Proof. Choosing any subsequence of εn (not relabeled), the �-limit of Fεn(ω) remains the same. Hence, combining 
Propositions 5.2 and 5.21 with Lemma 5.20 yields the formula

ϕ(x0, a, ν)= lim sup
�→0

�1−d lim
δ→0

lim sup
n

(
inf
{
Fεn(ω)(u,Qν(x0, �)) : u ∈ Sω

εn,δ(u
a,0
x0,ν

,Qν(x0, �))
})

. (91)

For any u ∈ Sω
ε ,δ(u

a,0
x0,ν, Qν(x0, �)) we define the function v ∈ Sω

ε ,δ(u
−e1,e1
x0,ν , Qν(x0, �)) by
n n
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v(εx)=
{
−e1 if u(εx)= a,

e1 otherwise.

Let Iε(ω) be the Ising-type energy defined in (18). Then by the monotonicity (12) it holds that

Iεn(ω)(v,Qν(x0, �))≥ Fεn(ω)(u,Qν(x0, �))

≥ min
1≤l≤k≤M

{ f (p)

β(l, k)
: p = l1{|a|pε

1−p
n } + (k − l)1{0}

}
Iεn(ω)(v,Qν(x0, �)).

Since we have chosen a subsequence at the beginning of the proof, we may assume that Iεn(ω) �-converges to some 
surface integral functional I (ω) as in Theorem 3.2 with density s(x, ν). Since |a| �= 0, the definition of β(l, k) in (15)
and Remark 3.4 imply

ϕ(x0, a, ν)= lim sup
�→0

�1−d lim
δ→0

lim sup
n

inf
{
Iεn(ω)(v,Qν(x0, �)) : v ∈ Sω

εn,δ(u
−e1,e1
x0,ν

,Qν(x0, �))
}= s(x0, ν).

Since the subsequence was arbitrary, the Urysohn-property of �-convergence yields that Iεn(ω) indeed �-converges 
and the surface densities of the limits F(ω) and I (ω) agree. �

Eventually, we can prove our first main result.

Proof of Theorem 3.3. If Fεn(ω) �-converges, then due to Propositions 5.19 and 5.22 both Eεn(ω) and Iεn(ω)

�-converge, too. Also the reverse statement follows from the same propositions, since (up to subsequences) any 
�-limit of Fεn is characterized by the �-limits of Eεn(ω) and Iεn(ω), which do not depend on further subsequences. 
Taking also into account Proposition 5.2 and Lemma 5.6 the �-limit is given by

F(ω)(u)=
{´

D
q(x,∇u)dx + ´

Su
s(x, νu)dHd−1 if u ∈ SBV p(D,Rm),

+∞ if u ∈ L1(D,Rm)\GSBV p(D,Rm).

Hence it remains to characterize the functional F(ω)(u) for u ∈ L1(D, Rm) ∩ GSBV p(D, Rm) such that u /∈
SBV p(D, Rm). This will be achieved via truncation. Given k > 0 we have that Tku ∈ SBV p(D, Rm). Lemma 5.4
implies that F(ω)(u) = limk→+∞ F(ω)(Tku). In order to pass to the limit in the integral formula, we use Lemma 2.1
and the symmetry s(x, ν) = s(x, −ν), which yield

F(ω)(Tk,A)=
ˆ

D∩{u≤k}
q(x,∇u)dx +

ˆ

D∩{u>k}
q(x,∇Tku)dx +

ˆ

STku

s(x, νu)dHd−1.

Since Su =⋃k STku ∪ N with Hd−1(N) = 0 and the second term vanishes due to dominated convergence, we can 
pass to the limit and conclude the proof. �
6. Stochastic homogenization: proof of Theorems 3.5 and 3.8

In this section we derive the results in the random setting.

Proof of Theorem 3.5. By [5, Theorem 2] and [6, Theorem 5.5],3 the �-limits of the two functionals Eε(ω) and 
Iε(ω) defined in (17) and (18) exist almost surely and have deterministic, spatially homogeneous densities. Hence the 
claim on the existence and form of the �-limit follows from Theorem 3.3. It remains to establish the properties of the 
integrands. Convexity and p-homogeneity of h follow from the fact that the �-limit of the sequence of convex and 
p-homogeneous functionals Eε(ω) is again convex and p-homogeneous [35, Theorem 11.1 and Proposition 11.6], 
whereas convexity of the one-homogeneous extension of ϕ follows from standard L1-lower-semicontinuity results for 
functionals defined on sets of finite perimeter (see for instance [8, Theorem 3.1]). �

3 As noted before, in [6] the proofs were given only for pairwise interactions. Nevertheless the same arguments apply in our setting (see also [6, 
Theorem 6.7]). Note that stationarity of the edges is important to apply the subadditive ergodic theorem of [2].
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Finally we prove Theorem 3.8. For the convergence of minimizers we exploit the notion of biting convergence, 
which we recall here for reader’s convenience.

Definition 6.1 (Biting convergence). Let un ∈ L1(D) be such that supn ‖un‖L1(D) <+∞. We say that un converges 

weakly to u ∈L1(D) in the biting sense and write un
b
⇀ u, if there exists a decreasing sequence Sj ⊂D of measurable 

sets such that |Sj | → 0 and un ⇀ u in L1(D\Sj ) for all j ∈N.

Remark 6.2. Note that if un
b
⇀ u and un → v a.e., then u = v. This is a consequence of the uniqueness of the biting 

limit and equiintegrability of L1-weakly convergent sequences.

Proof of Theorem 3.8. We first construct a candidate for the constant γ . Define the sequence of non-negative equi-
bounded functions γε(ω) ∈ L∞(D) by

γε(ω)(z)=
∑

x∈L(ω)

1

|C(x)|1εC(x)(z). (92)

We apply the ergodic theorem in order to establish weak∗-convergence of γε(ω). To this end, we introduce the family 
of half-open boxes with integer vertices I := {[a, b) : a, b ∈ Zd , ai < bi for all i} and define the rescaled integral 
averages γ̃ : I→L1(�) by

γ̃ (I,ω)=
ˆ

I

∑
x∈L(ω)

1

|C(x)|1C(x)(z)dz=
∑

x∈L(ω)

|C(x)∩ I |
|C(x)| .

The following three properties can be verified:

(i) 0 ≤ γ̃ (I, ω) ≤ C|I | for all I ∈ I ,
(ii) If I =⋃i Ii ∈ I with finitely many, pairwise disjoint Ii ∈ I , then γ̃ (I, ω) =∑i γ̃ (Ii, ω),

(iii) γ̃ (I, τzω) = γ̃ (I − z, ω) for all z ∈ Zd .

Moreover, arguing as in [32, Lemma A.1], one can show that ω �→ γ̃ (I, ω) is F -measurable. Hence we can apply 
the multi-parameter additive ergodic theorem (see [47, Chapter 6, Theorem 2.8]) and conclude that P-a.s. and for all 
I ∈ I

γ := E
[
γ̃
]= lim

n→+∞
γ̃ (nI,ω)

|nI | ,

where E denotes the expectation. It is straightforward to extend this convergence to all sequences tn→+∞ and then 
to all cubes in Rd by a continuity argument. Now we identify the weak∗-limit of γε(ω). By a density argument it is 
enough to compute averages on cubes Q ⊂D. A change of variables yieldsˆ

Q

γε(ω)(z)dz= εd γ̃ (Q/ε,ω)→ γ |Q|,

whence γε(ω) 
∗
⇀ γ in L∞(D) almost surely.

Next we prove the lower bound for the �-convergence. Passing to a subsequence, for the lim inf-inequality it 
suffices to consider u ∈L1(D, Rm) and a sequence uε ∈ PCω

ε such that uε → u in L1(D, Rm) and

lim inf
ε→0

Fε,g(ω)(uε)= lim
ε→0

Fε,g(ω)(uε)≤C <+∞. (93)

Without affecting the convergence properties or the functional we redefine gε(ω)(εx) = uε(εx) = 0 for all εx ∈
εL(ω)\D. Then by Remark 2.3 we have

‖uε − gε(ω)‖qLq (D) ≤C
∑

εd |uε(εx)− gε(ω)(εx)|q ≤ C,
εx∈εL(ω)∩D
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which in combination with (21) implies that uε is bounded in Lq(D, Rm). Thus we obtain u ∈ Lq(D, Rm), while 
Theorem 3.5 and (93) yield u ∈GSBV p(D, Rm). Moreover, for any 1 ≤ r < q we deduce the following convergence 
properties:

uε → u in Lr(D,Rm), uε ⇀ u in Lq(D,Rm). (94)

Observe that by the definition of the function γε(ω) it holds that

∑
εx∈εL(ω)∩D

εd |uε(εx)− gε(ω)(εx)|q ≥
ˆ

D

|γε(ω)(z)| |uε(z)− gε(ω)(z)|q dz.

Due to (21) and (94), the sequence uε − gε(ω) converges to u − g in Lr(D, Rm) for any 1 ≤ r < q . The lower 
semicontinuity result for pairs of weak-strong convergent sequences in [40, Theorem 7.5] and the �-convergence of 
Theorem 3.5 imply

lim inf
ε→0

Fε,g(ω)(uε)≥ lim inf
ε→0

Fε(ω)(uε)+ lim inf
ε→0

∑
εx∈εL(ω)∩D

εd |uε(εx)− gε(ω)(εx)|q

≥ F(u)+ γ

ˆ

D

|u− g|q dz, (95)

where we used that γ > 0 to avoid the modulus. This finishes the proof of the lower bound.
For the upper bound, it suffices to consider u ∈ Lq(D, Rm) ∩ GSBV p(D, Rm). Note that for such u we can 

equivalently compute the �-limit of Fε(ω) with respect to convergence in Lq(D, Rm). Indeed, by Lemma 5.4 this is 
true for all truncated functions Tku with k > 0 and by lower semicontinuity with respect to Lq-convergence and again 
Lemma 5.4 we obtain

�(Lq(D))- lim sup
ε→0

Fε(ω)(u)≤ lim inf
k→+∞

(
�(Lq(D))- lim sup

ε→0
Fε(ω)(Tku)

)
≤ lim inf

k→+∞F(Tku)= F(u).

Hence we find a sequence uε ∈ PCω
ε such that uε → u in Lq(D, Rm) and

lim
ε→0

Fε(ω)(uε)= F(u). (96)

Since D has Lipschitz boundary, it satisfies an interior cone condition. Thus we find cD > 0 such that

|εC(x)∩D| ≥ cDεd for all εx ∈ εL(ω)∩D.

Setting Dε = {z ∈D : dist(z, ∂D) ≤ 2Rε}, we deduce from the above estimate that

∑
εx∈εL(ω)∩D

εd |uε(εx)− gε(ω)(εx)|q ≤
ˆ

D

γε(ω)(z)|uε(z)− gε(ω)(z)|q dz

+C

ˆ

Dε

|uε(z)− gε(ω)(z)|q dz.

The last term vanishes when ε→ 0 since the sequence |uε − gε|q is equiintegrable on D. Moreover, by its product 
structure the sequence γε(ω)|uε−gε(ω)|q converges weakly in L1(D, Rm) to γ |u −g|q . Therefore the last inequality 
implies

lim sup
ε→0

∑
εx∈εL(ω)∩D

εd |uε(εx)− gε(ω)(εx)|p ≤ γ

ˆ

D

|u(z)− g(z)|p dz.

Combined with (96) we obtain the upper bound.
Now we come to the second claim of the theorem. Existence of minimizers for fixed ε follows from L∞-coercivity 

of the fidelity term in Fε,g(ω) and the lower semicontinuity assumption (13). The last statement is true due to the 
fundamental property of �-convergence except that we have to prove compactness in Lq(D, Rm). As shown for the 
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lower bound, any sequence uε as in the statement is bounded in Lq(D, Rm) and therefore Lemma 5.6 yields that, up 
to subsequences, uε → u in L1(D, Rm) for some u ∈Lq(D, Rm). Clearly uε is a recovery sequence for this u, so that

Fg(u)= lim
ε→0

Fε,g(ω)(uε).

Repeating the reasoning for (95) we conclude from the above limit that

lim
ε→0

ˆ

D

γε(ω)(z) |uε(z)− gε(ω)(z)|q dz=
ˆ

D

γ |u(z)− g(z)|q dz, (97)

where γε(ω) is defined in (92). Now consider the non-negative sequence aε := |uε − gε(ω)|q . By (97) and the quali-
tative lower bound γε(ω)(z) ≥ c this sequence is bounded in L1(D). By the biting lemma (see [40, Lemma 2.63]) and 

Remark 6.2 we find a subsequence (not relabeled) such that aε
b
⇀ |u − g|q . Taking the same sets Sj as for the biting 

convergence of aε one can prove that the product γε(ω)aε converges in the biting sense to γ |u −g|q . Indeed, on D\Sj

the sequence aε is equiintegrable by the Dunford–Pettis theorem and thus strongly convergent in L1(D\Sj ). Then by 
the usual product rules we obtain γε(ω)aε ⇀ γ |u − g|q in L1(D\Sj ), which shows biting convergence. Now we use 
that γε(ω)aε is nonnegative. By (97) and [40, Proposition 2.67] this yields that γε(ω)aε ⇀ γ |u − g|q also in L1(D). 
Thus both sequences γε(ω)aε and aε are equiintegrable on D. By Vitali’s convergence theorem we obtain that

lim
ε→0

‖uε − gε‖Lq (D) = ‖u− g‖Lq (D),

which, by uniform convexity of Lq(D, Rm) and (21), implies that uε → u in Lq(D, Rm) as claimed. �
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Appendix A

In this appendix we provide a suitable framework to use diagonal arguments along �-converging discrete energies. 
We need this step since the general theory [35, Chapter 10] to construct a metric for �-convergence requires an 
Lp-coercive lower bound for the discrete energies.

Given any function G : Lp(B1, Rm) → [0, +∞] not identically +∞ we define its Moreau–Yosida approximation 
for γ > 0 as

Gγ (u)= inf
v∈Lp(B1,R

m)

(
G(v)+ γ ‖u− v‖pLp(B1)

)
.

For p ≥ 1 the functional Gγ is locally Lipschitz-continuous on Lp(B1, Rm) (see [35, Theorem 9.15]). Let {wk}k∈N
be a dense subset of Lp(B1, Rm) containing 0. Given two lower semicontinuous functions G, H : Lp(B1, Rm) →
[0, +∞] not identically +∞ we define their distance by

d(G,H)=
∑
i,k∈N

1

2i+k
| arctan(Gi(wk))− arctan(H i(wk))|.

Note that on lower semicontinuous functions d is indeed a distance, since d(G, H) = 0 implies by local Lipschitz con-
tinuity that Gi =H i for all i ∈N. Letting i→+∞ it follows by lower semicontinuity that G =H (see [35, Remark 
9.11]). In order to state our result we need further notation: let h :B1×Rm×d →[0, +∞) be a Carathéodory-function 
such that ξ �→ h(x, ξ) is quasiconvex for a.e. x ∈ B1 and
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1

C
|ξ |p −C ≤ h(x, ξ)≤ C(|ξ |p + 1).

Define the functional Eh :Lp(B1, Rm) →[0, +∞] by

Eh(u)=
{´

B1
h(x,∇u(x))dx if u ∈W 1,p(B1,R

m),

+∞ otherwise.

Then we have the following result.

Lemma A.1. Consider a sequence εj → 0 and let x0 ∈D and �j > 0 be such that B�j
(x0) ⊂D and εj/�j → 0. Let 

further h : B1 ×Rm×d →[0, +∞) be a Carathéodory-function as above and define Gεj ,�j
(x0, ω) as in Lemma 5.12. 

Then the following are equivalent:

(i) �(Lp(B1, Rm))- limj Gεj ,�j
(x0, ω) = Eh,

(ii) limj d(Gεj ,�j
(x0, ω), Eh) = 0.

Proof. (ii) ⇒ (i): First note that both functionals are lower semicontinuous on Lp(B1, Rm) and not identically +∞. 
Assumption (ii) implies that

lim
j

Gi
εj ,�j

(x0,ω)(wk)= Ei
h(wk)

for all i, k ∈ N. Since 0 ∈ {wk} and Gi
εj ,�j

(x0, ω)(0) = 0, we deduce from [35, Theorem 9.15] that the sequence 

Gi
εj ,�j

(x0, ω) is locally equicontinuous, so that the convergence extends to Lp(B1, Rm) by density. The claim then 
follows from a general characterization of �-convergence (see [35, Theorem 9.5]) when we let i→+∞.

(i) ⇒ (ii): Clearly Gγ
εj ,�j

(x0, ω)(u) ≤ γ ‖u‖Lp(B1), so that given a sequence uj such that

Gεj ,�j
(x0,ω)(uj )+ γ ‖uj − u‖pLp(B1)

≤Gγ
εj ,�j

(x0,ω)(u)+ 1

j
, (A.1)

uj is bounded in Lp(B1, Rm). Since the discrete density f satisfies f (p) ≤ Cf ‖p‖1, we have by definition

Gεj ,�j
(x0,ω)(uj )=Eεj /�j

(ω)(uj (· − x0/�j ),B1(x0))≥ 1

C
Fεj /�j

(ω)(uj (· − x0/�j ),B1(x0)).

From Lemma 5.6 and a change of variables we conclude that uj is compact in L1(B1, Rm). Hence there exists 
v ∈ Lp(B1, Rm) such that, up to subsequences, uj → v in L1(B1, Rm) and additionally uj ⇀ v in Lp(B1, Rm). 
In order to use the assumption (i), we use a truncation argument. Note that Tkuj → Tkv in Lp(D, Rm). Then by 
�-convergence in Lp(D, Rm) and decrease by truncation of Gεj ,�j

(x0, ω) we obtain

lim inf
j

Gεj ,�j
(x0,ω)(uj )≥ lim inf

j
Gεj ,�j

(x0,ω)(Tkuj )≥
ˆ

B1

h(x,∇Tkv),dx.

Using Lemma 2.1 we can pass to the limit in k by dominated convergence. Combined with the weak lower semicon-
tinuity of the Lp-norm we infer from (A.1) that

Eh(v)+ γ ‖v − u‖p
Lp(B1)

≤ lim inf
j

Gγ
εj ,�j

(x0,ω)(u).

Moreover, given any ũ ∈ Lp(B1, Rm) let us consider a sequence ũj → ũ in Lp(B1, Rm) such that
limj Gεj ,�j

(x0, ω)(ũj ) = Eh(ũ). Then by the definition of the Moreau–Yosida transformation

lim sup
j

Gγ
εj ,�j

(x0,ω)(u)≤ lim
j

(Gεj ,�j
(x0,ω)(ũj )+ γ ‖ũj − u‖pLp(B1)

)= Eh(ũ)+ γ ‖ũ− u‖pLp(B1)
.

Combined with the previous inequality we obtain that Eγ

h(u) = Eh(v) + γ ‖v − u‖pLp(B1)
and by setting ũ = v we 

showed that
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lim
j

Gγ
εj ,�j

(x0,ω)(u)= E
γ

h (u)

for all u ∈Lp(B1, Rm) and all γ > 0. This property implies (ii) by the definition of the metric. �
Remark A.2. The equivalence of Lemma A.1 remains valid for two functionals Ehj

and Eh provided the Carathéodory 
functions hj satisfy growth conditions uniformly in j . In this case the proof simplifies since the Moreau–Yosida 
transformations are equicoercive in Lp(B1, Rm) due to the Sobolev embedding.
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