
RealCaPP
Real-Time Capable Plug &
Produce for Distributed
Robot-Based Automation

Christian Eymüller

Dissertation
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

Fakultät für Angewandte Informatik

November 2023

RealCaPP

Real-Time Capable Plug & Produce for Distributed Robot-Based Automation

Erstgutachter: Prof. Dr. Wolfgang Reif
Zweitgutachter: Prof. Dr. Bernhard Bauer
Drittgutachter: Prof. Dr.-Ing. Dr. h.c. mult. Alexander Verl

Tag der mündlichen Prüfung: 28. November 2023

iv

Danksagung

Diese Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftlicher Mitarbeiter
am Institut für Software & Systems Engineering der Universität Augsburg. Ich möchte
an dieser Stelle den vielen Personen, die mich unterstützt haben, meinen herzlichen
Dank aussprechen, ohne deren Hilfe die Durchführung dieser Arbeit nicht möglich
gewesen wäre.

An erster Stelle möchte ich mich bei meinem Doktorvater Prof. Dr. Wolfgang Reif be-
danken. Ihm gebührt Dank für seine Unterstützung, das entgegengebrachte Vertrauen,
die interessanten Forschungsthemen und das zur Verfügung gestellte Forschungsumfeld.
Des Weiteren danke ich Prof. Dr. Bernhard Bauer und Prof. Dr.-Ing. Dr. h.c. mult. Alexan-
der Verl für die Begutachtung der Dissertation.

Mein Dank gilt auch meinen Kolleginnen und Kollegen am Institut für die Mithilfe
während der Promotion. Insbesondere möchte ich dem Robotik-Team danken, das durch
produktive Diskussionen und Anregungen zu vielen guten Ideen beigetragen hat. Ich
möchte mich bei Daniel Bermuth, Michael Filipenko, Dr. Johannes Kurth, Dr. Andreas
Schierl, Martin Schörner, Matthias Stüben und Constantin Wanninger bedanken. Ins-
besondere möchte ich mich bei Alexander Poeppel für die vielen produktiven Gespräche
bei den "Spezi-Touren" bedanken und dafür, dass er den Publikationen immer den letzten
englischen Schli� gegeben hat. Bei allen technischen Problemen in den Roboteranla-
gen war unser Techniker Stefan Wol� immer eine große Hilfe. Meinem Bürokollegen
Julian Hanke danke ich für die vielen fachlichen und nichtfachlichen Gespräche und
die gemeinsame Zeit in der WiR Zelle. Ein großes Dankeschön geht auch an Dr. Alwin
Ho�mann für seine Unterstützung zu Beginn meiner Promotion. Darüber hinaus möchte
ich ihm für das aufmerksame Korrekturlesen meiner Arbeit danken.

Allen Studierenden und wissenschaftlichen Hilfskräften, die mich bei meinen For-
schungsarbeiten tatkräftig unterstützt haben, möchte ich danken. Eine großeHilfe waren
hier Simon Erlbacher, Leonhard Heber, Lukas Kilian, Markus Kugelmann, Maximilian
Müller und Nicolai Sandmann.

Mein besonderer Dank gilt meinen Eltern Luise und Bonifaz Eymüller, die mich stets
unterstützt haben und mir immer mit Rat und Tat zur Seite standen. Meine Mutter hat
mich während der Schreibphase durch spontane Einladungen zu leckeren Abendessen
stets aufgemuntert. Mein Vater hat viel Zeit in intensives Korrekturlesen investiert.

Meine Partnerin Sarah Gamperl hat mich während der kompletten Promotionszeit
liebevoll unterstützt. Ihr danke ich besonders für die vielen aufmunternden Worte und
ihre Geduld vor allem während der Schreibphase. Sie war immer für mich da, wenn ich
zweifelte und hat mich getröstet, wenn ich niedergeschlagen war. Das hat mir viel Kraft
gegeben.

Abschließendmöchte ich mich bei allen bedanken, die nicht namentlich genannt wurden,
mich aber tatkräftig bei der Promotion unterstützt haben.

Christian Eymüller

v

vi

Abstract

Due to the 4th Industrial Revolution, the industry is currently undergoing a transition
from mass production to individual production, where each product is unique. This
change in production means that it is no longer possible to design and develop the entire
production plant, then build the system and produce the products. It may happen that a
product is not yet known at the time when the plant is planned or realized. Therefore,
�exible production facilities are needed to realize this transformation of production.

Plug & Produce is a technique used for the realization of �exible production plants.
Similar to the Plug & Play approach known from USB devices, for example, where
devices are simply plugged in and can then be used. Plug & Produce is attempting to
implement this approach for industrial components. Plug & Produce is a technique for
quickly integrating production resources into systems and thus being able to produce
quickly with these new resources. Production can be �exibly designed through the rapid
integration or exchange of new production resources.

The central result of this thesis is the development of a Real-TimeCapable Plug& Produce
(RealCaPP) architecture. This architecture makes it possible to add and exchange new
production resources to a production system. To react quickly to new processes by
adapting the software, and to execute these processes in real time distributed across
multiple compute nodes. In order to quickly integrate new resources into the production
system, a resource self-introduction mechanism has been developed. For this purpose,
standardized self-descriptions were de�ned in a machine-readable form, describing
the properties and skills of a resource. These descriptions are aggregated and merged
into a global knowledge base of the system. This data can be used, for example, to
automatically �nd plant con�gurations for speci�c tasks. Another important point is
the exchange of data between product resources. Since process information must be
exchanged between real-time-critical processes, the communication must also be real-
time-capable. Therefore, a dynamic real-time communication platform was developed
that can cope with changing resources and exchange process data in real-time. A
real-time service architecture was developed for �exible process adaptation. Modular
software components, so-called Real-Time Service (RTS), enable the implementation of
resource skills (Basic Skills) and can be combined to formmore complex skills (Composed
Skills). These RTSs can be easily added to a system at runtime and executed afterwards.
They can also be executed in a distributed manner. All these points were evaluated on
two robotic cells for di�erent case studies. It was shown that the same services used to
screw aluminium pro�les could also be reused to operate a porta�lter co�ee machine
with a robot.

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Research Question . 3
1.3 Main Contributions . 4
1.4 Structure of the Thesis . 6

2 Fundamentals 9

2.1 Cyber-Physical Production Systems (CPPSs) 9
2.2 Reference Architecture Model Industry 4.0 (RAMI 4.0) 10
2.3 Real-Time Systems . 12

2.3.1 Real-Time Communication . 14
2.3.2 Real-Time Operating Systems 15
2.3.3 Real-Time Applications . 17

2.4 Distributed Systems . 18

3 Plug & Produce in a Flexible Distributed Robot Cell 21

4 Concept of a Real-Time Capable Plug & Produce Environment 29

4.1 Fundamentals . 30
4.1.1 Skills, Capabilities and Services 30
4.1.2 Asset Administration Shell . 30
4.1.3 Open Platform Communication Uni�ed Architecture (OPC UA) 32
4.1.4 Time-Sensitive Networking (TSN) 34
4.1.5 OPC UA over TSN . 35

4.2 Real-Time Capable Plug & Produce 35
4.3 RealCaPP Architecture (Real-Time Capable Plug & Produce Architec-

ture) . 36
4.3.1 A Uniform Communication Interface 36
4.3.2 Asset Administration Shells for Robot Components 37
4.3.3 Modular Real-Time Capable Software Components 39
4.3.4 Global Knowledge of Resources, Products and Services 39

4.4 Related Work . 40

ix

5 Locating and Managing Plant Components 43

5.1 Fundamentals . 45
5.1.1 Semantic Descriptions . 45
5.1.2 OPC UA Discovery . 46
5.1.3 OPC UA Extension Objects 47

5.2 Plug & Produce Resources . 47
5.3 Global Registry for Plant Components 49
5.4 Semantic Self-Description of Plant Components 51
5.5 Consolidation of Information into a Uniform Knowledge Base 52
5.6 Related Work . 54

6 Semantic Descriptions of Automation Plants 57

6.1 Fundamentals . 58
6.1.1 Semantic Rules . 59
6.1.2 Querying of Semantic Networks 60

6.2 Semantic Description of Resource Interrelationships 61
6.3 Derivation of Connectable and Connected Resources 63
6.4 Deriving Composed Skills . 65
6.5 Automatic Plant Con�guration through Semantic Networks 66
6.6 Related Work . 70

7 Distributed Real-Time: Dynamic Real-Time Control Networks 73

7.1 Fundamentals . 74
7.1.1 Real-time Communication with TSN 75
7.1.2 Precision-Time-Protocol . 77

7.2 Time-Synchronization in Control Networks 78
7.3 Dynamic Con�guration of Real-Time Control Networks 79

7.3.1 Setup and Con�guration of TSN Communication Channels . 81
7.3.2 Realization of the Time Slot Array 83

7.4 Related Work . 84

8 DistributedReal-TimeExecution ofComponent Skills inDistributed

Control Networks 87

8.1 Fundamentals . 89
8.1.1 OSGi: A Dynamic Module System 89
8.1.2 OPC UA Programs . 90

8.2 Services: Reusable Software Components 91
8.3 Real-Time Critical and Non-Real-Time Critical Execution 93
8.4 The Plug & Produce Service Architecture 94

8.4.1 A Uniform Data Representation: DataContainer 95
8.4.2 Modular Software Components: Real-Time Services 97
8.4.3 Distribution of Real-Time Services 99
8.4.4 Execution of Applications . 102
8.4.5 Semantic Description of RTSs and RTS Networks 108
8.4.6 Synchronized Distributed Control Processes 109

x

8.5 Related Work . 115

9 Implementation of Resources with the RealCaPP Service Architec-

ture 119

9.1 Industrial Robot Resources . 121
9.2 Sensor Resources . 125

9.2.1 Force-Torque Sensor . 125
9.2.2 Digital Input Modules . 126

9.3 Actuator Resources . 127
9.3.1 Gripper Resources . 127
9.3.2 Screwer Resources . 129
9.3.3 Automatic Tool Changer . 132
9.3.4 Digital Output Modules . 133

10 Evaluation of the Case Studies for Robot-Based Automation 135

10.1 Structure of the Robot Cells . 136
10.1.1 A Flexible Industrial Robotic Cell: WiR Augsburg Innovation

Laboratory . 136
10.1.2 Robarista Cell . 140

10.2 Implementation of RealCaPP Concepts with Real Hardware Components 141
10.2.1 KUKA KR Industrial Robots 142
10.2.2 Gripper of the KR90: Zimmer Group GEH6180 143
10.2.3 Screwer of the KR90: Stoeger SPATZ 30 146
10.2.4 Force-Torque Sensor of the KR90: ME-Meßsysteme K6D80 . . 149
10.2.5 Grippers of the KR10 and KR6 149

10.3 Hand Guiding of Industrial Robots . 151
10.4 Assembly of a Circuit Board Component 154
10.5 Assembly of Aluminium Structures 158
10.6 Robarista: A Robot Making Co�ee . 165

11 Evaluation of the Real-Time Performance 171

11.1 Performance Evaluation of Adding Software and Hardware Compo-
nents at Runtime . 172

11.2 Test Setup for the Real-Time Performance Measurements 173
11.3 Latency Evaluation of the Real-Time Communication and Execution . 174

12 Conclusion and Outlook 183

12.1 Conclusion of the Thesis . 183
12.2 Outlook and Future Work . 185

Bibliography 189

List of Figures 203

List of Listings 207

xi

List of Equations 207

List of Tables 208

Supervised Theses 209

Own Publications 211

xii

Acronyms

AAS Asset Administration Shell.

AI Arti�cial Intelligence.

AS Application Services.

ATC Automatic Tool Changer.

CBS Credit-Based Shaper.

CFS Completely Fair Scheduler.

CPPS Cyber-Physical Production System.

CPS Cyber-Physical System.

DDS Data Distribution Service.

DoF Degrees of Freedom.

EDF Earliest Deadline First.

EKI Ethernet KRL Interface.

ETF Earliest TX-time First.

FIFO First-In First-Out.

ILP Integer Linear Programming.

IoT Internet of Things.

IPC Industrial PC.

KRL KUKA Robot Language.

LDS-ME Local Discovery Server with Multicast Extension.

MQTT Message Queueing Telemetry Transport.

OOP Object-Oriented Programming.

OPC UA Open Platform Communication Uni�ed Architecture.

OSGi Open Service Gateway Initiative.

OTG Online Trajectory Generator.

OWL Web Ontology Language.

P&P Plug & Produce.

PID Proportional–Integral-Derivative.

xiii

PLC Programmable Logic Controller.

PTP Precision-Time-Protocol.

RAMI 4.0 Reference Architecture Model Industry 4.0.

RDF Resource Description Framework.

RDFS RDF Schema.

RealCaPP Real-Time Capable Plug & Produce.

Robarista Robot-Barista.

ROS Robot Operating System.

RR Round Robin.

RSI Robot Sensor Interface.

RTS Real-Time Service.

RTT Round Trip Time.

SOA Service-Oriented Architecture.

SPARQL SPARQL Protocol And RDF Query Language.

SRP Stream Reservation Protocol.

SWRL Semantic Web Rule Language.

TAS Time-Aware Shaper.

TCP Tool Center Point.

TDMA Time Division Multiple Access.

TSN Time-Sensitive Networking.

WCET Worst-Case Execution Time.

WiR Augsburg Wissenstransfer Region Augsburg.

xiv

Summary. This chapter provides the motivation for why real-
time capable Plug & Produce is essential for �exible robot-based
production. It clari�es the open research questions and how they
can be solved. Finally, the structure of the thesis is presented.

1
Introduction

1.1 Motivation . 1
1.2 Research Question . 3
1.3 Main Contributions . 4
1.4 Structure of the Thesis . 6

This work aims to develop a concept for real-time capable Plug & Produce. The main
focus is how the control for the execution of the process can be executed in real-time in
distributed robotic systems.

In this chapter, initially, motivation is given for leveraging Plug& Producemethodologies
to enhance production systems’ �exibility. Furthermore, a concise overview is presented
to de�ne the concept of Plug & Produce, as outlined in Section 1.1. Then, in Section 1.3,
the main contributions of this work are elaborated. Finally, the entire structure of this
work is detailed in Section 1.4.

1.1 Motivation

Industry 4.0 has already triggered signi�cant technological changes in the industrial
landscape. This disruption includes the rollout of IoT devices (Internet of Things), Big
Data analytics, and the use of Arti�cial Intelligence (AI) to increase production e�ciency
and produce better and more individualized products. One goal is the shift from mass
production to Lot-Size-1 production. Mass production is an approach in which products
are produced in large quantities based on a �xed design and a prede�ned production
sequence. Mass production takes the advantage of economies of scale. The goal is to
drive down the production cost per product by spreading the �xed costs for planning
and integration of a production line over a high volume of units per product. Lot-Size-1,
on the other hand, involves producing customized products in small batches where
each product shall be unique. Also, the products can be tailored to the speci�c needs

1

1 Introduction

of individual customers. With Lot-Size-1 production, many planning and design steps
must be moved from design time to run time. While in mass production, both the plant
design and the manufacturing functions can be planned and optimized in the design
phase, in Lot-Size-1 production, each product may be di�erent, and in some cases, the
products may not be known at the stage of design time. In order to be able to implement
a Lot-Size-1 production plant, such a production system must ful�ll several points:

- A �exible system that can be programmed to handle various tasks, enabling
e�cient customizations of products.

- A modular and adaptable production line is essential to process di�erent products
and minimize downtime. For this, an adjustable or changeable tooling for the
di�erent products is needed.

- New plant components, tools, and processes shall be easily integrated at runtime
without making signi�cant adjustments to the hardware or software. Here, the
goal is to minimize setup times for new products.

- Operators and programmers must quickly understand and con�gure the produc-
tion system. Complex programming and setup procedures can lead to errors and
ine�ciencies.

Plug & Produce is one of the enablers to implement Lot-Size-1 production. Plug &
Produce is a concept in manufacturing where production systems and components are
designed to be easily integrated, con�gured, programmed, and recon�gured without
extensive manual programming or complex adaptions [16]. The concepts of Plug &
Produce have been partially adopted from the Plug & Play approaches widely used in
computer systems. Today, it is taken for granted that when a keyboard is connected
to a computer, it can be used without much con�guration e�ort or additional software
installation. The same behavior is desired for a production line where a new gripper or
screwdriver for an industrial robot is "plugged in". Without much con�guration e�ort
and without the need to manually integrate the devices, the gripper should be used for
handling a component or the screwdriver for screwing a screw into a speci�c product.

Production plants are usually a conglomerate of sensors, actuators, and control compo-
nents. Manufacturing processes often involve several interconnected components that
need to perform tasks together. For the components to interact successfully, some pro-
cesses must run synchronously. Real-time execution and communication are therefore
required. For example, if the task is to pick up components from a moving conveyor
belt using an industrial robot with a gripper, the robot must synchronize with the
conveyor belt and close the gripper as soon as it is synchronized. If there are delays in
the execution or the communication between the robot, the gripper, and the conveyor
belt, the component cannot be picked up successfully. Real-time in robotic systems
refers to the capability of a system to respond to inputs and produce outputs within a
predictable and bounded time frame (deadline), often in the order of milliseconds or
microseconds. This ensures that processes can be executed almost simultaneously with
minimal delay (minimal response time). [118, pp. 2,19]

2

1.2 Research Question

In order to be able to implement such real-time critical processes without losing the
�exibility for adaptations of the system to new products or processes, a real-time capable
Plug & Produce concept is necessary.

1.2 Research Question

The present research work deals with how Plug & Produce concepts can be combined
with real-time communication and real-time execution. Therefore, the underlying main
research question is:

How can �exible robot-based production systems be designed to add or replace

production resources on the �y without complex integration and reprogram-

ming, and how can these resources be combined into a distributed system that

can perform tasks in real-time?

Also, numerous other questions can be derived from this main research question:

- How can resources be easily integrated into a system through self-description?

- What data must be included in the self-descriptions?

- How can data be shared among resources?

- Which data must be shared among resources?

- How can the individual resources’ functionality be combined into the entire system?

- How can real-time critical processes be executed on distributed resources?

In addition to the general research questions, these are presented with an example,
shown in Figure 1.1. In the example, there are three new resources: an industrial robot,
a gripper, and a force-torque sensor. The questions now are: How can these resources

Real-Time Communication

Robot Gripper
Force-Torque

Sensor

R
e

s
o

u
r
c

e

Functionality of the Resource

Description of the Resource

R
e

s
o

u
r
c

e

Functionality of the Resource

Description of the Resource

R
e

s
o

u
r
c

e

Functionality of the Resource

Description of the Resource

Figure 1.1. Research questions with an example: How can the resources be integrated
into the system? How can a force-controlled gripping process be realized using these
resources?

3

1 Introduction

be integrated into the system? Moreover, how can a force-controlled gripping process be

realized with these resources?

Both the general research questions and the questions for the explicit example are
considered in the context of the dissertation from di�erent perspectives. Further on in
the thesis, answers to all these questions will be found and explained.

1.3 Main Contributions

Several research results were achieved in processing and answering the research ques-
tions. The main contributions in this thesis are a real-time capable Plug & Produce

architecture, which is the possibility to add, replace, and remove production resources
at runtime. Semantic Self-Descriptions in the form of ontologies are used to describe
resources with their skills and properties. The semantic descriptions are used to auto-

matically �nd plant con�gurations for required tasks. Description and real-time
critical process data can be exchanged between the resources via uniform communica-
tion interfaces. A dynamic real-time capable communication middleware is used
to transmit process data. The software for realizing processes has a modular structure
and is skill-based. Amodular Real-Time Service (RTS) can be added to the system
at runtime. These RTSs can be combined into complex processes that execute with
hard real-time criteria. In addition, the processes can be executed in a distributed

manner, which means that RTS can run on di�erent devices that can exchange process
data in real-time.

Real-Time Capable Plug & Produce Architecture (RealCaPP) A uni�ed archi-
tecture has been created to add, change, or remove production resources easily. This
includes uniform de�nitions of the resource, which are provided via an asset adminis-
tration shell for the resources. The administration shell takes care of the description
of the resource, how functionalities of the resource can be addressed, and provides a
communication interface. There are de�ned procedures for how new resources can log
on to the system and be integrated through a self-introduction. The architecture also
o�ers a uniform communication interface for all components. Here, both non-real-time
critical data and real-time critical process data can be transmitted on one medium via
ethernet networks. In addition, there is the possibility in the architecture to load modu-
lar software components into the resources at runtime, which can be executed on the
resources.

Semantic Self-Description ofResources Each resource has a detailed self-description.
This self-description contains information about the type of resource, the properties of
the respective resource, which functionalities the resource has, and how these function-
alities can be addressed. The self-descriptions are de�ned in a uniform machine-readable
format. Therefore, ontologies are used. A global registry collects the information of all
resources involved and provides an accurate description of the system

4

1.3 Main Contributions

Self-Con�guration of Production Plants The detailed description of the system
and its components is used to �nd hardware con�gurations to perform a requested
process step automatically. From the overall system description, it can be deduced which
functionalities are required for a speci�c task. Resources that possess this functionality
can be determined and checked to see whether these resources can be combined into a
system. For example, a gripper must be attached to a robot in order to be able to move
components.

Distributed Modular Real-Time Services (RTSs) The programming of the �exible
production systems uses a skill-based approach. Each production resource has executable
skills that can be combined to implement a production process. In order to be able to
execute processes in the system, modular software components were developed that can
be added to the system at runtime. For this purpose, a Service-Oriented Architecture
(SOA) was established. The RTSs have de�ned interfaces and can be easily integrated
and executed. The services can be executed either locally on one device or they can be
executed distributed on several devices. In the local setup, sharedmemory is used for data
exchange. In the distributed setup, a real-time capable communication middleware is
used. With RTSs, it is easy to integrate the hardware and adapt the software to processes.
In addition, the software components can be combined and reused as required due to
their modular structure.

Dynamic Real-Time Communication Uniform communication is necessary so
that resources can exchange information and data. To ensure that real-time critical
processes can be implemented in the architecture, a real-time communication channel is
set up between the resources to exchange process data. Real-time protocols are complex
to con�gure. For the real-time communication channels, corresponding transmission
time slots must be reserved for the real-time critical communication messages. The
system con�gures automatically for the communication channels and reserves corre-
sponding time slots for transmissions between resources. Since resources can be added
or replaced at runtime, the con�gurations and reservations are done online without
interrupting existing communications.

These individual results provide the basis for implementing a highly �exible plant
structure. This means that products or production resources not known at the design
time of the system can be integrated into a production system. This provides the basis
for implementing Lot-Size-1 production.

Figure 1.2 shows the structure and the interrelations between the main components
of the real-time capable Plug & Produce architecture. The main parts are the dis-
tributed real-time execution and the semantic description of objects, properties, and
functionalities. The contributions mentioned above are based on these two parts. The
semantic description includes descriptions of the parts to be produced and the descrip-
tion of the production resources with their respective characteristics and skills (Skill
Description). The description of the entire plant (Plant Description) can be derived

5

1 Introduction

Figure 1.2. Structure and interrelations between the main components of the real-time
capable Plug & Produce architecture. The gray boxes indicate the chapters in which the
individual components are described.

from the individual descriptions of the production resources. The description of the
entire plant and the description of the skills can automatically be used to �nd plant con-
�gurations for given use cases. The distributed real-time execution consists of skill-based
programming and the dynamic real-time communication. The skills are implemented in
a service-oriented architecture through modular Real-Time Services that can interact
with each other via the dynamic real-time communication. The relationship between
the skills and the modular real-time services is mapped in the Skill Description.

1.4 Structure of the Thesis

The following chapters discuss how these individual contributions were achieved to
create a real-time capable Plug & Produce architecture and how this answers the research
questions.

Chapter 2 provides an insight into the fundamentals for developing real-time capable
Plug & Produce. On the one hand, the overall integrations into the Industry 4.0 basic
architecture are discussed, and the fundamentals of real-time and distributed systems
are explained.

In Chapter 3, the problems associated with �exible robot cells and how Plug & Produce
can be used for this purpose are explained using an example that runs through the
thesis.

Subsequently, Chapter 4 introduces the real-time capable Plug & Produce architect. The
basic architecture is presented, and the individual components of the architecture are
discussed. Chapter 5 explains how the new components can be integrated into the system

6

1.4 Structure of the Thesis

by self-introducing the production resources. The required self-description for the self-
introduction of the production resources and how these descriptions can be combined
into a global knowledge base is also explained in this chapter. Chapter 6 describes
how semantic descriptions can be used to represent the connection between resources
and how, based on these descriptions, plant con�gurations for speci�c processes can
be found automatically. How the resources can exchange process data in real-time is
described in Chapter 7. The required dynamic con�guration, e.g., the reservation of
communication time slots of the real-time communication at runtime, is also speci�ed
here. The execution of software and how new software can be integrated into the system
is explained in Chapter 8. Here, it is explained how modular software constructs can be
developed based on a service-oriented architecture. It also describes how the software
can be run locally and distributed to multiple resources. This concludes the description
of the architecture.

In this Chapter 9, it is shown how resources with the associated RTSs can be implemented
in the RealCaPP architecture. Abstract resource types are presented, from which many
resources from the robotics area can be derived. For example, an abstract implementation
for grippers is de�ned.

Chapter 10 shows how the RealCaPP architecture is applied in four di�erent case
studies. These range from classic industrial processes to making co�ee with a robot. The
feasibility study is supplemented by a quantitative evaluation of the implementation
times in Chapter 11. This measured how long it takes to integrate new hardware
components and how long it takes to set up real-time communication. In addition, the
execution times for one of the case studies were measured to demonstrate the real-time
capability of the architecture.

This thesis concludes with a summary of the results obtained (see Chapter 12). Further-
more, future research will be discussed.

7

1 Introduction

8

Summary. This chapter describes the basis and underlying
architectures in the �eld of Industry 4.0 that are important for
Plug & Produce. It also lays the foundations for a real-time or
distributed system so that it is clear what is meant by real-time
and distributed when talking about real-time capable Plug &
Produce for distributed robot-based automation.

2
Fundamentals

2.1 Cyber-Physical Production Systems (CPPSs) 9
2.2 Reference Architecture Model Industry 4.0 (RAMI 4.0) . . . 10
2.3 Real-Time Systems . 12

2.3.1 Real-Time Communication 14
2.3.2 Real-Time Operating Systems 15
2.3.3 Real-Time Applications 17

2.4 Distributed Systems . 18

This chapter is intended to lay the basics for the further descriptions of this thesis. Plug
& Produce is one of the enablers for implementing a �exible Industry 4.0-compliant
production system. Plug & Produce uses many of the technologies de�ned in Industry
4.0 and combines them. One of the key components of Industry 4.0 are Cyber-Physical
Production Systems (CPPSs), which combine the physical elements of manufacturing,
such as sensors or robots, with digital technologies like IoT communication or self-
descriptions to create interconnected and �exible production systems. These already
researched areas can be used as a basis to implement real-time capable Plug & Produce.

Therefore, an overview of CPPSs is given in Section 2.1. Section 2.2 then discusses the
reference architecture for Industry 4.0 and which areas are interesting for developing
Plug & Produce methods. Section 2.3 describes what real-time systems are and what their
characteristics are. It de�nes what real-time communication is andwhy special operating
systems are needed for real-time execution and real-time communication. In addition, it
describes what has to be considered when programming real-time applications. Finally,
Section 2.4 describes what a distributed system is.

2.1 Cyber-Physical Production Systems (CPPSs)

ACyber-Physical Production System (CPPS) [26, pp. 3] is a concept for integrating digital
(the cyber part) and physical elements in modern production environments. Thus, it is a

9

2 Fundamentals

special form of a cyber-physical system in the industry context. Cyber-Physical Systems
(CPSs) [199, pp. 3], as implied by its name, encompasses both cyber (e.g., software control)
and physical components (e.g., a robot). These components are tightly integrated
and work together to achieve a speci�c goal. Such systems are used in numerous
domains, such as healthcare, transportation, energy, smart cities, and smart factories.
The physical components of a CPS interact with the cyber part through sensors, actuators,
or communication networks. The cyber part of the system gets information about the
physical world through the sensors and communication channels, processes these
data in real-time, makes decisions based on the processed data, and transfers control
signals back to the physical part, creating a feedback loop. This seamless integration
between the cyber world and the physical world enables CPSs to respond immediately
to changes, making adjustments and to optimize the system. [128, 184] CPPS usually
consist of embedded systems connected via wired or wireless networks and can thus
exchange data and information with each other [76, pp. 2]. Internet of Things (IoT)
technologies are mainly used for the data exchange and collaboration between the
devices to form a coherent production system. For the exchange of data and especially
for the control of the individual parts of the production plant, real-time communication
and real-time control are necessary to make immediate changes to the production
processes. Another essential aspect of CPPS is the recording of data and the subsequent
analysis and processing of the data. The data collected from the physical processes and
sensors are analyzed using analytics techniques and Arti�cial Intelligence (AI). This
enables identifying patterns, predicting potential problems, and optimizing production
processes. With CPPSs, the goal is to decentralize decision-making to a certain extent
so that the individual production components can make autonomous decisions based
on the data they collect and the algorithms they use. The bene�ts of cyber-physical
production systems include greater production e�ciency, reduced downtime, predictive
maintenance, and the ability to adapt quickly to changing demands. They are seen
as fundamental enabler for the smart factories and manufacturing processes of the
future. [128]

Plug& Produce is closely related to CPPSs. ACPPS provides the technological foundation
required for Plug & Produce. By implementing sensors, actuators, and real-time data
analytics, a CPPS can detect and con�rm the presence of newly introduced machines
or components in the production. Then, CPPSs automatically adjusts and integrates
this new equipment into the production process to ensure a smooth and seamless
incorporation. [147]

2.2 Reference Architecture Model Industry 4.0

(RAMI 4.0)

TheReference Architecture Model Industry 4.0 (RAMI 4.0) [189] is a standardized archi-
tectural framework that serves as a guideline for implementing Industry 4.0 concepts
and technologies in manufacturing and industrial environments. RAMI 4.0 provides
a structured and comprehensive model to design, plan, and implement Industry 4.0
solutions.

10

2.2 Reference Architecture Model Industry 4.0 (RAMI 4.0)

Figure 2.1. The Reference Architecture Model Industry 4.0 (RAMI 4.0) [189]

Figure 2.1 shows the three main dimensions that represent all important aspects of
Industry 4.0. The shown structure can be used to evaluate and classify any Industry
4.0 technology or application. The �rst dimension is the layer axis that shows the Layers

information technology view of a physical asset. The layers represent the digital part of
a physical object, for example, a machine. The physical objects are located on the lowest
level (asset layer). The integration layer contains the interfaces to physical objects and
de�nes which data are collected and which control commands are sent back to the
physical objects. The integration layer is also used to provide computer-processable
information about the asset, such as documents about the hardware, software, or function
of an asset. The communication layer ensures uniform communication between the
assets and de�nes a consistent data format to exchange information. The information
layer contains all process-relevant information in the form of data. The data can be linked
and preprocessed on this layer to obtain new, higher-value data. The functional layer
contains all the abstract functions of assets. The functions are represented independently
from physical implementations and show an abstract representation of the functionality
of an asset. The business models and the resulting overall process are mapped in the
business layer. In this layer, the abstract functions of the assets represented in the
functional layer are orchestrated to an overall process. Legal and regulatory conditions
also play a signi�cant role here. [69]

The second axis is the life cycle and value stream axis. This axis covers the complete life Life Cycle and

Value Streamcycle of a system, product, or process. The life cycle ranges from the initial idea of the
asset in the planning phase, the design phase with the construction and implementation,
to its use in a production plant. Of course, the life cycle also includes after-sales tasks such
as service tasks or decommissioning. It is basically distinguished between the type and
the instance of an asset. A type phase is again distinguished between the development,

11

2 Fundamentals

maintenance, and usage phases. The development represents the �rst idea of a product
over the development and commissioning to testing and the generation of the �rst
prototypes. The type maintenance and usage phase represents the development results,
like drawings, manuals, or software models. When a product is produced accordingly,
the type of the product becomes an instance. The instance phase is again divided into
the production, maintenance, and usage phases. In the production phase, a unique asset
is created out of the type and gets a unique identi�cation, like a serial number. In the
maintenance and usage phase, the �nal product or machine is represented as unique
and usable. For example, an instance is delivered to a customer. For the customer, the
products are initially again just types. They become an instance when they are installed
in a speci�c system. The change from type to instance can be repeated several times. Of
course, instances can also get destroyed in this phase, so maintenance is also essential
to maintain production. [67, 69, 189]

The third axis is the hierarchy levels. These hierarchy levels represent the di�erentHierarchy Levels

functionalities within a factory or plant. In addition, the product itself is represented,
and the connected world is added. The hierarchy levels are very reminiscent of the
automation pyramid. As in the automation pyramid, the plant is divided into di�erent
granularities, ranging from a �eld device like a sensor over an entire production line
(work center) to entire enterprises. Compared to the automation pyramid, however, the
goal is for all participants to network with each other across hierarchy levels. Therefore,
it is possible for the production line to receive the information from a single sensor
directly. The product (smart product) is also part of the network and can exchange
information with the other components. In addition, the connected world o�ers the
possibility ofmaking data available in a factory and globally via the internet of things. [67,
69]

The standardization of information management, communication, and functionality in
the individual layers of RAMI 4.0 o�ers a reasonable basis for implementing Plug &
Produce. RAMI 4.0 provides the architectural framework and guidelines to e�ectively
realize Plug & Produce concepts. Also, RAMI 4.0 aims to achieve seamless integration of
processes and assets. This matches the goals of Plug & Produce of creating more �exible
and e�cient production systems.

2.3 Real-Time Systems

As stated in this thesis’s title, the shown Plug & Produce concepts shall be real-time
capable. For this purpose, it is �rst clari�ed what real-time is and why real-time is
needed. A real-time system is a computer system that gets input data, processes these
data, and responds to the input data within a speci�c time frame. A real-time system
is a system where the correctness of the system behavior depends not only on the
given results of the system but also on the response time of the computations. At a
minimum, a real-time system consists of a controlled component, such as a robot, and
a controlling component, like a real-time computer system. The real-time computer
system gets physical signals from the controlled system by sensors and can interact
with the environment by generating physical signals for the actuators. A real-time

12

2.3 Real-Time Systems

computer system must respond to input from its controlled system within a given time
interval. The point at which the system must deliver a result is a deadline. Deadlines
can be categorized as soft if the output remains useful even after the deadline and
�rm if the usefulness decreases after the deadline. When missing a �rm deadline can
lead to signi�cant consequences, it is a hard deadline. A computer system operating
in real-time and bound by hard deadlines is referred to as a hard real-time computer
system or a safety-critical real-time computer system. On the other hand, if the system
does not have any strict deadlines to meet, it is categorized as a soft real-time computer
system. [35, pp. 9][97, pp. 3]

An example of a hard real-time system is the airbag deployment system in modern
vehicles. When a collision is detected, the airbag system needs to react and deploy the
airbags within a very strict time constraint to ensure the safety of the vehicle’s occupants.
If the deadline is exceeded, this has a signi�cant impact on the functionality of the
system. However, numerous applications in robotic systems require hard real-time, such
as sensor-guided movements. If a robot moves at a velocity of 0.5 m/s and the system
has a delay of a tenth of a second (100 ms), the robot has already moved 5 cm in this
time. If the task is to move the robot into contact with an object in a sensor-controlled
manner, a reaction time of 100 ms is not su�cient. Values between 1 ms and 10 ms shall
be reached.

The fundamental approach to designing a hard real-time system di�ers signi�cantly
from that of a soft real-time system. In a hard real-time computer system, there is an
absolute requirement to maintain a guaranteed and precise timing behavior, even under
all speci�ed load and fault conditions. On the other hand, a soft real-time computer
system can occasionally miss a deadline without severe consequences. Therefore, there
are other characteristics that a hard real-time system must have: [97, pp. 8][57, pp. 9]

- Hard real-time systems must exhibit deterministic behavior, meaning that
response times for critical actions are predictable and known, and there is a �xed
upper limit on processing time that must be guaranteed to be met. The system
behaves consistently, producing similar timing results under the same conditions
and inputs.

- Hard real-time systems should be optimized to have aminimal latency jitter.
For time-critical systems, a distinction is made between the delay of the calcula-
tions (latency) and the jitter of calculations. The latency refers to the time delay
between the occurrence of an event and the system’s response to this event. The
jitter quanti�es the inconsistency in the time intervals between two consecutive
occurrences of an event. For a real-time system, the latency should be constant
and the jitter very low. The jitter should always be a small fraction of the latency.

- Hard real-time systems must be highly reliable to ensure that critical tasks are
always completed correctly and on time without failure or deviation.

- Hard real-time systems have to be highly available. The availability is quanti�ed
as the proportion of time during which the system is prepared to deliver the
intended service.

13

2 Fundamentals

- Real-time systems mustmanage available resources (Resource Management),
such as CPU time, memory, and bandwidth, well to meet timing constraints.

It is also essential to distinguish between real-time and "fast" systems. A real-time
system is de�ned by its ability to accomplish its task within the speci�ed timeframe
consistently. Even if another system can complete the same task much faster most of
the time, it cannot be considered a real-time system if there is a chance of missing the
deadline at any point. [49, p. 4]

2.3.1 Real-Time Communication

Many of the real-time systems are distributed across multiple computing units that
need to exchange information in real-time. Therefore, real-time communication is an
important topic in the sense of real-time systems. Real-time communication systems
must meet the requirements for the timely exchange of data between two or more
compute nodes: [97, pp. 167]

- One requirement is timeliness. The main distinction between real-time and
non-real-time communication systems is the need for minimal message-transport
latency and low jitter. In a distributed real-time system, the same times are
required as in a locally executed real-time system, plus the transmission time
between computation nodes. Information about the system must be read, for
example, by sensors, the data must be processed, and the resulting control com-
mands must be given back to the system. If reading, processing, and writing
back are now done on several di�erent processing nodes, then the data must be
exchanged between each step, so the exchange times should be as minimal as
possible. Real-time data needs to be accurate at the precise moment of use. In a
distributed system, the only way to check temporal accuracy is by measuring the
time duration between observing a real-time event by the sensor and reacting by
the actuator. To achieve this, all involved nodes must have access to su�cient
precision global time base. The responsibility of establishing and synchronizing
this global time among the nodes lies with the communication system.

- Another requirement is the dependability. The system should be highly reliable,
with minimal packet loss or data corruption, to prevent disruptions in commu-
nication. In non-real-time systems, this is achieved by time redundancy. If a
message is lost, it is retransmitted at a later point in time. The problem here is
that this increases the jitter signi�cantly. This is especially not useful for cyclic
messages, as waiting for the following message makes more sense than perform-
ing a time-consuming retransmission. Real-time communication systems often
use error correction and detection techniques for robust channel encoding. For
example, Forward Error Correction (FEC) is used, where redundant information
(error correction codes) are added to the transmitted data. These codes enable
the receiver to detect and correct errors without the need for retransmission.
Another important point for dependability is determinism. Besides determinism’s
temporal guarantees, preserving order is also an important point. Maintaining
the order of messages is crucial in many real-time applications. Deterministic

14

2.3 Real-Time Systems

behavior ensures that messages are processed and delivered in the same order as
they were generated, preventing confusion and data inconsistency.

- A further requirement is the �exibility of real-time communication systems.
Real-time communication systems often encounter varying system con�gurations
that change over time. An ideal real-time communication protocol should possess
the �exibility to adapt to these changes without requiring software or hardware
modi�cations. An adaptation in real-time would be ideal.

Now that the requirements for real-time communication have been de�ned, the di�erent
types of real-time communication will be introduced. A distinction is made between two
types of messages: The event-triggered message and the time-triggered message. An
event-triggered message is produced sporadically when an event occurs at the sender.
The exact timing of events can be uncertain, leading to unpredictable delays in message
transmission. This uncertainty can make it di�cult to meet strict timing constraints in
real-time systems [49, p. 43]. Furthermore, in event-triggered systems, a large number
of messages can be triggered at one point in time. This can result in message overload,
leading to congestion and potential data loss, impacting the system’s dependability.
These complexities can make it challenging to achieve robust and dependable real-time
communication. In contrast, time-triggered approaches, where messages are sent at
prede�ned time intervals, are often preferred in real-time systems, providing better
determinism and timing guarantees. In time-triggered messaging, the sender and
receiver agree on a precise time when messages are sent and received. Normally these
agreed communication schedules are con�ict-free, meaning that the time slot is intended
only for a speci�c message. [97, pp. 167][49, pp. 42]

2.3.2 Real-Time Operating Systems

Now that it is clear what the requirements of a real-time system are and what pos-
sibilities there are to communicate in such a system, it is still necessary to mention
where the execution of these real-time systems takes place. A real-time operating sys-
tem (RTOS) [205, pp. 401][97, pp. 215][57, pp. 355] is an operating system speci�cally
designed to meet the stringent timing requirements of real-time applications. The task
of an RTOS is to respond to external events quickly. Therefore, an RTOS should have
the following capabilities:

- An RTOS should have minimal interrupt latencies. Interrupt latency is the
time span from the moment an interrupt occurs to the moment the CPU starts
to process the interrupt handling. The system must support nested interrupts to
ensure that the processing of low-priority interrupts does not delay the processing
of high-priority interrupts.

- Advanced task scheduling algorithms are needed in RTOS. Tasks in an RTOS
are assigned priorities, and the scheduler ensures that higher-priority tasks are
executed before lower-priority ones. An important aspect of RTOS is also the
preemption. Preemption allows tasks with higher priorities to preempt lower-
priority tasks, ensuring critical tasks are not delayed by lower-priority activities.
However, even with preemptive scheduling, tasks cannot be guaranteed to meet

15

2 Fundamentals

their deadlines. The system must use a suitable scheduling algorithm that can
achieve this goal.

- RTOS should provide mechanisms for inter-task interaction. Inter-task inter-
actions in real-time systems refer to the techniques used for communication and
coordination between di�erent tasks running concurrently within the RTOS. In
real-time applications, multiple tasks often need to work together to achieve a
common goal, and e�ective communication between them is essential for proper
system operation and synchronization.

- RTOS should have short critical regions. Critical regions refer to code sections
in a task where a speci�c resource or data structure needs to be accessed atomically.
Short critical regions are essential in RTOS applications to achieve correct and
deterministic behavior.

There are multiple scheduling procedures to ensure real-time capability. Scheduling
procedures for real-time systems are classi�ed into static and dynamic scheduling. AStatic Scheduling

scheduler is static when the scheduling decisions are made before the execution of a
task or process. Tasks are assigned �xed priorities based on their criticality and timing
requirements, and the scheduler follows a prede�ned scheduling policy. These processes
are also deterministic. Often used static scheduling methods in real-time systems are
priority-based First-In First-Out (FIFO) or priority-based Round Robin (RR). FIFO isPrioritized FIFO

Scheduling one of the simplest scheduling algorithms and follows the principle of First-Come-
First-Served. The tasks are executed in the order in which they arrive. The addition of
priorities means that tasks are processed not only according to arrival but also according
to priority. So, higher-priority tasks are executed before lower-priority ones. Once a
task is started, it continues until it is completed or preempted by a higher-priority task.
If a higher-priority task has been completed or enters a waiting state, the scheduler
selects the following task with the next highest priority to run. The problem with this
scheduling method is that processes cannot preempt other processes with the same
priority. Prioritized RR combines the concept of priority-based scheduling with thePrioritized Round

Robin Scheduling time-sharing nature of Round Robin scheduling. The scheduler maintains separate
queues for each priority level. At the beginning of scheduling, the highest-priority
queue is chosen, and tasks within that queue are executed in a Round Robin manner,
each receiving a �xed time slice of CPU time. If a higher-priority task becomes ready
while a lower-priority task is executed, preemption occurs, and the higher-priority task
takes over. Once a task is completed, the next task of the highest available priority is
chosen. [24, pp. 403][97, pp. 248]

Dynamic scheduling involves scheduling decisions during runtime based on the currentDynamic

Scheduling system state. Priorities and scheduling parameters can be adjusted dynamically during
execution in response to changing task demands. Dynamic scheduling allows for better
adaptability to varying workloads but is not deterministic. A dynamic schedulingEarliest Deadline

First Scheduling technique is Earliest Deadline First (EDF) scheduling. EDF assigns priorities dynamically
based on the deadlines of the tasks. The task with the earliest absolute deadline is given
the highest priority, and preemption is used to ensure deadlines are met. [24, pp. 279][97,
pp. 253]

16

2.3 Real-Time Systems

Preempt RT Linux

A Linux system with Preempt-RT kernel [179] was used as the real-time operating
system for the following experiments. Preempt-RT Linux is a speci�c variant of the
Linux kernel that incorporates real-time preemption patches. These patches aim to
enhance the real-time capabilities of the Linux operating system, making it more suitable
for time-critical and deterministic applications. Other real-time approaches for Linux
systems are usually based on cokernels. In cokernel approaches, an additional kernel is
used to manage real-time threads besides the classic Linux kernel. The most common
cokernel approaches are RTLinux [208], Xenomai [60] and RTAI [120]. Preempt-RT
aims to maintain a single-kernel approach with low latencies and predictability. This
makes the implementation of real-time applications similar to non-real-time applications.
Only other scheduling mechanisms and priorities have to be set for real-time processes.
Furthermore, there are additional protection mechanisms integrated into the kernel. For
example, the system call mlockall disables memory swapping, which may lead to page
faults, impacting the latency of a system. Another advantage of Preempt-RT is that
an application can be run in real-time mode without being rewritten since no special
system calls are used for real-time execution. In addition, in Preempt-RT, di�erent
schedulers are available for real-time execution. In addition to the classic Completely
Fair Scheduler (CFS), there are the static scheduling methods FIFO (SCHED_FIFO) and
RR (SCHED_RR) with priorities, and there are also approaches for dynamic schedulers
with EDF (SCHED_DEADLINE) [56]. [179]

2.3.3 Real-Time Applications

Various programming languages can be used to create real-time applications, but one
of the most common programming languages is C or C++. The reason for this is
the e�ciency and performance of such applications. C and C++ allow direct memory
manipulation and have direct access to hardware resources. In addition, C or C++ code is
generated into highly optimized machine code, which is particularly well suited for time-
critical applications. Furthermore, C and C++ provide deterministic behavior, meaning
the developer has complete control over how the code executes. Real-time systems
must avoid unpredictable delays caused by garbage collection or memory management
overhead. C and C++ do not have automatic garbage collection, allowing developers to
manage memory manually and avoid unpredictable memory allocation. Also, C and
C++ have a predictable overhead, meaning the applications can be executed with high
performance, even on systems with low computing power. [98]

However, these points alone do not make all programs written in C or C++ real-time
capable. There are still a few restrictions to be aware of in order to write real-time
applications with C or C++: [94, 185]

- Application shall have a deterministic and predictable behavior. Non-deterministic
features, such as dynamic memory allocation, that lead to unpredictable execution
times shall be avoided in the execution context. Therefore, all programs shall
have a three-phase lifecycle with an initialization phase, a real-time execution

17

2 Fundamentals

phase, and a termination phase. Non-deterministic executions may only be used
in the initialization and termination phases.

- Memory allocations with malloc and new shall only be used in the initialization
phase of an application because these operations are non-deterministic. Also,
standard dynamic data structures like std::vector shall not be used, as they
perform allocations in the background. Care should also be taken with strings. If
the size of a string changes, memory can be reallocated. For applications with no
prede�ned memory space, memory pools can be used with a �xed size of memory
preallocated in the initialization phase and used in the real-time execution phase.
Furthermore, the deallocation shall not take place during the real-time execution.
This means that delete and free operations are only called in the termination
phase of an application.

- Care should also be taken with inheritance in C++. The main problem here is
with virtual functions. C++ creates the virtual method lookup table (vtable) per
class and not per object. If a virtual function is called from an object, the vtable
must be read from the inheriting class. This causes a back and forth jumping
between object memory and the class’s vtable, which is time consuming.

- When using Preempt-RT Linux the system call mlockall should be called at the
initialization phase. The operator ensures that the memory used in the application
is not swapped and unforeseen delays occur.

- Thread creations are also not inherently real-time safe. When a thread is created,
the operating system must allocate resources for the thread’s stack, thread control
block, and other necessary data structures, which are not deterministic. Therefore,
threads must be created in the initialization phase. After generating, the required
scheduling procedures and process priorities shall be set. Before deleting memory
in the termination phase, it is necessary to ensure that all threads accessing these
memory areas have been terminated.

- In systems with multiple cores, the threads should be distributed manually to
the cores. In real-time systems, the CPU cores are usually isolated from each
other, and the threads are bound to a speci�c CPU. This eliminates the overhead
of reordering threads to di�erent cores. [95]

2.4 Distributed Systems

A distributed system is a type of computing system that consists of multiple intercon-
nected independent computers that work together to achieve a common goal. In a
distributed system, these computers communicate and coordinate their processes to
provide a powerful functionality that a single, standalone computer could not o�er.
Three essential points make up a distributed system: Transparency, openness, scalability,
and communication. [200, pp. 1]

The main goal of a distributed system is hiding the physical distribution of its processesTransperency

across multiple computers. When a distributed system seamlessly appears to users and
applications like a single computer system, it is described as transparent. There are

18

2.4 Distributed Systems

di�erent types of transparency. The location can be transparent. Users and applications
can access computing resources without knowing where they are located or how they
are distributed. Further, access to computing resources can be transparent. It should be
consistent to access computing resources. Therefore, the user or application does not
need to know if the computing resources are local or distributed. Additionally, there is
the concurrency transparency. Concurrency transparency ensures that multiple users
or applications can work with the computing resources without coordinating the access.
In this case, the system hides that the resources may be shared by multiple competitive
users or applications. [200, pp. 4]

Openness refers to the principle of designing and implementing systems with a focus Openness

on accessibility, interoperability, and the ability to extend or modify the system quickly.
Open distributed systems rely on open standards for communication, data representation,
and interfaces. These standards enable di�erent components and systems to work
together, reducing integration challenges. The open and standardized interfaces allow
easy expansion or modi�cation to incorporate new functionalities or technologies. [200,
pp. 7]

Another important aspect of distributed systems is scalability. There are two directions Scalability

of scalability: the vertical and horizontal scalability. In a distributed system, the in-
dividual computer nodes can be scaled and replaced by more powerful ones. This is
referred to as vertical scaling. Vertical scalability is limited by the capabilities of a single
computation node and may eventually reach a ceiling where further upgrades become
impractical. Therefore, the system can also be scaled horizontally. Horizontal scalability
involves adding more computation nodes to the distributed system to distribute the
workload across multiple instances. However, achieving scalability in a distributed
system often requires careful design, architecture, and consideration of data distribution,
communication overhead, and synchronization. [200, pp. 9]

Interprocess communication is the core component of all distributed systems. Processes Communication

executed on di�erent machines must be able to exchange information and process data
to other processes. In distributed systems, this information and data is exchanged via a
network between the computation nodes. Interprocess communication over a network
is much more challenging than classical shared memory approaches, as they are used in
non-distributed systems. [200, pp. 115]

19

2 Fundamentals

20

Summary. This chapter clari�es what Plug & Produce means
for a �exible distributed robot cell. What is needed to integrate
new resources, and what problems can arise? In addition, an
overview is given of the case studies for which the Plug &
Produce architecture is used.

3
Plug & Produce in a Flexible Distributed

Robot Cell

The trend in production is moving more and more towards individual production in
which each product is unique. In order to respond to this high level of variability,
the production facilities must also be designed to be highly �exible and customizable.
Plug & Produce in the context of a �exible robot cell refers to a concept where robotic
systems, machinery, and equipment can be easily interconnected and integrated without
extensive manual programming or customization. This makes it possible to quickly
adapt robot production to individual use cases and products without long planning and
changeover times. In this chapter, an example is used to explain what a �exible robot
cell is, what components makeup such a system, and how the components must be able
to interact with each other in order to perform a production task.

When talking about robot-based automation, the robot must be the focus. According
to the de�nition of the Robotic Industries Association (RIA) a robot has the following
de�nition:

“A robot is a reprogrammable, multifunctional manipulator designed to move

material, parts, tools or specialized devices through variable programmed

motions for the performance of a variety of tasks” (RIA [40, p. 262])

Based on this de�nition, a robot can perform �exible production tasks with di�erent
tools and special devices. What is still missing is that the robot can change tools
independently and perform new tasks without reprogramming the whole system.

Figure 3.1 illustrates with an example the main components of a �exible robot cell.
The basic component is the robot itself. In this example, a 6-axis manipulator also
known as a 6-axis robot. These robots are widely used in various industries, including
manufacturing, automotive, aerospace, and electronics, due to their ability to perform
complex tasks. The combination of these six axes allows the manipulator to move
in six Degrees of Freedom (DoF) to achieve almost all positions and orientations in
three-dimensional space within the range of the robot. This �exibility makes these

21

3 Plug & Produce in a Flexible Distributed Robot Cell

6-Axis

Manipulator

Automatic Tool

Changing System

Di�erent Tools

(e.g. Vacuum Gripper, Parallel Grippers, Screwer, ...)

Figure 3.1. Basic components of a �exible robot cell

manipulators well-suited for tasks requiring intricate movements, such as assembling
small components, welding, painting, gluing, material handling, etc. Various tools can
be attached to the robot. Depending on the tool, di�erent tasks are possible. For example,
a sensitive gripper can handle small components, while a glue gun is used for gluing. In
order to give the robot or the robot cell the ability to change its tool independently and
thus adapt to system requirements, an automatic tool changing system is necessary. An
Automatic Tool Changer (ATC), is a mechanism designed to enable a robot to switch
quickly and autonomously between di�erent tools or end-e�ectors without manual
intervention. Thus, the same robot can perform a variety of tasks by using di�erent
tools, allowing for more �exible manufacturing processes. As shown in Figure 3.1, using
the robot with four di�erent tools is now possible. In this case, it would be possible to
switch between a vacuum gripper, two parallel grippers and a screwdriver.

This structure alone does not make a plant highly �exible. There are still some problems
to be solved. Therefore, the problems are now discussed, and solutions to these problems
are presented. Although switching between several tools is possible, the programmer
must write a new robot program for each process. In addition, the control of the tool
has to be integrated into the overall control of the robot cell so that the system or robot
is able to interact with the tool. Even when the point is reached that all currently known
tools have been integrated, the problem remains when a new tool is added for a new

22

task. Then again, the tool must be integrated, and the programming of the task must be
completed.

Solution:

- Each component can communicate via a uniform interface.

- Each component can introduce itself (Self-Introduction) and provide the
system with a self-description of the component’s skills, interfaces, and
properties.

Another problem can occur when one of the tools breaks. For example, if one of the
parallel grippers breaks. The logical conclusion would be that the other parallel gripper
is simply responsible for carrying out the activity the other gripper did �rst. However,
this is not possible without further e�ort since the gripper control may be di�erent, or
the gripper dimensions may vary slightly, which in turn means that the programmer
must adjust the programming or parameterization of the task. If the second parallel
gripper fails, it would theoretically be possible to handle a component with the vacuum
gripper. Here again, the complete control of the gripper would change, and in any case,
the gripping position would change, which in turn has to be adjusted manually.

Solution:

- Similar skills of the components are combined and given a uniform control
interface. For example, both the parallel gripper and the vacuum gripper
have the skill to grasp.

- The property descriptions of the component can be used to customize the
process. For instance, the dimension of the gripper can change the gripping
position.

Now that the tools can be integrated and the skills, interfaces, and properties are known,
there is still the problem of programming the di�erent changing tasks. If yesterday’s
task was to move a product X with a parallel gripper from position A to position B and
the new task is to move a product Y with a vacuum gripper from position C to position
B, then the entire task must be reprogrammed.

Solution:

- Development of reusable parametrizable software modules that perform
recurring tasks or skills, which are built upon the skills of the components.
For example, a software module for the pick and place skill has positions as
parameters and can be executed with di�erent components that can grasp.

In most cases, several components are needed to implement skills. For example, if the
task is to screw a screw into a component, a robot is needed to carry out the movement
and a screwdriver to do the screwing. This creates a distributed system consisting of

23

3 Plug & Produce in a Flexible Distributed Robot Cell

a robot and a gripper. In such distributed systems, new problems arise. One issue is
the timing dependencies between distributed components. For the given task there is
an exact dependency between the pitch of the screw to be screwed in, the screw hole
depth of the component to be bolted, the rotation velocity of the screwdriver, and the
movement velocity of robot that moves the screwdriver. If the robot moves too fast,
the robot pushes the screwdriver with too high force onto the screw and can damage
the screw or the screwdriver. The same happens when the robot starts to move while
the screwdriver is not yet in rotation. In the reverse case, when the screwdriver starts
screwing in before the robot moves, the screwdriver can slip o� the screw. It is, therefore,
necessary that the components can exchange their data and control commands without
delays. Especially if additional sensors, such as force or distance sensors, are added to
the robotic system and the robot movement is to be in�uenced depending on the sensor
values, the communication between robot and sensor must be carried out without long
delays.

Solution:

- The distributed components should be connected via a uni�ed communica-
tion channel to exchange data and control commands in real-time between
the components.

- The communication channel must be dynamic and deal with changing
components.

- The modular software components shall be distributable in the system as
required.

A problem that remains is that the programmer must know all the components in a
system and de�ne a con�guration that can perform a given task. For example, the
task is to transport product X from position A to position B. Now, the programmer
decides which gripper is suitable for moving the component and selects a robot that
can carry the payload of the product plus that of the gripper. The programmer must
also check whether the robot is suitable for attaching the gripper to the robot with all
the mechanical and control interfaces and whether the robot can reach positions A and
B. He can make the customized application if all boundary conditions are met.

Solution:

- The precise self-description of the components with their interfaces, skills,
and properties allows us to �nd possible con�gurations suitable for execut-
ing a corresponding task.

- Either possible system con�gurations can be suggested to the programmer,
or the system itself can select a possible con�guration, con�gure itself
accordingly, and then execute the task.

24

Figure 3.2. Possible execution sequence of the exemplary task sequence. The circle

represent tasks Task , while the arrows represent the execution order

One last problem that remains is that if several tasks are to be executed that have
dependencies on each other and cannot be executed simultaneously, the order of the
tasks to be processed must be determined. For example, there is a four-step process: drill
a hole, cut the thread, insert a screw, and tighten the screw. There is a clear sequence in
which the individual steps must be carried out. Now the additional task of placing a
washer on the screw is added. This task only has the dependency to be performed before
the screw is inserted. Thus, there are already three possible sequences of execution.
Figure 3.2 shows the possible execution order for the initial process and the possible
execution order after adding the task Insert Washer. The problem here is that determining
the order of execution is becoming increasingly complex. In addition, there are also
dependencies on tools. The two inserts can be executed with a gripper. The drilling
requires a drill, thread cutting requires a thread cutter, and the tightening of the screw
requires a screwdriver. This in�uences the optimal sequence in which the number of
tool changes should be minimal.

Solution:

- Automatically orchestration of the tasks, taking into account the depen-
dencies of the execution order and the associated tools.

- Adding preconditions and postconditions for the tasks allows easier auto-
matic determination of the execution order

If all these problems can be solved, we can talk of a highly �exible Plug & Produce
capable robot cell. In the following chapters, the individual solutions presented brie�y
will be discussed in detail. The resulting solution is then examined in two di�erent
scenarios. On the one hand, an industrial case study is carried out on how the techniques
can be used to handle and produce components in a highly �exible Plug & Produce

25

3 Plug & Produce in a Flexible Distributed Robot Cell

Figure 3.3. Industrial high �exible robot cell

capable robot cell. On the other hand, it is shown how these techniques can be applied
to simple processes that everyone knows, as making co�ee.

Figure 3.3 shows the industrial scenario with two robots equipped with ATCs and addi-
tional production facilities that can work together to perform a handling or production
task. Figure 3.4 presents a scenario where the robot can prepare a co�ee with a porta�l-
ter co�ee maker. Co�ee preparation also requires di�erent tools for the individual
process steps. These two completely di�erent case studies will be used to explore how
modular software constructs can be used to implement the capabilities of components
and processes. It is checked how it looks with the reusability of these software modules
in totally di�erent use cases. Whether the chosen solutions are suitable for the problems
shown will be clari�ed in Chapter 10.

The following chapters will use parts of the presented example with the basic compo-
nents of a �exible robot cell shown in Figure 3.1 to explain the concepts of real-time
capable Plug & Produce for robot-based automation.

26

Figure 3.4. A robot cell for making co�ee

27

3 Plug & Produce in a Flexible Distributed Robot Cell

28

Summary. This chapter describes the basic concept for build-
ing a Real-Time Capable Plug & Produce environment. For
this purpose, the objectives for such a concept are de�ned, and
a uniform Real-Time Capable Plug & Produce architecture is
described. Also, the main components of the architecture are ex-
plained, which will be discussed in more detail in the following
chapters.

4
Concept of a Real-Time Capable Plug &

Produce Environment

4.1 Fundamentals . 30
4.1.1 Skills, Capabilities and Services 30
4.1.2 Asset Administration Shell 30
4.1.3 Open PlatformCommunicationUni�edArchitecture (OPCUA) 32
4.1.4 Time-Sensitive Networking (TSN) 34
4.1.5 OPC UA over TSN . 35

4.2 Real-Time Capable Plug & Produce 35
4.3 RealCaPPArchitecture (Real-TimeCapable Plug&Produce

Architecture) . 36
4.3.1 A Uniform Communication Interface 36
4.3.2 Asset Administration Shells for Robot Components . . . 37
4.3.3 Modular Real-Time Capable Software Components . . . 39
4.3.4 Global Knowledge of Resources, Products and Services . 39

4.4 Related Work . 40

To make automation systems as �exible and robust as possible, it must be feasible to
adapt the system at runtime, both the physical and cyber parts of the system. Such a
system should have the option to add components at runtime, replace them with others,
or remove them. Also, the system needs the capability to change the processes to be
executed or to add new ones without signi�cant adjustments by programmers or system
integrators. For example, if a robotic system can assemble circuit board components
with one gripper, the system must be able to easily recon�gure to assemble aluminum
structures with gripping and screwing processes without completely reprogramming
the robot cell. Therefore, the system must understand the individual components, what
characteristics and skills the components have, and whether these skills match the task
the system is being asked to perform. After the system is aware of whether a task can be
executed, the requirement is to execute the tasks distributed even under hard real-time
requirements on the created system. In this chapter, the base architecture is presented

29

4 Concept of a Real-Time Capable Plug & Produce Environment

that enables �exible and robust automation system design through real-time capable
Plug & Produce.

The Real-Time Capable Plug & Produce (RealCaPP) approach presented in this thesis
shows how a system must be designed with the help of descriptions of components,
processes, and products, a uniform real-time capable communication interface, and
a real-time capable execution concept to cope with the mentioned requirements of
�exibility and robustness. First, the fundamentals necessary for such an architecture
are discussed, and related work is considered (cf. Section 4.1). Section 4.2 explains what
Plug & Produce is and elaborates the di�erences between a real-time capable Plug &
Produce system. How a basic architecture for real-time capable Plug & Produce looks
like and which components it consists of is explained in detail in Section 4.3.

4.1 Fundamentals

Before discussing the concept of a Real-Time Capable Plug & Produce environment,
a recapitulation of some of the techniques used to integrate and communicate with
hardware resources is described.

4.1.1 Skills, Capabilities and Services

In the following chapters, there will be repeated references to skills, capabilities, and
services, so these terms will be brie�y explained, and the respective commonalities and
di�erences will be elaborated:
A capability refers to an overall potential or capacity of functionalities that a componentCapability

or system possesses. Capabilities include a combination of di�erent factors such as
characteristics, hardware components, or speci�c technologies that enable a special
functionality. Due to the driven axes of a robot, a robot basically has the capability to
move.
In the automation context, a skill is a speci�c ability that a system or componentSkill

can acquire through programming. These skills enable the system or component to
e�ectively perform certain tasks or actions. For instance, a robot might possess the skill
to grasp objects with a certain type of gripper. The distinction between capability and
skill is often very di�cult, as there is a smooth transition here.
A service refers to a speci�c task, function, or activity that a component or systemService

performs to achieve a particular goal. Services use the skills and functions of a system
or component to perform tasks. A service, for example, would be the executable skill of
a robot to move an object. [96, 186]

4.1.2 Asset Administration Shell

In order to enable multiple components from di�erent manufacturers to work together
and exchange information, a uniform description of the individual components must
be available. For this purpose, so-called Asset Administration Shells are used. An
Asset Administration Shell (AAS) [20] is a digital representation of objects with their
characteristics and behaviors. Figure 4.1 shows the structure of an AAS.

30

4.1 Fundamentals

Asset Administration Shell (AAS)

Asset (e.g. Robot)

Manifest

Component-Manager

Representation of information

Technical functionality

I4.0 Component

Submodel 1

C
o

m
p

o
n

e
n

t-
M

an
ag

e
r

Submodel 2

Submodel 3

Identification Assets

Identification ASS

. . .

Manifest

Manifest

Manifest

Manifest

Strict, coherent format
Different, complementary

data formats

Runtime data

of the asset

Views APIs

=

Figure 4.1. Structure of the Asset Administration Shell (Adapted from [22])

In this context, an asset is an object and can be either abstract, for example, a part of
software, or physical, for example, a robot or a tool of a robot. An AAS consists of an
externally accessible table of content for the self-description called manifest that links to
the functional and non-functional information of the asset, a component-manager that
manages the exchange with the actual asset, and multiple submodels, which represent
di�erent aspects of the asset. The submodel can be descriptive, for example, what is Submodel

the maximum payload or the maximum velocity of a robot, or it can contain process
capabilities, such as moving a robot from a start con�guration to a target con�guration.
These submodels make it simple to add descriptions or behaviors for appropriate use
cases. For example, if information about the energy e�ciency of a robot is required,
a submodel can be added for this use case. In addition, the AAS o�ers several views
that provide the data from the asset and the AAS to other components. Via views, it is
possible to provide di�erent data to di�erent user groups [160]. For example, a developer
of an asset is shown more information than an operator of an asset. Also, there are APIs
for accessing the AAS and the asset. [22]

The combination of an asset with its AAS is an Industry 4.0 Component (I4.0 Com- I4.0 Component

ponent). An I4.0 component must be able to communicate with other components
with either a passive communication capability (e.g., communication with RFID tags),
active communication capability (e.g., �eldbus communication), or an Industry 4.0 com-
pliant communication capability (e.g., OPC UA communication). [43] OPC UA (see
Section 4.1.3) serves as one of the exchange formats for I4.0 components, but also data
formats like XML, JSON, Resource Description Framework (RDF) or AutomationML can
be used. [20]

It is also possible to nest multiple I4.0 components into a more comprehensive I4.0
component. With nesting, it is possible to describe even more complex composite I4.0

31

4 Concept of a Real-Time Capable Plug & Produce Environment

components by Composite Administration Shells, for example, a robot with its toolsComposite Ad-

ministration Shell and sensors can be combined into a robotic system, which has higher-level descriptions
or capabilities. For example, a robotic system consisting of a robot and a gripper can
perform the skill to move an object from a starting point to a target point. [21]

4.1.3 Open Platform Communication Uni�ed Architecture (OPC UA)

An essential part of the developed architecture is the Open Platform Communication
Uni�ed Architecture (OPC UA) standard [81] that is considered as a key technology
of Industrie 4.0 for connected manufacturing [73]. OPC UA is a platform and vendor-
independent interoperability standard for data exchange in industrial automation sys-
tems. The OPC UA standard consists of several speci�cations developed in collaboration
with various representatives from industry and research. OPC UA goes beyond a pure
data exchange standard. It is much more a standard that contains a comprehensive infor-
mation model and services to access and exchange data between multiple information
models that can be available locally or distributed on di�erent devices. The information
model contains the actual data, the associated metadata, and links between the data in
an object-oriented manner.

Figure 4.2 shows the system architecture of OPC UA. There are two basic concepts
for exchanging information via OPC UA. There is client-server communication and
publish-subscribe (Pub-Sub) communication. Several protocols can be used for the
actual network transmission, which can be selected depending on the use case. The
communication interfaces can access the data of the information model via an abstrac-
tion layer (Information Model Access). In order to simplify standardization, there are
prede�ned information model blocks that can be used (Information Model Building

Figure 4.2. OPC UA system architecture for the combination of communication inter-
faces and the information model (Adapted from [143])

32

4.1 Fundamentals

Figure 4.3. OPC UA Client-Server interaction (Adapted from [135])

Blocks (Meta Model)). Based on this metamodel, the information can be stored in the
information model (Core Information Models). To avoid that every manufacturer or
developer arranges his information model in di�erent structures, there are companion
speci�cations that standardize the information model for a domain (Companion Infor-
mation Models). For example, a companion speci�cation for robotics de�nes which
information a robot needs and in which structure the data is stored. Based on these basic
information models, it is possible to add additional vendor-speci�c information. [143]

The OPC UA Information Model utilizes the concept of Object-Oriented Programming OPC UA

Information Model(OOP) for the representation of information. OPC UA uses OPC UA Nodes as fundamen-
tal representations for information and behaviors in the information model. Nodes can
represent information like variables, data types, methods, or events. Via relations, nodes
can be interconnected with each other. In addition, classic OOP functionalities such
as inheritance, polymorphism, abstraction, and encapsulation can be used. Each data
element that can be accessed in the information model is de�ned as an OPC UA Object
which inherits from OPC UA Node. An OPC UA Object can contain variables, methods,
and events with the corresponding metadata, like data types or method parameters.
This allows all information about an automation system to be stored in linked OPC UA
Objects containing information and providing executable methods. [141]

Via the communication interfaces, it is possible to access objects of the information
model or to synchronize the information over several distributed information models.
An OPC UA system that communicates via client-server communication is composed of OPC UA

Client-ServerOPC UA Servers and OPC UA Clients that can interact with each other. Each system
can contain multiple clients and multiple servers. Each server can interact with one or
more clients. The same applies to the interaction between clients and servers. Figure 4.3
shows the client-server interaction in an OPC UA system. If communication occurs
across multiple servers, a component must provide both a server and a client. For
communication, the client sends requests in form of service requests to the server.
The server decodes the request and locates the service to be executed. These services
range from simple read and write commands for data over method calls to services
for recon�guring the server [139]. These services can access OPC UA objects of the
informationmodel and interact with them. If a service is found and executed successfully,
the server sends a corresponding response to the client. Due to the requests, client-server
communication is not suitable for constantly changing data and many-to-many data
exchange. In addition, each request and service decoding takes time, resulting in higher
latencies, which is especially problematic for real-time critical transmissions [37].

33

4 Concept of a Real-Time Capable Plug & Produce Environment

The OPC UA Client-Server communication also has a link to data and event noti�cations
(cf. Figure 4.2). It is possible to make so-called Subscriptions on data elements and events
of the server. This Subscription is generated by the client and is stored in the server. ForClient-Server

Subscriptions the observed elements, either on change or at regular intervals, messages are sent to the
client. All transmissions are connection based, so it is more suitable for a one-to-one
relationship between client and server. [135, 139]

OPC UA Publish-Subscribe (Pub-Sub) allows many-to-many communication and hasOPC UA Pub-Sub

the advantage of not being request-based. Therefore, it is particularly suitable for con-
stantly changing data, such as sensor values. OPC UA Pub-Sub uses a message-oriented
middleware for the communication. There are two types of communication participants:
OPC UA Publishers and OPC UA Subscribers. Both publisher and subscriber are OPC UA
Servers and have their own information model. OPC UA Publishers access the infor-
mation model, wrap the speci�ed OPC UA objects into a message and transmit these
messages to the message-oriented middleware, not knowing who receives the messages.
OPC UA Subscribers can express interest in the information, connect to the message-
oriented middleware and access the required data, unpack the OPC UA Objects and
write them into the information model. Therefore, the subscriber does not need to know
who the publishers are. Pub-Sub communication thus has the advantage that the system
remains scalable, as new publishers or subscribers can be added easily, and the cycle
times for transmissions can be scaled to very high frequencies because asynchronous
communication is used. Depending on the application, di�erent message-based middle-
wares can be used, ranging from broker-based communications such as MQTT (Message
Queueing Telemetry Transport) [70, p. 9] to broker-less communications that use the
transport medium as middleware, such as UDP multicast. [136]

4.1.4 Time-Sensitive Networking (TSN)

Time-Sensitive Networking (TSN) refers to a series of standards that add real-time capa-
bilities to standard ethernet. The goal of TSN is to provide a deterministic communication
standard that enables both real-time critical and non-real-time critical communication
over ethernet. This means that packet transport with limited latency, low variation
in packet delay, and very low packet loss shall be guaranteed. [78] Since even with
priority approaches like Class of Service (CoS) [11], latencies could not be guaranteed,
as already sent messages with low priority can not be aborted [113].

In the TSN standards a distinction between three tra�c classes are made: Best-E�ort
tra�c, Credit-Based tra�c and Time-Aware tra�c. Best-E�ort is the lowest-priority
tra�c class. It has no real-time guarantees and is used for traditional data communication,
like sending an email. Credit-Based is a mid-priority tra�c class in TSN. It can be used
for soft real-time transmissions. Credit-Based Tra�c uses a Credit-Based Shaper (CBS),Credit-Based

Shaper published as Standard IEEE 802.1Qav [5]. Each data stream with the Credit-Based
priority can reserve bandwidth for the transmission. The CBS then allocates the total
bandwidth fairly among competing Credit-Based streams. Therefore, streams with a
higher credit rate can send their data earlier. An example of Credit-Based tra�c would
be the camera data for monitoring a process.

34

4.2 Real-Time Capable Plug & Produce

Time Slot 1

Real-Time Critical

Time Slot 2

Best Effort
Time Slot 2

Best Effort

Time Slot 1

Real-Time Critical

Cycle n Cycle n+1

... ...

Time Slot

Time t

1 2 1 2

Figure 4.4. TSN time division multiplexing with reserved time slots to enable the
transmission of periodic real-time data. In this example, one time slot is reserved for
real-time critical data transmission, and the rest of the cycle can be used for best-e�ort
data tra�c. (Adapted from [77])

The TSN standards also guarantee a bounded end-to-end latency for real-time sen-
sitive data tra�c. The most important component of the TSN standards in terms of
bounded end-to-end latencies is the Time-Aware Shaper (TAS), published as Standard Time-Aware

ShaperIEEE 802.1Qbv [6]. TSN uses Time Division Multiple Access (TDMA) [127, p. 33] as a
fundamental concept. It divides time into cycles, discreet segments of equal length.
Each cycle is divided into time slots. These time slots can be used to transmit data
packets with real-time requirements. An example can be seen in Figure 4.4. The TAS
temporarily interrupts conventional Best-E�ort ethernet tra�c so that real-time critical
data tra�c can be transmitted within a reserved time slot. [6]

In the further course of the work, the focus is on the hard real-time transfer with the
TAS. In Section 7.1.1, further fundamentals of TSN are shown.

4.1.5 OPC UA over TSN

The two technologies OPC UA and TSN can be combined to OPC UA over TSN, which
enables data transfer in industrial production in real-time using a uniform, vendor-
independent and open standard. OPC UA over TSN uses the TSN-network as message-
based middleware for the transmission over OPC UA Pub-Sub. This means that only
the data-link-layer of the OSI model (Open Systems Interconnection model) [194] adds
the TSN mechanisms. In this process, the raw data is packed directly into ethernet
frames without the semantic enrichments of the information model and sent via TSN
as real-time critical data. For the transmission of the data the highest priority is used
and the data is sent as Time-Aware tra�c. By combining the two techniques it is
possible to get all the advantages of both techniques. TSN ensures a deterministic
communication, while OPC UA provides a standardized information model for the
interoperability of production components. Even large distributed production plants
with real-time communication can thus be implemented in a scalable manner. [31, 32]

4.2 Real-Time Capable Plug & Produce

First, it must be clari�ed what is meant by the term Plug & Produce. Plug & Produce, also Plug & Produce

known as Plug & Work, de�nes the automatic integration, modi�cation or removal of
production resources in industrial plants [17]. Approaches for Plug & Produce require an

35

4 Concept of a Real-Time Capable Plug & Produce Environment

environment where smart devices can be easily plugged in and communicate with other
devices, exchange products, device descriptions, or process models in order to begin
producing a particular product. While most Plug & Produce approaches focus on how
devices can be found or removed, these approaches neglect the fact that hard real-time
execution is required for later execution in many application domains. Since industrial
plants aremainly distributed systems, the communication between the individual devices
must also be capable in real-time to guarantee execution in real-time.

In this thesis, an approach is developed how robots and industrial components can
autonomously assemble into a smart robot-based manufacturing system. Such a manu-
facturing system consists of a set of industrial components and robots, each o�ering
di�erent manufacturing services (skills). These services can be used individually or in
combination to perform manufacturing tasks in the system. For this purpose, the follow-
ing objectives must be met to realize a real-time capable Plug & Produce architecture:

- Robots and industrial components can be added and removed at system runtime.

- The robots and industrial components are controlled and monitored via services.

- Each service shall be executable in real-time.

- Combinations of services can be executed locally on one device or distributed on
multiple devices in the system without losing real-time guarantees.

- All production processes are implemented as a combination of services and can
be added, changed, or removed during the system’s runtime.

- Information on processes, products, and resources are merged into a uni�ed data
source and can be used for execution.

In the following, the concepts that meet the required goals are shown.

4.3 RealCaPP Architecture (Real-Time Capable Plug &

Produce Architecture)

The approach presented in this thesis aims to design and implement a Plug & Produce
environment with intelligent cyber-physical systems for an adaptive industrial produc-
tion plant. Figure 4.5 shows the basic system architecture for real-time capable Plug
& Produce. The Plug & Produce environment consists of a uniform communication
interface to communicate and exchange data between components, several resources,
e.g., a robot or a gripper, that combine into a robotic system, and management compo-
nents that collect and link data, analyze the system, or handle the addition or removal
of resources and skills.

4.3.1 A Uniform Communication Interface

A uniform communication interface is essential for an architecture in which componentsNon-Real-Time

Communication can act in a distributed manner. A middleware via ethernet is used as a connecting link
between all architecture components. A basic distinction is made between two types of
communication: Non-real-time capable communication is used for the con�guration of
the system and the exchange of information and non-real-time critical data. For this

36

4.3 RealCaPP Architecture (Real-Time Capable Plug & Produce Architecture)

Ethernet

S
k

il
l

R
e

g
is

tr
y

Skill Descriptions
Software Component

Descriptions

S
k

il
l

C
o

m
p

o
se

r

Composed Skill

Spezifications

Software Component

 Spezifications
< / >

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

< / >

Robot Gripper Force-Torque Sensor

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

P
ro

d
u

c
t

R
e

g
is

tr
y

Product / Part Description

Figure 4.5. System architecture for a real-time capable Plug & Produce environment
using OPC UA and OPC UA over TSN as middleware. (See Eymüller et al. [54])

type of communication, OPC UA client-server communication is used, which does not
support transmissions in real-time. This type of communication is represented in yellow
in Figure 4.5. The advantage of this communication layer is that a connection between
components can be established without prior con�guration. This also facilitates the
addition of new components to the system.

The second type of communication contains real-time critical data. Particularly, for Real-Time

Communicationcontrol or feedback tasks of robotic industrial plants, hard real-time is required. Sensor-
controlled movements are one example of hard real-time critical data exchange, where
the sensor value must be read, communicated, processed, and transmitted to the robot
in one cycle. Otherwise, jerky paths can occur, which can damage the robot’s gears.
Hard real-time communication structures require a complex con�guration, e.g., the
reservation of communication times or message priorities. For the con�guration of
the real-time communication channels, the non-real-time capable communication via
OPC UA is used. OPC UA over TSN is used for hard real-time communication. The
OPC UA over TSN communication paths are represented in orange in Figure 4.5. After
the con�guration, the OPC UA publish-subscribe mechanism is applied, and data are
transmitted via TSN scheduled tra�c via reserved time slots to avoid any delay from
the network.

4.3.2 Asset Administration Shells for Robot Components

The system consists of di�erent resources. A resource is a hardware component in
an automation system, for example, a robot, a sensor, or a robot tool. Each resource

37

4 Concept of a Real-Time Capable Plug & Produce Environment

has an asset administration shell describing the device and its capabilities. This AAS
consists of three essential parts: the control services, a description of the resource and
its capabilities, and a uniform communication interface. The resources and the AASs
are shown at the bottom of Figure 4.5.

The �rst part of the AAS is the control services. The control services provide the direct
interface to the actual hardware. There are low-level hardware drivers for controlling
and interacting with the hardware resources. Since the user of such a system does not
want to deal with these low-level drivers later on, so-called Basic Skills are used. A
Basic Skill is an executable service that hides the hardware control from the user. ForBasic Skill

example, a robot has the Basic Skill to move to a position or a gripper has the Basic Skill
to grip or release. This abstraction makes it possible to replace di�erent resources with
other resources of the same type since the Basic Skills are identical. For instance, a
gripper of vendor A can be replaced by a gripper of vendor B, because both grippers
have the Basic Skills grip and release. In order to be able to perform more complex skills,
it must be possible to combine several Basic Skills into more complex skills. For this
purpose, there are so-called Composed Skills. Composed Skills are executable servicesComposed Skill

that use Basic Skills and supplements them with logical operations or sequences. For
example, the Composed Skill to move an object from a start position to a target position
can be combined through a sequence of the Basic Skills grip, move to position, and release.
Here again, interchangeability is important since the de�nition of the Composed Skill is
not dependent on explicit hardware. For adding Composed Skills or other additional
software components there is the possibility in the AAS to add software componentsAdditional

Software

Component

at runtime. This allows production processes to be adapted at runtime or add new
processes or skills to the system.

Another important part of the AAS is the description of the resource and its capabilities,
the so-called self-description. A precise description of the resource is required for easySelf-Description

interchangeability of devices and for �nding devices for certain applications. With this
detailed description, it is then possible to customize executable skills. If, for example, a
gripper is replaced, the new gripping position can be adjusted via the description of the
new gripper without having to adjust the logic of the skills. In addition, it is also possible
to use the description to search for suitable components for a production process. For
instance, a component with a �xed weight needs to be moved, then robot resources can
be searched for that have the appropriate payload based on the description. However,
not only is the description of the resource essential, but also the description of the skills
and the description of the additional software components is essential. In the description
of software components, dependencies between software modules are described, and
how the corresponding interfaces for the execution of services are de�ned. Supposed
that a description of the Composed Skill move an object has to be made, it must be clearly
de�ned that it depends on the Basic Skills move to position, grip, and release. Furthermore,
it must be de�ned that the parameters of the Composed Skill are the object to be moved
and the target position. Therefore, software components that are loaded at runtime
must also be equipped with a corresponding description.

The third part of the AAS is the uni�ed communication interface. The communicationAAS Communi-

cation Interface interface creates a network between multiple devices and allows other elements in the

38

4.3 RealCaPP Architecture (Real-Time Capable Plug & Produce Architecture)

system to access descriptions and control services of other resources. Each resource
AAS has the OPC UA interface for non-real-time critical data, like the transmission
of descriptions across multiple AASs. In case data needs to be exchanged between
control services, e.g., Basic Skills or Composed Skills, that are distributed across multiple
resources, the OPC UA over TSN communication channel is used for the real-time
critical transmission of the data.

4.3.3 Modular Real-Time Capable Software Components

To ensure real-time execution of skills, Composed Skills and other additional software
components, the software components must be designed accordingly. Furthermore,
there is the additional requirement that the individual software components can also
run on several distributed resources. For example, it must be possible for an application
consisting of a robot, a force-torque sensor, and a gripper (as depicted in Figure 4.5)
to set down an object in a force-controlled manner. The application would consist of
the Basic Skills move to position, release, and measure force, which are available on three
di�erent resources. Depending on the resource on which the Composed Skill place object

force-based is loaded, the information of the other Basic Skills must be transferred to the
corresponding resource via the communication interface without losing the real-time
guarantees.

For this purpose, modular real-time capable software components were developed,
so-called Real-Time Services (see Section 8.4.2 for more details), which can be loaded Real-Time Service

to a resource at runtime, are executed with real-time guarantees and can call other
Real-Time Services, that may be available local or on other resources. All Basic Skills,
Composed Skills, and additional software components in the system are implemented
through Real-Time Services. This uni�cation of the software components makes it
easy to replace or add new software components. By standardizing the service, the
service call interfaces are also standardized, which makes distribution easier. Whether
the service call is executed locally or distributed, the information transfer between the
services varies. In the local case, the shared memory of a resource is used with very
low deterministic latencies. In the distributed case, the information of the Real-Time
Services are transferred in real-time via the OPC UA over TSN middleware with slightly
higher but also deterministic latency.

4.3.4 Global Knowledge of Resources, Products and Services

In addition to the resources with its AAS and a uniform communication channel, it is
necessary to have global knowledge about the system. A global collection point for
knowledge about all resources, their skills, the additional software components, and the
products to be produced. In Figure 4.5 these global collection points are shown in the
upper part above the communication middleware.

Each system requires a Skill Registry. The skill registry collects all available descriptions Skill Registry

of skills and additional software components. Global requests can be made to the skill
registry regarding which resources provide which skills or software components.

Another member of a system is the Skill Composer . The skill composer ensures that Skill Composer

39

4 Concept of a Real-Time Capable Plug & Produce Environment

several skills can be combined into more complex skills. Therefore, the skills have to
interact with each other. The skill composer provides additional software component
speci�cations for resources that can be loaded into a placeholder for additional software
components of a resource. For instance, there is a software component speci�cation
for the Composed Skill move an object. This Composed Skill is dependent on the Basic
Skills move to position, grip, and release. If this Composed Skill is to be used in the system,
it must �rst be checked whether all Basic Skills are available in the system and which
resources provide these skills, this can be requested from the skill registry. Further, it
must be checked whether the resources with these Basic Skills can be connected to each
other. For example, a gripper weighing 10 kg cannot be operated on a robot with a
payload of 5 kg. Electrical or data interfaces must also be checked to see if a connection
of multiple resources is possible. If the connectivity of the resources is guaranteed,
the software component speci�cation is loaded into one of the software component
placeholders of a resource. Assuming there is a matching gripper and a robot in our
system that work together, the Composed Skill is loaded, for example, to the robot
resource that has the Basic Skill move to position. This allows direct access to the locally
available Basic Skills. For the Basic Skills that are not available locally, a OPC UA over
TSN connection is established automatically to the resource holding the required skill.
In the example, a OPC UA over TSN connection to the gripper would be established in
order to access the Basic Skills grip and release. Subsequently, the Composed Skill can
be executed under real-time conditions.

Another component of the system is the Product Registry. The product registry holdsProduct Registry

information about the products and parts to be produced. This information can be
used to parameterize the skills accordingly. For instance, if a part is to be moved from
a start position to a target position, then the gripping position can be derived from
the description of the part, or the appropriate robotic systems can be con�gured to
have a payload greater than the weight of the part. This creates a very close coupling
between resources, processes, and products, which is extremely important for production
management [42, 156].

4.4 Related Work

The project openAAS [148] o�ers a reference implementation for the AAS and especially
the interoperability of AASs. These reference implementation contains a technology-
neutral model and can be implemented with di�erent technologies. In addition, it is
already possible to use OPC UA for secure communication between administration shells.
The project o�ers good starting points for the implementation of administration shells,
but unfortunately, there is still no concept for the execution of real-time applications.

Prinz et al. [164, 165] presents a concept for real-time capable I4.0 components that use
TSN for the transfer of real-time critical data. Each real-time capable I4.0 component
has a submodels to establish TSN connection with other components. There are also
real-time capable I4.0 components that provide capabilities. In the evaluation shown,
real-time capable rotational and translational axes can return the position and have the
real-time operation "move". The axes are controlled with a central real-time runtime

40

4.4 Related Work

engine via the dynamically established TSN connection. In the approach it was also
shown that components can be added and faulty components can be replaced by others
with the same capabilities. Unlike the approach shown in this thesis, capabilities are
only single operations, and there is no distribution of execution logic. Instead, the
execution logic is centralized in the real-time runtime engine.

There are numerous publications and projects dealing with Plug & Produce. For ex-
ample, the IDEAS project [134] uses a multi-agent system to have self-con�guring
modules. Here, concepts for self-descriptions of the components with their capabilities
are presented. However, the execution of the skills is implemented centrally by so-called
Coalition Leader Agents (CLA). In addition, no reference was made to real-time exe-
cution. Since the implementation is based on JAVA, no hard real-time can be achieved.
A similarly agent-based approach without real-time consideration using OPC UA as
communication interface is demonstrated by Bennulf, Mattias and Danielsson, Fredrik
and Svensson, Bo [23].

Pfrommer et al. [157] describes a system that creates executable resource-speci�c actions
partially automated, with the help of processes, resources, and product descriptions.
This description is used for orchestration and is then executed centrally via service calls.
Here, OPC UA is used to trigger these services without real-time communication.

Profanter et al. [170] for instance, have developed a Plug & Produce system that has a
device adapter for each hardware component, for example, a gripper or a robot, represent-
ing the hardware and a set of skills. Skills can be composed using software components
that can call skills of the device adapter. OPC UA method calls and OPC UA client-server
communication are used for this purpose. Due to the large non-deterministic latencies
of the OPC UA client-server communication (> 50 ms) [215], such approaches are only
suitable for applications that are not real-time critical. Since all software components
are connected via the OPC UA middleware, scalability to very large systems with many
components is di�cult.

Ye et al. [207] use AASs that use the Automation Markup Language (AutomationML)
for the description of resources. As communication interface OPC UA client-server
communication is used. In this work, robotic systems consisting of sensors, tools, and
the robot itself are considered as complete systems that are managed with a single AAS.
There is also no concept presented for combined capabilities. Also Schleipen et al. [187]
us the combination of OPC UA and AutomationML for the realization of Plug & Produce
systems without real-time guarantees.

Another project that shows capability-based interoperability of manufacturing resources
is the project BaSys 4.0 [1, 153]. BaSys 4.0 aims to develop a reference implementation
for Industry 4.0, focusing on the adaptability of manufacturing plants. Several companies
from the automation technology sector and research institutes are working together to
achieve these goals. The project investigates, for example, how semantic descriptions of
resource skills can be used. It also shows how Basic Skills can be orchestrated into more
complex skills. The middleware BaSyx created by the project also o�ers the possibility
to manage resources via AASs and communicate via OPC UA [92]. In this project, the
main focus is not on the distributed real-time execution of Basic Skills and combination

41

4 Concept of a Real-Time Capable Plug & Produce Environment

of skills. However, there are basic considerations that shall also support real-time critical
communication via TSN [202].

Walter et al. [204] shows how to use program blocks according to the IEC 61499 standard
in combination with OPC UA as communication layer for Plug & Produce. The emphasis
here is on decentralized control through a service-oriented architecture. A description
and adaptation of the capabilities based on a knowledge base was not taken into account,
and although OPC UA Pub-Sub was used for communication, deterministic executions
are not possible. Zimmermann et al. [213] follows a very similar approach. Here, the goal
is to achieve the combination of skills that are either IEC 61131-3, IEC 61499, or C/C++
programs. These skills can be combined into more complex higher-level skills provided
by a OPC UA server. Finally, a superordinate control system can orchestrate the skills
via the OPC UA interface. However, the paper points out that an integration of TSN is
considered useful for real-time critical executions, but this has not been implemented.
Koziolek et al. [99] have similar approaches and o�er the reference implementation
OpenPNP for the integration of �eld devices. The paper also investigated the scalability
of such systems with respect to OPC UA client-server communication.

42

Summary. An important aspect of Plug & Produce is adding
new components to the system. This chapter describes how
resources register with the system through a self-introduction.
Furthermore, it is described how the individual resources’ self-
description is structured and how a description of the entire
system can be formed from these self-descriptions of all re-
sources.

5
Locating and Managing Plant

Components

5.1 Fundamentals . 45
5.1.1 Semantic Descriptions 45
5.1.2 OPC UA Discovery . 46
5.1.3 OPC UA Extension Objects 47

5.2 Plug & Produce Resources 47
5.3 Global Registry for Plant Components 49
5.4 Semantic Self-Description of Plant Components 51
5.5 Consolidation of Information into a Uniform Knowledge

Base . 52
5.6 Related Work . 54

In order to implement Plug & Produce so that resources can be easily added, replaced,
or removed during runtime, locating and integrating new plant components is essential.
Not only when people unknown to each other shall work together successfully in a
meeting a round of introductions is important. A kind of round of introductions is
also necessary when integrating new machines and components into production cells.
There are already common practices, such as the integration of new Plug & Play devices
via USB on the computer. This chapter describes how discovery mechanisms already
integrated in OPC UA can be used to implement a Plug & Produce approach and to locate
and manage new resources in a system. For this, it is important where the information
about the individual resources is located and how these can be integrated into a uniform
knowledge base so that, subsequently, this knowledge base can be used to make the
entire system more �exible.

This chapter is organized as follows. First, the fundamentals needed for locating and
managing new plant components are described (see Section 5.1). For this purpose, the
basics of semantic descriptions are described, and it is explained how OPC UA-capable
devices can be found in networks and how larger amounts of data can be transferred

43

5 Locating and Managing Plant Components

Ethernet

S
k

il
l

R
e

g
is

tr
y

Skill Descriptions
Software Component

Descriptions

S
k

il
l

C
o

m
p

o
se

r

Composed Skill

Spezi�cations

Software Component

 Spezi�cations
< / >

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

< / >

Robot Gripper Force-Torque Sensor

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

P
ro

d
u

c
t

R
e

g
is

tr
y

Product / Part Description

Figure 5.1. System architecture for a RealCaPP environment focusing on the descrip-
tion of the resources, the discovery via OPC UA and the global knowledge bases (reg-
istries) (cf. Figure 4.5)

via OPC UA. In Section 5.2, a description is given of how Plug & Produce resources
are implemented, distinguishing between active and passive Plug & Produce resources.
Subsequently, Section 5.3 presents how these discovery approaches can be applied to
the RealCaPP architecture in order to integrate new resources. Each resource contains a
self-description, how this self-description is structured is de�ned in Section 5.4. It is
described how the information of the individual resources can be merged into a uniform
data model (see Section 5.5). Finally, in Section 5.6, it is shown what related work is
available for discovering and managing industrial components.

In Figure 6.1, the overall RealCaPP architecture, as already illustrated in Figure 4.5,
is shown with the highlighted focus of this chapter. In this chapter the focus lies on
adding resources to the system. Each resource has an description from itself, that
contains the description of the asset, the skills and the additional software components
as shown in the lower part of the �gure. When registering the resources via the OPC
UA discovery mechanism, the descriptions are transmitted via OPC UA client-server
communication. Therefore, the non-real-time middleware is highlighted. Subsequently,
the data is collected and processed in global registries shown in the top part of Figure 6.1.
In addition, the chapter describes how the individual registries are interrelated.

44

5.1 Fundamentals

5.1 Fundamentals

Before describing how new plant components can be located and managed, a summary
of some of the techniques used to discover and describe components is presented.

5.1.1 Semantic Descriptions

The Resource Description Framework (RDF) was originally a general framework for RDF

describing any internet resource, such as a website and its content. With RDF, the
linking structure of the web was extended to name relationships between things. This
allows to represent structured and semi-structured data. [119] However, this technology
can also be used to network information in other areas, e.g., in automation technology
[62].

RDF describes data relationships as triples, with a subject, a predicate, and an object.
Here, a subject is a resource, the predicate is the named link, and the object can either
be another resource or represent a value. A set of these triples forms a directed, labeled
graph. The edges in the graph represent the named link between two resources that
are represented as nodes. Figure 5.2 shows an example RDF graph describing a robot
with six axes and the the skill to move to a position. This example also shows that
objects can reference other resources (e.g., Move To Position) as well as contain literals
(e.g., 6). [44, p. 15]

Robot

Move To Position

6
hasNumberOfAxis

hasSkill

Subject ObjectPredicate

Figure 5.2. Example of an RDF-Graph

The RDF Schema (RDFS) extends RDF with a uniform vocabulary. The vocabulary RDFS

contains a uniform representation of classes and properties so that the information on
resources can be stored in a manner similar to object-oriented programming. Class
hierarchies, for example, can also be represented using RDFS. [29]

An Ontology was initially the philosophical study of being and has later become increas- Ontology

ingly popular in computer science [115, p. 1964]. Gruber provides a good de�nition for
an ontology in the sense of computer science:

“A speci�cation of a representational vocabulary for a shared domain of

discourse – de�nitions of classes, relations, functions, and other objects – is

called an ontology .” (Gruber [63])

An ontology can thus be used tomodel a knowledge base about resources, their attributes,
and their relationship to other resources. Ontologies also have the advantage that they
are independent of the actual implementation of the system. In terms of the power of
expression, ontologies are very close to the expressiveness of �rst-order logic. Due to

45

5 Locating and Managing Plant Components

these properties, ontologies are particularly suitable for integrating heterogeneous data
sources and the interoperability between di�erent systems. [115, pp. 1965]

RDF and RDFS de�ne a syntax with a uniform vocabulary for the knowledge representa-
tion and thus provide a good basis for an ontology, but a way to describe dependencies
between relations is still missing. TheWeb Ontology Language (OWL) supplements theseOWL

techniques with rules to represent dependencies between relations that are machine-
interpretable. OWL allows equivalences to be represented, boolean operators as in-
tersections, unions, and complements. Also, explicit quanti�ers for properties and
relations are possible. Furthermore, properties for relations can be applied, such as
re�exivity, transitivity, or symmetry. [124] The representation of equivalences makes it
possible to combine several ontologies to build up an even larger knowledge base with
comprehensive relations.

The semantic of data can be extended in two ways: the �rst one is the tagging of infor-
mation to get a common understanding of the meaning and the second way is inferring
meaning through logical constructs. This inference of meaning is called reasoning [44,Reasoning

pp. 61]. Therefore, reasoning uses the description of relations by description logic and
can thus derive further conclusions. Let us assume an ontology where a robot is a
machine consisting of at least three driven axes. If a machine is subsequently added
to the ontology and six driven axes are added to this machine via relations, it can be
inferred via reasoning that the machine is a robot. Reasoning can be used not only
to infer but also to verify constraints that have been set. For example, if a robot is
added to the ontology with only one driven axis, the ontology will recognize that the
conditions that a robot must meet are not satis�ed. To reason OWL statements, there
are adapted description logic reasoners such as Pellet [193] or HermiT [129]. Both have
been extended to handle all speci�cations of OWL.

5.1.2 OPC UA Discovery

The OPC UA speci�cation on discovery and global services [140] describes how OPC UA
applications can �nd other OPC UA servers and how to connect to the discovered servers.
For this purpose, discovery servers are used, which can be divided into three categories:
There is the Local Discovery Server (LDS) that holds the discovered information of theOPC UA LDS

host the server runs on. The second category is the Local Discovery Server with Multicast

Extension (LDS-ME), which can discover information about applications and servers onOPC UA LDS-ME

the local multicast subnet. Moreover, there is the Global Discovery Server (OPC UA GDS)

GDS that can discover servers and applications in an administrative domain. For example,
the GDS can be used for the discovery across the company boundaries in di�erent
location-independent company sites.

Since only local networks are considered for implementation in a real-time Plug &
Produce scenario, focus is limited to LDS-ME. Each OPC UA server in the system must
know the LDS-ME, e.g., the address of the LDS-ME must be known. The newly added
OPC UA server can register with the LDS-ME via this address using the RegisterServer
service. For this purpose, the address of the new server and the server capability
identi�er are transferred to the LDS-ME. These server capability identi�ers are globally

46

5.2 Plug & Produce Resources

known OPC UA features, for example, if a server can provide data or supports a special
information model. This information is stored in the LDS-ME. A client can now make a
request with the FindServersOnNetwork service of the LDS-ME to receive information
about which servers are available on the local network. Subsequently, the client receives
a list of addresses with available servers. These addresses can be used to query the
endpoints in the server (GetEndpoints service) and then to establish a connection
(CreateSession service) and retrieve or send the information. [140]

5.1.3 OPC UA Extension Objects

In order to not only rely on the expressiveness of the OPC UA information model, it must
also be possible to use other descriptions, such as semantic descriptions represented
by RDF or OWL. Therefore, the OPC UA datatype OPC UA Extension Objects are used.
Extensions objects are a sequence of bytes identi�ed by a NodeId and information about
the encoding and the data length. This data type, therefore allows the integration of
other information and data into the OPC UA environment, and there is no need to use
other data transfer protocols. [142]

5.2 Plug & Produce Resources

Basically, resources such as a robot or a gripper can be divided into two classes. There
are active Plug & Produce resources and passive Plug & Produce resources. Active Plug Active Plug &

Produce Resource& Produce Resources are a �xed combination of the resource itself, for example, a gripper,
and its AAS, with the description of the resource, the corresponding communication
interfaces, skills, and the drivers. This combination allows the components to integrate
themselves. After being plugged into the system, they can actively communicate with
other system participants and components and introduce themselves to the system.

«device»

Active P&P Resource

Asset

Communication

Hardware Driver

Basic Skills

Software Components
Description

Skill Description

Asset Description

Additional Software
Components

Figure 5.3. Deployment diagram of an active Plug & Produce resource

47

5 Locating and Managing Plant Components

Active Plug & Produce resources are thus capable of self-introduction. Figure 5.3
shows the deployment diagram of an active Plug & Produce resource. As described
in Section 4.3.2, a resource consists of several components. Components are the asset
itself, hardware drivers to interact with the asset, Basic Skills of the resource, additional
software components like Composed Skills, descriptions of the asset, the skills, and
additional software components, and the communication to interact with the system.
With active Plug & Produce resources, all these components are executed on a single
device.

Passive Plug & Produce Resources implement a concept to separate the asset administra-Passive Plug &

Produce Resource tion shell from the actual asset. This means that even resources, like a gripper, that are
not actively Plug & Produce capable can be used with the help of asset administration
shells on another device. Separating the asset from the AAS also makes it possible
to make small hardware components Plug & Produce capable. Especially with small
devices, for example, a small sensor, it is not physically possible to attach an active
control component to the sensor that has the computing power to execute skills, store
descriptions, and is also TSN and OPC UA capable. Even with robotic end e�ectors,
such as a gripper, it can happen with small robots that the cables through the robot are
limited. For example, it is not possible to route a power cable and an ethernet cable
through the robot arm. In this case, the passive Plug & Produce resource can be attached
to the base of the robot, and only the hardware interface needs to be routed through
the robot to the gripper. With a passive Plug & Produce resource device, connecting

«device»

Passive P&P Resource

«Device»

Resource

Asset

Hardware Interface

Communication

Hardware Driver

Basic Skills

Software Components
Description

Skill Description

Asset Description

Additional Software
Components

Figure 5.4. Deployment diagram of a system with an passive Plug & Produce resource
in combination with another hardware device

48

5.3 Global Registry for Plant Components

multiple assets is possible. For example, complete systems consisting of multiple assets
can be managed. If a resource consists of a robot with a �xed force-moment sensor, it
is possible to use a passive Plug & Produce resource to manage the AAS of the robot
and the AAS of the sensor on one device. Figure 5.3 shows the deployment diagram
of a system with an asset and a passive Plug & Produce resource. The passive Plug
& Produce resources contain the same components as the active ones, except for the
asset itself. The asset component can be deployed on another device and is linked to
the passive Plug & Produce resource via the hardware interface. The hardware driver
component can implement this interface and thus have a continuous architecture. As
with the active Plug & Produce resource, self-introduction is possible. Furthermore,
it is possible to register passive Plug & Produce resources before the actual hardware
device is available to the system. An example is a robotic tool lying on a tool stand.
This means that the tool is not capable of communicating with the system. With an
automatic tool changer on the robot, the tool can be picked up in the process, and a
communication channel to the tool can be created. If a passive Plug & Produce resource
is already available for the tool, then the skills of the tool can be used directly afterward.
In case the passive Plug & Produce resource is loaded, although no hardware device is
available, it is noted in the self-description that no hardware is available yet. This leads
to the fact that some skills are not executable. As soon as the hardware is connected,
the skills are unlocked.

5.3 Global Registry for Plant Components

For adding new plant components, for example, a new robot or tool of a robot, a
global registry is used for the entire Plug & Produce system. In the global registry, Global Registry

all information about the entire system is collected. This includes information about
all resources available to the system, information about the products and parts to be
produced, and information about the skills of the individual resources and composed
skills consisting of multiple skills of one or more resources. The global registry thus
combines the resource registry, skill registry, and product registrywith each other.
Figure 5.5 shows the component diagram of the global registry. The individual registries
provide interfaces for accessing the information. In addition, there are the dependencies
between the registries. In this way, the resource registry provides all the skills that are
available from the available resources. The product registry also provides the skills
needed to produce a part or product. In the skill registry, the matchmaking between the

Global Registry

Skill RegistryResource Registry Product Registry

Resource
Information

Skill
Information

Product
Information

Provided
Skills

Required
Skills

OPC UA LDS-ME

New
Resource

Information

Figure 5.5. Component diagram of the global registry

49

5 Locating and Managing Plant Components

provided and required skills is done. In addition, the global registry is the starting point
for each new resource through the OPC UA LDS-ME.

In order to add a resource to the system, the resource must simply be connected toAdding New

Resource the network where the global registry is located and start with the registration of the
resource. This process is identical for active and passive Plug & Produce resources. The
registration and adding of the resource to the resource registry is shown in the sequence
diagram in Figure 5.6. At �rst, the added resource needs a unique IP address on the
network. Therefore, the resource requests a new IP address from the DHCP server.
After the resource has received its IP address, it can register with the OPC UA LDS-ME
of the global registry. The only information needed to add the new resource is the IP
address of the OPC UA LDS-ME. Once the resource has been added, the IP address of the
new resource is stored in the OPC UA LDS-ME. To distinguish between several types
of components later on, a new custom OPC UA application type RESOURCE has been
added. OPC UA application types are used to identify the di�erent types of applications
in OPC UA [139]. This makes it possible, for example, to distinguish between servers,

Adding New Resourcessd

Resource DHCP Server OPC UA LDS-ME

1 : register_resource()
2 : request_ip()

3 : ip_address

4 : register_server()

5 :

Figure 5.6. Sequence diagram of adding a resource

Getting Resource Informationsd

OPC UA LDS-ME Resource Registry r: Resource

1 : update_resources()

2 : get_new_resources()

3 : new_resources

4 : get_resource_information()

5 : resource_information

loop

loop

[for each new resource: r]

Figure 5.7. Sequence diagram of getting resource information of the new resources

50

5.4 Semantic Self-Description of Plant Components

clients or discovery servers. A cyclic update routine is executed to ensure that the
resource registry knows when new resources are added to the system, see Figure 5.7.
An OPC UA client runs in the resource registry and requests the OPC UA LDS-ME in
every cycle what resources have been added. In case new resources have been added, an
OPC UA connection to each new resource is established via the stored IP address, and
the corresponding information about the resource is collected. Since the collection of
information and the establishment of the connection takes a long time (> 100 ms), and
there are no dependencies between the resources, the establishment of the connection
and the retrieval of the data are parallelized in order to cope with a large number of
new resources, especially at system startup.

5.4 Semantic Self-Description of Plant Components

With the presented routine for adding resources, it is now possible to establish a physical
connection to the resources and retrieve initial information, but for Plug & Produce,
more is needed. To reiterate the example of the introduction round at a meeting (see
Chapter 5). With the current routine for adding resources, we have just found the right
meeting room where the meeting takes place. Nevertheless, to have a successful meeting
with people we do not know, we need a round of introductions, a kind of self-disclosure,
to learn about the other people involved. The same applies to systems where not all
resources are known. Each resource, therefore, requires a kind of self-disclosure in the
form of a machine-readable self-description. For the self-description, it is important to
get information about the resource itself, what kind of resource it is, e.g., a robot, what
properties this resource has, e.g., the payload of the robot, and what skill a resource
has, e.g., the skill move to position. This information must be available in such a way that
both people, the system, and other resources can work with it. Therefore, techniques
like RDF and OWL are very suitable for generating machine-readable semantics. RDF-
graphs provide a uni�ed format for representing the dependencies of information.
This is supplemented by OWL statements, which can add additional constraints, and
conclusions can be drawn based on the information with the help of reasoning.

The two main concepts of self-description are properties and skills. Properties are Properties

mostly �x de�ned describing information that belongs to a certain object or thing. The
instances to be described can be either resources, skills, or other objects. Many things
can be represented with the help of properties. Geometric descriptions can be made, for
example, dimensions of a resource. Status descriptions, like the �lling level of a container,
can be mapped by properties. However, also classifying descriptions or characteristics
of skills can be represented by properties. Preconditions for the execution of a skill or
execution times would be an example of this.

Skills are abstract representations of the functionality a resource. Through abstraction Skills

and generalization, it is also possible to describe and use the skills of resources without
knowing the exact implementation of the skill, which is extremely important for Plug
& Produce systems. Since skills can be composed of other skills, it is also necessary to
know which skills the Composed Skills depend on.

Figure 5.8 shows an RDF-graph of the basic class structure for describing resources. The Self-Description

Class Structure

51

5 Locating and Managing Plant Components

Figure 5.8. RDF-graph of the basic class structure of the RealCaPP ontology. Classes
are represented as ellipses: Class Relations between classes are shown as arrows:

main class is the resource itself, for example, a parallel gripper. A resource can have
relations to skills, properties, and elements. The skills can either be Basic Skills that the
resource itself has or Composed Skills. For example, the gripper can have the Basic Skills
grip and release. The dependingOn relation can be used to map dependencies between
skills. Since resources can have relations to other elements, for example, products,
product parts, or other objects, the relation hasElement was added to the RDF-graph.
To give an example, if the gripper grasps a cube, there must be a way to establish
the relationship between the gripper and the cube. Furthermore, some properties of
resources serve the description of the resource. In the case of the gripper, a property can
be the maximum gripping force or the weight of the resource. However, properties can
be used not only for describing a resource but also for describing skills and elements. For
example, the cube element gets a property of how heavy it is. For the skill of gripping,
the velocity at which the gripper jaws close or the maximum gripping force could be
added as properties.

With the help of this basic class structure, very detailed self-descriptions of the resources
can be created. If all resources are described in this class schema, a uniform description
is obtained on the one hand, and on the other hand, it is possible to add further relations
to the resources through the relation structure and to use this self-description as a
subgraph of a central knowledge base. This also provides a good extensibility of the
semantic information.

5.5 Consolidation of Information into a Uniform

Knowledge Base

In many cases, the information about a single resource is not su�cient. Usually, the
interaction between several resources results in a good overall system. As a consequence,
it is necessary to collect the required data to consolidate them and thus to be able to
make statements about the entire system. For the implementation, a global uni�ed
knowledge base is used to collect all information.

52

5.5 Consolidation of Information into a Uniform Knowledge Base

Figure 5.9. Distributed knowledge base: separation of instantiation on the resource
from the class structure on the resource registry. Classes are represented as el-
lipses: Class Instances are represented as rectangles: Instance Relations between classes
are shown as arrows: Instancements are represented as dashed arrows:

As mentioned in Section 5.3, the resource information is passed to the resource registry
when a new resource is registered. Due to the uniform class structure of all resources, it
is not necessary to transfer the class structures and only transfer the instances without
the class de�nition for the description. As a result, the self-description requires less
memory, which is important for embedded systems and thus can be transferred even
faster to the resource registry. This has already been shown in preliminary work, see
Eymüller et al. [53]. Figure 5.9 shows how the instantiation can be separated from the
class structure. The left side depicts the part of the ontology stored on the resource
registry with classes and relations for descriptions of resources. The right side describes
an explicit resource with its skills and properties. In the example shown, a gripper
is described that has the skill to grip. In addition, it is known that the gripper has a
weight of 2.5 kg and can close its gripper jaws at a velocity of 50 mm/s. Combining
the abstract and concrete parts of the ontology makes it possible to create a knowledge
base of the entire system. OPC UA extension objects are used for the transmission of
the self-description, which contain the descriptive RDF triples for a resource in XML
format. This means that no additional communication path has to be established for
the transmission of the self-description, and OPC UA client-server communication can
be used. In the resource registry, all instantiations of the resources used in the system
are collected and loaded into a global ontology. In addition, information such as the
IP address of the resource is added to the overall ontology to enable quick access to
the resource later on. Moreover, connections between the resources are also mapped
in the ontology. For example, if a gripper is connected to a robot, this connection

53

5 Locating and Managing Plant Components

must be represented. These connections can either be set manually but can also be set
automatically. If an automatic tool changer is used, which can switch between several
tools, the connection can be set automatically when a change operation is performed.
With the help of the globally established knowledge base, it is now possible to �nd
speci�c resources with corresponding skills or properties in the system. But not only
single resources can be found via the connection of the resources, also information
about resource groups can be queried. For example, it is possible to query the total
weight of a robot-gripper combination, which results from the individual weights of the
combined resources.

5.6 Related Work

Numerous works also use OPC UA discovery to �nd components in the sense of Plug &
Produce. Especially in the OpenMOS project [2], several approaches have been published
on how new components can be found and integrated into a system with the help of
OPC UA LDS-ME. Profanter et al. [167] also use OPC UA LDS-ME for locating new
components in the network. They also describe that they use a staggered approach in
which devices are grouped into workgroups in a separate network, which in turn are
discoverable in a second network (common manufacturing service bus). However, the
focus was only on �ndability and not on the exchange of later information. Later on,
Madiwalar et al. [117] extended the system with Software De�ne Networking (SDN) to
include the con�guration of networks based on data �ows. In addition, the approach
contains information about skills, which are stored in the OPC UA information model
of the device and can be queried after discovering the device. Nevertheless, it was also
not shown how more complex descriptions can be transferred.

For the description of components, there are di�erent approaches with ontologies.
Lemaignan et al. [112] describe the MAnufacturing’s Semantics ONtology (MASON), a
common semantic net for the manufacturing domain. The ontology focuses primarily
on the link between resources, products, and processes. Detailed descriptions of these
instances are not yet considered. In the approach shown, there is no mention of skills
yet, but processes are mapped as operations, which is very similar to the skill concept.
In addition, no concept is presented that makes it possible to combine operations.

Chungoora et al. [38] presents an approach for the description of resources and the link
to their capabilities based on a global ontology. The focus is placed on the fact that a
lot of information is already stored in other standards, and the ontology is used to link
information from di�erent standards in the �eld of industrial automation systems. This
ensures that data is not redundant and that information from existing knowledge bases
can also be used. Due to the strict data representation by the standards, it is di�cult to
adapt the ontology to a given use case. For future considerations, it would be interesting
to see how data already represented by standards can be integrated into the overall
system.

The Semantic Sensor Network ontology (SSN) [39] is an ontology for representing sensor
data and observations in a machine-readable format. In addition to the description
of the sensors through a set of classes and properties, a detailed description of the

54

5.6 Related Work

measurement procedure is also included in the ontology. Unfortunately, the process
description is limited to the skill to measure. However, in case these speci�c concepts
can be transferred to other �elds. Thus, the detailed model for the description of the
measurement processes serves as basis for the description of properties of skills for the
ontology shown in this thesis.

The Manufacturing Resource Capability Ontology (MaRCO) [89] was developed by
Järvenpää et al.. The MaRCO ontology is a manufacturing ontology that combines
resource descriptions, capability descriptions, and a product model into one ontology
to enable a recon�gurable manufacturing system. Since many of the considerations
and interconnections of the information model are very valid and considerations of
combined capabilities are already integrated, this ontology was used as a basis but was
slightly adapted to the required needs.

At a basic level, semantic web ontologies are usually a linked knowledge base that
is distributed across multiple systems. It is therefore also necessary to consolidate
information from di�erent systems and bring it into a uniform knowledge base, for
which several approaches have already been shown. Pinto et al. [159] distinguish
between two ways to consolidate ontologies: There is the process integration, which
means that an ontology is integrated into another ontology and there is themerge where
two ontologies are merged into a single ontology and the data are uni�ed. Especially for
the merging of several ontologies, there are numerous approaches [100, 166, 198] These
processes are somehow di�erent from the approach shown in this thesis, since in related
work multiple ontologies tend to be merged rather than one ontology being distributed
is merged. However, some approaches can be adapted for the slightly di�erent use
cases.

55

5 Locating and Managing Plant Components

56

Summary. This chapter demonstrates the usefulness of the
data collected. Applying rules and inferences to the database
adds value to the data. This added value can be used, for example,
to �nd case-speci�c plant con�gurations.

6
Semantic Descriptions of Automation

Plants

6.1 Fundamentals . 58
6.1.1 Semantic Rules . 59
6.1.2 Querying of Semantic Networks 60

6.2 Semantic Description of Resource Interrelationships 61
6.3 Derivation of Connectable and Connected Resources . . . 63
6.4 Deriving Composed Skills 65
6.5 Automatic Plant Con�guration through Semantic Networks 66
6.6 Related Work . 70

Clive Humby’s quote “Data is the New Oil” is often used in connection of Industry
4.0. This statement is true in several respects. It is true that both resources are very
valuable and usually di�cult to �nd. However, the more important aspect is that data
and oil are of little use value in their raw form. Oil, for example, must be converted
into petrol, plastic, or chemicals to create a valuable unit. The same applies to data.
Only through linking, analyzing, and interpreting the data the value will increase. This
means that once a uni�ed knowledge base of all resources is available, it is important to
determine how to combine this information to add value to the system. The networked
data can �nally be used to generate conclusions for the system via rules and reasoning.
By drawing conclusions from the interconnected data, it is possible to query whether
the system is capable of executing a given process. The whole thing can even be taken
a step further, that it is even possible to �nd a system con�guration via the descriptions
which is able to perform a given task.

The structure of the chapter is as follows. First, Section 6.1 will cover the basics needed
to create rules based on ontologies and how to query data from graph structures. Sub-
sequently, Section 6.2 explains how ontologies can be used to describe relationships
between resources. On the basis of the ontology, it is possible to deduce which re-
sources are connectable to each other and in existing con�gurations, also to deduce

57

6 Semantic Descriptions of Automation Plants

Ethernet

S
k

il
l

R
e

g
is

tr
y

Skill Descriptions
Software Component

Descriptions

S
k

il
l

C
o

m
p

o
se

r

Composed Skill

Spezi�cations

Software Component

 Spezi�cations
< / >

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

< / >

Robot Gripper Force-Torque Sensor

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

P
ro

d
u

c
t

R
e

g
is

tr
y

Product / Part Description

Figure 6.1. System architecture for a RealCaPP environment focusing on the descrip-
tion of the resources and the knowledge base of the skill registry (cf. Figure 4.5)

which resources are connected to each other, see Section 6.3. Section 6.4 illustrates how
skill combinations can be derived via rules. Based on the ontology and through the
corresponding derivations, it is possible to create automatic plant con�gurations based
on the knowledge base as shown in Section 6.5. Section 6.6 discusses related work in
this research topic.

Figure 6.1 shows the overall RealCaPP architecture already shown in Figure 4.5, with
the areas relevant to this chapter highlighted. This chapter focuses on how the collected
data of the resources can be used, extended and queried. The aim is to create added
value for the plant from the data of the individual resources (see descriptions of the
resources). By rules and queries on the data, it is possible to apply Composed Skills to a
given hardware con�guration (cf. Skill Composer). In addition, an approach is presented
for using this data to automatically generate plant con�gurations for a given skill set
using the Skill Registry.

6.1 Fundamentals

Before describing how the information of the individual resources can be actively used
to describe the entire system, the fundamentals are created, which techniques can be
used to de�ne rules on the knowledge base, and how the knowledge can be queried.

58

6.1 Fundamentals

6.1.1 Semantic Rules

Often, the expressiveness of OWL is not su�cient to derive more complex relationships
of properties in ontologies. For this, there is the possibility to add additional rules
in the ontology. One way to add rules for deriving properties are property chains. Property Chain

Property chains are chains of properties that are combined in a new property. Reasoner
can then collapse that chain into a single predicate, facilitating access to data via a
speci�ed shortcut. Equation 6.1 shows an example of a property chain of the relation
hasGrandparent. If a node N1 in the graph has the relation hasParent to another node
N2 and N2 also has a relation hasParent to a node N3, then the reasoner inserts the
relation hasGrandparent between N1 and N3. [124]

hasParent ◦ hasParent → hasGrandparent

Equation 6.1. Example property chain for the relation hasGrandparent.

Property chains can simply be used to summarize chains, but often, it is also necessary
to be able to map conditions or multiple dependencies between relations. For more
complex rules, the Semantic Web Rule Language (SWRL) [74] can be used. SWRL is SWRL

an expressive rule language that combines the power of the semantic web and the
Rule Markup Language (RuleML) [27] and provides a high-level abstract syntax for
Horn clause rules [75], which can be used in the ontology. The syntax of SWRL is
similar to �rst-order logic, with rules consisting of an antecedent and a consequent. The
antecedent delineates the conditions that must be ful�lled for the rule to be applicable,
while the consequent outlines the actions or deductions that should be made when
the rule is put into e�ect. By applying SWRL rules, new knowledge can be inferred
based on the existing knowledge represented in the ontology. Equation 6.2 shows an
example of an SWRL rule. The rule states that if a robot has a weight greater than
200, then it is classi�ed as a heavy-duty robot. So, when applied to a knowledge base
or ontology, this SWRL rule classi�es all robots as heavy-duty robots for which the
conditions apply. [74]

Robot(?robot) ∧ hasWeight(?robot,?weight) ∧

swrlb:greaterThan(?weight,200)

→ HeavyDutyRobot(?robot)

Equation 6.2. Example SWRL rule for classifying heavy-weight robots.

In addition to the expressiveness and �exibility added by SWRL rules, there is also the
advantage that new RDF instances can be created by SWRL with some reasoners. This
can be used, for example, to create new instances for groupings derived from rules. Creating New

InstancesThe relation swrlx:makeOWLThing(?var1,?var2) is used to create new instances. The

59

6 Semantic Descriptions of Automation Plants

relation has two parameters: the �rst parameter contains the new instance, and the
second parameter speci�es on which basis the instances are created. For each instance
in the second parameter, a new instance is created. Equation 6.3 shows an example of an
SWRL rule where new instances are created. In the example for each existing instance
of the class Robot a new instance is created. This new instance is then set in relation to
the robot by the hasController relation. After applying the rule, each robot has a new
controller instance. [111]

Robot(?robot) ∧ swrlx:makeOWLThing(?new,?robot)

→ hasController(?robot,?new)

Equation 6.3. Example SWRL rule for creating new instances. For each robot in the
ontology a new instance is created and the new instance is linked to the robot instance
by the relation hasController

6.1.2 Querying of Semantic Networks

In order to use the information stored in semantic networks represented by RDF-
graphs, the graph-based query language SPARQL Protocol And RDF Query LanguageSPARQL

(SPARQL) [172] is used. SPARQL is syntactically similar to the Structured Query Lan-
guage (SQL) for querying relational databases. In SPARQL, there are four types of
queries: There is the classic SELECT query, where the query returns a table in XML
format with the queried information. The CONSTRUCT query returns an RDF-graph with
the requested information. There is the DESCRIBE query for unknown ontologies, which
gives an RDF-graph describing a given with all relations to this resource. In addition,
there are ASK inquiries, which return a boolean answer if a query can be answered
successfully. As with SQL, not only pure queries can be executed, but also calculations
and aggregations on the data. [172] Listing 6.1 shows the basic anatomy of SPARQL
queries. If the shown query is executed as SELECT query, a table with two columns is
returned containing nodes of the graph, where the �rst item is connected to the second
item over the relation hasSkill.

Another useful feature of SPARQL are property paths. Property paths are possible routesProperty Path

in a graph between two graph nodes. In the simplest case, two graph nodes are directly
connected via a property, as shown in the upper example. Property paths allow to search
for paths of arbitrary length in the graph. A path description is from the de�nition
very similar to regular expressions, with the only di�erence being that it is based on
RDF properties. For example, a relation isConnectedTo is de�ned, which shows which
nodes are connected in a graph. Thus, it is possible to use a property path ?node1

isConnectedTo* ?node2 to check if there is a path between two nodes that has zero or
more occurrences of isConnectedTo. In addition, further operations are available for
the creation of property paths and allow, for example, �xed numbers of occurrences of
certain relations. [190]

60

6.2 Semantic Description of Resource Interrelationships

1 PREFIX name: <...>

2 ...

3 SELECT|CONSTRUCT|DESCRIBE|ASK

4 {

5 ?resource,?skill

6 ...

7 }

8 WHERE

9 {

10 ?resource hasSkill ?skill.

11 ...

12 }

13 GROUP BY ...

14 ORDER BY ...

15 LIMIT ...

Optional: Declare pre�x shortcuts.

Query type.

Query result clause.
(Example: Two variables representing graph nodes)

Triple pattern.
(Example: Node ?resource must has a relation
hasSkill to the node ?skill)

Optional: Query modi�ers.

Listing 6.1. The anatomy of a SPARQL query. (Adapted from [44, pp. 308])

6.2 Semantic Description of Resource Interrelationships

After having explained in Chapter 5 how the self-description of a single resource is
built up, it is shown how this descriptions can be combined into a coherent ontology to
describe a system with all its resources, the skills of the single resource, skills that are
composed of the skills of several resources, physical connections of the resources, etc.

Figure 6.2 shows an expanded view of the ontology for the representation of resources
and their interrelationships. With the ontology presented, it is now possible to represent
physical connections between resources, as is the case with a gripper attached to the
�ange of a robot. In this case, the gripper and the robot are resources with independent

Figure 6.2. Ontology for describing resources and their interrelationships. Classes
are represented as ellipses: Class Relations between classes are shown as arrows:
Already mentioned concepts are grayed out.

61

6 Semantic Descriptions of Automation Plants

skills and properties that can be connected physically via an interface. Interfaces canInterface
be divided into three interface classes: electrical, geometric, and data interfaces. The
geometric interface describes the mechanical fastening between resources. These geo-
metric interfaces vary from automatic tool changing systems over screw connections to
plug connections. Now that geometrical connections can be mapped, many resources
still need connectors for power and data supply. The electrical interface represents
the power supplies. The electrical connections are used to represent di�erent power
supplies, e.g., alternating or direct current, and which voltages are present. There is
also the possibility to describe data connections over data interfaces. This is mainly
for integrating devices that are not yet Plug & Produce capable or OPC UA capable
and use proprietary data protocols. However, also OPC UA or OPC UA over TSN data
connections can be described with the data interfaces. All interfaces can be described
using properties in order to ensure that the interfaces are described as �exibly as possible.
Depending on the level of detail, several interface classes can be combined with each
other. For example, an interface can be described that uses the EtherCat [83] �eldbus
(data interface) as data protocol and transmits the data via an RJ45 connector (geometric
interface).

With the help of the description of the interfaces, connections between interfacesConnectivity

can now also be described. Not only actual connections can be described, but also
connections that would be possible in principle. For each interface type, there is a
relation isConnectableTo[...], specifying which interfaces are generally connectable.
For example, an RJ45 plug can be connected to an RJ45 socket. The actual connection
can be displayed using the relation isConnectedTo[...]. Not only on the interface level
the connectivity description is necessary but also on the resource level, it is possible to
describe a physical connection between two or more resources via the two relations.
In order to be able to treat connected resources as a higher-level resource, the class
ConnectedResource has been added.

Figure 6.3 shows an example of a connected resource with a robot and a gripper with
the respective interface descriptions. In the simpli�ed example, the robot provides a
�ange with a hole circle of 100 mm to attach tools. It also has a 24 V direct current
power supply and can communicate with other resources via OPC UA. The gripper also
can communicate via OPC UA and requires a 24 V power connection. The gripper also
has a mounting plate, but only with a hole circle diameter of 60 mm. It is only possible
to establish a direct data connection and power supply between robot and gripper. A
direct geometric connection cannot be established. Therefore, it is possible that di�erent
connection types can also be connected via di�erent paths. For instance, there are often
solutions with adapters since some interfaces cannot be connected directly. A �ange
adapter, as shown in the �gure, which reduces the hole circle diameter from 100 mm
to 60 mm, is a good example of a geometric adapter, but there are also bus couplers
for translating data interfaces or voltage transformers for adapting electrical interfaces.
In addition, if the interfaces all match, resources can be described as connectable to
each other (see isConnectableToResource). This allows to describe that the robot
resource can be connected to the gripper resource. For the description of the actual
physical connection between interfaces and resources, it would be necessary to replace

62

6.3 Derivation of Connectable and Connected Resources

Figure 6.3. Simpli�ed example of a connected resource with the di�erent interface
descriptions. Instances are represented as rectangles: Instance Relations between classes
are shown as arrows: Symetric relations between classes are shown as arrows with
two arrowheads:

the relations isConnectableTo[...] with the isConnectedTo[...] relation in the
example, but this has been omitted for the sake of clarity.

6.3 Derivation of Connectable and Connected Resources

It is possible to manually enter all possible connections describing the connectivity of
resources and interfaces, but it is desirable if most connections are generated automat-
ically. For this purpose, rules and relation chains are created that enable automated
reasoning of relations. The description of which interfaces �t together can also be
used to determine which resources can be connected. If a resource can be connected to
another resource geometrically, electrically, and in terms of data, the two resources can
be connected in principle.

First of all, the type of connections between resources is checked. For this purpose,
a combination of the transitivity property of relations and de�ned rules is used. The
transitivity of the isConnectableToResource relation can be used to express the fol-
lowing: If a resource R1 is connectable to another resource R2 and if this resource is
connectable to another resource R3, then R1 is also connectable to R3. Now, with the Derivation of

Connectivityhelp of the de�nition which interfaces are connectable, it is derived which resources are
connectable. For this purpose, the property chain for the geometrical interface shown
in Equation 6.4 is added to the ontology. The rule expresses that if a resource has an
interface that is connectable to another interface that belongs to a resource, then the two

63

6 Semantic Descriptions of Automation Plants

hasGeometricInterface ◦ isConnectableToGeometricInterface ◦

inverse(hasGeometricInterface) → isGeometricConnectableToResource

Equation 6.4. Property chain for the relation, that two resources are geometrically
connectable. This rule also exists for electrical and data connections.

resources are connectable. This rule is applied to all types of connectivity (geometrical,
electrical, data). With the additional transitivity property, it is now possible to state
automatically which resources are connectable with which type of connection. Connec-
tions via adapters are also taken into account. Since a resource can only interact with
another resource if it is geometrically, electrically, and data-technically connectable,
The SWRL rule shown in Equation 6.5 was added to the ontology, which describes the
general connectability of resources.

isGeometricConnectableToResource(?resource1,?resource2) ∧

isElectricalConnectableToResource(?resource1,?resource2) ∧

isDataConnectableToResource(?resource1,?resource2)

→ isConnectableToResource(?resource1,?resource2)

Equation 6.5. SWRL rule for the isConnectableToResource relation, that two re-
sources are generally connectable to each other.

Complementary to the connectivity descriptions, adapted rules, and property chains are
used to derive the connection between two resources. This is realized on the basis of
the actually connected interfaces. With the derived connected resources, creating a new
instance of the ConnectedResource class is useful from the compound. The connected
resources are added to this new instance as children using the hasChildResource. The

isConnectedToResource(?resource1,?resource2) ∧

hasSkill(?resource1,?skill1) ∧ hasSkill(?resource2,?skill2) ∧

swrlx:makeOWLThing(?new,?resource1)

→ ConnectedResource(?new) ∧ hasChildResource(?new,?resource1) ∧

hasChildResource(?new,?resource2) ∧ hasSkill(?new,?skill1) ∧

hasSkill(?new,?skill2)

Equation 6.6. SWRL rule for the isConnectableToResource relation, that two re-
sources are generally connectable to each other.

SWRL rule shown in Equation 6.6 is used to derive instances of the class Connected-Resource.

64

6.4 Deriving Composed Skills

All resources that are physically connected are combined into a new resource, and
the corresponding skills of the resources are also combined. In addition, the new re-
source gets the set of all skills of the individual resources. The individual resources
are also added as child resources to the added ConnectedResource. Because the class
ConnectedResource inherits from Resource and the hasChildResource relation is tran-
sitive, ConnectedResource individuals can be composed of more than two individual
resources.

Thus, if all the resources from the example in Figure 6.3 were connected, a new instance
of the class ConnectedResourcewould be created containing the resources robot, gripper,
and �ange adapter as child resources. If the robot now has the skill move to a position

and the gripper has the skill grip and release, the new instance would also have all these
skills.

6.4 Deriving Composed Skills

Since a description is now available of which components are connected and which are
theoretically connectable to each other, it is now possible to derive Composed Skills
that consist of several individual skills. To take up the example already mentioned, if
a system has the skill to move to a position, grip a component, and release it again, the
system also has the skill to move a component to a position by combining the individual
skills. This composed skill can also be described as pick and place. For the derivation of
skill combinations, SWRL rules can be used. In contrast to the connection rules, the
di�erence here is that it must be possible to add these rules at runtime since not all
combinations of skills are already available at the design time. Especially when a use
case changes and suddenly a process has to be switched to another, other skills may be
necessary. The advantage of SWRL rules is that they can be easily added and applied by
reasoning.

If a new skill combination is added to the system, only a new SWRL rule has to be
created. Equation 6.7 shows a rule for the combined skill pick and place. Because a

hasSkill(?resource,Grip) ∧ hasSkill(?resource,Release) ∧

hasSkill(?resource,MoveToAPosition) → hasSkill(?resource,PickAndPlace)

Equation 6.7. Exemplary SWRL rule for the derivation of the skill pick and place from
the individual skills grip, release and move to a position.

ConnectedResource is a specialization of a Resource, combinations of resources may be
recognized that relate only to an individual resource and combinations that relate to a
group of resources. With the help of the added rules, it is now possible to deduce which
resources are theoretically capable of executing a composite skill, but the logic of how
the Composed Skill is implemented must also be added. This is shown in Section 8.4.5.

65

6 Semantic Descriptions of Automation Plants

6.5 Automatic Plant Con�guration through Semantic

Networks

Now that it is known how to derive connectivity and Composed Skills from several
individual skills automatically, it will be discussed how this can be used to perform
automatic plant con�gurations. The input for the automatic con�guration is the speci�-
cation of a skill that shall be executed. In the simplest case, it is a straightforward search
in the ontology which resources have a corresponding skill. However, if there are no
resources that provide the required skills, it is necessary to search for combinations of re-
sources that contain the skills. Preliminary work for this is shown in Eymüller et al. [55].
Thereby, the following requirements shall apply for a resource combination:

- All required Composed Skills and Basic Skills must be available in the found
con�guration

- The con�guration should be as minimal as possible, e.g., it should consist of as
few resources as possible

- Additional constraints for the con�guration must be taken into account. For
example, the payload of the robot must be considered.

- Already existing con�gurations shall be preferred.

If a corresponding task is to be executed with a system, this task must �rst be broken
down into skills. Once the skills are available, a con�guration must be found that maps
these skills. For example, the task is to move a workpiece from a start position to a
target position. This task consists of the Composed Skill pick and place. If Composed
Skills are added to the ontology, the skill dependencies are also added, see relation
hasChildSkill. Thus, it is known that a con�guration must be found that has the skills
move to a position, grip, and release.

By the preconditions given, which resources are connectable with each other, it is now
possible to search for connectable resources that contain the required skills for a task.
For this purpose, �rst, a subgraph is created using SPARQL. Listing 6.2 shows a SPARQL
query that generates a subgraph containing all paths of connectable resources that
contain resources with the required skills. The listing shows a case where three skills
are needed for a task. If more or fewer skills are required for a con�guration, the query
is automatically supplemented or reduced by the system. To �nd a con�guration that
can implement the combined skill pick and place, the placeholders for �ltering the skills
(see Listing 6.2 1©) must be set accordingly to move to a position, grip and release. Through
the creation of a subgraph, the queries remain scalable and can, if necessary, be used
for multiple con�guration requests. If the query does not return any values (empty
subgraph), it is known that no suitable con�guration can be found in the knowledge
base of the current system.

If a corresponding subgraph is generated, it is known that there is a possible con�gura-
tion solution. Since sometimes several con�guration paths are found, a minimal solution
should be preferred, meaning the con�guration should be composed of as few resources
as possible. For this reason, the subgraph is used to �nd a minimal solution. Of course, it
is also possible to apply other optimization criteria. To use the metric of the connection

66

6.5 Automatic Plant Con�guration through Semantic Networks

1 CONSTRUCT

2 {

3 ?r_1 hasSkill ?s_1.

4 ?r_2 hasSkill ?s_2.

5 ?r_3 hasSkill ?s_3.

6 ...

7 ?mid1_1 isConnectableToResource ?mid2_1.

8 ?mid1_1 hasSkill ?mid1s_1.

9 ?mid1_2 isConnectableToResource ?mid2_2.

10 ?mid1_2 hasSkill ?mid1s_2.

11 ...

12 }

13 WHERE

14 {

15 ?r_1 isConnectableToResource* ?mid1_1.

16 ?mid1_1 isConnectableToResource ?mid2_1.

17 ?mid2_1 isConnectableToResource* ?r_2.

18 ?r_1 isConnectableToResource* ?mid1_2.

19 ?mid1_2 isConnectableToResource ?mid2_2.

20 ?mid2_2 isConnectableToResource* ?r_3.

21 ...

22 ?r_1 hasSkill ?s_1.

23 ?r_2 hasSkill ?s_2.

24 ?r_3 hasSkill ?s_3.

25 ...

26 optional{?mid1_1 hasSkill ?mid1s_1}.

27 optional{?mid1_2 hasSkill ?mid1s_2}.

28 ...

29 filter(?s_1=<SKILL1>).

30 filter(?s_2=<SKILL2>).

31 filter(?s_3=<SKILL3>).

32 ...

33 }

Skills with associated resources.

One for each searched skill.

Paths between connectable resources

with their skills.

Creates paths between connectable

resources.

Skills with associated resources.

Optional: Skills that are available

on the resource path.

Filtering the skills needed. 1©

Listing 6.2. Simpli�ed SPARQL query to create a subgraph with resources that are con-
nectable and have speci�ed skills (see placeholder <SKILL1>, <SKILL2> and <SKILL3>).

path length between resources, the SPARQL query shown in Listing 6.3 can be used.
This allows to calculate the distance between two resources in the subgraph. Due to the
fact that the calculation of the path lengths in large graphs is very time-consuming, the
advantage of the subgraph becomes apparent here since the length does not have to
be calculated between all possible con�gurations in a system but only in a subset with
matching skills. The query returns a table with con�gurations containing at least two
required skills. A con�guration is a list of resources listed in the correct order. For each
con�guration, the number of resources that make up a con�guration, the start and end
resource of the con�guration chain, the skill searched for in the start and end resources,

67

6 Semantic Descriptions of Automation Plants

1 SELECT

2 (GROUP_CONCAT(?mid; SEPARATOR=";")

3 AS ?config)

4 (GROUP_CONCAT(?midskill; SEPARATOR=";")

5 AS ?additionalSkills)

6 ?startresource

7 ?startskill

8 ?endresource

9 ?endskill

10 (COUNT(?mid)

11 AS ?numberOfResources)

12 WHERE

13 {

14 ?startresource isConnectableToResource* ?mid.

15 ?mid isConnectableToResource+ ?endresource.

16

17 ?startresource hasSkill ?startskill.

18 ?endresource hasSkill ?endskill.

19

20 FILTER(?startskill IN (<SKILL1>,<SKILL2>,<SKILL3>,<...>)).

21 FILTER(?endskill IN (<SKILL1>,<SKILL2>,<SKILL3>,<...>)).

22 FILTER(?endskill != ?startskill).

23

24 OPTIONAL{

25 ?mid hasSkill ?midskill.

26 FILTER(?midskill IN (<SKILL1>,<SKILL2>,<SKILL3>,<...>)).

27 FILTER(?midskill != ?startskill

28 && ?midskill != ?endskill)

29 }

30 }

31 GROUP BY ?startresource ?endresource ?startskill ?endskill

Returns resource paths as list.

Returns a list of needed skills on the
path.

Returns the calculated path length.

Creates paths between connectable
resources.

Filtering of the start
and end skill. 1©

Filtering of the
skills on the path.
2©

Listing 6.3. SPARQL query for searching suitable con�gurations with the path length
of the con�guration. In the query there are again placeholders (<SKILL1>, <SKILL2> and
<SKILL3>) for the required skills.

and the skills searched for contained in the path are speci�ed. As in the example above,
the query is with three required skills. The whole code passage 2© can be removed if
only two skills are needed. The query can be easily extended for more than three skills.
For this, only the skill lists in 1© and 2© of the query must be supplemented. This is
indicated by <...>.

Figure 6.4 shows an example of an extracted subgraph for a task that requires the
skills move to a position and screw, as a result of the SPARQL query shown in Listing 6.2.
The subgraph consists of the three resources Robot, Screwer, and Screwbit, which are
connectable to each other. In addition, the interfaces are also given in the example so
that it is clear how the connectability was derived. The robot has the skill instance

68

6.5 Automatic Plant Con�guration through Semantic Networks

Figure 6.4. Example for a subgraph with the required skills screw and move to a position.
For clari�cation, the interfaces were also speci�ed. The right side shows a possible found
con�guration. Classes are represented as ellipses: Class Relations between classes are
shown as arrows: Symatric relations between classes are shown as arrows with two
arrowheads:

?con�g ?startresource ?startskill ?endresource ?endskill
?numberOf
Resources

Screwer;Screwbit Robot MoveToPosition Screwbit Screw 2
Screwer;Robot Screwbit Screw Robot MoveToPosition 2

Table 6.1. Result table of the SPARQL query for suitable con�gurations on the example
subgraph. Empty columns were omitted.

MoveToPosition, and the screwbit has the skill instance Screw. If the user wants to
screw in a screw at a certain position, a con�guration with both skills must be found.
In order to meet these requirements, the system performs the SPARQL query shown
in Listing 6.3 with the required skill set (Screw, MoveToPosition). This results in a
table of possible con�gurations as shown in Table 6.1. In the shown result, only one
possible con�guration is speci�ed with di�erent start and end resources. From the table,
it can be concluded that there is a valid con�guration in which the robot is connected
to the screwer, the screwer is connected to the screwbit, and the resulting con�guration
length is three. It is often not as clear as in this example, and there are several possible
solutions, in which case additional measures are necessary.

On the basis of the existing table, it is checked whether a con�guration can be deter-
mined that contains all the skills required. It may be necessary to combine several
con�gurations that contain a subset of the required skills to obtain a con�guration that
contains all the required skills. If no further constraints are separated, the con�gura-
tion with the lowest number of resources can be used for this purpose. If additional
constraints are to be taken into account, additional constraints can be queried based on
the con�gurations, and if necessary, it can also be checked whether a corresponding

69

6 Semantic Descriptions of Automation Plants

con�guration is also practically feasible. However, these additional constraints are
highly case-dependent. An example of an additional constraint would be that the power
supply is su�cient to operate the resources, or the payload is su�cient to carry the
resources. Since the possible con�gurations with the respective resource instances are
already known, the query for the additional constraints can be executed on the entire
knowledge base without performance losses.

In order to be able to use the shown approach for an automated recon�guration of
a system, it is necessary to describe the interfaces accordingly, which interfaces can
only be connected manually by a human being, and which interfaces can be connected
automatically. As shown in the robot and the screwer example, all interfaces can be
connected automatically through automatic tool change systems. This classi�cation of
connectivity is another possible constraint. Preference should be given to con�gurations
that can be performed automatically.

6.6 Related Work

In the �eld of interface description and derivation of connectivity, there is preliminary
work worth mentioning by Siltala et al. [191]. The autors involved the development of an
ontology for formally describing hardware interfaces. This ontology de�nes categories
of mechanical, electrical, service, and communication interfaces. However, it does not
demonstrate how these interfaces can be con�gured or parameterized. Furthermore,
the ontology predominantly relies on standardized interface descriptions, which poses
challenges when dealing with non-standardized interfaces. To address this, another on-
tology was integrated to consider the relationship between capabilities and components
within the overall architecture [192]. Järvenpää et al. [90] also use the descriptions of
connections and added rules to �nd corresponding con�gurations, but a con�guration
always contains only one capability. Also, additional constraints like the payload of a
system are considered [89]. In addition, no resource chains are considered in connection
with capabilities. This makes matchmaking much easier. However, the approaches
shown served as a basis.

Several methods use semantic approaches to account for geometric constraints that are
useful in component design or automating robot assembly. Early pioneers, Ambler and
Popplestone [13], used CAD data to create assembly programs for robots. Building upon
this foundation, continuous advancements have been made, incorporating additional
relationships among the components to be assembled, the required resources (such as
robots or production machines), and the skills possessed by these resources [149, 152].
Typically, these approaches establish a strict one-to-one correspondence between a
resource and a skill. However, there are also approaches that assign combinations
of multiple components to a single skill [169]. For instance, a robot equipped with
various end e�ectors can perform di�erent skills. Nevertheless, there are limitations
even in such cases. For instance, Profanter et al.’s work [169] restricts the use of
tools to those compatible with a corresponding tool change adapter, and all tools have
identical interfaces in terms of data and power supply. Romiti et al. introduced a
recon�gurable collaborating robot (cobot) featuring di�erent joint modules and end

70

6.6 Related Work

e�ector modules [182]. However, even in this approach, the individual modules adhere
to a uniform interface for mounting, data exchange, and power supply, simplifying the
creation of con�gurations.

71

6 Semantic Descriptions of Automation Plants

72

Summary. A standard communication protocol is necessary
for the exchange of data between resources. This chapter out-
lines the structure required for a communication middleware
that facilitates real-time data exchange between resources. The
system has been designed to respond to changes as resources
can vary in a Plug & Produce system.

7
Distributed Real-Time: Dynamic

Real-Time Control Networks

7.1 Fundamentals . 74
7.1.1 Real-time Communication with TSN 75
7.1.2 Precision-Time-Protocol 77

7.2 Time-Synchronization in Control Networks 78
7.3 Dynamic Con�guration of Real-Time Control Networks . . 79

7.3.1 Setup and Con�guration of TSN Communication Channels 81
7.3.2 Realization of the Time Slot Array 83

7.4 Related Work . 84

Distributed systems consist of multiple interconnected components that need to work
together in order to achieve a certain task. Numerous network protocols can be used
to exchange data between components. However, if the data is to arrive at the other
component within a de�ned time (real-time), the number of possible protocols becomes
smaller. Most of these real-time network protocols are very complex to con�gure and are
usually setup at design time and con�gured accordingly for a speci�ed topology and use
case. In contrast, there are highly �exible and dynamic Plug & Produce systems in which
the communication partners can change. For example, new resources can be added, the
exchanged data can change by adaption of the task, or the network topology can change
due to the scaling of the system. Consequently, more distribution components, such
as network switches, may be required. This discrepancy must be resolved to realize
industrial-grade Plug & Produce systems. Therefore, it should be possible to recon�gure
the real-time production system while it is running. It is necessary to con�gure new
devices and their network interfaces correctly at runtime and to add or remove real-time
communication channels as needed. To overcome these obstacles and enable Plug &
Produce scenarios with real-time capabilities, an approach is presented that fully relies
on the OPC UA communication models with the TSN extension.

73

7 Distributed Real-Time: Dynamic Real-Time Control Networks

Ethernet

S
k

il
l

R
e

g
is

tr
y

Skill Descriptions
Software Component

Descriptions

S
k

il
l

C
o

m
p

o
se

r

Composed Skill

Spezi�cations

Software Component

 Spezi�cations
< / >

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

< / >

Robot Gripper Force-Torque Sensor

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

P
ro

d
u

c
t

R
e

g
is

tr
y

Product / Part Description

Figure 7.1. System architecture for a RealCaPP environment focusing on the descrip-
tion of the communication middleware with OPC UA and OPC UA over TSN (cf. Fig-
ure 4.5)

The following section outlines the structure of this chapter, delineating the key compo-
nents and their interconnections. In Section 7.1, the fundamentals of this chapter are �rst
discussed. Based on the Precision-Time-Protocol mentioned in the fundamentals, the
time synchronization required for real-time communication is discussed in Section 7.2.
Section 7.3 explains the structure for dynamically adding communication participants
and how to con�gure the real-time network channels for the new members. Finally,
in Section 7.4, related work is mentioned that deals with real-time communication
in general in production environments. that also deals with TSN communication. In
addition, related work in the �eld of TSN communication was considered.

Figure 7.1 displays the complete RealCaPP architecture, which was previously depicted
in Figure 4.5. In the context of this chapter, speci�c sections relevant to the topic
have been emphasized. The chapter primarily concentrates on the dynamic commu-
nication middleware for the non-real-time and real-time communication between the
resources.

7.1 Fundamentals

Before discussing communication in distributed Plug & Produce systems, the details
of TSN explained. Furthermore, a technology is introduced to ensure a uniform time
base in the distributed system. The Precision-Time-Protocol is also one part of the TSN
standards.

74

7.1 Fundamentals

7.1.1 Real-time Communication with TSN

After the basics of TSN have been explained in Section 4.1, the technical implementation
of TSN and in particular the Time-Aware Shaper (TAS) will explained in more detail.
Figure 7.3 shows the functional principle of the TAS. For the realization of the time
slots CoS priorities are used to order the tra�c in di�erent tra�c queues. For example,
real-time critical data have other priorities than best-e�ort tra�c. Each tra�c queue
has its own time-aware gate. This gate may be either open or closed. If the gate is
open, network packets are sent from the corresponding queue via the network card
into the network. Otherwise, no network packets will be sent from this queue if the
gate is closed. The time-aware schedule determines at which time which gates are open Gate Control

and when they are closed. A gate control list is created. The gate control list de�nes

Time Slot 1

Real-Time Critical

Time Slot 2

Best Effort
Time Slot 2

Best Effort

Time Slot 1

Real-Time Critical

Cycle n Cycle n+1

... ...

Time Slot

Time t

1 2 1 2

Figure 7.2. TSN time division multiplexing with reserved time slots to enable the
transmission of periodic real-time data. In this example, one time slot is reserved for
real-time critical data transmission, and the rest of the cycle can be used for best-e�ort
data tra�c. (Adapted from [77])

Time-Aware Gate

Queue 7

Time-Aware Gate

Queue 6

Time-Aware Gate

Queue 0

Time-Aware Gate

Queue 1

Time Slot 1: O C C C C C C C

Time Slot 2: C O O O O O O

 Repeat

Gate Control List

O = Gate Open

C = Gate Close

O C C C

Traffic Queue 7

Real-Time Critical

Traffic Queue 6

Best-Effort

Traffic Queue 1

Best-Effort

Traffic Queue 0

Best-Effort

. . .

. . .

...

Data Transmission

Figure 7.3. TSN Time-Aware Scheduler with the realization of the Time-Aware Gate
Control. The example from Figure 7.2 is continued. The real-time critical data is placed
in tra�c queue 7, and Best-E�ort data is placed in the tra�c queues 0 to 6. The Gate
Control List contains the two time slots and is cyclically executed. In the �rst time slot
only the gate of queue 7 is opened. In the second time slot all other gates are opened,
and the gate of queue 7 is closed. (Adapted from [77])

75

7 Distributed Real-Time: Dynamic Real-Time Control Networks

at which time which gates have which status. For the implementation of the example
from Figure 7.2, in time slot 1 only the gate of the real-time queue would be open and all
others closed, and in time slot 2 the real-time queue gate would be closed, and all other
gates open. The gates ensure that only ethernet frames with the appropriate priority
are transmitted in the reserved time slot. [77] Since transmissions of an ethernet frame
that have already started can only be stopped to a limited extent, a so-called guard bandGuard Band

is placed in front of each time slot for real-time transmissions. The guard band has
the length needed to send an ethernet frame with maximum length (1542 bytes [9]).
No further transmissions of best-e�ort messages are started within the guard band,
thus ensuring that no best-e�ort transmits within a real-time critical time slot. [6] To
reduce the size of the guard band, frame preemption can be used. Frame preemption isFrame Preemption

a method that allows interruption and later continuation of the transmission of a frame.
Therefore, an ethernet frame is divided into multiple frame parts, so-called framelets,
with a size of maximum 64 bytes. Framelets may be transmitted separately. Thus, each
ethernet frame can be interrupted every 64 bytes. This reduces the guard band to the
time it takes to transfer 64 bytes. [7]

The concepts shown only work for a point-to-point connection. If more complexCon�guration

Distribution network topologies are used, it must be considered that the time slots for sending
real-time critical data are available in each node (endpoint or switch). This enables
an end-to-end connection with guaranteed latencies. Since each network component
slightly delays the message, it is necessary to know for each component how high
the delays are and what the network topology between two communication partners
looks like to be able to de�ne time slots for the entire system. Three approaches for
con�guring the entire network are de�ned in the standard IEEE 802.1Qcc [8].

Figure 7.4 shows the three con�guration approaches. There is a centralized model (left
side of Figure 7.4) with Centralized User Con�guration (CUC). The CUC manages the
communication on the user or application level. The user or the application speci�es at

Figure 7.4. The di�erent TSN con�guration approaches. The left side shows the cen-
tralized con�guration approach with CUC and CNC. On the right side on the top the
decentralized approach is shown. On the right side on the bottom a hybrid con�guration
approch is shown with a CNC. (Adapted from [77])

76

7.1 Fundamentals

the CUC which data is to be exchanged between which devices. This data is processed
and passed on to the Centralized Network Controller (CNC). The CNC acts as proxy
for the network. Based on the data, who wants to communicate with whom, the CNC
determines tra�c scheduling, bandwidth allocation, and other network parameters. The
individual gate control lists are generated by the CNC and distributed to all TSN partici-
pants. In addition to the distributed approach, there are also decentralised approaches
where there is no global instance and the network determines its own schedules (top
right of Figure 7.4). Of course, there are also mixed forms of centralised and decentralised
approaches, which are called hybrid approaches (bottom right of Figure 7.4). [77, 161]

All approaches follow the same basic concept. First, the components that are TSN
capable are checked, and the TSN mechanisms are activated. Next, the sending device,
called the talker, provides information about the data stream it wants to transmit. This
information includes, in particular, identi�ed characteristics such as the destination
MAC address and CoS priorities. An end device that is interested in a data stream, the
so-called listener, can advertise for the data packets associated with the data stream
using the advertised information. Based on this information, the time slots for each
individual component are calculated and distributed in the system. [77]

7.1.2 Precision-Time-Protocol

The IEEE standard 1588 [10] - IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems - de�nes the Precision-Time-

Protocol (PTP) as a time synchronization protocol for distributed systems to synchronize
clocks over the network. This synchronization is achieved by de�ning one device as the
master clock (grandmaster) and having slaves synchronizing their clocks to the master’s
time. PTP uses timing messages via UDP multicast with timestamps to exchange the
time information between the master and the slaves. In addition, the transmission time
between the master and the slave is determined by roundtrip time measurements. On
the slaves, the clocks are adjusted to the timestamp of the master by o�setting the time
stamp of the master with the transmission time. With PTP, the di�erence between the
synchronized clocks is in the sub-microsecond range.

Figure 7.5 shows the PTP synchronization procedure. Each syncronization broadcast
of the master begins at time T1 with a Sync message to each slave. At T2 in slave time
the slave receives the Sync message and saves the receive time stamp. Then the master
sends a FollowUp message with the time stamp T1. At this point the slave can calculate
the o�set o between the two clocks (o = T2 − T1). After o�setting the slave clock by o

the clocks would not be completely synchronous. With this correction, the delay d in
the network would not be taken into account. Therefore, the second synchronization
part is performed. At T3 the slaves sends a DelayRequest to the master and saves the
time stamp. When the message is received by the master, the time stamp T4 is recorded
by the master. This time stamp is send to the slave by a DelayResponse message. Now
the slave has all timestamps: T1, T2, T3 and T4. Now the actual o�set õ can be calculated.
So following applies: o = õ + d and T4 − T3 = −õ + d. From this, the actual o�set õ
can now be calculated as follows: õ = 1

2
(T2 − T1 − T4 + T3). [10]

77

7 Distributed Real-Time: Dynamic Real-Time Control Networks

Master Slave

T1

FollowUp(T1)

Sync

T2

T3

DelayR
equest

T4

DelayResponse(T4)

d

d

Figure 7.5. PTP synchronization procedure (Adapted from [10])

Time-synchronization is a fundamental requirement for TSN networks. It is needed,
for example, for the schedule-based sending of data. As de�ned in the IEEE standard
802.1AS [18] TSN uses PTP to synchronize the clocks of devices in the local network.

7.2 Time-Synchronization in Control Networks

Especially in real-time systems with hard deadlines, clocks are essential. It must be
checked whether a deadline has been exceeded, when the next execution cycle starts, or
when a sensor value was renewed. If a system runs on a single control component, this
is relatively trivial since the system only has one clock to which all programs can refer. A
uniform time basis must be created if these real-time systems are to be distributed. This
uniform time base is achieved by synchronizing the clocks running on the distributed
control components. For this purpose, PTP is used. This time synchronization is
necessary for a distributed real-time system, as the following basics are created:

- All components of the system have a consistent and accurate understanding of
time, enabling precise timing calculations and meeting deadlines.

- Uniform real-time cycles can be used and monitored in the distributed system.

- Time slots can be de�ned and reserved for executions and transmissions that are
valid throughout the entire system. This is particularly important for implement-
ing TSN [77].

- Time-triggered executions become possible. Executions can be started almost
simultaneously.

- Timestamps of data are valid in the entire system. This facilitates or enables the
fusion of the data.

78

7.3 Dynamic Con�guration of Real-Time Control Networks

Time synchronization is started when new components are added to the system. Com-
ponents can be new resources, control computers, or added TSN switches. This ensures
that all components in the network have a uniform time base. If there is no PTP master
in the system, a PTP master is started on the newly added component. If a PTP master
already exists, the added component becomes a PTP slave and synchronizes to the
master’s clock.

7.3 Dynamic Con�guration of Real-Time Control

Networks

After ensuring that all components in the network have a uniform time de�nition, a real-
time capable communication channel between the added resources must be established
and con�gured in order to establish a distributed industrial robot control. The following
contents, how such a dynamic communication platform is setup, have already been
documented in preliminary work (see Eymüller et al. [52]). Because OPC UA Pub-Sub
over TSN is the basis for this work, the following terms will be used in the further
course of this chapter: Network switches with TSN capabilities are referred to as
bridges or TSN bridges. The information released by a publisher is denoted as a data
topic. These data topics are both published and subscribed to. Multiple subscribers can
subscribe to a single data topic. Furthermore, a distinction is made between two types
of participants within the system. The �rst type is the TSN End Devices, which can be, TSN End Device

for example, a resource (e.g., a sensor or an actuator), a controller or a TSN bridge of a
distributed industrial robot control system. The second type of participant is the global
TSN Controller, responsible for registering new devices and managing the establishment TSN Controller

and con�guration of real-time communication channels. The default non-real-time
OPC UA client-server-communication is used for the con�guration of the real-time
communication between the TSN End Devices and the TSN Controller.

For the discovery of newly added TSN End Devices and TSN Controllers, the OPC UA
discovery server is used as shown for adding new resources (see Section 5.3). A new
device must �rst register with the OPC UA LDS-ME to join the system. To facilitate this
process, two new custom OPC UA application types were introduced: TSN_END_DEVICE
and TSN_CONTROLLER. This makes it easy to distinguish between resources, TSN End
Devices, and TSN Controller in the OPC UA LDS. Once a device is registered, it can
retrieve information about other devices from the OPC UA LDS. This allows a TSN
End Device to obtain information about the TSN Controller, and vice versa. Once the
participants in the system are identi�ed, and information about other devices is available,
the con�guration of the TSN communication channels can be initiated. OPC UA Pub-Sub
over TSN is utilized for real-time transmission of process data, leveraging the Time
Aware Shaper (TAS) [6] from TSN to ensure minimal latency in transmission. In order to
utilize the TAS, each data topic must be allocated a �xed time slot for cyclic transmission.
The allocation of these time slots for each TSN End Device is the responsibility of the
TSN Controller. Two operations result in time slot reservations: adding topics for
publishing and subscribing to data. When adding a data topic, only the time slot of the
publishing TSN End Device needs to be included. On the other hand, when subscribing

79

7 Distributed Real-Time: Dynamic Real-Time Control Networks

Figure 7.6. Exemplary structure of a dynamic real-time network with four TSN End
Devices. A force-torque sensor is connected over two TSN bridges to a robot. The TSN
Controller is the managing instance for real-time communication. The goal is to transfer
the force sensor value from the sensor to the robot.

to a data topic, a time slot must be added to the subscribing TSN End Device as well
as to every other TSN End Device along the direct communication path between the
publisher and subscriber. In case all time slots have been successfully assigned, the
reserved time slots are used for the real-time deterministic transmission of the process
data. For each device, a corresponding time slot array is created, which de�nes whichTime Slot Array

time slots are reserved and which are free.

In order to be able to provide data topics dynamically and subscribe to data topics, a
uniform description is required of which data topics are available in the system. This
problem is solved by a data topic directory. As mentioned in the OPC UA Speci�cationData Topic

Directory Part 14 for Pub-Sub [136], a directory is necessary to facilitate the discovery of published
data topics and enable other TSN End Devices to subscribe to them. This directory stores
information about the publisher of a data topic and the frequency at which the data
is transmitted. The directory is centrally stored in the TSN Controller. The directory
concept allows TSN End Devices to search for publishers of data topics they want to
subscribe to. When a member requires information about a published data topic, it can
query the global directory of the TSN Controller. If more detailed information about a
data topic is needed, a direct request can be sent to its publisher. The directory follows
a structure similar to the OPC UA discovery service, meaning that there are not only
central directories but also distinctions between local directories for devices in the same
subnet and global directories for communication beyond subnet boundaries.

Figure 7.6 shows a sample for a dynamic real-time control network. The network shown
consists of four TSN End Devices managed by a TSN Controller. The four TSN End
Devices consist of a force-torque sensor, two TSN network switches (TSN bridges),
and an industrial robot. The sensor is attached to a TSN bridge, which in turn is
connected to another TSN bridge, to which the robot is connected. A realistic use case

80

7.3 Dynamic Con�guration of Real-Time Control Networks

in such a setting would be a force-controlled movement of a robot, where a robot moves
depending on sensor values. For this, the force value of the sensor would have to be
transmitted cyclically to the robot. The force-torque sensor would, therefore, serve as
a publisher of the data topic force value, and the robot (Subscriber) would subscribe
to this data topic. In this case, it would be the task of the TSN Controller to assign
a corresponding address to the publisher, to mediate between the publisher and the
subscriber, to �nd a transmission path between the publisher and the subscriber, and to
reserve corresponding time slots for the transmission of the data topic. The required
information is stored in the TSN Controller. In the data topic directory, all possible data
topics are stored with the available information, and in the time slot array, the current
allocation of all time slots for each participating TSN End Device is stored. How the
con�guration and storage work in detail is explained below.

7.3.1 Setup and Con�guration of TSN Communication Channels

First, the implementation of the two main components is explained. Figure 7.7 shows the
activity diagram of the main processes of the TSN End Devices and the TSN Controller,
and how they interact with each other. In the TSN Controller, �rst of all, the basic param-
eters for the TSN communication have to be set. This contains the global TSN cycle time
in which the data is exchanged and a multicast address range. Each TSN communication
participant requires a unique multicast address for publishing data topics. When starting
a component, an OPC UA server is started, which then registers with the OPC UA LDS.
TSN End Devices register as application type TSN_END_DEVICE and TSN Controller as
application type TSN_CONTROLLER. After completing the registration process, it becomes
possible to query devices and establish a non-real-time communication path between
the components. When the TSN Controller successfully registers, two parallel tasks
are started. The �rst task involves receiving registrations for new TSN End Devices,
allocating and reserving time slot arrays for these devices, and sending them a basic
TSN con�guration. The second task is to cope with removed TSN End Devices. In this
case, the time slot array of the removed TSN End Device is deleted, and all TSN End
Devices that have subscribed to a data topic of the removed device are noti�ed through
an OPC UA event.

After the basic implementation of the TSN Controller is explained, the implementation
of the TSN End Devices is introduced. The TSN End Device searches for a running
TSN Controller after successful registration at the OPC UA discovery. In case a TSN
Controller is found, a basic TSN con�guration is requested. This basic TSN con�guration
contains information about the global set TSN cycle-time and a start time of the TSN
cycle, which is necessary for the synchronization to the TSN cycle. Next, the basic
con�guration of TSN communication channels is performed. This involves preparing the
TSN-capable network interface for real-timemessage transmission by adding appropriate
schedulers, for example, the Earliest Tx-time First scheduler (ETF), to the transmission
queues (TX-queue) of the network interface. Additionally, di�erent virtual networks
(VLANs) are established for transmitting real-time data, ensuring that messages with
varying real-time priorities can be sent. Upon completing the basic con�guration of the
communication channels, the TSN End Device registers all its data topics to the TSN

81

7 Distributed Real-Time: Dynamic Real-Time Control Networks

Figure 7.7. Activity diagram of the management of TSN End Devices by the TSN
Controller . It shows that the startup routine of the TSN End Device is combined with
the main sequence of the TSN Controller. (Adapted from Eymüller et al. [52])

Controller. The OPC UA method RegisterPublisher of the TSN Controller has the
name, the data type, and the cycle time of the data topic as input parameter and returns
an updated time slot array for the TSN End Device and a unique multicast address.
When registering the publisher with the TSN Controller, an entry with the speci�ed data
is added to the data topic directory, the new time slots are reserved for the publisher
in the time slot array, and a free multicast address is reserved for the publisher from a
de�ned range. Afterward, the publisher is con�gured and started in the TSN End Device
with the received multicast address and the corresponding time slot.

After the publishers have been added, the TSN End Device can request the required data
topics by its data topic name from the TSN Controller. If the required data topics are
found, the TSN Controller returns the information required to start a publisher. This
information contains the multicast addresses of the topics and the o�sets of the reserved
time slots for subscribing to the data topics. If all requested data topics are found the
subscriber start. Registering a subscriber may result in the reservation of time slots
on multiple devices, depending on the number of hops between the subscriber and the
publisher. The TSN Controller will notify all relevant hops and set up the appropriate
forwarding of the data topic on all a�ected devices.

82

7.3 Dynamic Con�guration of Real-Time Control Networks

7.3.2 Realization of the Time Slot Array

In the preliminary work (see Eymüller et al. [52]), a simple algorithm was presented,
which can be used in small systems with one to three hops. The attempt tries to reserve
time slots iterative, one after the other. Only if no more possible time slot solution is
found the time slots are rearranged. This is only suitable to a limited extent for large
systems, but there are already other approaches to this problem, as shown in Section 7.4.
The provided example in Figure 7.8 illustrates how a time slot array for a TSN End
Device is implemented. Initially, the overall TSN cycle time is divided into time slots
of simultaneous size. To achieve this division, a power of two is chosen as the divisor
for the global cycle time (divisor = 2m). In this speci�c example, the global TSN cycle
time is divided into 16 time slots, where m equals 4. It is important to note that the
cycle time of a publisher must not exceed the global TSN cycle time, and the global TSN
cycle time must be divided into power of two intervals for the publisher’s cycle time.
This division is given by the following formula:

cycletimepublisher =
cycletimeglobal

2n

Where n can take any non-negative integer value up to m. These restrictions make
it easier to fully allocate the time slots. When new time slots are reserved, they are
assigned to the �rst available slot within the time slot array. Referring to the example,
Publisher 1 utilizes the initial time slot and �lls in the required subsequent time slots.
Following this, Publisher 2 is assigned the second time slot and �lls in the necessary
slots accordingly. In situations where overlapping reservations occur, an e�ort is made
to redistribute the entire array. Due to the prede�ned division of the time slot array,
modi�cations are not required for all subsequent cycles.

Figure 7.8. Example of a time slot array for one TSN End Device with two reservations.
The global TSN cycle time is therefore divided into equal reservable time slots. Publisher
1 publishes two times, and Publisher 2 publishes four times per global TSN cycle. (See
Eymüller et al. [52])

83

7 Distributed Real-Time: Dynamic Real-Time Control Networks

7.4 Related Work

Scheduling critical tra�c in deterministic networks is a highly researched area. Not
only in TSN, but also in other real-time network protocols, like Pro�net IO IRT [68] or
Flexray [209] the scheduling of real-time messages is a key issue. These approaches all
rely on the existing information about what data should be exchanged during the initial
con�guration of the system. This means that the scheduling procedures can also be
executed during the con�guration phase. There are also scheduling mechanisms for
static TSN networks that can be scheduled before deploying a real-time application.
There are various approaches to this, such as solving constraint satisfaction problems
with Satis�ability Modulo Theories (SMT) solvers, as shown, for example, by Craciunas
et al. [41]. The paper addresses the computation of fully deterministic schedules for
802.1Qbv-compliant TSN multi-hop switched networks. Other approaches formulate
the TSN streams as Integer Linear Programming (ILP) problem and use it to �nd an
optimal schedule, see Dürr and Nayak [47]. Unfortunately, the computation times of
such approaches are highly dependent on the number of streams and cannot be executed
in constant time, so they are not suitable for dynamic networks with changing network
nodes. Moreover, these approaches do not include already existing TSN streams and
schedules. As a result, newly optimal solutions can trigger a complete change of the
schedule. This means that existing streams cannot continue to communicate in the event
of replanning. Gutiérrez et al. [64] and Pop et al. [161] have shown how dynamic TSN
networks can be con�gured through a con�guration agent architecture based on the
IEEE 802.1Qcc [8] Stream Reservation Protocol (SRP) and OPC UA. Like the architecture
shown in this work, Gutiérrez et al. and Pop et al. de�ne a global managing instance
called Con�guration Agent (CA) that plans the communication paths and reserves the
corresponding time slots. Communication requests can be made to the CA via OPC UA
communication. The con�guration of the network is done by existing communication
protocols like NETCONF. A heuristic is used to add new streams to the current schedule.
If the heuristic fails to add the new stream, a completely new schedule is created.
These works have served as the inspiration for the dynamic con�guration of the TSN
communication channel. What is not integrated, however, is the management of the
data topics (e.g., a data topic dictionary) and the interaction of the data topic dictionary
with the time slot reservation. Recent publications also show that there is still a need
for optimization in scheduling TSN time slots at runtime and adding streams at runtime.
Gärtner et al. [65, 66] have presented an �excurve concept to support incremental TSN
recon�gurations at runtime. A �excurve is a �exible curve that is limited by a number of
addable streams along a communication path. Only when this curve is fully exhausted
the time slots have to be rescheduled. Unfortunately, this approach is still limited by
�xed cycle times of the streams. Especially for larger networks, it is conceivable to use
optimized approaches.

Besides the management of time slots for a deterministic transmission, the management
of data topics is an important aspect. In the OPC UA speci�cation part 14 [136], already
an OPC UA Pub-Sub Directory was introduced. The task of the directory should be the
registration of publishers with their published datasets and the communication param-
eters, and it should be possible to query this information. However, the speci�cation

84

7.4 Related Work

states that the concept will be updated in later iterations. Therefore, an attempt was
made to stick to the known speci�cations and to supplement the non-existent speci�ca-
tions accordingly. There are also approaches from other infrastructures for creating data
topic directories in communication systems. In the Robot Operating System (ROS) [176]
is an open-source framework used for building robotics systems. It comprises a range
of software libraries and tools that simplify the creation of robot applications. ROS
also uses a communication middleware to communicate between di�erent components
of a robotic system, so-called nodes. Nodes can be, for example, sensors, robots, or
computation components. The ROS master is a component within the ROS framework
that is responsible to facilitate the communication between di�erent components. The
ROS master also has a node registration that registers new nodes with their associated
information, such as name and communication addresses. The message routing is also a
part of the ROS master. When a node wants to communicate with another node, it �rst
communicates with the ROS master, which manages the communication setup. Due to
the similar structure, suitable concepts could be adopted.

85

7 Distributed Real-Time: Dynamic Real-Time Control Networks

86

Summary. The system must be easily modi�ed to respond e�-
ciently to new production tasks. This chapter outlines a service
architecture that enables smooth integration and modi�cation
of modular software components. Additionally, the crucial im-
portance of software component reusability is discussed. The
presented architecture facilitates local and distributed process
executions on one or multiple computing nodes.

8
Distributed Real-Time Execution of

Component Skills in Distributed Control

Networks

8.1 Fundamentals . 89
8.1.1 OSGi: A Dynamic Module System 89
8.1.2 OPC UA Programs . 90

8.2 Services: Reusable Software Components 91
8.3 Real-Time Critical and Non-Real-Time Critical Execution . 93
8.4 The Plug & Produce Service Architecture 94

8.4.1 A Uniform Data Representation: DataContainer 95
8.4.2 Modular Software Components: Real-Time Services . . . 97
8.4.3 Distribution of Real-Time Services 99
8.4.4 Execution of Applications 102
8.4.5 Semantic Description of RTSs and RTS Networks 108
8.4.6 Synchronized Distributed Control Processes 109

8.5 Related Work . 115

In the context of Plug & Produce, the goal is to have a �exible and adaptable system
that can be speci�cally adapted to new tasks. The changeover from mass production
to Lot-Size-1 production necessitates that the system has to adapt to each product
and therefore the execution logic must be changed. Since such a system consists of
numerous distributed components, which together have to perform a coordinated task,
it is necessary to have a system that allows �exible distributed executions of skills
in distributed systems. The shift from a highly optimized manufacturing system that
produces identical parts in large quantities to a �exible and adaptable system capable of
producing customized individual parts also shifts the design and layout of manufacturing
systems from the design phase into the runtime of the system. It is not desirable that
a small change in the process means a complete plant redesign, including conception
and programming. Also, it is essential to make the execution as independent as possible

87

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

Ethernet

S
k

il
l

R
e

g
is

tr
y

Skill Descriptions
Software Component

Descriptions

S
k

il
l

C
o

m
p

o
se

r

Composed Skill

Spezi�cations

Software Component

 Spezi�cations
< / >

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

< / >

Robot Gripper Force-Torque Sensor

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

P
ro

d
u

c
t

R
e

g
is

tr
y

Product / Part Description

Figure 8.1. System architecture for a RealCaPP environment focusing on the distributed
real-time execution of modular software components (cf. Figure 4.5)

from the resources used. This is achieved through the abstraction and generalization of
skills. Therefore, it should be possible to format a task that runs with one corresponding
resource con�guration with a di�erent resource con�guration without having to change
the software manually. Since the number of resources or calculation components in
such �exible production facilities can also vary greatly, the software must be able to be
distributed as required. Nevertheless, it must be ensured that this distributed execution
also takes place under real-time conditions.

In the following chapter, Section 8.1 �rst discusses the fundamentals for the execution
of modular software and how processes can be designed and executed in OPC UA.
Section 8.2 explains what services and service-oriented architectures are and why they
are well suited for the implementation of resource skills. Since not all executions require
real-time, Section 8.3 will discuss the di�erences between non-real-time executions and
real-time critical executions. Section 8.4 presents the services architecture, which is
the basis for the distributed execution of modular software components such as skills.
The chapter concludes with related work for real-time critical execution in local and
distributed systems (see Section 8.5).

Figure 8.1 displays the complete RealCaPP architecture, as previously depicted in Fig-
ure 4.5, with emphasis on the speci�c sections pertinent to this chapter. Within this
chapter, the attention is directed toward the execution of the skills and how Composed
Skills can be executed across multiple resources by using the dynamic real-time com-
munication middleware. It is therefore clari�ed how the Basic Skills of the resource can

88

8.1 Fundamentals

be implemented, how Composed Skills can be developed on the basis of these skills and
how these skills can exchange data via the real-time middleware.

8.1 Fundamentals

Before going into the distributed execution of processes in the RealCaPP environment,
a few more important technologies are introduced. A technology is presented to imple-
ment modular software modules in the form of services. In addition, OPC UA Programs
will be described, a way to integrate executable programs into OPC UA.

8.1.1 OSGi: A Dynamic Module System

The Open Service Gateway Initiative (OSGi) [122] is a framework for building modular
and dynamic applications based on JAVA. In 1999, the OSGi Alliance was founded
to create an open speci�cation for delivering managed services to local networks and
devices. OSGi provides a standardized approach to develop, manage, and deploy modular
software components called Bundles. These OSGi bundles can be downloaded onto OSGi-
compliant devices where they can be installed, started, paused, updated, and removed
at runtime without requiring a restart of the entire system. In order to achieve this,
the OSGi speci�cation also manages the dependencies among bundles. By combining
bundles, it is possible to develop services for devices with less memory that can be
deployed on a large scale. [12]

The OSGi speci�cation [146] de�nes a layered architecture for the realization of the
functionality as shown in Figure 8.2. The Service Layer o�ers a �exible and standardized
programming model for developers creating bundles. It simpli�es the development
and deployment process of service bundles by separating the service’s speci�cation,
de�ned by a JAVA interface, from its actual implementations. This approach enables
bundle developers to interact with services solely based on their interface speci�cations.
Which implementation will be used later can be decided use-case dependent at runtime.
The Life Cycle Layer provides an API for managing the life cycle of bundles. It de�nes

Figure 8.2. OSGi System Layers [146]

89

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

how bundles are installed, started, stopped, updated, and uninstalled. This layer also
allows the control of the bundle’s life cycle via events. The Module Layer is responsible
for managing the modularization of software components. This layer manages the
versioning, and dependencies of bundles. The module layer also is responsible for the
loading of classes and the isolation of the bundles. The isolation of the bundles prevents
con�icts between di�erent versions of the same class or library. In order to be able
to execute bundles independent from the hardware and operating system, there is the
Execution Environment Layer. Its primary job is to provide the necessary resources and
capabilities required for executing OSGi-based applications and bundles. Finally, there is
the optional Security Layer that provides infrastructure for the delivery and management
of applications that require applications in tightly regulated environments.

Unfortunately, JAVA is not a real-time capable programming language. By default, JAVA
does not allow deterministic execution. Exemplary reasons for this are the class loading
mechanism, the garbage collection, and the limited access of the application to the
scheduling mechanisms of the operating system through the JAVA virtual machine.
JAVA classes are initialized during runtime when an application �rst uses the class,
causing unde�ned jitter at runtime. Also, the garbage collection can cause unde�ned
delays because the algorithm pauses all application threads when executed to avoid
interferences. Through special extensions, it is nevertheless possible to make JAVA
real-time capable. The Real-Time Speci�cation for JAVA (RTSJ) de�nes these exten-
sions. [61] There are also approaches for the OSGi speci�cation in combination with
the RTSJ deploying dynamically recon�gurable real-time JAVA applications [180]. Since
the other implementations are realized in C or C++, the dynamic services shall also be
implemented in C++. Unfortunately, C++ has no direct support for OSGi. However, it is
possible to apply similar concepts and principles in C++ to realize dynamic modular C++
applications. A possible C++ OSGi implementation is the CppMicroServices API [36].

8.1.2 OPC UA Programs

In order to realize stateful and long-running services in OPC UA, OPC UA Programs

were de�ned. In the OPC UA speci�cation part 10 [138], it is speci�ed how programs
can be described and exchanged in the OPC UA infrastructure. This speci�cation
includes a de�nition of Program Nodes, a representing OPC UA node that contains the
program’s structure, associated resources, and a current execution state. Each OPC UA
Program has a �nite state machine running on an OPC UA server representing the
actual program. This state machine allows clients to initiate or monitor the execution
process and receive results from the process in a standardized manner. Figure 8.3 shows
the OPC UA Programs �nit state machine. The speci�cation de�nes four main states
(HALTED, READY, RUNNING and SUSPENDED) that must be implemented by every OPC UA
Program instance. It is also possible to extend the four states with additional substates
for a higher level of detail. The transitions between the states are also de�ned by nine
basic transitions that can either be triggered by a client or by the program itself. For
triggering a state change, there are the �ve prede�ned program control methods: Start
(Causes transition 2©), Suspend (Causes transition 5©), Resume (Causes transition 6©),
Halt (Causes transition 3©, 7© or 9©) and Reset (Causes transition 1©). For the output

90

8.2 Services: Reusable Software Components

Figure 8.3. Standard OPC UA Program �nite state machine with four default states
and nine default transitions. (Adapted from [138])

of data generated by the program there is the possibility to output intermediate results
or �nal results when the program comes to an end. In general, OPC UA Programs allow
discovering and executing stateful and long-running programs generically. [138]

8.2 Services: Reusable Software Components

In addition to the goal of integrating and con�guring resources at runtime, an important
part of Plug& Produce is to integrate the newly added devices on the software side aswell.
Since the software must also be able to adapt quickly to changing parameters, changing
processes, changing system setups, etc., it is also necessary to design the software
integration to be as �exible and modular as possible. Service-Oriented Architectures Service-Oriented

Architecture(SOAs) are particularly well suited for this purpose. In the context of SOA, a service is a
self-contained, loosely coupled unit of functionality with standardized interfaces that
can be executed and composed to ful�ll speci�c requirements. Services shall also have
a well-de�ned service contract and the property that they are discoverable, reusable,
interoperable, interchangeable, and durable. [121, pp. 39] All these characteristics are
particularly well suited for the use of Plug & Produce systems.

The abstraction or generalization of skills is essential for the creation of services in the
context of Plug & Play and especially for the reusability of these software components. It
is, therefore, necessary to examine how skills can be reduced to speci�c details through
abstraction and which similarities of skills can be identi�ed through generalization. For
example, considering the skill to grip a component. There are many classes of grippers
that can implement the process of gripping. There are, for example, parallel grippers,
suction grippers, pincer grippers, or magnetic grippers. There are di�erent gripping
principles like form closure, where the gripper conforms the contours of the object to

91

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

ensure a secure hold, or force closure, where the gripper applies a speci�c gripping force
to hold the object. Also, the drive mechanism of the gripper can be di�erent. There are
electric, electromagnetic, pneumatic, or hydraulic grippers. The actuation also di�ers
signi�cantly between the di�erent types of grippers. For example, some grippers can
only open and close; there are position-controlled grippers and force-controlled grippers.
Due to the large number of variations, it is therefore necessary to abstract the skill to
grip and to specify the additional details only if necessary. Therefore, in many cases,
it is su�cient to have a service that maps the gripping process, and depending on the
type of gripper or gripping process, only the implementation of the service changes
without changing the interface. This also makes it easy to combine these services, reuse
existing processes that access the basic interfaces, and use them for di�erent process
combinations.

By implementing the skills as services, the following advantages are obtained for Plug
& Produce systems: Through modularization and combination of services, reusable
software components can be obtained. Looking again at the example of the pick and

place skill, if the skill is implemented as a service, which in turn consists of the services
grip, release, and move to position, it is possible to achieve that this skill is independent of
the type of gripper and independent of the movement unit. This means that this service
can be performed with a linear axis on which a parallel gripper is mounted, as well as
on a 6-axis robot on which a vacuum gripper is mounted, without changing the service.
The only thing that changes is what underlying services are called. By breaking down a
complex system into small, self-contained units, it becomes easier to develop, test, and
maintain such a system. This software architecture not only has the advantage that a
system can be reused, it also ensures interchangeability. For example, it is possible to
simply replace a parallel gripper with a vacuum gripper if the component to be moved
allows it. Furthermore, easy adaptation to changing parts is possible. For example, if
moving a bigger part can only be handled with a di�erent gripper, it is not necessary
to adapt the process implementation but only to use a di�erent service of a di�erent
gripper. Since services can be nested arbitrarily, systems can also be scaled very easily,
and the complexity can be expanded as desired without having to implement every
Basic Skill. Another advantage of SOAs is the loose coupling of services. Because the
services interact through well-de�ned interfaces and protocols, services can be deployed
easily in distributed systems. This also allows the services to be easily redistributed in
the distributed system. Services can be freely distributed, particularly in automation
systems with components of very di�erent computing power, which also increases
scalability since load balancing can be operated. For example, it is possible to distribute
the service pick and place anywhere in the system. For instance, everything can be done
on one device or the services can be distributed across three devices, with one device
performing the composed service pick and place, another device performing the service
move to position, and again another performing the services grip and release. However,
other distribution patterns are possible.

92

8.3 Real-Time Critical and Non-Real-Time Critical Execution

8.3 Real-Time Critical and Non-Real-Time Critical

Execution

Especially when it comes to distributed systems and distributed execution, a basic
distinction must be made between real-time critical and non-real-time critical executions.
In particular, in distributed systems, the implementation and con�guration of real-time
critical applications also require non-real-time critical applications as a basic prerequisite
in order to guarantee real-time execution later on. An important non-real-time critical Non-Real-

Time Taskstask is the overall system coordination and con�guration. Distributed systems usually
consist of several independent components or subsystems that shall be able to collaborate
with each other. Non-real-time critical tasks are required to initiate and coordinate
communications, exchange large amounts of data and knowledge bases, and add and
remove new components, new capabilities, or new tasks to the system. The initialization
and parameterization of hardware and software components, for example, memory
management and setting up hardware interfaces, are also important non-real-time tasks
that are required to ensure real-time execution. In addition, system maintenance tasks
such as logging information or errors and updating the software are not time-sensitive
but make the system easier to operate. These tasks contribute to the overall reliability
and coordination of the system and indirectly support the real-time critical execution,
which depends on the correct functioning of the entire system.

Apart from initialization, con�guration, and parameterization, there are also skills Long-term Skills

of resources that are not deterministic or are only deterministic under �xed de�ned
conditions. Mostly, these are skills that require several real-time cycles for execution,
so-called long-term skills. For example, the skill of the robot move to a position can have
di�erent execution times depending on the start and end position, and it also depends
on the parameterization of the skill, which maximum velocity or which maximum
acceleration is allowed. Also, for some skills, no hard real-time is needed. For example,
when grabbing while standing still, it is not relevant whether the gripper needs 1 ms or
100 ms for the execution. However, if several skills are combined into more complex
skills, suddenly, the execution time or reaction time can play an important role. If, for
example, a component is to be gripped or placed down during the movement, exact
timing is required. Since it is not known at the design time how the skills will be
combined later on, it is necessary that the individual skills are real-time capable. For
executions that cannot be executed in one real-time cycle (� 1 ms), it shall be possible to
start the execution in one cycle, to terminate the execution in one cycle, and if necessary,
to have the possibility to receive information on the execution in each cycle.

In addition to the long-term skills, there are also skills that can be executed in a fraction
of a real-time cycle (� 1 ms). These skills are called real-time skills. An example of Real-Time Skill

real-time skills is the reading of sensor data, the calculation of positions, or the writing
of control data to an actuator. Because these real-time skills require only fractions of a
real-time cycle, combinations of several real-time skills can be executed in one real-time
cycle. Of course, it is important to ensure that the worst-case execution times of the
individual real-time skills are smaller in total than the time of one real-time cycle. The
combination allows, for instance, a sensor-controlled movement of an actuator. Since,

93

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

in one real-time cycle, the sensor values can be read, a control value can be generated
based on the sensor data, and the output can be passed on to the actuator. Also, it is
possible to form a long-term skill from a combination of numerous real-time skills. The
sensor-guided movement can be considered as a long-term skill that runs over several
real-time cycles, which is composed of the three real-time skills that are executed every
real-time cycle.

Another essential consideration in real-time execution is the abstraction of real-time.Abstraction

of Real-Time Abstracting real-time executions involves creating a high-level representation or model
of a real-time system that captures its essential characteristics without getting into the
low-level details. The abstraction is solved by two techniques in this thesis: The �rst
one is the usage of a layered architecture, where the lower layers handle the real-time
requirements, and the higher-level layers focus on the system’s functionality. Therefore,
the system’s primary user can utilize combinations of modules from the lower layers to
implement his system functionality as desired without having to worry much about the
real-time and associated limitations. The lower layers also take care of the execution
that cannot occur in the real-time context, such as managing the memory, con�guring
hardware and communication interfaces, and much more. The second main technique
for abstraction is a model-based approach for abstraction. For instance, function block
diagrams such as those de�ned in IEC 61499 [214] are suitable for modeling distributed
systems with modular applications. Each function block can be used to abstract the
real-time execution, and several of these function blocks can be combined into more
complex structures. The basic idea of these function blocks was used in this work, and
further concepts were developed based on it.

8.4 The Plug & Produce Service Architecture

In order to get a �exible and adaptable Plug & Produce system, a software architecture
is presented that can readily respond to changing use cases, changing hardware, and
dynamic network topologies. As mentioned, service-oriented architectures are particu-
larly well-suited as a basis for such customizable systems. The Plug & Produce service
architecture must meet the following requirements:

- The software components (services) must be modular, capable of being added, and
replaced dynamically at runtime. For this, it is important that the services have
uniform interfaces. This makes it possible to add and exchange resources with
the corresponding software at runtime. It is also possible to respond to changing
tasks by adapting or replacing the services.

- All services must be able to be executed in real-time, and even combinations
of several services must be real-time executable. All services have a de�ned
lifecycle with di�erent states, allowing non-real-time capable tasks (e.g., hardware
initialization) to be decoupled from the real-time execution (e.g., sensor-guided
motion).

- Real-time abstraction can be achieved by nesting real-time capable services in
more complex structures that are also real-time capable. Only when creating new

94

8.4 The Plug & Produce Service Architecture

services or modifying existing ones it is necessary to pay attention to real-time
capability.

- Services can be executed on a single control device, for example, a single industrial
computer, but they can also be distributed arbitrarily in the distributed system on
a wide range of control devices. Here, too, the real-time must not su�er from the
distribution. Therefore, the interfaces of the services can be easily expanded from
local real-time interfaces to real-time-capable network interfaces.

- It shall be possible to execute both cyclic and acyclic executions in real-time in
the service architecture. Process sensor values would be an example of cyclic
execution since the sensor values are read and processed cyclically. An example
of an acyclic execution would be the start of a movement or the opening of a
gripper.

- Distributed processes synchronization shall be possible, meaning that distributed
services can synchronize their states in real-time.

The following sections explain how these requirements can be implemented to realize a
complete robot control system. It is explained how Basic Skills can be implemented and
linked to form more complex structures.

8.4.1 A Uniform Data Representation: DataContainer

An important aspect of a service architecture is a uniform data representation. Since
the explicit data types that are later to be used for execution are not known during the
design phase of the service architecture, and real-time programming languages such as
C++ must know the data types at compile time, data representation is a challenge. To
enable adding, exchanging, and removing modular software components at runtime, a
data structure is needed that has constant access times and can represent a combination
of primitive data types, as well as arrays of primitive data types.

The solution is the DataContainer data structure. Each DataContainer object consists DataContainer

of a header to locate the individual data objects, a storage area of dynamic length to store
the data objects, and functions for accessing the data and taking care of the memory
management in the system. Access to the data is only possible via the functions in order
to keep the data consistent. Figure 8.4 shows the structure of a DataContainer. The
header contains the number of data objects the DataCointainer holds (header size) and

header size data type
number of

elements
start pointer label

header entry

data value 0 data value 1 ...

...HEADER

DATA STORAGE

Figure 8.4. Structure of the DataContainer: Schematic structure of the header and the
data storage using the example of a one-element data value and a two-element array.

95

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

entries for each data object. A data object entry has a data type, the number of elements,
a pointer to the �rst memory location of the data object, and a label. Primitive data
types have one element, and arrays have the array length as the number of elements.
For example, the data value 0 represents a primitive data object with one element.
Arrays of any length can be mapped, as in the example with data value 1, where the
start pointer points to the �rst element of the array, and the number of elements de�nes
the array size.

Figure 8.5 shows the class diagram of the DataContainer with the operations for inter-
acting with the DataContainer. A distinction is made between non-real-time capable
operations (highlighted in red), real-time capable operations with higher latencies (high-
lighted in yellow), and real-time capable operations with low latencies (highlighted
in green). Due to the dynamic size of the containers, memory must be allocated for
the header and the data objects. Since memory allocations are not deterministic, care
must be taken when using DataContainers to ensure that they are created, extended,
or copied (non-real-time capable operations) in the initialization phase and not in the
real-time critical phase of the system. If this restriction is observed, the system remains
deterministic in its execution. Care can also be taken to avoid real-time operations
with higher latencies. For example, identi�cations via indexes are faster than having
to perform a text comparison for every query, as it is the case with data access via
labels. All these operations ensure type safety. If possible, compatible types are cast
during execution. Since the types are not instantiated until runtime, incorrect types are
reported as runtime errors.

DataContainer

-header: Byte *
-data_storage: Byte *
-header_size: Integer

+create_value(datatype: Integer, size: Integer): Integer
+insert_value(value: T[]): Integer
+get_type(index: Integer): Integer
+get_label(index: Integer): String
+get_value(index: Integer, subindex: Integer): T
+get_value(label: String, subindex: Integer): T
+get_array(index: Integer): T[]
+get_array(label: String): T[]
+get_ptr(index: Integer): T*
+get_ptr(label: String): T*
+set_label(index: Integer, label: String): void
+set_value(index: Integer, subindex: Integer, value: T): void
+set_value(label: String, subindex: Integer, value: T): void

T: DataType

+create_value(datatype: Integer, size: Integer): Integer
+insert_value(value: T[]): Integer
+get_type(index: Integer): Integer
+get_label(index: Integer): String
+get_value(index: Integer, subindex: Integer): T

+get_array(index: Integer): T[]
+get_array(label: String): T[]

+set_label(index: Integer, label: String): void
+set_value(index: Integer, subindex: Integer, value: T): void

+get_value(label: String, subindex: Integer): T

+get_ptr(index: Integer): T*
+get_ptr(label: String): T*
+get_ptr(index: Integer): T*

+set_value(label: String, subindex: Integer, value: T): void

Figure 8.5. Class diagram of the class DataContainer. Red operations are non-real-
time capable. Yellow operations are real-time executable but need more execution time.
Green operations are real-time capable and have low latency.

96

8.4 The Plug & Produce Service Architecture

8.4.2 Modular Software Components: Real-Time Services

Each Plug & Produce real-time system consists of several modular software components
that, in combination, take over the control of a robotic system. These modular software
components must be designed so that they can be added, changed, or removed at runtime.
These modular software components are called Real-Time Services (RTSs).

An RTS is a modular software component that has data inputs (InPorts), processes the Real-Time

Services (RTSs)provided data, and then writes the results to data outputs (OutPorts). The processing
can be represented as a function rts that maps the inputs (IPn) to the outputs (OPm),
see Equation 8.1.

rts : IPn → OPm, (ip1, . . . , ipn) 7→ (op1, . . . , opm) with n,m ∈ N0

Equation 8.1. rts function of an RTS

By this de�nition, it is possible that RTSs consist of both In- and OutPorts, only InPorts,
only OutPorts, or to have no ports at all. The ports are especially suitable for mapping
cyclic data connections between the modular software components. Since there are Functions

also components in automation systems that work event-based, an additional approach
for acyclic calls was developed. Each RTS can provide a set of functions which are
available in the complete RTS Network. The functions can either adapt the rts function
of the RTS or can be executed independently. Adjustments to the rts function will be
taken into account in the next execution cycle of the RTS Network in order to avoid
inconsistencies. Figure 8.6 shows a single RTS with InPorts on the left and OutPorts on
the right. Functions are displayed inside the RTS.

Figure 8.6. A single Real-Time Service (RTS) with InPorts, OutPorts and Functions

To implement a control system for robots, several RTSs are combined into an Real-Time RTS Networks

Service Network (RTS Network). Therefore, the OutPorts of an RTS are connected to
the InPorts of other RTSs. An OutPort can be connected to several InPorts, whereas
an InPort can only be assigned to one OutPort. As a further restriction, no cyclic
dependencies are allowed due to circularity in the network.

RTS Networks can be encapsulated, which means that RTS Networks can be seen as RTS Encapsulated

RTS Networksagain. The RTS Network representing RTS has the set of all not yet connected InPorts of

97

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

all RTS in the RTS Network as InPorts. Since OutPorts can be connected multiple times,
all OutPorts of all RTS in the RTS Network are used as OutPorts of the encapsulated RTS.
The encapsulation makes it easier to reuse complex RTS Networks for other purposes.
All internal functions of the sub-RTSs are passed on to the encapsulated RTS Network. It
is also possible to add functions to an encapsulated RTS Network. These added functions
can use the internal functions of the sub-RTSs. Figure 8.7 shows an encapsulated RTS
Network with tree sub-RTS. All four OutPorts are passed on to the surrounding structure.
Since the InPorts 2 and 4 are used internally, only the InPorts 1, 3, and 5 are passed on
to the surrounding structure. Both the internal functions (Function 1 and Function 2)
and the functions of the encapsulated RTS Network (Function of the Encapsulated

RTS Network 1) are visible to the outside.

Figure 8.7. Encapsulated RTS Network with an RTS Network consisting of three RTSs
inside

After describing the structure of the RTSs and the RTS Networks, the execution andExecution of

RTS Networks execution times are considered. RTS Networks are executed cyclically with a speci�ed
cycle time. The entire RTS Network is executed in each cycle. In one cycle, all RTSs
in the RTS Network have to read the InPorts, process the rts function, and write the
results of the rts function to the OutPorts. Due to dependencies of the individual RTSs
by the connections of the ports, the execution of the RTSs can not be parallelized in
general. The RTSs are executed in paralyzed sequences that take the dependencies of
the ports into account.

To guarantee real-time in the system, the Worst-Case Execution Time (WCET) must
be analyzed. In a worst-case scenario, no RTSs in the RTS Network can be executed
in parallel, making it a pure sequential execution. The WCET of an RTS Network is
calculated by adding the WCETs of each RTS plus the worst-case transmission time for
the exchange of data over the data ports between two RTSs, see Equation 8.2. However,
this is an overestimation since most RTS Networks are at least partially parallelizable.
Nevertheless, when implementing a system, care must be taken to ensure that theWCET
of the RTS Network is less than the cycle time of the RTS Network.

98

8.4 The Plug & Produce Service Architecture

WCETRTS Network =

RTSs∑
(WCETRTS +WCETTransmission)

Equation 8.2. WCET of an RTS Network

8.4.3 Distribution of Real-Time Services

If RTSs are executed on one device, both the cyclic and the acyclic connection are easy
to implement since all RTS have a common memory area. Due to the shared memory
area, the latencies for data exchange via ports, and function calls are almost negligible
(� 1 microsecond). Latency increases quickly when considering distributed systems
where services are distributed across multiple devices (< 1 millisecond). In distributed
systems, no shared memory exists, and the data between RTSs must be exchanged via
the network. Many of the network protocols are not real-time capable, especially with
respect to determinism and hard real-time bounds. The distributed data transmission is
carried out via OPC UA over TSN to ensure data transmission in real-time. OPC UA
over TSN establishes a cyclic communication with a �xed time interval. The WCET of
the transmission via OPC UA over TSN is the de�ned cycle time of the transmission
plus the time for the actual network transmission. Due to the reservation of time slots,
which TSN requires, there can be no delays caused by other network tra�c.

In the further course, a distinction is made between internal and external connections. Internal and

External

Connections

An internal connection is a connection between RTSs that run on the same device and
can use the shared memory. An external connection is a connection between RTSs
that runs on multiple devices and has to communicate via the network. To make the
interface between the ports usable for internal and external connections, the data ports
are implemented by DataContainers. For an internal connection, the OutPort contains
a DataContainer object. If a connection from an InPort to this OutPort is established,
a pointer is created in the InPort, which points to the DataContainer object of the
OutPort. Thus, the transmission time for an internal connection is the time of a pointer
access. With this realization, connecting several InPorts with one OutPort is possible.
For the external connections, OPC UA over TSN is used for the network transport.
The facade pattern was used to hide the complexity of the con�guration of a real-time
connection via OPC UA over TSN. The facade uses the DataContainers of the OutPorts
that need to be transferred to another device. Due to the stored data in the header of
the DataContainer, most of the required data for con�guration of the transmission are
already available. What is also required is the cycle time of the transmission and a free
time slot for the TSN transmission. The facade also covers the missing data. By default,
a �xed cycle time is used for all transmissions. The approach presented in Chapter 7
is used to establish the OPC UA over TSN connection with the reservation of the time
slots. An OPC UA publisher is created for each OutPort to be transmitted. For this
purpose, the facade writes the data of the DataContainer into the OPC UA information
model and keeps the data synchronized. Then a publisher is created for the data in the
information model. Any device that now has an InPort that wants to connect to the

99

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

Figure 8.8. Realization of external connections. One RTS Network is distributed to
two devices.

provided OutPort creates an OPC UA subscriber. The subscriber receives and writes the
data into the local OPC UA information model. From there, a DataContainer object is
created, which can be accessed by the InPorts. Since several subscribers can subscribe
to one publisher, mapping one OutPort to several InPorts with external connections
is possible. Figure 8.8 shows how a simple RTS Network can be distributed to two
devices.

In order to also create a uniform de�nition for functions for distributed execution, func-Distributed

Function Calls tions are also implemented with DataContainers. A function has two DataContainers,
one for the parameters of the function and one for the return values. Also methods can
be implemented in the same way as functions. Only the return value DataContainer is
empty. So every function has a call function with the following de�nition:
call(params:DataContainer,returns:DataContainer):void

If a function is called on the same device, it is a local function call of the call function.
However, if a function is executed on another device, the function call and the transfer
of the parameters and results must be done via the network, e.g., via OPC UA over TSN.
Because OPC UA over TSN does not support acyclic communication in real-time, the
acyclic communication is implemented by cyclic communication. Therefore, likewise,
the facade is used. The facade synchronizes the DataContainer for the function param-
eters of the function caller to the OPC UA Information model. Additionally, a �ag for
the actual function call is added to the information model. A publisher is created for this
information. At the function provider, a subscriber is created that writes the parameters
and the call �ag to the information model. A DataContainer object is created out of
the parameters in the information model. If the call �ag is active, the function is called
with the parameter DataContainer. In the function provider, a publisher is created,
which contains the result DataContainer and a �ag, which indicates if the function
was executed successfully. The function caller in turn creates a subscriber that writes
the function results to a DataContainer object. Using the two �ags, it is possible to
call functions and then receive information about successful execution. The worst-case
execution time can be determined as follows: A maximum of one TSN cycle plus the
time for the actual network transmission is required to call the function via OPC UA

100

8.4 The Plug & Produce Service Architecture

RTS

+init(): void

+run(): void

+stop(): void

Port

+value: DataContainer*

InPort OutPort

Function

+call(params: DataContainer, return: DataContainer): void

1*

1

*

1 *

Figure 8.9. Class diagram of Real-Time Services (RTSs)

over TSN. The function is then executed, which corresponds to the local execution time
of the function. Afterward, the results are transferred back, which requires a maximum
of one TSN cycle plus the time for the actual network transmission. Thus, functions
with a deterministic execution time can also be called in a distributed manner with a
de�ned maximum execution time.

All RTSs are implemented as services implemented according to the OSGi speci�ca-
tion [201]. Due to the real-time requirements, the services are not implemented with
JAVA but with a C++ implementation. The CppMicroServices API [36] provides an
OSGi-like C++ dynamic module system to create services. Although the OSGi speci�-
cations were initially designed for the JAVA virtual machine, the majority of its core
principles are independent of a speci�c programming language and can be e�ectively
applied in a C++ setting. The API includes functions for handling services as well as a
services registry for locating and querying services. The OSGi speci�cation also enables
the deployment of dynamic services that can be installed during runtime on a deployed
system. Within the context of OSGi, all RTSs are bundles that implement the uniform
interface RTS, which is illustrated in Figure 8.9. Each RTS follows a three-step life cycle
consisting of initialization, execution, and deinitialization phases. The initialization
phase is triggered by the init() function and primarily handles tasks such as creating
ports, functions, and allocating memory for the RTS, which is not necessarily deter-
ministic. During initialization also all DataContainers are initialized to avoid memory
allocations during runtime. The same applies to non-deterministic initializations of
resources, for example, a handshake mechanism for starting the communication with a
gripper or robot. These initialization sequences can take place without impacting the
real-time execution. During the execution phase of the RTS, which is real-time critical,
in each execution step triggered by the run() function, a precise sequence of actions
is performed. These actions involve reading the InPorts, executing the intrinsic logic

101

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

of the software component (execution of the rts function), and writing the results to
the OutPorts. The deinitialization phase, triggered by the stop() function, is used to
remove the RTS from the system when it is no longer required. The deinitialization is
also not deterministic. In the deinitialization phase, the entire memory management,
e.g., the release of memory areas, is handled.

Due to the C++ implementation, there is a restriction concerning the bundle de�nition:
Bundles must implement an interface which must be known at compile time of the
system. C++ is a statically typed language, meaning that values have to be attached to
types at compile time. There are also no other build-in concepts in the C++ standard,
such as re�ection in JAVA [123]. Re�ection allows programs to modify their struc-
ture, including classes, attributes, and function at runtime. Even the newly added C++
technical speci�cation ISO/IEC TS 23619 [86] only enhances the capabilities of C++ by
introducing features that allow for the examination of program elements like variables,
enumerations, classes, and their members. Still, no modi�cation at runtime is possible.
This means that all data types must be known at compile time, which makes it challeng-
ing to integrate new services that shall be added during runtime but are not known at
compile time. This problem is solved by using DataContainers as compile time known
object for the data of ports and functions. The DataContainer data structure provides a
uniform way of representing data within the RTSs by being used for both the InPorts
and OutPorts, as well as for de�ning the functions called on the RTSs. This allows the
�exibility of not needing to know the data types during the design phase and enables
the ability to load them dynamically at runtime. To elaborate, each OutPort includes a
DataContainer object that represents the data value of the port. Conversely, an InPort
only contains a pointer that directs to a DataContainer object of an OutPort. This
approach eliminates the need to copy data objects when connecting two ports, saving
time and reducing execution time. When it comes to functions callable on an RTS, they
are designed with a call function that contains a DataContainer object for both the
function parameters and return values. By hiding the parameter types and return types
through the DataContainers, all functions have a consistent representation already
determined during the compilation stage.

8.4.4 Execution of Applications

In order to be able to switch between several applications and create complex sequences
of skills, a further concept for the execution of RTSs and RTS Network is introduced,
so-called Application Services (AS). ASs are independent services that can be executedApplication

Servicess arbitrarily. An example for an AS would be the execution of the task move the cube by a

robot from position (XS , YS , ZS) to position (XG, YG, ZG). AS are also modular services
that can be loaded at runtime, and additionally have preconditions and postconditions
for the execution. To successfully execute an AS, �rst, all its preconditions must be
ful�lled. After the successful execution of the application, there is a postcondition which
is passed on to the system. If all preconditions are ful�lled, it is possible to execute the
application. If the application is executed successfully, a postcondition is returned to
the system. These conditions contain adjustments to the system made by the execution

102

8.4 The Plug & Produce Service Architecture

ApplicationService

+check_preconditions(): Boolean
+init(): void
+execute_application(): void
+apply_postconditions(): void

RTS
1..*

Figure 8.10. Class diagram of the class ApplicationService

of the application. In the example shown, this means that for the movement of the cube,
the following precondition must apply:

- The cube must lie on the position (XS , YS , ZS).

- There must be resource combination with a robot that can move a cube (e.g., a
robot with a gripper with matching gripper jaws).

- The position (XS , YS , ZS) and (XG, YG, ZG) must be reachable by the robot

- The gripper is open and contains no elements, and

- The target position (XG, YG, ZG) must be free.

If all these conditions are met, the cube can be moved. After execution, the state of
the system is adjusted by the postcondition. Therefore, the following postconditions
apply:

- The position (XS , YS , ZS) is free

- The cube lies on the position (XG, YG, ZG) and

- The gripper does not contain any elements.

ASs therefore have an in�uence on the system and its environment through the execution.
After the postconditions are applied, other AS can be executed, which, on the contrary,
had as preconditions that are now ful�lled by the new system state.

Figure 8.10 shows the class diagram of the AS. Each AS has four basic functions. With
the function check_preconditions() the existing preconditions can be checked, if all
preconditions are ful�lled true is returned. If the preconditions are ful�lled, the init()
function can be called, this is intended for the initialization of all RTSs involved since the
initialization cannot be executed in real-time. The AS coordinates the initialization of all
RTSs. Only after all RTSs are initialized the respective application can be executed via
the execute_application() function. After the successful execution of the application,
the postconditions can be applied, and adjust the new system state. This is done by the
function apply_postconditions().

In order to have a uniform format to formulate preconditions and postconditions, the Pre- and Post-

Conditions of ASsconditions are implemented on the knowledge base of the ontology. The checking of
preconditions can be solvedwith the help of ASK SPARQL queries. These queries return a
boolean statement as a result. The knowledge base of the ontology contains information
about the individual resources, how the resources are connected to each other, and
what skills the resources have. In addition, information about other elements, such
as components or products, can be described. To illustrate such knowledge ontology,

103

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

Figure 8.11. Cube example ontology with a resource con�guration that can grip
cubes. Classes are represented as ellipses: Class Instances are represented as rectan-

gles: Instance Relations between classes are shown as arrows: Instancements are
represented as dashed arrows:

1 ASK{

2 ...

3 ?robot isA Robot.

4 ?gripper isA Gripper.

5 ?robot isConnectedToResource ?gripper

6 ?gripper hasJaws ?jaws.

7 ?jaws canGrip Cube.

8 ...

9 }

There must be resource combination with a robot
that can move a cube (e.g., a robot with a gripper,
with matching gripper jaws)

Listing 8.1. ASK SPARQL query for the second precondition of the cube example

an ontology is made for the cube example. Figure 8.11 shows a part of an ontology
describing a resource con�guration and the description of a cube. The system contains a
robot with a gripper with gripper jaws that can grip cubes. If the precondition 2 ("There
must be resource combination with a robot that can move a cube (e.g., a robot with a gripper,

with matching gripper jaws") from the cube example is to be checked, the query shown
in Listing 8.1 can be de�ned. The query checks if there is a robot connected to a gripper
with gripper jaws that can hold a cube. For the given ontology, the query would return
True. Postconditions are de�ned as change commands of the ontology. This means that
new edges can be added or removed, or properties can be added, deleted, or changed. In
the example of the cubes, for example, the position property of the cubes would change
after move the cube task is executed.

The ASs can be used to implement complex processes that implement speci�c use
cases. Therefore, the implementation of the process is called Use Case. Use cases canUse Cases

implement processes in two ways: The �rst way is that the user speci�es the execution
order of the ASs to form a process. The second way is that the user speci�es which ASs
belong to a process, and the system orchestrates itself based on the preconditions and
postconditions of the ASs.

104

8.4 The Plug & Produce Service Architecture

Figure 8.12. Overview of all hierarchy levels for the execution of processes in the
RealCaPP architecture

Figure 8.12 shows the complete hierarchy for executing processes in the RealCaPP archi-
tecture. The �gure shows the decomposition of a process into its individual execution
components. An entire process is represented by a Use Case. A Process can be composed
of several Tasks. For example, if the goal of the overlying process is to stack a tower

of cubes. This process can be divided into di�erent tasks, which are implemented by
Application Servicess. Tasks can be, for instance, to get a cube out of a magazine or to
move a cube accordingly. Tasks in turn consist of skill calls, where skills can be either
Basic Skills or Composed Skills consisting of several Basic Skills or other Composed
Skills. Basic Skills are implemented as RTSs and Composed Skills as Encapsulated RTSs.
For example, the task of moving a cube can be implemented by the Composed Skill pick

and place, which in turn is built from the Basic Skills move to a position, grip and release.

In the context of SOA, where applications are composed of multiple loosely coupled Application

Orchestrationservices, orchestration plays a crucial role in de�ning the work�ow or sequence of
steps that need to be executed to accomplish a particular task or process. Due to the
self-orchestration of the system, the user has the possibility to adapt the system or add
process steps without having to worry about the exact order of execution. If there is
a possible execution order, it can be found automatically. For the �rst version of the
orchestration of AS, a simple customized depth-�rst search algorithm [110, p. 36] was
used. This can be replaced subsequently also by more complex orchestration or planning
algorithms. For example, the concepts of Nägele [130] can be used.

First of all, it must be de�ned which AS are to be used, and there must be a state
description of the system in the form of an ontology, as presented in Chapter 5 and
Chapter 6. Initially, a snapshot of the ontology is created. This allows to restore this
snapshot of the ontology later on. Afterward, all preconditions of the ASs are checked
one after the other. This is done by checking the ASK SPARQL query of the ASs. If all
preconditions of an AS are ful�lled, the postconditions are applied to the ontology and

105

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

a new snapshot of the ontology is created. Afterward, the whole routine is continued
on the still existing ASs. In case no preconditions can be ful�lled, the last applied
postcondition is discarded by resetting the ontology to the last snapshot, and another
possible AS is chosen. This is executed until either a valid solution with all ASs is
found or it is determined that no solution is possible. Finally, the execution order is
saved so that it can be reused for later executions without having to perform a new
orchestration. The pseudo-code for the described execution using a depth-�rst search
to �nd an appropriate execution order is given in Algorithm 8.1.

106

8.4 The Plug & Produce Service Architecture

Algorithmus 8.1 : Depth-First Search for Finding Execution Order

Data : Set ASs of Application Services
Result : Possible execution order for the services
Global :Global ontology onto

1 Function FindxExecutionOrder(ASs):

2 visited← an array of size |ASs| initialized with False;
3 stack ← an empty stack;
4 for as in ASs do

5 if not visited[as] and as.check_preconditions() then
6 DFS(ASs, as, visited, stack) ; // Start DFS planning

7 end

8 end

// Check if no solution found

9 if |stack| <> |ASs| then
10 Print "No Solution Found!";
11 return null;

12 end

13 return stack ; // Return execution order

Data : Set ASs of ASs, current AS as, array of visited AS visited, stack for
solution stack

14 Function DFS(ASs, as, visited, stack):

15 visited[as]← True;
16 snapshot← onto.create_snapshot();
17 as.apply_postconditions();
18 found← False;
19 for as1 in ASs do

20 if not visited[as1] and as1.check_preconditions() then
21 DFS(ASs, as1, visited, stack); // Recursive call of the DFS

22 found← True;

23 end

24 end

25 if not found then

26 if all elements of visited = True then

27 stack.push(as); // Solution found with all ASs

28 else
// Wrong path -> Resetting system state

29 visited[as]← False;
30 onto.revert_snapshot(snapshot);

31 end

32 else

33 stack.push(as); // Add AS to solution

34 end

107

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

8.4.5 Semantic Description of RTSs and RTS Networks

In addition to the implementation of the service architecture, a description of the services
and the interrelationships is essential. Also, the description of the RTSs and the RTS
Networks is added to the knowledge base of the ontology. The description contains the
basic description of the RTS, e.g., information about the ports and the functions. The
ontology also allows to identify, for example, which ports are connected to each other
and which RTS is running on which computation device. Figure 8.13 shows the ontology
for describing the RTS system. Besides the description of the RTS itself, the ontology
also shows the relationship between skills and the RTSs. The relation implmentsSkill

describes which skill can be mapped by which RTS. RTS can also have a connection to
resources, so it is possible to �nd out which RTS belongs to a resource by the relation
containsRTS.

Due to the detailed description of the RTS, the ontology can also be ideally used as
a Service Registry for RTSs, since all relevant information can be stored and queriedService Registry

for RTSs here. Therefore, it is possible to query via SPARQL queries which RTSs exist, which
functions are available, and where the RTSs and functions can be found in the distributed
system.

Moreover, graph algorithms can also be easily applied to the graph structure of the
ontology. Since the connection of the ports creates a dependency between the RTSs
it is essential in which order the rts functions of the RTSs are executed. For theDetermination

of the RTS

Execution Order

Figure 8.13. Excerpt from the ontology describing RTSs and RTS Networks. Classes are
represented as ellipses: Class Relations between classes are shown as arrows: In-
stancements are represented as dashed arrows: Already mentioned concepts are
grayed out.

108

8.4 The Plug & Produce Service Architecture

1 SELECT ?rts2 (COUNT(?mid) as ?level)

2 WHERE {

3 {

4 ?rts1 isA RTS.

5 ?rts1 connectedToRTS* ?mid.

6 ?mid connectedToRTS+ ?rts2.

7 }

8 UNION

9 {

10 ?rts2 isA RTS.

11 ?mid isA RTS.

12 FILTER(?rts2 = ?mid)

13 }

14 }

15 GROUP BY ?rts2

16 ORDER BY ?level

Query all RTS dependency chains. 1©

Add RTSs that are not connected to any
other RTS. 2©

Counting all dependencies to other RTSs

Listing 8.2. SPARQL query for determining the execution order. The RTSs are output
in an ordered sequence.

hasOutPort ◦ connectedToInPort ◦ inverse(hasInPort) → connectedToRTS

Equation 8.3. Property chain for the inference of the relation connectedToRTS.

determination of the execution order, dependency graphs are created, and the execution
order is derived from these graphs. Listing 8.2 shows the SPARQL query, which allows
to retrieve an execution order from the description of the RTSs and the RTS Networks.
The query consists of two parts. First, all dependencies between the RTS are searched
for by chain query (see 1©). This is done via the connectedToRTS relation. This relation
can be inferred by the property chain shown in Equation 8.3. The connectedToRTS

relation indicates which RTS depends on which RTS. Since it can happen that some
RTSs do not have any dependencies, all RTSs are added once in the second part of the
query (see 2©). These values are now grouped according to the RTS, and the length of
the dependency graphs is counted. These calculated values are afterward sorted by the
level in ascending order, which results in the execution order of the RTSs.

8.4.6 Synchronized Distributed Control Processes

Especially when a distributed system is used, there are a lot of executions in an au-
tomation system that have to run distributed on several components but have to be
synchronized in some way. Particularly in the case of sensor-guided movements in
robotics, for example, it is necessary that the sensor system and the robot start operating
synchronously and also exchange data reliably with each other afterward. If a central

109

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

system is used, for example, a control system that is connected to both the sensor and
the robot, it is easy to specify a sequence through the program. In addition, the system
has a common understanding of time and also a common memory. If this structure is
broken down, it must be ensured that there is a common de�nition of time and how
sequences can be mapped in distributed networks. As already shown in previous work
(see Eymüller et al. [51]), in the context of distributed real-time critical control systems,
four main requirements must be ful�lled:

- Synchronization of the clocks of several distributed components

- Allowing real-time communication between these components

- Synchronization of distributed control processes across multiple components
without losing real-time

- Enable exchange of information between the distributed control processes in
real-time

A combination of OPC UA Programs and OPC UA Pub-Sub over TSN communication is
used to meet the mentioned requirements. By leveraging OPC UA Pub-Sub over TSN,
the solution enables clock synchronization among multiple components and facilitates
real-time communication between these nodes as shown in detail in Chapter 7. Ad-
ditionally, the inclusion of OPC UA Programs allows for the execution of continuous
processes. The challenge is how to achieve distributed, continuously running processes
that can synchronize and exchange real-time data and process information in real-time.
By addressing this challenge, the proposed approach enables the implementation of
distributed synchronized industrial control software.

As shown in the previous section. It is possible to distribute RTS Networks across
multiple devices by using external connections. What is missing is a way to synchronize
the distributed running processes. For example, so that the split RTS Network can be
started on both execution nodes simultaneously.

First, a way must be found to synchronize the states of distributed OPC UA Programs.Distributed

State Machines Therefore, the standard state machine of the OPC UA Program speci�cation was re-
vised by adding a handshake mechanism to synchronize multiple distributed OPC UA
Programs with each other. In this context, synchronization refers to the process of
exchanging and aligning the states of all distributed OPC UA Programs in order to
achieve a uni�ed state. It is distinguished between two types of distributed OPC UA
Programs: the Master OPC UA Program and the Slave OPC UA Programs. The Mas-

ter OPC UA Program’s main task is to check whether all Slave OPC UA Programs areMaster OPC UA

Program synchronized and ready to start the actual program. Therefore, it is crucial for the
distributed OPC UA Programs to be able to exchange their status with each other. The
Slave OPC UA Programs receive instructions from the Master and respond with stateSlave OPC UA

Programs changes, which are then communicated back to the Master.

For illustration purposes, this is explained using an example in the robotics domain with
one Master and one Slave depicted in Figure 8.14. Suppose a user wants to generate a
trajectory on one component (Trajectory Generator) and execute this trajectory on
another component connected to a robot (Robot Control). The role of the trajectory
generator is to create a trajectory and supply the robot control with target positions for

110

8.4 The Plug & Produce Service Architecture

Figure 8.14. Application example for distributed OPC UA Programs with one Master
and one Slave: Distributed execution of a trajectory on a robot arm (See Eymüller
et al. [51])

the robot axes at consistent time intervals. The robot control requires desired positions
for each axis within a speci�c time frame. It converts these desired axis positions
into control instructions, which are subsequently transmitted to the robot. For this
purpose, it is also important that both executions on the distributed components start
simultaneously, can be paused if necessary, and can be resumed. Moreover, the data �ow
must take place in real-time while the application is running. In order to synchronize
the distributed state machines, it was necessary to add states. However, due to the strict
speci�cation of OPC UA Programs, no additional states should be added to the state
machine. Instead a sub-state was appended to the existing state machine. The sub-state
INIT was added to the HALTED state to ensure that all involved distributed OPC UA
Programs are properly initialized and ready for the upcoming state changes before they
change into the state READY.

Figure 8.15 shows the extended distributed state machine for distributed OPC UA
Programs. State transitions are represented by solid arrows () and noti�cation over
the OPC UA Pub-Sub over TSN communication channel by dashed arrows (). In
the following, the Master OPC UA Program is called Master, and the Slave OPC UA
Programs are called Slave. First, it is shown how distributed OPC UA Programs can be
synchronized by a handshake mechanism and how they can be started after successful
synchronization, illustrated by Figure 8.15a. Initially, it is necessary for the Master
to determine the number of participating Slaves. The synchronization process starts
with the initialization of the Slave. The Master waits in the INIT state till all Slaves are
initialized and switched into the state READY. With the state switch from HALTED to READY,
each Slave noti�es the Master. After the Master has a noti�cation of all participating
Slaves the Master also switches to the READY state and noti�es all Slaves that the Master
is ready for the execution of the distributed program. On receipt of the noti�cation from
the Master, the Slaves switch to the RUNNING state and notify the Master afterward. After
receiving all state change noti�cations, the Master also changes its state again. When
all participating distributed OPC UA Programs are �nally in the state running, process
data can be exchanged between the distributed OPC UA Programs in real-time using the

111

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

(a)Handshake for starting distributed OPC UA
Programs

(b)Halting distributed OPC UA Programs from
di�erent states

(c) Restarting suspended distributed OPC UA
Programs

(d) Reinitializing suspended distributed
OPC UA Programs

Figure 8.15. Distributed OPC UA Programs �nite state machine. Changes of state ()
are communicated via the OPC UA Pub-Sub communication channel () between
Master and Slaves. 1© to 7© specify the order of the transitions and noti�cations. 8©
represents the exchange of process data between the Master and Slaves. (See Eymüller
et al. [51])

OPC UA Pub-Sub over TSN communication channel. For the example shown, it means
that the axis positions are transmitted between the trajectory generator (Master) and the
robot control (Slave) from this point on. With the mechanism shown, it is also possible
to halt programs (see Figure 8.15b), to suspend programs and to restart (see Figure 8.15c)
and reinitialize (see Figure 8.15d) suspended programs. The Master is the only one that
can start a distributed OPC UA Program. In the other cases, it is also possible that the
status transition is done by a Slave. The only thing to note here is that if the Master
does not initiate the state change, then, of course, not only the Master must be informed,
but all other Slaves as well. In this way, it is also possible to stop the trajectory in the
example and continue it at a later point in time. For the implementation of distributed
OPC UA Programs, the current status of each component is provided via a publisher
that represents the current state as an integer value.

The adaptation and distribution of the state machine shown indicates that it is possibleDistributed

State Changes

in Real-Time

to start distributed processes on di�erent components, but what still has to be shown is

112

8.4 The Plug & Produce Service Architecture

that the state transitions of the distributed state machine also occur in real-time. The
reaction time for a status change of a distributed OPC UA Program can be calculated as
follows:

t distributed state change = t local state change + t noti�cation + tlocal state change

The time required for a distributed state change consists of the time needed to change
the status on the �rst device plus the time needed to notify other devices over the status
transition. After receiving the noti�cation, the status of the other devices must also be
adjusted. Since OPC UA Pub-Sub over TSN is used as a communication channel, which
is deterministic and has �xed cycle times, the noti�cation is received within a �xed
time barrier. In the worst case, this is the cycle time of the OPC UA Pub-Sub over TSN
transmission plus the processing time of the message. The worst case occurs exactly
when a state transition happens during the sending of the cyclic data, then a complete
TSN cycle must be waited. The local status changes also take place within �xed time
barriers. This results in a �xed time barrier for distributed state changes. For example,
if the transmission cycle time is set to 250 µs, a message can be processed within 10 µs,
and an internal state is changed in under 1 µs, the maximal distributed state change
time has an upper bound of 262 µs. Assuming a conventional control cycle of 4 ms, up
to 15 distributed transitions can still be performed.

The distributed OPC UA Programs can be used with and without the RealCaPP service
architecture. In case the distributed OPC UA Programs are to be executed without
the service architecture, there are components that encapsulate the real-time trans-
mission via OPC UA. Figure 8.16 depicts the component diagram of a Master OPC UA
Program. However, the Slave OPC UA Program has an identical structure. A distributed
OPC UA Program consists of the State Machine and the Communication component.
The State Machine describes the partial state machine with interfaces for communicat-
ing with other distributed OPC UA Programs. For the current state of the state machine
and process data to be exchanged with other distributed OPC UA Programs, the State
Machine component provides the interfaces CurrentState and ProcessData. In order to
receive process data and the state changes of the other participating distributed OPC UA
Programs, the interfaces ProcessData and ReceivedState of the Communication compo-
nent are consumed. The Communication component encapsulates the OPC UA Pub-Sub
communication, which makes it easy to create new publishers and subscribers in order
to communicate with other devices. To ensure the interchangeability of the OPC UA
stack, the interfaces PublishData and SubscribedData were added to the Distributed
OPC UA Program artifact. For example, the open62541 OPC UA stack can easily be
replaced by another OPC UA stack.

The distributed OPC UA Programs can also be used in combination with the RealCaPP
service architecture. The distributed OPC UA Program is used to initialize the respective Distributed

OPC UA Programs

meets RTS

Execution

RTSs and then to execute them simultaneously. Figure 8.17 shows an example of an
distributed RTS Network. The �rst step is to de�ne which device is the Master OPC UA
Program. The other participating devices are automatically Slave OPC UA Programs.
In the example the �rst device (Device 1) is selected as Master. Consequently, Device
2 becomes a Slave. As mentioned before, RTSs have a three-step life cycle: INIT, RUN,

113

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

Master

«artifact»
Open62541 PublisherSubscriber

«artifact»
Distributed OPC UA Program

State Machine
CurrentState

ProcessData

ReceivedState

ReceivedData

Communication

PublishDataSubscribedData

DataSet

DataType

Publisher

+addDataSet(name:
String, dataset:
DataSet): bool

Subscriber

+addDataSet(name:
String, dataset:
DataSet): bool

WritingGroup

1

*

1..*

1

ReadingGroup

1

1..*

1

*

Figure 8.16. Component diagram of a distributed Master OPC UA Program. The
structure of the Slave is identical (See Eymüller et al. [51])

and STOP. This three-phase life cycle is now controlled via the distributed OPC UA
Program state machines. In the INIT substate of the HALTED state of the distributed
OPC UA Programs the init() methods of all RTSs are called. In addition, the execution
order of the associated RTSs is determined as shown before. The Slave switches to the
READY state after all RTSs are initialized and an execution order for the device is found.
Thereafter, the Slaves informs the Master of the state change. The Master also waits
until the execution order is determined, all RTSs are initialized and all Slaves are in the

Figure 8.17. Example for executing distributed RTS Networks with distributed OPC UA
Programs

114

8.5 Related Work

READY state. Then the Master switches to the READY state. After all distributed OPC UA
Programs are in the ready state, the synchronized execution can start. For this, the
Master informs the Slaves that the execution must be started. After that, all distributed
OPC UA Programs change into the RUNNING state. In the running state, the RTSs are
now executed by calling the run()methods in the previously calculated execution order.
Also the transmission of the external port connections via OPC UA over TSN is started.
If a distributed OPC UA Program is halted the stop() functions of all RTSs are called.
To suspend the execution only the executions of the run() methods is stopped. After
continuing, the execution sequence is resumed.

It was thus possible to show that distributed RTS networks can also be used for syn-
chronously running applications.

8.5 Related Work

Several modular software architectures use data �ow ports for the communication
and information exchange between software components. Data �ow ports have the
advantage of loose coupling and enable an easy scalability of systems. Furthermore,
data �ow ports abstract the communication between components, allowing them to be
located on di�erent machines or nodes within a distributed system. Components can
exchange data through data �ow ports regardless of their physical location.

Tools like the graphical programming environment Simulink [3] already show the
power of modular software components that can be combined into complex systems
by connecting the ports of the modules. Simulink can be used, for example, to write
controllers for robots, simulate systems, or develop vehicle assistance systems. In
addition, the complexity of the modules can be reduced by nesting them. Since Simulink
itself is only a programming environment, it is not intended to distribute the programs
or make them interchangeable during runtime.

There are also function block diagrams for programming Programmable Logic Con-
trollers (PLCs) de�ned in the IEC 61131-3 [82]. The execution logic is encapsulated in
function blocks that have inputs and outputs. These inputs can be interconnected to com-
bine multiple function blocks into one control program. The IEC 61499 standard [214]
extends the IEC 61131-3 standard and de�nes how distributed control systems can be
built by using these function blocks. The IEC 61499 also supports the distribution of
control systems across multiple devices in a network. Connections between inputs and
outputs that run across device boundaries are implemented via �eldbuses. There are also
approaches to perform a recon�guration with the IEC 61499 standard at runtime [163].
The standard does not de�ne that the distributed execution must be done in real-time,
so not all implementations are real-time capable [162].

Moreover, there are numerous software architectures for the implementation of modular
distributed robotics applications. OpenRTM [14] stands for Open Robot Technology
Middleware and is a software platform for component-based robotic system develop-
ment. As with the concept presented in this thesis, the goal is the reusability of software
components for robotics applications. The component-based architecture allows to cre-
ate robot control systems by connecting and combining modular software components.

115

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

These software components are called RT-Components (Robot Technology Components)
that encapsulate a speci�c functionality like a sensor, control component, or actuator.
These components can be connected to each other via data ports and can exchange data.
Moreover, RT-Components can contain service ports that implement a query-based
data exchange approach, similar to RTS functions. If RT-Components are executed in a
common real-time thread, executions in real-time are possible. However, no concept
is provided for executing RT-Components in distributed systems with real-time guar-
antees. Moreover, there is no distinction between local and external communication,
which is particularly bad for real-time capability. Later on, in 2012, the structure of the
RT-Components was even de�ned as an o�cial speci�cation by the Object Management
Group (OMG) for modular robotic software components [133].

Another framework that deals with the execution of robotic control systems is the
Open Robot Control Software (OROCOS) [33, 34]. OROCOS also presents a modular
framework for robotic control tasks. The focus of OROCOS is on the real-time execution
of such control applications. But even with OROCOS, only the real-time capability is
considered when executing on a single device and not distributed. In addition to libraries
for the basic control of robots and robotic systems called Kinematics and Dynamics
Library (KDL) [144], the Real-Time Toolkit (RTT) [145] is available for building and
managing highly con�gurable and interactive real-time capable software components.
Each component has a task context which contains the logic of the component. For
communication with other task contexts data �ow ports can be used to exchange data
between components on one device with hard real-time guarantees. Components can
be distributed across multiple devices using CORBA (Common Object Request Broker
Architecture). However, the transmission via CORBA does not meet any real-time
constraints [154]. CORBA is a de�ned standard that makes it possible for software
components, written inmultiple languages, to be distributed onmultiple computers [131].
Even though there are real-time extensions for CORBA in combination with real-time
networks [91, 109], there are no applications in combination with OROCOS.

Finkemeyer et al. [58, 59] have developed theMiddleware for Robotic and Process Control
Applications (MiRPA) that allows communication between local and distributed software
modules with very small worst-case latencies (� 1 ms). The middleware supports both
client-server communication and publish-subscribe communication between software
components. In this work, however, the focus is on the middleware. There is no mention
of how the modular software components are built. Qnet is used for communication
between distributed devices; standard ethernet protocols could not guarantee real-
time. For the communication between distributed devices, a proprietary protocol for
distributed interprocess communication called QNet [174] is used, which is only available
in the real-time operating system QNX [175], with standard ethernet protocols no real-
time can be guaranteed.

Another project that presents a component-based robot software platform is called
OPRoS (Open Platform for Robotic Services) [87]. OPRoS uses modular software com-
ponents that can have service, data, or event ports. The service ports allow other
components to call methods of the other components. Data ports are used to exchange
data. They can be processed either periodically or event-based. Events can be processed

116

8.5 Related Work

via the event ports, which can trigger corresponding executions in the components.
Data and events are implemented non-blocking, while service ports can block. For
distribution to multiple devices, one of the following communication channels can be
used: Socket messages over TCP, UPnP (Universal Plug and Play), or CORBA. The basic
version of OPRoS promises soft real-time. An extension for real-time applications has
also been presented [88], but here, too, only periods with over 1 ms where possible.

The Robot Operating System (ROS) [176] also has concepts for the execution of dis-
tributed software components. In ROS, these modular software components are called
Nodes. These nodes can communicate with each other by publishing and subscribing
messages to data topics. For acyclic communication, nodes can also provide services,
which are similar to remote procedure calls. Since messages are transmitted locally and
distributed via TCP messages, there are no real-time guarantees for the data exchange
between the nodes. ROS2 [116] now uses the Data Distribution Service (DDS) [150]
for the communication between nodes because it already includes important features
like UDP transport, distributed discovery, and security features. For ROS2, there is the
possibility to use di�erent DDS implementations. Many of the DDS implementations
do not provide real-time guarantees. For example, the Eclipse iceoryx [48] DDS imple-
mentation uses shared memory to exchange information on one device. Unfortunately
this does not work for distributed systems. A real-time capable DDS implementation is
the Connext DDS professional from Real-Time Innovations (RTI) [178] that implements
the OMG DDS for Real-Time Systems standard [132] and also uses shared memory for
local transmissions and has consistent microsecond-order low latencies over standard
ethernet. Therefore, a comparison between the RealCaPP implementation and a ROS2
implementation with the RTI DDS was made in Chapter 11.

One project that has been developed at our institute is the SoftRobot project [15, 71, 203].
The goal of the project was to enable complex, real-time critical robot task in JAVA.
Therefore, two separate architectural tiers were designed: Applications can be developed
and can be executed on top of the JAVA-based Robotics API, while real-time critical
tasks are executed in the Robot Control Core (RCC). The RCC is based on the OROCOS
framework. The RCC consists of calculation modules called real-time primitives that can
be interconnected by data�ow ports. Graphs of these primitives are called RPI graphs
(Real-Time Primitives Interface Graphs). These real-time primitives and RPI networks
were used as the basis for implementing the RTS and RTS Networks. In addition, there
were concepts for a service-oriented implementation of robot applications [72]. These
concepts were developed using OSGi in the non-real-time JAVA part of the architecture.
Therefore, in this thesis, an attempt was made to combine these two concepts of real-
time executable services. Even if services were distributed over several devices, this was
implemented in the JAVA part, and then a single RCC instance was used for real-time
execution. The RCC does not provide for distribution.

There is also related work for the use of OPC UA Programs for the implementation of
control processes. Dorofeev and Zoitl [45] demonstrated how an automation system can
represent a manufacturing skill using an OPC UA Program. They developed a universal
interface that enables a higher level of control to e�ectively coordinate the available
skills. Additionally, Profanter et al. [168] utilized OPC UA Programs to model the skills

117

8 Distributed Real-Time Execution of Component Skills in Distributed Control Networks

of industrial robots, while Kaspar et al. [93] adopted a similar approach by modeling PLC
function blocks with OPC UA Programs. In addition to OPC UA Programs, the Robot
Operating System (ROS) provides an alternative for executing long-running control
processes. The ROS Action Protocol, provided by the ROS ActionLib [183], enables the
execution of extended services through topic-based and publish/subscribe communi-
cation. In this context, ROS Actionlib provides a straightforward API for requesting
goals on the client side and executing them on the server side using function calls and
callbacks. However, these approaches mentioned above lack the capability for real-time
communication and execution, limiting their applicability in comprehensive industrial
communication scenarios. Moreover, all these approaches do not show synchronization
between distributed processes.

118

Summary. This chapter demonstrates the implementation of
the Basic Skills for the individual resources. Abstract imple-
mentations are presented for di�erent classes of resources. The
use of uniform interfaces allows an e�ortless replacement of
resources by other resources with matching skills.

9
Implementation of Resources with the

RealCaPP Service Architecture

9.1 Industrial Robot Resources 121
9.2 Sensor Resources . 125

9.2.1 Force-Torque Sensor 125
9.2.2 Digital Input Modules 126

9.3 Actuator Resources . 127
9.3.1 Gripper Resources . 127
9.3.2 Screwer Resources . 129
9.3.3 Automatic Tool Changer 132
9.3.4 Digital Output Modules 133

So far, it has only been explained at a very high level of abstraction how to implement
Basic Skills and Composed Skills in the RealCaPP service architecture. In order to ensure
the reusability and interchangeability of skills, uniform implementations of the skills
must be de�ned. If, for example, a parallel gripper in a robotic system is to be replaced by
a vacuum gripper, it should be possible to change the gripper mechanically and, without
making any changes to the code, to continue with the de�ned process. To achieve this,
resources of the same type must also provide the same interfaces or skills. Therefore, it
is attempted to de�ne a uniform implementation for each type of resource. To �nd the
commonalities of resources, they are divided into classes of resources. For these classes,
an attempt is made to work out the basic skills that each resource of a particular class
requires. Since these basic functions are not su�cient for some applications, there is the
option of de�ning specializations of these basic resources. There are additional functions
or interaction options besides the basic resource functionality for these specializations.
For example, if there is a status lamp in a robotic system that indicates whether a
system is active. The basic class of this lamp can be switched on and o� via functions.
A specialization would be a lamp that can not only be switched o� and on but also

119

9 Implementation of Resources with the RealCaPP Service Architecture

Ethernet

S
k

il
l

R
e

g
is

tr
y

Skill Descriptions
Software Component

Descriptions

S
k

il
l

C
o

m
p

o
se

r

Composed Skill

Spezi�cations

Software Component

 Spezi�cations
< / >

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

< / >

Robot Gripper Force-Torque Sensor

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

Hardware Driver

Basic Skills Skill Description

Asset Description

Software Component

Description

R
e

so
u

rc
e

Additional Software

 Components /

 Composed Skills

< / >

P
ro

d
u

c
t

R
e

g
is

tr
y

Product / Part Description

Figure 9.1. System architecture for a RealCaPP environment focusing on the the hard-
ware drivers and the Basic Skillls (cf. Figure 4.5)

provides a function to adjust the light color. Such specializations can be solved very
well in software engineering by class inheritance.

The following tries to de�ne these basic implementations for the di�erent resources
that occur in a robotic system. The main component of robotic systems is the robot
itself. In Section 9.1, the common features of industrial robots are elaborated, and a
uni�ed implementation for the class of industrial robots is presented. Subsequently,
in Section 9.2, it will be seen how sensors can be mapped in the service architecture.
Implementations are de�ned for certain sensor types, like force-torque sensors (see
Section 9.2.1) and digital input modules (see Section 9.2.2). Besides the sensors, imple-
mentations of actuators are de�ned in Section 9.3. Actuators can be tools for robots,
such as grippers (see Section 9.3.1) or screwdrivers (see Section 9.3.2). To be able to
change tools automatically in the sense of Plug & Produce, in Section 9.3.3 de�nes how
tool changers can be addressed. Finally, the implementation of digital output modules is
presented in Section 9.3.4.

Figure 9.1 shows the complete RealCaPP architecture, as already displayed in Figure 4.5,
focusing on the points mentioned in this chapter. In this chapter, the focus is mainly on
the hardware drivers of the components and the general implementation of Basic Skills
for the hardware components.

120

9.1 Industrial Robot Resources

9.1 Industrial Robot Resources

In order to de�ne a uniform interface for the control of all industrial robots, an attempt
is made to �nd the commonalities between the di�erent robots. This involves looking
at what types of movement there are, what parameters are relevant, and which data
a robot provides. Robots can move in two motion spaces: Movements can be de�ned Robot Movements

either in joint space, where each joint of the robot de�nes a dimension and the position
of a robot is de�ned by the joint position of each axis, or in Cartesian space, where the
position and orientation of the robot is speci�ed by the coordinates of the Tool Center
Point (TCP) in a de�ned three-dimensional Cartesian coordinate system. The TCP of
a robot refers to the speci�c point on the robot’s end e�ector, for example, the tool
or device attached to the robot, that is used as the reference point for positioning and
orientation calculations of the robot [85].

Movements in the joint space are called point-to-point (PTP) movements. During PTP PTP Movement

movements, the current joint position is tried to be converted into a given goal joint
position as quickly as possible. Each robot axis is moved individually to the respective
target position at a prede�ned velocity and acceleration. In�uenced by the mechanical
structure of the robot and the point to be approached, the movement results in a non-
uniform, curved path of the TCP. With a PTP movement, the target point of the robot is
reached in the fastest way. This does not have to be the shortest Cartesian path of the
TCP.

In Cartesian space, the movement of the robot is de�ned by its position and orientation
in a three-dimensional Cartesian coordinate system. Movements can be de�ned as
continuous paths de�ned by points. These continuous paths can be straight lines or
curves. In Cartesian space, a motion is described by a mathematical function. This
function describes the motion path and speci�es how the TCP moves with respect to
the robot base coordinate system in relation to time. A classical Cartesian movement is
a linear (LIN) movement. When moving linear, a straight line is placed between the start LIN Movement

and the end point in Cartesian space, and the TCP follows this straight line. This type of
movement is mainly used as an approach movement of objects since the orientation of
the tool is strictly predetermined. Another Cartesian type of motion is a de�ned circular
path. Here, a circular arc is laid through three points in space, which are traversed by
the TCP of the robot. This type of movement is called circular (CIRC) movement. Last CIRC Movement

but not least, movements in Cartesian space can be represented by splines. Here, a
spline curve is laid through prede�ned points, and these are traversed. This is called
SPLINE movement. SPLINE Movement

A more complex robot path can now be executed by linking these shown motions.
The problem here is that the end points of the individual movements must always be
reached exactly, and the start and end velocity for the movements are always de�ned as
zero. As a result, at the end of each movement, the robot must be fully decelerated and
then accelerated again for the subsequent movement. If the transition point between
movements does not have to be reached exactly, there is the possibility of motion
blending. Motion blending or also called approximate positioning, combines two motions Motion Blending

by inserting a continuously di�erentiable curve between the motions. This means that

121

9 Implementation of Resources with the RealCaPP Service Architecture

the velocity does not have to be reduced during the transition between the movements,
and two movements merge into one. Figure 9.2 shows an exemplary motion blending of
two linear motions. The �rst linear motion is de�ned by points A and B. The second linear
motion is de�ned by the points B and C. Without blending, the robot movement would
have to stop in point B and then start again with the second movement. For blending
the movements, two help points (HB1 and HB2) are de�ned by the blend radius r around
point B. A continuously di�erentiable curve, for instance, a parabolic blend [4, pp. 175],
is then laid through the two de�ned help points, which unites the two movements with
each other. This allows the velocity to be maintained during movement.

All these classic movements can be executed acyclically, e.g., one or more points are
given, and then a corresponding path is planned and executed. For blended motions, it is
necessary that the initial motion is known and the following motion is known because
this is needed for the calculation of the blending curve.

In addition to the classic movement types, the possibility of adapting the position and
orientation of the robot based on sensor values is also required. Besides the current
position, it is also possible to adjust the programmed robot motions by sensor input.
This is often referred to as path or position correction. Here, too, a distinction can bePath and Position

Correction made between adjustments in joint space and adjustments in Cartesian space. In joint
space, corrections can be described by o�sets of the individual joint position. Cartesian
corrections are usually given as a vector in three-dimensional space. In both cases,
in joint and Cartesian space, the correction can be done on either absolute or relative
values. In relative correction, the correction between the current value and the new
target value is speci�ed in each correction step. With the absolute correction, the
correction always depends on the start value at which the adjustment starts. For path
and position correction, a cyclic transfer of the correction values is required. These
correction values are then immediately applied to the current position of the robot. For
the path and position correction, the correction values must be entered in time for each
cycle. Therefore, the correction data must be available in real-time.

In addition to controlling the robot, a robot also provides a variety of information andRobot Data

and Parameter sets parameters that can in�uence the execution of movements. For this purpose, a

Obstacle
A

B

C

r

HB1 HB2

Figure 9.2. Blending motion of two linear motions from A to B and B to C with the
blend radius r

122

9.1 Industrial Robot Resources

uniform description of robots with their information and parameters has already been
developed as OPC UA companion speci�cation for robotics [137]. A OPC UA companion
speci�cation is a set of rules and guidelines that de�nes how OPC UA is used in speci�c
domains and which information is necessary. From this companion speci�cation, it
can be derived which data are essential for a robot. An essential information for the
robot is the current position and velocity. The current position and velocity of the
robot can be displayed in the joint space with a list of the individual joint positions and
velocities. In the Cartesian space, the current position of the robot is represented by the
position and orientation of the robot’s TCP in the three-dimensional space. The current
Cartesian velocity is expressed by a vector velocity and a rotational velocity. In most
use cases, this information is also expected in de�ned cycles and should, therefore, also
be made available in real-time. There are also numerous parameters that shall be set in
an industrial robot in order to in�uence the movements. First, the maximum velocity
and the maximum acceleration of the robot can be in�uenced. Here, too, a distinction is
made between the maximum velocity and acceleration of the TCP, which represents the
Cartesian velocity and acceleration, and the maximum velocity and acceleration of the
individual joints. Another parameter that in�uences the robot motion is the blend radius
when blending motions. Other important parameters are the selection of reference
coordinate systems and tool dimensions. To avoid having to express all positions in space
in the base coordinate system of the robot, it is possible to de�ne reference coordinate
systems and use these for movements. These reference coordinate systems are usually
used for the position reference to the corresponding processing stations of the robot.
This gives the possibility if the position of the processing station changes, that not all
points in the processing station have to be changed, but only the reference coordinate
system has to be changed, and all points relevant to the processing station are expressed
in this reference coordinate system. A similar concept is used for the description of the
TCP with di�erent tools. Depending on the tool used, the TCP of the robot changes.
The robot must be able to set an o�set for each tool from the robot �ange to the TCP
of the tool. This allows the exchange of tools of the same type without adjusting the
interaction points. If, for example, a longer gripper is used, the grip point does not have
to be changed, but only the o�set of the new tool must be adjusted accordingly. All these
parameters are set acyclically and in�uence all subsequent movements. An important
aspect of robots is kinematics. In order to transfer positions from the axis space into
the Cartesian space and vice versa, the direct and inverse kinematics calculation for the
individual robot is required. With the help of these calculations, it can also be checked
whether given positions can be reached with the respective robot.

On the basis of the interaction possibilities shown with an industrial robot, a uniform Industrial

Robot RTSrepresentation of the robot in the form of an RTS is developed. Through the stan-
dardization and abstraction of the Basic Skills of an industrial robot, it is possible to
simply replace one robot with another without having to change the application. Fig-
ure 9.3 shows the abstract RTS implementation of an industrial robot. For the RTS
representation, the UML syntax in class diagrams was used for the functions and ports.
All data that the robot cyclically requires and provides were de�ned as ports of the
RTS. For example, the current Cartesian position of the robot is represented by the

123

9 Implementation of Resources with the RealCaPP Service Architecture

Figure 9.3. Abstract RTS of an industrial robot

OutPorts current_cartesian_position_.... All acyclic data were implemented as
functions of the RTS. The setting of the maximum Cartesian velocity is represented,
for instance, by the function void set_max_cartesian_velocity(velocity:Double).
In addition, there are also interactions with the robot based on both cyclic and acyclic
interactions. An example of this is the position and path correction. For this purpose,
there is both an acyclic function for starting and ending the correction (see functions
void start_cartesian_correction(), void start_joint_correction(),
stop_cartesian_correction() and stop_joint_correction()) and a cyclic interface
for the corresponding correction values (see ports Cartesian_correction_... and
joint_correction_joint_...). Of course, this abstract RTS can be extended by further
functions and ports, but due to the reusability, care should be taken that each robot can
implement these Basic Skills.

124

9.2 Sensor Resources

9.2 Sensor Resources

In addition to the robot itself, sensors are an important component in robotic systems.
Sensors in a robotic system are used to gather information about the robot’s environment,
the state of the robot, or the state of a running process. This information is then used to
sense the environment and react to changes in the environment. There are numerous
types of sensors that can be used for robotic systems: There are vision sensors like
cameras and depth sensors that are used to recognize objects and the surroundings of
the robot. Range sensors, like ultrasonic sensors or laser sensors, can be used to provide
distance measurements. Proximity sensors, such as capacitive or inductive sensors, are
used to sense objects without physical contact and are often used for safety purposes. For
the measurement of the robot’s acceleration or orientation, inertial sensors, for instance,
gyroscopes or accelerometers, can be used. Also, forces and torques can be measured
by force-torque sensors or tactile sensors. In addition to the sensors mentioned above,
there are numerous other sensor systems that can be used for robotic applications. What
all these sensors have in common is that they provide sensor data, and in most cases, it
is necessary that these sensor values are read out and processed as quickly as possible.
Especially when sensors are used to in�uence the movement of the robot, real-time data
transmission and real-time processing are necessary. With most sensors, the sensor data
is provided cyclically. In addition, many sensors o�er the possibility to set parameters
or provide functions to calibrate the sensor. Therefore, most sensors have RTS out ports
for the respective sensor data and o�er RTS functions to set parameters or calibrate the
sensor. In the following, two implementations of sensors are presented, which are used
in the later case study.

9.2.1 Force-Torque Sensor

In the context of robotics, a force-torque sensor is a type of sensor used to measure
forces and torques exerted by a robot. For this purpose, the forces and torques are
measured in the di�erent directions of movement. Primarily, force-torque sensors are
used, which can measure all six Degrees of Freedom (DoF). This means that there are
three Degrees of Freedom for the forces and three Degrees of Freedom for the torques.
The force-torque sensors are usually placed between the robot and the tool to measure

Figure 9.4. Abstract RTS of a force-torque sensor

125

9 Implementation of Resources with the RealCaPP Service Architecture

the forces and torques acting on a tool or respectively, the forces and torques a tool
exerts on a part. This allows the robot to detect contact with objects, to apply controlled
forces and moments during assembly or �nishing tasks, or to measure the weight of an
object attached to the tool. Such sensors also can be used to detect abnormal conditions.
For example, excessive forces or torques can be recognized, which would damage the
robot or components. Overall, through the integration of force moment sensors, a robot
acquires more sensitivity, precision, and safety when performing tasks that involve
physical interactions or contact. The force and torque values are provided cyclically
and have only a very short validity due to the high velocities of the robots. Since these
are often used for the control of robot movements, these data are real-time critical.
Force-torque sensors o�er the possibility to recalibrate or zero the force and torque
values as required. The recalibration is used so that only the resulting force is output
and, for example, the weight forces of the tools can be neglected. Figure 9.4 shows
the abstract RTS implementation of a six-axis force-torque sensor. OutPorts are used
for the three force values (see OutPorts current_force_...) as well as for the three
moment values (see OutPorts current_torque_...). Furthermore, the RTS provides
two functions: The recalibrate_force() function can be used to zero all force values,
while the torque values can be recalibrated by the function recalibrate_torque().

9.2.2 Digital Input Modules

Another concept that is very similar to sensors or can also be used for sensors is digital
input modules. Digital input modules are devices that are used to interface robotic
systems with external digital signals. These modules are responsible for converting
digital signals from sensors, switches, or other devices into a format that the robotic
system can understand and process. Typically, digital input modules consist of a set of
input channels that can process electrical signals representing the state of a device or
sensor. These signals are in the form of logical high (1) or logical low (0), representing
the presence or absence of an electrical signal. Often, a 24 V direct current (DC) voltage
is used to display such signals, where 0 V represents the logical 0 and 24 V the logical
1. However, there are also other modules that realize it via other voltages or di�erent
currents. For the robotic system, the inputs are then interpreted as binary signals and
can be used for various applications. For instance, binary sensors like photoelectric
sensors, inductive sensors, or passive electrical components like start and stop buttons
can be integrated into robotic systems by connecting them to digital input modules.

Figure 9.5. Abstract RTS of a digital input module

126

9.3 Actuator Resources

Since it is di�cult for computer systems to display continuous processes, the inputs
are read at cyclic intervals and provided as cyclic information. This data is also highly
real-time critical since, for example, an end stop could be installed on the digital input
module, which must immediately bring the robot to a stop when triggered. Figure 9.5
shows the abstract implementation of a digital input module with N inputs. Each input
of the module is represented by a boolean OutPort.

9.3 Actuator Resources

Now that it is possible to communicate with the robot and observe the environment
with the help of sensors, it is necessary to interact with the environment through other
active components. Actuators are components or devices responsible for generating
physical motion or causing mechanical changes in a robotic system. Actuators can be,
for example, tools of the robot, active clamping devices, linear axes, conveyor belts, and
much more. As with the sensors, it is di�cult to �nd a uniform control interface due to
the diversity of actuators. Therefore, di�erent types of actuators are considered here.

9.3.1 Gripper Resources

A frequently used type of actuator in robotic systems is the gripper. One reason for this
is the variable usability of grippers. Grippers can be used in robotic systems to move
objects, assemble objects, hold objects, insert objects into each other, or interact with
objects. Since not only the tasks but also the objects vary greatly, there are numerous
types of grippers. The grippers in robotic systems can di�er based on their design, type
of gripping, e.g., mechanical or suction, the mode of operation of the gripper, e.g., electric
or pneumatic, and of course in the type of control. As already mentioned in Section 8.2,
where the focus was on the reusability of software components, a common control basis
for all these grippers is to be found. What all grippers have in common is the activation
and deactivation of the gripper, meaning the gripping of objects and the releasing of
objects. In addition to these fundamental skills, many grippers can determine whether
an object has been successfully grasped or released. From these requirements, a basic
gripper, as shown in Figure 9.6, was derived. Opening and closing can be time-critical,
depending on the application, but is called acyclically. It is therefore implemented by
the functions: grip() for closing the gripper and release() for opening the gripper.
The state of whether an object has been gripped or released is transmitted cyclically
by the boolean OutPorts object_gripped and object_released. Also a state for the

Figure 9.6. Abstract RTS of a basic gripper

127

9 Implementation of Resources with the RealCaPP Service Architecture

Figure 9.7. Specialization of gripper controls by inheritance of abstract basic gripper
RTS

movement of the gripper is transmitted cyclically by the boolean OutPort moving. Since,
especially with mechanical grippers, gripping is realized by a movement, a longer time
can elapse between triggering the gripping and the successful gripping of the object.
In order to integrate further control concepts, it is possible to inherit this abstract
basic gripper RTS. This means there are specializations in the control, but it is also
possible to fall back on the Basic Skills. This makes it possible to exchange several
grippers that can grip a certain object, even though they may be di�erent specialized
grippers. Figure 9.7 shows the specializations of the basic gripper RTS. Since the RTS
are modeled in an object-oriented way, it is possible to use inheritance. When inheriting
RTSs, both the functions and the ports are passed on to the inheriting RTS. For the
representation of the inheritance, the UML syntax was also used here. Multiple inheri-
tances are also possible. A gripper can have several specializations. A specialization of
the basic gripper is the position-controlled gripper (see Position Gripper RTS). For
grippers with a large stroke of the gripper jaws, there is often the possibility to specify
positions for open and closed. This makes it possible, for example, to grip compo-
nents with di�erent widths. Therefore, there are functions for setting the position, e.g.,
set_grip_position(grip_position:Double) and functions that combine setting the
position and start gripping or releasing, e.g., grip_position(grip_position:Double).
In addition, the current position can be queried for these grippers, which is provided via
the OutPort current_position. A further specialization is the force-controlled gripper.
With this type of gripper, a gripping force can be de�ned, and the gripper jaws remain

128

9.3 Actuator Resources

closing until the de�ned gripping force is reached and hold this force on the object. This
can be used, for example, to grip objects whose size is unknown, to grip objects that
are very delicate and can only withstand a certain force, or to realize a friction-locked
gripping with de�ned forces. As with the position-controlled grippers, it is possible to
set the gripping force using the set_grip_force(grip_force:Double) function. The
currently applied gripping force is provided in the OutPort current_force. A spe-
cialization closely related to the position and force-controlled grippers are grippers
whose velocity can be de�ned, see Velocity Gripper RTS. With this type of grip-
per, the velocity of the gripper jaws can be de�ned. For this, there is the function
set_grip_velocity(velocity:Double) to set the closing velocity of the gripper jaws
and a function to set the release velocity, see set_release_velocity(velocity:Double).
Most of the specializations shown are related to jaw grippers. However, there are also
other types of gripping, such as vacuum grippers, in which an object is held in place
by negative pressure. Here, there is usually the possibility to adjust the vacuum. The
Vacuum Gripper RTS is a specialization of the basic gripper, where there is a function
set_vacuum(grip_vacuum:Double) to specify the vacuum and a function to specify the
vacuum and then perform the grab, see grip_vacuum(grip_vacuum:Double). As already
mentioned, combinations of specializations can be realized by multiple inheritance. For
example, there are parallel grippers where the velocity can be adjusted, and the gripper
can be controlled either by position or force. In this case, the gripper inherits from
the Position Gripper RTS, the Force Gripper RTS and the Velocity Gripper RTS.
Of course, there are other speci�cations of grippers not mentioned and treated here.
These can easily be integrated into the architecture by further inheritances.

9.3.2 Screwer Resources

Besides handling objects, robots are also frequently used to join components. For exam-
ple, components can be screwed together. In robotic systems, a screwer is an end e�ector
designed to tighten or loosen screws and is mounted on a robot to automate the process
of handling screws. Robotic screwers generally consist of a screwbit that matches one
type of screw head. If di�erent screw types are to be used for one application, it is
necessary to change the screwbit. Furthermore, a screwdriver consists of a rotation
mechanism, which allows to screw out or in the screws. The rotation mechanism can
be electric, pneumatic, or hydraulic, depending on the design and requirements of the
robotic system. Another important component of a robotic screwer is a mechanism
for picking up screws and holding the screw in position during the screwing process.
There are also numerous options for the handling of screws. There are screw magazines
that automatically insert the screw into the screwdriver, passive systems, and active
clamping or gripping mechanisms. Passive screw holders, for example, have magnets
on the screw bit to hold the screw. Active screw holders retain the screws, for example,
by a vacuum or special grippers on the screwbit. Depending on the screwing use case,
there is also the option of attaching an angular head between the drive system and the
screwbit to be able to screw in hard-to-reach places. When tightening screws, there are
several parameters that are relevant to the screwing process: A screw can be tightened
with a de�ned torque. There are possibilities to actively or passively control the torque.

129

9 Implementation of Resources with the RealCaPP Service Architecture

In passive systems, there are mechanics installed that overrun when a de�ned torque
is reached. However, there is also the possibility of actively measuring the torques
using torque sensors and controlling them accordingly. With other screwing systems,
only the screwing angle is speci�ed, where the actuator rotates until the speci�ed
angle is reached. Nevertheless, there are also systems where only the time is speci-
�ed, how long the actuator is active. This is often used either for unscrewing screws
or when the screwer is used in combination with a passive torque system. Another
distinguishing feature of screwers in robotic systems is the compensation and tracking
of the screw movement. When screwing in a screw, the screw head moves with a
curtain velocity in the direction of the object to be screwed depending on the thread
pitch of the screw and the velocity of rotation of the actuator. This movement must
be compensated either by the robot or by the screwdriver itself. For compensation
systems in the screwdriver itself, there are active and passive solutions. For example,
mechanical spring systems can be used to compensate for the movement through a
spring. For active systems, either pneumatic cylinders or electric linear axes are used.
However, there are also screwers that are completely rigid, and the movement must be
made exclusively by the robot. In this case, combinations with forcer torque sensors
are often used, and the screws are screwed in in a force-controlled manner. As just
shown, screwdrivers can be controlled and parameterized in di�erent ways. Like with
the grippers, a way is found via several specializations to map as many control types as
possible. Each screwer can start a screwing process or an unscrewing process. There-
fore, a basic screwer RTS was developed, as shown in Figure 9.8. In addition to the two
functions for starting the movement (screw() and unscrew()), there are also boolean
OutPorts to indicate that the screwing or unscrewing process has been completed,
see screwing_finished and unscrewing_finished. For parameterizing the screwing
process or adding additional features provided by some screwers, specializations were
de�ned by inheritance, which can be combined arbitrarily by multiple inheritance.
Figure 9.9 shows the specializations of the basic screwer. A �rst specialization is the
setting of times through the Time Screwer RTS. This means that the time for tightening
and unscrewing can be set by the methods set_screw_time(screw_time:Double) and
set_unscrew_time(unscrew_time:Double). This can also be selected in combination
with other specializations as an abort criterion for an unsuccessful screwing operation.
If, for example, a torque is not reached within a certain time, the screwing process is
aborted. With many screwdrivers, it is possible to adjust the screwing velocity. The
Velocity Screwer RTS is a specialization for this. Therefore, the velocity for turning
in can be set by the function set_screw_velocity(screw_velocity:Double) and the

Figure 9.8. Abstract RTS of a basic screwer

130

9.3 Actuator Resources

Figure 9.9. Specialization of screwer controls by inheritance of abstract basic screwer
RTS

function set_unscrew_velocity(unscrew_velocity:Double) makes it possible to de-
�ne the screwing out velocity. For screwdrivers with adjustable torque, the specialization
Torque Screwer RTS was de�ned with a function for de�ning the tightening torque
(set_screw_torque(screw_torque:Double)). The double OutPort current_torque
can be used to read out the current applied torque. In addition to the tightening torque,
the tightening angle for screwing can be de�ned with the specialization Rotation Angle

Screwer RTS. This specialization allows the de�nition of the angle of rotation for screw-
ing and unscrewing with the two functions set_screw_angle(screw_angle:Double)
and set_unscrew_angle(unscrew_angle:Double). The current rotation angle is like-
wise provided by the OutPort current_angle. Apart from specializations for setting
the screwing parameters, there is also a specialization for screw systems with active
screw �xation. The Fixation Screwer RTS is de�ned, which has a function to start the
�xation of a screw (start_fixation()) and one to release the screw (stop_fixation()).
Moreover, with these active systems, it is generally possible to see whether a screw
has been successfully picked up. The OutPort screw_attached can be used to check
whether a screw has been successfully picked up and �xed to the screwbit. Fur-

131

9 Implementation of Resources with the RealCaPP Service Architecture

thermore, there is the feature of active compensation of the screw movement. This
allows to activate and stop a motion control to compensate the screw movement
via linear axes or pneumatic cylinders. The functions start_screw_compensation()
and start_unscrew_compensation() activate the compensation, while the functions
stop_screw_compensation() and stop_unscrew_compensation() deactivate themove-
ment compensation. The boolean OutPort compensating provides information on
whether the screwdriver is actively compensating at the moment. Of course, numerous
other specializations are also conceivable here, for which only the basic gripper RTS
must be inherited again.

9.3.3 Automatic Tool Changer

Another actuator type is an automatic tool changer. An automatic tool changer is a
mechanism that enables robots to exchange di�erent end e�ectors during operation
automatically. This allows the use of di�erent tools on one robot without manual
intervention and thus enables the adaptation of robots depending on the process or
process step. In addition to the mechanical connection of the tool to the robot, the tool
changer also ensures that the tools are supplied with power and that communication is
possible between the robot and the tool. Tool changers usually consist of a robot side
with a locking mechanism and media adapters to provide various types of media for
the di�erent tools, such as power, compressed air, network, and IOs. Via tool change
plates it is possible to combine the respective tools with the robot side. For the required
media of the tool, there are media adapters on the tool change plate to feed through
the media. The locking mechanism can be realized by di�erent types of actuators.
Besides mechanical clamps, quick-release mechanisms, magnetic couplings, there are
also pneumatic locks by extending bolts for the �xation of the tool. There are systems
that are actively locked, for example, by extending cylinders, and there are passive
tool changers that mechanically unlock when the tool rack is accessed and lock again
when the tool rack is left. Figure 9.10 shows the implementation of a tool changer
with active locking. The Basic Tool Changer RTS has a function for locking the tool
to the tool changer (lock_tool()) and the function unlock_tool() for releasing the
tool. The status of whether a tool has been successfully deposited or picked up is
de�ned via the boolean OutPorts tool_released and tool_attached. To ensure that
tools are not released while moving the robot or at an unexpected position, the InPort
over_tool_station is used to check whether the robot is currently above a tool station.
For example, an inductive sensor can be mounted on the tool changer and a counterpart

Figure 9.10. Abstract RTS of a basic tool changer

132

9.3 Actuator Resources

on the tool station. The OutPort of the sensor RTS would then be connected to the
InPort of the tool changer RTS.

9.3.4 Digital Output Modules

Analog to the digital input modules, there are also digital output modules. With these
modules, data values are converted into outgoing current signals. Digital output modules
typically consist of a set of output channels that can be activated and deactivated
individually. These digital signals can be used, for example, to control actuators, control
lamps, trigger devices, or for the modulation of light signals, like photoelectric sensors.
Figure 9.11 shows the the implementation of a RTS for digital outputs. The output data
is provided cyclically via the OutPorts digital_output_... and written to the outputs
at de�ned intervals.

Figure 9.11. Abstract RTS of a digital output module

133

9 Implementation of Resources with the RealCaPP Service Architecture

134

Summary. This chapter evaluates the RealCaPP architecture
in two robotic cells. To demonstrate the reusability of the soft-
ware components, the execution distributability, and real-time
capability, four case studies were examined. These case studies
range from industrial robotic processes, such as screwing alu-
minum pro�les, to everyday tasks that can be done by a robot,
like making co�ee.

10
Evaluation of the Case Studies for

Robot-Based Automation

10.1 Structure of the Robot Cells 136
10.1.1 A Flexible Industrial Robotic Cell: WiR Augsburg Innova-

tion Laboratory . 136
10.1.2 Robarista Cell . 140

10.2 Implementation ofRealCaPPConceptswithRealHardware

Components . 141
10.2.1 KUKA KR Industrial Robots 142
10.2.2 Gripper of the KR90: Zimmer Group GEH6180 143
10.2.3 Screwer of the KR90: Stoeger SPATZ 30 146
10.2.4 Force-Torque Sensor of the KR90: ME-Meßsysteme K6D80 149
10.2.5 Grippers of the KR10 and KR6 149

10.3 Hand Guiding of Industrial Robots 151
10.4 Assembly of a Circuit Board Component 154
10.5 Assembly of Aluminium Structures 158
10.6 Robarista: A Robot Making Co�ee 165

In order to demonstrate the results and application areas of the RealCaPP architecture,
di�erent robotics case studies were developed. These case studies consist of handling
and assembly processes that are executed with di�erent industrial robots, sensors, and
other actuators. The goal is to cover all areas of Plug & Produce, from plugging in new
resources, exchanging their self-descriptions and skills, setting up a real-time commu-
nication between these resources, and executing processes with real-time guarantees
in the distributed robotic system. These case studies shall also cover the following
challenges:

- Reusability of modular software components (services) for di�erent case studies.

- Adding and exchanging of resources and services at runtime.

135

10 Evaluation of the Case Studies for Robot-Based Automation

- Matchmaking between process requirements and the global system description
from the self-descriptions of the resources.

- Execution of robotic processes in real-time, for example, sensor-controlled move-
ments.

- Any distribution of modular software components in the plant is possible. It can
be executed centrally as well as distributed.

To meet all these challenges, two independent robot cells were used for the implementa-
tion of a total of four case studies.

In Section 10.1, the structure of the two robot cells is described. In the following,
the di�erent case studies are presented. The hardware resources used in the robot
cells are explained in detail in Section 10.2 and the respective implementations in
the RealCaPP architecture are presented. The �rst case study deals with the sensor-
controlled movement of industrial robots by force-torque sensors and how this can be
used for hand-guiding industrial robots, see Section 10.3. In Section 10.4 a �rst assembly
process is examined. In this case study a circuit board is inserted into a plastic component
shell. A slightly more complex assembly process is described in Section 10.5. In this case
study, aluminum groove pro�les are screwed together with angle connectors to form
aluminum structures. In addition to these industry-related use cases, the �nal case study
examines how the elaborated concepts can be applied to a Robarista application, see
Section 10.6. In this application, an industrial robot prepares co�ee using a porta�lter
machine.

10.1 Structure of the Robot Cells

Two completely di�erent robot cells were used to carry out the di�erent case studies.
This also allowed testing of how the concepts work in heterogeneous robotic cells. Due
to the di�erent payloads of the used robots and the di�erent changing systems with more
or less media feed-through, di�erent designs of Plug & Produce are possible. Especially
in robotic systems with small robots, it is di�cult to attach powerful computing units
to the end e�ectors. This changes the distribution of the control components (e.g.,
Industrial PCs (IPCs)) in the plant and thus also the possibility of distributing software
components accordingly. Some concepts cannot be implemented on small robots with
low payload, or only partially, due to the size and weight of the control components.
Appropriate alternative approaches have been developed for this purpose. For this
reason, alternatives were developed for some concepts, as will be shown later.

10.1.1 A Flexible Industrial Robotic Cell: WiR Augsburg Innovation
Laboratory

The �rst robotic cell was built as part of the innovation laboratory in the WiR Augsburg
project1. WiR Augsburg is a German acronym and stands for Wissenstransfer Region
Augsburg (WiR Augsburg) and translates as knowledge transfer region Augsburg. In
the WiR project, an innovation laboratory on the topics of "Digital Engineering and

1https://www.uni-augsburg.de/en/fakultaet/fai/isse/projects/wir-augsburg/

136

10.1 Structure of the Robot Cells

Additional Production Systems

Di�erent Robot Ende�ectors

on Tool Stations

6-Axis Industrial Robot on Linear Axis

 with Force-Torque Sensor

and Automatic Tool Change System

6-Axis Industrial Robot with

 Automatic Tool Change System

Processing Station with

 di�erent Ende�ectors on Tool Stations

and active and passiv Clamping Devices

Figure 10.1. Flexible industrial robot cell of the WiR innovation laboratory with two
robots, additional production systems, and processing stations

Automation" was set up. One goal of the innovation laboratory was to build up a �exible
robotic cell to conduct research in the �eld of Industry 4.0 technologies and concepts
such as Plug & Produce and big data analytics. Flexibility in this context means that
di�erent production and handling processes can be implemented in the plant by adapting
the cell by changing the end e�ectors of the robots. In addition, there is enough space
to add processing stations or additional production systems. The additional production
facilities also give the opportunity to show interactions between di�erent types of
installations.

Figure 10.1 shows a picture of the �exible robot cell of the innovation lab. The main
component of the system is a six-axis industrial robot KUKA KR90 R3700 prime K [108]
with a payload of 90 kg on an 11 m KUKA KL4000 linear unit [105], which can cover
the entire area of the cell due to its large reach of 3.7 m and the additional linear
axis. In addition, there is a second six-axis industrial robot KUKA KR10 R900 [106]
with a payload of 10 kg and a range of 0.9 m. This robot is �xed on a pedestal and
can interact with the additional production units, perform tasks together with the
KR90, or carry out handling or production tasks on one of the processing stations. In
addition to the two industrial robots, the innovation laboratory has space to set up
additional production systems or processing stations for the robots. An example of
such an additional production system is the shown CP Lab (Cyber-Physical Lab) system
of the company Festo. The CP Lab system is a modular production system in which
the modular components are connected to each other by conveyor belts. With the
help of component carriers, equipped with RFID chips to provide information about
the components, components can be passed between the modular components. Based
on the information stored on the RFID chips, the component carriers can be routed
by active turnouts through the system. Through workstations above the conveyor

137

10 Evaluation of the Case Studies for Robot-Based Automation

6-Axis Force-Torque Sensor

6-Axis Industrial Robot

Automatic Tool Changer

Tool / End E�ector

Tool Change Plate Tool Station

Media Transfer Elements

Figure 10.2. Structure of the complete end e�ector of the KUKA KR90. A six-axis
force-torque sensor is attached to the robot �ange, to which the automatic tool changer
is attached. Di�erent tools can be attached to the tool changer via tool plates.

belts, processes can be carried out. With the modular system, workstations can be
mounted above the conveyor belt. The workstations can execute one process step
each, like placing di�erent components onto the component carriers, drilling holes
into components, pressing multiple components, checking components with cameras,
or labeling components. Furthermore, there are components that can output �nished
components and component locks that can eject components to the robotic system
or reinsert components into the production system by the robots. The concept of the
�exible robot cell is �nalized by processing stations for the robot. In this case, processing
stations are �xed structures or machining tables with passive or active clamping devices.
This allows components and parts to be inserted into the clamping �xtures by the robot
and to be further processed or machined accordingly by the robot. Active clamping
devices are, for example, grippers attached to the processing stations. Passive holders
are, for example, component holders that prevent inserted components from twisting or
specify an exact position of the component. Additional parts, components, or tools can
also be attached to the processing stations by these passive �xture devices.

In order to be able to execute processes with uncertainties, force-controlled processes,
or to record and monitor the process forces and torques that occur during processing
or handling operations, a six-axis force-torque measuring cell was attached to the
�ange of the KR90. The used force-torque sensor is a K6D80 [126] of the company
ME-Meßsysteme that can measure forces up to 2 kN and torques up to 100 Nm. The
associated measuring ampli�er GSV-8AS [125] is mounted on the swing arm of the
robot. Figure 10.2 shows the complete assembly between the robot �ange and the tool.

138

10.1 Structure of the Robot Cells

6-Axis Industrial Robot

Automatic Tool Changer

Tool / End E�ector

Tool Change Plate

Tool Stations

Active Clamping Unit

Media Transfer Elements

Additional Production Systems

Space for additional

Clamping Units

Figure 10.3. Processing station with an additional robot, active clamping units, and
the CP Lab production system

The automatic tool changer is located behind the force-torque sensor. This setup makes
it possible to measure forces and torques independently of the tool since the load cell is
not changed with the tool. One disadvantage, however, is that the structure between the
force-torque sensor and the TCP can vary greatly, so the forces acting on the TCP must
be calculated depending on the tool. For example, due to the law of levers, a force on a
tool with a large lever can act as a torque on the sensor, which must be considered when
using the sensor values for controlling the robot. As tool changing system the HTC
180 [196] of the company Stefan Holzer Feinmechanik was used. The automatic tool
changer of the KR90 has several media feed-throughs for power, two network channels,
compressed air, and other control signals to provide the di�erent media for di�erent
tools. The tool changer can accommodate tool change plates that are equipped with
media transfer elements. These tool change plates can be used to mount corresponding
tools and supply them with power and data via the media feed-through system. Any
tools, such as di�erent grippers or screwdrivers, can be attached to the tool change
plates.

Figure 10.3 shows the CP Lab system with the KR10 robot and a processing station. The
KR10 robot is also equipped with an automatic tool changing system FWR50 [210] of
the company Zimmer Group. Due to the size of the robot and the smaller tool changer,
there are not as many media feed-throughs as with the KR90 tool changer. The di�erent
tools of the KR10 can therefore not be used on the KR90. The tool changer of the KR10
is only equipped with one feed-through media adapter for the ethernet network and one
for IO-Link [84] components. IO-Link is a digital point-to-point interface for supplying
small sensors and actuators over a �ve-conductor standard cable with power and data,

139

10 Evaluation of the Case Studies for Robot-Based Automation

which is de�ned in the IEC 61131-9 [195] standard. For example, many grippers can
be controlled via IO-Link. The processing station is equipped with tooling stations
for the KR10 and an active clamping unit. The active clamping unit can be used to �x
components of di�erent sizes in order to be able to carry out processing or assembly
activities on the component. The clamping unit can also be used as a transfer point
to exchange components between the two robots. Therefore, it must be possible for
both the KR10 and the KR90 to interact with the active clamping unit. Depending on
the use case in the plant, there is space for additional clamping units on the processing
station.

10.1.2 Robarista Cell

The second cell is a smaller robotic cell designed for the use case of making co�ee
with an industrial robot. The robot used is expected to take over all the tasks that a
barista performs by preparing co�ee. This is also the reason for the name Robarista
(Robot-Barista). The goal is to use a commercially available hand lever porta�lter
espresso machine without modi�cations and an electric co�ee grinder to make co�ee.
Figure 10.4 shows an illustration of the Robarista robot cell. The robot used is a KUKA
KR6 R900 [107] industrial robot with a payload of 6 kg and a range of 0.9 m. The KR6

Di�erent Robot Ende�ectors

on Tool Stations

6-Axis Industrial Robot

 with Force-Torque Sensor

and Automatic Tool Change System

Electric Co�ee Grinder

Hand Lever Espresso MachinePorta�lter Cleaner

Porta�lter Holder

Tamper on Holder

Cup Holder with Cups

Porta�lter

Figure 10.4. Robarista robot cell with an industrial robot and a hand lever porta�lter
espresso machine and the other equipment needed for the preparation of co�ee with
the robot

140

10.2 Implementation of RealCaPP Concepts with Real Hardware Components

is equipped with a six-axis force-torque sensor FTM45 [19] of the company ATI to
measure applied forces and torques on the tools. An automatic tool change system is
attached to the torque sensor. An identical system was used here for the KR10 in the
WiR innovation lab. The used espresso machine is a hand lever co�ee machine Pro
800 [171], kindly provided by the company Pro�tec. In addition, the electrical co�ee
grinder ECM S-Automatik 64 [50] was also provided by Pro�tec. In addition, the robot
cell has tooling stations with di�erent gripper tools that are needed for the interactions
with the co�ee machine and the other components. In order to press the co�ee powder
in the porta�lter with the robot, the so-called tamping process, there is a tray to lay down
the porta�lter. The tamper for pressing down the co�ee powder also has a holder with
a �xed position. Because of the di�culty of gripping the cups individually, a cup holder
for two espresso cups has been designed that can be easily picked up with the gripper.
The cup holder also has a �xation with a stable position in the cell. The porta�lter, the
tamper, and the cup holder are designed in such a way that they can all be gripped with
a single gripper. Since it is di�cult to tap out the porta�lter with a robot, a porta�lter
cleaning machine was included in the cell. The cleaning device has two electrically
driven brushes that can be used to remove the co�ee residues from the porta�lter after
a co�ee brewing session. Due to the cleaning components, making multiple espressi
in a row is possible. All co�ee components, the co�ee machine, the grinder, and the
porta�lter cleaner, are not capable of communication. All these devices are used or
triggered by passive interactions. The porta�lter espresso machine is triggered to make
co�ee by pushing the lever. The co�ee grinder is triggered by a switch, which starts
the grinding process, and a timer in the grinder ends the grinding process. The active
brushes of the porta�lter cleaning machine are triggered by pushing on the brushes, if
there is no more force on the brush, the rotation of the brushes stops.

10.2 Implementation of RealCaPP Concepts with Real

Hardware Components

To evaluate the Plug & Produce concepts on real hardware, di�erent end e�ectors and
robots were made Plug & Produce capable. Therefore, AAS were developed for the
various hardware components. Hardware drivers were written for the end e�ectors
and robots, and interfaces to the Basic Skills were created. Since di�erent distribution
concepts are possible depending on the size of the end e�ector, the di�erent prototypes
with di�erent distributions are explained. The prototypical implementation also revealed
some problems that will be addressed. Problems encountered are, for example:

- Some associated hardware component controls cannot be attached to the end
e�ector due to size and weight and must be attached to the robot or the robot
base.

- Additional control components for making hardware RealCaPP capable are too
large to be mounted on the end e�ector of small robots.

- Boot times of control components that are disconnected from the power supply
and are only energized when added are high.

141

10 Evaluation of the Case Studies for Robot-Based Automation

- Tools on the tool holder have no power and cannot communicate with the system.

10.2.1 KUKA KR Industrial Robots

All the robots used are KUKA industrial robots of the KR type and have a robot controller
called KRC4 (KUKA Robot Controller 4) [102] with the same structure and the same
interfaces for interacting with the robots. Classically, a proprietary robot programming
language called KRL (KUKA Robot Language) [103] is used to program the KUKA KR
robots. In this programming language, motion commands can be executed, calculations
can be performed, additional integrated sensors can be queried, or additional actuators
can be controlled, such as end e�ectors or linear axes. However, this programming
language is not suitable for implementing complex Plug & Produce concepts, so an
attempt was made to use external interfaces of the robot controller. KUKA o�ers two
external interfaces over ethernet for this purpose. It is therefore possible to connect
an additional external control component to the KUKA controller via an ethernet
connection. The �rst ethernet interface is Ethernet KRL Interface (EKI) [101]. EKI is an
add-on technology packet to exchange XML data between the robot controller and an
external system via ethernet. The data is transmitted via the TCP/IP protocol. EKI is
more suitable for transferring long-running and non-cyclical actions. These can be, for
example, the sending of move commands or the setting of reference coordinate systems.
Another interface that KUKA provides is the Robot Sensor Interface (RSI) [104]. RSI is
an interface for real-time transmission of data between the robot and an external system.
Therefore, it uses a real-time processing cycle of 4 ms. RSI also o�ers the possibility to
directly in�uence the path of the robot by values of an external system in a 4 ms cycle.
The main application of this interface is, for example, a force-controlled movement by
an external force-torque sensor.

Figure 10.5 shows the implementation of the Basic Skill as an RTS for a KUKA KR robot.
As already shown in Section 9.1 for the general case, the KUKA robot implements all
ports and functions of the abstract industrial robot RTS. Due to the separation of the
KUKA interfaces into cyclic data communication via RSI and acyclic communication

Figure 10.5. Abridged presentation of the Basic Skill of a KUKA KR robot as RTS
implementation

142

10.2 Implementation of RealCaPP Concepts with Real Hardware Components

via EKI, RSI was used to implement the in and out ports of the RTS and EKI was
used to implement the functions of the RTS. Since RSI does not permanently supply
data to the external system, the data transfer must be started acyclically accordingly.
EKI commands are used to start the RSI interface. For example, the function of the
RTS start_cartesian_correction() starts a cartesian correction of the end e�ector
position based on the in port cartesian_correction values provided by RSI.

10.2.2 Gripper of the KR90: Zimmer Group GEH6180

The GEH6180 [211] two-jaw parallel gripper with long stroke from Zimmer Group was
used as a gripper on the KR90. The gripper has a stroke per jaw of 80 mm, a gripping
force between 150 N and 1800 N, and can be picked up via the KR90’s automatic changing
system. Figure 10.6 shows the assembly of the gripper with the tool adapter for the
gripper. The gripper can be controlled via IO-Link, which is why an IO-Link master
[151] from Pepperl+Fuchs is attached to the tool adapter. The IO-Link master provides
the EtherNet/IP (EtherNet Industrial Protocol) �eldbus protocol [30] as the interface for
controlling the gripper. The IO-Link interface can be used to set the desired positions
for the open and closed states, the gripping forces, and gripping velocity. In addition,
whether the gripping process has been carried out successfully and a component has
been gripped is provided. Thus, the GEH6180 implements the following RealCaPP RTSs:
Position Gripper RTS, Force Gripper RTS and Velocity Gripper RTS.

IO-Link Master

Tool Adapter of Tool Changer

Gripper

Gripper Jaws

Figure 10.6. Structure of the GEH6180 gripper with tool adapter and IO-Link master
for use on the KR90

143

10 Evaluation of the Case Studies for Robot-Based Automation

Due to the high payload of the KR90 at 90 kg, di�erent distribution patterns were carriedActive Gripper

P&P Resource vs

Passive Gripper

P&P Resource

out with the gripper. The gripper was developed as both, an active and passive Plug &
Produce resource. Figure 10.7 shows the two UML composite structure diagrams of the
passive and active realization. The realization of a passive Plug & Produce resource is
shown on the left side. On the tool side (gray background), the gripper is connected to the
IO-Link master via an IO-Link cable connection and provides the EtherNet/IP interface
over the ethernet media feed-through of the tool-changing system. On the robot side,
a passive Plug & Produce resource is realized with a hardware driver for controlling
the gripper via EtherNet/IP. When the tool adapter of the gripper is connected to the
robot, the passive Plug & Produce resource can communicate with the IO-Link master
over the media feed-through of the tool changing system and send commands to the
gripper. Only the passive Plug & Produce resource makes the gripper RealCaPP capable
and provides the OPC UA over TSN interface. On the right side of Figure 10.7 the
realization with an active Plug & Produce resource is shown. Here, the active Plug &
Produce component encapsulates both the gripper and the IO-Link master and provides
a RealCaPP capable interfaces via OPC UA and OPC UA over TSN for the gripper. For
the implementation as an active Plug & Produce resource, with OPC UA and OPC UA
over TSN interface, an additional control component is used. Since special network
cards are required for TSN, a Raspberry Pi with a corresponding extension board was
used. The Real-Time Hat of InnoRoute [79] is an expansion board for the single board

Gripper

M12

IO-Link Master

Gripper Passive P&P Resource

Tool Changer

RJ45

RJ45

: Robot Site

: Tool Adapter

M12
IO-Link

RJ45 EtherNet/IP

EtherNet/IP

Tool Changer

RJ45

: Robot Site

: Tool Adapter

Gripper Active P&P Resource

: Gripper

: IO-Link Master

IO-Link

RJ45
OPC UA over TSN

: RealTime Hat + Raspberry Pi

EtherNet/IP

RJ45
OPC UA over TSN

OPC UA over TSNOPC UA over TSN

Passive Gripper P&P Resource Active Gripper P&P Resource

: Industrial PC

RJ45

Figure 10.7. Composite structure diagram of the gripper for the active and passive
resource implementation. Structures located on the tool side are grayed out. The
RealCaPP capable OPC UA over TSN interfaces are marked orange.

144

10.2 Implementation of RealCaPP Concepts with Real Hardware Components

Active Fan

Real-Time Hat

Raspberry Pi 4

Connection To

 Raspberry Pi

Connection To

 Real-Time Hat

TSN Port

(OPC over TSN)

TSN Port

(IO-Link Master)

Figure 10.8. Raspberry Pi 4 with Real-Time Hat extension board for TSN capability on
two ethernet ports

computer Raspberry Pi 4 [177] that extends the Raspberry Pi by precise network timing
with hardware-time-stamping, needed for real-time protocols such as TSN. Figure 10.8
shows the used Raspberry Pi 4 with the Real-Time Hat mounted. The expansion board
is connected to the Raspberry Pi via IOs and an ethernet connection. The Real-Time
Hat has two TSN capable network ports available. One of these ports is used for the
OPC UA and OPC UA over TSN interface. In this case, the other port is used to connect
to the IO-Link master via Ethernet/IP. Thus, the combination of the gripper, the IO-Link
master, and the Raspberry Pi with extension board forms an active gripper Plug &
Produce resource.

As already mentioned, one problem is the boot time of control devices. A Raspberry Problem with

Boot TimesPi, for example, has an average boot time of over 30 seconds after switching on the
power. A delay of 30 seconds after plugging in new resources is unreasonable, especially
when changing tools. For this reason, a way was searched to minimize or eliminate
the boot times of control components. To keep the control components running even
after the tool has been set down in the tool holder, additional power supplies have
been added to the tool holders. Figure 10.9 shows the realization of the tool holder
power supply. Each tool holder of the KR90 is equipped with 24 V contacts. The tool
adapter of the tool changing system can optionally be equipped with a power interface,
which receives the power supply through spring-loaded contacts when placed in the
tool holder. This means that the tool in the tool holder is also supplied with power,
and control components remain running. When a tool is picked up, the tool is brie�y
supplied by the tool holder and the robot to prevent a voltage drop. When removing
the tool, the power supply of the tool holder is interrupted. However, at this time, the

145

10 Evaluation of the Case Studies for Robot-Based Automation

Safety Magnet for the

Detection of the Tool Holder

Power Supply of the

 Tool Holder

Tool Adapter of

 Tool ChangerTool Holder

Power Interface of

the Tool Adapter

Figure 10.9. Structure of the tool holder power supply for the supply of the tool and
its control devices

tool remains powered by the power supply of the robot. In addition, each tool holder is
equipped with a safety magnet, which enables a magnetic sensor on the tool changer to
detect whether the tool changer is located above a tool holder. The tool changer can
only be opened and locked if it is located above a tool holder.

One problem, especially with the active Plug & Produce realization, is the discoverabilityProblem with the

Discoverability of the resource. It must be ensured that the gripper is connected to perform the self-
introduction routine, but in this case, a connection is only possible when the robot
picks up the tool. Therefore, at the start of the plant, either all tools must be picked
up once, the self-description of the tool is added manually into the knowledge base or
the components in the tool tray must use a di�erent communication channel for the
self-introduction, such as wireless networks.

10.2.3 Screwer of the KR90: Stoeger SPATZ 30

As screwdriver, the Stoeger SPATZ 30 [197] was used. The screwdriver has an integrated
tool change system that allows the use of di�erent screwdriver tools. For example, it is
possible to change from a straight screw attachment with automatic screw tracking to a
rigid screw attachment with an angular head. Figure 10.10 shows the screwer mounted
to a tool adapter with inserted angular head screwdriver attachment. The blue hoses
are pneumatic hoses and are used to track the screw through a pneumatic cylinder on
the straight screwdriver attachment. With the straight screwdriver attachment, the

146

10.2 Implementation of RealCaPP Concepts with Real Hardware Components

Rigid Screwdriving Attachment

with an angular Head

Tool Adapter of Tool Changer

Screwing Motor

Screwdriving Attachment Changer

Figure 10.10. Structure of the SPATZ30 screwer with tool adapter for use on the KR90

screw is held in place by a vacuum, which is also generated pneumatically. In the angled
attachment, the screw is held in place by amagnetic holder. The screwdriver is controlled
via a DSMMultiPro3G [46] screwdriver control system. Due to the size of the control unit
of 246 mm x 201 mm x 128 mm, it is unfortunately not possible to mount it on the tool
adapter of the automatic tool changing system. The screwdriver control was mounted
on the arm swing mounting plate of the robot as shown in Figure 10.11b. The controller
has an EtherCat interface as a communication interface to start the tightening programs
and to set possible parameters such as the direction of rotation, the tightening torque,
or the tightening angle. Figure 10.11a shows the UML composite structure diagram of
the screwer integration into the RealCaPP architecture. The screwdriver is implemented
as a passive Plug & Produce resource. In this case, the screwer controller is permanently
connected to the passive Plug & Produce resource over an EtherCAT connection and
provides the RealCaPP capable interface over OPC UA over TSN. A proprietary cable
and protocol for the motor control implements the connection of the screwer controller
to the screwdriver. However, this connection can be disconnected. The screwdriver
cable provides 4 phases for the screwdriver motor and eight wires for additional sensor
data and monitoring functions of the screwdriver. This cable is connected to the tool
side of the tool changer, and the tool plate on which the screwdriver is mounted provides
media feed-throughs to pass through the wires to the screwdriver. On the tool adapter,
after the wires have been fed through, the wires are fed back onto the screwdriver cable
and connected to the screwdriver. If the screwdriver is disconnected from the controller,

147

10 Evaluation of the Case Studies for Robot-Based Automation

Screwer

IIT Canon 12

Screwer Controller

Screwer Passive P&P Resource

Tool Changer

RJ45

RJ45

IIT Canon 12

Motor Control

Motor Control

: Robot Site

: Tool Adapter

EtherCat

RJ45
OPC UA over TSN

: Industrial PC

(a) Composite structure diagram of
the screwer. Structures located on the
tool side are grayed out. The Real-
CaPP capable OPC UA over TSN in-
terfaces are marked orange.

SPATZ 30

Screwer

MultiPro 3G

Screwer Controller

GSV-8AS

Measuring Ampli�er

for

Force Torque Sensor

K6D80

Force Torque Sensor

(b) Real construction of the robot with picked up screwer

Figure 10.11. Structure of the screwer with the integration into the RealCaPP architec-
ture

an error is triggered in the controller, but this can be reset via the EtherCat interface
when the screwer is available again. Thus, after picking up the screwdriver, it must be
initialized. Since there are no active components on the tool side, the tool adapter does
not have to be supplied with power in the tool holder.

The screwdriver does not have a screw feeder, so the screws must be picked up. For
this purpose, a screw magazine was used in which the screws are arranged in a row.
Since the screwdriver does not recognize whether a screw has been successfully picked
up, the screw is passed through a photoelectric sensor after it has been picked up. In
this way, it can be ensured that a screw has been picked up. This photoelectric sensor
is connected to a digital input module and can therefore be easily integrated into the
architecture.

148

10.2 Implementation of RealCaPP Concepts with Real Hardware Components

FT Sensor Active P&P Resource

: FT Sensor

: Measuring Amplifier

Analog Values

RJ45
OPC UA over TSN

: Industrial PC

EtherCAT

RJ45
OPC UA over TSN

Figure 10.12. Composite structure diagram of the force-torque sensor of KR90. The
RealCaPP capable OPC UA over TSN interfaces are marked orange.

10.2.4 Force-Torque Sensor of the KR90: ME-Meßsysteme K6D80

As mentioned, the K6D80 6-axis force-torque sensor from ME-Meßsysteme is used for
controlling and monitoring end-e�ector forces on the KR90. The sensor itself has a
proprietary interface and transmits the analog force and torque measurement signals
to an ampli�er, where they are converted to a digital signal. Therefore, the eight-
channel measuring ampli�er GSV-8AS from ME-Meßsysteme was used. Due to the
size of the measuring ampli�er, it was mounted on the swing arm of the KR90, where
the screwdriver controller is mounted (see Figure 10.11b). The ampli�er provides an
EtherCat interface to the digital sensor values for the three force and three torque values.
An additional control component like an IPC or a Raspberry Pi with Real-Time Hat
is connected to the EtherCat interface of the ampli�er in order to make the sensor
RealCaPP capable. Figure 10.12 shows the UML composite structure diagram for the
force-torque sensor implemented as active Plug & Produce resource.

10.2.5 Grippers of the KR10 and KR6

Since the KR10 in the WiR innovation lab cell and the KR6 in the Robarista cell have
the same tool changer with identical media feed-throughs, they can also use the same
tools. Three di�erent grippers are available for the two robots. For the control of the
grippers, IO-Link is used. Figure 10.13 shows the UML composite structure diagram for
the grippers. Due to the size of the IO-Link master, it is not possible to mount the IO-Link
master on the tool side of the small robots, as it is the case with the KR90. Therefore, it is
only possible to integrate the grippers per passive Plug & Produce resource. The passive
Plug & Produce resource is connected directly to the IO-Link Master via EtherNet/IP
�eldbus. The IO-Link signal from the IO-Link master then goes to the IO-Link media
feed-through of the tool changer. From there, it goes directly to the respective gripper
via the tool adapter. IO-Link can also be disconnected and reconnected during runtime
without any problems. Since the boot times for the IO-Link communication of the

149

10 Evaluation of the Case Studies for Robot-Based Automation

Gripper

M12

IO-Link Master

Gripper Passive P&P Resource

Tool Changer

RJ45

: Robot Site

: Tool Adapter

M12

RJ45
EtherNet/IP

IO-Link

IO-Link

RJ45
OPC UA over TSN

Figure 10.13. Composite structure diagram of the grippers for the KR10 and KR6.
Structures located on the tool side are grayed out. The RealCaPP capable OPC UA over
TSN interfaces are marked orange.

grippers are under a second, the grippers do not have to be supplied with power in the
tool holder.

Figure 10.14 shows all three grippers with their tool change adapter in the tool holders
of the Robarista cell.

Zimmer Group GEP2016

One of the grippers used is the two-jaw parallel gripper GEP2016 [212] from Zimmer
Group. The gripper has only a stroke per jaw of 16 mm, but a large adjustable gripping
force between 150 N and 500 N. The position and force can be set via the IO-Link
interface, and corresponding movement commands can be sent to the gripper. In
addition, parameters are provided to indicate whether a grasp operation has been
successfully executed and an object has been grabbed. It is possible to attach di�erent
gripper jaws to the gripper, which can be exchanged depending on the use case, but an
automatic exchange of the gripper jaws is not possible.

Weiss Robotics CRG200

The second gripper is also a two-jaw parallel gripper. The Weiss Robotics CRG200 [206]
has a stroke per jaw of 42.5 mm but can only apply an adjustable gripping force between
75 N and 200 N. The IO-Link interface enables the con�guration of the grip velocity,
position, force and allows the gripper to receive corresponding movement instructions.

150

10.3 Hand Guiding of Industrial Robots

Zimmer Group

 GEH2016

Weiss Robotics

CRG 200

Schmalz

CobotPump ECBPi

Zimmer Group

FWR50

Automatic Toolchanger

of the KR6

Figure 10.14. Grippers of the KR6 and KR10 in the Robarista cell

Here, too, it is possible to read out the success of a grip. The gripper jaws can also be
changed manually on the CRG 200.

Schmalz CobotPump ECBPi

The Schmalz CobotPump ECBPi [188] is a vacuum gripper with an integrated vacuum
generator. The CobotPump can create a maximum vacuum of 750 mbar, has a maximum
suction rate of 12 l/min, and an integrated ventilation valve for fast and precise depositing.
Over the IO-Link interface, the gripper can be activated, deactivated, and open the valve
for releasing parts. There are also parameters for setting the negative pressure and the
air volume. The vacuum pump uses the pressure to detect whether an object is being
held and can provide these values via the IO-Link interface. Several suction cups are
available for the CobutPump. However, these can only be exchanged manually.

10.3 Hand Guiding of Industrial Robots

Hand-guiding is a technique used in industrial robotics to guide a robot arm to a desired
position physically. A special form of this is the force-controlled hand guiding. This
involves using force sensing technology to guide the robot’s movements based on the

151

10 Evaluation of the Case Studies for Robot-Based Automation

force a human applies to the robot. Additional force sensors on the robot allow to
measure the forces on the robot and can react accordingly. In this way, the robot can be
moved by pulling or pushing the end e�ector. In the WiR innovation lab, the KR90’s
end e�ector is equipped with force sensors that can measure the amount of force being
applied to the tool in various directions. These sensors provide real-time feedback about
the forces being exerted on the end e�ector. As a human applies forces to the end
e�ector, these are detected by the sensor. A control component processes the force data
and translates it into movement commands for the robot. These generated commands
must then be sent back to the robot, which has a movement of the robot as a result.

Figure 10.15 shows a photo where a person controls the KR90 of the WiR innovation lab
by force-controlled hand guiding. This type of control requires hard real-time because
the robot must be able to respond to the measured force values immediately. Delays or
even gaps in the force values cause the robot to react delayed to the interactions or even
cause the robot to jerk. This severely restricts the usability of the application and may
even endanger humans, as they are in the direct vicinity of the robot. In the worst case,
the robot moves toward the user and then no longer reacts to opposing forces. Even
with a delay of only 100 ms at an end e�ector velocity of 0.2 m/s, the end e�ector would
still travel a distance of 20 mm, which is a great distance with contact present.

For this case study, the deadline of the real-time system was set to 1 ms. However, since
the RSI interface of the KUKA controller only accepts values at a maximum rate of 4 ms,

Figure 10.15. Force-controlled hand guiding of the KR90 in the WiR innovation lab

152

10.3 Hand Guiding of Industrial Robots

only every fourth value is sent to the robot controller. If the robot travels at an end
e�ector velocity of 0.2 m/s, the end e�ector can only travel a distance of 0.8 mm in the
4 ms.

Figure 10.16 shows the RTS implementation of the force-torque controlled hand guiding.
The Force-Torque Position Controller RTS is an abstract RTS that gets as input
force values and torque values, applies a calculation routine to these inputs, and returns
the results position correction values and orientation correction values as output. The
calculation routine used for the RTS implementation in this case study is an Online
Trajectory Generator (OTG). An OTG is a trajectory generator that continuously uses
incoming data to instantaneously generate the next point of a robot trajectory, taking
into account various constraints such as velocity limits, acceleration limits, or jerk
limits. The OTG algorithm of a nonlinear �lter described by Biagiotti and Melchiorri [25,
pp. 209] was used as OTG implementation of the RTS implementation. The OTG receives
the force value and torque value as input, calculates a resulting direction in which the end
e�ector should move, and calculates a position and orientation correction, considering
the constraints. The mentioned OTC algorithm considers the velocity limits, acceleration
limits, and jerk limits of a robot. Particularly with regard to direct cooperation between
the human and the robot, it is essential to be able to set the maximum possible end
e�ector velocity in the application.

Due to the general description of the task with the abstract RTS implementations, it can
be executed with di�erent hardware since the hardware only has to imply the required
abstract RTSs. The hardware required to execute the use case is a RealCaPP capable
force-torque sensor and a RealCaPP capable industrial robot. This generalization of the
task makes it possible to run the use case in the WiR innovation lab as well as in the
Robarista cell without having to adapt the programming. In the WiR cell, the K6D80
is used as a force-torque sensor in combination with the KR90 industrial robot. In the
Robarista cell, the FTM45 force-torque sensor is used together with the KR6 industrial
robot.

Thus, it could be shown for this case study that real-time critical application can be

executed on di�erent systems without adapting the software.

Figure 10.16. RTS implementation of the force-torque controlled hand guiding. Due to
size and readability, the data types were omitted.

153

10 Evaluation of the Case Studies for Robot-Based Automation

10.4 Assembly of a Circuit Board Component

As a second case study for the evaluation of the RealCaPP architecture, a handling
process was examined in which a circuit board is inserted into a housing by a robot. A
frequently used robot handling skill is pick and place, where an object is picked up and
placed at a de�ned position. Because of the high degree of accuracy a robot has, robots
can precisely place objects in a given position at high velocities. This leads to a high
production throughput.

Figure 10.17 shows the component to be produced. On the left side of the �gure pictures
of the parts and the end product are shown, while the right side shows the 3D CAD
drawing of the product to producing. The entire handling process consists of four
subtasks, as shown in Figure 10.18. First of all, the housing must be picked up from a
component carrier, which is provided by an additional production line via a conveyor
belt (top left). Afterwards, the housing is placed in an active clamping device at the
robot’s processing station (top right). Then, the circuit board must be picked up from
a carrier and inserted into the clamped housing (bottom left). Finally, the housing
with the inserted circuit board is unclamped and placed back on the product carrier
of the production line (bottom right). All of these subtasks do not require hard real-
time. Nevertheless, an attempt is made to maintain the hard real-time criteria. The
manufacturing process basically consists of three pick and place tasks with di�erent
parts and di�erent positions. There is a small peculiarity in the transfer between the
gripper and the clamping device (top right). In addition to the pick and place skill, it is
necessary to wait for the active clamping device to close.

The pick and place skill was realized as a Composed Skill, as mentioned in several
examples in previous chapters. This Composed Skill is implemented by the encapsulated

Figure 10.17. Circuit board component. The left side shows from top to bottom shows
the circuit board, the housing, and the assembled component. The right side shows the
3D CAD drawing

154

10.4 Assembly of a Circuit Board Component

Figure 10.18. Process steps for the assembly of the circuit board component. From left
to right: Picking up the housing. Placing the housing in the active clamping device.
Placing the circuit board in the housing. Depositing the fully assembled component.

Pick and Place RTS as shown in Figure 10.19. The Pick and Place RTS is dependent
on the Basic Gripper RTS and the Industrial Robot RTS. The Basic Gripper RTS

includes the skills for gripping and releasing an object, and the Industrial Robot

RTS provides the skill of moving to a position. The Pick and Place RTS provides two
functions. A function to pick up a component at a speci�c position with a de�ned
approach point (see void pick_up_object(...)). Moreover, a function to deposit
a picked up object at a de�ned position via a set approach point (see void place_-

object(...)). For the place function of objects, there is an additional boolean parameter
hold. It speci�es whether the object should be released after the placement or whether
the object should be held in position. For example, the hold parameter is used for
transferring the housing in the active clamping device. The robot holds the housing in
position, the active clamping device is activated and then the gripper can be opened and
the robot can move away. The approach points are points in space near the destination
where the object should be picked up or placed. The pick-up point or the deposit
point is always reached by a linear movement from the approach position point. These
additional points avoid collisions when placing or picking up. For later iterations, it
is conceivable that these points will be calculated and tested for collisions through
appropriate simulations. The two functions of the Pick and Place RTS in turn access
the functions of the sub-RTSs. For example, the move_ptp and move_lin functions of

155

10 Evaluation of the Case Studies for Robot-Based Automation

Figure 10.19. Abstract encapsulated RTS of the Composed Skill pick and place. The
sub-RTSs were limited to the essential functions for the sake of clarity.

the Industrial Robot RTS and the release function of the Basic Gripper RTS are
combined to create the function place_object.

Due to the abstract implementation without concrete hardware resources, the skill pick
and place can be executed with several hardware con�gurations. So only a system
con�guration is needed, containing a robot implementing the Industrial Robot RTS

and a gripper implementing the Basic Gripper RTS. Due to the semantic connection
between the RTSs and the description of the skills in the ontology, it is possible to use
the approach presented in Section 6.5 to search for suitable hardware con�gurations.
Based on the components available in the WiR innovation lab, the following con�gu-
rations result in the con�guration request for the skill pick and place without further
constraints:

- KR90 with long stroke parallel gripper GEH6180

- KR10 with parallel gripper GEP2016

- KR10 with parallel gripper CRG200

- KR10 with vacuum gripper CobotPump

Additional constraints for the query can be de�ned via the description of the part and
the annotation of the possible gripping positions. Figure 10.20 shows the gripping
annotation for the housing. The housing part can either be gripped with a parallel
gripper that can grip components with a width of 60 mm via the short side (blue sides) or
with a gripper that can grip components with a width of 114 mm via the wide side (green
sides). Alternatively, a vacuum gripper can be used to grip the component from above
(gray area). Figure 10.21 shows the resulting pick and place system con�guration for the
housing part. Unfortunately, the con�guration with the KR10 and the parallel gripper
GEP2016 does not meet any of the requirements since components with a maximum
width of 40 mm can be gripped. One possible con�guration is gripping from above by the

156

10.4 Assembly of a Circuit Board Component

Graspable from Above

(Vaccum)

Parallel

Graspable

(114 mm)

Parallel

Graspable

(60 mm)

Figure 10.20. Top view CAD drawing of the housing part with the annotated gripping
options

KR10 with the CobotPump vacuum gripper (top left). The short side of the component
can be gripped both with the CRG200 parallel gripper on the KR10 (top right) and with
the GEH6180 parallel gripper on the KR90 (bottom right). Only the GEH6180 parallel
gripper on the KR90 is suitable for the wide side (bottom left).

The system o�ers two options for the selection of con�gurations. Either the programmer
can select a possible con�guration, or the system decides automatically on a possible con-

Figure 10.21. Possible hardware con�gurations for handling the housing part

157

10 Evaluation of the Case Studies for Robot-Based Automation

�guration. For this, it is recommended that the programmer speci�es an order function
in addition to the part constraints in order to �nd the most suitable con�guration.

Thus, it could be shown for this case study that tasks can be developed indepen-

dently of the hardware, the tasks are thus easily reusable, and the RealCaPP

architecture suggests possible hardware con�gurations for the ful�llment of a

respective task.

10.5 Assembly of Aluminium Structures

Since robotics applications do not consist exclusively of pick and place sequences, the
assembly of aluminum structures was evaluated as an additional industrial case study.
The component to be produced is an L-structure consisting of two aluminum pro�les
connected by a bracket. Figure 10.22 shows the process steps leading to the �nished
component. First, a bracket is placed on one of the aluminum pro�les (1©) and �xed
with a screw (2©). The �nished intermediate product is then rotated and placed on the
second aluminum pro�le (3©). Both parts are then fastened with a screw (4©). Through
these process steps, the desired L-structure is created.

If this L-structure is to be produced in a robot cell, these individual process steps must be
broken down into robot skills again. Several subtasks that can be implemented using the
pick and place skill can be found here as well. For example, the placement of a bracket
can be realized by a pick and place skill. In addition, a skill is needed to pick up, insert
and tighten screws at a given position. For this reason, an RTS was developed to realize
the skill of picking up, inserting, and tightening screws. These Composed Skills consist

12

34

Pro�le 1

P
ro

�
le

 1

Bra
cket

Bra
cket

Pro�le 2

Figure 10.22. Construction plan of the aluminum structure consisting of two aluminum
pro�les that are screwed together via a bracket

158

10.5 Assembly of Aluminium Structures

Figure 10.23. Abstract encapsulated RTS of the Composed Skill force controlled screwing.
The sub-RTSs were limited to the essential functions for the sake of clarity.

of the Basic Skills move to position of a robot and the Basic Skills screw in and screw out of
a screwdriver. The problem that remains is the tracking of the screw, either this can be
solved by an automatic screw tracking system, but this is not possible with this compo-
nent due to the accessibility of the screw holes. In this case study, a force-controlled
screwing process is therefore implemented. This means that, depending on the forces
applied to the screwdriver, it is detected whether there is contact with the screw hole,
and the movement of the screw during tightening is determined by the forces measured.
For this purpose, a force-torque sensor is used to measure the forces on the tooling.
Figure 10.23 shows the abstract Force Controlled Screwing RTS. Force Controlled

Screwing RTS is dependent on the Force-Torque Sensor RTS, the Basic Screwdriver

RTS, the Force Torque Position Controller RTS and the Industrial Robot RTS. In
addition, the RTS contains three functions. With the function pick_up_screw(...), a
screw can be picked up at a given position via a de�ned approach point. The second
function is to position the screw at a de�ned position (insert_screw(...)), and the
third function takes over the tightening of the screw (tighten_screw()) in a force-
controlled manner. This again provides a hardware independent service description
that can be used for the development of production applications. As a Force-Torque
Position Controller RTS, the OTG used for hand guiding could be used again, but
this is only suitable to a limited extent for contact driving and holding forces. Here, a
classic Proportional–Integral-Derivative (PID) controller [181, pp. 11] is better suited,
as the controller can be better parameterized for the speci�c use case. For screwing,
a constant force is tried to be kept on the screw. In the use case shown, an attempt
is made to maintain a force of 5 N on the screwhead, even if the screw moves as it is

159

10 Evaluation of the Case Studies for Robot-Based Automation

tightened. Since the screw stops abruptly after being screwed in, the PID controller
must react quickly. Therefore, the complete interaction between the screwer control,
the force measurement, the position calculation, and the robot control must take place
in real-time, with a hard deadline of 4 ms (minimal cycle time of the robot). Delays
in any part of the force-controlled screwing process can lead to the destruction of the
parts or the screwdriver. Again, a brief example is given of why real-time is necessary
for this process. M8 screws with a thread pitch of 1.25 mm were used for the use case.
The screwdriver is operated at a velocity of 480 rotations per minute (8 rotations per
second). This results in a tool velocity of the robot of 0.01 m/s. Delays of one tenth of a
second (100 ms) already lead to a movement of 1 mm. Which is a lot of way, due to the
fact that there is already contact between the screwdriver and the screw.

Now that all the required skills are available, it is possible to implement the application
in principle. Figure 10.24 shows the UML activity diagram for the complete production
run of the aluminum structure. The activities were described from the point of view of
the process developer, who only has the boundary conditions that components can only
be assembled and screwed together in a clamping device and that screwing can only
take place in a position where the screw points downwards. The individual activities
have been numbered to make them easier to reference for the following description.

All this activities can be implemented by Application Servicess (ASs) as shown in
Section 8.4.4. For this purpose, preconditions and postconditions must be de�ned for
each AS. If a �xed sequence is used, as shown in this use case, it is possible to specify the
predecessor AS as a precondition and to set the last executed AS as a postcondition after
execution. In addition, it is also possible to specify which con�guration is required for a
corresponding activity, so that a needed toolchange is automatically performed before
execution. An example for the precondition of activity 2 is shown in Listing 10.1. As a

Figure 10.24. Activity diagram for the processing steps for the assembly of the alu-
minum L-structure

160

10.5 Assembly of Aluminium Structures

1 ASK{

2 CurrentState hasStateNumber 1.

3

4 ?robot isA Robot.

5 ?gripper isA Gripper.

6 ?robot isConnectedToResource ?gripper

7 ?gripper hasJaws ?jaws.

8 ?jaws canGrip Bracket.

9

10 ClampingUnit hasElement Profile1.

11 }

A suitable hardware con�guration must be found

Check current state

Pro�le 1 must be in the clamping unit

Listing 10.1. SPARQL ASK query for checking whether all preconditions for the activ-
ity 2 (Pick Bracket and Place on Profile 1) are ful�lled

precondition, activity 1 must have been executed. There must be a suitable gripper
hardware con�guration that can grip a bracket and the pro�le 1 must be hold by the
clamping device. Finally, the postcondition for this activity is that the CurrentState is
2 and the bracket is on pro�le 1.

The activities 1 , 2 , 5 , 6 and 8 can be performed by simple pick and place skills. A
suitable con�guration for the execution of these tasks is the KR10 with the CRG200
parallel gripper. This con�guration allows pro�les and brackets to be picked up and
placed. Another possible con�guration would be the KR90 together with the GEH6180
parallel gripper. However, this con�guration was not used because the KR90 is the
only robot in the system that can handle the screwdriver. Therefore, the end e�ector
would often have to be changed which requires a lot of time and can be avoided. For
activities 3 and 7 , which involve screwing, the only possible con�guration is the
KR90 with SPATZ 30 screwdriver with angle head. The parts to be tightened must be
held in position, so the KR10, together with the CRG200 parallel gripper, must act as
a part holder. Since the parts are already placed with the KR10 with the CRG200, the
placing position can be maintained for holding the part. The placing function of the
Pick and Place RTS is thus executed with hold parameter set true. If the holding is
to be released, the gripper can simply be opened by the open function of the gripper.

Thus, all activities except for activity 4 can be executed. The problem with the activity
4 is that a robot can pick up and rotate the part, but the robot can only pick it up
from above or from the side, which causes the screw holes to be covered by the gripper
jaws. For this reason, the activity was realized by a transfer between two robots. The
KR90 must be equipped with a gripper for this purpose. After changing the tool, the
KR90 with the GEH6180 parallel gripper takes pro�le 1 with the bracket out of the
clamping unit, rotates it, and holds it in front of the other robot. Afterward, the KR10
with the CRG200 parallel gripper can continue with activity 5 . For the realization of
activity 6 , the KR10 can then grip the held part with with the CRG200 gripper. The
GEH6180 of the KR90 is then opened, and the KR10 with the CRG200 can place the

161

10 Evaluation of the Case Studies for Robot-Based Automation

part. The KR90 can then change its tool back to the screwdriver and then perform the
activity 7 . Consequently, the following parallel sequence, as shown in the UML activity
diagram (see Figure 10.25), results for the two robots. A cooperation area was de�ned
to parallelize the tasks. Only one robot is allowed to move in the cooperation area
simultaneously. Therefore, a mutex was introduced, which can lock the cooperation
area. Therefore, all tasks of the robots that do not take place in the cooperation area
can be executed independently of each other.

Figures 10.26 - 10.28 show images from the WiR innovation lab from the assembly of
the aluminum structure. Figure 10.26 demonstrates the implementation of activity 6a

in which the KR10 picks the parts held by the KR90. Subsequently, the KR90 releases
the component, leaves the common work area, and releases it. Figure 10.27 shows the

Figure 10.25. Activity diagram of the assembly process of the aluminum structure
distributed between the two robot resources

162

10.5 Assembly of Aluminium Structures

subsequent screwing of the two pro�les (Activity 7) and Figure 10.28 �nally shows
how the �nished component is placed on the table (Activity 8).

Another important aspect of the RealCaPP architecture is the distribution of the exe-
cution. Since the distribution of the parallel tasks of the two robots does not have to
run in real-time, the real-time critical task of force-controlled screwing was used as a
use case to show the distribution of real-time critical processes to di�erent computing
units. Since the process consists of three main parts, namely the measurement of sensor
values, the processing of these measured values, and the writing of position values to
the robot, three distributions are examined. In the �rst case, all skills were executed on
one computer. In the second case, the sensor values were measured on one computing
unit, and another computing unit calculated the position and wrote it to the robot. In
the third case, each of the three parts was executed on a separate execution node. For
all three distributions, the deadline of 4 ms was always kept. The exact execution times
are mentioned in detail in Chapter 11.

Thus, it could be shown for this case study that dependencies between several par-

allel running tasks can be mapped. Robotic systems can change their skills

through recon�guration (tool changing) at runtime. The execution of real-

time critical tasks can be distributed to several execution nodes without losing

real-time.

Figure 10.26. Overhanding of pro�le 1 with the bracket from the KR90 to the KR10

163

10 Evaluation of the Case Studies for Robot-Based Automation

Figure 10.27. Tightening of the pro�le 1 with bracket onto pro�le 2 by the KR90, while
the KR10 is holding the pro�le 1 with the bracket

Figure 10.28. KR10 placing the fully assembled aluminum structure on the table

164

10.6 Robarista: A Robot Making Co�ee

10.6 Robarista: A Robot Making Co�ee

In contrast to the previous case studies, the last case study focuses on a non-industrial
application area. In this scenario, the process is to make co�ee with a porta�lter
handlever espresso machine in the Robarista cell (see Section 10.1.2). An industrial robot
is supposed to take over all the handling steps that a barista would typically perform.
Since making co�ee consists of several steps, this process is particularly well suited for
evaluating the orchestration of services. In addition, the reusability of already developed
services can be evaluated for a completely new use case.

First, the process of making co�ee is broken down into its individual steps:

- Unclamp porta�lter from the co�ee machine

- Grind co�ee into the porta�lter with the electric co�ee grinder

- Insert porta�lter into tamp station

- Tamp co�ee �our with the tamper

- Clamp porta�lter into the co�ee machine

- Place co�ee cups under the outlet of the co�ee machine

- Pull the lever of the co�ee machine

- Serve the �nished co�ee

Subsequently, all these steps were implemented as application services (AS) as shown
in Section 8.4.4. This means that the individual process steps were broken down into
executable applications and for each application, the preconditions and postconditions
were speci�ed. In order to avoid having to list all the process steps with their precondi-
tions and postconditions, everything is explained in the following using the task Clamp

portafilter into the coffee machine as an example. Before the porta�lter can be clamped into
the co�ee machine, the following preconditions must be ful�lled:

- There must be a robot with a gripper mounted and suitable gripper jaws to grasp
the porta�lter.

- The gripper must hold a porta�lter �lled with co�ee and the co�ee must be
tamped.

- The co�ee machine cannot have a porta�lter inserted.

- The co�ee cups are not placed under the outlet of the co�ee machine.

If all these preconditions are met, the task can be executed. After successful execution,
the postconditions are set. For the task of clamping the porta�lter into the co�ee
machine, the following postconditions would have been set:

- The gripper does not hold a porta�lter.

- The co�ee machine has a porta�lter inserted.

165

10 Evaluation of the Case Studies for Robot-Based Automation

The preconditions are formulated as SPARQL ASK queries, and the postconditions are
formulated as scripts that can make changes to an ontology. Figure 10.29 shows a
snapshot of the ontology in which all preconditions for the execution of the insertion of

Figure 10.29. Snapshot of the ontology showing the system state in which all the
preconditions for clamping the porta�lter in the co�ee machine are met. Classes are
represented as ellipses: Class Instances are represented as rectangles: Instance Relations
between classes are shown as arrows: Instancements are represented as dashed
arrows:

1 ASK{

2 ?robot isA Robot.

3 ?gripper isA Gripper.

4 ?robot isConnectedToResource ?gripper

5 ?gripper hasJaws ?jaws.

6 ?jaws canGrip Portafilter.

7 ?gripper hasElement Portafilter.

8

9 Portafilter hasElement Coffee.

10 Coffee hasProperty IsTamped.

11 IsTamped hasValue True.}

12

13 ?portafilter isA Portafilter.

14 OPTIONAL{CoffeeMachine hasElement ?portafilter}.

15 FILTER(!bound(?portafilter)).

16

17 ?coffeecups isA Coffeecups.

18 OPTIONAL{CoffeeMachine hasElement ?coffeecups}.

19 FILTER(!bound(?coffeecups)).

20 }

There must be a robot, which has
a gripper mounted, which has suit-
able gripper jaws to grasp the
porta�lter.

The gripper must hold a porta�l-
ter �lled with co�ee and the co�ee
must be tamped.

The co�ee machine cannot have a
porta�lter inserted.

The co�ee cups are not placed under
the outlet of the co�ee machine.

Listing 10.2. SPARQL ASK query for checking whether all preconditions for clamping
the porta�lter in the co�ee machine have been met

166

10.6 Robarista: A Robot Making Co�ee

the porta�lter into the cofeee machine are ful�lled, while Listing 10.2 shows the SPARQL
ASK query to check if all preconditions are met. There is the KR6 robot connected to the
CRG200 gripper with gripper jaws that can hold the porta�lter, and the gripper holds
the porta�lter. Thus, the �rst precondition is ful�lled. The porta�lter is �lled with co�ee,
which has the property of being tamped. This ful�lls the second precondition. The third
precondition is ful�lled since there is no connection hasElement between a porta�lter
instance and the co�ee machine. Because the co�ee machine also has no connection to
co�ee cups, the last precondition is also ful�lled. Thus, in this case, the AS could be
executed, and after successful execution, the postconditions would be applied. After
doing so, the ontology would look as shown in Figure 10.30. The connection between
the CRG200 gripper jaws and the porta�lter is deleted, and a new connection between
the co�ee machine and the porta�lter is added. As shown for this one task, this can be
done for all further tasks, and a sequence for the process can be determined with the
help of the adapted depth search shown in Section 8.4.4.

As not all tasks can be performed with the same gripper jaws and, for example, di�erent
gripper jaws are required for pulling the lever of the co�ee machine than for inserting
the porta�lter, additional ASs have been added for placing tools and picking up tools.
The placement has as a precondition that a tool is connected to the robot and as a post-
condition that no tool is present on the robot. When picking up tools, the precondition
is that no tool is mounted and the postcondition is that a tool with the appropriate
properties is mounted. If, for example, no suitable gripper is available for the task of
inserting the porta�lter into the co�ee machine, it is possible to ensure that the task can
be carried out by placing the current tool and then picking up a tool with porta�lter
gripper jaws. In this way, the tool change is also taken into account in the orchestration
of the overall process. This enables the system to determine and subsequently execute a
corresponding execution sequence for an overall process that consists of several indi-
vidual tasks. Since the ontology of the current system description is kept up to date, it

Figure 10.30. Snapshot of the ontology showing the system state after the porta�lter
has been successfully clamped into the co�ee machine. Classes are represented as
ellipses: Class Instances are represented as rectangles: Instance Relations between
classes are shown as arrows: Instancements are represented as dashed arrows:

167

10 Evaluation of the Case Studies for Robot-Based Automation

Circular Motion

Circular Motion

+ Force Position Controll

Figure 10.31. Schematic representation of the lever trajectory of the robot on the co�ee
machine. The �rst part of the lever movement is a pure circular movement (red path).
The second part is a circular motion with a superimposed force control (green path).

is also possible to abort process executions and perform orchestrations that continue to
plan on the current system state as the current precondition.

Now that the orchestration has been shown, the reusability of services will be discussed.
All individual steps except Tamp coffee flour with the tamper and Pull the lever of the coffee

machine can be implemented using the pick and place service. The tasks Tamp coffee flour

with the tamper and Pull lever of the coffee machine are force-controlled processes. In the
task Tamp coffee flour with the tamper, the tamper is �rst picked up and placed over the
porta�lter, which can again be implemented using a pick and place service. The robot then
moves with the tamper onto the co�ee �our until a suitable pressure is reached. This
corresponds exactly to the approach movement of the screwdriver when inserting the
screw into the aluminum pro�les. Therefore, the Force-Torque Position Controller

RTS implementation with PID controller is used.

The lever movement must also be force-controlled. For the espresso co�ee brewing
process, the lever must �rst be pressed all the way down. This movement represents
a circular path and can be implemented by the move_circ skill of the robot. The lever
must then be moved upwards again. As soon as a certain angle of the lever is reached,
the co�ee machine generates a resistance to the lever, at which point the lever can
be released. From this point on, no more force should be applied to the lever. The
lever up movement is implemented in two steps. Figure 10.31 shows schematically
the resulting robot trajectory. First, a circular movement is executed up to a certain
angle of the lever (red path), and then this circular movement is combined with a force
position controlled movement (green path). The underlying circular motion (blue path)
maintains the orientation of the gripper in relation to the lever path. The force position
controller ensures that the velocity of the circular path is in�uenced by the forces of
the lever acting on the gripper and at the same time that the robot moves away from
the lever (orange arrow). For implementation, this means a move_circ movement is
executed, which is superimposed with a force-controlled movement implemented by

168

10.6 Robarista: A Robot Making Co�ee

Figure 10.32. Pictures of the execution of the Robarista showing the four process steps:
Grind coffee into the portafilter with the electric coffee grinder (top left), Tamp coffee flour with the

tamper (top right), Clamp portafilter into the coffee machine (bottom left) and Pull lever of the

coffee machine (bottom right).

the Force-Torque Position Controller RTS with the PID controller. Thus, it could
be shown that even for a completely di�erent use case, the services could be reused.
Only the parameters, such as force and torque directions, positions and orientations,
and control variables must be adapted.

Figure 10.32 �nally shows pictures of the execution of the Robarista application. On
the top left, the process step Grind coffee into the portafilter with the electric coffee grinder is
shown. The start of the grinding process is triggered by a button on the co�ee grinder
when the porta�lter is inserted. The robot then waits a de�ned time until the co�ee
grinder is ready. The porta�lter is then inserted into the tamper holder, and the robot

169

10 Evaluation of the Case Studies for Robot-Based Automation

retrieves the tamper. The picture on the top right shows the execution of the process
Tamp coffee flour with the tamper. The porta�lter is then clamped into the co�ee machine
by the robot, as shown at the bottom left. The cupholder with the cups is then inserted
beneath the porta�lter outlet and the tool is changed in order to be able to pull the lever.
The robot then operates the lever, as shown on the bottom right.

Thus, it could be shown for this case study that, process �ows can be orchestrated

based on system descriptions and preconditions and postconditions of the indi-

vidual process steps. In addition, it could be shown that the developed services

could be adapted for a completely di�erent use case only through appropriate

parameterization without making adjustments to the services themselves.

170

Summary. In addition to the feasibility studies of the case
studies, the performance of the architecture has been evaluated.
The main focus is on the real-time capability of the distributed
execution. However, time measurements were also taken when
adding new hardware or setting up real-time communication.

11
Evaluation of the Real-Time

Performance

11.1 Performance Evaluation ofAdding Software andHardware

Components at Runtime . 172
11.2 Test Setup for the Real-Time Performance Measurements . 173
11.3 Latency Evaluation of the Real-Time Communication and

Execution . 174

The measurement of real-time performance holds crucial signi�cance for real-time
systems due to its direct impact on their functionality and reliability. Real-time systems
are designed to meet stringent timing constraints, where tasks must be executed within
speci�c time windows. Consequently, accurate performance measurement enables to
ascertain whether these timing constraints are consistently met. For this reason, after it
has been shown how the RealCaPP architecture was used for the implementation of
various real-time critical robot applications, this chapter will now go into more detail
about what the individual execution times of the Real-Time Services (RTSs) are, and
what in�uences the distribution of the services to di�erent computing nodes has.

In Section 11.1, the measured times for adding new resources to the system are evaluated.
In particular, the execution times of the self-introduction process and the establishment
of real-time communication were considered. Subsequently, the execution times for
real-time execution are examined. First, the evaluation setup is described, in which
the execution times were measured (see Section 11.2). In Section 11.3, the execution
times for a real-time critical robotic process were considered. Both local and distributed
executions were evaluated, and the corresponding execution times were analyzed.

171

11 Evaluation of the Real-Time Performance

11.1 Performance Evaluation of Adding Software and

Hardware Components at Runtime

Even though the self-introduction and the initial initialization of a newly added hardware
component is not real-time critical, care has been taken to ensure that it is implemented
in a performant manner. As shown in Section 5.3, the OPC UA discovery service is used
to add new hardware devices to the RealCaPP system. Especially when starting sys-
tems, several hardware components become active simultaneously and want to register
themselves with the system. Time measurements were performed for the registration
of new hardware components, including the transfer of the own self-description. The
measurements were each taken for up to �ve simultaneously added hardware devices.
100 measurements were performed for each outcome. Table 11.1 shows the recorded
times for adding hardware components for the sequential and parallel implementation
of the OPC UA LDS-ME.

Setup Min [ms] Max [ms] Avg [ms] SD [ms]
Sequential (1 device added) 300.10 300.83 300.44 0.24
Sequential (2 devices added) 500.09 500.84 300.56 0.35
Sequential (5 devices added) 1,100.12 1,100.80 1,100.46 0.55
Parallel (up to 5 devices added) 200.12 200.92 200.42 0.52

Table 11.1. Times for the self-introduction of resources in milliseconds. Comparison
between the sequential and parallel implementation.

The values shown illustrate the advantage of parallelization in the addition and self-
introduction of the hardware components. Even with �ve hardware devices added in the
sequential case, it took over a second (∅ 1,100.46 ms) to add the devices to the RealCaPP
architecture. In contrast, the parallel implementation required only 200.42 ms on average
to add the �ve new hardware devices and integrate their self-description into the system.
What is noticeable is that the parallel implementation is already signi�cantly more
performant for the addition of a single hardware component (Sequential: ∅ 300.44 ms
vs. Parallel: ∅ 200.42 ms). This is because several requests to the OPC UA information
model are processed in parallel.

In addition to the time measurement for the self-introduction, times were also measured
for the establishment of an OPC UA over TSN communication. In the case of a Plug
& Produce mechanism, the duration of the startup phase is particularly relevant. The
startup phase includes the time from starting the program until the �rstmessage is sent or
received. The measured time includes all steps presented in Chapter 7 from con�guring
the network interfaces, time synchronization between devices, adding data topics,
reserving time slots for the TSN communication to sending or receiving the �rst message.
Table 11.2 shows the measured times for the entire RealCaPP real-time communication
startup process, as already published in Eymüller et al. [52]. Measurements were carried
out with the clocks of all devices already synchronized and measurements in which the
synchronization time was taken into account. Again, 100 measurements per setup were
performed for the measurement.

172

11.2 Test Setup for the Real-Time Performance Measurements

Setup Min [s] Max [s] Avg [s]
Add Publisher, time sync needed 20.1 23.3 21.5
Add Publisher, time already synced 6.4 7.0 6.7
Add Subscriber, time sync needed 19.7 22.4 20.8
Add Subscriber, time already synced 4.0 4.0 4.0

Table 11.2. Times for initializing and starting real-time communication in seconds.
Comparison of times with clocks synchronization and already existing clock synchro-
nization.

The results show that the time until all clocks run synchronously has a decisive in�uence
on the start times. Because the clock synchronization via PTP needs approximately
15 s. Adding a publisher to an already time-synchronized network takes an average of
6.7 s. If the clock must be synchronized beforehand, about 21.5 s are required to add a
publisher. Adding a subscriber requires 4.0 s on average in the synchronized network.
Including time synchronization, it takes an average of 20.8 s to add a subscriber to the
system. What is also worth mentioning here is that for the transmission or reception of
the �rst message, the clock waits until it reaches an exact second value, the nanosecond
counter is zero. For this, a sleep of 3 seconds plus the missing time to the full second
was used.

11.2 Test Setup for the Real-Time Performance

Measurements

The following test setup was used for all performance measurements. Three identical
IPCs of the type Automation PC 2200 [28] from B&R Automation were used. The IPCs
are equipped with an Intel Atom E3940 quad-core processor running at 1.6 GHz. The
IPCs have 8 GB of RAM and four integrated Intel I210 network cards that support
TSN. All IPCs operate with a real-time capable Preempt-RT Linux Kernel (5.11.4-rt11)
with enabled ETF (Earliest TX-time First) drivers for TSN. All IPCs are connected to a
TrustNode [80] TSN capable network switch from InnoRoute via one I210 port. The four
cores of the IPCs are operated in isolation mode. Therefore, a �xed assignment of the
processes to a core must be made. On all IPCs, the �rst core is used for system operations
and other running applications. The second core is responsible for sending TSN network
packets, the third core is responsible for receiving and processing TSN network packets,
and the fourth core runs themain process of the RealCaPP architecture and the additional
software components (RTSs). For the performance measurements in C++, the Linux
system function clock_gettime(CLOCK_REALTIME) [114] was used, which can display
the current time in a resolution of one nanosecond. The CLOCK_REALTIME is set globally
in the system by the PTP time synchronization. Therefore, measurements on di�erent
IPCs are possible. The performance of a distributed system can be measured relatively
accurately. As OPC UA stack, the open source C stack open62541 [155] was used. The
advantage of this stack is that it already supports publish-subscribe communication via
TSN [158].

173

11 Evaluation of the Real-Time Performance

11.3 Latency Evaluation of the Real-Time Communication

and Execution

For the evaluation of the execution times, the force-controlled movement process was
considered, as it was used for screwing or pressing the co�ee �our. This process requires
hard real-time and consists of three independent RTSs, which can be well distributed.
This means that the process can be executed locally or distributed on several compute
nodes, and it can be checked whether the real-time limits can be met. Figure 11.1 shows
the individual evaluations that are carried out. The three-part process is �rst executed
locally on one IPC, for which OPC UA over TSN communication is not yet necessary.
In the second step, the sensor data is read out, and the position calculation is carried
out on one IPC. The position values are then transmitted to the second IPC via OPC UA
over TSN, where they are processed for the robot and sent to the robot. In the �nal case,
all three process steps are executed on separate IPCs. On one IPC, the sensor data is
read, sent via OPC UA over TSN to the second IPC, where the force data is processed.
Then position correction values are sent via OPC UA over TSN to the third IPC, where
the position corrections are processed and sent to the robot.

Due to industrial robots’ high velocities and accelerations, control loops must operate
at high frequencies between 100 Hz and 1 kHz. Therefore, the target is to achieveReal-Time

Deadline: 1 ms

Figure 11.1. Evaluation scenarios for the measurement of runtimes using the example
of force-controlled robot motion. Three di�erent setups are considered. The local
execution, the execution on two IPCs and the execution on three IPCs.

174

11.3 Latency Evaluation of the Real-Time Communication and Execution

a guaranteed frequency of 1 kHz (cycle time of 1 ms) for the force control system
implemented with the RealCaPP service architecture. This results in a real-time deadline
of 1 ms, which cannot be exceeded.

In the �rst step, the runtimes of the individual RTSs were measured. The execution
time of an RTS includes the reading of the InPorts, the processing of the data, and the
writing of the processed data to the OutPorts. In order to obtain a signi�cant runtime
statement, 108 (100,000,000) runs per RTS were performed, and the execution times for
each run were measured in nanoseconds. The values were each plotted in histograms,
with the horizontal axis indicating the execution time in nanoseconds and the vertical
axis indicating the frequency of the measured time values. The vertical axis is provided
with a logarithmic scale. Otherwise, outliers cannot be detected. For each plot, the
respective minimum values, maximum values, and the average were inserted as dashed
lines. In addition, for each evaluation, the numerical values for the minimum value,
maximum value, average value, and standard deviation were given below the plot.
The most relevant values for real-time are the Worst-Case Execution Times (WCETs),
meaning the maximum execution times.

Figure 11.2 shows the execution times of the Force-Torque Sensor RTS. An average WCET Force-

Torque Sensor

RTS: 8 µs

execution time of 27.17 ns was required to read and write the sensor values to the
OutPorts. The low standard deviation of only 11.91 ns also shows that a large number
of the measurements are close to the average value. Overall versions of the RTS, there
was only one maximum outlier with 7,040 ns. Thus, a WCET of 8 µs is assumed.

Figure 11.3 shows the execution times of the Force-Torque Position Controller RTS. WCET Force-

Torque Position

Controller

RTS: 7 µs

Reading out the InPorts, processing the values with the PID controller, and then writing
the position correction values to the OutPorts takes an approximate time of 101.87 ns.
There is also a small standard deviation of only 20.39 ns for this RTS. The maximum
execution time is 6,220 ns. Here, there was only one occurrence of the outlier. Thus, a
WCET of 7 µs is assumed.

Finally, Figure 11.4 shows the execution times of the Industrial Robot RTS. This RTS WCET Industrial

Robot RTS: 12 µshas the largest average runtime of 2,190.62 ns. This time is needed, on average, to read
the position correction values from the InPorts, translate them into an XML format,
and then send them to the robot. Since the processing into the XML format requires
multiple string operations, the execution time for this RTS is slightly higher compared
to the others. Also, a higher variance of the execution times can be seen in the higher
standard deviation of 103.31 ns. The maximum execution time for the measurement
was 11,420 ns. Again, there was only one outlier. Thus, a WCET of 12 µs is assumed.

175

11 Evaluation of the Real-Time Performance

0 2000 4000 6000 8000 10000 12000
Time in Nanoseconds

101

103

105

107

Fr
eq

ue
nc

y

Min
Avg
Max

Min: 20, Max: 7040, Avg: 27.17, SD: 11.91

Figure 11.2. Histogram of the Force-Torque Sensor RTS execution time

0 2000 4000 6000 8000 10000 12000
Time in Nanoseconds

101

103

105

107

Fr
eq

ue
nc

y

Min
Avg
Max

Min: 90, Max: 6220, Avg: 101.87, SD: 20.39

Figure 11.3. Histogram of the Force-Torque Position Controller RTS execution time

0 2000 4000 6000 8000 10000 12000
Time in Nanoseconds

100

101

102

103

104

105

106

107

Fr
eq

ue
nc

y

Min
Avg
Max

Min: 2030, Max: 11420, Avg: 2190.62, SD: 103.31

Figure 11.4. Histogram of the Industrial Robot RTS execution time

176

11.3 Latency Evaluation of the Real-Time Communication and Execution

250 255 260 265 270 275 280
Time in Microseconds

100

101

102

103

104

105

106
Fr

eq
ue

nc
y

Min
Avg
Max

Min: 259, Max: 272, Avg: 262.10, SD: 0.33

Figure 11.5. Histogram of the round trip time of the OPC UA over TSN network
transmission

In addition to the execution times, the transfer times for a network transfer were
measured. For the measurement of the transmission time of the OPC UA over TSN
connection, the measurement of the Round Trip Time (RTT) is best suited. This means
that a sender sends a message to another node, which loopbacks the message. That
means the message is received from the second node and then returned to the sender.
For the time measurement, a time stamp is stored when the message is sent from the
�rst node, and when it is received again at the �rst node, then the di�erence between
these timestamps is taken as the RTT. To measure the RTT, 106 (1,000,000) messages
were sent and received. The OPC UA over TSN connection runs with a cycle time of
250 µs. Since the transmission times are strongly dependent on the amount of data, 10
�oating point values with a size of 8 bytes each were transmitted for the measurement
in each message. Thus, 80 bytes are transmitted per message.

Figure 11.5 shows the RTT measurement as a histogram. On average, a time of 262.10 µs WCET Transmis-

sion Time: 272 µswas required for one transmission round. With a low standard deviation of only 0.33 µs,
there is little variation in the time values. The longest transmission round lasted 272 µs
and occurred once. The RTT can be used well as WCET for one message transfer since,
in the worst case, the message has to wait for one transfer cycle before it is sent. Thus,
a WCET for the transfer of one message of 272 µs is assumed.

In the following evaluation section, the total execution times for the entire process were
measured. To measure the performance, a timestamp was recorded before and after the
execution of one application cycle, and the di�erence between the two timestamps was
measured. To make certain that this assessment functioned e�ectively even within the
distributed con�guration, the initial timestamp was integrated into each RTS as a port
and was thus dragged through all RTS. A total of 105 (100,000) iterations were evaluated
for each con�guration.

In order to compare the RealCaPP architecture against existing approaches, the same
application was implemented with ROS2. ROS2 o�ers the most similarities to the Re- RealCaPP vs ROS2

177

11 Evaluation of the Real-Time Performance

alCaPP architecture, since ROS2 can be executed in a distributed manner on several
computers. In ROS2 the software components can be modularized and communication
takes place via a common middleware. In addition, ROS2 can be programmed in C++. In
this scenario, the three RTSs are realized as three distinct ROS2 nodes, each containing
the exact same C++ implementation for the various functions of measuring the force-
torque values, calculate a position correction value out of the force-torque values, and
send the position correction values to a robot. The ports of the RTSs are represented as
publishers and subscribers in ROS2. Because not all Data Distribution Service (DDS)
implementations in ROS2 possess real-time capabilities, the real-time DDS implementa-
tion Connext DDS Professional [178] from Real-time Innovations (RTI) was used. On
non-distributed systems, the Connext DDS implementation uses shared memory to
exchange data between software components. Since there is no TSN implementation for
ROS2 yet, the measurements were performed in a separate network without additional
network tra�c. This prevents delays in the network due to other network tra�c. When
implementing the ROS2 nodes, the same real-time criteria were taken into account as
for the RTSs. For example, memory was created before the actual real-time execution in
a separate initialization phase. In the RealCaPP implementation, the transmission slots
were not synchronized with the execution clocks. With synchronization, it would be
possible to time RTS executions to always be just before the next transmit cycle. Since
such synchronization is not possible in ROS2, it has been omitted for comparability
between the two architectures.

178

11.3 Latency Evaluation of the Real-Time Communication and Execution

0 50 100 150 200 250 300 350 400
Time in Microseconds

100

101

102

103

104

Fr
eq

ue
nc

y
Min
Avg
Max

Min: 5, Max: 39, Avg: 8.14, SD: 2.28

Figure 11.6. Histogram of the execution times of the force-controlled robot movement
local RealCaPP implementation

0 50 100 150 200 250 300 350 400
Time in Microseconds

100

101

102

103

Fr
eq

ue
nc

y

Min
Avg
Max

Min: 116, Max: 383, Avg: 203.49, SD: 28.73

Figure 11.7. Histogram of the execution times of the force-controlled robot movement
local ROS2 implementations

Figure 11.6 shows the execution times for the local execution of the force-controlled robot WCET RealCaPP

Execution Time

(local): 39 µs

movement implemented with the RealCaPP architecture as a histogram. On average, a
run time of 8.14 µs was required to run from reading the sensor values to writing the
position values to the robot. The standard deviation was 2.28 µs, which indicates very
small deviations. In the measurements, a maximum value of 39 µs was reached once.
Thus, the WCET for the local execution with the RealCaPP implementation is 39 µs.

Figure 11.7 shows the execution times for the same force-controlled robot movement WCET ROS2

Execution Time

(local): 383 µs

implemented with the ROS2 architecture as a histogram. The average value here
was 203.49 µs with a standard deviation of 28.73 µs. The signi�cantly higher standard
deviation indicates partially higher distributed execution times. Themaximum execution
time of 383 µs was also clearly higher. Thus, the WCET for the local execution with the
ROS2 implementation is 383 µs.

179

11 Evaluation of the Real-Time Performance

200 400 600 800 1000 1200 1400 1600 1800
Time in Microseconds

100

101

102

103
Fr

eq
ue

nc
y

Min
Avg
Max

Min: 66, Max: 455, Avg: 139.56, SD: 27.57

Figure 11.8. Histogram of the execution times of the force-controlled robot movement
distributed RealCaPP implementation (1 hop)

200 400 600 800 1000 1200 1400 1600 1800
Time in Microseconds

100

101

102

103

Fr
eq

ue
nc

y

Min
Avg
Max

Min: 483, Max: 2912, Avg: 1034.61, SD: 75.92

Figure 11.9. Histogram of the execution times of the force-controlled robot movement
distributed ROS2 implementation (1 hop)

Figure 11.8 shows the execution times for the distributed execution on two computationWCET RealCaPP

Execution Time

(distributed 1 hop):

455 µs

nodes. The reading of the sensor values and the calculation of the position correction
values is carried out on the �rst IPC, then the position values are transferred to the
second IPC and pre-processed for the robot and sent to the robot. With the RealCaPP
architecture on average, an execution time of 139.56 µs was required. The standard
deviation is also slightly higher with a value of 27.57 µs. The maximum execution
time was 455 µs. Thus, the WCET for the distributed execution with one hop with the
RealCaPP implementation is 455 µs.

Figure 11.9 shows the execution times for distributed execution on two computationWCET ROS2

Execution Time

(distributed 1 hop):

2,912 µs

nodes implemented in ROS2. Overall measurements, an average execution time of
1,034.61 µs was achieved. The standard deviation of 75.92 µs indicates a higher jitter.
The maximum execution time was 2,912 µs. Due to readability, the signi�cant outliers
in the histogram were cut o�. Thus, the WCET for the distributed execution with one
hop with the ROS2 implementation is 2,912 µs.

180

11.3 Latency Evaluation of the Real-Time Communication and Execution

500 1000 1500 2000 2500 3000
Time in Microseconds

100

101

102

103
Fr

eq
ue

nc
y

Min
Avg
Max

Min: 324, Max: 734, Avg: 404.58, SD: 28.94

Figure 11.10. Histogram of the execution times of the force-controlled robot movement
distributed RealCaPP implementation (2 hops)

500 1000 1500 2000 2500 3000
Time in Microseconds

100

101

102

Fr
eq

ue
nc

y

Min
Avg
Max

Min: 1161, Max: 3707, Avg: 1734.77, SD: 95.68

Figure 11.11. Histogram of the execution times of the force-controlled robot movement
distributed ROS2 implementation (2 hops)

Figure 11.10 shows the execution time for the distributed execution implemented with WCET RealCaPP

Execution Time

(distributed 2 hops):

734 µs

the RealCaPP architecture on three computation nodes. This means that each substep is
executed on a separate IPC. The average execution time was 404.58 µs with a standard
deviation of 28.94µs. Themaximum execution time has been 734 µs. Thus, theWCET for
the distributed execution with two hops with the RealCaPP implementation is 734 µs.

Figure 11.11 shows the execution in ROS2 distributed over three IPCs. The average WCET ROS2

Execution Time

(distributed 2 hops):

3,707 µs

execution time was 1,734.77 µs. The standard deviation was almost 100 µs (95.68 µs),
which is very high. The maximum execution time for the measurements performed was
3,707 µs. Thus, the WCET for the distributed execution with two hops with the ROS2
implementation is 3,707 µs.

181

11 Evaluation of the Real-Time Performance

All test series, both in the local and in all distributed setups, show that the imple-Comparison

of execution

times: RealCaPP

vs. ROS2

mentation with the RealCaPP architecture achieves signi�cantly better execution time
values than the reference implementation with the ROS2 architecture. Puck et al. [173]
has measured the performance for the transmission of ROS2 messages in a local and
distributed setup. The measured values also correspond to the transmission values that
were achieved with ROS2 in the shown setup. Thus, it can be excluded that there were
errors in the ROS2 con�guration. In all cases, the WCET of the RealCaPP implementa-
tion was below the minimum value of the ROS2 implementation. There was no overlap
in the execution times of the two architectures. In the local setup, the largest deviation of
the RealCaPPWCET (39 µs) from the ROS2WCET (383 µs) was seen with a di�erence of
almost factor 10. This high deviation is mainly due to the overhead of DDS in the ROS2
implementation, although shared memory is used. The standard deviations in the local
evaluation also di�er by a factor of approximately 10. The RealCaPP implementation
has a very good standard deviation of 2.28 µs while in the ROS2 implementation, the
execution values vary strongly with a standard deviation of 28.73 µs. But even with
distributed execution distributed to tree IPCs, the RealCaPP implementation WCET
(734 µs) was better than the ROS2 reference implementationWCET (3,707 µs) by a factor
of 5. The distribution of the execution values for the distributed case also di�ers greatly
between the RealCaPP and the ROS2 implementations. Here, the standard deviations of
28.94 µs for the RealCaPP implementation and 95.68 µs for the ROS2 implementation
are more than factor 3 apart. The reason for the poorer runtime of ROS2 could be the
overhead of DDS and the network transfer without TSN.

It was thus possible to demonstrate in all cases that the real-time deadline of 1 ms
(1,000 µs) could be met for the RealCaPP implementation of the force-controlled robot
movement. In the reference implementation in ROS2, the real-time deadline was already
broken during the distributed execution with one hop. Since network transmission
has a decisive in�uence on execution time, care should be taken when designing RTS
Networks to ensure that as few external connections as possible are created. Especially
constellations, where data has to be exchanged between network parts at more than
one point, can be critical.

182

Summary. In this chapter, the results obtained in the course
of this thesis are once again presented and evaluated. The thesis
concludes with an outlook on possible further research ques-
tions.

12
Conclusion and Outlook

12.1 Conclusion of the Thesis 183
12.2 Outlook and Future Work 185

The goal of this work was the development of a real-time Plug & Produce architecture.
The architecture developed was successfully validated in four case studies. With the
architecture, it is possible to implement real-time capable processes in robotic systems.
This was successfully demonstrated using the examples of hand-guiding, the assembly
and mounting of components, and the brewing of co�ee. These case studies also show
how �exible the developed concept can be applied.

The �rst part of this chapter provides a summary of the goals achieved. In addition,
Section 12.1 checks whether all points of the research question are answered. At the end
of this dissertation, an outlook is given in Section 12.2, and possible further research
questions are discussed.

12.1 Conclusion of the Thesis

The initial research question was the following:

How can �exible robot-based production systems be designed to add or replace

production resources on the �y without complex integration and reprogram-

ming, and how can these resources be combined into a distributed system that

can perform critical tasks in real-time?

The research question can now be answered based on the shown results and concepts.
The Real-Time Capable Plug & Produce (RealCaPP) architecture is a software archi-
tecture for programming �exible robot-based production systems. In the architecture,
production resources can be added and replaced easily. Due to a self-introduction
mechanism of the resources, an e�ortless integration is possible, without adapting the
implementation. Through modular software components, it is also possible to adapt

183

12 Conclusion and Outlook

or add processes. These software components can be easily integrated at runtime, and
a plant gets new skills through the integration. These software components can be
distributed arbitrarily in the system and executed in real-time despite the distribution.

The shown RealCaPP architecture is based on a two-part communication middleware
(cf. Chapter 4). OPC UA client-server communication is used for non-real-time commu-
nication, like for the introduction of new components. In order to exchange process
data in real-time in the distributed system, OPC UA Pub-Sub over TSN is used as real-
time communication middleware. Other essential components of the architecture are
resources. Through an Asset Administration Shell (AAS), the production resources are
made RealCaPP capable. The AAS contains descriptions of the resource’s properties and
capabilities, the hardware driver, and basic callable skills (Basic Skills) in the form of
services. It is also possible to add additional software modules to the AAS of the resource,
like Composed Skills. The resources also contain interfaces for the two communication
types. In addition, there are central points in the architecture where knowledge about
the plant is collected, and new components can be registered.

For the integration of new components, the OPC UA Discovery Service is used (cf.
Chapter 5). Via non-real-time communication, the self-description of the new resource
is then integrated into the global knowledge base of the system. For the self-descriptions
and the knowledge base, ontologies are used. Ontologies provide a structured and
standardized way to represent knowledge. This structured representation enables
machines to perform automated reasoning and inference, allowing more precise and
consistent decision-making based on the data. In combination with querying, reasoning
is used to automatically �nd plant con�gurations for given processes (cf. Chapter 6).
The ability to link the data into ontologies makes adding additional constraints for the
con�guration search easy.

Once a suitable resource con�guration has been found, communication between the
resources is required for the execution of a process. OPC UA Pub-Sub over TSN is used
to communicate between the resources in real-time. For TSN, time slots are de�ned
for sending messages. For this purpose, a dynamic con�guration was developed based
on a developed OPC UA Pub-Sub Registry, in which the resources can automatically
establish real-time communications with each other (cf. Chapter 7).

In order to add new processes at runtime without having to reprogram the entire system,
modular software components were developed that can be integrated at runtime. The
RealCaPP service architecture was developed for this purpose (cf. Chapter 8). Real-Time
Services (RTSs) are uniform services that can be executed in real-time. RTSs have
ports that allow multiple RTSs to be connected to each other and represent the data
�ow between the services. In addition, services can also contain functions that can be
executed. Processes are implemented as RTS Networks, which consist of several RTSs
connected by ports. RTS Networks can be run locally, or they can be run in a distributed
manner. In distributed execution, ports are transferred between computation nodes via
the real-time capable middleware. The same applies to the function calls on distributed
RTSs. By executing RTS in real-time and exchanging data in distributed systems in
real-time, the distributed execution of an RTS Network also remains real-time capable.

184

12.2 Outlook and Future Work

The RTSs and RTS Networks are thus the execution environment for Basic Skills and
Composed Skills.

To ensure the reusability of the modular software components and the associated skills,
abstract implementations have been designed for the di�erent classes of resources (cf.
Chapter 9). For the di�erent actuator resources, such as the robot, the gripper, and
the screwdriver, respective abstract RTS implementations were developed. The same
was done for the sensor resources, such as the force-torque sensor or simple digital
input modules. An attempt was made to work out the commonalities for each class.
Specializations were used for speci�c types. A vacuum gripper, for example, has all
the functions of a gripper but has additional functionalities that only vacuum grippers
have.

Subsequently, real resources were implemented according to the abstract de�nitions.
Two di�erent robot cells were used to check whether the architecture is suitable for
implementing �exible robot-based production. In three di�erent industrial case studies,
the architecture was able to show its strength (cf. Chapter 10). It was even possible to
show how the skills developed for the industrial case studies could be reused to make
espressos with a robot and a porta�lter machine.

Finally, the real-time capability of the RealCaPP architecture was demonstrated (cf.
Chapter 11). For this purpose, the Worst-Case Execution Times (WCETs) were measured
for the exemplary real-time critical case study of force-controlled screwing. For compar-
ison, the same case study was implemented with the Robot Operating System 2 (ROS2)
using a real-time capable DDS implementation. In both the local and the distributed
executions on multiple computation nodes, 1/3 smaller WCETs could be achieved with
the RealCaPP realization. In the non-distributed setup, the WCETs of the RealCaPP
implementation were less than 1/5 of the ROS2 WCETs.

In summary, RealCaPP is an architecture for programming �exible robotic cells that
can adapt to new resource contexts and new processes while allowing executions in
hard real-time in a distributed system consisting of many production resources. This
provides an enabler for Lot-Size-1 production. Thus, the production system can be
adapted according to the product.

12.2 Outlook and Future Work

The RealCaPP architecture already o�ers many possibilities for implementing �exible
robot-based production systems as shown in Chapter 10, but there is still potential for
expansion.

Since much time is currently needed for time synchronization in the dynamic setup
of real-time communication, alternative synchronization approaches are needed for
resources that are not connected to the TSN network from the beginning, like robot
tools on a tool holder. The aim is to evaluate whether it is possible to enable time
synchronization via wireless networks to reduce the time synchronization period when
connecting to the TSN network.

185

12 Conclusion and Outlook

Another important aspect that needs further research is the automatic distribution
of the RTS to the resources. Currently, the distribution of the RTSs is done by the
user. If necessary, existing approaches from other SOAs can be used for the automatic
distribution of the services in the RealCaPP system. Distribution optimization criteria
could be the limited computing capacity of some resources or distributions with as few
communication hops as possible to ensure real-time.

Currently, only very simple component descriptions are used to adapt the skills to the
respective product. It has turned out that this is where ontologies reach their limits.
Pure descriptions are usually insu�cient to handle all kinds of previously unknown
components with process reliability. A possible solution to this problem could be a
combination of the ontology-based description of the parts, 3D simulations that are as
realistic as possible, and Arti�cial Intelligence (AI) techniques like machine learning.
On the one hand, this can be used to enable an optimal design adapted to the part
for a given plant con�guration. On the other hand, it can be used to �nd optimal
plant con�gurations for a given task and part. The ontology can query possible plant
con�gurations as shown in Chapter 6. This con�guration set can be run in the simulation
to estimate the best con�guration.

Other aspects that have not yet been considered are collaborative multi-robot applica-
tions. Currently, only robotic applications are considered where one robot performs
a task or several robots work in a shared workspace doing cooperating tasks, where
only one robot moves at a time in a critical area. Collaborative multi-robot tasks can
be, for example, the simultaneous handling of one large component or the handover of
parts between two robots while the robots are moving. For this purpose, the detection
of plant con�gurations must be adapted to enable the con�guration of robot teams. The
restrictions here are that a tool can only be used once in a team. Also, new skills must
be developed to enable multi-robot collaboration. For example, skills should be added
to synchronize the movements of multiple robots, or skills should be added to enable
collision-free path planning of robot teams.

Plug & Produce provides the basis for creating a �exible production system that can be
adapted over time. Plug & Produce can be combined with self-organization approaches
to implement even larger production systems. Combining these two approaches allows
the production system to become more adaptable, e�cient, and responsive to changing
conditions. The goal would be to enter a product blueprint to be produced in the system.
The blueprint is automatically broken down into individual process steps. Based on these
process steps, possible plant con�gurations are identi�ed. The system automatically
plans the optimal sequence for the process steps, considering the production processes
already in progress. It may be necessary to recon�gure the system during production.
However, care should be taken to ensure that as few recon�gurations as possible are
made. For example, unnecessary, time-consuming tool changes should be avoided.

A major problem that remains and one that is not easily solved, is the Plug & Pro-
duce capability of resources. Currently, Asset Administration Shells (AASs) have been
developed for each production resource, making resources Plug & Produce capable.
However, this means that for each new resource, a new AAS must be created to make
the resource Plug & Produce capable. Therefore, an attempt should be made to estab-

186

12.2 Outlook and Future Work

lish a vendor-independent Plug & Produce standard, in which any manufacturer of a
production resource can provide a Plug & Produce capable resource. In summary, a
vendor-independent standard for Plug & Produce is essential to promote interoperabil-
ity, reduce integration costs, improve e�ciency, and ensure production systems can
e�ectively adapt to changing needs.

187

Bibliography

[1] BaSys 4.0: Basissystem Industrie 4.0. URL https://www.basys40.de/. (last visited:
26.04.2023).

[2] openMOS: Open Dynamic Manufacturing Operating System for Smart Plug-and-Produce
Automation Components. URL https://www.openmos.eu/. (last visited: 06.06.2023).

[3] Simulink – Made for Model-Based-Design, note =(last visited: 12.07.2023), author=Math
Works. URL https://mathworks.com/products/simulink.html.

[4] Robotics: Modelling, Planning and Control. Springer London, London, 2009. ISBN 978-1-
84628-642-1. doi: 10.1007/978-1-84628-642-1_12.

[5] IEEE Standard for Local and metropolitan area networks– Virtual Bridged Local Area
Networks Amendment 12: Forwarding and Queuing Enhancements for Time-Sensitive
Streams. IEEE Std 802.1Qav-2009 (Amendment to IEEE Std 802.1Q-2005), pages 1–72, 2010.
doi: 10.1109/IEEESTD.2010.8684664.

[6] IEEE Standard for Local and metropolitan area networks – Bridges and Bridged Networks -
Amendment 25: Enhancements for Scheduled Tra�c. IEEE Std 802.1Qbv-2015 (Amendment
to IEEE Std 802.1Q-2014 as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and
IEEE Std 802.1Q-2014Cor 1-2015), pages 1–57, 2016. doi: 10.1109/IEEESTD.2016.8613095.

[7] IEEE Standard for Ethernet Amendment 5: Speci�cation and Management Parameters for
Interspersing Express Tra�c. IEEE Std 802.3br-2016 (Amendment to IEEE Std 802.3-2015 as
amended by IEEE Std 802.3bw-2015, IEEE Std 802.3by-2016, IEEE Std 802.3bq-2016, and IEEE
Std 802.3bp-2016), pages 1–58, 2016. doi: 10.1109/IEEESTD.2016.7592835.

[8] IEEE Standard for Local and Metropolitan Area Networks–Bridges and Bridged Networks
– Amendment 31: Stream Reservation Protocol (SRP) Enhancements and Performance
Improvements. IEEE Std 802.1Qcc-2018 (Amendment to IEEE Std 802.1Q-2018 as amended
by IEEE Std 802.1Qcp-2018), pages 1–208, 2018. doi: 10.1109/IEEESTD.2018.8514112.

[9] IEEE Standard for Ethernet. IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015), pages
1–5600, 2018. doi: 10.1109/IEEESTD.2018.8457469.

[10] IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measure-
ment and Control Systems. IEEE Std 1588-2019 (Revision ofIEEE Std 1588-2008), pages
1–499, 2020. doi: 10.1109/IEEESTD.2020.9120376.

[11] IEEE Standard for Local and Metropolitan Area Networks–Bridges and Bridged Networks.
IEEE Std 802.1Q-2022 (Revision of IEEE Std 802.1Q-2018), pages 1–2163, 2022. doi: 10.1109/
IEEESTD.2022.10004498.

[12] A. Alves. OSGI in Depth. Simon and Schuster, 2011.

[13] A. Ambler and R. Popplestone. Inferring the positions of bodies from speci�ed spatial
relationships. Arti�cial Intelligence, 6(2):157–174, 1975. ISSN 0004-3702. doi: https:
//doi.org/10.1016/0004-3702(75)90007-7.

[14] N. Ando, T. Suehiro, and T. Kotoku. A software platform for component based RT-system
development: OpenRTM-aist. In International Conference on Simulation, Modeling, and
Programming for Autonomous Robots, pages 87–98. Springer, 2008.

189

https://www.basys40.de/
https://www.openmos.eu/
https://mathworks.com/products/simulink.html

[15] A. Angerer, A. Ho�mann, A. Schierl, M. Vistein, andW. Reif. Robotics API: Object-oriented
software development for industrial robots. Journal of Software Engineering for Robotics, 4
(1):1–22, 2013.

[16] T. Arai, Y. Aiyama, Y. Maeda, M. Sugi, and J. Ota. Agile assembly system by “plug and
produce”. CIRP annals, 49(1):1–4, 2000.

[17] T. Arai, Y. Aiyama, M. Sugi, and J. Ota. Holonic assembly system with Plug and Produce.
Computers in Industry, 46(3):289–299, 2001.

[18] I. S. Association et al. IEEE Std 802.1 AS-2011, IEEE Standard for Local and Metropolitan
Area Networks—Timing and Synchronization for Time-Sensitive Applications in Bridged
Local Area Networks. Mar, 30:292, 2011.

[19] ATI Industrial Automation. F/T Sensor: mini45. URL https://www.ati-ia.com/

products/ft/ft_models.aspx?id=mini45. (last visited: 31.07.2023).

[20] S. Bader, E. Barnstedt, H. Bedenbender, B. Berres, M. Billmann, and M. Ristin. Details of
the Asset Administration Shell-Part 1: the exchange of information between partners in
the value chain of Industrie 4.0 (Version 3.0 RC02). 2022.

[21] H. Bedenbender, A. Bentkus, U. Epple, T. Hadlich, M. Hankel, R. Heidel, and
M. Woolschlaeger. Relationships between I4.0 Components–Composite components
and smart production. Federal Ministry for Economic A�airs and Energy (BMWi), Berlin,
2017.

[22] H. Bedenbender, M. Billmann, U. Epple, T. Hadlich, M. Hankel, R. Heidel, O. Hillermeier,
M. Ho�meister, H. Huhle, M. Jochem, et al. Examples of the Asset Administration Shell
for Industrie 4.0 Components – Basic Part. ZVEI white paper, 2017.

[23] Bennulf, Mattias and Danielsson, Fredrik and Svensson, Bo. Identi�cation of resources
and parts in a Plug and Produce system using OPC UA. Procedia Manufacturing, 38:
858–865, 2019.

[24] I. C. Bertolotti and G. Manduchi. Real-time embedded systems: open-source operating
systems perspective. CRC press, 2017.

[25] L. Biagiotti and C. Melchiorri. Trajectory planning for automatic machines and robots.
Springer Science & Business Media, 2008.

[26] S. Bi�, A. Lüder, and D. Gerhard. Multi-disciplinary engineering for cyber-physical produc-
tion systems: data models and software solutions for handling complex engineering projects.
Springer, 2017.

[27] H. Boley, A. Paschke, and O. Sha�q. RuleML 1.0: the overarching speci�cation of web
rules. In International Workshop on Rules and Rule Markup Languages for the Semantic
Web, pages 162–178. Springer, 2010.

[28] B&R Industrial Automation GmbH . Automation PC 2200 – Compact Intel Atom
technology. URL https://www.br-automation.com/en/products/industrial-pcs/

automation-pc-2200/. (last visited: 19.08.2023).

[29] D. Brickley. RDF vocabulary description language 1.0: RDF schema. W3C recommendation,
2004.

[30] P. Brooks. EtherNet/IP: Industrial Protocol White Paper, 2001. URL https://literature.

rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-

p.pdf. (last visited: 30.07.2023).

190

https://www.ati-ia.com/products/ft/ft_models.aspx?id=mini45
https://www.ati-ia.com/products/ft/ft_models.aspx?id=mini45
https://www.br-automation.com/en/products/industrial-pcs/automation-pc-2200/
https://www.br-automation.com/en/products/industrial-pcs/automation-pc-2200/
https://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf

[31] D. Bruckner, R. Blair, M. Stanica, A. Ademaj, W. Ske�ngton, D. Kutscher, S. Schriegel,
R. Wilmes, K. Wachswender, L. Leurs, et al. OPC UA TSN - A new solution for industrial
communication. Whitepaper. Shaper Group, 168, 2018.

[32] D. Bruckner, M.-P. Stănică, R. Blair, S. Schriegel, S. Kehrer, M. Seewald, and T. Sauter. An
Introduction to OPC UA TSN for Industrial Communication Systems. Proceedings of the
IEEE, 107(6):1121–1131, 2019. doi: 10.1109/JPROC.2018.2888703.

[33] H. Bruyninckx. Open robot control software: the OROCOS project. In Proceedings 2001
ICRA. IEEE international conference on robotics and automation (Cat. No. 01CH37164),
volume 3, pages 2523–2528. IEEE, 2001.

[34] H. Bruyninckx and P. Soetens. Generic real-time infrastructure for signal acquisition,
generation and processing. In Fourth Real-time Linux Workshop, 2002.

[35] G. C. Buttazzo. Hard real-time computing systems: predictable scheduling algorithms and
applications, volume 24. Springer Science & Business Media, 2011.

[36] C++ Micro Services. C++ Micro Services, 2023. URL http://cppmicroservices.org/.
(last visited: 14.06.2023).

[37] S. Cavalieri and F. Chiacchio. Analysis of OPC UA performances. Computer Standards &
Interfaces, 36(1):165–177, 2013. ISSN 0920-5489. doi: https://doi.org/10.1016/j.csi.2013.06.
004.

[38] N. Chungoora, A.-F. Cutting-Decelle, R. I. Young, G. Gunendran, Z. Usman, J. A. Harding,
and K. Case. Towards the ontology-based consolidation of production-centric standards.
International Journal of Production Research, 51(2):327–345, 2013.

[39] M. Compton, P. Barnaghi, L. Bermudez, R. Garcia-Castro, O. Corcho, S. Cox, J. Graybeal,
M. Hauswirth, C. Henson, A. Herzog, V. Huang, K. Janowicz, W. D. Kelsey, D. Le Phuoc,
L. Lefort, M. Leggieri, H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, and K. Taylor.
The SSN ontology of the W3C semantic sensor network incubator group. Journal of Web
Semantics, 17:25–32, 2012. ISSN 1570-8268. doi: https://doi.org/10.1016/j.websem.2012.05.
003.

[40] D. M. Considine and G. D. Considine. Standard handbook of industrial automation. Springer
Science & Business Media, 2012.

[41] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner. Scheduling real-time communi-
cation in IEEE 802.1 Qbv time sensitive networks. In Proceedings of the 24th International
Conference on Real-Time Networks and Systems, pages 183–192, 2016.

[42] A.-F. Cutting-Decelle, R. I. Young, J.-J. Michel, R. Grangel, J. Le Cardinal, and J. P. Bourey.
ISO 15531 MANDATE: a product-process-resource based approach for managing modu-
larity in production management. Concurrent Engineering, 15(2):217–235, 2007.

[43] DIN. DIN SPEC 91345: 2016-04, Reference Architecture Model Industrie 4.0 (RAMI4. 0),
2016.

[44] J. Domingue, D. Fensel, and J. A. Hendler. Handbook of semantic web technologies, volume 1.
Springer, 2011.

[45] K. Dorofeev and A. Zoitl. Skill-based engineering approach using OPC UA Programs. In
2018 IEEE 16th international conference on industrial informatics (INDIN), pages 1098–1103.
IEEE, 2018.

191

http://cppmicroservices.org/

[46] DSM Messtechnik GmbH. MultiPro 3G – Modern high-end control system for hand-
held nutrunners and built-in nutrunners. URL https://www.dsm-messtechnik.de/en/

control-system/multipro-3g/. (last visited: 23.07.2023).

[47] F. Dürr and N. G. Nayak. No-wait packet scheduling for IEEE time-sensitive networks
(TSN). In Proceedings of the 24th International Conference on Real-Time Networks and
Systems, pages 203–212, 2016.

[48] Eclipse. Eclipse iceoryx – An inter-process-communication middleware. URL https:

//iceoryx.io/latest/. (last visited: 12.07.2023).

[49] K. Erciyes and K. Erciyes. Distributed real-time systems. Springer, 2019.

[50] Espresso Co�ee Machines Manufacture GmbH. S-Automatik 64 – On-Demand Grinder
with Timer. URL https://www.ecm.de/en/products/details/product/Product/

Details/s-automatik-64/. (last visited: 21.07.2023).

[51] C. Eymüller, J. Hanke, A. Ho�mann, M. Kugelmann, and W. Reif. Real-time capable
OPC-UA programs over TSN for distributed industrial control. In T. Sauter, F. Vasques,
L. L. Bello, V. Vyatkin, A. A. Nogueiras, and S. Wilker, editors, 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), 8-11 Sept. 2020,
Vienna, Austria, pages 278 – 285, 2020. doi: 10.1109/ETFA46521.2020.9212171.

[52] C. Eymüller, J. Hanke, A. Ho�mann, W. Reif, M. Kugelmann, and F. Grätz. RealCaPP:
Real-time capable Plug & Produce communication platform with OPC UA over TSN
for distributed industrial robot control. In 2021 IEEE 17th International Conference on
Automation Science and Engineering (CASE), pages 585–590. IEEE, 2021.

[53] C. Eymüller, C. Wanninger, A. Ho�mann, and W. Reif. Semantic Plug and Play — Self-
Descriptive Modular Hardware for Robotic Applications. International Journal of Semantic
Computing, 12(04):559–577, 2018.

[54] C. Eymüller, J. Hanke, A. Ho�mann, A. Poeppel, C. Wanninger, and W. Reif. Towards a
Real-Time Capable Plug & Produce Environment for Adaptable Factories. In 2021 26th
IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),
pages 1–4, 2021. doi: 10.1109/ETFA45728.2021.9613729.

[55] C. Eymüller, J. Hanke, A. Poeppel, and W. Reif. Towards Self-Con�guring Plug & Produce
Robot Systems Based on Ontologies. In 2023 9th International Conference on Automation,
Robotics and Applications (ICARA), pages 23–27, 2023. doi: 10.1109/ICARA56516.2023.
10126075.

[56] D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino. An EDF scheduling class for the
Linux kernel. In Proceedings of the 11th Real-Time Linux Workshop, pages 1–8, 2009.

[57] X. Fan. Real-time embedded systems: design principles and engineering practices. Newnes,
2015.

[58] B. Finkemeyer, T. Kröger, D. Kubus, M. Olschewski, and F. M. Wahl. MiRPA: Middleware
for robotic and process control applications. In Workshop on Measures and Procedures
for the Evaluation of Robot Architectures and Middleware at the IEEE/RSJ International
Conference on Intellegent Robots and Systems, San Diego, CA, USA, pages 78–93, 2007.

[59] B. Finkemeyer, T. Kröger, and F. M. Wahl. A middleware for high-speed distributed real-
time robotic applications. In Robotic Systems for Handling and Assembly, pages 193–212.
Springer, 2011.

[60] P. Gerum. Xenomai-Implementing a RTOS emulation framework on GNU/Linux. White
Paper, Xenomai, page 81, 2004.

192

https://www.dsm-messtechnik.de/en/control-system/multipro-3g/
https://www.dsm-messtechnik.de/en/control-system/multipro-3g/
https://iceoryx.io/latest/
https://iceoryx.io/latest/
https://www.ecm.de/en/products/details/product/Product/Details/s-automatik-64/
https://www.ecm.de/en/products/details/product/Product/Details/s-automatik-64/

[61] B. Goetz and R. Eckstein. An Introduction to Real-Time Java Technology. The Real-
Time Speci�cation for Java (JSR 1), 2008. URL https://www.oracle.com/technical-

resources/articles/javase/jsr-1.html. (last visited: 20.06.2023).

[62] I. Grangel-González, L. Halilaj, S. Auer, S. Lohmann, C. Lange, and D. Collarana. An
RDF-based approach for implementing industry 4.0 components with Administration
Shells. In 2016 IEEE 21st International Conference on Emerging Technologies and Factory
Automation (ETFA), pages 1–8, 2016. doi: 10.1109/ETFA.2016.7733503.

[63] T. R. Gruber. A translation approach to portable ontology speci�cations. Knowledge Ac-
quisition, 5(2):199–220, 1993. ISSN 1042-8143. doi: https://doi.org/10.1006/knac.1993.1008.
URL https://www.sciencedirect.com/science/article/pii/S1042814383710083.

[64] M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, and S. Punnekkat. Self-con�guration
of IEEE 802.1 TSN networks. In 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 1–8, 2017. doi: 10.1109/ETFA.2017.
8247597.

[65] C. Gärtner, A. Rizk, B. Koldehofe, R. Hark, R. Guillaume, and R. Steinmetz. Leveraging Flex-
ibility of Time-Sensitive Networks for dynamic Recon�gurability. In 2021 IFIP Networking
Conference (IFIP Networking), pages 1–6, 2021. doi: 10.23919/IFIPNetworking52078.2021.
9472834.

[66] C. Gärtner, A. Rizk, B. Koldehofe, R. Guillaume, R. Kundel, and R. Steinmetz. On the Incre-
mental Recon�guration of Time-sensitive Networks at Runtime. In 2022 IFIP Networking
Conference (IFIP Networking), pages 1–9, 2022. doi: 10.23919/IFIPNetworking55013.2022.
9829815.

[67] M. Hankel. The Reference Architectural Model Industrie 4.0 (rami 4.0). Zvei – German
Electrical and Electronic Manufacturers’ Association, 2(2):4–9, 2015.

[68] Z. Hanzálek, P. Burget, and P. Šucha. Pro�net IO IRT Message Scheduling. In 2009 21st
Euromicro Conference on Real-Time Systems, pages 57–65, 2009. doi: 10.1109/ECRTS.2009.
18.

[69] R. Heidel. Industrie 4.0: The reference architecture model RAMI 4.0 and the Industrie 4.0
component. Beuth Verlag GmbH, 2019.

[70] G. C. Hillar. MQTT Essentials-A lightweight IoT protocol. Packt Publishing Ltd, 2017.

[71] A. Ho�mann, A. Angerer, F. Ortmeier, M. Vistein, and W. Reif. Hiding real-time: A new
approach for the software development of industrial robots. In 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2108–2113. IEEE, 2009.

[72] A. Ho�mann, A. Angerer, A. Schierl, M. Vistein, and W. Reif. Service-oriented Robotics
Manufacturing by reasoning about the Scene Graph of a Robotics Cell. In ISR/Robotik
2014; 41st International Symposium on Robotics, pages 1–8, 2014.

[73] S. Hoppe. OPC UA - Interoperability for Industrie 4.0 and the Internet of Things. OPC Foun-
dation, v7, 2018. URL https://opcfoundation.org/wp-content/uploads/2017/11/OPC-
UA-Interoperability-For-Industrie4-and-IoT-EN.pdf. (last visited: 12.04.2023).

[74] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosofand, and M. Dean. W3C
recommendation. (last visited: 01.06.2023).

[75] I. Horrocks, P. F. Patel-Schneider, S. Bechhofer, and D. Tsarkov. OWL rules: A proposal
and prototype implementation. Journal of web semantics, 3(1):23–40, 2005.

[76] S. Hu and B. Yu. Big Data Analytics for Cyber-Physical Systems. Springer, 2020.

193

https://www.oracle.com/technical-resources/articles/javase/jsr-1.html
https://www.oracle.com/technical-resources/articles/javase/jsr-1.html
https://www.sciencedirect.com/science/article/pii/S1042814383710083
https://opcfoundation.org/wp-content/uploads/2017/11/OPC-UA-Interoperability-For-Industrie4-and-IoT-EN.pdf
https://opcfoundation.org/wp-content/uploads/2017/11/OPC-UA-Interoperability-For-Industrie4-and-IoT-EN.pdf

[77] R. Hummen, S. Kehrer, and O. Kleineberg. TSN - Time Sensitive Networking. Hirschmann,
USA, WP00027, 2016.

[78] IEEE. 802.1 Time-Sensitive Networking (TSN) Task Group, 2016. URL https://1.ieee802.
org/tsn/. (last visited: 01.04.2023).

[79] InnoRoute GmbH. Real-Time HAT – Real-Time Communication with the Raspberry PI, .
URL https://innoroute.com/realtimehat/. (last visited: 30.07.2023).

[80] InnoRoute GmbH. TrustNode – Transforming Networks: Creating Networks of tomorrow,
. URL https://innoroute.com/trustnode_router/. (last visited: 19.08.2023).

[81] International Electrotechnical Commission. OPC Uni�ed Architecture: Overview and
Concepts. IEC62541, 2010.

[82] International Electrotechnical Commission. IEC 61131-3:2013 : Programmable controllers
- Part 3: Programming languages. Measurement and control devices, 3.0, 2013.

[83] International Electrotechnical Commission. IEC 61158-1: Industrial communication
networks – Fieldbus speci�cations – Part 1: Overview and guidance for the IEC 61158 and
IEC 61784 series. Digital Data Communications for Measurement and Control—Fieldbus for
Use in Industrial Control Systems, 1, 2014.

[84] IO-Link Community. IO-Link System Description – Technology and Application,
2018. URL https://io-link.com/share/Downloads/At-a-glance/IO-Link_System_

Description_eng_2018.pdf. (last visited: 17.07.2023).

[85] ISO Central Secretary. ISO 8373:1994: Manipulating industrial robots – Vocabulary.
Standard ISO 8373:1994, International Organization for Standardization, 1994. URL
https://www.iso.org/standard/15532.html.

[86] ISO Central Secretary. ISO/IEC TS 23619:2021: Information technology — C++ exten-
sions for re�ection. Standard ISO/IEC TS 23619:2021, International Organization for
Standardization, 2021. URL https://www.iso.org/standard/76425.html.

[87] C. Jang, S.-I. Lee, S.-W. Jung, B. Song, R. Kim, S. Kim, and C.-H. Lee. OPRoS: A New
Component-Based Robot Software Platform. ETRI journal, 32(5):646–656, 2010.

[88] C. Jang, B. Song, S. Jung, K.-H. Lee, and S. Kim. Real-time supporting of OPRoS component
Platform. In 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence
(URAI), pages 640–641, 2011. doi: 10.1109/URAI.2011.6145899.

[89] E. Järvenpää, N. Siltala, O. Hylli, and M. Lanz. The development of an ontology for de-
scribing the capabilities of manufacturing resources. Journal of Intelligent Manufacturing,
30(2):959–978, 2019. doi: 10.1007/s10845-018-1427-6.

[90] E. Järvenpää, N. Siltala, O. Hylli, H. Nylund, and M. Lanz. Semantic rules for capabil-
ity matchmaking in the context of manufacturing system design and recon�guration.
International Journal of Computer Integrated Manufacturing, 36(1):128–154, 2023. doi:
10.1080/0951192X.2022.2081361.

[91] F. Kanehiro, Y. Ishiwata, H. Saito, K. Akachi, G. Miyamori, T. Isozumi, K. Kaneko, and
H. Hirukawa. Distributed Control System of Humanoid Robots based on Real-time
Ethernet. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2471–2477, 2006. doi: 10.1109/IROS.2006.281691.

[92] S. Kannoth, J. Hermann, M. Damm, P. Rübel, D. Rusin, M. Jacobi, B. Mittelsdorf, T. Kuhn,
and P. O. Antonino. Enabling SMEs to industry 4.0 using the BaSyx middleware: A

194

https://1.ieee802.org/tsn/
https://1.ieee802.org/tsn/
https://innoroute.com/realtimehat/
https://innoroute.com/trustnode_router/
https://io-link.com/share/Downloads/At-a-glance/IO-Link_System_Description_eng_2018.pdf
https://io-link.com/share/Downloads/At-a-glance/IO-Link_System_Description_eng_2018.pdf
https://www.iso.org/standard/15532.html
https://www.iso.org/standard/76425.html

case study. In Software Architecture: 15th European Conference, ECSA 2021, Virtual Event,
Sweden, September 13-17, 2021, Proceedings, pages 277–294. Springer, 2021.

[93] M. Kaspar, J. Bock, Y. Kogan, P. Venet, M. Weser, and U. E. Zimmermann. Tool and
technology independent function interfaces by using a generic OPC UA representation. In
2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation
(ETFA), volume 1, pages 1183–1186. IEEE, 2018.

[94] J. Kay. Introduction to Real-time Systems, 2016. URL https://design.ros2.org/

articles/realtime_background.html. (last visited: 08.08.2023).

[95] J. Klech. Tuning Guide – Advanced tuning procedures to optimize latency in
RHEL for Real Time. URL https://access.redhat.com/documentation/de-

de/red_hat_enterprise_linux_for_real_time/7/html/tuning_guide/isolating_

cpus_using_tuned-profiles-realtime. (last visited: 08.08.2023).

[96] A. Köcher, C. Hildebrandt, L. M. V. da Silva, and A. Fay. A formal capability and skill
model for use in plug and produce scenarios. In 2020 25th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), volume 1, pages 1663–1670.
IEEE, 2020.

[97] H. Kopetz and W. Steiner. Real-Time Communication. Springer, 2022.

[98] C. Kormanyos. Real-time C++: e�cient object-oriented and template microcontroller pro-
gramming. Springer, 2013.

[99] H. Koziolek, A. Burger, M. Platenius-Mohr, J. Rückert, and G. Stomberg. OpenPnP: A
Plug-and-Produce Architecture for the Industrial Internet of Things. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pages 131–140, 2019. doi: 10.1109/ICSE-SEIP.2019.00022.

[100] P. Kremen, M. Smid, and Z. Kouba. OWLDi�: A practical tool for comparison and merge
of OWL ontologies. In 2011 22nd International Workshop on Database and Expert Systems
Applications, pages 229–233. IEEE, 2011.

[101] KUKA Deutschland GmbH. KUKA.EtherNet KRL – The control system of
the future KR C4, . URL https://www.kuka.com/-/media/kuka-downloads/

imported/87f2706ce77c4318877932fb36f6002d/kuka_pb_controllers_en.pdf?

rev=e8d133f6ddc64b3cb5329645eea0cc8e&hash=90B1C2377022BEC4AA9EAF67B28F5735.
(last visited: 02.08.2023).

[102] KUKA Deutschland GmbH. KKUKA KR C4: The Power of Control, . URL https://www.

kuka.com/en-de/products/robot-systems/robot-controllers/kr%c2%a0c4. (last vis-
ited: 02.08.2023).

[103] KUKA Deutschland GmbH. KRL – Application and robot programming, .
URL https://www.kuka.com/en-de/services/engineering/application-and-robot-

programming. (last visited: 02.08.2023).

[104] KUKA Deutschland GmbH. KUKA.RobotSensorInterface – Simpli�es challeng-
ing sensor applications, . URL https://www.kuka.com/en-de/products/robot-

systems/software/application-software/kuka_robotsensorinterface. (last visited:
02.08.2023).

[105] KUKA Deutschland GmbH. Linear Unit KL 4000, . URL https://www.kuka.com/en-

de/products/robot-systems/robot-periphery/linear-units/kl-4000. (last visited:
15.07.2023).

195

https://design.ros2.org/articles/realtime_background.html
https://design.ros2.org/articles/realtime_background.html
https://access.redhat.com/documentation/de-de/red_hat_enterprise_linux_for_real_time/7/html/tuning_guide/isolating_cpus_using_tuned-profiles-realtime
https://access.redhat.com/documentation/de-de/red_hat_enterprise_linux_for_real_time/7/html/tuning_guide/isolating_cpus_using_tuned-profiles-realtime
https://access.redhat.com/documentation/de-de/red_hat_enterprise_linux_for_real_time/7/html/tuning_guide/isolating_cpus_using_tuned-profiles-realtime
https://www.kuka.com/-/media/kuka-downloads/imported/87f2706ce77c4318877932fb36f6002d/kuka_pb_controllers_en.pdf?rev=e8d133f6ddc64b3cb5329645eea0cc8e&hash=90B1C2377022BEC4AA9EAF67B28F5735
https://www.kuka.com/-/media/kuka-downloads/imported/87f2706ce77c4318877932fb36f6002d/kuka_pb_controllers_en.pdf?rev=e8d133f6ddc64b3cb5329645eea0cc8e&hash=90B1C2377022BEC4AA9EAF67B28F5735
https://www.kuka.com/-/media/kuka-downloads/imported/87f2706ce77c4318877932fb36f6002d/kuka_pb_controllers_en.pdf?rev=e8d133f6ddc64b3cb5329645eea0cc8e&hash=90B1C2377022BEC4AA9EAF67B28F5735
https://www.kuka.com/en-de/products/robot-systems/robot-controllers/kr%c2%a0c4
https://www.kuka.com/en-de/products/robot-systems/robot-controllers/kr%c2%a0c4
https://www.kuka.com/en-de/services/engineering/application-and-robot-programming
https://www.kuka.com/en-de/services/engineering/application-and-robot-programming
https://www.kuka.com/en-de/products/robot-systems/software/application-software/kuka_robotsensorinterface
https://www.kuka.com/en-de/products/robot-systems/software/application-software/kuka_robotsensorinterface
https://www.kuka.com/en-de/products/robot-systems/robot-periphery/linear-units/kl-4000
https://www.kuka.com/en-de/products/robot-systems/robot-periphery/linear-units/kl-4000

[106] KUKA Deutschland GmbH. KR 10 R900-2, . URL https://www.kuka.com/-/media/kuka-

downloads/imported/8350ff3ca11642998dbdc81dcc2ed44c/0000290002_de.pdf. (last
visited: 15.07.2023).

[107] KUKADeutschlandGmbH. KR 6 R900 sixx, . URL https://www.kuka.com/-/media/kuka-
downloads/imported/8350ff3ca11642998dbdc81dcc2ed44c/0000205456_de.pdf. (last
visited: 18.07.2023).

[108] KUKA Deutschland GmbH. KR 90 R3700 prime K, . URL https://www.kuka.com/-

/media/kuka-downloads/imported/8350ff3ca11642998dbdc81dcc2ed44c/

0000189663_en.pdf. (last visited: 15.07.2023).

[109] S. Lankes, A. Jabs, and M. Reke. A time-triggered Ethernet protocol for real-time CORBA.
In Proceedings Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing. ISIRC 2002, pages 215–222. IEEE, 2002.

[110] S. M. LaValle. Planning algorithms. Cambridge university press, 2006. ISBN 9780511546877.
doi: 10.1017/CBO9780511546877.

[111] A. Lawan. Ontology-based knowledge representation and semantic search information re-
trieval: case study of the underutilized crops domain. PhD thesis, University of Nottingham,
2018.

[112] S. Lemaignan, A. Siadat, J.-Y. Dantan, and A. Semenenko. MASON: A Proposal For
An Ontology Of Manufacturing Domain. In IEEE Workshop on Distributed Intelligent
Systems: Collective Intelligence and Its Applications (DIS’06), pages 195–200, 2006. doi:
10.1109/DIS.2006.48.

[113] H. Lingyan, P. Jie, and X. Yong. Experimental Research about the Impact of IEEE 802.1P
on Real-Time Behavior of Switched Industrial Ethernet. In 2008 ISECS International
Colloquium on Computing, Communication, Control, and Management, volume 2, pages
403–406, 2008. doi: 10.1109/CCCM.2008.117.

[114] Linux manual page. clock_gettime() – clock and time functions. URL https://man7.org/

linux/man-pages/man3/clock_gettime.3.html. (last visited: 19.08.2023).

[115] L. Liu and M. T. Özsu. Encyclopedia of database systems, volume 6. Springer, 2009.

[116] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall. Robot Operating System
2: Design, architecture, and uses in the wild. Science Robotics, 7(66), 2022. doi: 10.1126/
scirobotics.abm6074.

[117] B. Madiwalar, B. Schneider, and S. Profanter. Plug and Produce for Industry 4.0 using
Software-de�ned Networking and OPC UA. In 2019 24th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), pages 126–133. IEEE, 2019.

[118] R. Mall. Real-time systems: theory and practice. Pearson Education India, 2009.

[119] F. Manola, E. Miller, B. McBride, et al. RDF primer. W3C recommendation, 10(1-107):6,
2004.

[120] P. Mantegazza, E. Dozio, and S. Papacharalambous. RTAI: Real time application interface.
Linux Journal, 2000(72es):10, 2000.

[121] E. A. Marks and M. Bell. Service-oriented architecture: a planning and implementation
guide for business and technology. John Wiley & Sons, 2008.

[122] J. McA�er, P. VanderLei, and S. Archer. OSGi and Equinox: Creating highly modular Java
systems. Addison-Wesley Professional, 2010.

196

https://www.kuka.com/-/media/kuka-downloads/imported/8350ff3ca11642998dbdc81dcc2ed44c/0000290002_de.pdf
https://www.kuka.com/-/media/kuka-downloads/imported/8350ff3ca11642998dbdc81dcc2ed44c/0000290002_de.pdf
https://www.kuka.com/-/media/kuka-downloads/imported/8350ff3ca11642998dbdc81dcc2ed44c/0000205456_de.pdf
https://www.kuka.com/-/media/kuka-downloads/imported/8350ff3ca11642998dbdc81dcc2ed44c/0000205456_de.pdf
https://www.kuka.com/-/media/kuka-downloads/imported/8350ff3ca11642998dbdc81dcc2ed44c/0000189663_en.pdf
https://www.kuka.com/-/media/kuka-downloads/imported/8350ff3ca11642998dbdc81dcc2ed44c/0000189663_en.pdf
https://www.kuka.com/-/media/kuka-downloads/imported/8350ff3ca11642998dbdc81dcc2ed44c/0000189663_en.pdf
https://man7.org/linux/man-pages/man3/clock_gettime.3.html
https://man7.org/linux/man-pages/man3/clock_gettime.3.html

[123] G. McCluskey. Using Java re�ection. URL https://www.oracle.com/technical-

resources/articles/java/javareflection.html. (last visited: 16.06.2023).

[124] D. L. McGuinness, F. Van Harmelen, et al. OWL web ontology language overview. W3C
recommendation, 10, 2004.

[125] ME-Meßsysteme GmbH. GSV-8DS – 8-channel straingauge ampli�er in aluminum
housing, . URL https://www.me-systeme.de/shop/en/electronics/gsv-8-analog-

digital/gsv-8ds/gsv-8ds. (last visited: 31.07.2023).

[126] ME-Meßsysteme GmbH. K6D80 – 6-axis force-torque sensor, . URL https://www.me-

systeme.de/shop/en/sensors/force-sensors/k6d/k6d803. (last visited: 31.07.2023).

[127] G. Miao, J. Zander, K. W. Sung, and S. B. Slimane. Fundamentals of mobile data networks.
Cambridge University Press, 2016.

[128] L. Monostori. Cyber-physical production systems: Roots, expectations and R&D chal-
lenges. Procedia Cirp, 17:9–13, 2014.

[129] B. Motik, R. Shearer, and I. Horrocks. Optimized reasoning in description logics using
hypertableaux. In Automated Deduction–CADE-21: 21st International Conference on Auto-
mated Deduction Bremen, Germany, July 17-20, 2007 Proceedings 21, pages 67–83. Springer,
2007.

[130] L. Nägele. PaRTs: automatische Programmierung in der robotergestützten Fertigung. doctor-
althesis, Universität Augsburg, 2021.

[131] OMG: Object Management Group. CORBA – Common Object Request Broker Ar-
chitecture, Version 2.2. Standard, Standards Development Organization, 1998. URL
https://www.omg.org/spec/CORBA/2.2/About-CORBA.

[132] OMG: Object Management Group. Data Distribution Service for Real-time Systems,
Version 1.2. Standard, Standards Development Organization, 2007. URL https://www.

omg.org/spec/CORBA/2.2/About-CORBA.

[133] OMG: Object Management Group. RTC - Robitc Technology Component Version 1.1.
Standard, Standards Development Organization, 2012. URL https://www.omg.org/spec/

RTC.

[134] M. Onori, N. Lohse, J. Barata, and C. Hanisch. The IDEAS project: plug & produce at
shop-�oor level. Assembly automation, 32(2):124–134, 2012.

[135] OPC Foundation. OPC Uni�ed Architecture Part 1: Overview and Concepts. IEC62541, 2017.

[136] OPC Foundation. OPC Uni�ed Architecture Part 14: PubSub. IEC62541, 2018.

[137] OPC Foundation. OPC 40010-10 – OPC UA Companion-Speci�cation – OPC UA for Robotics
Part 1: Vertical Integration. VDMA, 2019.

[138] OPC Foundation. OPC Uni�ed Architecture Part 10: Programs. IEC62541, 2021.

[139] OPC Foundation. OPC Uni�ed Architecture Part 4: Services. IEC62541, 2021.

[140] OPC Foundation. OPCUni�ed Architecture Part 12: Discovery and Global Services. IEC62541,
2022.

[141] OPC Foundation. OPC Uni�ed Architecture Part 5: Information Model. IEC62541, 2022.

[142] OPC Foundation. OPC Uni�ed Architecture Part 6: Mappings. IEC62541, 2022.

[143] OPC Foundation. Uni�ed Architecture, 2023. URL https://opcfoundation.org/about/

opc-technologies/opc-ua/. (last visited: 12.04.2023).

197

https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.me-systeme.de/shop/en/electronics/gsv-8-analog-digital/gsv-8ds/gsv-8ds
https://www.me-systeme.de/shop/en/electronics/gsv-8-analog-digital/gsv-8ds/gsv-8ds
https://www.me-systeme.de/shop/en/sensors/force-sensors/k6d/k6d803
https://www.me-systeme.de/shop/en/sensors/force-sensors/k6d/k6d803
https://www.omg.org/spec/CORBA/2.2/About-CORBA
https://www.omg.org/spec/CORBA/2.2/About-CORBA
https://www.omg.org/spec/CORBA/2.2/About-CORBA
https://www.omg.org/spec/RTC
https://www.omg.org/spec/RTC
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/

[144] OROCOS. Kinematics and Dynamics Library (KDL), 2023. URL https://www.orocos.

org/kdl.html. (last visited: 11.07.2023).

[145] OROCOS. The Orocos Real-Time Toolkit (RTT), 2023. URL https://www.orocos.org/

rtt/. (last visited: 11.07.2023).

[146] OSGi Alliance. OSGi Core Release 8. URL https://docs.osgi.org/specification/

osgi.core/8.0.0/framework.introduction.html. (last visited: 18.06.2023).

[147] J. Otto and O. Niggemann. Automatic parameterization of automation software for plug-
and-produce. In Workshops at the Twenty-Ninth AAAI Conference on Arti�cial Intelligence,
2015.

[148] F. Palm and U. Epple. openAAS – Die o�ene Entwicklung der Verwaltungsschale. Au-
tomation 2017: Technology Networks Processes, 2293:103–104, 2017.

[149] Y. Pane, M. H. Arbo, E. Aertbeliën, and W. Decré. A System Architecture for CAD-Based
Robotic Assembly With Sensor-Based Skills. IEEE Transactions on Automation Science and
Engineering, 17(3):1237–1249, 2020. doi: 10.1109/TASE.2020.2980628.

[150] G. Pardo-Castellote. OMG Data-Distribution Service: architectural overview. In 23rd
International Conference on Distributed Computing Systems Workshops, 2003. Proceedings.,
pages 200–206, 2003. doi: 10.1109/ICDCSW.2003.1203555.

[151] Pepperl+Fuchs GmbH. IO-Link-Master (EIP/MOD) ICE2-8IOL-K45P-RJ45.
URL https://www.pepperl-fuchs.com/germany/de/classid_4996.htm?view=

productdetails&prodid=97763. (last visited: 30.07.2023).

[152] A. Perzylo, N. Somani, M. Rickert, and A. Knoll. An ontology for CAD data and geometric
constraints as a link between product models and semantic robot task descriptions. In
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
4197–4203, 2015. doi: 10.1109/IROS.2015.7353971.

[153] A. Perzylo, J. Grotho�, L. Lucio, M. Weser, S. Malakuti, P. Venet, V. Aravantinos, and
T. Deppe. Capability-based semantic interoperability of manufacturing resources: A BaSys
4.0 perspective. IFAC-PapersOnLine, 52(13):1590–1596, 2019.

[154] Peter Soetens. Distributing Orocos Components with CORBA, 2023. URL
https://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-

transports-corba.pdf. (last visited: 11.07.2023).

[155] J. Pfrommer. open62541 – Open Source OPC UA. URL https://www.open62541.org/#.
(last visited: 22.08.2023).

[156] J. Pfrommer, M. Schleipen, and J. Beyerer. Pprs: Production skills and their relation to
product, process, and resource. In 2013 IEEE 18th Conference on Emerging Technologies &
Factory Automation (ETFA), pages 1–4. IEEE, 2013.

[157] J. Pfrommer, D. Stogl, K. Aleksandrov, S. Escaida Navarro, B. Hein, and J. Beyerer. Plug &
produce by modelling skills and service-oriented orchestration of recon�gurable manu-
facturing systems. at-Automatisierungstechnik, 63(10):790–800, 2015.

[158] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran. Open source OPC UA PubSub
over TSN for realtime industrial communication. In 2018 IEEE 23rd international conference
on emerging technologies and factory automation (ETFA), volume 1, pages 1087–1090. IEEE,
2018.

[159] H. S. Pinto, A. Gómez-Pérez, and J. P. Martins. Some issues on ontology integration. IJCAI
and the Scandinavian AI Societies. CEUR Workshop Proceedings, 1999.

198

https://www.orocos.org/kdl.html
https://www.orocos.org/kdl.html
https://www.orocos.org/rtt/
https://www.orocos.org/rtt/
https://docs.osgi.org/specification/osgi.core/8.0.0/framework.introduction.html
https://docs.osgi.org/specification/osgi.core/8.0.0/framework.introduction.html
https://www.pepperl-fuchs.com/germany/de/classid_4996.htm?view=productdetails&prodid=97763
https://www.pepperl-fuchs.com/germany/de/classid_4996.htm?view=productdetails&prodid=97763
https://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-transports-corba.pdf
https://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-transports-corba.pdf
https://www.open62541.org/#

[160] Plattform Industrie 4.0. Usage View of Asset Administration Shell. 2019.

[161] P. Pop, M. L. Raagaard, M. Gutierrez, andW. Steiner. Enabling fog computing for industrial
automation through time-sensitive networking (TSN). IEEE Communications Standards
Magazine, 2(2):55–61, 2018.

[162] L. Prenzel, A. Zoitl, and J. Provost. Iec 61499 runtime environments: A state of the art
comparison. In Computer Aided Systems Theory–EUROCAST 2019: 17th International
Conference, Las Palmas de Gran Canaria, Spain, February 17–22, 2019, Revised Selected
Papers, Part II 17, pages 453–460. Springer, 2020.

[163] L. Prenzel, S. Hofmann, and S. Steinhorst. Real-time dynamic recon�guration for IEC
61499. In 2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems
(ICPS), pages 1–6. IEEE, 2022.

[164] F. Prinz, M. Schoe�er, A. Lechler, and A. Verl. End-to-end Redundancy between Real-time
I4.0 Components based on Time-Sensitive Networking. In 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA), volume 1, pages
1083–1086, 2018. doi: 10.1109/ETFA.2018.8502553.

[165] F. Prinz, M. Schoe�er, A. Lechler, and A. Verl. Dynamic Real-time Orchestration of
I4.0 Components based on Time-Sensitive Networking. Procedia CIRP, 72:910–915, 2018.
ISSN 2212-8271. doi: https://doi.org/10.1016/j.procir.2018.03.174. URL https://www.

sciencedirect.com/science/article/pii/S2212827118303329. 51st CIRP Conference
on Manufacturing Systems.

[166] M. Priya and C. A. Kumar. A survey of state of the art of ontology construction and
merging using formal concept analysis. Indian journal of science and technology, 8(24):
1–7, 2015.

[167] S. Profanter, K. Dorofeev, A. Zoitl, and A. Knoll. OPC UA for plug & produce: Automatic
device discovery using LDS-ME. In 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 1–8, 2017. doi: 10.1109/ETFA.2017.
8247569.

[168] S. Profanter, A. Breitkreuz, M. Rickert, and A. Knoll. A hardware-agnostic OPC UA skill
model for robot manipulators and tools. In 2019 24th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), pages 1061–1068. IEEE, 2019.

[169] S. Profanter, A. Perzylo, M. Rickert, and A. Knoll. A Generic Plug & Produce System
Composed of Semantic OPC UA Skills. IEEE Open Journal of the Industrial Electronics
Society, 2:128–141, 2021. doi: 10.1109/OJIES.2021.3055461.

[170] S. Profanter, A. Perzylo, M. Rickert, and A. Knoll. A Generic Plug & Produce System
Composed of Semantic OPC UA Skills. IEEE Open Journal of the Industrial Electronics
Society, 2:128–141, 2021.

[171] Pro�tec GmbH. Pro 800 – Hand Level Dipping System with PID Control. URL https:

//www.profitec-espresso.com/en/products/pro800-neu. (last visited: 18.07.2023).

[172] E. Prud’hommeaux, S. Harris, and A. Seaborne. SPARQL 1.1 Query Language. W3C recom-
mendation, 2013. URL http://www.w3.org/TR/sparql11-query. (last visited: 17.05.2023).

[173] L. Puck, P. Keller, T. Schnell, C. Plasberg, A. Tanev, G. Heppner, A. Roennau, and R. Dill-
mann. Performance evaluation of real-time ROS2 robotic control in a time-synchronized
distributed network. In 2021 IEEE 17th International Conference on Automation Science
and Engineering (CASE), pages 1670–1676. IEEE, 2021.

199

https://www.sciencedirect.com/science/article/pii/S2212827118303329
https://www.sciencedirect.com/science/article/pii/S2212827118303329
https://www.profitec-espresso.com/en/products/pro800-neu
https://www.profitec-espresso.com/en/products/pro800-neu
http://www.w3.org/TR/sparql11-query

[174] QNX (Blackberry). Qnet – Native Networking, . URL https://www.qnx.com/

developers/docs/7.0.0/#com.qnx.doc.neutrino.sys_arch/topic/qnet.html. (last
visited: 12.07.2023).

[175] QNX (Blackberry). QNX Neutrino Real-Time Operating System (RTOS), . URL https:

//blackberry.qnx.com/en/products/foundation-software/qnx-rtos. (last visited:
12.07.2023).

[176] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng, et al.
ROS: an open-source Robot Operating System. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[177] Raspberry Pi Foundation. Raspberry Pi 4 – Your tiny, dual-display, desktop computer.
URL https://www.raspberrypi.com/products/raspberry-pi-4-model-b/. (last vis-
ited: 30.07.2023).

[178] Real-Time Innovations (RTI). Connext Professional DDS. URL https://www.rti.com/

products/connext-dds-professional. (last visited: 12.07.2023).

[179] F. Reghenzani, G. Massari, and W. Fornaciari. The Real-Time Linux Kernel: A Survey on
PREEMPT-RT. ACM Comput. Surv., 52(1), feb 2019. doi: 10.1145/3297714.

[180] T. Richardson and A. J. Wellings. RT-OSGi: Integrating the OSGi framework with the
real-time speci�cation for Java. Distributed, Embedded and Real-time Java Systems, pages
293–322, 2012.

[181] J. D. Rojas, O. Arrieta, and R. Vilanova. Industrial PID controller tuning. Springer, 2021.

[182] E. Romiti, J. Malzahn, N. Kashiri, F. Iacobelli, M. Ruzzon, A. Laurenzi, E. M. Ho�man,
L. Muratore, A. Margan, L. Baccelliere, S. Cordasco, and N. Tsagarakis. Toward a Plug-
and-Work Recon�gurable Cobot. IEEE/ASME Transactions on Mechatronics, pages 1–13,
2021. doi: 10.1109/TMECH.2021.3106043.

[183] Ros.org. ROS ActionLib. URL http://wiki.ros.org/actionlib. (last visited: 14.07.2023).

[184] M. Sadiku, Y. Wang, S. Cui, and S. M. Musa. Cyber-physical systems: A literature review.
European Scienti�c Journal, 13(36):52–58, 2017.

[185] S. Salmon. How to make C++ more real-time friendly, 2014. URL https://www.embedded.

com/how-to-make-c-more-real-time-friendly/. (last visited: 08.08.2023).

[186] K. Sandkuhl, H. Koç, and J. Stirna. Capability-as-a-service: Towards context aware
business services. In 2014 IEEE 18th International Enterprise Distributed Object Computing
Conference Workshops and Demonstrations, pages 324–332. IEEE, 2014.

[187] M. Schleipen, A. Lüder, O. Sauer, H. Flatt, and J. Jasperneite. Requirements and concept
for plug-and-work. at-Automatisierungstechnik, 63(10):801–820, 2015.

[188] Schmalz GmbH. CobotPump ECBPI – Intelligent electrical vacuum generator for handling
airtight and slightly porous workpieces. URL https://www.schmalz.com/en-us/vacuum-

technology-for-automation/vacuum-components/vacuum-generators/vacuum-

generators-end-of-arm/vacuum-generators-ecbpi-308294/. (last visited:
31.07.2023).

[189] K. Schweichhart. Reference Architectural Model Industrie 4.0 (RAMI 4.0). Plattform
Industrie 4.0, 40, 2016.

[190] A. Seaborne. SPARQL 1.1 Property Paths. W3C recommendation, 2010. URL https:

//www.w3.org/TR/sparql11-property-paths/. (last visited: 04.06.2023).

200

https://www.qnx.com/developers/docs/7.0.0/#com.qnx.doc.neutrino.sys_arch/topic/qnet.html
https://www.qnx.com/developers/docs/7.0.0/#com.qnx.doc.neutrino.sys_arch/topic/qnet.html
https://blackberry.qnx.com/en/products/foundation-software/qnx-rtos
https://blackberry.qnx.com/en/products/foundation-software/qnx-rtos
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.rti.com/products/connext-dds-professional
https://www.rti.com/products/connext-dds-professional
http://wiki.ros.org/actionlib
https://www.embedded.com/how-to-make-c-more-real-time-friendly/
https://www.embedded.com/how-to-make-c-more-real-time-friendly/
https://www.schmalz.com/en-us/vacuum-technology-for-automation/vacuum-components/vacuum-generators/vacuum-generators-end-of-arm/vacuum-generators-ecbpi-308294/
https://www.schmalz.com/en-us/vacuum-technology-for-automation/vacuum-components/vacuum-generators/vacuum-generators-end-of-arm/vacuum-generators-ecbpi-308294/
https://www.schmalz.com/en-us/vacuum-technology-for-automation/vacuum-components/vacuum-generators/vacuum-generators-end-of-arm/vacuum-generators-ecbpi-308294/
https://www.w3.org/TR/sparql11-property-paths/
https://www.w3.org/TR/sparql11-property-paths/

[191] N. Siltala, E. Järvenpää, and M. Lanz. Creating resource combinations based on formally
described hardware interfaces. In S. Ratchev, editor, Precision Assembly in the Digital Age,
pages 29–39, Cham, 2019. Springer International Publishing.

[192] N. Siltala, E. Järvenpää, and M. Lanz. A method to evaluate interface compatibility during
production system design and recon�guration. Procedia CIRP, 81:282–287, 2019. ISSN
2212-8271. doi: https://doi.org/10.1016/j.procir.2019.03.049. 52nd CIRP Conference on
Manufacturing Systems (CMS), Ljubljana, Slovenia, June 12-14, 2019.

[193] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL
reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

[194] Standardization International. ISO/IEC 7498-1: 1994 information technology–open sys-
tems interconnection–basic reference model: The basic model. International Standard
ISOIEC, 74981:59, 1996.

[195] Standardization International. IEC 61131-9:2022 – Programmable controllers - Part 9:
Single-drop digital communication interface for small sensors and actuators (SDCI).
Standard IEC 61131-9:2022, International Electrotechnical Commission, 2022. URL https:

//webstore.iec.ch/publication/68534.

[196] Stefan Holzer Feinmechanik e.K. HTC 180 – Holzer Robotic Tool Changer. URL https:

//www.holzer-feinmechanik.de/media/files/flyer_holzer_htc300_englisch.pdf.
(last visited: 31.07.2023).

[197] Stoeger Automation GmbH. SPATZ - STÖGER Pick&Place screwdriving robot with
automatic tool change and feed unit for fasteners. URL https://www.stoeger.com/en/

screwdriving-robot-with-automatic-tool-change.html. (last visited: 21.07.2023).

[198] G. Stumme and A. Maedche. FCA-Merge: Bottom-up merging of ontologies. In IJCAI,
volume 1, pages 225–230, 2001.

[199] W. M. Taha, A.-E. M. Taha, and J. Thunberg. Cyber-Physical Systems: A Model-Based
Approach. Springer Nature, 2021.

[200] A. S. Tanenbaum. Distributed Systems: Principles and paradigms. 2007.

[201] A. L. Tavares and M. T. Valente. A gentle introduction to OSGi. ACM SIGSOFT Software
Engineering Notes, 33(5):1–5, 2008.

[202] E. Trunzer, A. Calà, P. Leitão, M. Gepp, J. Kinghorst, A. Lüder, H. Schauerte, M. Rei�er-
scheid, and B. Vogel-Heuser. System architectures for industrie 4.0 applications: Derivation
of a generic architecture proposal. Production Engineering, 13:247–257, 2019.

[203] M. Vistein, A. Angerer, A. Ho�mann, A. Schierl, and W. Reif. Interfacing industrial
robots using realtime primitives. In 2010 IEEE International Conference on Automation and
Logistics, pages 468–473. IEEE, 2010.

[204] J. Walter, K. Grüttner, and W. Nebel. Using IEC 61499 and OPC-UA to implement a self-
organising plug and produce system. In The 5th International Workshop on Model-driven
Robot Software Engineering (MORSE 2018), 2018.

[205] K. Wang and K. Wang. Embedded real-time operating systems. Springer, 2017.

[206] Weiss Robotics GmbH & Co. KG. CRG 200 – Servo-electric Gripping Module. URL https:

//weiss-robotics.com/servo-electric/crg-series/product/crg-serie-495/. (last
visited: 31.07.2023).

201

https://webstore.iec.ch/publication/68534
https://webstore.iec.ch/publication/68534
https://www.holzer-feinmechanik.de/media/files/flyer_holzer_htc300_englisch.pdf
https://www.holzer-feinmechanik.de/media/files/flyer_holzer_htc300_englisch.pdf
https://www.stoeger.com/en/screwdriving-robot-with-automatic-tool-change.html
https://www.stoeger.com/en/screwdriving-robot-with-automatic-tool-change.html
https://weiss-robotics.com/servo-electric/crg-series/product/crg-serie-495/
https://weiss-robotics.com/servo-electric/crg-series/product/crg-serie-495/

[207] X. Ye, J. Jiang, C. Lee, N. Kim, M. Yu, and S. H. Hong. Toward the Plug-and-Produce
Capability for Industry 4.0: An Asset Administration Shell Approach. IEEE Industrial
Electronics Magazine, 14(4):146–157, 2020. doi: 10.1109/MIE.2020.3010492.

[208] V. Yodaiken et al. The RTLinux manifesto. In Proc. of the 5th Linux Expo, 1999.

[209] H. Zeng, W. Zheng, M. Di Natale, A. Ghosal, P. Giusto, and A. Sangiovanni-Vincentelli.
Scheduling the �exray bus using optimization techniques. In Proceedings of the 46th
Annual Design Automation Conference, pages 874–877, 2009.

[210] Zimmer Group GmbH. FWR50 – Automated tool change without external activation, .
URL https://www.zimmer-group.com/en/technologien-komponenten/komponenten/

handhabungstechnik/werkzeugwechsler/automatisch/serie-fwr/produkte/fwr50f-

00-a. (last visited: 31.07.2023).

[211] Zimmer Group GmbH. GEP2016IL-03-B – 2-Jaw Parallel Gripper, . URL
https://www.zimmer-group.com/en/technologies-components/components/

handling-technology/grippers/electric/2-jaw-parallel-grippers/series-

gep2000/products/gep2016il-03-b. (last visited: 31.07.2023).

[212] Zimmer Group GmbH. GEH6180IL-03-B – 2-Jaw Parallel Grippers with Long Stroke,
. URL https://www.zimmer-group.com/en/technologies-components/components/

handling-technology/grippers/electric/2-jaw-parallel-grippers-with-long-

stroke/series-geh6000il/products/geh6180il-03-b. (last visited: 30.07.2023).

[213] P. Zimmermann, E. Axmann, B. Brandenbourger, K. Dorofeev, A. Mankowski, and
P. Zanini. Skill-Based Engineering and Control on Field-Device-Level with OPC UA.
In 2019 24th IEEE International Conference on Emerging Technologies and Factory Automa-
tion (ETFA), pages 1101–1108. IEEE, 2019.

[214] A. Zoitl and V. Vyatkin. IEC 61499 architecture for distributed automation. IEEE Industrial
Electronics Magazine, 3(4):7–23, 2009.

[215] C. Zunino, D. Malena, G. Cena, S. Scanzio, and A. Valenzano. Black-Box Analysis of
the Publish-Subscribe Noti�cation Latency in Real OPC UA Servers. In 2021 26th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA), pages
1–4, 2021. doi: 10.1109/ETFA45728.2021.9613259.

202

https://www.zimmer-group.com/en/technologien-komponenten/komponenten/handhabungstechnik/werkzeugwechsler/automatisch/serie-fwr/produkte/fwr50f-00-a
https://www.zimmer-group.com/en/technologien-komponenten/komponenten/handhabungstechnik/werkzeugwechsler/automatisch/serie-fwr/produkte/fwr50f-00-a
https://www.zimmer-group.com/en/technologien-komponenten/komponenten/handhabungstechnik/werkzeugwechsler/automatisch/serie-fwr/produkte/fwr50f-00-a
https://www.zimmer-group.com/en/technologies-components/components/handling-technology/grippers/electric/2-jaw-parallel-grippers/series-gep2000/products/gep2016il-03-b
https://www.zimmer-group.com/en/technologies-components/components/handling-technology/grippers/electric/2-jaw-parallel-grippers/series-gep2000/products/gep2016il-03-b
https://www.zimmer-group.com/en/technologies-components/components/handling-technology/grippers/electric/2-jaw-parallel-grippers/series-gep2000/products/gep2016il-03-b
https://www.zimmer-group.com/en/technologies-components/components/handling-technology/grippers/electric/2-jaw-parallel-grippers-with-long-stroke/series-geh6000il/products/geh6180il-03-b
https://www.zimmer-group.com/en/technologies-components/components/handling-technology/grippers/electric/2-jaw-parallel-grippers-with-long-stroke/series-geh6000il/products/geh6180il-03-b
https://www.zimmer-group.com/en/technologies-components/components/handling-technology/grippers/electric/2-jaw-parallel-grippers-with-long-stroke/series-geh6000il/products/geh6180il-03-b

List of Figures

1.1 Research questions with an example 3

1.2 Structure and interrelations between the main components of the
real-time capable Plug & Produce architecture. The gray boxes indi-
cate the chapters in which the individual components are described.
. 6

2.1 The Reference Architecture Model Industry 4.0 (RAMI 4.0) [189] . . 11

3.1 Basic components of a �exible robot cell 22

3.2 Possible execution sequence of the exemplary task sequence 25

3.3 Industrial high �exible robot cell . 26

3.4 A robot cell for making co�ee . 27

4.1 Structure of the Asset Administration Shell (Adapted from [22]) . . 31

4.2 OPC UA system architecture for the combination of communication
interfaces and the information model (Adapted from [143]) 32

4.3 OPC UA Client-Server interaction (Adapted from [135]) 33

4.4 TSN time division multiplexing with reserved time slots to enable
the transmission of periodic real-time data 35

4.5 System architecture for a real-time capable Plug & Produce envi-
ronment using OPC UA and OPC UA over TSN as middleware. (See
Eymüller et al. [54]) . 37

5.1 System architecture for a RealCaPP environment focusing on the
description of the resources, the discovery via OPC UA and the
global knowledge bases (registries) (cf. Figure 4.5) 44

5.2 Example of an RDF-Graph . 45

5.3 Deployment diagram of an active Plug & Produce resource 47

5.4 Deployment diagram of a system with an passive Plug & Produce
resource in combination with another hardware device 48

5.5 Component diagram of the global registry 49

5.6 Sequence diagram of adding a resource 50

5.7 Sequence diagram of getting resource information of the new resources 50

5.8 RDF-graph of the basic class structure of the RealCaPP ontology . . 52

5.9 Distributed knowledge base: separation of instantiation from the
class structure. 53

203

6.1 System architecture for a RealCaPP environment focusing on the
description of the resources and the knowledge base of the skill
registry (cf. Figure 4.5) . 58

6.2 Ontology for describing resources and their interrelationships. . . . 61
6.3 Simpli�ed example of a connected resource with the di�erent inter-

face descriptions . 63
6.4 Example for a subgraph with the required skills screw and move to

a position . 69

7.1 System architecture for a RealCaPP environment focusing on the
description of the communication middleware with OPC UA and
OPC UA over TSN (cf. Figure 4.5) 74

7.2 TSN time division multiplexing with reserved time slots to enable
the transmission of periodic real-time data 75

7.3 TSN Time-Aware Scheduler with the realization of the Time-Aware
Gate Control . 75

7.4 The di�erent TSN con�guration approaches (Adapted from [77]) . . 76
7.5 PTP synchronization procedure (Adapted from [10]) 78
7.6 Exemplary structure of a dynamic real-time control network with

four TSN End Devices . 80
7.7 Activity diagram of the management of TSN End Devices by the

TSN Controller (Adapted from [52]) 82
7.8 Example of a time slot array for one TSN End Device [52] 83

8.1 System architecture for a RealCaPP environment focusing on the
distributed real-time execution of modular software components (cf.
Figure 4.5) . 88

8.2 OSGi System Layers [146] . 89
8.3 Standard OPC UA Program �nite state machine with four default

states and nine default transitions. (Adapted from [138]) 91
8.4 Structure of the DataContainer . 95
8.5 Class diagram of the class DataContainer 96
8.6 A single Real-Time Service (RTS) with InPorts, OutPorts and Functions 97
8.8 Realization of external connections. One RTS Network is distributed

to two devices. 100
8.9 Class diagram of Real-Time Services (RTSs) 101
8.10 Class diagram of the class ApplicationService 103
8.11 Cube example ontology with a resource con�guration that can grip

cubes . 104
8.12 Overview of all hierarchy levels for the execution of processes in

the RealCaPP architecture . 105
8.13 Excerpt from the ontology describing RTSs and RTS Networks . . . 108
8.14 Application example for distributed OPC UA Programs with one

Master and one Slave: Distributed execution of a trajectory on a
robot arm (See Eymüller et al. [51]) 111

204

8.15 Distributed OPC UA Programs �nite state machine [51] 112
8.16 Component diagram of a distributed Master OPC UA Program. The

structure of the Slave is identical (See Eymüller et al. [51]) 114
8.17 Example for executing distributed RTS Networks with distributed

OPC UA Programs . 114

9.1 System architecture for a RealCaPP environment focusing on the
the hardware drivers and the Basic Skillls (cf. Figure 4.5) 120

9.2 Blending motion of two linear motions from A to B and B to C with
the blend radius r . 122

9.3 Abstract RTS of an industrial robot 124
9.4 Abstract RTS of a force-torque sensor 125
9.5 Abstract RTS of a digital input module 126
9.6 Abstract RTS of a basic gripper . 127
9.7 Specialization of gripper controls by inheritance of abstract basic

gripper RTS . 128
9.8 Abstract RTS of a basic screwer . 130
9.9 Specialization of screwer controls by inheritance of abstract basic

screwer RTS . 131
9.10 Abstract RTS of a basic tool changer 132
9.11 Abstract RTS of a digital output module 133

10.1 Flexible industrial robot cell of the WiR innovation laboratory with
two robots, additional production systems, and processing stations 137

10.2 Structure of the complete end e�ector of the KUKA KR90. A six-axis
force-torque sensor is attached to the robot �ange, to which the
automatic tool changer is attached. Di�erent tools can be attached
to the tool changer via tool plates. 138

10.3 Processing station with an additional robot, active clamping units,
and the CP Lab production system 139

10.4 Robarista robot cell with an industrial robot and a hand lever porta�l-
ter espresso machine and the other equipment needed for the prepa-
ration of co�ee with the robot . 140

10.5 Abridged presentation of the Basic Skill of a KUKA KR robot as RTS
implementation . 142

10.6 Structure of the GEH6180 gripper with tool adapter and IO-Link
master for use on the KR90 . 143

10.7 Composite structure diagram of the gripper for the active and pas-
sive resource implementation. Structures located on the tool side
are grayed out. The RealCaPP capable OPC UA over TSN interfaces
are marked orange. 144

10.8 Raspberry Pi 4 with Real-Time Hat extension board for TSN capa-
bility on two ethernet ports . 145

10.9 Structure of the tool holder power supply for the supply of the tool
and its control devices . 146

205

10.10 Structure of the SPATZ30 screwer with tool adapter for use on the
KR90 . 147

10.11 Structure of the screwer with the integration into the RealCaPP
architecture . 148

10.12 Composite structure diagram of the force-torque sensor of KR90.
The RealCaPP capable OPC UA over TSN interfaces are marked
orange. 149

10.13 Composite structure diagram of the grippers for the KR10 and KR6.
Structures located on the tool side are grayed out. The RealCaPP
capable OPC UA over TSN interfaces are marked orange. 150

10.14 Grippers of the KR6 and KR10 in the Robarista cell 151
10.15 Force-controlled hand guiding of the KR90 in the WiR innovation lab 152
10.16 RTS implementation of the force-torque controlled hand guiding . . 153
10.17 Circuit board component . 154
10.18 Process steps for the assembly of the circuit board component . . . 155
10.19 Abstract encapsulated RTS of the Composed Skill pick and place . . 156
10.20 Top view CAD drawing of the housing part with the annotated

gripping options . 157
10.21 Possible hardware con�gurations for handling the housing part . . 157
10.22 Construction plan of the aluminum structure consisting of two

aluminum pro�les that are screwed together via a bracket 158
10.23 Abstract encapsulated RTS of the Composed Skill force controlled

screwing . 159
10.24 Activity diagram for the processing steps for the assembly of the

aluminum L-structure . 160
10.25 Activity diagram of the assembly process of the aluminum structure

distributed between the two robot resources 162
10.26 Overhanding of pro�le 1 with the bracket from the KR90 to the KR10 163
10.27 Tightening of the pro�le 1 with bracket onto pro�le 2 by the KR90,

while the KR10 is holding the pro�le 1 with the bracket 164
10.28 KR10 placing the fully assembled aluminum structure on the table . 164
10.29 Snapshot of the ontology showing the system state in which all the

preconditions for clamping the porta�lter in the co�ee machine are
met . 166

10.30 Snapshot of the ontology showing the system state after the porta�l-
ter has been successfully clamped into the co�ee machine 167

10.31 Schematic representation of the lever trajectory of the robot on the
co�ee machine . 168

10.32 Pictures of the execution of the Robarista 169

11.1 Evaluation scenarios for the measurement of runtimes using the
example of force-controlled robot motion 174

11.2 Histogram of the Force-Torque Sensor RTS execution time 176
11.3 Histogram of the Force-Torque Position Controller RTS execution

time . 176

206

11.4 Histogram of the Industrial Robot RTS execution time 176

11.5 Histogram of the round trip time of the OPC UA over TSN network
transmission . 177

11.6 Histogram of the execution times of the force-controlled robot move-
ment local RealCaPP implementation 179

11.7 Histogram of the execution times of the force-controlled robot move-
ment local ROS2 implementations 179

11.8 Histogram of the execution times of the force-controlled robot move-
ment distributed RealCaPP implementation (1 hop) 180

11.9 Histogram of the execution times of the force-controlled robot move-
ment distributed ROS2 implementation (1 hop) 180

11.10 Histogram of the execution times of the force-controlled robot move-
ment distributed RealCaPP implementation (2 hops) 181

11.11 Histogram of the execution times of the force-controlled robot move-
ment distributed ROS2 implementation (2 hops) 181

List of Listings

6.1 The anatomy of a SPARQL query. (Adapted from [44, pp. 308]) . . . 61

6.2 Simpli�ed SPARQL query to create a subgraph with resources that
are connectable and have speci�ed skills. 67

6.3 SPARQL query for searching suitable con�gurations with the path
length of the con�guration . 68

8.1 ASK SPARQL query for the second precondition of the cube example 104

8.2 SPARQL query for determining the execution order. The RTSs are
output in an ordered sequence. 109

10.1 SPARQL ASK query for checking whether all preconditions for the
activity 2 (Pick Bracket and Place on Pro�le 1) are ful�lled 161

10.2 SPARQL ASK query for checking whether all preconditions for
clamping the porta�lter in the co�ee machine have been met 166

207

List of Equations

6.1 Example property chain for the relation hasGrandparent 59
6.2 Example SWRL rule for classifying heavy-weight robots. 59
6.3 Example SWRL rule for creating new instances 60
6.4 Property chain for the relation, that two resources are geometrically

connectable. This rule also exists for electrical and data connections. 64
6.5 SWRL rule for the isConnectableToResource relation, that two

resources are generally connectable to each other. 64
6.6 SWRL rule for the isConnectableToResource relation, that two

resources are generally connectable to each other. 64
6.7 Exemplary SWRL rule for the derivation of the skill pick and place . 65

8.1 rts function of an RTS . 97
8.2 WCET of an RTS Network . 99
8.3 Property chain for the inference of the relation connectedToRTS . . 109

List of Tables

6.1 Result table of the SPARQL query for suitable con�gurations on the
example subgraph. Empty columns were omitted. 69

11.1 Times for the self-introduction of resources in milliseconds. Compar-
ison between the sequential and parallel implementation. 172

11.2 Times for initializing and starting real-time communication in seconds.
Comparison of times with clocks synchronization and already existing
clock synchronization. 173

208

Supervised Theses

Björn Döschel. “Integration of Jerk-Limited Trajectories for Multi-Link Robots into the
Robot Operating System”. Bachelor Thesis. University of Augsburg, 2020

Salome Langeheinecke. “Generische Greifstrategien für Pick-and-Place mittels seman-
tischer Bauteilbeschreibungen”. Bachelor Thesis. University of Augsburg, 2020

Markus Kugelmann. “Entwicklung einer Echtzeit-Kommunikationsplattform für die
verteilte Robotersteuerung”. Master Thesis. University of Augsburg and KUKA Deutsch-
land GmbH, 2021

Tobias Hofstetten. “Planung von Hardwarekon�gurationen für Roboteranwendungen
mithilfe von semantischen Netzen”. Master Thesis. University of Augsburg, 2022

Johannes Tintenherr. “Entwicklung einer Echtzeit-Kommunikationsschnittstelle für
die verteilte Multi-Roboter-Kooperation”. Master Thesis. University of Augsburg, 2022

Maximilian Enrico Müller. “Robarista: Orchestrierung von Anlagen- und Roboter-
fähigkeiten für eine Barista Anwendung”. Bachelor Thesis. University of Augsburg, 2023

Nicolai Sandmann. “Anwendung Semantischer Annotationen für die Anwendungsspez-
i�sche Roboter-Ende�ektor-Auswahl”. Bachelor Thesis. University of Augsburg, 2023

209

210

Own Publications

1. Christian Eymüller, Julian Hanke, Alwin Hoffmann, Markus Kugelmann, and
Wolfgang Reif. “Real-time capable OPC-UA Programs over TSN for distributed
industrial control”. In 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), volume 1, pages 278–285, 2020.

2. Christian Eymüller, Julian Hanke, Alwin Hoffmann, Alexander Poeppel, Con-
stantinWanninger, and Wolfgang Reif. “Towards a Real-Time Capable Plug &
Produce Environment for Adaptable Factories”. In 2021 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), pages
1–4, 2021.

3. Christian Eymüller, Julian Hanke, Alwin Hoffmann, Wolfgang Reif, Markus
Kugelmann, and Florian Grätz. “RealCaPP: Real-time capable Plug & Produce
communication platform with OPC UA over TSN for distributed industrial robot
control”. In 2021 IEEE 17th International Conference on Automation Science and
Engineering (CASE), pages 585–590, 2021.

4. Christian Eymüller, Julian Hanke, Alexander Poeppel, and Wolfgang Reif. “To-
wards Self-Con�guring Plug & Produce Robot Systems Based on Ontologies”. In
2023 9th International Conference on Automation, Robotics and Applications
(ICARA), pages 23–27, 2023.

5. Christian Eymüller, ConstantinWanninger, Alwin Hoffmann, and Wolfgang
Reif. “Semantic Plug and Play — Self-Descriptive Modular Hardware for Robotic
Applications”. International Journal of Semantic Computing, 12(04):559– 577,
2018.

6. Julian Hanke, Christian Eymüller, Alexander Poeppel, Julia Reichmann, Anna
Trauth, Markus Sause, and Wolfgang Reif. “Sensor-guided motions for robot-
based component testing”. In 2022 Sixth IEEE International Conference on Robotic
Computing (IRC), pages 81–84, 2022.

7. Julian Hanke, Christian Eymüller, Julia Reichmann, Anna Trauth, Markus
Sause, and Wolfgang Reif. “Software-de�ned testing facility for component
testing with industrial robots”. In 2022 IEEE 27th International Conference on
Emerging Technologies and Factory Automation (ETFA), pages 1–8, 2022.

8. Alexander Poeppel, Christian Eymüller, and Wolfgang Reif. “SensorClouds: A
Framework for Real-Time Processing of Multi-modal Sensor Data for Human-
Robot-Collaboration”. In 2023 9th International Conference on Automation,
Robotics and Applications (ICARA), pages 294–298, 2023.

9. Martin Schörner, ConstantinWanninger, Raphael Katschinsky, Simon Hor-

nung, Christian Eymüller, Alexander Poeppel, and Wolfgang Reif. “UAV Inspec-
tion of Large Components: Determination of Alternative Inspection Points and
Online Route Optimization”. In 2023 IEEE/ACM 5th International Workshop on
Robotics Software Engineering (RoSE), pages 45–52, 2023.

211

10. Anthony Stein, Christian Eymüller, Dominik Rauh, Sven Tomforde, and Jörg
Hähner. Interpolation-based classi�er generation in XCSF. In 2016 IEEE Congress
on Evolutionary Computation (CEC), pages 3990–3998, 2016.

11. ConstantinWanninger, Sebastian Rossi, Martin Schörner, Alwin Hoffmann,
Alexander Poeppel, Christian Eymüller, and Wolfgang Reif. “ROSSi a graphical
programming interface for ROS 2”. In 2021 21st International Conference on
Control, Automation and Systems (ICCAS), pages 255–262. IEEE, 2021.

12. ConstantinWanninger, Christian Eymüller, Alwin Hoffmann, Oliver Kosak,
and Wolfgang Reif. “Synthesizing capabilities for collective adaptive systems
from self-descriptive hardware devices bridging the reality gap”. In Leveraging
Applications of Formal Methods, Veri�cation and Validation. Distributed Systems:
8th International Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018,
Proceedings, Part III 8, pages 94– 108. Springer, 2018.

212

	Contents
	Introduction
	Motivation
	Research Question
	Main Contributions
	Structure of the Thesis

	Fundamentals
	cpps
	rami
	Real-Time Systems
	Real-Time Communication
	Real-Time Operating Systems
	Real-Time Applications

	Distributed Systems

	Plug & Produce in a Flexible Distributed Robot Cell
	Concept of a Real-Time Capable Plug & Produce Environment
	Fundamentals
	Skills, Capabilities and Services
	aas
	opcua
	tsn
	opcua over tsn

	Real-Time Capable Plug & Produce
	realcapp Architecture (realcapp Architecture)
	A Uniform Communication Interface
	Asset Administration Shells for Robot Components
	Modular Real-Time Capable Software Components
	Global Knowledge of Resources, Products and Services

	Related Work

	Locating and Managing Plant Components
	Fundamentals
	Semantic Descriptions
	opcua Discovery
	opcua Extension Objects

	Plug & Produce Resources
	Global Registry for Plant Components
	Semantic Self-Description of Plant Components
	Consolidation of Information into a Uniform Knowledge Base
	Related Work

	Semantic Descriptions of Automation Plants
	Fundamentals
	Semantic Rules
	Querying of Semantic Networks

	Semantic Description of Resource Interrelationships
	Derivation of Connectable and Connected Resources
	Deriving Composed Skills
	Automatic Plant Configuration through Semantic Networks
	Related Work

	Distributed Real-Time: Dynamic Real-Time Control Networks
	Fundamentals
	Real-time Communication with tsn
	Precision-Time-Protocol

	Time-Synchronization in Control Networks
	Dynamic Configuration of Real-Time Control Networks
	Setup and Configuration of tsn Communication Channels
	Realization of the Time Slot Array

	Related Work

	Distributed Real-Time Execution of Component Skills in Distributed Control Networks
	Fundamentals
	osgi: A Dynamic Module System
	opcua Programs

	Services: Reusable Software Components
	Real-Time Critical and Non-Real-Time Critical Execution
	The Plug & Produce Service Architecture
	A Uniform Data Representation: DataContainer
	Modular Software Components: rts
	Distribution of rts
	Execution of Applications
	Semantic Description of rts and rts Networks
	Synchronized Distributed Control Processes

	Related Work

	Implementation of Resources with the realcapp Service Architecture
	Industrial Robot Resources
	Sensor Resources
	Force-Torque Sensor
	Digital Input Modules

	Actuator Resources
	Gripper Resources
	Screwer Resources
	Automatic Tool Changer
	Digital Output Modules

	Evaluation of the Case Studies for Robot-Based Automation
	Structure of the Robot Cells
	A Flexible Industrial Robotic Cell: WiR Augsburg Innovation Laboratory
	Robarista Cell

	Implementation of realcapp Concepts with Real Hardware Components
	KUKA KR Industrial Robots
	Gripper of the KR90: Zimmer Group GEH6180
	Screwer of the KR90: Stoeger SPATZ 30
	Force-Torque Sensor of the KR90: ME-Meßsysteme K6D80
	Grippers of the KR10 and KR6

	Hand Guiding of Industrial Robots
	Assembly of a Circuit Board Component
	Assembly of Aluminium Structures
	Robarista: A Robot Making Coffee

	Evaluation of the Real-Time Performance
	Performance Evaluation of Adding Software and Hardware Components at Runtime
	Test Setup for the Real-Time Performance Measurements
	Latency Evaluation of the Real-Time Communication and Execution

	Conclusion and Outlook
	Conclusion of the Thesis
	Outlook and Future Work

	Bibliography
	List of Figures
	List of Listings
	List of Equations
	List of Tables
	Supervised Theses
	Own Publications

