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Abstract. We study by Γ-convergence the stochastic homogenization of dis-
crete energies on a class of random lattices as the lattice spacing vanishes.

We consider general bounded spin systems at the bulk scaling and prove a

homogenization result for stationary lattices. In the ergodic case we obtain a
deterministic limit.

1. Introduction. In this paper we study the discrete-to-continuum limit of a sys-
tem of bounded spins on stochastic lattices at the bulk scaling. In particular we
focus on the properties of these discrete systems at zero temperature where the
abstract methods of Γ-convergence have already proved to be an effective tool for
the asymptotic analysis (see [2], [3], [4], [5], [10], [11]). More specifically we con-

sider systems parameterized over the points of a lattice L ⊂ (Rd)Zd that we see
as the outcome of a random variable on the probability space (Ω,F ,P), namely
ω 7→ L(ω) = {L(ω)(i)}i∈Zd . On the geometry of the lattices we make two assump-
tions preventing arbitrarily big empty regions and cluster of points. We then scale
the lattices by a small parameter ε that will be eventually sent to 0 in the contin-
uum limit. On these admissible lattices we define a spin field u : εL(ω)→ K where
K ⊂ Rm is a bounded set and consider non negative energies of the form

Fε(u) =
∑

εx,εy∈D
εdfε(x, y, u(εx), u(εy)). (1)

Under boundedness and long-range decay assumptions on the densities fε we prove
a compactness and integral representation result for a Γ-limit of Fε. In this analysis
the assumptions on the geometry of the lattice play an important role. In particular
they allow us to relate our spin systems to systems on a periodic lattice and to
take advantage of the results in [5] to show that the limit functional fulfills the
assumption of an integral representation theorem proved in [14]. As a result the
compactness and integral representation Theorem 3.2 follows. In Theorem 3.4 we
extend the proven Γ-convergence result to the case when the spin field is constrained
to realize a certain prescribed mean value. As a corollary we obtain the convergence
of minimum problems under mean value constraints which turns out to be a key
element in order to prove a stochastic homogenization theorem for spin systems
on stationary random lattices. It is at this point that we need to combine the
abstract methods of Γ-convergence with the subadditive ergodic theorem in [1].
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This argument has been first used in the framework of stochastic homogenization
in [18] and in the context of discrete-to-continuum limits under bulk scaling in [6]
for functionals defined on Sobolev spaces. In this paper we apply it in the context
of Lebesgue spaces. Even if in this framework the proofs benefit from the analysis
done in [5], [6] and [18], a number of technical issues deserve some care (see for
instance the measurability Lemma A.1). Finally, it is worth noticing that in the
simple case K = {±1} and fε(x, y, u, v) = cε(x, y)|u−v|, our results fill a gap in the
asymptotic theory of Ising systems on stochastic networks. Indeed, for this choice of
K and fε, the main result in this paper together with that in [7], where the surface
scaling (εd−1 in place of εd) of the energy functional in (1) is considered, can be seen
as the first two terms in the development by Γ-convergence (see [13]) of long-range
Ising systems. As a final remark, it is worth noticing that, the results contained in
this paper are the first necessary step for the extension to the stochastic setting of
the discrete-to-continuum limits of frustrated spin systems recently considered in
[16] and [15].

2. Stochastic lattices and discrete energies. In this section we introduce the
stochastic framework we will use in the rest of the paper.

2.1. Basic notation. Given x ∈ Rd we denote by |x| the Euclidean norm of x. If
B ⊂ Rd is a Borel set we denote by |B| its Lebesgue measure. Given an open set
D ⊂ Rd we denote by B(D) the Borel σ-algebra on D, by A(D) the class of all
bounded open subsets of D and by AR(D) the family of those sets in A(D) such
that |∂A| = 0. We denote by dimH(·) the Hausdorff dimension. The triple (Ω,F ,P)
denotes a fixed probability space Ω with a complete σ-algebra F and a probability
measure P. In the proofs C denotes a generic constant that may change from line
to line.

2.2. Random networks. The random lattices in terms of which we will define our
discrete systems need to satisfy some geometric properties. These are listed below
and characterize what we call admissible sets of points.

Definition 2.1 (admissible sets). Given a countable set of points Σ = {xi}i∈N in
Rd, we say that Σ is admissible if

(i) there exists R > 0 such that infz∈Rd #(Σ ∩ B(z,R)) ≥ 1 (i.e., arbitrarily big
empty regions are forbidden),

(ii) there exists r > 0 such that inf{|x − y|, x, y ∈ Σ, x 6= y} ≥ r (i.e., clusters
are forbidden).

To an admissible set of points we associate the Voronoi tessellation (C(x))x∈Σ

defined by
C(x) := {y ∈ Rd : |x− y| ≤ |x− y|, ∀x ∈ Σ\{x}}.

Two points in Σ are said to be nearest neighbors if the Voronoi cells having them
as centers share a (d − 1)-dimensional edge. Hence we define the set of nearest
neighbors of Σ as

NN (Σ) := {(x, y) ∈ Σ2 : dimH(C(x) ∩ C(y)) = d− 1}. (2)

The following two properties are proved in [7].

Lemma 2.2 (geometric properties of admissible sets). Let Σ be an admissible set of
points with constants r,R as in Definition 2.1. Then there exists a constant M > 0
depending only on r and R such that, for all x ∈ Σ,
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(i) B r
2
(x) ⊂ C(x) ⊂ BR(x),

(ii) #{y ∈ Σ : C(x) ∩ C(y) 6= ∅} ≤M .

By stochastic lattices we mean a random variable realizing almost surely sets
which are admissible with respect to the same constants r,R in Definition 2.1. To
describe the stochastic properties of these lattices we need some additional defini-
tion.

Definition 2.3 (group action). Let (τz)z∈Zd , τz : Ω → Ω, be an additive group
action on Ω. We say that it is measure preserving if

P(τzB) = P(B) ∀B ∈ F , z ∈ Zd.

If in addition, for all B ∈ F we have

(τz(B) = B ∀z ∈ Zd) ⇒ P(B) ∈ {0, 1},

then (τz)z∈Zd is called ergodic.

Let us specify the assumptions on the random variable generating the network.

Definition 2.4 (stochastic lattice). A random variable L : Ω → (Rd)Zd , ω 7→
L(ω) = {L(ω)(i)}i∈Zd is called a stochastic lattice. We say that L is admissible if
L(ω) is admissible in the sense of Definition 2.1 and the constants r,R can be chosen
independent of ω P-almost surely. The stochastic lattice L is said to be stationary if
there exists a measure preserving group action (τz)z∈Zd on Ω such that, for P-almost
every ω ∈ Ω,

L(τzω) = L(ω) + z. (3)

If in addition (τz)z∈Zd is ergodic, then L is called ergodic.

Given a realization L(ω) of a stochastic lattice, we denote by NN (ω) the corre-
sponding nearest neighbors.

Remark 1. We stress that our geometric assumptions on the random lattice rule
out many examples of stationary point processes used in stochastic geometry, e.g.
homogeneous Poisson point processes.

We set I = {[a, b) : a, b ∈ Zd, a 6= b}, where [a, b) := {x ∈ Rd : ai ≤ xi < bi ∀i}
and we introduce the notion of discrete subadditive stochastic process.

Definition 2.5. A function µ : I → L1(Ω) is said to be a discrete subadditive
stochastic process if the following properties hold P-almost surely:

(i) for every I ∈ I and for every finite partition (Ik)k∈K ⊂ I of I we have

µ(I, ω) ≤
∑
k∈K

µ(Ik, ω).

(ii) inf
{

1
|I|
∫

Ω
µ(I, w) dP(ω) : I ∈ I

}
> −∞.

Our homogenization results are based on the following pointwise ergodic theorem
(see [1]), which has already been used in the pioneering paper [18] in the context
of stochastic homogenization of elliptic integral functionals and in [6] in the case of
discrete hyperelastic systems.
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Theorem 2.6. Let µ : I → L1(Ω) be a discrete subadditive stochastic process and
let I ∈ I. If µ is stationary with respect to a measure preserving group action
(τz)z∈Zd ; i.e.,

∀I ∈ I, ∀z ∈ Zd : µ(I + z, ω) = µ(I, τzω) almost surely,

then there exists Φ : Ω→ R such that, for P-almost every ω,

lim
k→+∞

µ(kI, ω)

|kI|
= Φ(ω).

2.3. Discrete spin-type energies. Having settled the stochastic environment, we
are now able to define our discrete spin energies on these stochastic lattices. We
restrict ourselves to pairwise interaction energies, but it is worth noticing that the
core of these results can be (modulo details) generalized to multi-body interactions
as well. We let ε > 0 be a small parameter (describing the average distance between
particles), D ∈ AR(Rd) be a regular reference domain and let L(ω) be admissible.

The energies we have in mind are defined on functions u : εL(ω) → Rm. We
consider u as generalized spin fields parameterized over the ε lattice εL(ω), with ε
eventually going to zero in what is usually referred to as a discrete-to-continuum
limit. As our proofs rely on an integral representation result, as usual in this setting
we need to define a localized version of the energies. Given A ∈ AR(D), we consider

Fε(ω)(u,A) = Fε,nn(ω)(u,A) + Fε,lr(ω)(u,A), (4)

where the nearest neighbor interactions and long-range interactions are respectively
given by functionals of the form

Fε,nn(ω)(u,A) =
∑

(x,y)∈NN (ω)
εx,εy∈A

εdfε,nn(x, y, u(εx), u(εy)),

Fε,lr(ω)(u,A) =
∑

(x,y)/∈NN (ω)
εx,εy∈A

εdfε,lr(x, y, u(εx), u(εy)).

Note that the random character of our energies depends on the underlying random
geometry of the lattice but not in the interaction coefficients fε,nn, fε,lr, which are
instead considered deterministic.

As usual in the discrete-to-continuum analysis, we embed the problems in a
suitable Lebesgue space (depending on the scalings). In general, note that we can
identify each function u : εL(ω)→ Rm with its piecewise constant interpolation on
the Voronoi cells of εL(ω). Therefore, given a bounded set K ⊂ Rm let us introduce
the class

Cε(ω,K) := {u : Rd → K : u|C(εx) = const. ∀εx ∈ εL(ω)}.

Since the intersection of two Voronoi cells has zero Lebesgue-measure, this class
is well defined and Cε(ω,K) ⊂ L∞(D). As a result we may define Fε(ω)(u,A) :
L∞(D)→ (−∞,+∞] as

Fε(ω)(u,A) =

{
Fε(ω)(u,A) if u ∈ Cε(ω,K),

+∞ otherwise.
(5)

Following some ideas in [6], we now use the square lattice r√
d
Zd to conveniently

rewrite the energies Fε.
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On setting r′ = r√
d

it follows that for all α ∈ r′Zd it holds #{L(ω) ∩ {α +

[0, r′)d}} ≤ 1. We now set

Zr′(ω) :={α ∈ r′Zd : #
(
L(ω) ∩ {α+ [0, r′)d}

)
= 1},

xα :=L(ω) ∩ {α+ [0, r′)d}, α ∈ Zr′(ω)

and, for ξ ∈ r′Zd, U ⊂ Rd and ε > 0,

Rξnn,ε(U) := {α : α, α+ ξ ∈ Zr′(ω), εxα, εxα+ξ ∈ U, (xα, xα+ξ) ∈ NN (ω)},

Rξlr,ε(U) := {α : α, α+ ξ ∈ Zr′(ω), εxα, εxα+ξ ∈ U, (xα, xα+ξ) /∈ NN (ω)}.

For fixed ξ ∈ r′Zd we can now rewrite the energy contribution using

F ξnn,ε(ω)(u,A) =
∑

α∈Rξnn,ε(A)

εdfε,nn (xα, xα+ξ, u(εxα), u(εxα+ξ)) ,

F ξlr,ε(ω)(u,A) =
∑

α∈Rξlr,ε(A)

εdfε,lr (xα, xα+ξ, u(εxα), u(εxα+ξ)) .

3. The bulk scaling. As pointed out in the introduction this paper deals with
the case, where fε,nn and fε,lr are of order 1 with respect to ε. In particular,
in contrast to [6], there is no gradient structure in the energy. As a result, the
variational limit of the energies Fε(·)(ω) is given by volume integrals of the form∫
D
f(x, u(x)) dx. We divide this section into three paragraphs. At first we show

how to derive an integral representation result for the variational limit. Then we
prove the convergence of minimum problems under mean-value constraints. Finally
we use the first two results to prove a stochastic homogenization theorem under the
assumption of stationarity of the random lattices.

In this paragraph, for a fixed bounded set K we consider non negative interaction
energies fulfilling the following assumptions:

Hypothesis 1. There exist C > 0 and a decreasing function Jlr : [0,+∞) →
[0,+∞) with ∫

Rd
Jlr(|x|) dx = J < +∞ (6)

such that

0 ≤ fε,nn(·, ·, u, v) ≤ C for all (u, v) ∈ K ×K,
0 ≤ fε,lr(x, y, u, v) ≤ Jlr(|x− y|) for all (u, v) ∈ K ×K.

The next proposition, whose simple proof we omit, suggests to conveniently embed
Cε(ω,K) ⊂ L∞(D, co(K)) and equip L∞(D, co(K)) with the weak*-topology so

that L∞(D, co(K)) is a separable metric space.

Proposition 1. Let uε ∈ Cε(ω,K) be such that uε
∗
⇀ u in L∞(D). Then u ∈

L∞(D, co(K)). Conversely, for every u ∈ L∞(D, co(K)) there exists a sequence

uε ∈ Cε(ω,K) such that uε
∗
⇀ u.

3.1. Integral representation. As in [5] the key ingredient is the following integral
representation theorem (see [14]).

Theorem 3.1. Let p ∈ [1,+∞) and let F : Lp(D,Rm) × B(D) → [0,+∞] be a
functional satisfying:
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(i) F is local on B(D); i.e., for all u, v ∈ Lp(D,Rm) and B ∈ B(D) such that
u = v a.e. on B, then F (u,B) = F (v,B),

(ii) F is additive; i.e., for all u ∈ Lp(D,Rm) and B1, B2 ∈ B(D) such that
B1 ∩B2 = ∅, then F (u,B1 ∪B2) = F (u,B1) + F (u,B2),

(iii) there exists u0 ∈ Lp(D,Rm) such that F (u0, ·) is a Borel measure on B(D)
which is absolutely continuous with respect to the d-dimensional Lebesgue mea-
sure,

(iv) for all B ∈ B(D) the functional F (·, B) is lower semicontinuous with respect
to the strong (respectively weak) convergence of Lp(D,Rm).

Then there exists a positive measurable function f : D × Rm → [0,+∞], with the
property that f(x, ·) is lower semicontinuous (respectively convex and lower semi-
continuous) for a.e. x ∈ D, such that

F (u,B) =

∫
B

f(x, u(x)) dx

for all u ∈ Lp(D,Rm) and B ∈ B(D).
If in addition there exists α ∈ L1(D,Rm), c, C > 0 such that

c‖u‖pLp(B) − ‖α‖L1(B) ≤ F (u,B) ≤ C‖u‖pLp(B) + ‖α‖L1(B),

then f is a Carathéodory function satisfying

c|z|p − α(x) ≤ f(x, z) ≤ C|z|p + α(x) for all z ∈ Rm and a.e. x ∈ D.

Remark 2. (i) If F (·, A) is lower semicontinuous with respect to weak or strong
convergence in Lp(D,Rm) for every open set and the additional growth hypothesis
in Theorem 3.1 holds, then it is enough to prove the locality on open sets.
(ii) Given locality and additivity, it suffices to prove lower semicontinuity on open
sets.

For u ∈ L∞(D, co(K)), A ∈ AR(D) let us introduce

F ′(ω)(u,A) := inf {lim inf
ε→0

Fε(ω)(uε, A) : uε
∗
⇀ u in L∞(D,Rm)},

F ′′(ω)(u,A) := inf {lim sup
ε→0

Fε(ω)(uε, A) : uε
∗
⇀ u in L∞(D,Rm)},

i.e. the Γ- lim inf and the Γ- lim sup of the energies Fε(·, A)(ω) with respect to

the weak*-topology on L∞(D, co(K)) (we refer to [9] for an introduction to Γ-
convergence). With the help of the auxiliary square lattice introduced in Section
2.3, one can use the same technique developed in [6] and repeat the arguments in
[5] to prove the following proposition. We provide a sketch of its proof for readers’
convenience.

Proposition 2. There exists a constant C > 0 such that for almost every ω ∈ Ω

(i) 0 ≤ F ′(ω)(u,A) ≤ F ′′(ω)(u,A) ≤ C|A|,
(ii) F ′(ω)(·, A) and F ′′(ω)(·, A) are weak* lower semicontinuous,

(iii) F ′′(ω)(u,A) = sup{F ′′(ω)(u,A′) : A′ ⊂⊂ A},
(iv) F ′′(ω)(u,A ∪B) ≤ F ′′(ω)(u,A) + F ′′(ω)(u,B)
(v) If A ∩B = ∅, then F ′(ω)(u,A ∪B) ≥ F ′(ω)(u,A) + F ′(ω)(u,B),

(vi) If u, v ∈ L∞(D, co(K)) and u = v a.e. in A, then F ′′(ω)(u,A) = F ′′(ω)(v,A).

Proof. Given ξ ∈ r′Zd, we let ξ̂ ∈ ξ + [−r′, r′]d be such that

|ξ̂| = dist([0, r′)d, [0, r′)d + ξ).
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(i): Fix u ∈ L∞(D, co(K)). Since the discrete energy is non-negative, the lower

bound is trivial. For the upper bound, let uε ∈ Cε(ω,K) be such that uε
∗
⇀ u (see

Proposition 1). Take A′ ⊂ Rd such that A ⊂⊂ A′. From Lemma 2.2 we deduce
that, for ε small enough,

εd
(

#Rξnn,ε(A) + #Rξlr,ε(A)
)
≤ C|A′|,

so that, by the monotonicity and integrability assumptions on Jlr, we have

lim sup
ε→0

Fε(ω)(uε, A) ≤ C

1 +
∑
ξ∈r′Zd

Jlr(|ξ̂|)

 |A′| ≤ C|A′|.
Letting A′ ↓ A we deduce the upper bound since |∂A| = 0.
(ii) holds by the lower semicontinuity property of Γ-lower/upper limits.
(iii) can be proven by standard arguments using (iv) and the upper bound in (i),
therefore we only prove (iv). To reduce notation we take into account only the
long-range term. We may assume that the right-hand side is finite and we let
uε, vε ∈ Cε(ω,K) both converge weakly* to u such that

lim sup
ε→0

Fε(ω)(uε, A) = F ′′(ω)(u,A), lim sup
ε→0

Fε(ω)(vε, B) = F ′′(ω)(u,B).

Given δ > 0, by the decay assumptions on Jlr we may find Mδ > 0 such that∑
|ξ|>Mδ

Jlr(|ξ̂|) < δ.

We define a function zε ∈ Cε(ω,K) setting

zε(εx) = 1A(εx)uε(εx) + (1− 1A(εx))vε(εx).

Since A ∈ AR(D) we still have that zε
∗
⇀ u. Fix |ξ| ≤ Mδ. Then, for ε small

enough, we have

Rξlr,ε(A ∪B) ⊂ Rξlr,ε(A) ∪Rξlr,ε(B\A) ∪Rξlr,ε(Sδ),

where Sδ := {x ∈ D : dist(x, ∂A) ≤ δ}. Thus we can estimate as

Fε(ω)(zε, A ∪B) ≤Fε(ω)(uε, A) + Fε(ω)(vε, B\A) + Fε(ω)(zε, Sδ)

+ C
∑
|ξ|>Mδ

Jlr(|ξ̂|)εd#(εL(ω) ∩D)

≤Fε(ω)(uε, A) + Fε(ω)(vε, B) + Fε(ω)(zε, Sδ) + Cδ.

Letting ε→ 0, as in the proof of (i), we infer that

F ′′(ω)(u,A ∪B) ≤ F ′′(ω)(u,A) + F ′′(ω)(u,B) + C(|Sδ|+ δ).

Since |∂A| = 0, the inequality (iv) follows letting δ → 0.
The proof of (v) and (vi) is straightforward.

From Proposition 2 we deduce our first main theorem.

Theorem 3.2. Let L be an admissible stochastic lattice and let fε,nn and fε,lr sat-
isfy Hypothesis 1. For P-almost every ω and every sequence (εj) converging to 0,
there exists a (not relabelled) subsequence (εj) such that Fεj (ω) Γ-converge with re-

spect to the weak* L∞(D, co(K))-topology to the functional F (ω) : L∞(D, co(K))→
[0,+∞) defined by

F (ω)(u) =

∫
D

f(ω;x, u(x)) dx, (7)
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where f(ω; ·, ·) : D × co(K)→ [0,+∞) is a measurable function such that f(ω;x, ·)
is convex and lower semicontinuous for a.e. x ∈ D.

A local version of the theorem holds. For all A ∈ AR(D) and all u ∈ L∞(D,

co(K)) we have

Γ- lim
j
Fεj (ω)(u,A) =

∫
A

f(ω;x, u(x)) dx.

Proof. In order to apply Theorem 3.1, we need to define an appropriate functional
on Lp(D) for some p ∈ [1,+∞). This can be done as follows: by compactness of Γ-
convergence on separable metric spaces (see Proposition 1.42 in [9]) we can construct

a diagonal sequence such that there exists a Γ-limit F̃ (ω)(u,A) of Fε(ω)(u,A) for

all (u,A) ∈ L∞(D, co(K))×AR(D) (in order to pass from countably many sets A
to AR(D) one can argue as in the proof of Theorem 10.3 in [12]). We extend this
limit to all open sets by

F (ω)(u, V ) := sup{F̃ (ω)(u,A) : A ∈ AR(D), A ⊂⊂ V }.
Referring to Proposition 2 we can apply the De Giorgi-Letta-criterion (see e.g.
Theorem 1.62 in [19]) and deduce that F (ω)(u, ·) is the trace of a Borel measure
that is absolutely continuous with respect to the Lebesgue measure (Proposition
2 (i)), so we can extend F (ω)(u, ·) to all Borel sets B ∈ B(D). Let us denote

by pK : Rm → co(K) the projection map onto the compact, convex set co(K).
Consider the functional FK(ω)(·, B) : L1(D)→ [0,+∞) defined by

FK(ω)(u,B) = F (w)(pK ◦ u,B).

One can show that FK(ω)(u,B) satisfies the assumptions of Theorem 3.1 with re-
spect to strong convergence in L1(D). The convexity and lower semicontinuity
of the integrand follows from well known properties of weak* lower semicontinu-
ous integral functionals and the local version is a direct consequence of the above
construction.

Remark 3. In general the integrand f(ω;x, ·) in Theorem 3.2 is not continuous

up to the boundary of co(K). A counterexample can be constructed easily using
the discontinuous, convex function on the unit ball given by the first lemma in [20].

However f(ω;x, ·) is continuous on one-dimensional segments contained in co(K).

Thus we can fully characterize it by its values on the relative interior of co(K).
In particular only countably many of these values are needed since the function is
continuous on the relative interior of co(K). In the case co(K) is a convex polytope,
then the results given in [20] show that continuity holds.

3.2. Convergence of minimum problems. In order to prove a (stochastic) ho-
mogenization result we will use a blow-up argument to characterize the limit inte-
grands. To relate the blow-up to our discrete energy functionals we need to prove a
result regarding the convergence of minimum problems under average constraints.
We first introduce a notion of discrete mean value.

Definition 3.3. For A ∈ AR(D), ε > 0, ω ∈ Ω and u ∈ Cε(ω,K) we set

〈u〉ω,εA :=
∑

εx∈εL(ω)∩A

|C(εx)|
|A|

u(εx).

Given an open set A ∈ Rd and u ∈ L1(A) we define 〈u〉A as the average of u in
A, that is 〈u〉A = 1

|A|
∫
A
u(x) dx.
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Since the co-domain of our functions will be relaxed in the limit, we do not
require our constrained functionals to be defined only on those functions fulfilling a
precise mean value constraint. Instead we introduce a threshold δ > 0 and, for fixed
z ∈ co(K), ε > 0 and ω ∈ Ω we define the functional F z,δε (ω) : L∞(D, co(K))) ×
AR(D)→ [0,+∞] as

F z,δε (ω)(u,A) :=

{
Fε(ω)(u,A) if 〈u〉ω,εA ∈ Bδ(z),
+∞ otherwise.

(8)

The following convergence result holds true:

Theorem 3.4. Let L be an admissible stochastic lattice and let fε,nn and fε,lr
satisfy Hypothesis 1. Then, for P-almost every ω, the following holds: for every
sequence (εj) converging to 0, let the subsequence (εj) and the function f be as in

Theorem 3.2. For every z ∈ co(K), δ > 0 and every A ∈ AR(D) the functionals

F z,δεj (ω)(·, A) Γ-converge with respect to the weak* L∞(D, co(K))-topology to the

functional F z,δ(ω)(·, A) : L∞(D, co(K))→ [0,+∞] defined by

F z,δ(ω)(u,A) =

{∫
A
f(ω;x, u(x)) dx if 〈u〉A ∈ Bδ(z),

+∞ otherwise.

Proof. We start proving the lower bound inequality: if uj
∗
⇀ u in L∞(D, co(K))

with equibounded energy, then we have 〈uj〉
ω,εj
A ∈ Bδ(z). Using Lemma 2.2 and the

regularity of A it is straightforward to check that 〈u〉A ∈ Bδ(z). The claim follows
by noticing that F z,δεj (ω)(u,A) ≥ Fεj (ω)(u,A) and Theorem 3.2.

To prove the upper bound, note that if u ∈ L∞(D, co(K)) is such that 〈u〉 ∈
Bδ(z) we can take the same recovery sequence as for the unconstrained functional
and conclude. It remains the case when 〈u〉A ∈ ∂Bδ(z). In this case we argue by
approximation as follows. We have 〈u〉A = z + δν with ν ∈ Sm−1. Then the set

A1 := {x ∈ A : (u(x)− z)T ν ≥ δ}

has positive measure. For η > 0 small enough take Aη ⊂ A1 such that |Aη| ≤ η.

We define uη ∈ L∞(D, co(K)) via

uη(x) =

{
z if x ∈ Aη,

u(x) otherwise.

We have, for η small enough,

|〈uη〉A − z|2 = δν − 1

|A|

∫
Aη

u(x)− z dx

2

≤ δ2 1− |Aη|
|A|

2

+
CK |Aη|
|A|

2

< δ2.

Since F (ω)(uη, A) → F (ω)(u,A) as η → 0 we deduce the claim from lower semi-
continuity.

By standard arguments in the theory of Γ-convergence we obtain the following
corollary about the convergence of minimum problems.

Corollary 1. Under the assumptions of Theorem 3.4, for almost every ω, for
z ∈ co(K), δ > 0 and A ∈ AR(D), it holds that
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(i)

lim
j

inf
u∈L∞(D,K)

F z,δεj (ω)(u,A) = min
u∈L∞(D,co(K))

F z,δ(ω)(u,A).

(ii) Moreover, if (uj)j is a weakly* converging sequence in L∞(D, co(K)) such
that

F z,δεj (ω)(uj , A) = inf
u∈L∞(D,K)

F z,δεj (ω)(u,A) + O(1),

then its limit is a minimizer of F z,δ(ω)(·, A).

3.3. Stochastic homogenization. This section contains the main result of the
paper, namely Theorem 3.7 about the stochastic homogenization of the bulk scaling
of discrete spin type energies on random lattices.

As a first result needed in the proof of the stochastic homogenization Theorem
3.7 we prove a lemma that ensures that we can recover the continuum limit energy
density by a suitable blow-up procedure. Our proof follows the same arguments of
the one of Theorem 1 in [17]. At first let us recall the definition of nicely shrinking
sets.

Definition 3.5. A family (Qη)η>0 of Borel sets shrinks nicely to x ∈ Rd if there
exists a constant c > 0 such that

Qη ⊂ Bη(x), |Qη| ≥ c|Bη(x)|.

Lemma 3.6. Let f : D × co(K) → R be bounded function that is measurable in
the first variable and convex and lower semicontinuous in the second one for almost
every x ∈ D. Then there exists a null set N ⊂ D such that

f(x, z) = lim
δ→0

lim
η→0

1

|Qη|
inf

{∫
Qη

f(y, u(y)) dy : u ∈ L∞(D, co(K)), 〈u〉Qη ∈ Bδ(z)

}
for all x ∈ D\N, z ∈ co(K) and every family Qη shrinking nicely to x.

Proof. To reduce notation we set

Uδ(z) := Bδ(z) ∩ co(K)

and

mδ(z,Qη) :=
1

|Qη|
inf

{∫
Qη

f(y, u(y)) dy : u ∈ L∞(D, co(K)), 〈u〉Qη ∈ Bδ(z)

}
.

At first we prove the statement in the case f is Lipschitz continuous on co(K)
uniformly in x ∈ D. Applying Jensen’s inequality we have that

1

|Qη|
inf

{∫
Qη

f(x, u(y)) dy : u ∈ L∞(D, co(K)), 〈u〉Qη ∈ Bδ(z)

}
= inf
v∈Uδ(z)

f(x, v)

for almost every x. It follows that

inf
v∈Uδ(v)

f(x, v)−mδ(z,Qη) ≤ 1

|Qη|
sup

u∈L∞(D,co(K))

∫
Qη

f(x, u(y))− f(y, u(y)) dy

≤ 1

|Qη|

∫
Qη

sup
q∈co(K)

|f(x, q)− f(y, q)| dy.
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From this estimate, using Lebesgue’s differentiation theorem combined with a cov-
ering argument (see the proof of Proposition 1.1 in [17] for details) one concludes
that there exists a null set N ⊂ D such that

inf
v∈Uδ(z)

f(x, v) = lim
η→0

mδ(z,Qη) (9)

for all x ∈ D\N , z ∈ co(K) and every family Qη shrinking nicely to x. Letting
δ → 0 in the above equality yields the claim.

For a general function f let N ′ be the null set such that f(x, ·) it is not convex

and lower semicontinuous. We define a decreasing sequence fn : D× co(K)→ R by

fn(x, z) = sup
q∈co(K)

{f(x, q)− n|z − q|}.

It is well known that fn(x, ·) is Lipschitz continuous with Lipschitz constant bounded
by n. By lower semicontinuity for x ∈ D\N ′ the supremum defining fn can be taken

over a countable dense set G ⊂ co(K) ensuring the measurability of fn(·, z) for ev-

ery z ∈ co(K). Using Lebesgue’s differentiation theorem one can construct a set
Nn of measure zero such that

lim
η→0

1

|Qη|

∫
Qη

|fn(y, q)− fn(x, q)| dy = 0 (10)

for all x ∈ D\Nn, q ∈ G and every family Qη shrinking nicely to x. Using the
uniform Lipschitz continuity of fn it is not hard to verify that (10) holds also if we

replace q by any z ∈ co(K). Set N− = N ′ ∪
⋃
n≥1Nn and fix x ∈ D\N−, z ∈ co(K)

and a family Qη shrinking nicely to x. Denoting by mn
δ (z,Qη) the corresponding

infimum value of the approximating sequence, by monotonicity and (10) we have

lim sup
η→0

mδ(z,Qη) ≤ lim sup
η→0

mn
δ (z,Qη)

≤ inf
v∈Uδ(z)

lim sup
η→0

1

|Qη|

∫
Qη

fn(y, v) dy ≤ inf
v∈Uδ(z)

fn(x, v). (11)

By Remark 3 it holds that

inf
v∈Uδ(z)

f(x, v) = inf
v∈Bδ(z)∩riaff(co(K))

f(x, v),

where riaff denotes the relative interior. Let v ∈ riaff(co(K)). Since f(x, ·) is con-
tinuous in v we have

lim
n→+∞

fn(x, v) = f(x, v)

which yields by (11)

lim sup
η→0

mδ(z,Qη) ≤ inf
v∈Uδ(z)

f(x, v). (12)

In order to get the converse inequality we define gn : D × co(K)→ R as

gn(x, z) = inf
q∈co(K)

{f(x, q) + n|z − q|}.

This family is increasing, convex and Lipschitz continuous with Lipschitz constant
bounded by n in z and, again by Remark 3 we can restrict the infimum over a count-
able dense set ensuring measurability in x. In this case, by lower semicontinuity,
monotonicity and Proposition 1.27 in [9], we have

lim
n
gn(x, z) = Γ- lim

n
gn(x, z) = f(x, z).
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for all z ∈ co(K). By the first part of the proof, for every gn, we can find null sets

N ′n ⊂ D such that (9) holds for all x ∈ D\N ′n, z ∈ co(K) and every family Qη
shrinking nicely to x. Since gn ≤ f we deduce that

inf
v∈Uδ(z)

gn(x, v) = lim
η→0

mn
δ (z,Qη) ≤ lim inf

η→0
mδ(z,Qη).

Using the fundamental theorem of Γ-convergence we can pass to the limit in n which
implies together with (12) that

lim
η→0

mδ(z,Qη) = inf
v∈Uδ(z)

f(x, v)

for all x ∈ N := N− ∪
⋃
n≥1N

′
n, z ∈ co(K) and every family Qη shrinking nicely

to x. Letting δ → 0 and using again the fact that f(x, ·) is lower semicontinuous
yields the claim of the proposition.

For a bounded set A ⊂ Rd, ρ > 0, z ∈ Rm and ε > 0 we set

Cz,δε (ω,A) := {u ∈ Cε(ω,K) : 〈u〉ω,εA ∈ Bδ(z)}.
In this section we consider spin-type systems of a particular form. Let us suppose
that fnn, flr : Rn ×K ×K → [0,+∞) are measurable in the first variable, upper
semicontinuous in the remaining couple of variables and such that

fε,nn(x, y, u, v) = fnn(y − x, u, v), (13)

fε,lr(x, y, u, v) = flr(y − x, u, v).

Theorem 3.7. Let L be a stationary admissible stochastic lattice and assume Hy-
pothesis 1 holds with the additional upper semicontinuity and structure assumption
in (13). For P-almost every ω ∈ Ω and for all z ∈ co(K) there exists

fhom(ω; z) := lim
δ→0

lim
N→+∞

1

Nd
inf
{
F1(ω)(u, (0, N)d) : u ∈ Cz,δ1 (ω, (0, N)d)

}
.

The functionals Fε(ω) Γ-converge with respect to the weak* L∞(D, co(K))-topology

to the functional Fhom(ω) : L∞(D, co(K))→ [0,+∞) defined by

Fhom(ω)(u) =

∫
D

fhom(ω;u(x)) dx.

If L is ergodic, then fhom(·, z) is constant almost surely and it is given by

fhom(z) = lim
δ→0

lim
N→∞

1

Nd

∫
Ω

inf
{
F1(ω)(u, (0, N)d) : u ∈ Cz,δ1 (ω, (0, N)d)

}
dP(ω).

Remark 4. The upper semicontinuity assumption can be dropped if K is at most
countable. In fact it is only needed to prove measurability of the stochastic process
defined in (19).

Proof of Theorem 3.7. Let εj → 0. By Theorem 3.2, for almost every ω ∈ Ω there
exists a subsequence (not relabeled) such that

Γ- lim
j
Fεj (ω)(u,A) =

∫
A

f(ω;x, u(x)) dx

for all A ∈ AR(D) and u ∈ L∞(D, co(K)). We divide the proof into several steps.

Step 1. (characterization of the energy density)
Theorem 3.2 allows us to apply Lemma 3.6 to obtain a null set N(ω) ⊂ D

depending only on ω such that
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f(ω;x0, z) = lim
δ→0

lim
η→0

1

|Qη|
inf

{∫
Qη

f(ω;x, u(x)) dx : 〈u〉Qη ∈ Bδ(z)

}
for all x0 ∈ D\N , z ∈ co(K) and a family of open cubes with rational vertices
shrinking nicely to x0. Using Corollary 1 and setting tj = ε−1

j we deduce that

f(ω;x0, z) = lim
δ→0

lim
η→0

lim
j

1

|Qη|
inf
{
Fεj (ω)(u,Qη) : u ∈ Cz,δεj (ω,Qη)

}
= lim
δ→0

lim
η→0

lim
j

1

|tjQη|
inf
{
F1(ω)(u, tjQη) : u ∈ Cz,δ1 (ω, tjQη)

}
.

Suppose we have shown that for every δ > 0 there exists a function φz,δ : Ω → R
such that

φz,δ(ω) = lim
t→+∞

1

|tQ|
inf
{
F1(ω)(u, tQ) : u ∈ Cz,δ1 (ω, tQ)

}
(14)

almost surely for every open cube Q ⊂ D with rational vertices. Then we can
take the limit with respect to δ because φz,δ is increasing when δ → 0. Taking a

countable dense set G ⊂ co(K) we can construct a set Ω′ of full probability such
that for fixed ω ∈ Ω′ we have

f(ω;x0, z) = fhom(ω; z) ∀x0 ∈ D\N(ω), z ∈ G. (15)

Observing that z 7→ fhom(ω; z) is convex and lower semicontinuous, by Remark 3

we have that (15) holds for all z ∈ co(K). Thus the Γ-limit exists and the integrand
is given by fhom(ω; z). It remains to show (14).

Step 2. (truncation of the interaction range)

Let us fix z ∈ co(K) and δ > 0. As a next step we limit the range of interactions
as well as the possible positions of interacting points:

To this end, for ξ ∈ r′Zd and U ⊂ Rd, we set

Iξnn(U) := {α ∈ Rξnn,1(U) : ∃η > 0 : [Bη(xα) ∩ U,Bη(xα+ξ) ∩ U ] ⊂ U}, (16)

Iξlr(U) := {α ∈ Rξlr,1(U) : ∃η > 0 : [Bη(xα) ∩ U,Bη(xα+ξ) ∩ U ] ⊂ U}, (17)

where [A,B] := {tx + (1 − t)y : x ∈ A, y ∈ B, 0 ≤ t ≤ 1}. Note that Iξnn/lr(U) =

Rξnn/lr,1(U) if U is convex. Moreover for L ∈ N ∪ {+∞} we define the (truncated)

energy by

FL1 (ω)(v, U) :=
∑
|ξ|<L

∑
α∈Iξnn(U)

fnn (xα+ξ − xα, v(xα), v(xα+ξ))

+
∑
|ξ|<L

∑
α∈Iξlr(U)

flr (xα+ξ − xα, v(xα), v(xα+ξ)) .

Given a set Q ⊂ Rd we let

µL(ω;Q) := inf
{
FL1 (ω)(u,Q) : u ∈ Cz,δ1 (ω,Q)

}
.

By the decay assumptions on the long-range interactions of Hypothesis 1, it follows
that (14) is proved if we show that for every L ∈ N there exists a function φLz,δ :
Ω→ R with

φLz,δ(ω) = lim
t→+∞

1

|tQ|
inf
{
FL1 (ω)(u, tQ) : u ∈ Cz,δ1 (ω, tQ)

}
(18)
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for every open cube Q ⊂ D with rational vertices and all ω ∈ ΩL, where ΩL is a set
of full measure. At this point note that if tk is large enough, then there exists at

least one function u ∈ Cz,δ1 (ω, tkQ) to test the two infimum problems. It remains
to prove (18).

Step 3. (definition of the stochastic process)
As observed in the previous step, since z and δ are fixed there exists n ∈ N

such that Cz,δ1 (ω, nI) 6= ∅ for all I ∈ I. Let us define a discrete stochastic process
µ̃L : I → L1(Ω) by

µ̃L(I)(ω) :=
µL(ω;nI)

nd
+ γ Per(nI,Rd), (19)

where γ > 0 is a suitable constant to be chosen. Testing the infimum problem

defining µL with any function u ∈ Cz,δ1 (ω, nI) we infer from Hypothesis 1 that
there exists a constant C > 0 such that

µ̃L(I) ≤ C|I|+ γ Per(nI,Rd), (20)

in particular µ̃L(I) ∈ L∞(Ω). The proof of the measurability is more involved
and can be found in the appendix. For the proof of stationarity we can assume
without loss of generality that r′ = 1

l for some l ∈ N. Then, using (3) and (13) it is
straightforward to check that

µ̃L(I − z)(ω) = µ̃L(I)(τzω),

which yields stationarity. In order to establish subadditivity, let J be the set of
finite unions of elements in I and let I1, I2 ∈ J be disjoint. Given θ > 0 there exist

functions u1 ∈ Cz,δ1 (ω, nI1) and u2 ∈ Cz,δ1 (ω, nI2) such that

µL(ω;nIi) ≥ FL1 (ω)(ui, nIi)− θ.
The function u defined on L(ω) by

u(x) =

{
u1(x) if x ∈ nI1,

u2(x) otherwise,

is admissible in the infimum problem defining µL(ω;n(I1 ∪ I2)). Note that by the

special structure of the sets Iξnn(U) and Iξlr(U) two lattice points xα ∈ nI1 and
xα+ξ ∈ nI2 can interact only if the ray [xα, xα+ξ] has length at most L + 2r and

intersects a (d− 1)-dimensional side of n(I1 ∩ I2). Using Lemma 2.2 it follows that

µL(ω;n(I1 ∪ I2)) ≤ FL1 (u1, nI1) + FL1 (u2, nI2) + CLPer(n(I1 ∩ I2),Rd)

≤ µL(ω;nI1) + µL(ω;nI2) + CLPer(n(I1 ∩ I2),Rd) + 2θ.

Letting θ → 0 and using the inequality

Per(n(I1 ∪ I2),Rd) + Per(n(I1 ∩ I2),Rd) ≤ Per(nI1,Rd) + Per(nI2,Rd),

we deduce that the stochastic process is subadditive if we choose γ large enough.
The fact that

inf
1

|I|

∫
Ω

µ̃L(I)(ω) dP(ω) : I ∈ I > −∞

is trivial since the integrand is always positive.

Step 4. (proof of (18) and the case of ergodic lattices)
Applying Theorem 2.6 to the process µ̃L(I)(ω) we deduce that there exists a

function φLz,δ : Ω→ R such that
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φLz,δ(ω) = lim
k→+∞

inf
1

|k Q|
FL1 (ω)(u, k Q) : u ∈ Cz,δ1 (ω, k Q) (21)

for almost every ω ∈ Ω and every Q ∈ nI. The extension to arbitrary sequences
and to all open cubes with rational vertices is straightforward since the differences
are lower order terms. Finally note that the function φLz,δ(ω) is invariant under the
group action τz, thus ergodicity implies that it is constant together with its limit
as L→ +∞.

Appendix A..

Lemma A.1. For fixed I ∈ I the function µ̃L(I) defined in (19) is measurable.

Proof. Let us write Zd = {z1, z2, . . . }. By Σr,R we denote the set of admissible
point sets, where r,R are as in Definition 2.1. Since F is a complete sigma algebra
we may assume that L(ω) ∈ Σr,R for all ω ∈ Ω. Identifying every u ∈ C1(ω,K)

with a vector u ∈ (K)Z
d

we can write

µL(ω; I) = inf
{
FL1 (ω)(u, I) : u ∈ (K)Z

d

,
∑
i≥1

|C(L(ω)zi)|
|I|

uzi ∈ Bδ(z)
}
.

Substep 1. At first we prove that, for fixed i ∈ N, the mapping ω 7→ |C(L(ω)zi)|
is measurable.

Given L(ω) ∈ Σr,R, there exists M ∈ N such that, for all x = (xzj ) ∈ Σr,R with
supj |L(ω)zj − xzj | ≤ R, we have

C(xzi) = {y ∈ Rd : |y − xzi | ≤ |y − xzj | ∀j = 1, . . . ,M}. (22)

Indeed, let M := max{j ∈ N : |L(ω)zi − L(ω)zj | ≤ 6R}. If y ∈ Rd is such that
|y − xzi | ≤ |y − xzj | for all j ≤M , we can estimate as follows (k > M):

|y − xzk | ≥ |L(ω)zk − L(ω)zi | − |L(ω)zk − xzk | − |xzi − L(ω)zi | − |y − xzi |
≥ 4R− |y − xzi |.

Then (22) follows if we show that |y − xzi | ≤ 2R. Assume by contradiction that

this is not the case. Then, for y := xzi + 2R
y−xzi
|y−xzi |

, there exists j ≤M, j 6= i such

that |y − xzj | ≤ R, where we have used that x ∈ Σr,R. We conclude that

|y − xzj | ≤ R+ |y − y| = R+
|y − xzi | − 2R

|y − xzi |
|y − xzi |

= |y − xzi | −R < |y − xzi |,

which leads to a contradiction. Using (22) a short argument based on dominated
convergence shows that for every ε > 0 there exists δ > 0 such that for all x ∈ Σr,R
with supj |L(ω)zj − xzj | ≤ R the following implication holds:

max
j≤M

|xzj − L(ω)zj | ≤ δ ⇒ ||C(xzi)| − |C(L(ω)zi)|| ≤ ε.

Hence for an open set U ⊂ R the preimage of the mapping Σr,R 3 x 7→ |C(xzi)|
can be written as an a priori uncountable union of measurable sets of the form

Σr,R ∩
∏M
j=1Bδ(xzj )×

∏
j>M BR(xzj ) , where M and δ can vary. However, for

fixed M ∈ N, the corresponding union can be taken countable since (Rd)M is
second countable. Therefore the whole union can be written as a countable union
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of measurable sets. By the measurability of the mapping ω 7→ L(ω) we have proven
the claim of this substep.

Substep 2. From the previous substep we know that for fixed u ∈ (K)Z
d

the
mapping

ω 7→M(u)(ω) :=

{
0 if

∑
i≥1

|C(L(ω)zi )|
|nI| uzi1nI(L(ω)zi) ∈ Bδ(z),

+∞ otherwise.

is measurable. However the set over which we take the infimum in order to define
µL(ω; I) is not countable and still depends on ω. To overcome this issue we first fix
l ∈ N. Now take a countable dense subset G of K and pick one element g0 ∈ G.
We set

vzi(g1, . . . , gl) :=

{
gi if i ≤ l,
g0 otherwise,

where gi ∈ G. These are countably many vectors. Using upper semicontinuity of
fnn and flr with respect to the second two variables and the fact that we took the
open ball Bδ(z) for the constraint we deduce by density that

µL(nI)(ω) = lim
l→+∞

inf
(g1,...,gl)∈Gl

{FL1 (ω)(v(g1, . . . , gl), nI) +M(v(g1, . . . , gl))(ω)}

and we conclude the proof if we show that for fixed u ∈ (K)Z
d

the function
FL1 (ω)(u, nI) is measurable. This is shown in the appendix of [7].
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