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Abstract
A first-principles approach for active chiral hard disks is presented, that expli-
citly accounts for steric interactions on the two-body level. We derive an
effective one-body equation for the joint probability distribution of positions
and angles of the particles. By projecting onto the angular modes, we write a
hierarchy for the lowest hydrodynamic modes, i.e. particle density, polarisa-
tion, and nematic tensor. Introducing dimensionless variables in the equations,
we highlight the assumptions, which—though inherent—are often included
implicit in typical closure schemes of the hierarchy. By considering different
regimes of the Péclet number, the well-known models in active matter can be
obtained through our consideration. Explicitly, we derive an effective diffusive
description and by going to higher orders in the closure scheme, we show that
this first-principles approach results in the recently introduced Active Model B
+, a natural extension of the Model B for active processes. Remarkably, here
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we find that chirality can change the sign of the phenomenological activity
parameters.

Keywords: first-principles approach, active chiral particles,
steric interactions, hierarchy of angular modes, Active Model B+

1. Introduction

The analytic model of an Active Chiral Particle (ACP) [1–5] represents an extension to the
well-known Active Brownian Particle (ABP) model [6–9] with additional active chirality.
These models have proven very useful as they come as a first step in generalising equilib-
rium models to include non-equilibrium, active contributions for microscopic agents. They
constitute a minimalist attempt to describe directed motion on the microscale and are found to
lead to emerging complex structures on the macroscale. For that reason, they are widely used
in the analytic description of non-equilibrium systems [10–12].

The ABP model describes the overdamped motion of a tagged particle influenced by two
contributions: firstly, equilibrium fluctuations of the surrounding medium, which give rise to
the well-known equilibrium Langevin description. The particle is assumed to diffuse with a
spatial diffusion coefficient DT. Secondly, the particle experiences a non-equilibrium driving
force, that might originate from an internal energy depot or external energy input [13–15].
In the simplest case, this scenario is modelled as a self-propulsion with a (constant) velocity
v along an orientation vector ê(θ). In the model of an ABP, the self-propulsion direction gets
randomised by assuming that the orientation vector additionally is performing rotational diffu-
sion on the unit-sphere with the diffusion coefficientDR. Despite its simplicity, this ‘toy’ ABP
model has proven tremendously successful in analytical analysis and as a simulation model to
describe active matter on a macroscale [16, 17]. Emerging complex macroscopic phases such
as motility-induced phase separations [18–23], (chemo-) tactic behaviour [24, 25], flocking
[26, 27], or swarming [28–30] have been reported.

The ABP model has been further developed to include active processes that explicitly
break the spatial symmetry via an effect of active chirality ω [1–4]. This generalisation in
the model allows to describe even more complex emerging phenomena, such as odd viscosity
[31, 32], finite-size rotating clusters [33, 34], hyperuniform behaviour [35, 36] and edge cur-
rents at interfaces [37–39]. This analytical extension is inspired by experimental observation
of bacteria [40–42], sperm cells [43, 44], or syntactical particles [45, 46] as well as macro-
scopic chiral robots [47–49], which show an archetypal chirality in their trajectories on the
microscale. Remarkably, already over a century ago, experimental observations were made in
living organisms, which showed that trajectories of certain microorganisms such as Loxodes
and Paramecium break the spatial symmetry and need an interpretation in terms of chiral self-
propulsion [50].

An alternative, more coarse-grained viewpoint for describing the emerging complex struc-
tures in active systems is based on continuum field-theoretical models of active matter. The
starting point is to address the diffusive behaviour of a conserved order parameter, such as
the mean particle probability-density function (PDF) ϱ(x, t), where ϱ(x, t)dx describes the
probability of finding a particle in the interval x and x+ dx at time t, as in the well-known
Model B [51]. This model successfully describes the equilibrium behaviour of matter, and
especially the dynamics of phase separation [52]. An inherent assumption in the derivation
of these field-theoretical models is that the underlying processes follow the detailed-balance
dynamics, that is broken in active systems. It is, therefore, natural that field theories that aim
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to describe the behaviour of active matter have to revisit the foundations and need to go bey-
ond the detailed-balance restrictions. Successive works culminated in the recently introduced,
so-called Active Model B+ (AMB+) [53–55], that attracted a lot of interest lately [56–59].
Continuum approaches, very recently, have also been extended to include active chirality and
specifically account for broken-time reversal symmetries [36, 60, 61].

Themodelling of inter-particle interactions is crucial for such continuum approaches.While
previous approaches are predominantly focused on interaction potentials, here we model the
interactions via a geometric approach instead. The approach was originally introduced by
Bruna and Chapman in [62, 63] and thereafter successfully applied to ABPs already [64].
The basic idea is to include particle interactions by restricting the domain of definition of
the time-evolution equation and thereby creating forbidden areas, which correspond to situ-
ations with a particle overlap. We apply this idea to the ACP model and derive an effect-
ive one-body description of the full one-particle PDF p(x,θ, t) to find a particle at position x
with the self-propulsion vector of angle θ at time t after starting with the sharp initial condi-
tions x= x0, θ = θ0, i.e. p(x,θ, t0) = δ(x− x0)δ(θ− θ0) at t= t0. The resulting time-evolution
equation explicitly accounts for two-particle steric interactions and therefore its validity is
restricted to the dilute limit. To arrive at a field-theoretical description for the mean particle
PDF ϱ(x, t), one typically proceeds by integrating out the effect of the angle [65, 66]. We
follow this procedure and arrive at an (infinite) hierarchy of the hydrodynamic modes of the
active particle, of which the mean particle PDF constitutes the zeroth order mode. This hier-
archy is mathematically very similar to the famed Bogoliubov–Born–Green–Kirkwood–Yvon
(BBGKY) hierarchy in kinetic theory [67]. Similar to that hierarchy, in continuous active mat-
ter theories one is also required to close the hierarchy to make analytic progress [68, 69].

We transform the closure problem into a perturbation problem and derive two field-
theoretical descriptions for ACPs, based on the strictness of assumption on the perturbation
parameters. This gives us access to the otherwise phenomenological coefficients in these mod-
els.We show that both an effective diffusive description and the AMB+ can be obtained within
our approach, depending on the order of the closure scheme. Our work moreover suggests that
the AMB+ is a natural generalisation of equilibrium field theories to describe the continuum
behaviour of active matter. We further have first-principles access to the coefficients in the
AMB+ and it turns out, that, surprisingly, they are altered by active chirality in such a way
that they can even change sign as a function of chirality.

The remainder of this work is organised as follows. In section 2.1 we introduce the mathem-
atical model and describe our approach to deal with inter-particle interactions in the geometric
sense. In section 2.2 we derive in detail the effective one-body time-evolution equation of the
PDF. To our understanding, the physics community is rather unaware of this specific method to
handle inter-particle interactions, for which we introduce it in appropriate detail. In section 2.3
we thereafter derive the hierarchy of hydrodynamic modes, and in section 2.4 we introduce the
mathematical steps to close the hierarchy. In section 2.5 we go one step beyond the simplest
closure and find that the time-evolution of the mean particle PDF equals the form predicted by
the AMB+. In section 3 we conclude and provide an outlook to further and related works.

2. Theory: from ACPs to the Active Model B +

2.1. Model

In this section, we introduce the model of interacting ACPs as sketched in figure 1(a) and how
to deal with their excluded-volume interactions in a geometric sense, see also figure 1(b). We
finish by formulating an effective one-body description.
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Figure 1. (a) Sketch of the model setup of the ith spherical ACP of diameter d. The
particle is self-propelled by the active speed v whose direction rotates with the act-
ive frequency ω. It is embedded in a thermal bath giving rise to fluctuations in the
spatial and angular coordinates (xi,θi) with respective strengths ∝

√
DT and ∝

√
DR,

see equations (1a) and (1b), respectively. (b) The particle coordinates are defined on
Λ2 =Ω2

εd × [0,2π)2, where Ω2
εd = {(x1,x2) ∈ Ω2; |x1(t)− x2(t)|⩾ εd} is the allowed

(rescaled) configuration space within the bounded domain Ω⊂ R2 and subtracted by
the regions of a particle overlap (white area). This excluded-volume creates a reflecting
boundary on ∂Λ2 = ∂Ω2 ∪Scoll, made up from the container walls ∂Ω2 and an inner
moving, so-called collision surface Scoll = {(x1,x2) ∈ Ω2; |x1(t)− x2(t)|= εd}. Note
that εd = d/L, where L× L= |Ω| is the typical size of the bounded domain Ω.

2.1.1. Setup. We consider the dynamics of N interacting ACPs in two dimensions. The
particles centres xi(t) and angular coordinates θi(t), i ∈ {1, . . . ,N}move according to the over-
damped Langevin dynamics [5, 70]

∂

∂t
xi = v ê(θi)+

√
2DTηi (t) , (1a)

∂

∂t
θi = ω+

√
2DR ζi (t) . (1b)

Here ηi (t) and ζi (t) are independent Gaussian white noises with correlators
〈ηi,α(t)ηj,β(t ′)〉= δij δαβ δ(t− t ′) and 〈ζi(t)ζj(t ′)〉= δij δ(t− t ′), where Greek indices α,β
refer to particle coordinates and Latin indices i, j refer to particle labels. v is the (constant)
active self-propulsion velocity, ω the active torque and ê(θi) = (cos(θi),sin(θi))T is the unit
orientation vector, where (·)T denotes a matrix transpose. Note that for ω= 0, the model of
equations (1a) and (1b) reduces to the well-known model of ABPs. DT and DR are the trans-
lational and rotational diffusion coefficients, respectively. Note that the diffusion coefficients
have different physical units, [DT] = m2/s and [DR] = 1/s.

The N identical disk-like particles have a diameter d and are assumed to interact hard-core
with each other. For an illustration of the model system see also figure 1(a). The ACPs are
modelled to diffuse in a spatially bounded domain xi(t) ∈ Ω⊂ R2 of typical size L×L and
their angular coordinates are θi(t) ∈ [0,2π). Using dimensionless quantities by rescaling with
L, the typical size of the domain is set to unity, whereas the diameter of the particle becomes
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εd = d/L. We restrict the analysis to a dilute system, i.e. we assume that Nεd � 1. In contrast
to typical approaches to model the interactions, that is, via an interaction-potential term in the
spatial Langevin equation (1a), we instead restrict the domain of definition of the centre-of-
mass coordinates xi(t). We thereby follow a geometric approach to model particle interactions
as established by Bruna and Chapman [62, 63] that already has proven successful in various
contexts [71–73]. These authors also showed in a recent work [64] that within this model they
can derive additional nonlinear cross-diffusion terms for the description of sterically interact-
ing ABPs, compared to more classical treatments of interacting ABPs [74, 75].

The fundamental idea in modelling steric interactions in this geometric sense is that
equation (1a) is defined on a restricted (spatial) domain ΩN

εd = {(x1, . . . ,xN) ∈ ΩN;∀i 6=
j : |xi(t)− xj(t)|⩾ εd} due to the excluded volume. The full model including equation (1b)
therefore is defined on ΛN =ΩN

εd × [0,2π)N. Note that as the angular coordinate is not affected
by the steric interactions, its domain of definition is not restricted. While for the angular
coordinate we assume periodic boundary conditions, the cost of treating the particle inter-
actions by restricting the domain of definition is that we have generated an inner (moving)
boundary as apparent from figure 1(a). At this boundary, particles perform hard elastic col-
lisions similar to the container walls. Both inner and container-wall boundaries therefore are
treated with reflective boundaries. To simplify this problem, we observe that for a dilute sys-
tem finding configurations in the system where three particles are close, or two particles are
close to a container wall is of the orderO(ε2dN

2). Configurations where two particles are close
or one particle is close to the wall, in contrast, are of the orderO(εdN) [62, 63]. It is therefore
reasonable to assume that in a dilute system, two-body collisions dominate the interactions and
we can safely ignore higher-order correlations. As we assume that all particles are identical,
it is sufficient to consider a system with N= 2 particles. In the end we will scale the resulting
interaction contribution by the particle number, which is justified as long as we stay within the
dilute limit.

2.1.2. Joint Fokker–Planck equation. The Fokker-Planck equation (FPE) for the two-body
joint PDF P2(t) = P2(x1,θ1,x2,θ2, t), defined on Λ2, reads [76]

∂

∂t
P2 (t) =∇1 · [DT∇1 − vê(θ1)]P2 (t)+

∂

∂θ1

[
DR

∂

∂θ1
−ω

]
P2 (t)

+∇2 · [DT∇2 − vê(θ2)]P2 (t)+
∂

∂θ2

[
DR

∂

∂θ2
−ω

]
P2 (t) . (2a)

Here∇i denotes the partial differential vector operator with respect to the position of particle
i ∈ {1,2}. The reflective boundary condition reads

n1 · [DT∇1 − vê(θ1)]P2 (t)+ n2 · [DT∇2 − vê(θ2)]P2 (t) = 0, (2b)

valid on ∂Λ2 = ∂Ω2
εd = ∂Ω2 ∪Scoll, where Scoll = {(x1,x2) ∈ Ω2; |x1(t)− x2(t)|= εd} is the

so-called (inner) collision surface. For an illustration see figure 1(b). ni in equation (2b) is
the outward unit normal vector of disk i. Note that ni = 0 for xj ∈ ∂Ω2 for (i, j) = (1,2) and
(2, 1) due to particle conservation, as well as n1 =−n2 on Scoll, due to elastic collisions of
particles. For the angular coordinate equation (2a) is supplemented with the periodic boundary
condition

P2 (θi = 0) = P2 (θi = 2π) . (2c)

It is convenient to use the structural similarities of the spatial and angular coordinates and
write equation (2a) in terms of joint variables χi = (xi,θi). The diffusion coefficients form
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a diffusion matrix D= diag(DT,DT,DR) and the joint drift reads f(θi) = (vê(θi),ω)T. The
FPE (2a) written in the joint variables becomes

∂

∂t
P2 (t) =∇χ1 · [D∇χ1 − f(θ1)]P2 (t)+∇χ2 · [D∇χ2 − f(θ2)]P2 (t) , (3)

valid on Λ2. We here use the joint partial differential operator ∇χi = (∇i,∂/∂θi)
T.

We are interested in analytically capturing the effects of particle collisions on the one-body
diffusive behaviour. Therefore, we aim at deriving an effective description for the full one-body
PDF p(x1,θ1, t) = p(χ1, t), which is defined as

p(χ1, t) =
ˆ
Λ(χ1)

dχ2 P2 (t) =
ˆ 2π

0
dθ2

ˆ
Ω\Bεd (x1)

dx2 P2 (t) , (4)

where we take particle one to be the test particle of interest. The area Λ(χ1) of integration is
given by all allowed configurations for the second particle to be placed everywhere apart from
the excluded volume created by the first particle, i.e. Λ(χ1) = Ω \Bεd(x1)× [0,2π), where
Bεd(x1) is the disk of radius εd centred at x1.

2.2. Effective one-body description

In this section, we perform the integration to arrive at an effective one-body description and
encounter that the effect of particle collisions results in a so-called collision integral. We solve
this integral by the method of matched asymptotic expansions and provide the effective one-
body description. This section follows [64] and adapts it to ACPs to review and introduce the
geometric method to deal with particle interactions to the reader.

2.2.1. The collision integral. Integrating equation (2a) over the reduced configuration space
Λ(χ1) results in

∂

∂t
p(χ1, t) =

ˆ
Λ(χ1)

dχ2 ∇χ1 · [D∇χ1 − f(θ1)]P2 (t)

+

ˆ
Λ(χ1)

dχ2 ∇χ2 · [D∇χ2 − f(θ2)]P2 (t) . (5)

We can easily evaluate the second integral, in which integration and differentiation are with
respect to the same variable. Using the divergence theorem and applying the boundary condi-
tions of equations (2b) and (2c), we find
ˆ
Λ(χ1)

dχ2 ∇χ2 · [D∇χ2 − f(θ2)]P2 (t)

=

ˆ 2π

0
dθ2

ˆ
∂Bεd (x1)

dS2 n2 · [DT∇1 − vê(θ1)]P2 (t) , (6)

where dS2n2 is the outward surface element of x2 and we used that n1 =−n2 on ∂Bεd(x1)
and n1 = 0 for x2 ∈ ∂Ω.

The first integral in equation (5) cannot be evaluated that simply since integration and dif-
ferentiation are with respect to different particle labels. Instead, we have to use the Reynolds
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transport theorem extended to spatial variation of integrals [77, 78]. Together with an addi-
tional use of the divergence theorem this results in

ˆ
Λ(χ1)

dχ2 ∇χ1 · [D∇χ1 − f(θ1)]P2 (t) =∇χ1 · [D∇χ1 − f(θ1)]p(χ1, t)

−
ˆ 2π

0
dθ2

ˆ
∂Bεd (x1)

dS2 n2 · [DT (2∇1 +∇2)+ vê(θ1)]P2 (t) . (7)

For details of this calculation, see the appendix. We combine this integral with equation (6)
and find the effective equation for the full one-body PDF p(χ1, t) according to equation (5) as

∂

∂t
p(χ1, t) =∇χ1 · [D∇χ1 − f(θ1)]p(χ1, t)

−DT

ˆ 2π

0
dθ2

ˆ
∂Bεd (x1)

dS2 n2 · (∇1 +∇2)P2 (χ1,χ2, t) . (8)

In analogy to kinetic theory [67], we refer to this integral as the collision integral and denote
it by I(χ1, t). It captures the effect of two-body hard-disk collisions on a probabilistic level. To
evaluate this integral, we have to find an expression for the joint PDF P2(χ1,χ2, t) in terms of
the one-body PDF p(χ1, t), similar to the classical closure problem in kinetic theory, known as
the BBGKY hierarchy. This relation will be specifically relevant in regions where the particles
are close, andwhere evaluating the collision integral will contribute to the effective description.

2.2.2. Matched asymptotic expansion. We aim at an approximation for P2 via the method
of matched asymptotic expansion [62–64, 71, 79]. We can suppose that when the particles are
far apart they are independent, given the hard-disk nature of the interaction. In this so-called
outer region, we define the outer joint PDF as Pout(χ1,χ2, t) = P2(χ1,χ2, t) and due to the
independence argument we find that

Pout (χ1,χ2, t) = p(χ1, t) p(χ2, t)+ εdP
out
(1) (χ1,χ2, t)+O

(
ε2d
)
. (9)

Note that Pout
(1) is a function denoting the corrections at first order O(εd) to the independence

argument [80].
In contrast, when the two particles are close, the particles are correlated due to interac-

tions and we perform a variable change in this so-called inner region. We fix particle one and
measure the distance to this particle with respect to εd, see figure 2. The coordinate change
reads as (χ1,x2,θ2) 7→ (χ1,x1 + εdx,θ1 + θ). The inner PDF is defined as Pin(χ1,x,θ, t) =
P2(χ1,χ2, t). Rewriting the two-particle problem into inner coordinates, we find

ε2d
∂

∂t
Pin = 2DT ∇2

xP
in + εd∇x · [v(ê(θ1)− ê(θ1 + θ))− 2DT ∇x1 ]P

in

+ ε2d∇x · [DT ∇x − v ê(θ1)]Pin + ε2d

[
DR

(
∂

∂θ1
− ∂

∂θ

)2

−ω
∂

∂θ1

]
Pin. (10a)

The no-flux boundary condition then translates into inner coordinates as

2DT x ·∇xP
in = εdx · [DT ∇x1 − v(ê(θ1)− ê(θ1 + θ))]Pin, (10b)

which is valid on the collision surface Scoll defined in inner coordinates by {x ∈ R2; |x|= 1}.
When formulating the problem in inner coordinates, we have an additional boundary condition,
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Figure 2. The description of the problem changes from a particle-focused to a fixed-
particle perspective. The second particle is measured in relative units. Technically we
change from a description of (x1,θ1) for particle one and (x2,θ2) for particle two in (a) to
a description of (x1,θ1) for the effectively fixed particle one and the relative coordinate
(x1 + εdx,θ1 + θ) for particle two in (b). One advantage of this coordinate change is
that the collision surface in the new coordinates is given by the condition |x|= 1.

which is replacing the otherwise implicit natural boundary condition on P2, i.e. lim|xi|→∞P2 =
0, i ∈ {1,2}. In the framework of the matched asymptotic expansion, this condition implies
that the inner PDF has to match the outer PDF as |x| →∞. An expansion of the outer solution
in inner coordinates gives

Pout (χ1,χ2, t)=p p
+ + εd

(
p x ·∇x1p

+ +Pout,+
(1)

)
+O

(
ε2d
)
, (10c)

where we have introduced the shorthand notations p= p(χ1, t), p+ = p(x1,θ1 + θ, t) and
Pout,+
(1) = Pout

(1)(χ1,x1,θ1 + θ, t) [64]. Expanding the inner solution in powers of εd, Pin=Pin
(0) +

εdPin
(1) +O(ε2d), the zeroth-order inner problem becomes

0= 2DT ∇2
xP

in
(0), (11a)

0= 2DT x ·∇xP
in
(0), on |x|= 1, (11b)

Pin
(0) ∼ pp+, as |x| →∞, (11c)

with the straight-forward solution

Pin
(0) = pp+. (12)

Note here, that Pin
(0) is no function of the separation coordinate x.

Before we can write the first-order inner problem, we note from equation (10a), that at order
O(εd), we have that

0= 2DT ∇2
xP

in
(1) + εd∇x · [v(ê(θ1)− ê(θ1 + θ))− 2DT ∇x1 ]P

in
(0)

= 2DT ∇2
xP

in
(1), (13)

8
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as Pin
(0) is no function of the separation variable x. Taking this into account, the first-order inner

problem reads

0= 2DT ∇2
xP

in
(1), (14a)

x ·∇xP
in
(1) = x ·A(χ1,θ, t) , on |x|= 1, (14b)

Pin
(1) ∼ x ·B(χ1,θ, t)+Pout,+

(1) , as |x| →∞, (14c)

where

A(χ1,θ, t) =
1

2DT

(
DT ∇x1

(
pp+

)
− v(ê(θ1)− ê(θ1 + θ))pp+

)
, (15)

B(χ1,θ, t) = p ∇x1p
+. (16)

The solution can be obtained straightforwardly and is given by [62, 63, 73, 77]

Pin
(1) = a+Pout,+

(1) + x ·B− x
|x|2

· (A−B) , (17)

where a is an arbitrary integration constant. According to the expansion ansatz Pin ∼ Pin
(0) +

εdPin
(1) +O(ε2d) for the inner PDF, we thus found that

Pin = pp+ + εdx · p ∇x1p
+ − εd

x
2|x|2

·
[
p+ ∇x1p− p ∇x1p

+

− v
DT

(ê(θ1)− ê(θ1 + θ))pp+
]
+ εd

(
a+Pout,+

(1)

)
+O

(
ε2d
)
. (18)

2.2.3. Evaluation of the collision integral. We now use this approximate inner solution to
evaluate the collision integral. In inner coordinates, this is given by

I(χ1, t) = εdDT

ˆ 2π

0
dθ
ˆ
|x|=1

dSx x ·∇x1P
in (χ1,x,θ, t) , (19)

where we used that nx =−x on the collision surface Scoll. Using the inner solution of
equation (18), the collision integral becomes

I(χ1, t) = εdDT

ˆ 2π

0
dθ

[
∇x1

(
pp+

)]
α

ˆ
|x|=1

dSx xα

+ ε2dDT

ˆ 2π

0
dθ

[
∇x1P

out,+
(1)

]
α

ˆ
|x|=1

dSx xα

+ ε2dDT

ˆ 2π

0
dθ

[
∇x1

(
p∇x1p

+
)
α

]
β

ˆ
|x|=1

dSx xαxβ

− ε2d
DT

2

ˆ 2π

0
dθ

[
∇x1

(
p+ ∇x1p− p ∇x1p

+
)
α

]
β

ˆ
|x|=1

dSx
xαxβ
|x|2

− ε2d
v
2

ˆ 2π

0
dθ [ê(θ1)− ê(θ1 + θ)]α

[
∇x1

(
pp+

)]
β

ˆ
|x|=1

dSx
xαxβ
|x|2

(20)
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where we introduced the Einstein convention, i.e. that the sum over double indices is impli-
cit: xαxα =

∑2
α=1 xαxα. There are two types of integrals appearing in equation (20), namely,

an integral of an outer unit normal vector over the whole unit sphere:
´
|x|=1 dSx xα = 0, by

geometrical insight; andˆ
|x|=1

dSx
xαxβ
|x|2

=

ˆ
|x|=1

dSx xαxβ = π δαβ , (21)

valid in two dimensions.
As θ1 is independent of θ and kept constant for the variation of θ, we can define a new

variable θ̃ = θ1 + θ and use it to integrate out the θ-dependence in equation (20). Therefore,
we define the mean particle PDF

ϱ(x, t) =
ˆ 2π

0
dθ̃ p(x, θ̃, t), (22)

and the polarisation

σ (x, t) = 2
ˆ 2π

0
dθ̃ p(x, θ̃, t) ê(θ̃), (23)

as the zeroth and first-order moment of the full one-body PDF, respectively. Note the factor
of 2 in the definition of the polarisation, which is necessary for consistency later on. Thus, the
collision integral becomes

I(χ1, t) = ε2d
π

2
∇x1 ·

[
3DTp ∇x1ϱ−DTϱ ∇x1p+ v

(
ê(θ1)ϱ−

σ

2

)
p
]
, (24)

where ϱ= ϱ(x1, t), σ = σ(x1, t), and, as a reminder, p= p(x1,θ1, t).
As expected, the dependence on the separation coordinates x and θ vanished, since we

integrated out the effect of the second particle on the first. Thus, we can back-transform into
the original variables and then drop the index in the notation (x1,θ1) 7→ (x,θ), similarly for
the operator∇1 7→ ∇. We insert the evaluated collision integral into equation (8) and find the
effective time-evolution equation for the full one-body PDF p. This equation is valid for two
hard-interacting particles. As introduced in the beginning, in the dilute system of N particles,
we can safely assume that two-particle collisions dominate any higher-order correlations. The
tagged particle can have (N− 1) inner regions with each of the remaining particles under this
assumption. It is thus sufficient to multiply the collision integral by the factor of (N− 1) to
account for the interaction effect in the effective, dilute one-body description.

2.2.4. Effective one-body equation. We introduce the dimensionless parameter ϕ =
ε2dπ(N− 1)/4, which for large N approximately equals the area fraction of the particles. We
then write the obtained time-evolution equation for the full one-body PDF p= p(x,θ, t) as

∂

∂t
p=−v ∇· [(1− 2ϕϱ) ê+ϕσ]p+

∂

∂θ

[
DR

∂

∂θ
−ω

]
p

+DT ∇· [(1− 2ϕϱ) ∇p+ 6ϕp ∇ϱ] , (25)

valid in the dilute limit, i.e. ϕ � 1. Without the effect of chirality (ω= 0) this equation was
recently derived in [64] for ABPs. When compared with alternative approaches, this system-
atic derivation of the one-body description results in additional cross-diffusion terms (∝ ϱ∇p,
∝ p∇ϱ). These terms were not reported in, e.g., literature on phenomenological approaches
[74, 75], works relying on approximations of the pair correlation function [57, 81], or classical

10
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dynamical density functional theory [82, 83]. These cross-diffusion terms, however, become
specifically important when dealing with different particle labels, and thus accounting for
particle-identity in the effective description [62, 73]. Further, recent work shows that for ABPs,
equation (25) forms a well-posed problem for which a stationary state exists [84].

In the context of phase-separating active matter, typically effective self-propulsion velocit-
ies v(ϱ) are introduced [18, 85] and constitute an essential theoretical trick to observe phase
separation in purely repulsive active systems [65]. To the lowest order in density, they are
typically of the form of v(ϱ) = v0(1− aϕϱ)(v0 = const) which was also derived using lin-
ear response theory [86]. The reason is simple: in regions with many particles, the effective
swim speed must be reduced. It is interesting that we naturally obtain this form in the geo-
metric integration procedure for hard interactions, and we can constitute that a= 2 for steric
interactions.

2.3. Hierarchy of hydrodynamic equations

We now project the time-evolution equation for the full one-body PDF p(x,θ, t) on its angular
modes, where the zeroth-order mode is given by the mean particle PDF ϱ(x, t). This procedure
generates a hierarchy of coupled partial differential equations for the time evolution of the
modes. We analyse these equations to provide a footing to systematically close the hierarchy
in the next section.

2.3.1. Expansion in harmonic modes. To overcome the angular dependence of the full one-
body PDF, we expand the full one-body PDF in eigenfunctions of the rotation operator ∂2/∂θ2

in equation (25). This results in a Fourier expansion, in which modes of order n ∈ N0 have
eigenvalue −n2 in two dimensions. This expansion can be brought into the form

p(x,θ, t) =
1
2π

(ϱ(x, t)+σ (x, t) · ê(θ)+Q(x, t) : ê(θ)⊗ ê(θ)+Υ(θ)) , (26)

whereQ : ê⊗ ê= Qαβ êβ êα denotes the full contraction with the outer product ê⊗ ê, andΥ(θ)
refers to higher order modes. Notably, higher order (outer) products of the self-propulsion
vector ê(θ) = (cos(θ),sin(θ))T naturally appear as modes in this expansion. This expansion is
also known as a Cartesian multipole expansion [87] and finds wide use in the theory of liquid
crystals [88]. Note that there exists an equivalent approach, as other works in active matter use
an angular multipole expansion at this stage [25, 65, 89], where the secondmode is replaced by
(ê(θ)⊗ ê(θ)− 1/2), where 1 denotes the identity tensor. The two expansions are equivalent,
as Q is a traceless object, see below.

The coefficients of the expansion are given by the mean particle PDF ϱ(x, t) (zeroth-order
mode), as defined above in equation (22), the mean polarisation σ(x, t) (first-order mode),
as defined above in equation (23), and the mean nematic order tensor (second-order mode),
defined as

Q(x, t) = 4
ˆ 2π

0
dθ p(x,θ, t)

(
ê(θ)⊗ ê(θ)− 1

2

)
. (27)

Note that due to the similarity with hydrodynamic theories, the coefficients are sometimes
referred to as hydrodynamic coefficients, the hierarchy created by them as a hydrodynamic
hierarchy [65, 69].

The inner product on the unit-sphere is defined in the standard way as

〈f(θ) ,g(θ)〉=
ˆ 2π

0
dθ f(θ)g(θ) , (28)

11
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for two functions f and g. The modes of the Cartesian multipole expansion, {ên;n ∈ N0}, form
an orthogonal basis with respect to this scalar product. Therefore, we can project the full one-
body PDF p(x,θ, t) onto the modes and obtain the hydrodynamic coefficients

〈p(x,θ, t) ,1〉= ϱ(x, t) , (29a)

〈p(x,θ, t) , ê(θ)〉= 1
2
σ (x, t) , (29b)

〈p(x,θ, t) , ê(θ)⊗ ê(θ)〉= 1
4
Q(x, t) . (29c)

2.3.2. Time-evolution of modes. Using the orthogonality of modes, we can project the time-
evolution equation for the full one-body PDF, equation (25), on each mode to obtain a time-
evolution equation for the corresponding hydrodynamic coefficient. Projecting equation (25)
on the zeroth-order mode, we obtain a time-evolution equation of the mean particle PDF ϱ,
which is given by

∂

∂t
ϱ(x, t) = DT ∇α [(1+ 4ϕ ϱ(x, t))∇αϱ(x, t)]−

v
2
∇ασα (x, t) . (30)

The mean particle PDF therefore obeys a continuity equation. This is expected on physical
grounds as ϱ is a conserved quantity. Specifically, this implies that ϱ is a slow variable, i.e. a
density perturbation of scale λ relaxes on a time scale which diverges as λ→∞. This obser-
vation will be confronted with the time-evolution equation for the higher modes below. We
further observe that the equation for the mean particle PDF needs an explicit input from the
polarisationσ. This coupling is induced by the activity v in the model and persist for all modes,
which generates a hierarchy. Formally this hierarchy is similar to the famed BBGKY hierarchy
of kinetic theory [67], where also higher order modes implicitly alter the time-evolution of the
mode in focus.

Projecting equation (25) onto the first order mode, we obtain a time-evolution equation for
the mean polarisation σ, which is given in component-form by

∂

∂t
σα (x, t) = DT ∇β [(1− 2ϕ ϱ(x, t))∇βσα (x, t)+ 6ϕ σβ (x, t) ∇αϱ(x, t)]

− v ∇β

[
(1− 2ϕ ϱ(x, t))

(
Qβα (x, t)

2
+ ϱ(x, t) δβα

)
+ ϕ σβ (x, t)σα (x, t)

]
−DR Γαβσβ (x, t) . (31)

Again, we observe that the time-evolution equation for the mean polarisation needs both input
from themean particle density ϱ as well as from the nematic order tensorQ.We further observe
that in contrast to the time evolution of themean particle density the structure of this equation is
different.While ϱ obeys a continuity equation, equation (31) has a sink term:−DR Γαβσβ(x, t).
The polarisation, and as we will see, all higher modes therefore are not conserved quantities,
and their dynamics are governed by the associated time scale of the sink term. For the mean
polarisation, this time scale is given by τ1 = 1/DR [90, 91].

This fundamental structural difference of the time-evolution equations arises in the θ-term
of the parental equation (25) of the hierarchy. While for the polarisation we find that ê is
the n= 1st-order eigenfunction of the rotation operator with eigenvalue −n2 =−1, for the
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zeroth-order mode ϱ, the eigenvalue is zero. For the chirality-induced term of equation (25),
we observe a similar phenomenon. In the projection procedure, we find that

〈
êα,ω

∂

∂θ
p

〉
= ω

ˆ 2π

0
dθ êα (θ)

∂

∂θ
p(x,θ, t) (32a)

= ωêα p(x,θ, t)

∣∣∣∣2π
0

−ω

ˆ 2π

0
dθp(x,θ, t)

∂

∂θ
êα (θ) (32b)

= εαβ ω

ˆ 2π

0
dθ p(x,θ, t) êβ (θ) (32c)

=
ω

2
εαβ σβ (x, t) , (32d)

where we used that ∂/∂θ êα(θ) =−εαβ êβ(θ) and ε is the Levi-Civita symbol in two dimen-
sions, defined by εxx = εyy = 0 and εxy =−εyx = 1. The boundary term in (32b) vanishes due
to periodicity. When we are dealing with the zeroth-order mode, in contrast, the projection〈
1,ω ∂

∂θp
〉
, reduces to the boundary term and therefore is zero due to periodicity in θ.

The joint effect of the rotation operator and the active chirality is the origin of the sink
term −DR Γαβσβ(x, t), where Γ= (1+κε) and κ= ω/DR is the associated dimensionless
parameter accounting for the effect of chirality. In a more general context, this parameter κ is
also referred to as the oddness parameter [60, 92–94], since under a reversal of the direction
of chirality, ω →−ω, κ changes sign and therefore switches the off-diagonal elements of the
tensor Γ→ ΓT.

We find the time-evolution equation for the nematic order tensor from projecting
equation (25) on the second order mode ê⊗ ê

∂

∂t
Qαβ(x, t) = DT ∇γ [(1− 2ϕ ϱ(x, t))∇γQαβ(x, t)+ 6ϕ Qαβ(x, t) ∇γϱ(x, t))]

− v∇γ [(1− 2ϕ ϱ(x, t))Aαβγδ σδ(x, t)+ϕ σγ(x, t)Qαβ(x, t)+O(Υ)]

− 4DR Γ̃αγQγβ(x, t). (33)

Here Aαβγε = (δαγδβε + δαεδβγ − δαβδγε)/2 and Γ̃= (1+κε/2) again accounts for the
chirality. The structural similarities of this equation to the polarisation equation are that
(i) equation (33) couples to neighbouring modes in the hierarchy and to the zeroth order
mode ϱ and (ii) the relaxation dynamics of the nematic tensor is governed by the time scale
τ2 = 1/(4DR) induced by the sink term of equation (33). Again we find that Q, as all higher-
order modes, is not conserved. We observe that the relaxation time scale originates in the
eigenvalues of the rotation operator, i.e. the relaxation time scale of the nth mode is given by
τn = τ/n2 = 1/(n2DR), where we denote τ = τ1 = 1/DR as the fundamental time scale and
n⩾ 1.

In principle, the time-evolution equations for all higher-order modes can be found by the
same projection procedure as presented before. This results in an infinite system of coupled
time-evolution equations. To get an analytical, meaningful result from this hierarchy, we have
to close this hierarchy based on physical arguments about negligible contributions from higher-
order modes.
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2.4. Closure of the hierarchy

We proceed to introduce the physical arguments to close the hierarchy by neglecting higher-
order modes. Therefore, this problem naturally amounts to a perturbative analysis of the
hierarchy. As the result of the minimal non-trivial closure scheme, we find an effective diffu-
sion equation for the mean particle density.

2.4.1. Adiabatic approximation. It would be a formidable task to find a general solution for
the nth order hierarchical equation and plug this into the (n− 1)th order equation. By such a
procedure, one aims to identify quasi-irrelevant modes for the effect on the time evolution of
ϱ. But to our best knowledge, such a procedure has never been successfully applied before for
a general order. Instead, it is convenient [5, 25, 57, 66, 69, 95–97] to take advantage of the time
scale separation in the system. The dynamics of the polarisation and all higher-order modes
are governed by their respective time scale τ = τ1 = 1/DR induced by rotational diffusion.
τ then reasonably can be assumed to be much smaller than the relaxation time scale of the
density, which can be arbitrarily large. Therefore, formally we will investigate the limit of
τ → 0, called adiabatic or quasi-stationarity approximation, since we adiabatically enslave
the behaviour of higher order modes to the mean particle density and assume an instantaneous
response to changes.

In some approaches, the adiabatic approximation is also handled differently. Especially in
the context of phase separations, the nematic order tensor is assumed to be an adiabatic vari-
able, but the polarisation is treated as a dynamical variable. This appears in active Brownian
systems [69, 98, 99], but also in active chiral systems [95, 100]. As explicitly shown there,
such an ansatz can qualitatively improve the agreement of the analytical prediction with the
numerical data, but it can rarely be treated fully analytically when aiming for the effect of
higher-order modes on the relaxation of the mean particle PDF. In related hierarchy-closure
problems, nevertheless, an analytic treatment of more than one dynamical variable and a shift
of the adiabatic assumption to second order has recently been applied successfully in the frame-
work of dynamical density functional theory [101, 102]. Heremany-body correlation functions
form an analogous hierarchical problem, but the approach is analytically rather involved and
it is not obvious how it can be applied to our situation. We, therefore, restrict our analysis to
the basic situation and assume all higher-order modes to be adiabatic.

Wewill demonstrate the adiabatic approximation for the polarisation equation, but the same
arguments hold true for all higher-order modes. Pointing out the essentials, equation (31) can
be written as

∂

∂t
σα +

1
τ
Γαβσβ = fα (ϱ,σ,Q) , (34)

where f denotes the leftover gradient-structure terms of equation (31). We can solve this
equation formally by

σα (x, t) = e−Γαβ t/τσβ (x,0)+
ˆ t

0
dt ′ e−Γαβ |t−t ′|/τ fβ (ϱ,σ,Q) , (35)

where ϱ,σ andQ have to be evaluated at t′ inside the integral. The integrating factor e−Γαβ t/τ

is defined as the usual matrix-exponential and can be reformulated as

e−Γαβ t/τ = e−t/τ
(
cos

(
κ
t
τ

)
δαβ − sin

(
κ
t
τ

)
εαβ

)
, (36)
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using the anti-symmetry property of Γ. The active chirality (κ∝ ω) therefore res-
ults in oscillations, which decay exponentially on the typical time scale τ . The expo-
nential factor further allows us to write

´∞
0 dt exp(−Γαβ t/τ) = τΓ−1

αβ , which together
with limτ→0 exp(−Γαβ |t|/τ) = 0αβ for |t|> 0 results in limτ→0Γαγ exp(−Γγβ |t|/τ) =
2τ δαβδ(t). Here the factor 2 originates from the integrals taken to be for positive times only.
The formal solution of equation (35) evaluated in the limit of τ → 0 thus reads

lim
τ→0

σα (x, t) = τΓ−1
αβ fβ (ϱ,σ,Q) , (37)

where now ϱ,σ and Q are functions of t. The corresponding adiabatic approximation for the
nematic order tensor similarly reads

lim
τ→0

Qαβ (x, t) = 4τ Γ̃−1
αγ gγβ (ϱ,σ,Q,Υ) , (38)

where g accounts for the leftover terms of equation (33) and the modes again are evaluated
at t.

2.4.2. Closure of the hierarchy via perturbation approach. The adiabatic approximation as
such does not suffice to close the hierarchy. The coupling to higher ordermodes in the hierarchy
for each mode enters via the activity-induced term −v ∇· [(1− 2ϕ ϱ) êp+ 2ϕ σp] from the
parental equation (25). This coupling already takes place in interaction-free considerations
(ϕ= 0), as it specifically arises due to the appearance of the self-propulsion vector and first-
order mode ê. To effectively close the hierarchy we therefore have to argue that higher-order
modes can be neglected as compared to lower ones. This consequently turns the closure of the
hierarchy into a perturbation problem.

We introduce a dimensionless time via the natural time scale of the system τ and dimen-
sionless space via the mean-particle distance ldist = L/

√
ϕ. The two natural physical length

scales in the system are the persistence length lpers = v/DR induced by activity and the diffu-
sion length scale ldiff =

√
DT/DR induced by thermal equilibrium fluctuations [64].We denote

the parameters, which arise when comparing the physical length scales with the dimensionless
length scale ldist as εp and εD and observe the following relation between them:

εp =
lpers
ldist

, εD =
ldiff
ldist

, and
εp
εD

=
lpers
ldiff

=
v√
DTDR

= Pe. (39)

Here Pe stands for the Péclet number, which measures the relation of activity-induced self-
propulsion versus thermally induced displacement.

Here we take εp and εD to be two independent perturbation parameters. We show that
depending on their relation to the Péclet number, different field theoretic descriptions can
be obtained. The adiabatic assumption thereby justifies independent small active and passive
length scales, since both lpers ∝ τ and ldiff ∝ τ . This treatment is in contrast to previous work,
where this subtle point of taking both parameters small and not only their ratio (the Péclet
number) was often left implicit or was overlooked.

εp and εD compare the active and passive physical length scales in the system to the dimen-
sionless length scale, which we choose as the mean particle-particle distance. This is a careful
choice, since the other natural length scales in the system, the particle diameter d (which also
equals the interaction length scale for hard systems) and the typical box size L were too small
and too big, respectively, and already form the small parameter ϕ ∝ (d/L)2. Together with the
assumption of a dilute system, the mean particle-particle distance appears as the correct length
scale interpolating between a too-narrow or too-coarse-grained view on the dynamics.
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The aforementioned analysis reveals that the coupling to higher-order modes takes place in
the activity-induced term at each order. To close the hierarchy, we therefore need to decide up
to which order we consider the parameter εp. For this work, and referring to what is typical
in the literature [25, 57, 66, 69, 95–97], we truncate the hierarchy at order O(ε3p). We thus
ignore contributions from higher modes such as Υ in the nematic equation. Together with the
adiabatic assumption equation (33) for the nematic tensor thus becomes

Qαβ(x, t) =
εD
4
Γ̃−1
αδ∇γ [(1− 2ϕ ϱ(x, t))∇γQδβ(x, t)+ 6ϕ Qδβ(x, t) ∇γϱ(x, t))] . (40)

Equation (40) constitutes a fixed-point problem for Q. We observe that equation (40) has
no sink term and therefore has a definite, perturbation-free solution given by Q= 0. This is
a generic observation: closing the hierarchy at order O(εnp) results in the fixed-point problem
for the (n− 1)th order mode to only have the trivial solution.

2.4.3. Effective diffusion equation. In the following, we investigate the resulting time-
evolution equations for the density for different orders of truncation in the polarisation
equation. We start with the first non-trivial case by allowing for terms of order O(ε1p) for
the polarisation, consistent with the choice of globally truncating the hierarchy at order. Here,
the adiabatic polarisation reads

σα =−εp Γ
−1
αβ [(1− 4ϕ ϱ)∇βϱ] . (41)

Note that since the diffusive parameter εD originates from a Laplace operator it only appears
at even powers. Thus, there is no term at order O(εpεD) that could be included at this closure
of the polarisation. The mean particle density from equation (30) at this order becomes

∂

∂t
ϱ(x, t) = ε2D ∇α [(1+ 4ϕ ϱ(x, t)) ∇αϱ(x, t)]

+
ε2p
2

1
1+κ2

∇α [(1− 4ϕ ϱ(x, t)) ∇αϱ(x, t)] . (42)

As apparent, the chosen closure scheme results in a time-evolution equation of the mean
particle density at order O(ε2p) and O(ε2D). Now, by comparing the terms under consideration
with the truncated terms we can learn about the regime of validity of equation (42). This gives
us that (i) ε2p � ε3p, which is consistent with our perturbative assumption of εp � 1, but we also

find that (ii) ε2D � ε3p, which tells us that equation (42) is valid in the regime of Pe� 1/ε1/2p .
Together (i) and (ii) do not form a precise upper bound to the Péclet number, in fact it can
be arbitrarily large and therefore an analysis of the microscopic parameters is essential when
using this field-theoretical description.

Equation (42) is written in dimensionless form. Thus we can reintroduce the units of space
and time, i.e. τ for time and ldist for space, compare also relation (39). The time-evolution
equation for the mean density becomes

∂

∂t
ϱ(x, t) =∇·

[(
Deff

T (ϱ)+Deff
A (ϱ)

)
∇ϱ(x, t)

]
. (43)

The time evolution of ϱ at this order thus follows an effective diffusion equation [65, 74,
103], where Deff

T +Deff
A form the interaction-corrected diffusion coefficients due to thermal

and active motion, respectively, and are given by

Deff
T (ϱ) = DT (1+ 4ϕ ϱ(x, t)) , (44a)
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Deff
A (ϱ) = Dω

A (1− 4ϕ ϱ(x, t)) . (44b)

Here DT stands for the thermal (equilibrium) diffusion coefficient, as introduced in
the microscopic Langevin description (1a). Dω

A = D0
A/(1+κ2) = v2/(2DR(1+κ2)) is the

chirality-affected active diffusion coefficient, which describes the ballistic motion.D0
A thereby

is a characteristic of a purely active particle and relates it to the randomisation of the self-
propulsion vector due to rotational diffusion. In accordance with observations in the literature
[103–106], active chirality ω rescales this active diffusion D0

A, as D
ω
A can also be written as

Dω
A = v2DR/(2(ω2 +D2

R)). Remember that κ= ω/DR.
Relations (44a) and (44b) state that hard-core interactions on the one hand enhance the

thermal diffusion and on the other hand reduce the active diffusion. For the passive motion,
this is in accordance with the observation that the collective diffusion, in what sense Deff

T (ϱ)
also can be interpreted, gets enhanced by steric interactions [73, 77, 107]. For the active
motion similarly the interaction-reduction of the associated diffusion coefficient Deff

A is no
surprise. It rather can be regarded as an analytic necessity for the strong theory-, simulation-,
and experiment-supported existence of motility-induced phase separations [19, 20, 108–110],
i.e. the phenomenon that purely repulsive active systems can phase-separate as a function of
particle density. This phenomenon is only possible if the associated diffusion process becomes
unstable, i.e. the effective diffusion coefficient can formally turn negative.

2.5. Active Model B +

In this section, we go one step beyond the simplest non-trivial closure approximation by con-
sidering mixed terms of the perturbation parameters. This amounts to a much richer field-
theoretical description but for the price of a much narrower regime of validity. We find that
the dynamics of the mean particle PDF follow the recently introduced AMB+, to which we,
therefore have first-principles access for the parameters. Surprisingly here we find that the
characteristic AMB+ parameters all change sign as a function of chirality.

2.5.1. Effect of mixed perturbation parameters. In this work, we treat both the activity as
well as the thermal diffusion-induced length scales as small compared to the inter-particle
distance. This is justified by the assumption of a dilute system. We are thus formally dealing
with a two-parameter perturbation theory. It is therefore natural that besides arguing for the
smallness of each of the parameters εD � 1 and εp � 1, we also have to specify their relative
size. This is only possible by making a third assumption about the Péclet number, the natural
scale relating the active and passive motion of a tracer.

We already observed from equation (41) that the diffusion length-scale parameter εD only
appears in even powers (due to its origin in the second order Laplace operator). Therefore,
we can go a step further in the truncation scheme, by considering the polarisation up to order
O(ε1pε

2
D). The adiabatic polarisation can self-consistently be obtained from equation (31) at

the desired order to be

σα =−εpΓ
−1
αβ [(1− 4ϕ ϱ) ∇βϱ]

− εpε
2
D

(
Γ−1

)2
αβ

[
∇2

γ − 2ϕ
(
3ϱ ∇2

γ −
(
∇2

γϱ
)
+ 2(∇γϱ) ∇γ

)]
∇βϱ. (45)

We observe here that the higher-order gradient terms of the mean particle density arise together
with a matrix product of the chiral matrix Γ. For an arbitrary vector a, the contraction of the
relevant matrices contributes
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aα Γ−1
αβ aβ =

1
1+κ2

aαaα, (46a)

aα
(
Γ−1

)2
αβ

aβ =
1−κ2

(1+κ2)
2 aαaα, (46b)

where due to the antisymmetric structure ofΓ−1 = (1−κε)/(1+κ2) only the respective diag-
onal elements are relevant in the full contraction.

Inserting this expression for the polarisation into equation (30) for the time-evolution of the
mean particle density ϱ, we obtain

∂

∂t
ϱ(x, t) = ε2D∇α [(1+ 4ϕ ϱ)∇αϱ] +

ε2p
2

1
1+κ2

∇α [(1− 4ϕ ϱ)∇αϱ]

+
ε2pε

2
D

2
1−κ2

(1+κ2)
2∇α

[
∇2

γ − 2ϕ
(
3ϱ∇2

γ −
(
∇2

γϱ
)
+ 2(∇γϱ)∇γ

)]
∇αϱ. (47)

It is now obvious that, to obtain this field-theoretical description for the density compared to
equation (42), we further encounter the mixed term of order O(ε2pε

2
D), which is only possible

if this term is assumed to be much greater then the disregarded terms, e.g. that of orderO(ε3p).
An easy algebraic analysis shows that this is only possible when Pe� εD � 1 due to the
perturbative closure scheme.

2.5.2. Active Model B +. If we reintroduce physical units for space and time, i.e. τ for the
time ldist for the space, compare also relation (39), we can arrange equation (47) in the form

∂

∂t
ϱ(x, t) = a∇2ϱ+ b∇2

(
ϱ2
)
− k0∇4ϱ− k1

[
∇2 (∇ϱ)

2
+ 2∇2

(
ϱ∇2ϱ

)]
+λ∇2 (∇ϱ)

2 − ξ∇· (∇ϱ)
(
∇2ϱ

)
, (48)

where

a= DT +Dω
A , (49a)

b= 2ϕ (DT −Dω
A ) , (49b)

λ= ϕDω
ADT

1−κ2

1+κ2
, (49c)

ξ =−8ϕDω
ADT

1−κ2

1+κ2
, (49d)

k [ϱ] = Dω
ADT

1−κ2

1+κ2
(−1+ 6ϕ ϱ(x, t)) , (49e)

and k[ϱ] = k0 + 2k1 ϱ(x, t). Equation (48) is known as the (deterministic) AMB+ [53–55, 111],
and can be rearranged into the form

∂

∂t
ϱ(x, t) =−∇ ·

[
−∇

(
δF
δϱ

+λ(∇ϱ)
2
)
+ ξ (∇ϱ)

(
∇2ϱ

)]
, (50a)

where

F [ϱ] =

ˆ
dr

(
f0 [ϱ] +

k [ϱ]
2

(∇ϱ)
2
)

(50b)
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is the free-energy functional and f0[ϱ] = a/2 ϱ2 + b/3 ϱ3 is the bulk free-energy density. Note
that typically ϱ ′ = ϱ− ϱMF is taken to be the order parameter, where ϱMF is the mean-field
critical value of the density. If one does so, a term ∝ ϱ3 is forbidden by symmetry in f 0, but
we instead work with the density ϱ itself. Equation (50) was first written down based on phe-
nomenologically accounting for systems with broken detailed-balance to lowest order terms
in [53, 55].

2.5.3. First-principles expressions for field-theoretical parameters. The parameter k[ϱ] in
the free energy is known as the Cahn-Hilliard parameter [112]. When first introduced, this
parameter was the minimal attempt in an equilibrium model to extend the bulk free energy
F to further include density-gradient-induced inhomogeneities into the description. Via this
very successful approach, field theories could nicely capture phase-separation dynamics in
equilibrium models [52, 113]. In the general formulation, k[ϱ] is density-dependent, and a
Taylor expansion to lowest order in the density gives k[ϱ] = k0 + 2k1ϱ. The coefficients k0 and
k1 are found in our model by comparing the first-principles time-evolution equation (47) with
the phenomenological equation of the AMB+ (48). From an equilibrium perspective, it might
appear surprising that from equation (49e) we find that k0 < 0 for a non-chiral system (κ= 0)
and thus also k[ϱ]< 0 to lowest order. In an equilibrium field theory, this would lead to an
unbounded free energy and the non-physical possibility of a system minimising its free energy
by creating more and more interfaces due to phase separation. But for an active field theory
such as theAMB+, the time evolution is not solely governed by a free-energy structure. Further
terms ∝ λ,ξ balance the free-energy governed evolution, and thus equilibrium intuition can
fail. Note also that in our first-principles derivation for active systems k[ϱ]∝ Dω

A , and therefore
this quantity vanishes as the model is approaching an equilibrium situation (Dω

A → 0). Finally,
the observation of k0 < 0 is consistent with other works on the AMB+ [53, 57], but (active)
chirality adds a new perspective, since here k0 and k1 change sign as κ> 1.

The observation, that the coefficients which are induced by activity and interactions
(λ,ξ,k[ϱ]∝ ϕDω

A ) can change their sign as a function of chirality is rather surprising. From the
Langevin dynamics and the integration procedures, we would have not expected that chirality
and interactions could interplay such, that they lead to physical consequences. In the hard-core
interacting scenario the angular coordinate is not altered by the excluded-volume interaction of
the spatial coordinate, and therefore chirality does not affect the time-evolution of the full one-
body PDF beyond the (trivial) interaction-free terms, as can be seen from equation (25). Any
interplay of spatial and angular coordinates is only introduced in the projection on the hydro-
dynamic modes. We can nevertheless qualitatively justify why the change in the behaviour
happens at κ= 1. Similar to the rotational diffusion coefficient, which introduces a time scale
in the system τ = τdiff = 1/DR, the active chirality introduces a time scale as well, namely,
τact = 1/ω. These time scales represent the noise and the deterministic circular contribution to
the active motion of the particle, respectively. Hence the parameter κ= ω/DR = τdiff/τact
measures which contribution is dominating the motion of a particle, similar to what was
recently reported in [105, 114]. That means that κ< 1 corresponds to a system, in which the
diffusive motion dominates the active particle, whereas κ> 1 corresponds to a deterministic-
circular-motion determined motion, see also figure 3. Interestingly, when both effects are of
equal magnitude, λ,ξ,k[ϱ] = 0, the system again behaves as described by the effective diffu-
sion dynamics of equation (43).

The phenomenological parameters λ and ξ represent the active generalisations of equilib-
rium Model B [51] (∂ϱ/∂t=−∇Jeq =∇(δF [ϱ]/δϱ), where ϱ is the conserved order para-
meter, Jeq the equilibrium (deterministic) current and F is the equilibrium free energy). Since
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Figure 3. For ACPs one can define the parameter κ= ω/DR, which is a measure of
active chirality ω versus rotational diffusion DR of the particle. In a related context,
this parameter is known as the oddness parameter [77, 89, 92, 94]. The character-
istic parameters of the AMB+, λ,−ξ and k[ϱ] all scale ∝ (1−κ2)/(1+κ2), see also
equations (49c)–(49e). Thus, they are positive as long as |ω|< DR, i.e. the circular
motion is dominated by diffusion, and are negative for |ω|> DR, i.e. the motion is dom-
inated by activity. Note that the sign ofω accounts for the clockwise or counterclockwise
direction of the active chirality.

this model was constructed on the basic principle of the system to obey detailed-balance, to
describe active matter, this restriction had to be overcome. A first step in the development of
active field theories was the so-called Active Model B (AMB) [85, 115], where λ 6= 0 but ξ= 0.
This model still attracts interest as it represents the first step towards an active field theory [116,
117], but it was shown that even though quantitatively the coexisting liquid and vapour dens-
ities are changed, the AMB cannot report any qualitative changes in the coarsening dynamics
as compared to the known dynamics found by phenomenologically introducing activity in the
Model B [115].

The sought qualitative changes in the phase-separation dynamics of active matter could
thereafter be found by the generalised AMB+ where λ 6= 0 and additionally ξ 6= 0. Similarly
to the AMB, the AMB+ as the most general isotropic model at this order goes beyond the typ-
ical free-energy structure of Model B by λ 6= 0. For the AMB, the λ-term defines a (local) non-
equilibrium chemical potential µneq = δF/δϱ+λ(∇ϱ)2, since the current is still of a gradient
form. For the AMB+ instead the ξ-induced current cannot be put into a gradient structure any-
more and therefore allows for circulating real-space currents∇∧ Jneq ∝ ξ. Further, as a result
of the non-gradient structure of the current, the non-equilibrium chemical potential becomes
non-local [53, 54] and therefore amounts to fundamental differences of AMB and AMB+.
As these studies suggest, this non-locality seems to be a necessary ingredient to describe the
behaviour of active matter from a field theoretical perspective.

Finally, it is interesting to note that as a result of our first principles approach, the AMB+
appears as the most natural choice of an active field theory which relies on an expansion
in terms of density gradients. We observe from equations (49c) and (49d) that λ=−8ξ.
Thus, it is not reasonable to include one but leave out the other parameter in the field- the-
oretical description, similarly to what was pointed out recently [59]. We further observe
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that, as argued phenomenologically, both λ,ξ ∝ DTDω
A , such that the AMB+ reduces to an

interaction-corrected, passive diffusion equation for Dω
A → 0. Interestingly, it also reduces to

the non-equilibrium effective diffusion equation (43) as DT → 0, i.e. when the thermal motion
becomes negligible compared to the activity. Lastly, as expected, λ and ξ are only present in
an interacting system (λ,ξ ∝ ϕ), since they are known to alter the phase-separation dynamics.

3. Conclusion

We here extended a geometric approach [62–64, 73, 77] to deal with particle-particle interac-
tions by restricting the domain of definition of their diffusing centrers. Forbidden overlaps of
the particles correspond to forbidden areas in the domain, creating a configuration space with
inner moving boundaries. Based on that we derived an effective time-evolution equation for
the full one-body PDF. We proceeded by projecting the full one-body PDF onto its angular
modes, which resulted in a coupled hierarchy of hydrodynamic modes. By scrutinising the
underlying assumptions we turned the closure scheme into a perturbation problem and found
effective time-evolution equations (field-theories) for the mean particle density.

One major result of our work is the following. We observed that this procedure provides us
with first-principles access to the otherwise phenomenological parameters of field-theoretical
descriptions of active matter.We find that, beyond an effective diffusive description, the micro-
scopically best justified theory of a continuous model is the AMB+ [53, 55]. This was also
reported in another recent first-principles derivation of the AMB+ for non-chiral ABPs [57].
From a technical point of view, our work unravels the theoretical necessities of the regimes of
validity to obtain such a coarse-grained model for the description of active matter. Specifically,
we find that when neglecting the time evolution of highermodes such as polarisation or nematic
order, in the so-called adiabatic limit, the AMB+model is microscopically justified only in the
limit of low Péclet numbers, i.e. when thermal diffusion dominates active motion. Whether the
microscopic justification for the AMB+ model can be extended to regimes of higher activity
is a subject of future research.

The main prediction of this work is that active chirality has a non-trivial influence on
the dynamics of the mean particle PDF ϱ(x, t). Even though in the simplest version of the
ACP model chirality is not altered by particle interactions (see again the Langevin descrip-
tion in equation (1)) and hence its effect on the full one-body level is rather superficial, it
becomes most prominent when integrating out the angular dependence of the full one-body
PDF p(x,θ, t). We find that an odd tensor [73, 94] Γ= (1+κε) emerges, where chirality
defines the off-diagonal elements κ= ω/DR. Powers of that tensor, and hence chirality, even-
tually, can change the sign of all activity-induced coefficients of the AMB+, λ, and ξ, as well
as the Cahn-Hilliard coefficient k[ϱ]. Restricted to the effective diffusion dynamics similar to
equation (43) the alternative approach of [103] did not report this phenomenon, as their method
to incorporate interactions assumes translational and rotational invariance and therefore can
only treat chirality pertubatively. Whether the sign-change of the coefficients has implications
for the phase-transition dynamics, however, cannot be addressed within our model due to its
restricted validity to regimes away from phase transitions for particles with repulsive interac-
tions. In the regime of validity of our AMB+model, numerical solutions of equation (50) with
the parameters of equation (49) only admit a homogeneous phase, see figure 4.

The systematic analysis presented in this work allows us to further include the effect of
nematic order on the time-evolution of the mean particle PDF, but it would amount to a field-
theoretical description at an even higher order than the AMB+ (which is already at fourth order
in density gradients). The AMB+ was recently shown to be deducible from such a (stable)
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Figure 4. We numerically solve the AMB+ dynamics of equation (50) with the coeffi-
cients given by equation (49) for different times on a periodic two-dimensional lattice
[118].We chose the system parameters for the passive and active diffusivity asDT/D0 =

1, D0
A/D0 = 0.05 rescaled by some reference diffusivity D0, and the volume fraction

as ϕ= 0.1. With this choice of parameters we stay within the regime of validity of

our derived AMB+ dynamics, i.e. Pe=
√

2D0
A/DT ≪ 1 and ϕ≪ 1. Starting from a

random initial distribution, the density quickly relaxes to a homogeneous steady state
ϱ(x, t) = ϱ0 = 0.5, where the white arrows indicate the direction of the normalised dif-
fusive flux (note the different magnitudes of the density variation at different times).
Different regions of active chirality κ= ω/DR only affect the density relaxation at
later times (t= 40,400), as only higher-order density gradient terms of the AMB+ are
affected by the sign-change of the coefficients. In the plots, time is rescaled by the nat-
ural time scale τ = 1/DR and space is measured in units of

√
D0τ .

higher-order model [119], where it was shown that the AMB+ itself is unstable for sufficiently
high order parameters. We suspect a similar behaviour if one performed the corresponding
closure scheme on the level of the nematic order in our theory, which we leave for future
work.

Inspired by a rich behaviour of complex macroscopic phenomena in active matter, an addi-
tional step would be to directly couple the chirality to the spatial interaction of the particles
[120, 121]. Motivated from an orientation-dependent potential of the form ê(θi) · ê(θj) for the
propulsion vectors of particles i and j [122], we could consider additional aligning interactions
together with active chirality from an analytic perspective on the restricted domain resembling
steric interactions. A recent work considered the numerical effects of such alignment for phe-
nomena like motility-induced phase separation and the flocking of ACPs [95].

Data availability statement

In themanuscript, we outline the procedure to generate the numerical data presented in figure 4.
These data are available upon reasonable request, as their creation is fully reproducible with
the details in the manuscript.
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Appendix. Evaluation of integral (7)

In the main text, in equation (7) we are left with evaluating a boundary integral, in which
integration and differentiation are with respect to different particle labels. Hence a use of the
Gaussian divergence theorem is not possible straightforwardly. Instead, we use an extended
version of the Reynolds transport theorem, which usually allows for the time-differentiation
of an integral quantity, where the integration volume V itself is time-dependent V= V(t). For
an arbitrary space- and time-dependent function f = f(x, t), the theorem in this context reads

∂

∂t

ˆ
V(t)

dx f =
ˆ
V(t)

dx
∂f
∂t

+

ˆ
∂V(t)

dSx
(
n · v∂V(t)

)
f, (A.1)

where v∂V(t) = v∂V(t)(x, t) is the velocity of an element of the moving boundary ∂V(t) and
dSx n is the outward area element of the boundary at time t.

This theorem can be extended to cases, in which the integration volume V is space-
dependent (V= V(x), but of a constant shape) and we are interested in taking the divergence
of the integral with respect to that coordinate x. For a vector-valued function f= f(x,y, t), the
extended transport theorem reads

∇x ·
ˆ
V(x)

dy f=
ˆ
V(x)

dy ∇x · f+
ˆ
∂V(x)

dSy ny · f. (A.2)

The proof of this relation can be found in [77]. We will apply this theorem to the reduced con-
figuration space Λ(χ1) = Ω \Bεd(x1)× [0,2π), where the space-dependence is on Bεd(x1),
the disk of radius εd centred at x1. Therefore, only ∂Bεd(x1) contributes a moving boundary,
and hence a boundary integral in equation (A.2). We now apply the extended Reynolds trans-
port theorem to evaluate equation (7). Note here that P2(t) = P2(χ1,χ2, t) for a shortness of
notation. We find the result
ˆ
Λ(χ1)

dχ2 ∇χ1 · [D∇χ1 − f(θ1)]P2 (t) =∇χ1 ·
ˆ
Λ(χ1)

dχ2 [D∇χ1 − f(θ1)]P2 (t)

−
ˆ 2π

0
dθ2

ˆ
∂Bεd (x1)

dS2 n2 · [DT∇1 − vê(θ1)]P2 (t) . (A.3)

The moving boundary only arises in the spatial part of χ1 = (x1,θ1), and thus we are only
left with the spatial part of the diffusion matrix D= diag(DT,DT,DR) and drift term f(θ1) =
(vê(θ1),ω)T. We again apply the extended theorem for the first term in the evaluated integral

∇χ1 ·
ˆ
Λ(χ1)

dχ2 [D∇χ1P2 (t)] =∇χ1 ·D∇χ1

ˆ
Λ(χ1)

dχ2 P2 (t)

−∇1 ·
ˆ 2π

0
dθ2

ˆ
∂Bεd (x1)

dS2 n2 [DT P2 (t)] . (A.4)
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We are left with evaluating the originating boundary integral combined with the boundary
integral of equation (A.3). Therefore we jointly use the divergence theorem and the transport
theorem, paying respect to the specific integration volumes in the following steps. First we
apply the divergence theorem on the volume Ω \Bεd(x1) ‘backwards’,

−∇1 ·
ˆ 2π

0
dθ2

ˆ
∂Bεd (x1)

dS2 n2 [DT P2 (t)] =−DT∇1 ·
ˆ
Λ(χ1)

dχ2 ∇2P2 (t)

+DT∇1 ·
ˆ 2π

0
dθ2

ˆ
∂Ω

dS2 n2P2 (t) . (A.5)

Using the generalised transport theorem, the first integral on the right-hand side of
equation (A.5) can be rewritten as

−DTT∇1 ·
ˆ
Λ(χ1)

dχ2 ∇2P2 (t) =−DT

ˆ
Λ(χ1)

dχ2 ∇1 ·∇2P2 (t)

−DT

ˆ 2π

0
dθ2

ˆ
∂Bεd (x1)

dS2 n2 ·∇2P2 (t) . (A.6)

Note again here that only Bεd(x1) is space-dependent and thus contributes a boundary term in
the generalised transport theorem. Since integration and differentiation are with respect to the
same particle label in the first integral on the right-hand side of equation (A.6), we can apply
the divergence theorem ‘forwards’

−DT

ˆ
Λ(χ1)

dχ2 ∇1 ·∇2P2 (t) =−DT

ˆ 2π

0
dθ2

ˆ
∂Ω

dS2 n2 ·∇1P2 (t)

−DT

ˆ 2π

0
dθ2

ˆ
∂Bεd (x1)

dS2 n2 ·∇1P2 (t) . (A.7)

Note here that when applying the divergence theorem the box-boundary ∂Ω contributes a sur-
face integral. As the box-boundary does not explicitly depend on x1, the partial differential
operator ∇1 can be moved outside the integral (without creating another boundary term) and
we observe that it cancels with the second integral on the right-hand side of equation (A.5).
We are thus left with the two integrals on the inner boundary ∂Bεd(x1) and find that

−∇1 ·
ˆ 2π

0
dθ2

ˆ
∂Bεd (x1)

dS2 n2 [DT P2 (t)]

=−DT

ˆ 2π

0
dθ2

ˆ
∂Bεd (x1)

dS2 n2 · (∇1 +∇2)P2 (t) . (A.8)

The rewriting of the boundary term of equation (A.4) finally enables us to combine the
result with the term in equation (A.3). Using the definition of the full one-body PDF p(χ1, t) =´
Λ(χ1)

dχ2 P2(χ1,χ2, t), equation (A.3) thus becomes
ˆ
Λ(χ1)

dχ2 ∇χ1 · [D∇χ1 − f(θ1)]P2 (t) =∇χ1 · [D∇χ1 − f(θ1)]p(χ1, t)

−
ˆ
∂Bεd (x1)

dS2 n2 [DT (2∇1 −∇2)+ vê(θ1)]P2 (t) , (A.9)

which constitutes the result of equation (7) in the main text.

24



J. Phys. A: Math. Theor. 57 (2024) 265002 E Kalz et al

ORCID iDs

Erik Kalz https://orcid.org/0000-0003-3294-7365
Abhinav Sharma https://orcid.org/0000-0002-6436-3826
Ralf Metzler https://orcid.org/0000-0002-6013-7020

References

[1] van Teeffelen S and Löwen H 2008 Phys. Rev. E 78 020101
[2] Mijalkov M and Volpe G 2013 Soft Matter 9 6376–81
[3] Volpe G, Gigan S and Volpe G 2014 Am. J. Phys. 82 659–64
[4] Löwen H 2016 Eur. Phys. J. Spec. Top. 225 2319–31
[5] Sevilla F J 2016 Phys. Rev. E 94 062120
[6] Schimansky-Geier L, Mieth M, Rosé H and Malchow H 1995 Phys. Lett. A 207 140–6
[7] Schweitzer F, Ebeling W and Tilch B 1998 Phys. Rev. Lett. 80 5044–7
[8] Ebeling W, Schweitzer F and Tilch B 1999 BioSystems 49 17–29
[9] Romanczuk P, Bär M, Ebeling W O, Lindner B and Schimansky-Geier L 2012 Eur. Phys. J. Spec.

Top. 202 1–162
[10] Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323–45
[11] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A 2013

Rev. Mod. Phys. 85 1143–89
[12] Jülicher F, Grill S W and Salbreux G 2018 Rep. Prog. Phys. 81 076601
[13] Ebbens S J and Howse J R 2010 Soft Matter 6 726–38
[14] Buttinoni I, Volpe G, Kümmel F, Volpe G and Bechinger C 2012 J. Phys.: Condens. Matter

24 284129
[15] Feldmann D, Arya P, Lomadze N, Kopyshev A and Santer S 2019 Appl. Phys. Lett. 115 263701
[16] Elgeti J, Winkler R G and Gompper G 2015 Rep. Prog. Phys. 78 056601
[17] ShaebaniMR,Wysocki A,Winkler R G, Gompper G and Rieger H 2020Nat. Rev. Phys. 2 181–99
[18] Tailleur J and Cates M E 2008 Phys. Rev. Lett. 100 218103
[19] Fily Y and Marchetti M C 2012 Phys. Rev. Lett. 108 235702
[20] Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C and Speck T 2013 Phys. Rev. Lett.

110 238301
[21] Palacci J, Sacanna S, Steinberg A P, Pine D J and Chaikin P M 2013 Science 339 936–40
[22] Speck T, Bialké J, Menzel A M and Löwen H 2014 Phys. Rev. Lett. 112 218304
[23] Cates M E and Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6 219–44
[24] Schnitzer M J, Block S M, Berg H C and Purcell E M 1990 Symp. Society for General

Microbiology vol 46 pp 15–33
[25] Vuijk H D, Merlitz H, Lang M, Sharma A and Sommer J U 2021 Phys. Rev. Lett. 126 208102
[26] Levis D and Liebchen B 2019 Phys. Rev. E 100 012406
[27] Levis D, Diaz-Guilera A, Pagonabarraga I and Starnini M 2020 Phys. Rev. Res. 2 032056
[28] Vicsek T, Czirók A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226–9
[29] Czirók A and Vicsek T 2000 Physica A 281 17–29
[30] Chaté H, Ginelli F, Grégoire G, Peruani F and Raynaud F 2008 Eur. Phys. J. B 64 451–6
[31] Banerjee D, Souslov A, Abanov A G and Vitelli V 2017 Nat. Commun. 8 1573
[32] Soni V, Bililign E S, Magkiriadou S, Sacanna S, Bartolo D, Shelley M J and Irvine W T M 2019

Nat. Phys. 15 1188–94
[33] Massana-Cid H, Levis D, Hernández R J H, Pagonabarraga I and Tierno P 2021 Phys. Rev. Res.

3 L042021
[34] Ma Z and Ni R 2022 J. Chem. Phys. 156 021102
[35] Lei Q L, Ciamarra M P and Ni R 2019 Sci. Adv. 5 eaau7423
[36] Kuroda Y and Miyazaki K 2023 J. Stat. Mech. 103203
[37] Liebchen B and Levis D 2017 Phys. Rev. Lett. 119 058002
[38] Caporusso C B, Gonnella G and Levis D 2024 Phys. Rev. Lett. 132 168201
[39] Reichhardt C and Reichhardt C J O 2019 J. Chem. Phys. 150 064905
[40] Berg H C and Turner L 1990 Biophys. J. 58 919–30
[41] DiLuzio W R, Turner L, Mayer M, Garstecki P, Weibel D B, Berg H C and Whitesides G M 2005

Nature 435 1271–4

25

https://orcid.org/0000-0003-3294-7365
https://orcid.org/0000-0003-3294-7365
https://orcid.org/0000-0002-6436-3826
https://orcid.org/0000-0002-6436-3826
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0002-6013-7020
https://doi.org/10.1103/PhysRevE.78.020101
https://doi.org/10.1103/PhysRevE.78.020101
https://doi.org/10.1039/c3sm27923e
https://doi.org/10.1039/c3sm27923e
https://doi.org/10.1119/1.4870398
https://doi.org/10.1119/1.4870398
https://doi.org/10.1140/epjst/e2016-60054-6
https://doi.org/10.1140/epjst/e2016-60054-6
https://doi.org/10.1103/PhysRevE.94.062120
https://doi.org/10.1103/PhysRevE.94.062120
https://doi.org/10.1016/0375-9601(95)00700-D
https://doi.org/10.1016/0375-9601(95)00700-D
https://doi.org/10.1103/PhysRevLett.80.5044
https://doi.org/10.1103/PhysRevLett.80.5044
https://doi.org/10.1016/S0303-2647(98)00027-6
https://doi.org/10.1016/S0303-2647(98)00027-6
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1088/1361-6633/aab6bb
https://doi.org/10.1088/1361-6633/aab6bb
https://doi.org/10.1039/b918598d
https://doi.org/10.1039/b918598d
https://doi.org/10.1088/0953-8984/24/28/284129
https://doi.org/10.1088/0953-8984/24/28/284129
https://doi.org/10.1063/1.5129238
https://doi.org/10.1063/1.5129238
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1038/s42254-020-0152-1
https://doi.org/10.1038/s42254-020-0152-1
https://doi.org/10.1103/PhysRevLett.100.218103
https://doi.org/10.1103/PhysRevLett.100.218103
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1126/science.1230020
https://doi.org/10.1126/science.1230020
https://doi.org/10.1103/PhysRevLett.112.218304
https://doi.org/10.1103/PhysRevLett.112.218304
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1103/PhysRevLett.126.208102
https://doi.org/10.1103/PhysRevLett.126.208102
https://doi.org/10.1103/PhysRevE.100.012406
https://doi.org/10.1103/PhysRevE.100.012406
https://doi.org/10.1103/PhysRevResearch.2.032056
https://doi.org/10.1103/PhysRevResearch.2.032056
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1016/S0378-4371(00)00013-3
https://doi.org/10.1016/S0378-4371(00)00013-3
https://doi.org/10.1140/epjb/e2008-00275-9
https://doi.org/10.1140/epjb/e2008-00275-9
https://doi.org/10.1038/s41467-017-01378-7
https://doi.org/10.1038/s41467-017-01378-7
https://doi.org/10.1038/s41567-019-0603-8
https://doi.org/10.1038/s41567-019-0603-8
https://doi.org/10.1103/PhysRevResearch.3.L042021
https://doi.org/10.1103/PhysRevResearch.3.L042021
https://doi.org/10.1063/5.0077389
https://doi.org/10.1063/5.0077389
https://doi.org/10.1126/sciadv.aau7423
https://doi.org/10.1126/sciadv.aau7423
https://doi.org/10.1088/1742-5468/ad0639
https://doi.org/10.1103/PhysRevLett.119.058002
https://doi.org/10.1103/PhysRevLett.119.058002
https://doi.org/10.1103/PhysRevLett.132.168201
https://doi.org/10.1103/PhysRevLett.132.168201
https://doi.org/10.1063/1.5085209
https://doi.org/10.1063/1.5085209
https://doi.org/10.1016/S0006-3495(90)82436-X
https://doi.org/10.1016/S0006-3495(90)82436-X
https://doi.org/10.1038/nature03660
https://doi.org/10.1038/nature03660


J. Phys. A: Math. Theor. 57 (2024) 265002 E Kalz et al

[42] Lauga E, DiLuzio W R, Whitesides G M and Stone H A 2006 Biophys. J. 90 400–12
[43] Riedel I H, Kruse K and Howard J 2005 Science 309 300–3
[44] Friedrich B M and Jülicher F 2007 Proc. Natl. Acad. Sci. 104 13256–61
[45] Kümmel F, ten Hagen B, Wittkowski R, Buttinoni I, Eichhorn R, Volpe G, Löwen H and

Bechinger C 2013 Phys. Rev. Lett. 110 198302
[46] Arora P, Sood A K and Ganapathy R 2021 Sci. Adv. 7 eabd0331
[47] Scholz C, Engel M and Pöschel T 2018 Nat. Commun. 9 931
[48] Yang X, Ren C, Cheng K and Zhang H P 2020 Phys. Rev. E 101 022603
[49] López-Castaño M A, Márquez Seco A, Márquez Seco A, Rodríguez-Rivas A and Reyes F V 2022

Phys. Rev. Res. 4 033230
[50] Jennings H S 1901 Am. Nat. 35 369–78
[51] Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435–79
[52] Bray A J 2002 Adv. Phys. 51 481–587
[53] Tjhung E, Nardini C and Cates M E 2018 Phys. Rev. X 8 031080
[54] Cates M E and Nardini C 2023 Phys. Rev. Lett. 130 098203
[55] Nardini C, Fodor É, Tjhung E, vanWijland F, Tailleur J and CatesME 2017Phys. Rev.X 7 021007
[56] Speck T 2022 Phys. Rev. E 105 064601
[57] te Vrugt M, Bickmann J and Wittkowski R 2023 J. Phys.: Condens. Matter 35 313001
[58] Zheng Y, Klatt M A and Löwen H 2023 arXiv:2310.03107
[59] Rapp L, Bergmann F and Zimmermann W 2019 Eur. Phys. J. E 42 57
[60] Fruchart M, Scheibner C and Vitelli V 2023 Annu. Rev. Condens. Matter Phys. 14 471–510
[61] Huang X, Farrell J H, Friedman A J, Zane I, Glorioso P and Lucas A 2023 arXiv:2310.12233v1
[62] Bruna M and Chapman S J 2012 J. Chem. Phys. 137 204116
[63] Bruna M and Chapman S J 2012 Phys. Rev. E 85 011103
[64] Bruna M, Burger M, Esposito A and Schulz S M 2022 SIAM J. Appl. Math. 82 1635–60
[65] Cates M E and Tailleur J 2013 Europhys. Lett. 101 20010
[66] Solon A P, Cates M E and Tailleur J 2015 Eur. Phys. J. Spec. Top. 224 1231–62
[67] Cercignani C, Illner R and PulvirentiM 1994 TheMathematical Theory of Dilute Gases (Springer)
[68] Bertin E, Droz M and Grégoire G 2006 Phys. Rev. E 74 022101
[69] Bertin E, Droz M and Grégoire G 2009 J. Phys. A: Math. Theor. 42 445001
[70] Liebchen B and Levis D 2022 Europhys. Lett. 139 67001
[71] Bruna M and Chapman S J 2014 Bull. Math. Biol. 76 947–82
[72] Bruna M and Chapman S J 2015 SIAM J. Appl. Math. 75 1648–74
[73] Kalz E, Vuijk H D, Abdoli I, Sommer J U, Löwen H and Sharma A 2022 Phys. Rev. Lett.

129 090601
[74] Bialké J, Löwen H and Speck T 2013 Europhys. Lett. 103 30008
[75] Speck T, Menzel A M, Bialké J and Löwen H 2015 J. Chem. Phys. 142 224109
[76] Risken H 1989 The Fokker-Planck Equation 2nd edn (Springer)
[77] Kalz E 2022 Diffusion Under the Effect of Lorentz Force (Springer Spektrum Wiesbaden)
[78] Bruna M 2012 Excluded-volume effects in stochastic models of diffusion PhD Thesis University

of Oxford St. Anne’s College
[79] Bender C M and Orszag S A 1999 Advanced Mathematical Methods for Scientists and Engineers

I (Springer)
[80] Bruna M, Chapman S J and Robinson M 2017 SIAM J. Appl. Math. 77 2294–316
[81] Bickmann J and Wittkowski R 2020 J. Phys.: Condens. Matter 32 214001
[82] te Vrugt M, Löwen H and Wittkowski R 2020 Adv. Phys. 69 121–247
[83] Archer A J and Evans R 2004 J. Chem. Phys. 121 4246–54
[84] Burger M and Schulz S 2023 arXiv:2309.17326
[85] Stenhammar J, Tiribocchi A, Allen R J, Marenduzzo D and Cates M E 2013 Phys. Rev. Lett.

111 145702
[86] Sharma A and Brader J M 2016 J. Chem. Phys. 145 161101
[87] te Vrugt M and Wittkowski R 2020 AIP Adv. 10 035106
[88] de Gennes P G and Prost J 1995 The Physics of Liquid Crystals 2nd edn (Oxford University Press)
[89] Muzzeddu P L, Vuijk HD, Löwen H, Sommer J U and Sharma A 2022 J. Chem. Phys. 157 134902
[90] Sharma A and Brader J M 2017 Phys. Rev. E 96 032604
[91] Merlitz H, Vuijk H D, Brader J M, Sharma A and Sommer J U 2018 J. Chem. Phys. 148 194116
[92] Hargus C, Epstein J M and Mandadapu K K 2021 Phys. Rev. Lett. 127 178001

26

https://doi.org/10.1529/biophysj.105.069401
https://doi.org/10.1529/biophysj.105.069401
https://doi.org/10.1126/science.1110329
https://doi.org/10.1126/science.1110329
https://doi.org/10.1073/pnas.0703530104
https://doi.org/10.1073/pnas.0703530104
https://doi.org/10.1103/PhysRevLett.110.198302
https://doi.org/10.1103/PhysRevLett.110.198302
https://doi.org/10.1126/sciadv.abd0331
https://doi.org/10.1126/sciadv.abd0331
https://doi.org/10.1038/s41467-018-03154-7
https://doi.org/10.1038/s41467-018-03154-7
https://doi.org/10.1103/PhysRevE.101.022603
https://doi.org/10.1103/PhysRevE.101.022603
https://doi.org/10.1103/PhysRevResearch.4.033230
https://doi.org/10.1103/PhysRevResearch.4.033230
https://doi.org/10.1086/277922
https://doi.org/10.1086/277922
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1080/00018730110117433
https://doi.org/10.1080/00018730110117433
https://doi.org/10.1103/PhysRevX.8.031080
https://doi.org/10.1103/PhysRevX.8.031080
https://doi.org/10.1103/PhysRevLett.130.098203
https://doi.org/10.1103/PhysRevLett.130.098203
https://doi.org/10.1103/PhysRevX.7.021007
https://doi.org/10.1103/PhysRevX.7.021007
https://doi.org/10.1103/PhysRevE.105.064601
https://doi.org/10.1103/PhysRevE.105.064601
https://doi.org/10.1088/1361-648X/acc440
https://doi.org/10.1088/1361-648X/acc440
https://arxiv.org/abs/2310.03107
https://doi.org/10.1140/epje/i2019-11825-8
https://doi.org/10.1140/epje/i2019-11825-8
https://doi.org/10.1146/annurev-conmatphys-040821-125506
https://doi.org/10.1146/annurev-conmatphys-040821-125506
https://arxiv.org/abs/2310.12233v1
https://doi.org/10.1063/1.4767058
https://doi.org/10.1063/1.4767058
https://doi.org/10.1103/PhysRevE.85.011103
https://doi.org/10.1103/PhysRevE.85.011103
https://doi.org/10.1137/21M1452524
https://doi.org/10.1137/21M1452524
https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1140/epjst/e2015-02457-0
https://doi.org/10.1140/epjst/e2015-02457-0
https://doi.org/10.1103/PhysRevE.74.022101
https://doi.org/10.1103/PhysRevE.74.022101
https://doi.org/10.1088/1751-8113/42/44/445001
https://doi.org/10.1088/1751-8113/42/44/445001
https://doi.org/10.1209/0295-5075/ac8f69
https://doi.org/10.1209/0295-5075/ac8f69
https://doi.org/10.1007/s11538-013-9847-0
https://doi.org/10.1007/s11538-013-9847-0
https://doi.org/10.1137/141001834
https://doi.org/10.1137/141001834
https://doi.org/10.1103/PhysRevLett.129.090601
https://doi.org/10.1103/PhysRevLett.129.090601
https://doi.org/10.1209/0295-5075/103/30008
https://doi.org/10.1209/0295-5075/103/30008
https://doi.org/10.1063/1.4922324
https://doi.org/10.1063/1.4922324
https://doi.org/10.1137/17M1118543
https://doi.org/10.1137/17M1118543
https://doi.org/10.1088/1361-648X/ab5e0e
https://doi.org/10.1088/1361-648X/ab5e0e
https://doi.org/10.1080/00018732.2020.1854965
https://doi.org/10.1080/00018732.2020.1854965
https://doi.org/10.1063/1.1778374
https://doi.org/10.1063/1.1778374
https://arxiv.org/abs/2309.17326
https://doi.org/10.1103/PhysRevLett.111.145702
https://doi.org/10.1103/PhysRevLett.111.145702
https://doi.org/10.1063/1.4966153
https://doi.org/10.1063/1.4966153
https://doi.org/10.1063/1.5141367
https://doi.org/10.1063/1.5141367
https://doi.org/10.1063/5.0109817
https://doi.org/10.1063/5.0109817
https://doi.org/10.1103/PhysRevE.96.032604
https://doi.org/10.1103/PhysRevE.96.032604
https://doi.org/10.1063/1.5025760
https://doi.org/10.1063/1.5025760
https://doi.org/10.1103/PhysRevLett.127.178001
https://doi.org/10.1103/PhysRevLett.127.178001


J. Phys. A: Math. Theor. 57 (2024) 265002 E Kalz et al

[93] Han M, Fruchart M, Scheibner C, Vaikuntanathan S, de Pablo J J and Vitelli V 2021 Nat. Phys.
17 1260–9

[94] Kalz E, Vuijk H D, Sommer J U, Metzler R and Sharma A 2024 Phys. Rev. Lett. 132 057102
[95] Kreienkamp K L and Klapp S H L 2022 New J. Phys. 24 123009
[96] Li Y I, Garcia-Millan R, Cates M E and Fodor É 2023 Europhys. Lett. 142 57004
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