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Perhaps we should all stop for a moment and focus not 

only on making our AI better and more successful but also 

on the benefit of humanity. 
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1 Introduction 

Machine learning holds the potential to address challenges in the healthcare 

sector. This thesis investigates three distinct contributions within machine 

learning and assesses how applications and methodologies can positively 

influence medical decision-making. 

1.1 Motivation 

The healthcare system has grappled with significant challenges over the years, 

and the emergence of the Covid-19 pandemic has only underscored these 

issues. Notably, escalating costs (Bai et al. 2021), a shortage of nurses (Chan et 

al. 2013), and excessive bureaucratic expenses (Lorkowski et al. 2020) have 

resulted in overburdened healthcare professionals and consequently 

dissatisfied patients. Figure 1 depicts the issue of rising costs within the 

German healthcare system, along with the substantial increase in the number 

of people in need of care. This increase surpasses the growth rate of healthcare 

personnel, with 2011 as the reference year. To sustain and enhance patient 

care, multiple approaches can be considered. One way is the usage and 

expansion of machine learning techniques to alleviate the workload of clinical 

staff and supporting the decision-making process (Haug and Drazen 2023).
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Figure 1: Relative change in health expenditures, health personnel and persons in need of care in 
Germany from 2011 (reference year) to 2021 (based on Federal Statistical Office Germany (2023a, 

2023b, 2023c) 

Medical decision-making impacts everyone at some point, whether in the role 

of a patient or a healthcare professional. Its significance is further underscored 

by its potential application across operational, tactical, and strategic levels. 

Medical decision-makers often grapple with intricate dilemmas, where 

information may be limited, yet critical decisions must be made (Masic 2022). 

A physician in the emergency room, for example, faces the critical choice of 

whether to admit a patient to the intensive care unit (ICU). Various computer 

tools can aid in making such decisions (Awaysheh et al. 2019). One promising 

avenue involves harnessing machine learning support to mitigate uncertainty 

and enhance accuracy. 

1.2 Introduction to machine learning 

Machine learning has become a ubiquitous term in recent years and is already 

making substantial contributions across various domains. Its journey began in 

the 1950s with landmarks like Rosenblatt's Mark-1 perceptron (Rosenblatt 

1958) and Samuel's Game of Checkers (Samuel 1959). Today, machine learning 

applications have become a norm, finding utility in diverse fields such as 

supply chain management, mobility solutions, and marketing strategies. These 

applications range from assisting in management decisions to the 

development of novel machine learning methodologies. 
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Machine learning falls within the broader field of artificial intelligence (AI), 

with deep learning being a subset of it. Machine learning, in turn, can be 

categorized into the three main domains supervised learning, unsupervised 

learning, and reinforcement learning (Joshi 2020). Supervised learning 

involves the utilization of labeled data during the training process, enabling 

the model to discern relevant patterns and associations (Nasteski 2017). 

Unsupervised learning aims to uncover underlying patterns within data 

without the presence of explicit output labels (Dike et al. 2018). Lastly, 

reinforcement learning relies on a trial-and-error approach, learning from its 

own actions and experiences based on feedback (Sutton and Barto 2018). 

Figure 2 illustrates the categories of machine learning models and thematically 

organizes the three contributions to this thesis. Further explanation is 

provided in section 2. 

This study predominantly centers on supervised learning tasks, which can be 

further divided into regression and classification problems, with a primary 

focus on binary classification. Furthermore, the selection of algorithms is 

crucial, including options such as deep neural networks, decision trees, 

random forests, extreme gradient boosting, and logistic regression. 

 

Figure 2: Machine learning categories with an emphasis on supervised learning  
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In the realm of machine learning, exploring new frontiers involves not only 

innovation in terms of algorithms, but also transformation in the learning 

process. This transformation encompasses the adjustment of activation 

functions (AFs), responsible for converting input into output through weighted 

sums (Sharma et al. 2020), as well as the design of loss functions, which 

quantify the error between predictions and real values, aiming for 

minimization (Wang et al. 2022). These choices play a pivotal role in shaping 

the performance metrics used to evaluate machine learning algorithms, with 

common measures including accuracy, sensitivity, and specificity. Accuracy 

gauges the overall correctness of predictions, while sensitivity emphasizes 

correct positive predictions (true positives), and specificity focuses on correct 

negative predictions (true negatives) (Sokolova and Lapalme 2009). Although 

accuracy often takes precedence in general machine learning applications, 

there are scenarios where the emphasis shifts to a specific class, such as the 

positive class, requiring a heightened sensitivity. Achieving this objective may 

necessitate methodical adjustments to AFs and loss functions. 

1.3 Machine learning in healthcare 

Machine learning technology is gaining also substantial traction in the field of 

medicine. Researchers are actively exploring applications like image 

recognition in MRI scans (Razzak et al. 2018), the prediction of diagnoses 

(Iqbal et al. 2021), patient trajectories (Pham et al. 2017), and resource 

capacities (Quiroz-Juárez et al. 2021). Machine learning's involvement in the 

healthcare industry is expanding to encompass the corporate sector as well. 

Prominent companies like Microsoft and Pfizer have adopted machine 

learning processes, particularly in the field of cancer detection. Additionally, a 

surge of startups, including MedInReal for smart health records (MedInReal 

2023) and Cancer Center specializing in image analysis (Cancer Center 2023), 

has emerged in recent years, aiming to alleviate the burdens on the healthcare 

system. According to Qayyum et al. (2021), machine learning in healthcare 

encompasses the four primary application areas prognosis, diagnosis, 

treatment and clinical workflow. Prognosis involves tracking the development 

of diseases, including symptoms and complications. Diagnosis finds its main 
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applications in electronic health records and image analysis. Machine learning 

supports treatment through tasks like annotating reports using natural 

language processing and real-time health monitoring. The final category, 

clinical workflows, comprises subcategories such as disease prediction and the 

analysis of clinical time-series data (Qayyum et al. 2021). The research papers 

in this thesis primarily focus on prognosis and clinical workflows, particularly 

in the context of the ICU within hospital settings.  

Given the sensitive nature of healthcare data, considerations extend beyond 

technical aspects. Topics such as explainable AI, which enhances user 

understanding of predictions (Gunning et al. 2019), and ethical concerns 

(Rigby 2019), like the appropriateness of predicting patient mortality, are 

integral to this domain. Moreover, medical applications often demand 

specialized machine learning algorithms. For instance, in binary classification 

scenarios, one class may hold particular importance, as seen in the scarcity of 

ICU beds compared to regular ward beds, necessitating a heightened focus on 

sensitivity. This can be achieved through customized loss functions and AFs 

(see section 2.1 and section 2.2). Furthermore, there are uncharted territories 

in medicine where machine learning holds the potential to unveil valuable 

insights, offering promising avenues for future exploration (See section 2.3). 

1.4 Organization of this thesis 

In this dissertation, advanced medical decision-making is investigated and 

addressed with three contributions to precisely answer the following research 

questions: 

1. Can a loss function be harnessed to empower decision-makers in the 

flexible planning of capacities within ICUs? 

2. Can customized AFs enhance the performance of sensitivity-based 

binary classification? 
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3. Can the integration of analytics and machine learning methods lead to 

improvements in Covid-19 triage for clinical pathways, while ensuring 

the explainability of the algorithms? 

The subsequent sections of this dissertation are meticulously organized as 

follows. Section 2 offers a concise overview of the three distinct papers that 

collectively constitute the contributions of this research. Section 3 delves into 

a comprehensive discussion of the papers, providing in-depth elaborations on 

the research questions above. Section 4 encompasses the culmination of this 

work, presenting the concluding remarks, and paving the way for future 

research endeavors. The complete versions of the unpublished contributions 

and a link to the published contribution can be found in the Appendix.
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2 Summary of the contributions 

This thesis offers several valuable contributions to the current literature, 

showcasing the potential of machine learning to empower advanced decision-

making in healthcare. The following section provides a comprehensive 

summary of these contributions, with the entire contributions available in the 

Appendix. It is important to note that the sequence of these contributions does 

not follow the chronological order of submission to scientific journals. Instead, 

the discussion begins with an exploration of supervised learning methods 

designed to improve sensitivity, concluding with an examination of the 

application of various models (see Figure 2). The first paper introduces a 

performance-flexible AI-based planning approach that incorporates a loss 

function and simulation to cater to the diverse needs of decision-makers. 

Following that, the subsequent paper delves into sensitivity-centered binary 

classification, employing customized AFs and dealing with diverse hospital 

data sets. Finally, the last contribution centers on the application of supervised 

learning, encompassing various approaches with varying levels of explanatory 

power, all geared toward improving the triage process for Covid-19 patients. 
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2.1 Scarce, scarcer, scarcest: Performance-flexible AI-based 

planning of elective surgeries for efficient and effective 

intensive care capacity management 

Grieger et al. (2023a) examine how a loss function affects sensitivity, 

specificity, and consequently, the predictive capacity for distinguishing 

between ICU and non-ICU cases, aimed at aiding medical decision-makers. 

This research falls under the category of the methodology of supervised 

learning (see Figure 2). The complete paper can be accessed in its entirety in 

Appendix A and has been submitted to OR Spectrum, a journal ranked in 

category A according to the VHB-JOURQUAL3 ranking system (Verband der 

Hochschullehrer für Betriebswirtschaft e.V. 2015). 

Motivation. In the planning of elective surgeries, the availability of ICU and 

operating room (OR) capacity plays a major role, as both resources are 

typically scarce within a hospital setting and necessitate integrated planning. 

Decision-makers tasked with determining whether a patient requires ICU 

treatment can benefit from the support of machine learning. However, mere 

accuracy, as commonly emphasized in the existing literature, is insufficient, 

especially when both OR and ICU capacity are constrained. A flexible approach 

that prioritizes either the accurate prediction of ICU (sensitivity) or non-ICU 

treatment (specificity) is essential. While prior research has explored various 

loss functions to balance data, the focus has not been on achieving flexible 

performance. Another method known as thresholding pursues flexibility but is 

applied post-training. 

Methods. To address this gap, this paper introduces a performance-flexible 

AI-based planning approach for predicting the need for ICU treatment after 

elective surgery. The approach incorporates a performance-flexible loss 

function within a machine learning framework, including subsequent 

simulation of ICU occupancy. The problem at hand involves supervised 

learning for binary classification of patients. The performance-flexible binary 

cross-entropy (PFBCE) loss function introduced in this work is based on cost-

sensitive binary cross-entropy loss function (Aurelio et al. 2019) but centers 
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on flexible performance rather than data balance. The flexibility of PFBCE can 

be influenced by adjusting the weight of the positive class and its convex weight 

of the negative class. A weight of 0.5 implies equal importance to both classes, 

while a weight greater than 0.5 prioritizes sensitivity and a weight smaller than 

0.5 prioritizes specificity. Additionally, a normalized version of the loss 

function, known as normalized PFBCE (NPBCE), is introduced to allow users 

to choose between PFBCE and NFBCE based on the conditions via a 

hyperparameter. 

Application. To evaluate the approach, we used a data set from the 

University Hospital of Augsburg in Germany, spanning over 26,600 elective 

surgeries conducted between 2017 and 2021. We employ logistic regression 

and deep neural networks as machine learning techniques, involving various 

steps such as data preparation, hyperparameter tuning, data balancing, and 5-

fold cross-validation. The simulation component of the study aims to assess 

different weightings within the performance-flexible AI-based planning 

approach under varying scenarios. These scenarios involve different scarcity 

patterns in OR and ICU resources and categorize patients into cohorts based 

on their ASA-scores, distinguishing between patients with low, average, and 

high ASA-scores. The ASA-score is a widely used scoring system to categorize 

patients based on their physical condition (Saklad 1941). Monte Carlo 

simulations with 1,000 runs are conducted for each weight, scarcity pattern, 

and patient cohort. The key performance metric calculated for each simulation 

run is the ratio of realized ICU patients to planned ICU capacity, with an 

average value calculated for each weight, scarcity pattern, and patient cohort. 

A ratio of 1 indicates that realized ICU utilization matches the planned 

capacity, while a ratio greater than 1 implies higher demand than planned and 

a ratio less than 1 suggests lower occupancy than planned. The generalizability 

of this approach is underscored by its reliance on widely available hospital 

data. 

Results. Comparative analysis demonstrates that the performance-flexible 

AI-based planning approach can dynamically prioritize specific labels in 
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binary classification while maintaining high accuracy. Consequently, the ratio 

of realized demand to planned ICU capacity remains close to 1 across diverse 

simulation scenarios, encompassing resource scarcity and patient cohorts. 

This stands in contrast to traditional machine learning approaches, which are 

suitable primarily for scenarios involving relatively healthy patients. The 

presented approach holds promise in assisting hospital decision-makers while 

offering planning flexibility. 

2.2 DENLU and leaky stanh: customized activation functions 

targeting enhanced sensitivity with healthcare applications in 

binary classification 

Grieger et al. (2023b) investigate the potential of customized AFs in healthcare 

to enhance sensitivity. Their exploration encompasses various aspects, 

including the Universal Approximation Theorem (UAT) and data structure 

considerations. This research falls under the category of the methodology of 

supervised learning (see Figure 2). The complete paper can be accessed in its 

entirety in Appendix B and is close to submission. 

Motivation. In healthcare, binary classification of patients is a common 

practice. This involves categorizing patients into distinct groups, such as 

determining positive or negative diagnoses, inpatient or outpatient status, or 

the need for ICU versus non-ICU. These classifications play a crucial role in 

resource planning for effective and efficient medical care. Unlike many 

machine learning approaches that assume equal importance for both binary 

classes, healthcare often prioritizes a specific class, such as ICU. Moreover, the 

significance of data structure and data quality is frequently overlooked when 

employing machine learning models in healthcare applications. Additionally, 

there is a noticeable disparity between the extensive theoretical groundwork in 

machine learning and the limited development of new methods. Consequently, 

only a few AFs are available for integration into algorithms, and even these are 

only partially aligned with the principles of the UAT. 
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Methods. To address these unresolved issues, this work introduces two 

customized AFs, the Double Exponential Non-Linear Unit (DENLU) and the 

Leaky Scaled Hyperbolic Tangent (leaky stanh). These functions are built 

upon the well-established AFs Exponential Linear Unit (ELU) and Scaled 

Hyperbolic Tangent (stanh) and have been modified to align as closely as 

possible with the principles of the UAT. UAT serves as a blueprint for crafting 

an AF and comprises five core principles (Sodhi and Chandra 2014). The 

primary objective of DENLU and leaky stanh is to mitigate the limitations 

associated with existing functions, including issues like vanishing gradients, 

inflexible shapes, and training instability, while simultaneously enhancing 

sensitivity in comparison to known AFs. Vanishing gradients refer to the 

phenomenon where gradients diminish progressively, approaching zero as the 

independent variable's absolute values increase (Li et al. 2014). DENLU takes 

the form of a sigmoidal, locally quadratic function and adheres to all five UAT 

principles. It is derivable for all values, the output is within the range of −1 to 

1, and includes an adjustable parameter for fine-tuning of the range. On the 

other hand, leaky stanh is a sigmoidal and piecewise linear function, satisfying 

four out of five UAT principles. This AF primarily aims to tackle the vanishing 

gradient issue. Both of these adapted AFs offer flexibility in shaping and ensure 

training stability. 

Application. The two AFs are tested on a total of four binary classification 

data sets, encompassing three real-world healthcare and one simulated data 

set. Among these, three data sets exhibit heterogeneous features, while the 

remaining data set comprises homogeneous features. The evaluation process 

includes the utilization of deep neural networks, 10-fold cross-validation, 

hyperparameter tuning, and various data preprocessing steps tailored to each 

specific data set. Furthermore, the performance of DENLU and leaky stanh is 

contrasted with four established AFs. 

Results. The findings reveal that DENLU, offering enhanced flexibility 

compared to sigmoid with improved shaping capabilities, and leaky stanh, 

serving as an alternative to stanh while mitigating vanishing gradient issues, 
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boast theoretical advantages aligned with the UAT. Moreover, these two AFs 

deliver superior results in terms of sensitivity, with improvements of up to 17.7 

percentage points and in the area under the curve (AUC) showing 

enhancements of up to 7.6 percentage points. Notably, these advantages are 

particularly pronounced in the context of heterogeneous data sets, 

emphasizing that the primary application of these two AFs should be directed 

toward such data sets. The outcomes illustrate that decision-makers can 

enhance their decision-making support, particularly within specific classes like 

ICU treatment, by integrating AFs such as DENLU or leaky stanh. 

2.3 Covid-19 triage in the emergency department 2.0: How 

analytics and AI transform a human-made algorithm for the 

prediction of clinical pathways 

Bartenschlager et al. (2023) investigate the viability of analytical and AI-based 

methods in the triage of Covid-19 patients, with a particular emphasis on the 

explainability of these algorithms. This research falls under the category of the 

applications of supervised learning (see Figure 2) and has been published in 

Health Care Management Science, a journal ranked in category A according 

to the VHB-JOURQUAL3 ranking system (Verband der Hochschullehrer für 

Betriebswirtschaft e.V. 2015). 

Motivation. The Covid-19 pandemic has strained the capacities of numerous 

hospitals, shifting the spotlight onto patient triage, a topic that has sparked 

extensive discussions from various perspectives, including ethical 

considerations. The concept of triage has long been employed in settings like 

emergency rooms to prioritize treatment based on urgency (FitzGerald et al. 

2010) or in mass casualty incidents to maximize lives saved (Neidel et al. 2017). 

In the context of Covid-19, triage merges these principles and encompasses 

diverse factors, such as treatment urgency, disease severity, and the 

categorization of clinical pathways. Categorizing patients based on clinical 

pathways determines their placement in ward, ICU, discharge, palliative care 

unit (PCU), and initiates in the emergency department (ED). Despite its critical 

implications for patient care and capacity planning, this classification is 
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notably underrepresented in the existing literature. In contrast, areas like 

Covid-19 diagnosis have seen an abundance of publications with a primary 

focus on AI. However, practical application frequently lacks consideration of 

real-world implementation, transparency, comprehensive databases, and 

validation processes (Wynants et al. 2020). 

Methods. This work focuses on evaluating and scrutinizing the performance 

of various triage algorithms, both analytical and AI-based, with a specific focus 

on their explainability and ethical considerations. The foundation for the 

Covid-19 triage is a base triage algorithm (TA) initially proposed by Pin et al. 

(2020) for patient classification concerning clinical pathways. This algorithm 

has served as a guideline for EDs in Germany, as recommended by the German 

Society for Interdisciplinary Emergency and Acute Medicine. The TA is 

designed as a straightforward, easily comprehensible decision tree, and it has 

already been applied at institutions such as the University Hospital of 

Augsburg. It categorizes patients into the three labels ward, ICU, and 

discharge. Building upon this base, the study seeks to extend the TA with a 

data-driven approach, referred to as the extended triage algorithm (TAE), 

which now incorporates the fourth label, PCU. Both TA and TAE can be 

classified as white-box. In addition to these analytical approaches, AI-based 

triage algorithms, such as Multi-Layer Perceptron (MLP), Random Forest 

(RF), and Extreme Gradient Boosting (XGB), are considered. It is important 

to note that these AI models are often viewed as black-boxes, lacking 

transparency. The study also explores an integrated approach, combining both 

analytical and AI-based methods (integrated triage algorithm (ITA)) in a two-

step process. Prior to a physician's real triage, which employs a data-guided 

decision tree, an initial pre-triage phase is executed using AI. This combined 

approach aims to evaluate a human-AI interactive algorithm, with both 

autonomous black-box and white-box components. All algorithms, except TA 

and ITA, are assessed for both three-label (ward, ICU, discharge) and four-

label (ward, ICU, discharge, PCU) classification to address ethical 

considerations. Furthermore, the study investigates various data preparation 

methods, including the impact of different imputation techniques for handling 
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missing values and diverse strategies for summarizing comorbidities, to assess 

their influence on algorithm performance.  

Application. To assess the performance of the analytical and AI-based triage 

algorithms, we employ a data set obtained from the Lean European Open 

Survey on Covid-19 Patients. This data set encompasses information from 

4,310 Covid-19 patients recorded until January 2021, spanning the first and 

second pandemic waves in Europe. 

Results. The findings indicate a substantial improvement in the performance 

of the TAE in comparison with the TA. Both TA and TAE are characterized by 

their straightforward, easy-to-interpret decision trees. Comparatively, the AI-

based algorithms (MLP, RF, XGB) and the ITA exhibit similar performance but 

significantly outperform both TA and TAE. ITA offers a significant advantage 

with its heightened sensitivity, particularly in the context of ICU prediction. 

Additionally, it provides a level of explainability by combining machine and 

human decision-making, rendering it a preferred option. Explainability is 

particularly crucial since the algorithm directly impacts patients and medical 

staff in the ED. The results are not substantially affected by variations in data 

preparation methods. Furthermore, considering the inclusion of the fourth 

label, PCU, is not advisable from both an ethical and data-driven perspective. 

These findings hold significant implications, especially in the context of 

planning for highly occupied ICUs.
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3 Discussion of the contributions 

This thesis is devoted to advanced medical decision-making through machine 

learning in healthcare. The next three subsections discuss how the three 

contributions introduced address the following research questions. 

1. Can a loss function be harnessed to empower decision-makers in the 

flexible planning of capacities within ICUs? 

2. Can customized AFs enhance the performance of sensitivity-based 

binary classification? 

3. Can the integration of analytics and machine learning methods lead to 

improvements in Covid-19 triage for clinical pathways, while ensuring 

the explainability of the algorithms? 

3.1 Can a loss function be harnessed to empower decision-

makers in the flexible planning of capacities within ICUs? 

Grieger et al. (2023a) have introduced a performance-flexible AI-based 

planning approach designed to enhance the efficiency and effectiveness of ICU 

capacity management. In this section, a discussion about whether a loss 

function integrated into an algorithm can provide decision support in the 

flexible planning of ICUs is provided. 

The performance-flexible AI-based planning approach, as discussed 

previously, comprises both a machine learning model and a simulation. To 

address the research question, our primary focus will be on the machine 

learning model, while the simulation is used to analyze the results. 



3 Discussion of the contributions  

16 

 

The machine learning model applied in this study incorporates a deep neural 

network and logistic regression, leveraging a novel loss function, the 

(N)PFBCE. This loss function is engineered to deliver flexible performance by 

adjusting weights for the positive and negative classes. When implemented in 

the context of ICU capacity management, this convex approach allows the 

prioritization of the ICU or non-ICU class, particularly crucial during periods 

of limited ICU capacity. 

The performance-flexible AI-based approach is evaluated using a data set 

encompassing over 26,000 elective patients. The results illustrate that an 

increased focus on the ICU class leads to heightened sensitivity without 

significant losses in specificity and accuracy, and vice versa. For instance, with 

a weight of 0.8, indicating a strong emphasis on correctly predicting the ICU 

class, NPFBCE and the deep neural network achieve a sensitivity of 98.29 %, a 

specificity of 76.78 %, and an accuracy of 87.53 %. The simulation delves into 

various scenarios, accounting for differing OR and ICU capacities, and 

categorizes patients into three distinct health groups. The findings underscore 

the growing significance of accurately predicting the ICU class, particularly for 

more critically ill patients, as this is the sole means to prevent ICU overload. 

Consequently, medical decision-makers can adjust their predictive focus in 

alignment with capacity constraints, aiding their decision-making process. 

In summary, the utilization of PFBCE in binary classification results in 

improved capacity planning, offering enhanced decision support within ICUs. 

3.2 Can customized AFs enhance the performance of sensitivity-

based binary classification? 

Grieger et al. (2023b) introduce customized AFs designed to prioritize 

sensitivity in binary classification of patients. This section discusses the 

influence of customized AFs on the sensitivity of a binary classification. 

The machine learning approach outlined in the paper encompasses a neural 

network and two customized AFs, DENLU and leaky stanh. These two AFs 

demonstrate intriguing theoretical properties, drawing from the UAT and 
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offering flexibility in their S-shaped curves, while partially mitigating the 

vanishing gradient issue. DENLU and leaky stanh are evaluated using three 

real-world healthcare data sets and one simulated data set, all characterized by 

binary classifications. The findings indicate that these customized AFs are 

beneficial for handling heterogeneous data sets, which includes three out of 

the four data sets analyzed. In these cases, both AFs yield comparable results 

to well-established AFs in terms of accuracy. Notably, performance metrics 

such as AUC and sensitivity hold special significance in healthcare, as accurate 

predictions in the positive class have a profound impact on medical care and 

effective planning in hospitals. In terms of sensitivity, both leaky stanh and 

DENLU outperform other AFs, demonstrating improvements of up to 

17.7 percentage points. This enhancement empowers medical decision-

makers to make informed choices within specific classes, such as ICU. 

In conclusion, the adoption of customized AFs, grounded in sound theoretical 

foundations, significantly elevates sensitivity in the binary classification of 

heterogeneous data sets. 

3.3 Can the integration of analytics and machine learning 

methods lead to improvements in Covid-19 triage for clinical 

pathways, while ensuring the explainability of the 

algorithms? 

Bartenschlager et al. (2023) conducted an assessment of an existing, an 

analytic, and several machine learning algorithms for triage of Covid-19 

patients. This section examines whether a combination of analytic and 

machine learning methods can enhance Covid-19 triage while preserving 

transparency through the analytic component. 

Beyond the standalone use of purely analytic or machine learning models, the 

integrated human-AI algorithm, denoted as ITA, is also considered. One 

notable advantage of ITA is that it avoids the sole deployment of a black-box 

approach for predictions, as it enhances transparency through the analytical 

component. This aspect holds particular importance in the context of triage, 
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where numerous ethical considerations come into play. The algorithms are 

applied to an existing triage system with a data set comprising over 4,000 

Covid-19 patients. The results reveal that ITA exhibits performance similar to 

other AI-based models, with all AI methods significantly outperforming the 

purely analytic models. However, ITA stands out as a combination of analytical 

and AI elements, providing substantial benefits owing to its partial 

transparency. 

In summary, the integration of analytic and machine learning methods results 

in enhanced Covid-19 triage capabilities while maintaining transparency 

through partial explainability. 
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4 Conclusion 

This thesis outlines the opportunities for empowering advanced medical 

decision-making through machine learning in healthcare. It initiates by 

highlighting the importance of medical decision-making in addressing 

healthcare challenges and introduces the concept of machine learning. 

Subsequently, it elucidates the role of contributions within the established 

frameworks and provides practical applications of machine learning models. 

The first and second contribution, focusing on loss functions and AFs, are 

categorized within the methodological domain of supervised learning and 

serve to aid medical decision-makers in capacity-constrained scenarios. The 

third contribution delves into the application aspect of supervised learning by 

introducing and testing various algorithms for Covid-19 triage, encompassing 

explainability, ethical considerations, and an integrated triage approach 

combining black- and white-box. 

Within the area of supervised learning, all three approaches empower 

advanced medical decision-making. The first paper introduces a performance-

flexible AI-based planning approach for elective surgeries, optimizing ICU 

capacity management. In addition to presenting and applying a novel loss 

function for machine learning, it involves simulations to address diverse 

capacity challenges. The outcomes demonstrate the adaptability of the 

performance-flexible AI-based planning approach, enabling decision-makers 

to flexibly prioritize specific binary classification labels and enhance their 

planning capabilities. The second paper explores two modified AFs rooted in 

the UAT, aiming to elevate sensitivity in binary classification. 
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These AFs exhibit promising properties, including S-shaped flexibility and 

mitigated vanishing gradient issues from a theoretical standpoint. The results 

reveal significantly improved sensitivity of the modified AFs, particularly for 

heterogeneous data sets, facilitating more accurate decision-making. The third 

paper assesses the impact of AI and analytics on an existing Covid-19 triage 

algorithm. It considers an established algorithm employed in German 

hospitals, an analytical extension, three machine learning models, and an 

integrated approach combining analytics and machine learning. The findings 

indicate that algorithms incorporating machine learning substantially 

outperform others, with the integrated approach being particularly 

advantageous due to its explanatory power, providing decision-makers with 

additional insights. All three contributions collectively provide added value not 

only for the topic of AI itself but also in the context of humanity, owing to their 

focus on specific situations within the healthcare sector. 

These three contributions mark the inception of further research opportunities 

in the field of machine learning for medical decision-making. While the 

contributions predominantly center on supervised learning with pre-existing 

data, it prompts the intriguing question of how unsupervised learning and 

reinforcement learning can influence medical decision-making in situations 

where data availability is limited. Given the substantial disparity between 

machine learning applications and novel methods in healthcare, there is a clear 

need for additional methodologies that can bolster healthcare practices. 

Furthermore, the evaluation of these contributions is focused on specific data 

sets, opening up avenues for research using different data sets that could 

further validate the positive impact of the presented work. Investigations with 

data from diverse countries, distinct from Germany, present an intriguing 

avenue for exploration. Additionally, the methodological aspects of these 

contributions may have relevance beyond healthcare and could be applied to 

various other domains.
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Original Research Paper: 

Scarce, scarcer, scarcest: Performance-flexible AI-based planning 

of elective surgeries for efficient and effective intensive care 

capacity management 

Abstract. Operating room and intensive care unit (ICU) capacities belong to 

the scarcest resources in hospitals and strongly depend on each other. When 

planning elective surgeries, it is therefore important to consider both resources 

in an integrated way and to guarantee a certain flexibility in planning to avoid 

under- and overutilization, e.g., in the form of cancellations. In this work, we 

introduce a performance-flexible artificial intelligence (AI)-based planning 

approach for predicting whether an elective patient will be transferred to the 

ICU after elective surgery. This approach includes a performance-flexible loss 

function in a machine learning (ML) model and a subsequent simulation about 

ICU occupancy. The algorithm is evaluated by a large data set of the University 

Hospital of Augsburg, Germany, consisting of more than 26,600 elective 

surgeries between 2017 and 2021, and extensive simulation studies. The data 

contains values that are determined in each hospital during the planning of the 

surgery, which is why this is a generalizable approach. We find that our 

performance-flexible AI-based planning algorithm, unlike state-of-the-art ML 

algorithms, can flexibly prioritize a particular label in binary classification (i.e., 

ICU or non-ICU) subject to capacity considerations while maintaining high 

accuracy. Consequently, the ratio of realized and planned intensive care 

resources is stable and close to 1 for different simulation scenarios regarding 

scarcity of resources and patient cohorts. Our performance-flexible AI-based 

planning algorithm outperforms state-of-the-art ML algorithms and supports 

hospital decision makers with a flexible planning tool. 

Keywords: medical decision making, machine learning, binary classification, 

integrated capacity planning, loss function 

 

 



 Appendix A: Performance-flexible AI 

 

30 

 

1 Introduction 

Operating room (OR) and intensive care unit (ICU) capacities belong to the 

scarcest resources in hospitals and strongly depend on each other: A 

considerable number of patients is transferred to the ICU after elective surgery 

(approx. 10% with sometimes high fluctuations). When planning elective 

surgeries, it is therefore important to consider both capacities in an integrated 

way, while allowing for some planning flexibility to accommodate scarcity 

patterns in both units (van Oostrum et al. 2008). Scarcity may be caused by 

staff shortages, mass casualties, or pandemics, for example (Heimerl and 

Kolisch 2010; Rodríguez-Espíndola 2023). 

In recent years, and significantly pushed by the COVID-19 pandemic, planning 

and decision making in healthcare is on its way to be revolutionized by artificial 

intelligence (AI) approaches and in particular machine learning (ML) 

algorithms. ML-based predictions may also support the decision whether a 

patient is transferred to the ICU (i.e., ICU or non-ICU) after elective surgery. 

This decision is influenced by different stakeholders in the pathway of elective 

surgery patients (see Figure 1). About 𝑥 days (𝑡 = 𝑛 − 𝑥 , where 20 ≤ 𝑥 ≤ 30) 

before elective surgery where 𝑛 is the planned date of surgery, a patient is 

assigned an appointment in the surgical outpatient clinic. At this point in time, 

the surgeon provides a first assessment (𝐷2) whether the patient will need ICU 

treatment after surgery (i.e., ICU or non-ICU). The assessment might influence 

planning of the patient’s surgery date. About 1 day (𝑡 = 𝑛 − 1 ) before elective 

surgery, additional preoperative evaluation by anaesthesiologists is done. In 

this perioperative risk evaluation, the anesthetist also provides an assessment 

(𝐷1) on the need of ICU treatment after surgery (i.e., ICU or non-ICU). 

Additional findings and assessments by the anesthesiologist feed into the 

decision-making process by the surgeon and quite often change the decision 

with corresponding risk of cancellations. During the surgery (𝑡 = 𝑛 ), 

complications may also lead to a patient being transferred to the ICU although 

no ICU capacity was reserved for this patient (𝐷0). The pathway of elective 

surgery patients illustrates the potential of applying a ML model in each of the 
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three decision periods 𝐷2, 𝐷1 and 𝐷0 for the prediction of actual ICU treatment 

after elective surgery to avoid cancellations. According to Heider et al. (2022), 

up to 35% of elective surgeries may be cancelled due to capacity issues in the 

ICU, which represents a fairly high potential of improvement. In the healthcare 

sector, a recurring issue is the higher initial demand for OR capacity compared 

to the available capacity. This prompts a proactive approach of aiming for 

complete utilization of this capacity beforehand. The subsequent focus shifts 

towards effectively managing the outcome of achieving  100% utilization, 

encompassing an integrated consideration of both the OR and ICU. Therefore, 

the concept of capacity is delineated as potential number of patients within the 

OR and the ICU. When the feasible patient number falls below the typical 

capacity in either OR or ICU, we describe it as scarce capacity. Conversely, if 

the potential patient number surpasses the norm, it signifies a state of high 

capacity. In our case, it is the scarcest situation when the OR capacity is high, 

and the ICU capacity is low. This can lead to the need for elective surgeries to 

be postponed.    

 

Figure 1: The pathway of elective surgery patients and different scarcity patterns in the OR and on 
ICU in the hospital (top) vs.ML algorithm (bottom). While in the current process in the hospital it is 

only clear after all three decision periods how many elective patients will be admitted to the ICU, ML 
can predict those already in the surgical outpatient clinic. This is particularly important when ICU 
beds are a scarce resource. For example, if there is little free capacity available in the ICU, it is even 

more important to achieve an accurate prediction, i.e., to achieve high sensitivity. 
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While state-of-the-art applications of ML methodologies concentrate on the 

accuracy of the overall prediction, the idea of integrating scarce OR and ICU 

capacities supposes planning flexibility and the dynamic focus, e.g., high 

sensitivity or high specificity, on a specific label such as ICU. If, for example, 

ICU capacity 𝑐𝐼𝐶𝑈 is scarce while OR capacity c𝑂𝑅 is sufficient, it is particularly 

important to provide highly sensitive predictions while maintaining high 

specificity and accuracy. If ICU capacity is sufficient, while that of the OR is 

scarce, no particular focus on sensitivity is needed, which could increase the 

importance of specificity (see Figure 1). 

In this work, we introduce a performance-flexible AI-based planning approach 

for predicting whether an elective patient will be transferred to the ICU after 

elective surgery (i.e., ICU or non-ICU). This approach includes a performance-

flexible loss function in a ML model and a subsequent simulation about ICU 

occupancy. In the loss function, two weights are set for the respective focus on 

sensitivity or specificity. The approach is evaluated by a large data set of the 

University Hospital of Augsburg, Germany, consisting of more than 26,600 

elective surgeries between 2017 and 2021 and extensive simulation studies. 

The data contains values that are determined in each hospital during the 

planning of the surgery, which is why this is a generalizable approach. We find 

that our performance-flexible AI-based planning approach, other than state-

of-the-art ML algorithms, can flexibly prioritize a particular label in binary 

classification (i.e., ICU or non-ICU) subject to capacity considerations while 

maintaining high accuracy. Consequently, the ratio of realized demand and 

planned intensive care capacity is stable and near to 1 for different simulation 

scenarios regarding scarcity of resources and patient cohorts. Our 

performance-flexible AI-based planning approach supports decision makers in 

hospitals while guaranteeing planning flexibility. 

Our work is structured as follows. In section 2, we provide an overview of 

related literature. In section 3, we introduce our performance-flexible AI-

based planning approach. In particular, we describe the considered loss 

functions, thresholds, ML models, the data set and our simulation study. An 
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overview of the findings is provided in section 4. Section 5 includes a summary 

and an outlook to future research.  

2 Related literature 

ML has gained significant importance in recent years (e.g., Ratku and 

Neumann (2022)), especially in healthcare applications (e.g., Reig et al. 

(2020), Sheng et al. (2022)), and the number of publications using this 

methodology has increased accordingly. In this paper, we narrow our focus to 

binary classification, because we are interested in the binary decision of ICU 

treatment after elective surgery (i.e., ICU or non-ICU). We investigate two 

popular ML algorithms, namely Logistic Regression (LR) and Deep Neural 

Networks (DNN), to address this task. When applying ML methods to binary 

classification, various objectives can be pursued. These can be achieved by 

adjusting the components of the model. Well known components to be 

modified are the loss function and the threshold between the two classes. 

Existing literature introduces on the one hand new loss functions with the goal 

of data balancing and on the other hand problem-specific thresholds with 

different goals, like data balancing or priority on a performance measure (e.g., 

sensitivity). Essentially, the loss function is relevant during and after training, 

while the threshold is used after training, and thus after learning.  

Cost-sensitive (learning). The objectives of data balancing or emphasizing 

different performance measures are often referred to as cost-sensitive 

learning. In this context, costs are not necessarily monetary, but can also 

represent the severity of a disease, for example. Under these circumstances, it 

might be more beneficial to predict the positive class, even if the negative class 

has a higher probability. The term cost-sensitive decision making is also used 

in this context (Elkan 2001). Cost-sensitive learning can be categorized among 

others into relabeling, weighting, and thresholding. In relabeling, classes of 

instances can be renamed based on cost. Weighting uses loss functions to 

assign a certain weight to each instance while thresholds are chosen to 

minimize the cost (Sheng and Ling 2006). In the following, we will consider 
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the cost-sensitive methods of weighting and thresholding in more detail. The 

notation for the following introduction of weighting can be seen in Table 1. An 

overview of all methods is given in Table 2. 

Mathematical formulations 

𝑁 Number of features 

M Number of training samples 

P Number of training samples of the positive class 

𝑦𝑚 Target label for training sample 𝑚 

𝒙𝑚 Features for training sample 𝑚 

ℎ𝜽 Prediction model with weights 𝜽 

𝛼 Weight of positive label 

𝛽 Weight of negative label 

𝛾 Learning rate 

Table 1: Notation of loss functions 

Weighting (Loss functions).  An impactful and effective approach to 

influence ML models is the strategic manipulation of the loss function. Loss 

functions aim to minimize the error between label and prediction.  

For the introduction and comparison of the different loss functions, we 

introduce a generic loss function for binary classification. Essentially, the loss 

function for two classes can be partitioned into two components. The first 

segment pertains to accurately predicting the positive class (true positives 

(TP)), whereas the second segment concerns precise predictions of the 

negative class (true negatives (TN)). The primary goal of the loss function is to 

reduce instances of false negatives (FN) in the first segment and false positives 

(FP) in the second segment. Moreover, it is possible to introduce weights to 

either or both segments. In our generic loss function, these weights are 

denoted as weight 𝛼 for the positive class and weight 𝛽 for the negative class: 

𝐽 = −
1

𝑀
∑ [𝛼 ∙ 𝑦𝑚 ∙ log(ℎ𝜽(𝒙𝑚)) + 𝛽 ∙ (1 − 𝑦𝑚) ∙ log(1 − ℎ𝜽(𝒙𝑚))]

𝑀

𝑚=1

 (1) 
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The values of these weights change in the different loss functions, which will 

be discussed in more detail below. A well-known loss function in the area of 

binary classification is the binary cross-entropy (BCE) (Jadon 2020): 

𝐵𝐶𝐸: 𝛼 = 1, 𝛽 = 1 (2) 

In this case, misclassification of the positive and negative class is penalized 

equally. Besides the state-of-the art approach of equal weights, some other loss 

functions based on BCE with a focus on binary classification already exist. The 

objective of these functions is to balance data. 

Unbalanced data is a major problem in healthcare. For example, there is a 

greater abundance of data available from the normal ward as opposed to the 

ICU, or when predicting traumatic events compared to diseases with high 

prevalence rates. Therefore, many different methods of under- and 

oversampling have been developed over time to address this problem. An 

overview of existing methods is given by He and Garcia (2009). Among others, 

the authors mention the well-known Synthetic Minority Oversampling 

Technique (SMOTE) method to balance the data (Chawla et al. 2002).  

However, it should be noted that there is a debate on which method is superior 

(Drummond and Holte 2003). Another method of dealing with unbalanced 

data is to use modified loss functions. The weighted binary cross-entropy 

(WBCE) is widely used for unbalanced data. In binary classification, the false 

negative (FN) case is reinforced with a weight (Jadon 2020): 

𝑊𝐵𝐶𝐸: 𝛼 ∈ ℝ0
+, 𝛽 = 1 (3) 

The weight for WBCE can be any positive real number. A higher weight 

indicates a higher prioritization on the correct prediction of the respective 

class. Studies show that the WBCE loss function causes a positive impact on 

model performance with unbalanced data (e.g., Rezeai-Dastjerehei et al. 

(2020)). In combination with LR, WBCE forms a special form called weighted 

Logistic Regression. This also aims to pay more attention to the minority class. 

There are many use cases (e.g., Das et al. (2013); Maalouf and Siddiqi (2014)) 
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and even some publications in healthcare (e.g., Sheng et al. (2022); Zare et al. 

(2013)). 

Unlike the WBCE loss function, cost-sensitive binary cross-entropy (CSBCE) 

uses solely the weight of the positive class and its convex weighting (Aurelio et 

al. 2019):  

𝐶𝑆𝐵𝐶𝐸: 𝛼 ∈ [0,1], 𝛽 = (1 − 𝛼) (4) 

The value of the weight of CSBCE can be between zero and one. Since the 

objective of the loss function, as motivated above, involves balancing the data, 

the weight can be determined by 𝛼 = (
𝑃

𝑀
)

−1

. Thus, the ratio of the class and the 

total data is included in the loss function. A similar approach is taken by Cui et 

al. (2019) with their class-balanced loss function. There is no unique name for 

this loss function. Besides the CSBCE, for example, the name balanced cross-

entropy is also a well-known term (Jadon 2020). In addition, there is the focal 

loss to balance the data. The weight in the loss function is determined by the 

class and the classification difficulty, resulting in lower weights assigned to 

examples that are easy to classify (Lin et al. 2017). 

Furthermore, the weights may reflect the true cost of misclassification. This 

case is used in the real-world-weight cross-entropy (RWWCE) loss function. 

Among others, RWWCE can be applied to binary classification. The loss 

introduces one weight for the cost of missing a positive label, i.e., a FN, and a 

separate weight for missing a negative label, i.e., a false positive (FP). For 

binary classification, the weights of RWWCE are denoted as follows (Ho and 

Wookey 2020): 

𝑅𝑊𝑊𝐶𝐸: 𝛼 ∈ ℝ0
+, 𝛽 ∈ ℝ0

+  (5) 

The weights can be any positive real number. All loss functions in literature 

target balancing data and balanced data plays an important role in healthcare.  
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Thresholding. In addition to influencing learning through the loss function, 

the outcome (i.e., the performance measurements) can also be changed 

through thresholding. The threshold parameter 𝑝 allows for the conversion of 

predicted probabilities into specific labels based on a predetermined value. For 

binary classification, the state-of-the-art value is ℎ = 0.5, which means that the 

positive class is predicted if the probability is greater than 0.5, and the negative 

class is predicted if the probability is smaller than or equal to 0.5: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙 = {
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑙𝑎𝑏𝑒𝑙, 𝑖𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 > 0.5
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑏𝑒𝑙, 𝑖𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≤ 0.5

 (6) 

If necessary, this threshold can be adjusted. For example, to focus on 

sensitivity, the threshold can be set to ℎ = 0.2, since all probabilities above 0.2 

will lead to a positive class prediction. This difference between setting different 

thresholds is shown in Figure 2. The figure visualizes 500 patients with two 

exemplary features, where the range of values can be neglected for 

understanding thresholds. The blue colors in the background show the 

different predicted probabilities. Darker colors indicate a higher predicted 

probability and vice versa.  

 

Figure 2: Default threshold and increased sensitivity threshold for LR and two features (left side of 
the line: negative label, right side of the line: positive label) 

The white dots represent samples of the positive class, and the black dots 

represent samples of the negative class. The black line indicates the threshold 

at which the sample is classified as positive (right side of the line, e.g., ICU) or 

negative (left side of the line, e.g., non-ICU) based on the predicted 



 Appendix A: Performance-flexible AI 

 

38 

 

probabilities of the ML model. All samples on the right-hand side of the line 

are assigned to the positive class and all samples on the left-hand side are 

assigned to the negative class. By using the default state-of-the-art threshold 

of ℎ = 0.5, the line is placed precisely at the midpoint 

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  0.5). If a higher sensitivity is desired, the line is 

moved to the left. This results in more samples being assigned to the positive 

class. 

Individual thresholds allow algorithms to be made cost-sensitive even after 

training has been completed (Sheng and Ling 2006). Various objectives can be 

found in literature: Thresholding can be used to solve the problem of 

unbalanced data. Zhou and Liu (2006) show that sampling and thresholding 

achieve good results for unbalanced data sets, especially for binary 

classification. In addition, thresholding can be used for general cost-sensitive 

learning. It has been shown that thresholding almost always produces the 

lowest misclassification cost (Zhou, 2006). Furthermore, thresholding is used 

to maximize certain performance measures (i.e., sensitivity). Therefore, 

thresholding can be used to maximize the F1 score (Lipton et al. 2014), and 

flexible performance measure prioritization of classification problems (Eban 

et al. 2017).  

Abbrevia-

tion 

Term M Parameter Input Objectiv

e 

BCE Binary cross-entropy - 𝛼, 𝛽 =  1 - - 

BCET Binary cross-entropy with threshold T (NL) 𝛼, 𝛽 ∈ [0,1] UD, BD BD, FLP 

CSBCE Cost-sensitive binary cross-entropy W (L) 𝛼, 𝛽 ∈ ℝ0
+ UD BD 

NPFBCE Normalized performance-

flexible binary cross-entropy 

W (L) 𝛼, 𝛽 ∈ [0,1] BD FLP 

PFBCE Performance-flexible binary 

cross-entropy 

W (L) 𝛼, 𝛽 ∈ [0,1] BD FLP 

RWWCE Real-world-weight cross-entropy W (L) 𝛼, 𝛽 ∈ ℝ0
+ UD BD 

WBCE Weighted binary cross-entropy W (L) 𝛼 ∈ ℝ0
+, 𝛽 = 1 UD BD 

Table 2: Overview of methods including abbreviations, terms, and objectives; M: method (including 
learning (L) vs. no learning (NL) in training, T: thresholding, W: Weighting, FLP: flexible 

performance, BD: balanced data, UD: unbalanced data 

Besides the achieved objectives of thresholds, the ease of implementation and 

application can also be highlighted (Sheng and Ling 2006). A major limitation 
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of thresholding is the lack of implementation in the training phase of the 

model. Consequently, the model cannot learn existing preferences. For 

example, the importance of features cannot be influenced by thresholding. 

The literature review shows that while there are loss functions that address 

data balancing, no loss function addresses the goal of flexible performance. 

This goal is indeed addressed by another method, thresholding. However, 

thresholding is applied after the training phase of the model only. Thus, to the 

best of our knowledge, there is currently no method that integrates the 

objective of flexible performance with loss functions, which would impact the 

training of the model. We intend to close this research gap for our healthcare 

application.  

3 Methodology 

In the following, the new performance-flexible AI-based planning approach is 

introduced. For this purpose, we first present loss functions for binary 

classification, where the CSBCE is the basis for our objective and three other 

loss functions, BCE in combination with thresholding (BCET), WBCE and 

RWWCE, are used as comparison approaches. Subsequently, the ML models 

used, and the data set applied are presented. A simulation is then performed 

to evaluate the new approach. 

When predicting patients requiring critical care or a particular disease (i.e., 

ICU and non-ICU), it is essential for a healthcare decision maker to prioritize 

a specific class. As the relevance of a performance measure intensifies for 

decision makers, we first examine the confusion matrix and the three 

performance measures accuracy, sensitivity, and specificity. The distribution 

of correctly and incorrectly predicted cases can be determined based on the 

confusion matrix in Figure 3. 

While accuracy determines the correct predictions among all predictions, 

sensitivity (specificity) calculates the true positive (TP) (true negative (TN)) 

predictions among all positive (negative) cases.  
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (7) 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (8) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝐹𝑃 + 𝑇𝑁)
 (9) 

These performance measures can be influenced in different ways in training, 

e.g., by loss functions, and in testing, e.g., by thresholding (see section 2).  

 

Figure 3: Confusion matrix 

Performance-flexible loss function. In this paper, we consider a 

supervised learning problem for binary classification of patients. With the help 

of performance measures, the output of the model can be measured. Standard 

models aim to achieve the highest possible accuracy, but there are many 

reasons to consider different ML models depending on the situation, e.g., a 

focus on sensitivity for predictions of ICU patients. The notation for the 

following introduction of loss functions can be seen in Table 1. 

The objective of our performance-flexible AI-based planning approach is not 

cost minimization or data balancing. This requires a data set that has been 

previously balanced to focus on flexible performance. Our new approach uses 

the CSBCE loss function, except that it has a different objective and thus the 

weight is determined differently. We define our loss function as the 

performance-flexible binary cross-entropy (PFBCE). In this approach, the 
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flexible performance can be influenced by the weight 𝛼. To emphasize both 

classes equally and focus on accuracy, the weight can be set to 0.5, which can 

be used as state-of-the-art approach. 

𝑃𝐹𝐵𝐶𝐸: 𝛼 ∈ [0,1], 𝛽 = (1 − 𝛼) (10) 

If a higher sensitivity is important for the decision maker, e.g., due to a low 

ICU capacity, a greater value than 0.5 can be assigned to 𝛼 (e.g., 𝛼 = 0.8). This 

setting automatically downgrades the priority of correctly predicting the 

negative class, i.e., focus on specificity. Conversely, when ICU capacity is 

normal, a focus on the second class, i.e., non-ICU, can be chosen by using a 

lower weight of 𝛼 (e.g., 𝛼 = 0.2). When considering extreme values in the lower 

range (𝛼 = 0.0) and upper range (𝛼 = 1.0), the focus is mainly on one class. 

This does not mean that the algorithm does not learn at all, but that the 

calculation of an error in the zero-weight class is not penalized. In general, 

nevertheless, it is not recommended to apply extreme values, i.e., 𝛼 = 0 and 

𝛼 = 1. 

The efficacy of the PFBCE approach can initially be justified through the 

following mathematical expressions. Like the BCE, the PFBCE is also a convex 

function, because an optimization approach like gradient descent should 

minimize the losses. For the BCE, the parameter update of the gradient descent 

would be calculated as follows: 

Gradient descent BCE:  

𝜃 ≔ 𝜃 − 𝛾 ∙
1

𝑀
∑ [(ℎ𝜽(𝒙𝑚) − 𝑦𝑚) ∙ 𝒙𝑚]

𝑀

𝑚=1

 

(11) 

For the PFBCE, the convexity of the function is preserved by the convex 

approach: 
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Gradient descent PFBCE:  

𝜃 ≔ 𝜃 − 𝛾 ∙
1

𝑀
∑ [(𝛼 ∙ ℎ𝜽(𝒙𝑚) − (1 − 𝛼) ∙ 𝑦𝑚) ∙ 𝒙𝑚]

𝑀

𝑚=1

 

(12) 

Normalization. Due to anomalies in the data (e.g., different features, biased 

values) and a lack of comparability of weighted loss functions, normalizing the 

loss function can be useful from a practical perspective. First, normalization 

can prevent large differences between different features in a data set and avoid 

problems with biased values (Ma et al. 2020). Second the problem of 

comparability can be avoided by applying normalization. In this work, 

normalization always refers to the normalization of the loss function. One way 

to do this is to divide the PFBCE by the sum of the weights for each class. For 

this purpose, we introduce the normalized performance-flexible binary cross-

entropy (NPFBCE) loss function: 

𝐽𝑁𝑃𝐹𝐵𝐶𝐸

= −
1

𝑀
∑

[𝛼 ∙ 𝑦𝑚 ∙ 𝑙𝑜𝑔(ℎ𝜽(𝒙𝑚)) + 𝛽 ∙ (1 − 𝑦𝑚) ∙ 𝑙𝑜𝑔(1 − ℎ𝜽(𝒙𝑚))]

𝛼 ∙ 𝑦𝑚 + 𝛽 ∙ (1 − 𝑦𝑚)

𝑀

𝑚=1

 
(13) 

The user of the ML algorithm can decide whether to normalize the loss 

function by changing the corresponding hyperparameter. This grants the 

flexibility to adapt the loss function based on the situation and, consequently, 

the data set. 

Machine learning models. Since loss functions are used in several 

supervised learning methods, we will use LR and a DNN as examples. We 

decided to use these two models because LR is often used together with 

weighted LR, and DNN is probably the most popular ML model performing 

well for many applications (Cichy and Kaiser 2019). For sake of comparability, 

the same ML models are applied to all loss functions. For the DNN 

architecture, hyperparameter tuning was first performed for the NPFBCE loss 

function with 𝛼 = 0.8. The weight of 0.8 was used because our application 
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requires a high focus on sensitivity. This results in a DNN with one input layer, 

six hidden layers, and one output layer. Except for the output layer, where the 

sigmoid activation function was applied, the tanh activation function is used. 

The exact DNN is shown in Figure 4.  

For training, we use the loss functions BCET, NPFBCE, PFBCE, RWWCE, 

WBCE presented above and stochastic gradient descent as the optimizer. 

Additionally, we use 85 epochs and a batch size of 10. To avoid overfitting, we 

use 5-fold cross validation. For a detailed evaluation of the results, we use the 

metrics accuracy, sensitivity, and specificity.  

For the comparison of the loss functions some assumptions had to be made. 

The main point to be noted is that the two loss functions, WBCE and RWWCE, 

do in fact include the objective of balanced data. In this case, the pre-balanced 

data set leads to a distinct initial state and, as a result, a different objective. 

Moreover, (N)PFBCE can be understood as a subfunction of RWWCE, since 

this loss function can be set to the same values (e.g., 𝛼 = 0.6 and 𝛽 = 0.4). 

However, this is not given in the context that the weight represents the 

estimated impact in the real world, and it is normally a real number.  

 

Figure 4: Overview of the DNN applied to the data set (AF: activation function, N: neurons) 

Data and simulation methodology. Both LR and DNN are applied to a 

real-world healthcare data set. This data (2017 to 2021) contains 26,677 

patients from the University Hospital of Augsburg, Germany, for whom a 
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decision must be made whether they require intensive care after elective 

surgery. All data is available at the first decision period 𝐷2 in the surgical 

outpatient clinic. In the data set, approx. 10% of elective patients require 

subsequent ICU treatment. The data set includes 14 features, which are shown 

in Table 3.  

No. Feature  No. Feature  No. Feature 

1 Medical specialty  6 Sex  11 Number of comorbidities 

2 Estimated cut suture duration  7 Weight  12 CCI 

3 Estimated anesthesia duration  8 Height  13 Planned type of anesthesia 

4 Estimated surgery duration  9 Body mass index  14 Estimated ASA-score 

5 Age  10 Main diagnosis    

Table 3: Description of the 14 features of the data set (CCI: Charlson Comorbity Index) 

Every planned surgery includes the binary label of whether a patient is 

admitted to the ICU afterwards. As with most healthcare data sets, extensive 

data preparation was required. Non-relevant or erroneous data were deleted, 

and comorbidities were summarized in the Charlson Comorbidity Index (CCI) 

(Charlson et al. 1987). We use the Synthetic Minority Oversampling Technique 

(SMOTE) to balance the data (Chawla et al. 2002). In addition, we use feature 

scaling and missing values are imputed with the Iterative Imputer, predicting 

missing values using the Random Forrest algorithm. The split of training and 

test data is 90% to 10%. 

The major goal of the simulation study is to evaluate varying weights in the 

performance-flexible AI-based planning approach for different scenarios. Our 

9 scenarios differ in scarcity patterns in the OR and ICU (see Table 4). The 

scarcity patterns have been estimated based on the data set introduced above 

of the central ORs at the University Hospital of Augsburg, Germany.  

Scenario OR capacity [surgeries] 

Ratio of ICU patients 20 (scarce) 30 (normal) 40 (high) 

0.05 (scarce) 1 4 7 

0.10 (normal) 2 5 8 

0.20 (high) 3 6 9 

Table 4: Scenarios of the simulation study 
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Scarce/normal/high OR capacity is defined to be 20/30/40 elective surgeries, 

i.e., elective patients, per day; scarce/normal/high ICU capacity is defined to 

be a ratio of 5/10/20 percent ICU patients per day. In addition, we defined 3 

different patient cohorts: All patients and patients with ASA-scores1 smaller 

than 3 or bigger than 2. The different patient groups cover different status of 

the healthcare system. For example, during the COVID-19 pandemic, 

authorities banned postponable surgeries of non-severely ill patients, who are 

simultaneously assumed to have low ASA-scores in this work. For every 

weight, scarcity pattern and patient group, Monte-Carlo simulations with 

1,000 runs are applied. Per simulation run, we simulated 2 types of patients 

with replacement out of the given data: Patients that are predicted to be 

transferred to the ICU after elective surgery (i.e., ICU label) and patients that 

are predicted to not be transferred to the ICU after elective surgery (i.e., non-

ICU). We calculated the ratio of ex-post realized and planned ICU patients as 

our key performance indicator (KPI) per simulation run and averaged the 

results for every weight, scarcity pattern and patient group. If the KPI is 1, 

realized ICU occupancy is the same as predicted. Consequently, a ratio of 1 is 

our benchmark. If the KPI is bigger than 1, less ICU occupancy than needed is 

planned. If the KPI is smaller than 1, more ICU occupancy than needed is 

planned. Please find a flowchart of the simulation study in Figure 5. 

 

1ASA-score is a extensively employed scoring system utilized for categorizing patients based 
on their physical condition (Saklad (1941)). 
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Figure 5: Flowchart of the simulation study; 𝛼: weight of positive class, 𝑜: OR capacity, 𝑖: ICU 
capacity,  𝑟: index for runs 

For the performance-flexible AI-based approach, we used Python for the ML 

models and R for the simulation. 

4 Results 

In the following, we present our results by applying the methods to the ICU 

and elective surgery data. First, the results of the two ML models, LR and DNN 

are discussed. Afterwards, we present the simulation results with a focus on 

ICU capacity management. Below, absolute values are expressed as 

percentages (%) and differences are presented as percentage points (𝑃𝑃). 

4.1 Comparing LR with DNN 

In addition to our two loss functions PFBCE and NPFBCE, the methods BCET, 

WBCE and RWWCE presented in the literature section are used for 
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comparison. Our application of the NPFBCE loss function to the data set 

confirms the assumptions made above. By using a higher weight, a higher 

sensitivity can be achieved, which decreases the specificity. Conversely, 

increased specificity directly causes decreased sensitivity. However, there is no 

significant change in accuracy. The results of the LR and DNN are also shown 

in Figure 6.  

On the one hand, this means that a higher weighting of NPFBCE generally 

allows a focus on one performance measure, namely sensitivity or specificity. 

On the other hand, this can assist a healthcare decision maker in capacity 

planning. For example, if ICU capacity is scarce, few ICU patients may be 

admitted after elective surgery. Therefore, in such a situation, it is particularly 

important to achieve high accuracy of the positive class, i.e., sensitivity. This is 

possible with the use of ML and adjustments of weights of the NPFBCE. If 

capacity is scarce, the weight can be set high (e.g., 𝛼 = 0.8).  With a weight of 

0.8, NPFCE in the DNN (in LR) achieves a sensitivity of 98.29 % (97.73 %), a 

specificity of 76.78 % (78.31 %), and an accuracy of 87.53 % (88.02 %).  

The example shows that in both models a strong focus on one performance 

measure, e.g., sensitivity, still guarantees high accuracy. If the capacity is high, 

there is no need to focus on sensitivity. For example, the base case with a 

weight of 0.5, corresponding to BCE and state-of-the-art ML approaches, can 

be used. This results in a sensitivity of 93.08 % (91.33 %), a specificity of 

85.46 % (86.65 %) and an accuracy of 89.27 % (88.99 %) for PFBCE for the 

DNN (LR). The use of the extreme values, i.e., 𝛼 = 0.0 or 𝛼 = 1.0, is not 

recommended because either the sensitivity or the specificity is zero. As the 

results of the LR are similar to those of the DNN, but especially the sensitivity 

of the latter is higher, we focus on the DNN for further analyses.  
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Figure 6: Performance measures sensitivity, specificity, and accuracy of LR and DNN for NPFBCE 
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Until now, we have solely examined the results of the NPFBCE loss function. 

However, these findings can also be applied to the non-normalized PFBCE loss 

function. When comparing the PFBCE loss function with the normalized 

version, there is no distinct difference. For example, for 𝛼 = 0.7 and the DNN, 

we obtain a sensitivity of 97.37 % (95.92 %), a specificity of 79.24% (81.68 %) 

and an accuracy of 88.31 % (88.80 %) for NPFBCE (PFBCE). In the remainder, 

we use the results of NPFBCE for the simulation performed in the following 

section.   

A comparison of the results of the (N)PFBCE loss functions with the loss 

functions in literature confirms our previous findings. We consider, for 

example, high sensitivity, i.e., 𝛼 = 0.8. In DNN, NPFBCE (PFBCE) achieves an 

improved sensitivity of +7.05 𝑃𝑃 (+7.04 𝑃𝑃), a reduced specificity of 

−10.32 𝑃𝑃 (−9.70 𝑃𝑃) and a reduced accuracy of −1.65 𝑃𝑃 (−1.33) compared 

to WBCE. This trend is also evident when comparing (N)PFBCE with RWWCE. 

These results show that our approach places higher emphasis on sensitivity 

than the loss functions WBCE and RWWCE, while maintaining comparable 

accuracy. Only the BCET achieves similar results to the (N)FPCE function in 

terms of sensitivity. With weight 𝛼 = 0.8, NFBCE (PFBCE) shows a decreased 

sensitivity −2.56 𝑃𝑃 (−3.04 𝑃𝑃), an increased specificity +5.91 𝑃𝑃 (+6.80 𝑃𝑃) 

and an increased accuracy +1.68 𝑃𝑃 (+1.88 𝑃𝑃) compared to BCET. For 

sensitivity, BCET is slightly superior. The methodological disadvantage of 

BCET, compared to our performance-flexible AI-based planning approach, is 

that sensitivity in BCET is determined after training. Thus, learning of the 

model cannot be influenced by the given sensitivity. This aspect is important 

not only for learning patterns applicable to other data but also for the 

application of techniques such as feature importance, which is performed 

during training. The performance of the different loss functions with 𝛼 = 0.6 

and 𝛼 = 0.8 is shown in Figure 7. 



 Appendix A: Performance-flexible AI 

 

50 

 

 

Figure 7: Comparison of loss functions for 𝛼 = 0.6 and 𝛼 = 0.8 of DNN 

The results show that the (N)PFBCE loss function should be used in 

management decisions involving capacity constraints. Besides the focus on 

sensitivity, the function also outperforms the loss functions WBCE and 

RWWCE. BCET is quite similar in terms of performance, but has 

methodological weaknesses compared to the (N)PFBCE loss function. These 

findings can be transferred to the other weights with a focus on specificity, i.e., 

a weight smaller than 0.5. Additionally, with a high focus on sensitivity, 

NPFBCE performs better than PFBCE in our data set. 

The performance measures of all loss functions for LR and DNN functions are 

shown in the Appendix. Due to memory constraints, only certain weights were 

considered for the two loss functions WBCE and RWWCE. 

4.2 Evaluation of different capacity patterns using simulation 

In the following, we discuss the outcomes of the simulation study for the 

different data sets, capacity patterns, i.e., simulation scenarios defined in Table 

4, and weights. As discussed before, we focus on one KPI which is the ratio of 

ex-post realized and planned ICU patients. A KPI of 1 (benchmark) denotes 

that for all patients in need of ICU treatment after elective surgery sufficient 

treatment is available.   
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For the data set with all patients, normal ICU and OR capacity (scenario 5), we 

find a KPI of 1 for weight in between 0.8 and 0.9. A KPI of 1 is thus achieved 

only for a considerable focus on sensitivity in case of both normal ICU and OR 

capacity. For state-of-the-art ML with a weight of 0.5, the KPI is 1.29. This 

means that we expect 1.29 patients per unit of ICU capacity, and ICU capacity 

is overbooked. Consequently, based on the state-of-the-art ML approach, 

surgeries are to be postponed or cancelled or ICU patients must be discharged 

early which might endanger their health. In addition, the decision on the 

different options to meet overutilization causes significant additional 

managerial effort. This effort is avoided by applying our new approach with 

weights in between  0.8 and 0.9. The conclusions apply accordingly to the data 

set with all patients, low/normal/high ICU and low/high OR capacities. 

Consequently, performance-flexible AI-based planning of elective surgeries is 

important for ICU capacity usage and outperforms state-of-the-art ML 

predictions in all scenarios. Depending on the capacity patterns in the OR and 

in ICU, our new approach with weights in between 0.7 and 1 should be applied. 

Performance-flexible AI-based planning is thereby of special importance for 

scarce ICU capacities, while scarcity in the OR plays a subordinate role for 

performance-flexible ICU planning. For both scarce ICU and OR capacities, 

the gap between state-of-the-art planning and our performance-flexible AI-

based planning approach becomes bigger but superior weights remain 

unchanged compared to normal OR. 

When comparing these results for the data set with all patients with the data 

sets with high/low ASA-score patients, it becomes evident, that performance-

flexible AI-based planning is of special importance for patient cohorts with 

average ASA-scores (see above) and high ASA-scores. For the data set with 

high ASA-score patients, weights in between 0.9 and 1 lead to a KPI near to 1. 

In contrast, if state-of-the-art planning is applied to this cohort, per unit of ICU 

capacity, we expect up to 2.80 patients. The data set with high ASA-score 

patients mimics, e.g., the situation during peak phases of the COVID-19 

pandemic, when only severely ill patients had access to elective surgeries. If 

state-of-the-art planning is applied here, ICU capacities are significantly 
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overbooked with corresponding consequences on postponements, 

cancellations, early discharges, and management decisions. It becomes evident 

that the application of performance-flexible AI-based planning of elective 

surgeries is even more important in pandemic and similar circumstances. 

For the data set with low ASA-score patients, in case of state-of-the-art 

planning, we expect only 1.10 patients per unit of ICU capacity. For the data 

set with low ASA-score patients and scenario 6 (4), i.e., high (scarce) ICU and 

normal OR capacity, the KPI is 1 for weights in between 0.6 and 0.7 (0.8 and 

0.9). Consequently, state-of-the-art planning might be applied in the unlikely 

situation of rather healthy patients. As our performance-flexible approach can 

depict this unlikely situation and flexibly switch to other circumstances, the 

simulation study strongly supports the application of our integrated approach 

for ex-ante ICU planning of elective surgeries. A summary of the results of the 

simulation study is shown in Figure 8. 
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Figure 8: Ratios of ex-post realized and planned ICU patients (KPI) for the different simulation 
scenarios (see Table 4) and data sets. 

 



 Appendix A: Performance-flexible AI 

 

54 

 

5 Conclusion 

This study introduces an innovative performance-flexible AI-based planning 

approach designed to predict ICU treatment following elective surgeries. Our 

approach emphasizes performance flexibility, achieved through a weighted 

loss function during training. By prioritizing a specific label while maintaining 

high accuracy, the model allows decision-makers, for example, to focus on 

sensitivity when ICU capacity is of crucial importance, leading to more 

accurate positive class predictions. The method considers both OR and ICU 

capacity for elective patients requiring post-surgery ICU care, resulting in 

stable ICU capacity ratios close to 1 across various simulation scenarios and 

patient cohorts with different resource availability. 

There are some limitations to our methodology. First, data preparation steps 

applied to the data set can influence the model's results, and the impact of 

different preparation approaches remains unclear. Second, the loss functions 

for comparison include other objectives, leading to different requirements in 

implementation. Third, while the performance-flexible AI-based planning 

approach excels in the integrated ICU and OR case, its performance in other 

applications warrants further investigation. 

Future research could extend our approach to address short-term scheduling. 

We focus on a planning horizon of approximately 30 days in advance, but 

short-term adjustments may be necessary. Additionally, applying the 

performance-flexible AI-based planning approach to other decision problems 

offers promising avenues for further exploration and application in diverse 

domains. Furthermore, the combination of the (N)PFBCE and thresholding 

could provide fruitful insights. 
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Appendix 

 

Figure 9: Performance measures sensitivity, specificity, and accuracy of NPFBCE, PFBCE and BCET 
of DNN 
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Figure 10: Performance measures sensitivity, specificity, and accuracy of WBCE and RWWCE of 
DNN 
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Figure 11: Performance measures sensitivity, specificity, and accuracy of NPFBCE, PFBCE and BCET 
of LR 
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Figure 12: Performance measures sensitivity, specificity, and accuracy of WBCE and RWWCE of LR 



 

63 

 

Appendix B: Customized AFs 

Grieger, M, Shala, E, Schüller, M, Ebel, SS, Brunner, JO, Vehreshild, JJ, Erber, 

J, Hanses, F, Zabel, LT, Römmele, C, Shmygalev, S, Bartenschlager, CC (2023). 

DENLU and leaky stanh: customized activation functions targeting enhanced 

sensitivity with healthcare applications in binary classification. 

Status: Close to submission.



 Appendix B: Customized AFs 

 

64 

 

 

Original Research Paper: 

DENLU and leaky stanh: customized activation functions 

targeting enhanced sensitivity with healthcare applications in 

binary classification 

Milena Grieger1, Elion Shala1, Markus Schüller1, Stefanie S. Ebel1, Jens O. 

Brunner1,10,11, Jörg J. Vehreschild2,3,4, Johanna Erber5, Frank Hanses6, Lutz T. 

Zabel7, Christoph Römmele8, Sergey Shmygalev9, Christina C. 

Bartenschlager9,12 

 

1Health Care Operations/Health Information Management, Faculty of Business and 
Economics, Faculty of Medicine, University of Augsburg, Universitätsstraße 16, 86159 
Augsburg, Germany 
2Goethe University Frankfurt, Department of Internal Medicine, Hematology and Oncology, 
Frankfurt am Main, Germany 
3University of Cologne, University Hospital of Cologne, Department I of Internal Medicine, 
Cologne, Germany 
4German Center for Infection Research, partner site Bonn-Cologne, Cologne, Germany 
5Technical University of Munich, School of Medicine, University Hospital rechts der Isar, 
Department of Internal Medicine II, Ismaninger Str. 22, 81675 Munich, Germany. 
6Hygiene and Infectiology, University Hospital of Regensburg, Germany 
7Laboratory Medicine, Alb Fils Kliniken GmbH, Eichertstraße 3, 73035 Göppingen 
8Clinic for Internal Medicine III - Gastroenterology and Infectious Diseases, University 
Hospital Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany 
9Department of Anaesthesiology and Operative Intensive Care Medicine, University Hospital 
Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany 
10Department of Technology, Management, and Economics, Technical University of Denmark 
11Data and Development Support, Region Zealand, Denmark 
12Professor of Applied Data Science in Health Care, Nürnberg School of Health, Ohm 
University of Applied Sciences Nuremberg 

 
 

Correspondence: 
milena.grieger@uni-a.de 

 
 
 

Submission: November 2023 

  



 Appendix B: Customized AFs 

 

65 

 

Original Research Paper: 

DENLU and leaky stanh: customized activation functions 

targeting enhanced sensitivity with healthcare applications in 

binary classification 

Abstract. In healthcare settings, binary classification of patients is frequently 

applied. For example, hospital decision-makers seek to classify patients 

regarding a positive or negative diagnosis and intensive care unit (ICU) 

treatment or non-ICU, respectively. Lately, the importance of machine 

learning algorithms as decision support tools for the classification of patients 

has significantly risen in literature. While most machine learning applications 

consider both classes equally important, the focus in healthcare is often on one 

particular class, e.g., ICU treatment and enhanced sensitivity for this class. 

New customized activation functions (AFs), namely Double Exponential Non-

Linear Unit (DENLU) and Leaky Scaled Hyperbolic Tangent (leaky stanh), 

with applications in binary classification of healthcare data, are studied. The 

performance of the functions is tested and compared with existing ones for 

simulated and real-world healthcare data. The results show that the machine 

learning model's performance based on the customized AFs is superior to 

existing ones in terms of sensitivity (up to +17.7 percentage points) and AUC 

(up to +7.6 percentage points) but depends strongly on the heterogeneity of 

the data. From a theoretical perspective, DENLU and leaky stanh show 

interesting properties concerning the S-shape flexibility and the avoidance of 

the problem of vanishing gradients. Thus, the customized AFs may be used for 

binary classification of heterogeneous healthcare data if a focus on sensitivity 

is required. Accurate predictions for a specific class enable a decision maker to 

formulate more exact plans, e.g., the necessity of ICU treatment. 

Keywords: medical decision making; machine learning; binary classification; 

activation function; sensitivity 
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1 Introduction 

In healthcare settings, binary classification of patients is frequently applied. 

For example, healthcare decision-makers seek to classify patients regarding a 

positive or negative diagnosis, in- or outpatients, and intensive care unit (ICU) 

treatment or non-ICU treatment, respectively. The classifications are essential 

for effective and efficient hospital resource planning and contribute to optimal 

medical care. If, for example, a patient is mistakenly transferred from the 

emergency department to the ward when he or she should be receiving ICU 

treatment, this leads to a strain on resources and, at the same time, endangers 

the patient's health. Lately and probably fueled by the Covid-19 pandemic, the 

importance of machine learning algorithms as decision support tools has 

significantly increased in literature (for example: Alballa and Al-Turaiki 

(2021); Pfeuffer et al. (2023); Weber et al. (2022); Wynants et al. (2020)). 

While most machine learning applications consider both classes equally 

important, the focus in healthcare is often on one particular class, e.g., ICU 

treatment.  

Furthermore, there exist solely a very limited number of activation functions 

(AFs) that can be integrated into the algorithms. Commonly used are the 

sigmoid, Exponential Linear Unit (ELU), Rectified Linear Unit (ReLU), and 

Hyperbolic Tangent (tanh) functions (Ohn and Kim 2019). Sigmoid and tanh 

have formed the basis for a large part of the AFs used in the field of healthcare 

and medicine for quite a long time (El-Baz and Suri 2021). While both meet 

the criteria of the Universal Approximation Theorem (UAT) for AFs and show, 

other than ELU and ReLU, a high training stability due to their S-shape, 

sigmoid is not flexible in scaling the S-curve. A significant limitation of all AFs 

mentioned is generally known as the vanishing gradient. Vanishing gradients 

describe gradients becoming continuously smaller and converging to 0 with 

increasing absolute values of the independent variable (Li et al. 2014). As ELU 

and ReLU are non-S-shaped curves, they are subject to ‘one-sided’ vanishing 

gradients problem only.  
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In this work, we propose customized AFs in machine learning, namely Double 

Exponential Non-Linear Unit (DENLU) and Leaky Scaled Hyperbolic 

Tangent (leaky stanh), with applications in binary classification of healthcare 

and medicine data. Both are extended versions of well-known AFs. The former 

is a flexible S-shaped alternative to sigmoid based on (R)ELU. The latter is an 

extension of (s)tanh solving the problem of vanishing gradients. Both 

functions are based on the criteria defined by the UAT for AFs. We want to gain 

a better understanding of how AFs based on UAT can impact the outcomes of 

a machine learning model. Their performance is tested for simulated and real-

world healthcare data. The data includes three different data sets on Covid-19 

diagnosis based on laboratory parameters, classification of Covid-19 patients 

in the emergency department regarding ICU treatment, and classification of 

elective patients regarding ward or ICU treatment after surgery. Medical 

decision-makers need to focus on highly sensitive classifications in all these 

real-world scenarios. For example, individuals who are misclassified as Covid-

19 negative are likely to become additional spreaders of the disease if not 

appropriately isolated. Moreover, ICU capacity belongs to one of the scarcest 

resources in hospitals. Thus, if patients suffering from Covid-19 or undergoing 

surgery are wrongly predicted not to need ICU treatment, capacity constraints 

could cause severe health issues for those individuals. Therefore, all use cases 

mentioned above benefit from highly sensitive results, so the sensitivity of the 

AFs is considered explicitly in the remainder of this paper. Moreover, we 

examine how homogeneous and heterogeneous data can influence the 

outcomes of machine learning models, aiming to glean new insights within the 

context of data structure. 

Our work is structured as follows. In section 2, we provide a review of existing 

AFs. The review is the basis for introducing our customized AFs, DENLU and 

leaky stanh, in section 3. The AFs are applied to simulated and real-world 

healthcare data, and the results are discussed in detail in section 4. Section 5 

concludes and provides an outlook for future research. 
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2 A review of activation functions 

Despite the considerable significance of selecting an appropriate AF, there is no 

standardized protocol within the research for guiding the AF selection or development 

process. This lack of consensus can be attributed, in part, to the diverse range of 

prediction tasks to which AFs can be applied to varying degrees (Liew et al., 2016). 

Nevertheless, one potential solution to this issue is to use the UAT as a guideline when 

creating an AF. As a result, AFs have the desired property of approximating an 

arbitrary, nonlinear (Hornik 1991), continuous function with arbitrary accuracy 

(Hornik et al. 1989). For this purpose, AFs must meet specific criteria, specifically the 

Universal Approximation Properties (UAP) underlying the UAT, listed in Table 1 

(Sodhi and Chandra 2014). Given the UAT, various methods can be employed to 

categorize AFs. 

UAP.1 AF 𝜎(𝑥) creates output that is non-constant for the entire input range. 

UAP.2 AF is bounded within a value domain with 𝑃 as an upper bound and |𝜎(𝑥) ≤ 𝑃| holds. 

UAP.3 AF is continuous over all input values 𝑐, so that lim
𝑥→𝑐

𝜎(𝑥) = 𝜎(𝑐) holds. 

UAP.4 AF is a monotonically increasing function, so that 𝜎(𝑥) ≤ 𝜎(𝑦) for 𝑥 ≤ 𝑦 is valid. 

UAP.5 AF is differentiable everywhere (i. e., identical slope of the AF for each input value for 
both a left-sided and a right-sided convergence to this value). 

Table 1: Universal approximation properties 

Sigmoidal vs. non-sigmoidal functions. A frequently chosen variant is to 

categorize AFs based on their curve shapes. Within this framework, the 

functions are divided into a group of so-called sigmoidal or non-sigmoidal 

functions (Chandra et al. 2015). The former group includes functions that 

create outputs shaped as S-curves, whereas the latter group does not exhibit 

this characteristic. The logistic (sigmoid) function 𝜎(𝑥) =
1

1+𝑒−𝑥
 is a 

representative example of the former group, and the ReLU 𝜎(𝑥) = max(𝑥, 0) is 

the most prevalent AF in the latter group (Liew et al. 2016). 

Piecewise linear vs. locally quadratic functions. Another option for 

categorizing AFs is classifying them into piecewise linear and locally quadratic 

functions. Piecewise linear functions have no curvature for certain intervals 

which are separated at breakpoints 𝑘 and 𝑙, i.e., the corresponding function 
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section is linear. Here, 𝑘 and 𝑙 are used as two exemplary breakpoints. 

Consequently, the first-order derivative is constant in such an interval [𝑘, 𝑙], 

i.e., the second-order derivative is zero. A well-known representative of the 

piecewise linear AFs is ReLU and its parameterized modification leaky ReLU 

𝜎(𝑥) = max(𝑥, 𝛼𝑥). Locally quadratic functions include functions with at least 

one open interval (𝑎, 𝑏) with a non-zero second-order derivate. A further 

distinction within locally quadratic functions involves smooth functions with 

non-zero second-order derivatives throughout their domain, such as the 

sigmoid function. The remaining functions are called piecewise smooth. ELU 

as a piecewise smooth function, and the tanh as a smooth function can be 

mentioned as exemplary representatives (Ohn and Kim 2019). In analogy to 

ReLU, ELU can be expressed in a parameterized form: 

𝜎(𝑥) = {
𝛼(𝑒𝑥 − 1)
𝑥                 

 
if 𝑥 ≤ 0
else        

 (1) 

Moreover, a parameterized representation is also possible for tanh by 

introducing the amplitude 𝑎 as well as the slope 𝑏, resulting in the Scaled 

Hyperbolic Tangent (stanh) (Liew et al. 2016): 

𝜎(𝑥) = 𝑎 ⋅ tanh(𝑏𝑥) = 𝑎 ⋅
𝑒𝑏𝑥 − 𝑒−𝑏𝑥

𝑒𝑏𝑥 + 𝑒−𝑏𝑥
  (2) 

Other approaches. Lastly, we provide a concise overview of another 

category of AFs that differs fundamentally from the previously mentioned 

division into distinct groups. Until now, the focus has primarily been on 

empirically fixed AFs, with only the model parameters being updated through 

the backpropagation algorithm. Notably, the AF itself remains unaltered 

during the training process and is, as previously mentioned, empirically 

determined. In contrast to this prevailing approach, an alternative method 

involves approximating a conventional AF 𝜎(𝑥) by employing a Taylor series 

expansion. For a more detailed exploration of this unconventional approach, 

we refer to the to the expositions of Chung et al. (2016). 
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3 An introduction to DENLU and leaky stanh 

In the following, the customized AFs DENLU and leaky stanh are presented 

based on the properties of several functions listed before. For this purpose, we 

modify some existing functions, namely ELU and stanh, so that the 

requirements according to the UAT are fulfilled as extensively as possible. 

These modifications aim to reduce the shortcomings of already known 

functions, such as the vanishing gradient, shape inflexibility, and training 

instability (see below). Additionally, we seek to improve the sensitivity of the 

AFs in comparison with their original basis and the respective use cases. 

3.1 DENLU 

The first AF we propose is DENLU. According to its name, the DENLU function 

is derived from the ELU function introduced before. In contrast to ELU, 

DENLU includes both a left-sided and a right-sided saturation behavior. In 

this context, it is worth mentioning that the upper and lower bounds of the 

value domain and, hence the saturation behavior of an AF significantly impact 

the training stability (Puheim et al. 2014). Further limiting the value domain 

as represented by the two-sided saturation is to reduce the training instability 

to which the modifications of the ReLU function, including ELU, are sensitive 

(Liew et al. 2016). Analogous to ELU, there is a left-sided saturation for 𝑥 < 0. 

In addition, for 𝑥 > 0, a right-sided saturation is introduced with a reversed 

curvature behavior compared to 𝑥 < 0, with the origin representing an 

inflection point. Due to the two-sided saturation, the original linear function 

section of the ELU function is omitted for DENLU. Therefore, the definition of 

S-shaped DENLU is as follows: 

𝜎1(𝑥) = {
𝑒𝑥 − 1   
1 − 𝑒−𝑥 

 
if 𝑥 ≤ 0
else        

 (3) 

With the UAT in mind, it is worth mentioning that the DENLU function is 

derivable for all values. While the ELU function has the value domain [−1, ∞], 

DENLU ranges outputs between −1 and 1, as seen in Figure 1.  
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Figure 1: Double Exponential Non-Linear Unit (DENLU) 

As is the case for the regular ELU function, DENLU can be extended as a 

parameterized function using the parameter 𝛾 resulting in an adjusted value 

domain [−𝛾, +𝛾]. Thus, the parameterized DENLU function can be formulated 

in the following way: 

𝜎1(𝑥) = {
𝛾 ⋅ (𝑒𝑥 − 1)   
𝛾 ⋅ (1 − 𝑒−𝑥) 

 
if 𝑥 ≤ 0
else        

 (4) 

How DENLU changes for different values of 𝛾 can be seen in Figure 8 in the 

Appendix. Given that DENLU is derived based on ELU, the difference between 

these AFs is worth highlighting. DENLU differs from ELU because for 𝑥 > 0, 

DENLU is 1 − 𝑒−𝑥 and ELU is 𝑥. As indicated at the beginning of this section, 

this bounded range of values of DENLU for both 𝑥 ≤ 0 and 𝑥 > 0 and thus the 

resulting two-sided saturation aims to improve the training stability. While 

looking at ELU the difference to DENLU is readily apparent, the difference 

from DENLU to stanh is not immediately obvious since both DENLU and 

stanh fulfill the same UAPs. To make this clearer, a closer look at the value 

ranges of the two functions is necessary. For illustrative purposes, the 

hyperparameters 𝛼 (DENLU), 𝑎 and 𝑏 (stanh) are assumed to be 1 each. On 

the one hand, for 𝑥 > 0, DENLU differs from stanh by −
(1−𝑒−𝑥)2

𝑒𝑥+𝑒−𝑥
, i.e., DENLU 

is smaller than stanh by 
(1−𝑒−𝑥)2

𝑒𝑥+𝑒−𝑥  in this interval. On the other hand, DENLU is 

larger than stanh by 
(1−𝑒𝑥)2

𝑒𝑥+𝑒−𝑥
 for 𝑥 ≤ 0. This means that the absolute value of 
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DENLU is smaller by 
(1−𝑒𝑥)2

𝑒𝑥+𝑒−𝑥  and thus less negative in the negative domain of 

the function. It follows that DENLU is smaller in absolute value than stanh in 

every subdomain of the function except for 𝑥 = 0, which again indicates an 

increased training stability. Given that 𝛼 and 𝑎 represent equivalent 

hyperparameters for DENLU and stanh, respectively, the value domain of 

stanh can be further modified via 𝑏, however, this requires an additional 

parameter to be determined. For a detailed derivation of the differences 

between DENLU and stanh, we refer the reader to the Appendix.  

3.2 Leaky stanh 

The second AF we propose is leaky stanh. This AF represents a modification 

of the function stanh, which intends to prevent the problem of the so-called 

vanishing gradient to which sigmoidal functions are subject. As it is already 

well-known, the parameters of a neural network are updated by the 

backpropagation of error gradients using the chain rule during the training 

process. A problem that arises with sigmoidal functions is that due to the 

increasing saturation of these functions for 𝑥 ⟶ ∞ and 𝑥 ⟶ −∞ those 

gradients become continuously smaller and converge to 0 as network 

parameters are updated over the network layers (Li et al. 2014). This problem 

generally known as vanishing gradient is also referred to as gradient diffusion 

and might negatively affect training performance since common learning 

algorithms rely on these gradients when optimizing network parameters (Liew 

et al. 2016). 

Following the theoretical considerations mentioned above, a modification of 

the stanh function is introduced in such a way that its margins are replaced 

each by a linear function section. The slope of these function sections 

represents an additional parameter of the customized AF. Accordingly, the 

customized AF is composed of three sections, consisting of the original stanh 

for 𝑐 ≤ 𝑥 ≤ 𝑑 and the two linear function sections at the margins 𝑥 < 𝑐 and 𝑥 >

𝑑. Consequently, the three sections are combined at positions 𝑐 and 𝑑 to form 

the leaky stanh function. In accordance with UAP.5, joining these sections 
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must be executed in such a way that the resulting function is differentiable 

everywhere. Therefore, the sections need to be combined at the specific 

positions 𝑐 and 𝑑, respectively, where the respective function sections under 

consideration show the same slope. To ensure this, the first order derivative 

(FOD) of the Scaled Hyperbolic Tangent is considered as shown in Figure 2. 

 

Figure 2: Scaled Hyperbolic Tangent and FOD 

Here, 𝑐 and 𝑑 are located at the positions at which the FOD, i.e., the gradient, 

of stanh corresponds to the slope of the linear function sections. This slope 

hereafter referred to as 𝛾, is a parameter and can be specified in advance. In 

the following, 𝛾 is exemplarily set to 0.01 for illustrative purposes. In addition, 

according to recommendations in literature, the parameters 𝑎 = 1.7321 and 

𝑏 = 0.6585 are set (Liew et al. 2016). However, both 𝑎 and 𝑏, as well as 𝛾, can 

be varied. The determination of 𝑐 and 𝑑, given in Figure 2, can be shown as 

follows.  

The first step is to determine the FOD of the stanh that is required to 

correspond to the slope of the linear function: 

𝜕

𝜕𝑥
𝑎 ⋅ tanh(𝑏𝑥) =

𝜕

𝜕𝑥
𝑎 ⋅

𝑒𝑏𝑥 − 𝑒−𝑏𝑥

𝑒𝑏𝑥 + 𝑒−𝑏𝑥
=

4𝑎𝑏𝑒2𝑏𝑥

(𝑒2𝑏𝑥 + 1)2
=
!

𝛾 (5) 

The next step is to solve equation (5) for 𝑥 such that 𝑐 and 𝑑 are obtained as 

solutions 𝑥1 and 𝑥2: 
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4𝑎𝑏

𝛾
− 2 = 𝑒2𝑏𝑥 + 𝑒−2𝑏𝑥 (6) 

𝑥 =

ln {
1
2

((
4𝑎𝑏

𝛾 − 2) ± √(
4𝑎𝑏

𝛾 − 2)
2

− 4)}

2𝑏
 

(7) 

Thus, according to (7), 𝑐 and 𝑑 are given by: 

𝑐 = 𝑥1 =

ln {
1
2

((
4𝑎𝑏

𝛾 − 2) + √(
4𝑎𝑏

𝛾 − 2)
2

− 4)}

2𝑏
 

(8) 

𝑑 = 𝑥2 =

ln {
1
2

((
4𝑎𝑏

𝛾 − 2) − √(
4𝑎𝑏

𝛾 − 2)
2

− 4)}

2𝑏
 

(9) 

As shown in Figure 2, using 𝑎 = 1.7321, 𝑏 = 0.6585 and 𝛾 = 0.01 given as 

examples above, 𝑐 ≈ −4.6459 and 𝑑 ≈ 4.6459 are obtained. Subsequently, 

based on amplitude a, slope 𝑏, function section slope 𝛾 as well as differentiation 

parameters c and d, the proposed AF leaky stanh can be formulated as follows: 

𝜎2(𝑥) = {

𝑎 ⋅ tanh(𝑏𝑐) + 𝛾 ⋅ (𝑥 − 𝑐)

𝑎 ⋅ tanh(𝑏𝑥)

𝑎 ⋅ tanh(𝑏𝑑) + 𝛾 ⋅ (𝑥 − 𝑑)

 
if 𝑥 < 𝑐        
if 𝑐 ≤ 𝑥 ≤ 𝑑
if 𝑥 > 𝑑        

 (10) 

Equation (10) shows that 𝜎2(𝑥) is a linear function with slope 𝛾 for 𝑥 < 𝑐 and 

𝑥 > 𝑑. In this context, the constants 𝑎 ⋅ tanh(𝑏𝑐) and 𝑎 ⋅ tanh(𝑏𝑑) denote the 

intercept of the respective linear section. As already mentioned at the 

beginning of this section, 𝜎2 is equivalent to the stanh for 𝑐 ≤ 𝑥 ≤ 𝑑. Again, 

considering the exemplary values for 𝑎 = 1.7321, 𝑏 = 0.6585 as well as 𝑐 ≈

−4.6459 and 𝑑 ≈ 4.6459 obtained from (8) and (9), (10) can be reformulated: 
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𝜎2(𝑥) = {

−1.7245 + 𝛾 ⋅ (𝑥 + 4.6459)

1.7321 ⋅ tanh(0.6585𝑥)
1.7245 + 𝛾 ⋅ (𝑥 − 4.6459)

 
if  𝑥 < −4.6459                    
if − 4.6459 ≤ 𝑥 ≤ 4.6459
if  𝑥 > 4.6459                        

 (11) 

Equation (11) is graphically illustrated in Figure 3. 

 

Figure 3: Leaky scaled hyperbolic tangent (leaky stanh) 

How leaky stanh changes for different values of 𝑎 and 𝑏 can be seen in Figure 

9 in the Appendix. 

Summarizing, leaky stanh belongs to the category of sigmoidal and piecewise 

linear functions, while DENLU belongs to the category of sigmoidal and locally 

quadratic functions. DENLU fulfills all properties of the UAT, while leaky 

stanh does not satisfy the second property of the UAT in certain cases. DENLU 

and leaky stanh have flexibility in shape scaling and ensure training stability, 

unlike ELU and ReLU, which suffer from the ‘one-sided’ vanishing gradient 

problem. Table 2 provides an overview of the categorization and properties of 

DENLU and leaky stanh compared to ELU, tanh, ReLU, sigmoid, and stanh 

functions. 
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Category/Property DENLU ELU tanh leaky stanh ReLU sigmoid stanh 

Sigmoidal        

Non-sigmoidal        

Piecewise linear        

Locally quadratic        

UAP.1        

UAP.2        

UAP.3        

UAP.4        

UAP.5  ()      

Shape flexibility        

Training stability        

No vanishing gradient  ()   ()   

Table 2: Comparison of the categorization and properties of existing AFs, DENLU and leaky stanh  

4 Application to simulated and real-world healthcare 

data 

In applying the two AFs DENLU and leaky stanh, we focus on binary 

classification of patients in a healthcare context. For this purpose, we apply a 

machine learning algorithm to both simulated and real-world healthcare data 

using the TensorFlow library with the Python programming language. In the 

following, we define our machine learning algorithm and the performance 

measures, introduce the data sets and data preparation, and present and 

discuss the results. 

4.1 The machine learning algorithm and performance 

measurement 

For better comparability of the AFs, the same deep neural network is used for 

all data sets. Since the problem of the vanishing gradient occurs mainly with 

deep neural networks, a neural network with more than one hidden layer is 

considered in this application. In the hidden layers, we use the AF under 

consideration (e.g., DENLU) while we use sigmoid in the output layer. The 

latter represents one of the two most applied AFs in healthcare settings. By 

following this procedure, we ensure comparability between our obtained 

results.  
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A binary cross-entropy is applied as a loss function, and gradient descent with 

a learning rate of 0.01 defines the optimizer. The settings are derived from 

extensive pre-testing. To measure the performance, we consider accuracy, 

sensitivity, specificity, F1-Score, area under the curve (AUC), precision 

(positive predicted value, PPV), and negative predicted value (NPV). We 

compare DENLU and leaky stanh with ELU, ReLU, tanh, and sigmoid. Ten-

fold cross-validation is applied to avoid overfitting. The algorithm's training 

includes 85 epochs with a batch size of 10. Hyperparameter tuning was 

deferred to a second step specifically because applying it beforehand would 

have rendered the results incomparable. 

4.2 Data sets and data preparation 

The machine learning algorithm is applied to simulated data, Covid-19 triage 

data, Covid-19 diagnosis data and elective surgery and intensive care (ESIC) 

data. Since healthcare data often deals with common problems like missing 

values or unbalanced classes (Das et al. 2019), extensive data preparation 

including feature scaling was necessary. Table 3 provides a detailed overview 

of the data sets and data preparation applied to the data sets. The training-test-

split for all data sets is 90 % to 10 %. 

Data set Simulated Covid-19 triage Covid-19 
diagnosis 

ESIC 

No. of patients 10,000 3,543 3,670 26,600 

No. of features 20 59 14 12 

No. of classes 2 2 2 2 

Positive class Class 1 ICU treatment SARS-CoV-2 pos. ICU treatment 

Negative class Class 0 Non-ICU 

treatment 

SARS CoV-2 neg.  Non-ICU 

treatment 

Feature scaling     

Feature 

heterogeneity 

    

Class balance by Data generation Oversampling Oversampling Oversampling 

Missing values 

filled by 

- Random Forest Random Forest Multi-Layer 

Perceptron 

Table 3: Overview of the data sets and data preparation applied to the data sets 
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Simulated data. Our simulated data set consists of a 10,000 × 20 

multivariate normal 𝑁(𝜇; 𝜎) feature matrix with expectation vector 𝜇 and 

covariance matrix 𝜎 as well as a 10,000 × 1 binary label vector. Regarding the 

distribution of labels, the data set is balanced, i.e., 5,000 × 20 random numbers 

belong to the first class (𝑐𝑙 = 0) and 5,000 × 20 random numbers belong to the 

second class (𝑐𝑙 = 1). The positive definite covariance matrix 𝜎 is of 20 × 20 

type with principal diagonal elements 𝜎𝑖𝑖 = 1 for all 𝑖 = 1, … ,20 and a 

randomly generated dependency structure 𝜎𝑖𝑗 for all 𝑖, 𝑗 = 1, … ,20 with 𝑖 ≠ 𝑗. 

While the covariance structure is the same for all 10,000 × 20 random numbers 

in the data set, the components of the expectation vector vary depending on 

the class and are defined as follows: 

𝜇𝑖𝑐𝑙
= {

𝑈𝑁𝐼𝐹0[0,1] for all 𝑖 = 1, … ,20 and 𝑐𝑙 = 0

𝑈𝑁𝐼𝐹1[0,1] for all 𝑖 = 1, … ,20 and 𝑐𝑙 = 1
 (12) 

Covid-19 triage data. The data set focuses patients tested positive for SARS-

CoV-2 from March 18, 2020, to January 7, 2021, and is based on a Lean 

European Open Survey on SARS-COV-2 Infected Patients (LEOSS) export. 

LEOSS is a European multicenter cohort study enabling extensive 

retrospective data analyses. Based on 3,543 cases and 59 documented features 

(see Table 4), which include, e.g., vital signs or laboratory values, the machine 

learning algorithm is used to predict whether a patient arriving in the 

emergency department will require an ICU bed. This AI-based classification of 

incoming patients might support physicians in their decision making. Features 

with underfilled columns in the data set are removed and comorbidities are 

combined using the Charlson Comorbidity Index (CCI, (Charlson et al. 1987)). 

In general, features in the data set are rather heterogeneous, because different 

categories such as vital signs, lab values, imaging outcomes, and symptoms are 

included. 
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General 
information 

Symptoms Vital signs Lab values Imaging 

• At least one 
neuronal 
disease 

• Non-specific 
Covid-19 
symptoms 

• Systolic blood 
pressure 

• Aspartate 
transaminase 

• CT: Air trapping 

• At least one 
cardiovascular 
disease 

• Other 
neurological 
findings 

• Diastolic blood 
pressure 

• Alanine 
transaminase 

• CT: Areas of 
consolidation 

• Gender • Sore throat • Pulse • Creatinine • CT: 
Bronchiolitis 

• Age • Dry cough • Temperature •  Bilirubin • CT: Crazy 
paving pattern 

• Prior heart 
failure 

  • Gamma-
glutamyl 
transferase 

• CT: Ground 
glass opacities 

• Stage of heart 
failure 

• Productive 
cough 

• Respiratory 
Rate 

• Urea • CT: 
Interlobular 
septal 
thickening 

• BMI • Wheezing • Oxygen 
saturation 

• Lactate 
dehydrogenase 

• CT: Nodular 
lesions 

• CCI / Sum of 
comorbidities 

• Dyspnoea  •  D-dimer • CT: Pleural 
effusion 

 • Palpitations  • Leukocytes • Other relevant 
CT results 

 • Diarrhea  • Lymphocytes  

 • Muscle aches  • Neutrophils  

 • Muscle 
weakness 

 •  Platelets  

 • Fever  •  Hemoglobin  

 • Delirium    

 • Excessive 
tiredness 

   

 • Headache    

 • Meningism    

 • Smell disorder    

 • Taste disorder    

 • Runny nose    

 • Red eye    

Table 4: Features of the Covid-19 triage data set 

Covid-19 diagnosis data. In addition to Covid-19 triage data, we use Covid-

19 diagnosis data. Our data origins from three different sources (University 

Hospital of Augsburg, Germany, Alb-Fils Kliniken Göppingen, Germany, and 

LEOSS registry). All data has been collected during first pandemic wave in 

Germany in 2020. The outcome of the machine learning algorithm is to classify 

whether a symptomatic patient is infected with SARS-CoV-2. From an 

organizational perspective, a digital Covid-19 diagnosis might accelerate the 

processes in the emergency department, for example, by providing a fast 

alternative to Nucleid Acid Amplification based tests. The full data set consists 

of 3,670 patients. After preprocessing, the data set provides 14 features per 



 Appendix B: Customized AFs 

 

80 

 

patient, while the features are rather homogeneous including information on 

lab values, age, and gender (see Table 5). 

General information Lab values 

• Age • C-reactive protein 

• Sex • Direct bilirubin 

 • Erythroblasts 

 • Gamma-glutamyl transferase 

 • Hemoglobin 

 • Leukocytes 

 • Partial thromboplastin time 

 • Platelets 

 • Serum alanine transaminase 

 • Serum creatinin 

 • Serum lactate dehydrogenase 

 • Serum urea 

Table 5: Features of the Covid-19 diagnosis data set 

ESIC data. Besides predictions on the Covid-19 pandemic, our extended AFs 

are tested for another healthcare scenario. Since ICU beds are scarce resources 

in hospitals, the decision on a patient’s elective surgery includes the question 

of whether this patient needs ICU treatment after surgery. To digitally support 

the decision process of physicians, we use a data set from the University 

Hospital of Augsburg, Germany. The data set consists of a selection of 26,600 

surgeries that were conducted between 2017 and 2021. The 12 heterogeneous 

features in the data set belong to three categories: characteristics of the 

respective surgery, metrics about the patient’s physical appearance, and 

indicators about the patient’s general health circumstances, which are listed in 

detail in Table 6. Additionally, every surgery has a binary label on whether the 

patient went to the ICU after elective surgery. 

Surgical characteristics Patient’s physical 
appearance 

Patient’s health 
circumstances 

• Medical specialty • Age • Number of comorbidity 
diagnoses 

• Estimated surgery duration • Sex • CCI 

• Estimated anesthesia 
duration 

• Weight • ASA-score 

• Type of anesthesia • Height  

• Main diagnosis for a hospital 
stay 

  

Table 6: Features of ESIC data set 
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4.3 Results 

The results section starts by examining the individual data sets. Subsequently, 

a sensitivity analysis and a comparison of the results are discussed. This part 

focuses on the performance measures accuracy, AUC, and sensitivity because 

of their relevance to the data sets and application area. Accuracy is the 

standard measure for machine learning models, AUC is a combination of other 

measures (sensitivity and false positive rate), and sensitivity, as motivated 

above, is particularly important in our application domain. The ranks per data 

set and AF for the performance measures accuracy, AUC, and sensitivity are 

shown in Table 7. Detailed results, including all performance measures, can be 

found in Table 8 in the Appendix. In the following, absolute values are 

expressed as % and differences in percentage points (PP). 

Covid-19 triage data. For the Covid-19 triage data set, our proposed AFs 

show the following performance: For DENLU (leaky stanh), the average 

performance across all folds for the test data set is 72.65 % (72.40 %) for 

accuracy, 69.94 % (69.51 %) for sensitivity, and 79.49 % (79.05 %) for AUC. 

For the benchmark AFs, sigmoid achieves an average accuracy of 73.24 %, ELU 

of 71.94 %, tanh of 71.15 %, and ReLU of 71.72 %. Thus, compared to DENLU 

(leaky stanh), only sigmoid achieves better accuracy of +0.9 (+0.6) PP. These 

findings can also be obtained with the performance measure AUC. DENLU 

(leaky stanh) achieves almost the same score of −0.04 (−0.05) PP compared 

to sigmoid, but a better score of up to +7.6 (+7.2) PP compared to tanh, ReLU, 

and ELU. For DENLU (leaky stanh), a deviation from +14.3 (+13.9) PP to 

+17.7 (+17.3) PP is possible for sensitivity compared to the other AFs tanh, 

ReLU, and ELU in the test data set. Only sigmoid achieves slightly better 

sensitivity than DENLU (leaky stanh) (+1.2 (+1.7) PP). Thus, DENLU, leaky 

stanh, and sigmoid show superior performance for enhanced sensitivity in this 

data set. The resulting performance of the different AFs can be seen in Figure 

4.  



 Appendix B: Customized AFs 

 

82 

 

 

Figure 4: Performance of AFs (Covid-19 triage test data) 

As DENLU and leaky stanh achieve similar results on average over the folds, 

they cannot be clearly distinguished in the radar chart. Evaluation of the ranks 

highlights the effects that sigmoid, DENLU, and leaky stanh perform best for 

the Covid-19 triage data set (see Table 7). 

Covid-19 diagnosis data. Concerning the Covid-19 diagnosis data set, the 

two AFs presented perform as follows. The average accuracy for the test data 

set is 82.26 % (82.34 %) for DENLU (leaky stanh), sensitivity is 

81.74 % (81.80 %), and AUC is 89.82 % (89.97 %). When considering the AFs 

to be compared, for example, sensitivity is higher for sigmoid at 83.14 %, and 

considerably higher for ELU and ReLU and tanh at approximately 91 %, 92 %, 

respectively 92 %. For accuracy, the difference between the existing AFs and 

DENLU (leaky stanh) is up to −8.9 (−8.8) PP. The results regarding accuracy, 

loss, and the overall comparison of the performance of the AFs are shown in 

Figure 5.  
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Figure 5: Performance of AFs (Covid-19 diagnosis test data) 

ESIC data. For the ESIC test data, the performance measures accuracy, 

sensitivity, and AUC are 86.70 % (86.97 %), 86.43 % (86.33 %), and 

92.94 % (92.87%) for DENLU (leaky stanh). Compared to existing AFs, the 

accuracy is lower (up to −2.5 PP), but the AUC is higher (up to +2.9 PP). The 

difference in DENLU (leaky stanh) is up to +9.6 (+9.5) PP for sensitivity 

compared to ELU, ReLU, sigmoid, and tanh. As before, in this data set, the 

lower accuracy of DENLU and leaky stanh can be compensated with better 

performance in terms of AUC and significantly better performance in terms of 

sensitivity. The results for the ESIC data set are summarized in Figure 6. The 

evaluation across the ranks in this data set also shows a leady role for DENLU 

and leaky stanh (see Table 7). 
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Figure 6: Performance of AFs (ESIC test data) 

4.3.1 Hyperparameter tuning and sensitivity analysis 

To find a suitable neural network for the respective data set, hyperparameter 

tuning was performed for the two customized AFs. The considered 

hyperparameters include the number of hidden layers (1 to 5), the number of 

neurons within the hidden layer (10 to 500 in steps of 10), the AF in the output 

layer (sigmoid and softmax), and the learning rate (0.0001 to 0.01). The 

individual neural networks are presented in Table 9 in the Appendix. 

Regarding the simulated test data set, the two AFs DENLU and leaky stanh 

perform relatively similarly with an accuracy up to 94.45 %. The performance 

regarding sensitivity drops down by −0.9 PP (from 95.60 %). The improved 

neural network for Covid-19 triage data with one hidden layer for DENLU and 

three hidden layers for leaky stanh achieves much better performance in terms 

of accuracy. The accuracy increases in the test data set for DENLU by +7.6 PP 

and for leaky stanh by +5.7 PP, but sensitivity decreases to a minimum of 

55.56 %. Thanks to hyperparameter tuning, the performance of DENLU and 

leaky stanh can be improved by up to +3.1 PP in terms of accuracy and up to 

+5.4 PP in terms of sensitivity for the Covid-19 diagnosis data. For the ESIC 



 Appendix B: Customized AFs 

 

85 

 

data set, hyperparameter tuning also improves the performance of the 

accuracy of DENLU and leaky stanh by up to +2.4 PP but worsens the 

sensitivity by −5.5 PP. In addition, single-criteria sensitivity analyses were 

conducted to examine the behavior of DENLU and leaky stanh by altering the 

respective parameters. For DENLU, varying the parameter 𝛾 from 0 to 1 in 

steps of 0.2 showed almost no change in performance measures across all data 

sets. For instance, the sensitivity (accuracy) of the simulated data changes by 

a maximum of +0.3 (+0.3) PP and Covid-19 triage data by a maximum of 

+1.8 (+0.5) PP. Similarly, for leaky stanh, altering parameters 𝛾 (from 0.1 to 

0.4), 𝑎 (from 1.6 to 1.8), and for 𝑏 (from 0.5 to 0.8) in steps of 0.1 each. Again, 

we have found no significant changes in the average values of the performance 

measures (e.g., sensitivity (accuracy) changes by a maximum of +1.5 (+0.7) 

PP). However, these findings are specific to the tested data sets and should be 

verified for other data sets individually. 

Data set Measure DENLU leaky 

stanh 

ELU ReLU sigmoid tanh 

Simulated Accuracy 1 2 4 5 3 6 

 AUC 1 2 4 5 3 6 

 Sensitivity 2 1 6 3 5 4 

 Rank 1 (1.33) 2 (1.67) 5 (4.67) 4 (4.33) 3 (3.67) 6 (5.33) 

Covid-19 triage Accuracy 2 3 4 5 1 6 

 AUC 2 3 4 5 1 6 

 Sensitivity 2 3 5 4 1 6 

 Rank 2 (2.00) 3 (3.00) 4 (4.33) 5 (4.67) 1 (1.00) 6 (6.00) 

ESIC Accuracy 6 5 2 4 1 3 

 AUC 1 2 5 3 4 6 

 Sensitivity 1 2 6 3 4 5 

 Rank 1 (2.67) 2 (3.00) 5 (4.33) 4 (3.33) 2 (3.00) 6 (4.67) 

Rank for all data sets 1 (2.00) 2 (2.56) 5 (4.44) 4 (4.11) 2 (2.56) 6 (5.33) 

Table 7: Rank per heterogenous data set and AF for the performance measures accuracy, sensitivity, 
and AUC. Mean values of the aggregated ranks are given in parentheses. ESIC: elective surgery and 

intensive care 

Overall, the results of the sensitivity analysis show that the deep learning 

model involving our two AFs, DENLU and leaky stanh, is robust. The varying 

values of the parameters lead to varying outcomes at a low scale without 

significantly influencing the overall performance. For the parameters 𝑎 and 𝑏, 
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it might be beneficial to use the existing values according to Liew et al. (2016) 

(i.e., 𝑎 = 1.7321 and 𝑏 = 0.6585), since the optimal values for these have 

already been sufficiently investigated. As the data structure differs among 

healthcare applications, we recommend adjusting parameter 𝛾 depending on 

the data set using hyperparameter tuning, despite undetectable differences in 

our data sets. 

4.3.2 Comparison 

DENLU and leaky stanh perform similarly to the other AFs in terms of 

accuracy for the heterogenous data sets (i.e., simulated, ESIC and Covid-19 

triage data). The maximum deviation is −2.5 PP. Only the Covid-19 diagnosis 

data results in slightly worse performance in general, which can be attributed 

to the amount and the homogeneity of the data. In contrast to the other two 

data sets, the Covid-19 diagnosis data solely considers laboratory data. Since 

the data structure can significantly influence the performance of machine 

learning models, we recommend the application of our two AFs for 

heterogeneous data. In healthcare settings, sensitivity, and the integrated 

performance metric AUC (calculated from sensitivity and false positive rate) 

are of special interest, because the correct classification of patients in the 

positive class significantly contributes to optimal medical care and efficient 

and effective planning in hospitals. For the performance metrics, sensitivity, 

and AUC, DENLU and leaky stanh perform in most cases superior. We have 

identified a significant sensitivity gap for DENLU and leaky stanh compared 

with existing AFs. Leaky stanh’s performance is always close to the 

performance of DENLU. Figure 7 provides a comparison of the performance 

measures AUC and sensitivity for all test data sets and AFs.  

When considering the rank for performance measures accuracy, sensitivity, 

and AUC across the heterogeneous data sets, DENLU achieved the highest 

rank, followed by leaky stanh and sigmoid (see Table 7). The results 

demonstrate that decision-makers can receive improved assistance when 

making decisions within a specific class, such as ICU treatment, by 

incorporating AFs like DENLU or leaky stanh. 
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Figure 7: Comparison of performance measures AUC and sensitivity (average) for different AFs and 
test data sets (S: simulated, ESIC: elective surgery and intensive care, CD: Covid-19 diagnosis, CT: 

Covid-19 triage) 

5 Conclusion 

In this work, we present extended versions of existing AFs in machine learning 

with the objective of enhanced sensitivity: DENLU and leaky stanh. From a 

methodological point of view, DENLU is a flexible alternative to sigmoid, 

offering greater shaping capabilities. Leaky stanh is a sigmoidal piecewise 

linear alternative to (s)tanh that avoids the issue of vanishing gradients. 

Sigmoid and tanh have formed the basis for a large part of the AFs used in the 

field of healthcare and medicine for quite a long time. When applying our 

proposed AFs to simulated data and healthcare data for binary classification of 

patients, we have found that they perform better in terms of AUC (up to +7.6 

PP) and especially sensitivity (up to +17.7 PP), guaranteeing their 

methodological advantages in our application domain. Precise predictions for 

a particular class, e.g., sensitivity, empower a decision-maker to create more 

precise plans, such as determining the need for ICU treatment. 

Our computational analyses show some limitations which are discussed in the 

following. First, the data quality regarding missing or invalid entries varies 

among real-world data sets with corresponding influence on the outcome. As 

we have focused on the development and validation of extended AFs, we 

decided to set up a uniform procedure for data preparation rather than 

identifying the optimal data science procedure per data set. For example, there 

might exist superior procedures for feature scaling in the Covid-19 diagnosis 
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data leading to a higher level of performance across all AFs. Second, the 

structure of the neural network with a predefined number of layers and 

neurons might also influence the results but significantly contributes to 

comparability. In addition, our AFs provide better results solely for 

heterogeneous data sets, so more insight needs to be gained for homogeneous 

data. 

The research field of developing methods for enhanced sensitivity is currently 

overshadowed by the focus on applying machine learning in digital healthcare. 

Future research should aim to bridge the gap by addressing both methodology 

and the practical application of these methods. An example is creating a 

decision support tool for selecting the appropriate AF for healthcare data sets.  
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Appendix 

Tables 

Measure Data set DENLU leaky 

stanh 

ELU ReLU sigmoid tanh 

Accuracy Simulated 0.9560 0.9559 0.9521 0.9510 0.9536 0.9494 

 Covid-19 triage 0.7265 0.7240 0.7194 0.7172 0.7324 0.7115 

 Covid-19 diagnosis 0.8226 0.8234 0.9098 0.9114 0.8351 0.9074 

 ESIC 0.8670 0.8679 0.8883 0.8834 0.8916 0.8878 

AUC Simulated 0.9915 0.9914 0.9899 0.9894 0.9914 0.9881 

 Covid-19 triage 0.7949 0.7905 0.7228 0.7187 0.7953 0.7186 

 Covid-19 diagnosis 0.8982 0.8997 0.9653 0.9592 0.9132 0.9585 

 ESIC 0.9294 0.9287 0.8945 0.9007 0.8995 0.8940 

F1 Simulated 0.9560 0.9560 0.9519 0.9509 0.9533 0.9494 

 Covid-19 triage 0.5815 0.5774 0.5112 0.5155 0.5901 0.4944 

 Covid-19 diagnosis 0.8678 0.8686 0.9357 0.9370 0.8783 0.9342 

 ESIC 0.5748 0.5799 0.5813 0.5785 0.5942 0.5829 

NPV Simulated 0.9562 0.9563 0.9480 0.9518 0.9490 0.9488 

 Covid-19 triage 0.8677 0.8655 0.8216 0.8245 0.8736 0.8153 

 Covid-19 diagnosis 0.6462 0.6467 0.8094 0.8188 0.6643 0.8168 

 ESIC 0.9822 0.9820 0.9709 0.9709 0.9705 0.9691 

Precision Simulated 0.9559 0.9555 0.9562 0.9502 0.9584 0.9501 

 Covid-19 triage 0.4991 0.4949 0.4853 0.4850 0.5048 0.4719 

 Covid-19 diagnosis 0.9253 0.9265 0.9559 0.9532 0.9311 0.9475 

 ESIC 0.4309 0.4371 0.4765 0.4647 0.4870 0.4761 

Sensitivity Simulated 0.9561 0.9564 0.9477 0.9517 0.9484 0.9488 

 Covid-19 triage 0.6994 0.6951 0.5417 0.5563 0.7118 0.5226 

 Covid-19 diagnosis 0.8174 0.8180 0.9169 0.9215 0.8314 0.9215 

 ESIC 0.8643 0.8633 0.7466 0.7629 0.7529 0.7523 

Table 8: Comparison of performance measures (average) for different AFs and test data sets 

 

Data set Input 

layer 

Hidden 

layer 1 

Hidden 

layer 2 

Hidden 

layer 3 

Hidden 

layer 4 

Output 

layer 

Learning 

rate 

S N: 460  N: 460 N: 10   AF: sigmoid 0.006 

CT N: 160  N:310    AF: sigmoid 0.002 

CD N: 320  N: 10 N: 10 N: 10 N: 10 AF: softmax 0.002 

ESIC N: 110  N: 10 N: 10  N: 10   AF: sigmoid 0.006 

Table 9: Changes in the neural network compared to the original neural network for each data set 
after performing hyperparameter tuning for the AF DENLU (S: simulated, CT: Covid-19 triage, CD: 
Covid-19 diagnosis, ESIC: elective surgery and intensive care, N: neurons, AF: activation function) 
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Additional material: Differences between DENLU and stanh 

𝜎𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 and 𝜎𝐷𝐸𝑁𝐿𝑈(𝑥) = {

𝑒𝑥 − 1 ,    if 𝑥 ≤ 0
1 − 𝑒−𝑥,   if 𝑥 > 0

 

i) 𝑥 > 0: 

𝜎𝐷𝐸𝑁𝐿𝑈(𝑥) = 1 − 𝑒−𝑥 =
𝑒𝑥 + 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
− 𝑒−𝑥 =

𝑒𝑥 + 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
−

𝑒−𝑥 ⋅ (𝑒𝑥 + 𝑒−𝑥)

𝑒𝑥 + 𝑒−𝑥
 

𝜎𝐷𝐸𝑁𝐿𝑈(𝑥) =
𝑒𝑥 + 𝑒−𝑥 − 𝑒−𝑥 ⋅ 𝑒𝑥 − 𝑒−𝑥 ⋅ 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
=

𝑒𝑥 + 𝑒−𝑥 − 1 − 𝑒−2𝑥

𝑒𝑥 + 𝑒−𝑥
 

𝜎𝐷𝐸𝑁𝐿𝑈(𝑥) − 𝜎𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 + 𝑒−𝑥 − 1 − 𝑒−2𝑥

𝑒𝑥 + 𝑒−𝑥
−

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

=
𝑒𝑥 + 𝑒−𝑥 − 1 − 𝑒−2𝑥 − 𝑒𝑥 + 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

𝜎𝐷𝐸𝑁𝐿𝑈(𝑥) − 𝜎𝑡𝑎𝑛ℎ(𝑥) = −
1 − 2𝑒−𝑥 + 𝑒−2𝑥

𝑒𝑥 + 𝑒−𝑥
= −

(1 − 𝑒−𝑥)2

𝑒𝑥 + 𝑒−𝑥
 

ii) 𝑥 ≤ 0: 

𝜎𝐷𝐸𝑁𝐿𝑈(𝑥) = 𝑒𝑥 − 1 =
𝑒𝑥 ⋅ (𝑒𝑥 + 𝑒−𝑥)

𝑒𝑥 + 𝑒−𝑥
−

𝑒𝑥 + 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
=

𝑒𝑥 ⋅ (𝑒𝑥 + 𝑒−𝑥) − 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

𝜎𝐷𝐸𝑁𝐿𝑈(𝑥) =
𝑒2𝑥 + 𝑒𝑥 ⋅ 𝑒−𝑥 − 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
=

−𝑒𝑥 − 𝑒−𝑥 + 1 + 𝑒2𝑥

𝑒𝑥 + 𝑒−𝑥
 

𝜎𝐷𝐸𝑁𝐿𝑈(𝑥) − 𝜎𝑡𝑎𝑛ℎ(𝑥) =
−𝑒𝑥 − 𝑒−𝑥 + 1 + 𝑒2𝑥

𝑒𝑥 + 𝑒−𝑥
−

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

=
−𝑒𝑥 − 𝑒−𝑥 + 1 + 𝑒2𝑥 − 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

𝜎𝐷𝐸𝑁𝐿𝑈(𝑥) − 𝜎𝑡𝑎𝑛ℎ(𝑥) =
1 − 2𝑒𝑥 + 𝑒2𝑥

𝑒𝑥 + 𝑒−𝑥
=

(1 − 𝑒𝑥)2

𝑒𝑥 + 𝑒−𝑥
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Figures 

 

Figure 8: DENLU for different values of 𝛾 

 

 

Figure 9: Leaky stanh for different values of 𝑎, 𝑏 and 𝛾
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