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Abstract—The Internet of Things (IoT)-based passive acoustic
monitoring (PAM) has shown great potential in large-scale
remote bird monitoring. However, field recordings often contain
overlapping signals, making precise bird information extraction
challenging. To solve this challenge, first, the interchannel
spatial feature is chosen as complementary information to the
spectral feature to obtain additional spatial correlations between
the sources. Then, an end-to-end model named BACPPNet is
built based on Deeplabv3plus and enhanced with the polarized
self-attention mechanism to estimate the spectral magnitude
mask (SMM) for separating bird vocalizations. Finally, the
separated bird vocalizations are recovered from SMMs and the
spectrogram of mixed audio using the inverse short Fourier
transform (ISTFT). We evaluate our proposed method utilizing
the generated mixed data set. Experiments have shown that
our method can separate bird vocalizations from mixed audio
with root mean square error (RMSE), source-to-distortion ratio
(SDR), source-to-interference ratio (SIR), source-to-artifact ratio
(SAR), and short-time objective intelligibility (STOI) values of
2.82, 10.00 dB, 29.90 dB, 11.08 dB, and 0.66, respectively, which
are better than existing methods. Furthermore, the average
classification accuracy of the separated bird vocalizations drops
the least. This indicates that our method outperforms other
compared separation methods in bird sound separation and
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preserves the fidelity of the separated sound sources, which might
help us better understand wild bird sound recordings.

Index Terms—Bird sound separation, multichannel audio
processing, polarized self-attention (PSA) mechanism.

I. INTRODUCTION

IRDS communicate mostly using sound, particularly
B vocalizations, which are typically unique for species and
can be used to identify taxonomic discrepancies between
species. Thus, passive acoustic monitoring (PAM) can be
employed as an automated bird monitoring tool that eliminates
the time consuming and costly requirements of traditional
manual surveys. Furthermore, a monitoring system with sev-
eral PAMs can enable dynamic monitoring of birds over
long periods of time and across large regions, which has
attracted a lot of attention [1], [2]. Automatic bird species
recognition is an efficient way for processing the massive PAM
recordings [3]. The bird acoustic “cocktail party problem”
(CCP) is a term used to describe how birds may vocalize
simultaneously in real wild environments, such as during the
bird dawn chorus. This causes overlaps between different
sound sources [4]. The overlapping of bird sounds caused
by the simultaneous vocalization of multiple bird individuals
has been considered the biggest obstacle in the automated
processing of natural recordings [5]. Automatic sound source
separation aims to address the overlap issue by disentangling
the overlapping signals into multiple components that cor-
respond to different sound sources, which can also extract
meaningful information from interactions when there is con-
current sound in a noisy environment [6]. Therefore, when
isolated recordings of relevant sources are inaccessible, source
separation of mixture audio has become an effective step
prior to further bioacoustics research [7]. Numerous previous
methods, such as independent component analysis (ICA) [8],
and nonnegative matrix factorization (NMF) [9] have been
proposed to address the sound source separation problem on
a single channel and have shown promising results.

However, since a single-channel microphone cannot obtain
the spatial details of diverse sources, the performance of
these methods would degrade with overlapping sounds from
several sources [10]. Setting certain microphones to collect
multichannel recordings to gather spatial position information
of the sound sources, and then integrating the spatial features
between the different channels, allows for improved separation
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Fig. 1. Simulation of the deployment of bird monitoring equipment in the
field environment and the structure of the eight-channel monitoring equipment.

Fig. 2. Diagram of the IoT-based bird monitoring system.

performance [11], which had attracted widespread attention
in recent years. Hence, this study designs a bird monitoring
device with an eight-channel circular microphone array, which
enables different bird sound sources to be spatially distin-
guished [12]. As shown in Fig. 1, each array consists of eight
microphones arranged uniformly within a circular framework
with a radius of 0.1 m. The distance between each microphone
is 45° degrees apart. A bird monitoring system with several
proposed monitoring devices, as shown in Fig. 2, can also
be implemented in forest areas using the Internet of Things
(IoT) technology to enable large-scale bird monitoring. The
recordings are transmitted to the monitoring center, where a
separation model is employed to separate the mixed sound
signals into audio signals that solely contain the individual bird
vocalizations. Subsequently, a bird sound recognition model
is used to recognize the separated audio. The information on
the birds at the monitoring site may then be analyzed.

Throughout the whole procedure, the importance of the
separation is evident, as it directly affects the subsequent task
of bird species recognition. Improved separation performance
leads to more comprehensive understanding of the monitoring
recordings. Therefore, this article focuses on addressing the
task of separating mixed audio signals.

For multichannel source separation of bird sounds, conven-
tional approaches use the cascade method, which incorporates
unique functions based on array signal processing tech-
niques [13], [14]. However, the main drawback of cascade
systems is their accumulation of errors at each function
block. Recently, deep learning (DL)-based multichannel source
separation methods have made remarkable advancements in
speech separation [15], [16], owing to the fact that DL-based
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methods can constitute an end-to-end method that does not use
a traditional cascade system and thus reduces error accumula-
tion [17], [18]. Although DL-based speech separation models
are competitive areas of research, the bird acoustics cocktail
party problem (BACPP) has received less attention, because
current researches on bird sounds focus more on other aspects
of machine learning-based tasks, such as automated detection
and recognition of bird sounds [19], [20]. Hence, we argue
that a DL-based multichannel separation method should be
explored for achieving robust bird sound source separation.

This study attempts to address the BACPP using a DL-
based multichannel method. There are two challenges: one is
how to extract effective and meaningful representations for
the sounds of various bird species and the other is how to
distinguish isolated sources within a mixture of audio signals.
For the first challenge, we propose the BACPPNet based
on Deeplabv3plus [21]. The atrous spatial pyramid pooling
(ASPP) [22], consisting of dilated convolutional layers [23]
with different rates, is introduced to efficiently handle multiple
features of different bird species. To learn more general
and meaningful representations, the polarized self-attention
(PSA) [24] mechanism is embedded at the bottleneck of the
encoder and the decoder. In response to the second challenge,
both the spectral and spatial properties of mixture audio signals
are used as network inputs to improve the discrimination of
various isolated sources. Furthermore, the spectral magnitude
mask (SMM) [25] of each direction of sound sources is predicted
according to the angular resolution, which can avoid over-
fitting to the relationship between the direction of the sound
source and the bird class. Finally, the estimated SMM and the
original input mixture audio signal are used to reconstruct each
source signal. A downstream classification task is designed to
evaluate the fidelity of the estimated source signals, and five
source separation evaluation metrics are employed to assess
the quality of the sound source reconstruction.

This study’s contributions are summarized as follows.

1) We propose BACPPNet, a Deeplabv3plus-based model
for bird sound separation, whose inputs incorporate the
spectral and spatial features of mixture audio signals to
provide precise SMM predictions in each direction of the
sound source, assuring the fidelity of the reconstructed
sound source signal. The manner in which separation
in different directions can avoid over-fitting to the
relationship between the direction of the sound source
and the bird class.

2) We introduce the PSA mechanism to the bottleneck of
Deeplabv3plus to guide the model to preserve the high-
resolution features of the encoder, resulting in better
feature extraction capability of the separation model.

3) We design a downstream classification task to evaluate
the quality of the reconstructed signal. The higher
classification accuracy reflects the better fidelity of the
estimated source signals from BACPPNet in comparison
to the ground truth sources.

The remainder of this article is organized as follows.
Section II describes relevant work related to our study.
Section III describes the process of creating a multisource
mixture data set of bird sounds. The details of the BACPPNet
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and the classification model used are explained in Section IV.
Section V explains the experimental setup and evaluation
criteria, and presents the simulation results. The conclusion
and future work are outlined in Section VI.

II. RELATED WORK

This section mainly reviews the work related to our study,
including bird sound source separation, multichannel sound
source separation methods, and attention mechanisms.

A. Bird Sound Source Separation

The bird sound source separation per se is barely a
common use case. Instead, it is frequently linked to the
subject of bird sound classification. Traditional solutions of
bird sound source separation problems are always based on
“cascade” systems [13], [26], such as Kojima et al. [26]’s
study, where a spatial-cue-based framework integrating sound
source detection, localization, separation, and identification of
bird sounds was introduced, and the result showed that the
system outperformed a conventional method based on robot
audition [27]. Gabriel et al. [13] introduced an original system
that used a multiple signal classification (MUSIC) algorithm,
a geometric high-order decorrelation-based source separa-
tion (GHDSS) algorithm and convolutional neural networks
(CNNs) in sequence for sound source localization, separation,
and classification, respectively. The results showed that this
system can distinguish between different bird types with
satisfying results. However, the independent optimization of
each block causes the accumulation of multistage errors, which
can result in poor performance [11].

Several studies have proposed the integration of sound
source segmentation or separation with classification tasks.
Shugaev et al. [28] proposed a multistep (train-segment-shift)
training method that first develops pseudo labels for segmen-
tation and then uses noise from external data to mitigate the
domain mismatch. The audio segmentation model incorpo-
rated the global multihead self-attention to account for the
interaction between different parts of the audio, which conse-
quently enhanced the classification performance. Dai et al. [29]
first used independent vector analysis (IVA) to separate
source signals from the multichannel signal, before classifying
the separated sources using an Xception-based architecture.
Experiments on the BirdCLEF2020 data set showed that this
model achieved a higher macro F1-score and average accuracy
than state-of-the-art methods. Denton et al. [30] separated
single channel bird sounds using the unsupervised sound
source separation method MixIT. Over-separation occurred,
leading the probability of the most prevalent species in the
recordings to decrease after separation. Through combining the
original mixture with the separated signals, the downstream
classifier outperformed the best model in the BirdCLEF2019
competition.

Although these studies suggested that combining separa-
tion and classification can be beneficial to identify the bird
sounds in the complex acoustic environments, they failed
to comprehensively evaluate the contribution of the separa-
tion or segmentation model to the overall task. Contrary to

these investigations, we qualitatively evaluate the separation
performance of BACPPNet using spectrograms, which are
visual representations of the audio signals. Furthermore, using
widely applied evaluation metrics and downstream classifica-
tion accuracy, we quantitatively evaluate reconstruction quality
of separated sound sources estimated by a separation model.

B. Multichannel Sound Source Separation

Several DL-based multichannel sound source separation
models have recently been developed to efficiently handle the
CPP of human speech, music, or ambient sound [31], [32].
The mask-based approach is the most commonly used method,
which is always performed in the time-frequency (TF) domain,
allowing the spatial information to be incorporated effi-
ciently [33]. Furthermore, the DL-based model is trained by
minimizing the estimation error between the spectrograms of
T-F masks of the ground truth and estimated signals.

Hence, the performance of the separation models highly
depends on the T-F mask‘s estimation, which may require
more elaborate separation models using effective and mean-
ingful representations from the sound sources. Additionally,
the spatial information is vital in multichannel sound source
separation [34], and numerous studies have demonstrated that
using spatial features between different channels as addi-
tional information to spectral features can effectively improve
source separation performance [35], [36]. To use the spatial
information, the interchannel features (sometimes combined
with spectral features), for example, time/phase/level differ-
ence (ITD/IPD/ILD) are input to the neural network for the
full-band TF mask prediction in [32] or sub-band TF mask
prediction in [37].

U-Net is a popular semantic segmentation network that can
be used to segment the spectrogram of mixed audio to predict
the T-F masks for different sources [38]. Kadandale et al. [39]
performed a singing voice separation task using a multichannel
U-Net. The results of several publicly available data sets
showed that this architecture outperformed other designs.
Sudo et al. [18] proposed a multichannel environmental sound
segmentation method using sound source localization and
separation based on U-Net. The results on the developed data
sets, which included 75-class environmental sounds, indicated
that the proposed method achieved a smaller root mean
squared error than the standard method. Wang et al. [40]
utilized Multichannel U-Net to separate the cardiopulmonary
sound, obtaining higher separation quality and robustness. Tan
and Wang [38] added a long short-term memory recurrent
neural network (LSTM-RNN) to U-net‘s bottleneck to improve
the context modeling ability, and the results demonstrated that
this method effectively improved the objective intelligibility
and perceptual quality of the source signal. Although these
separation methods based on the U-net have achieved promis-
ing results in their respective tasks, we suggest that the results
should be improvable, because the U-net does not sufficiently
combine shallow and deep features when performing feature
extraction during down-sampling, which results in the loss of
signal features, which is undesirable for fitting accurate T-F
masks.



Aside from the U-Net-based approaches, many other seg-
mentation methods for computer vision have been developed
recently [41], [42]. An impressive example is Deeplabv3plus
which has an encoder—decoder architecture, and uses depth-
wise separable convolutions in the encoder to improve
accuracy and computational speed. An ASPP is inserted
between the encoder and the decoder of Deeplabv3plus. It
is a pyramidal structure with dilated convolutional layers of
varying rates, which is significantly useful for gathering con-
textual information on semantic units and enhancing context
modeling. Deeplabv3plus benefits from ASPP in challenging
situations involving two interfering sources, such as when
the target and interference are close in terms of angular
distance [43]. Deeplabv3plus has been introduced to audio-
related tasks in recent years [11], [44], [45] and has obtained
excellent outcomes. In our study, we use Deeplabv3plus for
bird sound separation, and expand the input features to a
multichannel input to fuse the spectral and spatial features
of mixed audio signals. We expect that the above-mentioned
strategies will provide precise T-F masks, which could ensure
the fidelity of the reconstructed sound source signal.

C. Attention Mechanism

The introduction of the attention mechanism has contributed
to the success of numerous DL models, and it continuous to
be a prevalent component in state-of-the-art models, including
several source separation systems [46], [47], [48].

Hong et al. [46] proposed an attention mechanism for
the temporal-spatial neural filter (TSNF), which realized the
channel attention on merged features and the feature map
of the 1-D convolution block in the temporal convolution
network. According to experimental results, the proposed
methods produced an SI-SNR improvement of approximately
1.2 dB for close speakers, and a slight decrease of 0.1 dB for
other cases. Sun et al. [47] combined squeeze-and-excitation
network (SE) [48] attention and a convolutional RNN for
speech separation in monaural recordings. The feature recal-
ibration strategy of the SE, which can explicitly construct
the interdependence between feature channels, enabled the
model to highlight the useful feature maps of spectrograms.
Chen et al. [49] proposed a lightweight multistage network
for monaural vocal and accompaniment separation. In this
network, a dual-branch attention (DBA) module was used to
obtain the correlation of each position pair among the chan-
nels of feature maps, respectively. The ablation experiments
demonstrated that the DBA module can improve the separation
performance.

Given that the attention mechanism has demonstrated its
effectiveness in various source separation tasks, and that
DL-based sound source separation models with an encoder—
decoder architecture suffer from a bottleneck, we employ
the attention mechanism to automatically choose which part
should be the focus, allocate limited information processing
resources to more important parts, and concentrate specif-
ically on the important information. Compared with other
attention mechanisms [48], [50], [51] the PSA can maintain
high internal resolution in both polarized channel-only and
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spatial-only attention branches while including a nonlinear
composition that fully uses the high-resolution information
maintained in the channel and spatial branches. To the best
of our knowledge, not much research work has been done on
attention mechanisms for bird sound source separation. In this
study, we explore incorporating the PSA mechanism into the
bird sound source separation model to assist the model to focus
more on the differences between sound source representations.

III. DATA GENERATION AND PROCESSING

Although supervised DL has produced decent source sepa-
ration results, training such approaches requires a significant
number of pairs of mixed and isolated sounds. The most
typical solution to this problem is to generate mixed signals
from a database of separate source sounds. To create the data
set, we select three different bird species living in the same
habitat as the research objects, and develop a mixing system
to generate the multisource overlapping bird sounds.

A. Bird Sound Data

For training of both the separation and classification models,
we choose three bird species, Great Reed-Warbler, Common
Cuckoo, and Magpie that share a habitat but have dissimilar
vocal behaviors in terms of spectral and temporal properties.
The 3.4-h long recordings of bird sounds used in this work are
downloaded from the Xeno-Canto website (https://www.xeno-
canto.org/). Because these recordings are recorded in the wild,
they contain noise from wind, rain, or other environmental
audio sources. Nevertheless, the most important thing is that
the selected recordings do not have overlapping bird sounds.
All the recordings are resampled at 16 kHz and saved in
WAV format. Furthermore, we split the recordings of each
species into 4.07-s segments to ensure that sufficient bird
sound features are included while adjusting to the computa-
tion and memory efficiency. We use these known class bird
sound segments as single-bird-sound source signals to generate
multisource overlapping bird sounds.

B. Mixing System

To obtain multisource overlapping bird sounds with spatial
characteristics, we simulate the eight-channel microphone
array mentioned above as a hybrid system (shown in
Fig. 3), with the 0° facing microphone used as the reference
microphone.

In this mixing system, the single-bird-sound sources are
placed 1 m from the microphone at the same height. Because
birds have territorial awareness, and different bird species tend
to live in different spaces [16], the direction of the single-bird-
sound source is randomly selected at intervals greater than 45°.
The impulse response from each source to the microphone
array is calculated using the image source method [52] as
follows:

h(t,d,0) = [h1(t,d,0), ha(t,d, 0),...,hg(t,d,0)] (1)

where h;(t, d, 0) represents the spatial impulse response gen-
erated using a microphone i at a distance d from the sound
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Fig. 3. Eight-channel circular microphone array. The distance between the
center of the microphone array and the single-bird-sound sources is 1.0 m.
The direction of the single-bird-sound source is randomly located at intervals
greater than 45°.

source in the 6 direction, and h(t, d, 6) represents the spa-
tial impulse response generated using the microphone array.
Because the majority of a bird’s acoustic environment is an
open field, we ignore the reflection of the bird sound source,
therefore, the effect of reverberation on source separation is not
considered. To generate mixture audio signals captured with
the microphone array, the impulse response from the sound
source to the microphone array is convolved with each source
s;(t) as follows:

x(t) =h(t,d,0) *s;(t —t) )

where * denotes the convolution operator, x(f) represents the
eight-channel multisource mixture bird sound signal, and i
represents the number of single-bird-sound sources.

C. Dataset

The mixture data set is generated from the single-bird-sound
sources of the three specific species, annotated according to
the known classes. Asynchrony has been suggested as an
important acoustic cue, that helps the animal brain solve
the CPP [53]. To simulate a more practical scenario, we
randomly select and mix three single-bird-sound sources with
random shifts of the overlaps. Fig. 4 shows an example of
a spectrogram for a mixed audio sample with overlap. The
spectral information of the three birds is shown in a single
spectrogram that is colored differently for each bird. Finally,
1000 mixed files with a duration of 4.07 s are generated,
totaling roughly 1.13 h. During the training of the separation
model, the mixture of audio signals is utilized as input data,
and each single-bird-sound source signal is used as the ground
truth. In each separation experiment, 80 % of the mixed data
are used for training, 10 % for validation, and 10 % for testing.

For the downstream classification task, the single-bird-sound
source signals are used to train a classifier. The reconstructed
signals from the separation task are used to evaluate the fidelity
of the sound source reconstruction.

D. Feature Extraction for the Separation Task

Combining interchannel spatial features of sound signals
as complementary information to spectral features can signif-
icantly enhance speech separation quality [36]. The objective

Fig. 4. Example of a spectrogram of mixed audio samples with overlap.
Different colors represent the spectrum of different sound sources in the T-F
domain. The overlapping part of the sound source is displayed in white and
purple.

of multifeature fusion is to mathematically analyze data from
different sources and create a new representation that can
be used more effectively for pattern recognition and other
multimedia information processing tasks [54].

In this study, we use both the spectral and spatial fea-
tures proposed in [35]. For the multichannel mixture audio
signals, we calculate the short-time Fourier transform (STFT)
features of the reference microphone m and the nonreference
microphone n using a 512-point STFT with 50% overlap.
An amplitude spectrogram [55] of the reference microphone
is used as the spectral feature. Then, the interchannel phase
difference (IPD) between the reference microphone m and
the other microphone n is calculated using (3). The ampli-
tude of the IPD is subsequently normalized to the range
[0, 1] using (4) and (5) as follows:

(St,f,m,n = lxt,f,m - lxt,f,n 3)
sinIPD(t, f, m, n) = sin(8.f,m.n) 4)
COSIPD(t’fs mv n) = COS((Sl,f,m,n) (5)

where 8¢, f, m, n denotes the IPD between the STFT Zx; s,
and Zx;5, at time ¢ and frequency f of the signals at
microphones m and n. Because we use the eight-channel
microphone array, the selection of one reference microphone
allows us to calculate 14 IPDs of sinIPD and cosIPD.

IV. METHODOLOGY

DL has shown superior performance in modeling masking-
based source separation methods. In this study, we propose
the BACPPNet masking-based method (Fig. 5). BACPPNet is
essentially a Deeplabv3plus model with the PSA mechanism.
During the separation stage, the spectral and spatial features
are jointly used as inputs to train the separation model, which
is motivated by the fact that the human auditory system
employs the localization information (that is, binaural cues) to
solve the CPP. The model predicts the SMM for each direction
of the sound source. With each single SMM, the spectrogram
of each direction can be achieved by the multiplication
between the SMM and the mixture audio spectrogram of the
reference microphone. Finally, the separated bird vocalization
is recovered from the corresponding spectrograms of each
direction by the inverse short Fourier transform (ISTFT).
Besides the widely used metrics for speech separation, the
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Fig. 5. Overall procedure of SMM prediction with BACPPNet. BACPPNet consists of Xception, ASPP, PSA, and decoder blocks. The inputs to the BACPPNet
are the STFT spectrogram, sinIPD, and cosIPD of mixture audio signals. Xception is a DCNN aiming at an extraction of high-level features of the inputs.
ASPP is a multiscale feature fusion strategy, which adopts atrous convolution with different rates to get multiscale information of the input features. PSA
is inserted to the bottleneck to prevent the potential loss of high-resolution information in DCNNs by downsampling. The BACPPNet outputs the SMM for

each source direction.

classification performance of the separated sound sources is
evaluated to assess the accuracy of sound source reconstruc-
tion. Here the CS-CLDNN model, which we proposed in [56],
is employed to classify bird vocalizations.

A. Deeplabv3plus

Deeplabv3plus is a semantic segmentation model with an
encoder—decoder structure, which uses Xception [57] in the
encoder to extract high-level features of the input spectrogram.
Xception is a deep CNN (DCNN) that uses a depth-wise
separable convolution or group convolution to achieve high
performance while using less processing power and memory.

The ASPP comes after the Xception block and uses an
atrous convolution with different rates to extract convolu-
tional features at multiple scales. This operation allows for a
wider range of contextual information to be extracted without
increasing the number of parameters, effectively improving the
contextual modeling capability. Therefore, the model is more
suitable for bird sound spectrograms with different shapes. For
example, the duration of a Great Reed-Warbler call is shorter
than that of a Magpie call, which leads to different sizes of
spectrograms.

The ASPP module uses a kernel size of 3 x 3, and dilation
rates of 6, 12, and 18. The input features are down-sampled
by the encoder and the size of the feature map is reduced to
1/16 of the original input. The encoder sequentially reduces
the spatial resolution and increases the channel resolution. The
number of channels is reduced to the requested size using a
convolutional kernel of 1 x 1 after the encoder. The encoded
features are first bi-linearly up-sampled by a factor of four
before being concatenated with the corresponding low-level
features from the network backbone. After the concatenation,
we use 3 x 3 convolutions to refine the features before
performing another simple bi-linear up-sampling by a factor of
4. The final layer of the decoder uses a Sigmoid activation to
obtain the SMMs with the same size as the input spectrogram.

B. PSA Mechanism

Because the down-sampling operation of the encoder
reduces the resolution of the input features, the tensor con-
necting the encoder and decoder has less elements than
both the input tensor and the output tensor, which improves
computation and memory efficiency. However, the down-
sampling operation results in a partial loss of the input
features’ details. Moreover, high resolutions of the input and
the output are preferred for the fine details of segmentation
results [58]. Therefore, we insert the PSA mechanism at the
bottleneck of Deeplabv3plus to decrease the potential loss of
high-resolution information in the encoder caused by down-
sampling.

The PSA consists of channel-only and spatial-only self-
attention branches. The channel-only self-attention A“*(X)
REIX1 can be presented as follows:

AMX) = Fsg[Wapo, (01 (W (X)) x Fsu(02(We(X)))] (6)

where Fg¢ represents the Sigmoid operator, W,, W,, and W,
are convolutional layers, respectively, o1 and o> are two tensor
reshape operators, Fgy is the SoftMax operator, and x is the
matrix dot-product operation. Fsys is defined as follows:

Ny e
FsuX) =) | —5——%. @)
Jj=1 Zm:l etm

The input feature X is first converted into features Q and
V using a convolution operation. The channel of Q is
significantly compressed, while the channel dimension of V
remains at a high level of /2, maintaining a high resolution
in the channel. Then, Q and K are used for matrix dot-
product operations, which is followed by applying 1 x 1
convolutional and LayerNorm layers to increase the dimension
of the channels to the original input size C. Finally, the
Sigmoid function is used to maintain all parameters between
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Exit flow

ASPP
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)

Concatenate axis= -1

Concatenate axis= -1

Decoder

Fig. 6. BACPPNet framework. The encoder consists of an entry flow, middle flow, and exit flow. There are four blocks in the entry flow, 16 blocks in the
middle flow, and two blocks in the exit flow. Each block consists of a 2-D Separable convolution of stride 2 and kernel size 3 x 3, followed by a batch
normalization and an ReLU activation after each 3 x 3 depth-wise separable convolution. The ASPP consists of a 2-D convolution of stride 2 with kernel
size 1 x 1, three atrous convolutions with a dilation rate of 6, 12, and 18, respectively, and an average pooling layer. The PSA is added to the concatenated
low-level features from the entry flow and the output of the ASPP. After the concatenation, 3 x 3 separable convolutions are applied to refine the features.
Then, a 2-D convolution with eight filters followed by another simple bi-linear up-sampling by a factor of four is used to obtain mask spectrograms of the

same size as the input spectrogram.

0 and 1. The output of the channel attention branch is shown
in the following:

ZCh(X) — ACh(X) ®ChX c RCXHXW. (8)

The spatial-only self-attention branch is shown in the
following:

AP (X) = Fsg[o3(Fsu (01 (Fop(Wy (X)) x o2(Wy(X)))] (9)
where Fgp denotes a global pooling operator defined as
follows:

H W

1
F X=— X:’.’.'
30.9) wa;j_l ¢y is))

(10)

Similar to the channel-only self-attention, the spatial-only
Self-Attention branch first converts the input features into the
features Q and V using a 1 x 1 convolution operation. Then,
the spatial resolution of Q is compressed using global pooling,
while maintaining the spatial resolution of V' at a high level of

H x W. Because the spatial resolution of Q is compressed, O
is augmented using the Softmax operator. Finally, the Sigmoid
function is used to maintain all parameters between 0 and 1.
The output of the spatial-only self-attention branch is shown
in the following:

ZP(X) = AP (X) ®P X € ROV, (1)

The outputs of the two above branches are composed under
the parallel layout as follows:

PSA,(X) = X" + X*. (12)

C. BACPPNet

Fig. 6 shows a detailed description of BACPPNet. The
encoder is an Xception block consisting of three flows, i.e.,
entry flow, middle flow, and exit flow. There are four blocks
in the entry flow, 16 blocks in the middle flow, and two
blocks in the exit flow. An ASPP is used following the exit
flow. Each block consists of a 2-D separable convolution
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Fig. 7. Reconstruction of the separated single-bird-sound source signals. The spectrograms with energy values of O are discarded, while the rest is kept. The
time domain signals of kept spectrograms are recovered from the phase of the reference microphone m by ISTFT.

of stride 2, kernel size 3 x 3, batch normalization, and
ReLU activation [59]. Skip connections are used to pass low
level features directly from the encoder to the decoder. The
PSA mechanism is added to the concatenation of the low-
level features from the Entry flow and the output of the
ASPP. The final layer uses a Sigmoid activation. BACPPNet
predicts the SMM of each direction of sound sources according
to the angular resolution N. The SMM is defined as follows:
follows [15]:

| S@.f) |
| Y(./) |

where | S(z,f) | and | Y (¢, f) | represent spectral magnitudes of
clean source and mixture sound, respectively. | S(¢, f) | is the
spectral magnitudes of a sound source in a specific direction,
and | Y(¢,f) | is the spectral magnitude of mixture sound
signals. Because the input features are normalized, the range
of | SMM(t,f) | is bounded to [0, 1].

The training aims to optimize the reconstruction of sepa-
rated spectrograms from the input mixture signals. The mean
square error (MSE) between the ground truth and separated
spectrogram 1is selected as the loss function using (14) as
follows:

SMM(t,f) = (13)

LX,Y) =|| f(X) ® Xmag — Y |2 (14)

where ® denotes the element-wise product, f(X) is the
prediction of SMM, Xpmag denotes the mixture spectrogram of
the reference microphones m, and Y denotes the ground truth
spectrogram.

D. Sound Source Signal Reconstruction

In this study, the angular resolution N is set to 45°, and
the model predicts the SMMs of 360 °N directions as shown
in Fig. 7. Therefore, we can obtain the spectrograms for all
eight directions. Considering the actual application scenario,
if two or more bird sound sources are particularly closer than
45°, we can improve the separation quality by decreasing
the angular resolution. We abandon the directions where the

spectral magnitudes are zero, which implies that there is no
bird sound source in that direction. For the other directions,
the time domain signal is reconstructed from the predicted
spectrograms and the phase of the reference microphone m
using the ISTFT.

E. Classification Models

We develop a classification model to identify the separated
sound sources as a downstream task to provide a more physical
interpretation in support of the widely used metrics for speech
separation. This interpretation is based on the assumption that
classification accuracy reflects the fidelity of the separated
signal relative to the ground truth source. This makes it
a good proxy for assessing the accuracy of sound source
reconstruction.

We employ the CS-CLDNN model to classify bird vocaliza-
tion [56], which introduces the convolutional block attention
module (CBAM) [51] and Swish [60] activation functions
to improve the CLDNN model. Higher performance can be
achieved with the assistance of the attention module [55], [56].
The detailed structure of the CS-CLDNN is shown in Fig. 8.
The 40-D MFCCs (given a frame length of 520, and an
overlap between frames of 260) of the sound source segments
are calculated as the inputs. To extract TF features, a two-
layer 2-D convolutional layer with shortcut connection is
utilized, followed by the CBAM and another two-layer 2-D
convolutional layer with shortcut connection. Subsequently,
the time—frequency features are transposed and split accord-
ing to the time dimension, and progressively input into the
LSTM network to extract time sequence features. Finally,
concatenating the later layer with the output of the LSTM
improves its feature representation ability. The DNN layer
maps features to a low-dimensional classification space and
outputs the classification results.

V. EXPERIMENTS AND RESULTS

We conduct experiments to evaluate our proposed method
on the test set of the generated data set. We first compare
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Fig. 8. Overall framework for bird species classification based on the CS-CLDNN. As inputs, the 40-D MFCCs of the sound source segments are computed.
The CNN layers (inserted CBAM), linear layers, LSTM layers, and fully connected layers sequency make up the CS-CLDNN. The classification results can

be obtained from the Softmax layer [56].

the performances of our proposed model with four existing
separation models. Additionally, we conduct several exper-
iments to analyze the importance of PSA and multifeature
inputs. Finally, classification experiments are conducted on the
reconstructed signals derived from different separation models.
Different classification performances are used to evaluate the
fidelity of the reconstructed signals.

A. Experimental Setup

The separation experiments are performed on the
Tensorflow 1.10 and Keras 2.2.0 frameworks with a
programming environment of Python 3.6.0 and a hardware
environment of Intel i5, NVIDIA 1080 Ti (11 GB). During
the training process, the same experimental conditions and
hyper parameter settings are used for all models. The MSE
is introduced as the loss function. Adam [61] is used as
the optimizer with a learning rate of le—3, a decay rate of
B1 = 0.9 and a batch size of four.

The classification experiments are conducted on the same
framework and programming platforms as the separation
experiments. We minimize the cross entropy loss using the
Adam optimizer with a learning rate of le—4 and a batch size
of 32.

B. Evaluation Metrics

To evaluate the performances of the source separation
methods, five objective metrics, including root MSE (RMSE),
source-to-distortion ratio (SDR), source-to-interference ratio
(SIR), source-to-artifact ratio (SAR) [62], and short-time
objective intelligibility (STOI) [63] are considered. The value
of RMSE shows the absolute error on the spectral magnitudes
of the ground truth and estimation as shown in the following:

1< 2
RMSE = | ;(Yn - Yn)

15)

where Y, and Y, represent the magnitude spectra of the ground
truth and estimation, respectively. N represents the number
of TF bins. The SDR, SIR, and SAR are calculated in the
BSS EVAL toolbox [62], and the STOI is the intelligibility
measure used in the evaluations of the separation method.
STOI ranges from O to 1 and indicates the correlation of short-
time temporal envelopes of the clean anechoic target and the
mixture/segregated signal.

C. Comparison With Other Multichannel Separation Models

Since our source separation method employs a seman-
tic segmentation model with an encoder—decoder structure,
we compare four different typical semantic segmentation
models that have recently been applied to audio source
separation related tasks, including DFANet [41], CRNN [38],
U-Net [64], and Deeplabv3plus [21]. In addition, another
model, Denseaspp [42], is selected as a comparison model due
to the fact that it also contains the ASPP structure. Above five
separation models are all trained with the same hyperparameter
settings. The spectrogram, sinIPD, and cosIPD of the mixture
audio signals are used as input features of the separation
model. The results on the test set are shown in Table II.

As shown in Table I, the Deeplabv3plus model outperforms
DAFNet, Denseaspp, U-Net, and CRNN with respect to all
the evaluation metrics, suggesting that the Deeplabv3plus
model can learn deeper contextual features. Therefore, it seems
more suitable for bird sound source separation. BACPPNet
outperforms all other compared models. Because BACPPNet’s
RMSE is the lowest in comparison, its predictions can be
interpreted as the closest to the ground truth. The SDR, SIR,
and SAR of BACPPNet are also better than for the other
models, indicating that the energy values of the true source part
are greater than those of interference and algorithmic artifacts.
Furthermore, BACPPNet shows the highest STOI, demonstrat-
ing a stronger correlation between the clean anechoic target
and a short time envelope of the mixture/separated signal. The
above results demonstrate that applying the Deeplabv3plus
model to bird sound source separation is effective. The
BACPPNet outperforms all compared models in terms of
feature extraction capability.

D. Effect of the PSA Mechanism

We conduct some experiments to explore whether introduc-
ing the PSA module will enhance the performance. In this
section, two other commonly used attention modules—that is,
the SE [48] module and CBAM modules [51]—are selected
for comparison. SE is a channel-only attention mechanism that
does not depend on the position and geometric structure of the
microphone array, and it can capture information about input
features across channels and models the interdependencies
between input channels [65]. CBAM is an efficient attention
mechanism that includes a channel attention module and a
spatial attention module. As a dual attention mechanism,
CBAM can focus on important information in both the channel
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TABLE I
GLOSSARY
Abbr. Definition Abbr. Definition
ASPP Atrous Spatial Pyramid Pooling LSTM-RNN  Long-Short Term Memory Recurrent Neural Network
BACPP Bird Acoustics Cocktail Party Problem MUSIC MUltiple Slgnal Classification
CBAM Convolutional Block Attention Module NMF Non-negative Matrix Factorization
CCP Cocktail Party Problem Orig-Acc Original-Accuracy
CNN Convolutional Neural Network PAM Passive Acoustic Monitoring
CRNN Convolutional Recurrent Neural Network PSA Polarized Self-Attention
DBA Dual-Branch Attention RMSE Root Mean Square Error
DCNN Deep Convolutional Neural Network SAR Source-to-Artifact Ratio
DenseASPP Densely connected Atrous Spatial Pyramid Pooling SDR Source-to-Distortion Ratio
DFANet Deep Feature Aggregation Network SE Squeeze-and-Excitation networks
DL Deep Learning SIR Source-to-Interference Ratio
GHDSS Geometric High-order Decorrelation-based Source Separation SMM Spectral amplitude Mask
ICA Independent Component Analysis STOI Short-Time Objective Intelligibility
IoT Internet of Things TDOA Time Difference Of Arrival

IPD Inter-channel Phase Difference
IVA Independent Vector Analysis
LSTM Long-Short Term Memory

TF Time-Frequency
TSNF Temporal-Spatial Neural Filter

TABLE II
COMPARISON OF RESULTS OF DIFFERENT MODELS
Model RMSE SDR  SIR  SAR STOI
DFANet[41] 6.44 715 2524 846 057
Denseaspp!42] 3.57 629 2716 826  0.59
U-Net[64] 3.97 942 2915 1028 0.64
CRNNI38] 2.90 929 2943 10.12  0.65
Deeplaby3plus/21] 290 992 2983 11.05 0.66
BACPPNet(proposed)  2.82  10.00 2990 11.08  0.66

and spatial dimensions of the input features. Table II displays
the experimental results on the test set.

As shown in Table III, after introducing SE and CBAM to
Deeplabv3plus, the values of some evaluation metrics improve
while others decrease. The CBAM module outperforms the
SE module in terms of overall performance. This might be
because the SE module solely focuses on channel features,
whereas the CBAM module focuses on features in both the
channel and spatial dimensions. PSA significantly collapses
features in one direction while keeping high resolution in the
orthogonal direction in the self-attention branch. The channel-
only and spatial-only self-attention branches can thus attain
higher channel and spatial resolutions. Higher resolutions
facilitate better pixel-wise feature quality than lower resolu-
tions [24]. As a result, PSA outperforms CBAM in our task,
and the BACPPNet performs better than all of those compared
methods.

Fig. 9, which analyzes a typical separation example,
displays the ground truth and the separated spectrograms pre-
dicted by different separation models in the first four directions
(0°, 45°, 90°, and 135°). As shown in Fig. 9, the U-Net
and CRNN projected spurious components in the 0°-90° and
135°-180° ranges. In 90°-135°, however, certain parts of the
spectrogram are missing. There are no spurious components
predicted for the other models. However, when we focus on
the spectrograms’ edges, we see tiny differences between the
predicted spectrograms. The edges of predicted spectrograms
of BACPPNet are more exact than those of other models,
especially in the 90°-180° range, where they are closest to the

spectrograms of ground truth among the comparison models.
In conclusion, the BACPPNet outperforms other compared
methods in terms of bird sound source separation.

E. Comparison of Different Input Features

We further investigate the use of diverse inputs to validate
the improvement of separation performance owing to the
spatial features of bird sound sources. Table IV compares the
separation performances of different models using different
features.

According to Table IV, when spectrogram, sinIPD, and
cosIPD features are fused as inputs, the performance of all
the models is better than when only spectral features are used.
The RMSE of the Deeplabv3plus model with fused features is
reduced by 67.34% compared with the spectral features. The
RMSE of the BACPPNet model with fused features is reduced
by 65.61% compared with the spectral features. Additionally,
the SDR, SIR, SAR, and STOI values are all improved
compared with the spectral features. The results show that
sin[PD and cosIPD can help models to predict SMMs more
accurately. Because the eight-channel mixture signals contain
the position relationship between the sound sources, the sinIlPD
and cosIPD appropriately represent these spatial associations.
The experimental results show that combining interchannel
spatial features of sound signals as complementary information
to spectral features can effectively improve the quality of bird
sound source separation.

F. Results of Classification Task

To evaluate the fidelity of the separated sources relative
to the ground truth sources, we first use the ground truth
sources (single-bird-sound sources) of the training set to
train a classification model with good performance. Then,
we test the trained CS-CLDNN model with the ground truth
sources of the test set. Finally, we compare the classification
accuracy of the ground truth sources of the test set and
the separated sources estimated using different separation
models. The classification accuracy reflects the fidelity of
the separated signal relative to the ground truth sources. We
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Fig. 9. Visualizations of separation results: The first row is the ground truth spectrogram in the first four directions [0, 180°]; The second to seventh rows
are the spectrograms estimated by U-Net, CRNN, Deeplabv3plus, Deeplabv3plus+SE, Deeplabv3plus+CBAM, and BACPPNet, respectively.

TABLE III
COMPARISON OF RESULTS WITH DIFFERENT ATTENTION MODULES

Model RMSE  SDR SIR SAR  STOI
Deeplabv3plus 2.90 9.92 29.83  11.05  0.66
Deeplabv3plus+SE 2.86 8.58 28.07 10.01 0.65
Deeplabv3plus+CBAM 2.87 9.49 29.46  10.63  0.66
BACPPNet(proposed) 2.82 10.00 2990 11.08  0.66

present the classification accuracy of the separated sound
sources predicted using our separation model. The results of
the classification accuracies are shown in Table IV.

As presented in Table V, the average classification accuracy
of the ground truth (cf. to Orig-Acc in Table V) is 96.18%, and
the average classification accuracy of the BACPPNet decreases
by 5.38% compared with the ground truth. According to
the classification accuracy of specific species, the classifi-
cation accuracy of the Great Reed-Warbler produced by
the BACPPNet model is even better than that based on the
unmixed vocalization ground truth. As shown in Fig. 10(a), the
spectrum of the Great Reed-Warbler is distributed over a wide
range of frequency bands. Moreover, because the two main call
types operate in different frequency bands, the distortion from

the separation has less effect on the distinguishing features of
the species.

As expected, the BACPPNet model reduces the classi-
fication performances of Common Cuckoos and Magpies.
According to Fig. 10(b), the call frequency of the Common
Cuckoo is the lowest of the three classes of birds, and its
spectrum is primarily distributed in the low-frequency band,
resulting in a significant loss of spectrum features during the
separation step. Consequently, the classification accuracy is
reduced the most. Conversely, for the Magpie, the energy value
of spectrograms is more intensive than for other species; this
requires more accurate mask predictions from the separation
models, which also slightly reduces the classification accuracy
after separation. However, these two bird species still have
higher classification accuracies than the other models.

Overall, BACPPNet outperforms other compared separation
models in bird sound separation and maintains the fidelity of
the separated sound sources.

VI. CONCLUSION AND FUTURE WORK

This study proposed a BACPPNet to realize bird sound
source separation of multichannel mixture audio signals. First,
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TABLE IV
COMPARISON OF RESULTS OF DIFFERENT INPUT FEATURES

Model Input features RMSE SDR SIR SAR  STOI

U-Net spectrogram 15.04 7.55 22.51 9.32 0.59

spectrogram+sin[PD+cosIPD 3.97 942 29.15 10.28 0.64

CRNN spectrogram 10.01 820 2941 1009 0.5

spectrogram+sinlPD+cosIPD 2.90 929 2943 1012  0.65

Deeplabv3plus spectrogram 8.88 5.33 26.72  9.31 0.60

PIabVIPIUS - gpectrogram+sinlPD+cosIPD 290  9.92  29.83 11.05  0.66

spectrogram 8.20 8.63 29.89 1048  0.61

BACPPNet spectrogram+sinlPD+cosIPD 2.82 10.00 2990 11.08  0.66
TABLE V

COMPARISON OF CLASSIFICATION ACCURACIES OF SOUND SOURCES ESTIMATED BY DIFFERENT SEPARATION MODELS. WE LIST THE
CLASSIFICATION ACCURACIES OF EACH BIRD SPECIES AS WELL AS THEIR AVERAGE. THE PERFORMANCE DROPS ({}) AND PERFORMANCE RAISES ()
ARE OBTAINED WITH RESPECT TO THE ORIGINAL PERFORMANCE (ORIG-ACC). THE BEST VALUES ARE HIGHLIGHTED

Model Great Reed-Warbler ~ Common Cuckoos ~ Magpie  Average
Orig-Acc 95.31 97.37 95.88 96.18
DFANet | 3.56 | 59.03 3292 | 31.77

U-Net { 0.05 U 30.87 J 1984 | 17.01

CRNN 4 0.98 { 35.00 § 17.69 | 17.88

Denseaspp J 2.05 { 13.69 4 9.20 J 11.63
Deeplabv3plus T 1.79 J 12.11 J 13.92 { 8.07
Deeplabv3plus+SE y 2.15 y 17.37 41002 4 9.89
Deeplabv3plus+CBAM 4 0.07 | 18.09 Y1134 §9.89
BACPPNet(proposed) I 2.60 | 10.30 { 6.80 | 5.38

()

(b)

(©

Fig. 10. Spectrograms of (a) Great Reed-Warbler, (b) Common Cuckoo, and (c) Magpie.

we employed Deeplabv3plus as the backbone model, which
uses depth-wise separable convolutions in the encoder to
reduce the computational cost and the number of parame-
ters while maintaining superior performance. Because bird
sound sources are strongly connected to their locations, the
spatial features of multichannel audio are used as inputs.
Second, the ASPP structure enabled the model to retain more
low-level features, which was useful to extract multiscale
features. Furthermore, the PSA module was inserted into
the Deeplabv3plus‘s bottleneck, which can maintain higher
resolutions in both the channel and the spatial dimensions.
This considerably reduced the loss of high resolution features
caused by the encoder’s down-sampling operations. According
to the experimental results, BACPPNet outperforms existing
methods and maintained species category features in the
reconstructed signals.

However, in addition to the good performances, the
proposed separation method has several limitations. We did not
investigate situations when several sources occur in the same
direction in the current study, which normally makes high-
performance source separation more challenging. In future
studies, we will investigate our own end-to-end method as a
solution to this problem with more bird species utilizing the
time difference of arrival (TDOA) of different sound sources.

Overall, our proposed solution is a promising first step
toward resolving the BACPP, and it can help extract com-
prehensive details from sound recordings collected by the
developed IoT-based bird monitoring system. Although further
research is required before this method is used in practical
scenario, its potential for biodiversity studies is clear. We
are optimistic that our approach, along with the monitoring
system, would be widely utilized in other bio-acoustic studies
with overlapping signals.
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