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Abstract: When pharmaceutical treatments for Parkinson’s Disease (PD) are no longer effective,
Deep Brain Stimulation (DBS) surgery, a procedure that entails the stimulation of the Subthalamic
Nucleus (STN), is another treatment option. However, the success rate of this surgery heavily relies
on the precise location of the STN, as well as the correct positioning of the stimulation electrode.
In order to ensure the correct location, Micro-Electrode Recordings (MERs) are analyzed. During
surgery, MERs capture brain signals while inserted in the brain, receiving different brain activity
depending on the crossed brain area. The location of the STN is guaranteed when brain signals
from MERs meet certain criteria. Nevertheless, MER signals are sensitive to various artifacts coming
from machinery or other electrical equipment in the operating theater; patient activity; and electrode
motion. These all lower the signal-to-noise ratio of the MER signals. MER signals are stochastic,
multicomponent, transient, and non-stationary in nature, and they contain multi-unit neural activity
in the form of spikes and artefacts. Thus, accurately defining that MERs are located in the STN is
not an easy task. This work analyzes relevant features from MER, based on analyzing spike activity
and local field signals. Six different classification algorithms are used, together with the optimal
input feature selection. The algorithms are trained using supervised Leave-One-Out Cross-Validation.
MER data were collected in a real scenario from 14 PD patients during DBS implantation surgery.
The dataset is publicly available. The results derived from the use of this method show an accuracy
of up to 100% in detecting where the MER electrode is located in the STN brain area.

Keywords: spike-dependent features; spike-independent features; machine learning; Subthalamic
Nucleus (STN) detection; Parkinson’s disease; Deep Brain Stimulation (DBS)

1. Introduction

Parkinson’s disease (PD) is a dysfunction of the brain and nervous system that is
linked to a loss of dopaminergic neurons. The diagnosis of PD accords to the existence of
cardinal motor symptoms, which include bradykinesia, postural instability, tremor, and
muscular rigidity. Other symptoms range from depression to sleep disorders, cognitive
dysfunction, and language problems [1]. After Alzheimer’s disease, PD is the second
most prevalent neurodegenerative illness at present [2], affecting over 6.1 million people
worldwide [3]. This would uphold the current interest in the development of efficient
treatment. Pharmacology is the primary treatment option for PD [4], where the lost
dopamine is replaced through the use of drugs such as Levodopa and Dopamine Agonists,
albeit the success rate of this treatment usually decreases over time, and generally anti PD
drugs are not tolerated well by the patient.
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Most people with Parkinson’s disease (PD) live in the community and are cared for by
informal caregivers, including spouses, adult children, friends, or other unpaid individuals.
However, caring for a partner or family member with PD negatively impacts the caregiver’s
own physical and emotional well-being and reduces their quality of life. In addition to the
mental impact of caring for someone with Parkinson’s disease (PD), caregivers often face an
economic burden and sometimes financial hardship. Beyond the increased financial costs of
caring for someone with PD, caregivers are also likely to experience reduced productivity
at work due to absenteeism, disability, or forced retirement. Estimates indicate that PD
caregivers have a higher cumulative income loss over five years compared to control
subjects [5].

Deep Brain Stimulation (DBS) surgery of the STN, Pedunculopontine Nucleus (PNN),
and Globus Pallidus Internus (GPi) is the most popular surgical treatment to improve
motor skills in patients with PD and Freezing of Gait (FoG) who do not improve using
the pharmacological treatment or have side effects to it [6]. The surgery procedure of DBS
implantatoin is an expensive and complicated surgery. It consists of the insertion of MERs
and stimulation electrodes from the brain surface to the STN location. Once in STN brain
area, the stimulation electrode is fixed and a stimulation signal is applied (in a similar way
to a pacemaker), blocking the PD movement disorders’ symptoms. The fail risk factor of
surgery remains an important issue since an improper location of the stimulation electrode
will not block PD symptoms. Improving the efficacy of DBS-STN surgery by examining the
brain morphology structure and the volume of tissue has become an important issue [7],
as well as the optimal fixation of the stimulation electrode. However, given that the
STN is quite a small area inside the brain, imaging methods as Magnetic Resonance
Imaging (MRI) or Computed Tomography (CT) only serve as initial guides for trajectory
definition from the brain surface to the STN region [8]. Surgeons are faced with the difficult
task of the correct placement of the stimulating electrodes. The location of the STN and
its borders is normally carried out manually (the visualization of the MER signal in a
monitor) by a neurosurgeon and is a complicated, arduous task. It has been reported that
incorrect placement can result in adverse side effects such as mood disorders [9]. Therefore,
the careful and correct localization of the STN during this surgery is paramount. As a result,
the accurate placement of the electrode within the dorsolateral sensorimotor part of the
STN is considered necessary for a satisfactory outcome [10,11].

Several statistical methods have been applied to detect the entry and exit of the STN
region, along with the optimal depth for electrode implantation through the use of MER
signals. Two main feature extraction groups have been developed in this study in order to
identify the neural background activity of the STN region [12]. In the first group, spike-
dependent features were chosen as the basis because they describe explicit information
known as the firing rate; indexing firing; and potential field information being extracted
from either time-domain or frequency-domain representations. However, methods operat-
ing upon spikes either amplitude or time spike segments are often susceptible to intra/inter
variabilities induced from non-stationary MERs’ signal nature and their environment ac-
quisition, thereby leading to poor STN location classification and clinical outcomes [13].
In the second group, spike independence can be also used to classify non-stationary signals
by extracting only relevant local field information features. They can be extracted in a
number of ways, e.g., by dividing a signal into a number of segments and computing the
features in each segment-based feature such as statistical or frequency information [14].
Spike-independent features employ time-frequency signal representation to explore the
main MER activity hidden in the high- and low-frequency bands. Unfortunately, the use
of such a method requires prior information of firing spike activity, and its relation to PD
symptoms variations remains unknown in the cognitive neuroscience field [15].

These manual methods make it difficult to obtain a feature extraction method capable
of capturing the deep characteristics needed to clearly point to the location of the STN
region. For this reason, machine learning techniques have been effectively employed for
the validation of the planned directions in the procedure of DBS surgery to obtain the
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correct position of electrodes inside the brain and determine the STN location. The wavelet
method is used in [16]. Learning techniques such as linear discriminant analysis are used
in [17]. K-nearest Neighbors (KNNs), Support Vector Machines (SVM) [18], and decision
trees [19] are also used. But the most used techniques in the bibliography are Neural
Networks (NNs) [20] and SVM [21]. In this paper, we show how a sparse representation
of MER signals allows for the extraction of discriminant features, improving accuracy
in the identification of STN during DBS surgery applied in patients with Parkinson’s
disease. We use spike-independent and spike-dependent features extracted from MER. The
extraction and selection of the features can then be applied to machine learning classifiers.
Thus, the main objective of this work is to assess the improvement of the classification
performance when dealing with STN brain structure detection. A wide number of features
and classification algorithms are described, achieving high accuracy in STN area detection.

The remainder of this paper is organized as follows. Section 2 introduces the dataset,
explains the proposed methodology, and details the used classification procedure: noise
cancellation, baseline removal, and segmentation as preprocessing. Section 3 describes
the feature extraction and selection. Section 4 outlines the classification procedure and
parameters used to evaluate the performance of the classification. The results of the analysis
and a discussion of these are presented in Sections 5 and 6, respectively. Finally, Section 7
concludes the paper.

2. Materials and Methods

In this study, MER data were recorded from the electrophysiological exploration of
idiopathic PD patients during DBS surgery in ’La Fe Hospital’ of Valencia University, Spain.
Prior to surgery, imaging techniques estimated the brain target area (STN) and optimal
trajectories (bilaterally) to reach the STN. During the surgery, MER electrodes advanced in
0.2 [mm] steps, with several seconds acquisition in each step. Acquisition started 5.8 [mm]
before and 0.4 [mm] after reaching the estimated STN target area. Due to surgery conditions,
some were inserted in both hemispheres (bilaterally) or either right or left (see Table 1
with details for each patient). The collected data, sampled at 12 kHz, comprised a total
of 830 recordings obtained from 14 patients (9 males and 5 females; age: 65.1 ± 5.6 years).
Each MER recording corresponded to a different depth and brain lobe. For each patient,
the number of steps (depths) varied (see Table 1). For each step, three acquisition channels
could be used, but due to surgical practice, only one or two channels were acquired. In this
work, the second channel was the only one used. Data were classified into two classes:
STN-IN and STN-OUT, as in similar works [12], without considering the depth in which it
was acquired. The average duration for each step in STN-IN, for the left and right lobes,
was 51.0 s and 46.8 s, respectively, and the average duration for each step in STN-OUT, for
the left and right lobes, was 46.3 s and 42.1 s, respectively. Each step was classified within
the STN-IN or STN-OUT class by expert surgeons during the surgery process.

For each acquired depth, MER data were segmented using 1 s segment duration with
50% overlapping. In total, 78,611 MER segments were obtained: 30,140 for left STN-IN,
22,725 for right STN-IN, 17,030 for left STN-OUT, and 8716 for right STN-OUT, respectively.
The dataset is publicly available in ZENODO [21].

Figure 1 shows the DBS surgery process in six steps. With the patient under general
anesthesia, an orifice is made in the skull, a cannula is inserted, and it is verified that the
inserted position is adequate to reach the estimated position of the STN. Second, the initial
target position is traced. Third, MERs are inserted and a verification that MERs are inserted
is made. When MERs are inserted and the signal obtained is analyzed, the decision on the
best position of the stimulation electrode is made (step 4). Finally, the stimulation electrode
is inserted and the verification of stimulation is made before its final fixation (steps 5 and 6).
Figure 2 shows an image of the process of CT imaging and the use of a stereotactic robot
with a fiducial point to define the trajectory.
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Table 1. Microelectrode (MER) data recordings. Fourteen patients in total, acquired in one or both
brain lobes, at a different number of depths (steps). For each patient, the number of steps and total
seconds acquired are shown.

Patient STN-IN(L+R) STN-OUT(L+R) STN-IN(L+R) STN-OUT(L+R) Total
Number #Steps #Steps Seconds Seconds Seconds

1 20+NA 4+NA 959+NA 134+NA 1093
2 18+31 14+3 1354+1855 591+199 3999
3 13+27 27+12 626+993 923+434 2976
4 21+21 11+9 946+1114 629+421 3110
5 26+NA 15+NA 1200+NA 497+NA 1697
6 15+NA 25+NA 941+NA 1528+NA 2469
7 23+NA 7+NA 1632+NA 731+NA 2363
8 22+17 11+26 1229+1041 454+1141 3865
9 30+37 8+4 1248+1322 285+114 2969
10 32+32 15+13 1147+1852 921+557 4477
11 18+NA 19+NA 1024+NA 939+NA 1963
12 30+30 11+12 1415+995 380+416 3206
13 29+25 18+14 1429+1119 548+640 3736
14 NA+24 NA+11 NA+1129 NA+461 1590

TOTAL 297+244 185+104 15,150+11,420 8560+4383 39,513

Figure 1. DBS surgery process and MER signal acquistion according to the positions where the MER
electrodes are displaced.

Figure 2. DBS Surgery process. The patient is fully sedated with anesthesia, head fixed with a
stereotactic frame. Intraoperative CT is used for image acquisition at different surgery moments.
A stereotactic robot with fiducial end-point tool to define fiducial points (five red balls) and reference
trajectory point for incision (red laser light) is used.
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An example of MER traces recorded along the pre-planned trajectory is displayed in
Figure 3. Neural activity recorded in the pre-STN, STN, and post-STN regions is shown
with respect to the expert annotation. These annotations are generally carried out manually
and represented in depths (distance in mm) with respect to the Estimated Distance to the
Target (EDT).

Figure 3. Example of MER signals recorded at various depths along the trajectory from a patient with
Parkinson’s disease from outside STN (pre-STN), inside STN, and outside STN (post-STN).

Finally, prior to the use of the data segments for feature extraction, a high-pass filter
was used to eliminate the main artifacts and noise was used. In this case, a band-stop filter
was used to remove the 50 Hz noise, together with two Butterworth filters (4th-order) with
a cut-off frequency of 0.5 Hz for the first filter and lower and higher cut off frequencies of
48 Hz and 52 Hz, respectively, for the second filter.

Alpha-Omega® equipment was used: MER electrodes, the microelectrode and Local
Field Potential Register with the automatic neuro navigation system, and the motorized
electrode driver.

3. Feature Extraction

A combination of features is proposed. Since the neuron activity in the brain is based
on spikes, and different brain areas provide different spike patterns, a subset of features
is taken from the spike activity. A second subset of features measuring the Local Field
Potential (LFP) activity was also used. These features do not directly measure spike activity
but they provide information about the neural activity in areas near the MER electrodes.
All extracted features ( f j) were normalized according to Equation (1), where Fj is the
normalized feature.

Fj,i =
f j,i − f j,min

f j,max − f j,min
(1)

3.1. Spike-Dependent Features

Seven features related to spikes appearing in MER segments were extracted, as illus-
trated in Table 2 [22]. All feature equations are detailed in Appendix A.
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Table 2. Spike-dependent features obtained from MER segments.

Features Description

Spike Firing Rate (SFR) Count of spikes per second.

Inter Spike Interval (ISI) Time intervals between consecutive spikes in the spike
sequence [23].

Standard deviation of ISI (SISI) Standard deviation of inter-spike intervals ISI.

Pause Ratio (PR) Ratio of cumulative time of ISI greater than 50 ms to the
cumulative time of ISI less than 50 ms.

Pause Index (PI) Ratio of the number of ISI greater than 50 ms to the number of
ISI less than 50 ms.

Bursting Rate (BR) Number of bursts per second.

Modified Burst Index (MBI) Ratio of the number of ISI less than 10 ms to the number of
ISI greater than 10 ms.

3.2. Spike-Independent Features

These features measure the LFP activity in MER segments and are mainly based on
statistical, temporal, and spectral properties [24–26]. Each feature is computed for the 1 s
MER segments. The list of features and their description is shown in Table 3. Detailed
equations are shown in Appendix B.

Table 3. List of spike-independent features based on the analysis of 1 s MER segments.

Features Description

Bispectrum (Bs) The Fourier transform of the third-order cumulant spec-
trum [25].

Zero crossing (Zc) Number of zero crossings in the temporal domain [24].

Curve length (Cl) Sum of the difference of consecutive samples [27].

Integrator (In) Sum of absolute value [24].

Root Mean Square (RMS) Root mean square [24].

Kurtosis (Ku) Peakiness coefficient variation [28].

Cumulative bispectrum (Cb) Cumulative relationship between the higher-order mo-
ments [25].

Average Amplitude Change (AAc) Average value of all amplitudes [24].

Short-Term Fourier Transform (STFT) Spectrum energy from each MER segment [29].

Teager Energy (Te) Energy rate induced from the second-order differential
derivative of the amplitude and frequency variation [30].

Average First Amplitude difference
(AFa) Average of first amplitude difference [24].

Second Amplitude difference (SAd) Average of second amplitude difference [24].

Standard deviation (SD) Standard deviation [24].

Skewness (Sk) Measure to quantify the presence of assymmetry in the shape
of the distribution [31].

Slope Sign change (SSc) Number of times that the slope of the MER curve changes
its sign in the segment [24].

Variance (Va) The signal’s averaged power [24].

1D-Local Binary Pattern (LBP1) Having the central segment as threshold, it is compared with
its neighborhood to generate binary code [32,33].

As an example, Figure 4 displays bispectrum (Bs) plots of STN-IN and STN-OUT MER
segments. The bifrequency magnitude distinguishes between each class. Also, most of the
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magnitude of the bispectrum lies within −0.01 to 0.01, and there is a random distribution
of the magnitudes at various frequencies.

(a) STN IN (b) STN OUT
Figure 4. (a) Bispectrum plot of the mean of 10,000 randomly selected MER segments in STN-IN.
(b) Bispectrum plot of the mean of 10,000 randomly selected MER segments from STN-OUT.

3.3. Feature Reduction

Feature reduction eliminates some features, reducing the computational complexity of
the classifier and avoiding the possibility of redundancy. Initially, we obtained 24 features
aimed at two class classification (STN-IN and STN-OUT). Many feature selection methods
exist: Particle Swarm Optimization (PSO), Genetic Algorithms (GAs), Independent Compo-
nent Analysis (ICA), Butterfly, Firefly, Ant Colony, Harris Hawks optimizations methods,
etc. In this work, the NCA (Neighborhood Component Analysis) selection method is used,
which automatically selects the most meaningful features [34]. The steps of the NCA-based
feature selector are given below. Thus, by having a threshold value (th = 0.5), the complete
set of features is entered and the final result of the algorithm provides the most relevant
features. The NCA sorts the best features from the diagonal matrix that is constructed by
maximizing the objective function that computes the average leave-one-out classification
over the training set. The main steps in the NCA algorithm are the following:

• Step 1. Using weight calculate the function to generate the weights WNCA as defined
in Equation (2). M f eat and Tf eat are two feature observations randomly selected from
the database.

WNCA = F
(

M f eat, Tf eat

)
(2)

where F
(

M f eat, Tf eat

)
=

√(
M f eat − Tf eat

)T
D(M f eat − Tf eat)

)
and D is a semi de-

fined matrix [34].
• Step 2: Sort feature weights in descending order.
• Step 3: Select the most distinctive k features by using the highest positive weights

according to the threshold values (greater and equal than 0.5).

After completing the NCA process, a reduction in features of 45% was obtained,
i.e., 11 out of 24 features were selected as relevant. It is important to note that 10 out of the
11 selected features belong to spike-independent features—Spike Firing Rate (SFR) for spike-
dependent, with the rest are from spike-independent features: Cumulative bispectrum
(Cb), Skewness (Sk), Bispectrum (Bs), 1D-Local Binary Pattern (LBP1), Variance (Va), Short-
Term Fourier Transform (STFT), Standard deviation (SD), Root Mean Square (RMS), Teager
Energy (Te), and Slope Sign change (SSc).
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In summary, the proposed classification procedure is depicted in Figure 5: the acquired
MER signal is segmented in 1 s time window and preprocessed for artifact and noise
removal; then, different features (spike- and non-spike-dependent) are extracted (24 in
total). After that, the NCA feature reduction algorithm is used, obtaining 11 relevant
features that will be used as the input to a machine learning classifier, which provides the
two classifications (STN-IN and STN-OUT).

Figure 5. Global procedure for the proposed method for STN localization based on MER signals:
from signal acquisition to classification.

4. Classification Procedure and Performance Evaluation

A supervised classification approach was employed via ensemble classification models
developed in MATLAB (2021b) (Statistics and Machine Learning toolbox). Each model was
trained using the following configuration [35].

• Support Vector Machine (SVM). As already stated, the SVM classifier has shown a
good achievement for the STN location based on MERs or LFP data within various
scenarios. In this work, the configuration model was chosen to avoid the risk of
overfitting. Accordingly, a Radial Basis Function (RBF) kernel function was used,
with the kernel scale set to 1 and constraint penalty set to 1.

• K-Nearest Neighbors (KNNs). In this study, the malhabonic distance metric is used to
compute the distance between the test feature and training features belonging to M
classes (in this case, M = 2), and each data input will be assigned into a specific class
based on the minimum computed distance between the test data and K (in this case,
K = 5) nearest training data.

• Random Forest (RF). Random Forest is a set of decision trees constructed to train each
subgroup out of the whole data training set at each decision tree and then deliver
a single decision that will be aggregated with all decisions to output the predicted
class index. In this work, after the optimization process, each classifier has been set to
32 trees with a leaf size equal to 4.

• Decision Tree (DT). In the decision tree classifier, the decision rule is made up of the
features outcome learned by three compromised principal nodes: root node, decision
node, and leaf node, which handle the extracted features, the branches’ decision
outcome, and the predicted class (STN IN and STN OUT), respectively.

• Discriminant Analysis (DA). In this algorithm, the input features are separated by a
discriminate linear plane engendered from the estimation of the covariance matrix
rate [22]. The DA plan aims at minimizing the variance of the features that belong
to the same class and maximizing the variance of features between classes (STN-IN
and STN-OUT).
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• Neural Network (NN). Among multiple variants, we used three families of neural
networks: the Probabilistic Neural Network (PNN), Feed-forward Neural Network
(FNN) and Back-propagation Neural Network (BNN). For all of them, they comprise at
least three layers: the input layer, the hidden layer, and the output layer. For training,
the Stochastic Gradient Descent (SGD) is used. The topology consists of a single
hidden layer with 28 units, and the last layer is softmax of two classes (STN-IN
and STN-OUT).

For all models, the ‘Leave-One-Out Cross Validaton’ (LOOCV) training method was
used, i.e., each classifier model was trained on observations from 13 patients, while data
from the 14th patient were used for validation, obtaining a total of 14 different models for
each combination of conditions. Different statistical methods were used to estimate the
performance: the ROC curve, the confusion matrix, accuracy, recall, precision (Equation (3)),
the F-measure (Equation (4)), and the kappa coefficient (Equation (5)), where Tp, Tn, Fp, Fn,
T, and P represent the number of true positives found, true negatives found, false positives
found, false negatives found, total number of actual true positives, and total number of
actual true negatives, respectively.

accuracy =
Tp + Tn

T
; recall =

Tp

P
; precision =

Tp

Tn + Fp
(3)

Fmeasure =
2 ∗ (precision ∗ recall)
(precision ∗ recall)

(4)

Kappa =
2 ×

(
Tp + Tn − Fn × Fp

)(
Tp + Fp

)
×

(
Tn + Fp

)
+

(
Tp + Fn

)
× (Tn + Fn)

(5)

5. Results

A comparison between the classifiers described above, and the difference between the
complete feature set and the reduced input set, is made.

Table 4 shows the accuracy results. Results with the reduced feature set are similar to
those achieved with all features, confirming that the feature reduction method neglected the
redundant features and was able to preserve the relevant features able to distinguish STN-
IN and STN-OUT classes. Actually, when using all 24 features, the average performance
decreases due to redundancies and higher confusion among features. Thus, the rest of
results focus on the reduced set of features (11 features).

Table 4. STN localization accuracy comparison between the reduced feature set and the complete
feature set.

ML Classifier KNNs SVM RF DT DA PNN

The 11 features selected 99.9 100.0 99.9 99.8 100.0 100.0
All 24 features selected 99.8 99.9 99.5 99.9 99.8 100.0

The results were individually analyzed for each patient. Despite each patient being
anatomically different, Table 5 shows that the classification results ranged from 99% to
100%, except for patient 3, with 96%.

Concerning the ROC curves, Figure 6 shows a very narrow area, with all classfiers
having similar behavior. This is also supported by the confusion matrices shown in Figure 7.
All classifiers achieved a similar accuracy, ranging from 99% to 100%.

An analysis of features was also carried out in order to evaluate if spike-dependent
(SD) or spike-independent (SIN) features have an impact on the result. For this analysis,
the PNN classifier was used. Thus, a set of 3 and 7 SD features were randomly chosen,
while keeping 14 SIN features. Then, four trials were made by using 3, 7, 14, and 17 SIN
features with no SD features. Figure 8 shows the accuracy results.
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Table 5. Performance indices individualized per patient using PNN classification and the reduced set
of features.

Patient Precision Recall Kappa F1-Score Accuracy

P1 100 100 86.8 100 100
P2 100 100 87.0 100 100
P3 86.9 95.1 87.7 90.1 96.3
P4 100 99.9 84.9 99.9 100
P5 96.6 99.6 87.9 98.0 99.5
P6 99.8 99.8 84.4 99.8 99.9
P7 99.8 99.8 84.8 99.8 99.9
P8 99.8 99.9 88.4 99.3 99.6
P9 98.8 99.9 88.4 99.3 99.6
P10 99.6 99.5 81.2 99.5 99.6
P11 99.8 99.8 80.8 99.8 99.8
P12 99.7 100 86.1 99.8 99.9
P13 99.7 100 86.1 99.8 99.9
P14 99.5 99.9 87.0 99.6 99.7

Figure 6. ROC curves for all the classifiers used in this work for STN-IN and STN-OUT area detection.

As already obtained by the NCA feature reduction algorithm, it is clear that SIN
features are more relevant for the correct detection. However, it is not necessary to use
most of the SIN features since a reduced set provides successful classification ratios while
reducing computational cost.

As an example of the class separation provided by the chosen features, Figure 9 shows
the scatter plot for Sk and SD, showing that they can separate the STN-IN and STN-OUT
classes. The remaining scatter plots are shown in Appendix C. Thus, scatter plots for the
other selected features are also shown, which show a clear distinction. Some other features
show overlapping areas, which means that they should be plotted in higher dimensions,
they are non-linearly separable, or outliers exist.



Appl. Sci. 2024, 14, 5157 11 of 23

(a) KNNs (b) SVM

(c) RF (d) DT

(e) RF (f) DT

(g) RF (h) DT

Figure 7. Confusion matrix for the ML classifiers. (a) KNNs. (b) SVM. (c) RF. (d) DT. (e) DA. (f) BNN.
(g) FNN. (h) PNN.

A visualization of the feature space formed by the two features selected using NCA
for STN target localization is shown in Appendix C. The spectral features show a clearer
separation compared to other SIN features due to the use of band frequency characteristics.
In addition, a nonlinear feature provides better detection of the relevant spiking activity
of STN neurons and reduces sensitivity to outliers. Then, statistical features are ideal for
capturing linear or periodic variation, and the Cumulative bispectrum is ideal for detecting
irregular spiking activity induced along STN borders.
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Figure 8. Comparison of STN area detection accuracy with PNN by using different combinations of
spike-dependent (SD) and spike-independent features (SIN).

Figure 9. Scatter plot of Skewness (Sk) and Standard Deviation (SD) features extracted from MER
segments (patient 1). STN-IN and STN-OUT classes are mostly separated.

Previous studies have shown that MER signals are non-stationary and that STN
borders can be modeled as high-background electric activity zones with some artifacts,
where the number of firing spikes depends on the area zone of the basal ganglia [19,36].
These observations about background patterns have already been demonstrated in clinical
trials where the surgeon can discriminate among basal ganglia areas by listening to the
audio variation that occurred. This is related to the frequency distribution of the signal.
Figure 10 shows an example of spectrum energy representations (STFT) from the STN-
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IN and STN-OUT areas: an irregular distribution variation in STN-IN, and a regular
distribution variation in STN-OUT exists.

Our study is compared with recent existing works. The main difference between the
accuracy of the proposed model and other works on the STN target localization is based
on the data settings, preprocessing step, the type of handcraft features, and the classifier
chosen. The comparison results are shown in Table 6.

(a) STN IN (b) STN OUT

Figure 10. Spectrum energy plot (STFT) for 12,000 randomly selected MER segments in STN-IN (a)
and STN-OUT (b).

Table 6. Comparison of algorithms used for STN detection: authors, number of patients used, number
of features, classifier, training method, and accuracy result.

Authors # Patients # Features Classifier Training Accuracy (%)

Wong et al. [37] 27 13 SD and SIN Fuzzy clustering Hold-out 89.6

Cangan et al. [38] 48 3 SD and SIN Unsupervised NA 88.0

Chaovalitwongse et al. [36] 17 3 SD and SIN Bayesian, KNNs, and
KNNs-DTW LOOCV 89.6

Guillen et al. [39] 4 6 SIN SVM 10-fold CV 99.4

Vargas Cardona et al. [40] 4 3 SD and SIN Bayesian and KNNs NA 85.0

Rajpurohit et al. [18] 26 13 SD and SIN Logistic regression 10-fold CV 84.0

Schiaffino et al. [41] 8 15 SD and SIN KNNs and Fuzzy
KNNs LOOCV 72.0

Schiaffino et al. [42] 15 16 SD and SIN KNNs 10-fold CV 86.1

Valsky et al. [43] 81 2 SIN SVM and HMM 10-fold CV 94.0

Bellino et al. [44] 14 18 SD and SIN KNNs LOOCV 94.4

Karthick et al. [14] 26 1 SIN Random Forest LOOCV 83.0

Khosravi et al. [45] 50 1 SIN K-means clustering
and SOM k-CV 80.0
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Table 6. Cont.

Authors # Patients # Features Classifier Training Accuracy (%)

Khosravi et al. [46] 100 11 SD and SIN Deep Neural network 10-fold CV 92.0

Karthick. et al. [47] 26 1 SIN Random Forest, SVM,
and KNNs LOOCV 94.0

S Coelli et al. [48] 13 26 SD and SIN Decision trees LOOCV 94.1

Hosny et al. [19] 21 12 SD and SIN
Bagging, KNNs, SVM,
Decision Tree, and
AdaBoost

LOOCV 94.8

Our work 14 11 SD and SIN SVM, KNNs, RF, DT,
DA, and NN LOOCV 99.8

6. Discussion

If adequate imaging methods as MRI-guided and stereotactic CT-verified techniques
are used in DBS surgery, no additional support tools need to be used [49]. However, the use
of MERs is widely accepted during DBS surgery in order to validate the imaging methods
and provide more information to the surgeon. In addition, MER signal analysis has proven
to provide neuronal biomarkers to discriminate between the different brain structures
located from dorsal to ventral STN borders. Recent studies detecting STN have employed
feature selection methods for machine learning classifiers in order to increase the detection
of the STN area [12], proving that the immediate information provided by the algorithm
can support the medical team to improve clinical decision-making, together with surgeon
criterion and imaging techniques [50].

In general, the results show that the proposed classification procedure, using the
adequate features, can provide an accurate detection of the Subthalamic Area (STN-IN).
The final set of 11 features mostly comprised those obtained from the Local Field Potential
(LFP) using time, frequency, and higher-order statistics features.

It is important to note that spike-dependent (SD) features are less relevant that spike-
independent (SIN) features. This result indicates that Local Field Potential features provide
enough information with which to discriminate between different brain structures, and the
spike activity might depend on other factors rather than the brain structure (e.g., patient
mental activity). This finding accords with previous results from STN recordings in PD [51].
Despite this general finding, further analysis should be made on spike activity as it might
provide more information about the patient, not only related to the brain structure where
the spike activity is located.

High-order statistics are found to be the most discriminant feature group. Although the
calculation of nonlinear frequency features is computationally expensive compared to
the statistical temporal features, they must be used as long as the compation time does
not exceed the feedback time (several seconds) given to the surgeon during the DBS
implantation operation. In terms of clinical use, providing the surgical team with a real-
time tool is a must for this type of algorithm as it is intended to be used online while
the DBS operation is being carried out. Since the algorithm was developed using Matlab
software, we developed a self-executable program ready to be run in the surgical room by
a computer with access to MER acquisition channels.

For the classification task, Machine Learning (ML) techniques have shown to be a
lightweight model classification compared with Deep Learning (DL) techniques due to
the requirement of resources and data availability. As a result, focusing on MER signal
classification using ML to detect the STN anatomical boundaries has similarly been on the
rise. In this work, we explore the ability of ML to train handcrafted features from MER
signals regarding the STN region detection.

Recent studies have shown the ability of handcraft feature selection methods to
increase the detection of STN borders [12]. Several studies have proposed methods for STN
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localization using deep learning methods [17,20,52]. However, lack of data availability is
identified as one of the main barriers to implementation as clinicians should be confident
that the algorithm outcome can be trusted. Moreover, it is common that research teams do
not share their dataset for real MER data, which limits the possibility of comparison when
developing new algorithms. In this work, we have developed our own patient’s database,
and it is available through open data repositories.

In summary, STN can be effectively detected, as this work shows. However, an open
research topic exists when determining the optimal stimulation location inside the STN
structure. It is still uncertain which features could reveal significant information regarding
different areas inside the STN. Several linear and frequency-domain techniques have
been used to analyze the MER signals and define new signatures of the STN region in
PD patients. However, such techniques are ineffective in quantifying the spikes and
background activity in MER signals in different depths and locations inside the STN due
to their complex nature, correlation among neuron activities, and brain activity situation.
Therefore, the neurosurgeon must always take the final decision using all possible available
tools (imaging, signal analysis, and subjective experience).

An extension to this work is related to the number of patients used for the algorithm
development. Despite the fact this work uses a number of patients—in line with other
works—it is desirable to increase the number of patients. As new DBS surgeries are being
carried out by the neurosurgical team, new data are acquired and then incorporated into
the database.

7. Conclusions

Deep Brain Stimulation (DBS) has been shown to be an invasive technique greatly
improving quality of life for PD patients. However, the success of DBS sugery greatly
depends on the precise implantation of the stimulating electrode in the motor area inside
the STN brain region. It is a key factor for optimal therapeutic benefits and the avoidance
of side effects.

In addition to imaging and carefully planned trajectories in pre-surgical studies, this
works describes the use of MER signals to support the surgeon in the analysis of brain
signals during the surgery and optimally determine the final positioning of stimulating
electrodes inside the STN. Without additional support, the process is instinctive and
laborious for the neurosurgeon. The proposed classification algorithm is intended to be
used in the operation theater and to provide information to the surgeon about the location
of MERs and stimulating electrodes in the STN brain area. This work proposes a wide
number of features obtained from the MER signal and compares six different classification
algorithms trained using supervised learning. The used dataset was obtained from real
surgery operations, comprises data from 14 PD patients who underwent DBS implantation,
and is publicly available in ZENODO [21].
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Appendix A. Spike-Dependent Features

Appendix A.1. Spike Firing Rate (SFR)

Defined in Equation (A1), where T is the time window (MER segment) and Nsp is the
number of spike amplitudes during T.

SR =
Nsp

T
(A1)

Appendix A.2. Inter-Spike Interval Sequences (ISI)

Defined by Equation (A2), where ti Is the Occurrence Time of the i-th Spike in a Set of
P Spikes.

ISIi = ti+1 − ti i = 1, 2, . . . , P − 1. (A2)

Appendix A.3. Standard Deviation of ISI (SISI)

Defined by Equation (A3).

SISI =

√
∑N

i=1
(

ISIi − ISI
)2

n − 1
(A3)

Appendix A.4. Pause Ratio (PR)

Defined by Equation (A4).

PR =
∑(ISI > 50 ms)
∑(ISI < 50 ms)

(A4)

Appendix A.5. Pause Index (PI)

Defined by Equation (A5).

PI =
#(ISI > 50 ms)
#(ISI < 50 ms)

(A5)

Appendix A.6. Bursting Rate (BR)

Defined by Equation (A6), where T is the time window (MER segment) and Nb is
number of bursts during T.

BR =
Nb
T

(A6)

Appendix A.7. Modified Burst Index (MBI)

Defined by Equation (A7),

MBI =
#(ISI < 10 ms)
#(ISI > 10 ms)

(A7)

Appendix B. Spike-Independent Features

Let us consider that the MER segment samples are si ∈ S, S = {s1, s2, . . . , sN}, with
N = 12,000 (1 s). The extracted features based on Local Field Potential are the following.

Appendix B.1. Bispectrum (Bs)

Bispectrum feature is derived from the degree of quadratic phase coupling between
individual frequency components of the signal. First, the signal is divided into N samples;
then, the Fourier transform on N samples is computed as the bispectrum component.
Equation (A8) provides the details, where B( f1, f2) is the bispectrum in the bifrequency
( f1, f2), S( f ) is the discrete time Fourier transform of the given signal, ∗ denotes complex
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conjugate, N is the sample per segment (in our study, N = 8), and ( f1 and f2) values are
defined from this interval range:

0 ≤ f2 ≤ f1 ≤ fs/2, f1 + f2 ≤ fs/2

where fs is the sampling frequency.

Bs( f1, f2) =
N

∑
i=1

Sj( f1)Sj( f2)S∗
j ( f1 + f2) (A8)

Appendix B.2. Zero Crossing (Zc)

Given in Equation (A9).

Zc =
N−1

∑
i=1

|si+1 − si| (A9)

Appendix B.3. Curve Length (Cl)

Given in Equation (A10).

CL =
3

N − 1

√√√√ N

∑
i=1

(si − S̄)2 (A10)

Appendix B.4. Integrator (In)

Given in Equation (A11).

In =
1
2

N−1

∑
i=1

|sign(si+1)− sign(si)| (A11)

Appendix B.5. Root Mean Square (RMS)

Given in Equation (A12).

RMS =

√√√√ 1
N

N

∑
i=1

s2
i (A12)

Appendix B.6. Kurtosis (Ku)

Given in Equation (A13).

Ku =
1
N ∑N

i=1
(
si − S

)4(
1
N ∑N

i=1
(
si − S

)2
)2 (A13)

Appendix B.7. Cumulative Bispectrum (Cb)

Cumulative bispectrum is one of the robust methods applied for the non-stationary
signals. By using the statistic moments: Equations (A14)–(A16), the higher-component
statistics are computed as defined in Equations (A17)–(A19). In this work, only the third-
order cumulants were considered.

ms
1 = E[S(k)] (A14)

ms
2 = E[S(k)S(k + T)] (A15)

ms
3 = E[S(k)S(k + T1)S(k + T2)] (A16)
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where T, T1, and T2 are the leg.
Cs

1 = ms
1 (A17)

Cs
2(T1) = ms

2(T1)− (ms
1)

2 (A18)

Cb = Cs
3(T1, T2) = ms

3(T1, T2)− ms
1[m

s
2(T1) + ms

2(T2) + ms
2(T2 − T1)] + 2(ms

1)
3 (A19)

Appendix B.8. Average Amplitude Change (AAc)

Given in Equation (A20).

AAc =
1
N

N−1

∑
i=1

|si+1 − si| (A20)

Appendix B.9. Short-Term Fourier Transform (STFT)

Given in Equation (A21), with a windowing function g(r).

STFT( f , k) =
N−1

∑
r=1

s(t)g(t − k)ϵ−j2π f t/N (A21)

where STFT( f , k) is a complex-valued Fourier coefficient K is the window index. The fre-
quency f , time t, and shift k are discrete.

Appendix B.10. Teager Energy (Te)

Given in Equation (A22).

Te = s2[i]− s[i − 1]s[i + 1] (A22)

Appendix B.11. Average First Amplitude Difference (AFa)

Given in Equation (A23).

AFa =
1
N

N−1

∑
k=1

|sk+1 − sk| (A23)

Appendix B.12. Second Amplitude Difference (SAd)

Given in Equation (A24).

SAd =
1
N

N−1

∑
k=1

|FAk+1 − FAk| (A24)

where FA is the difference between two successive samples (sn+1, sn). Then, FAi ∈ FA,
FA = {FA1, FA2, . . . , FAN}.

Appendix B.13. Standard Deviation (SD)

Given in Equation (A25).

STD =

√√√√ 1
N

N

∑
k=1

(sk − s̄)2 (A25)
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Appendix B.14. Skewness (Sk)

Given in Equation (A26).

Sk =
1
n ∑N

i=1(si − S̄)3(√
1
n ∑N

i=1(si − S̄)2
)3 (A26)

Appendix B.15. Slope Sign Change (Sc)

Given in Equation (A27).

Sc =
N

∑
i=1

fSc(si) (A27)

where:

fSc(si) =

{
1 if si < si+1 and si < si−1, or si < si+1 and si > si−1

0 otherwise

Appendix B.16. Variance (Va)

Given in Equation (A28).

σ =
1
N

N

∑
k=1

(sk − S̄)2 (A28)

Appendix B.17. 1D-Local Binary Pattern (LBP1)

It brings the concepts used in 2D images into 1D signals. It compares the center values
with its adjacent values as to produce a set of binary patterns according to a threshold.
Thus, it is used to construct the final pattern as binary values converted to decimal values.
The fundamental expression of LBP1 is given by Equation (A29), where

sign(si) =

{
1 if si ≥ 0
0 otherwise

and Mi and Mc represent the neighboring specific segment (Mi = 9) and center values
(Mc = 5), respectively.

LBP1 =
N−1

∑
i=0

sign(Mi − Mc) · 2i (A29)

Appendix C. Scatter Plots for the Most Discriminant Features Used in the STN
Area Detection

Scatter plot of Cumulative Bispectrum (Cb) vs. Spike Firing Rate (SFR) features (left),
and Short Time Fourier Transform (STFT) vs. Variance (Va) features (right).
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Scatter plot of Bispectrum (Bs) vs. Spike Firing Rate (SFR) features (left), and Root Mean
Square (RMS) vs. Standard Deviation (SD) features (right).

Scatter plot of Cumulative Bispectrum (Cb) vs. Standard Deviation (SD) features (left),
and Spike Firing Rate (SFR) vs. Skewness (Sk) features (right).

Scatter plot of Cumulative Bispectrum (Cb) vs. Short Time Fourier Transform (STFT)
features (left), and 1D_local binary Pattern (LBP1) vs. Slope Sign Change (SSc) features
(right).

Scatter plot of Standard Deviation (SD) vs. Teager Energy (Te) features (left), and Teager
Energy (Te) vs. Slope Sign Change (SSc) features (right).

Scatter plot of Standard Deviation (SD) vs. Short Time Fourier Transform (STFT) features
(left), and Short Time Fourier Transform (STFT) vs. Root Mean Square (RMS) features
(right).
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Scatter plot of vs. 1D_local binary Pattern (LBP1) features (left), and 1D_local binary
Pattern (LBP1) vs. Variance (Va) features (right).

Scatter plot of Spike Firing Rate (SFR) vs. Variance (Va) features (left), and Standard
Deviation (SD) vs. 1D_local binary Pattern (LBP1) features (right).
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