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Abstract With the goal of eradication by 2030, Malaria poses a significant health threat, profoundly
influenced by meteorological and hydrological conditions. In support of malaria vector control efforts, we
present a high‐resolution, coupled physically‐based modeling approach integrating WRF‐Hydro and VECTRI.
This model approach accurately captures topographic details at the scale of larvae habitats in the Nouna Health
and Demographic Surveillance Systems in Sub‐Saharan Africa. Our study demonstrates the proficiency of the
high‐resolution hydrometeorological model, WRF‐Hydro, in replicating observed climate characteristics.
Comparisons with in‐situ local weather data reveal root mean square errors between 0.6 and 0.87 mm/day for
rainfall and correlations ranging from 0.79 to 0.87 for temperatures. Additionally, WRF‐Hydro's surface
hydrology reproduces the seasonal and intraseasonal variability of the ponded water fraction with 96% accuracy,
validated against Sentinel‐1 data at a 100‐m resolution. The VECTRI model demonstrates sensitivity to surface
hydrology representation, particularly when comparing conceptual and detailed physical process models, for
variables such as larvae density, mosquito abundance, and EIR. The model's ability to replicate the seasonality
of malaria transmission aligns well with available cohort malaria data suggesting its potential for predicting the
impacts of climate change on mosquito abundance and transmission intensity in endemic tropical and
subtropical zones. This integrated approach opens avenues for enhanced understanding and proactive
management of malaria.

1. Introduction
Malaria epidemic risk factors include pathogens, human hosts, mosquito vectors, climate, and environmental
factors, which vary geographically and temporally. Sub‐Saharan Africa (SSA) is severely afflicted by malaria
disease with significant morbidity and mortality caused by a combination of these factors and an all‐year‐round
transmission potential. Most infectious disease outbreaks and epidemics in SSA are connected to climate change
and variability (Ayanlade et al., 2022; Moyo et al., 2023; Opoku et al., 2021; Van de Vuurst & Escobar, 2023;
Yamana et al., 2016). For instance, the incidence of malaria is related to climatic factors like rainfall and tem-
perature at specific time lags (Abiodun et al., 2016, 2017, 2018; Caminade et al., 2014; Christiansen‐Jucht
et al., 2015; Diouf et al., 2020; Ikeda et al., 2017; Tompkins & Ermert, 2013). Rainfall plays a crucial role in
the transmission dynamics influencing various aspects of mosquito biology, habitat availability, and epidemi-
ology. Temperatures in SSA are generally favorable to malaria transmission (Ryan et al., 2020), with an increase
in temperature leading to increased biting rate (Gilles, 1993; MacLeod et al., 2015; Molineaux, 1988).

It is well established across numerous geographical contexts in SSA that when environmental and meteorological
conditions favor mosquito reproduction, a significant increase in malaria infections among nearby populations
can occur (Badmos et al., 2021). More precisely the number of people infected is closely linked to the amount of
water available in the area, as well as the characteristics of that water (e.g., aquatic habitats, stagnant or slowly
streaming fresh or salty water, Asare, Tompkins, & Bomblies, 2016; Minakawa et al., 2012; Smith et al., 2013;
Yamana et al., 2016). This connection is partly because malaria vector mosquitoes utilize temporary water bodies
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for the development of their larval stages (Getachew et al., 2020; Mwakalinga et al., 2018). The studies of Kibret
et al. (2014, 2017) across malaria‐endemic areas in SSA have revealed that the high transmission rate observed
among residents near irrigation fields is associated with the existence of potential mosquito breeding sites. The
detection of water bodies is therefore crucial in identifying malaria high‐risk zones (Dambach et al., 2009, 2012;
Machault et al., 2012). Typically, the mosquito's aquatic habitats are not solely based on rainfall. Local‐scale
hydrological conditions like soil and vegetation properties, infiltration, exfiltration, surface runoff, and evapo-
ration, in turn, can all affect how much water is available on the land surface (Gianotti et al., 2009; Smith
et al., 2013, 2020; Tompkins & Ermert, 2013). Each of these factors, independently and in combination, in-
fluences the amount and duration of surface water availability (Desconnets et al., 1996; Youssefi et al., 2022). The
detection of surface water availability from current data sets is challenging, however. Wimberly et al. (2021) and
Youssefi et al. (2022) mentioned that a higher spatial resolution of remote sensing data can be utilized to capture
larvae and mosquito habitats.

Mathematical models are widely used to simulate the inherent and external dynamics of malaria transmission
concerning climate‐derived variables. They also help in simulating and predicting the spatio‐temporal dynamics
of epidemic risk across regional to continental scales. Complex malaria models have been introduced to simulate
the African malaria vectors, designed to explicitly simulate mosquito population dynamics at a local scale
(Depinay et al., 2004; Morse et al., 2005). The latter authors claimed that these malaria models have helped to
facilitate the structure of existing knowledge gathered from the literature review. They have also emphasized the
crucial fundamental biology of Anopheles mosquitoes, addressing areas where knowledge gaps exist. Other
authors claimed that complex hydrological models can serve as valuable predictive tools for vector mosquito
population dynamics. By using hybrid models (e.g., Bomblies et al., 2008; Jiang et al., 2021; Tokarz &
Novak, 2018; Yamana & Eltahir, 2010), researchers have looked for suitable places for mosquito vector growth to
explicitly represent the mechanistic relationships between observed rainfall, mosquito populations, and the
subsequent response in malaria transmission. The suitable breeding sites of Anopheles mosquitoes have been
simulated with high accuracy and most of the environmental factors have been considered. The work of Asare,
Tompkins, and Bomblies (2016) integrated two basic surface hydrology models to replicate the sub‐seasonal
changes in fractional water coverage. However, a coupling framework consisting of high‐resolution
atmospheric‐terrestrial hydrology modeling with the integration of satellite‐derived land use information has
not so far been used in analyses of disease vectors like Malaria.

This study aims to determine the influence of three distinct surface hydrology representations, environmental and
climate‐sensitive driver factors on malaria incidence in SSA. We explore an approach based on a coupled high‐
resolution atmospheric‐ and terrestrial model system (WRF‐Hydro, Gochis et al., 2018) to improve the treatment
of the temporary water bodies used by mosquitoes for breeding. It includes the statistics of ponds aggregated from
remote sensing data (Sentinel‐1) to evaluate those simulated in WRF‐Hydro and two simple local offline hy-
drological schemes in VECTRI (Tompkins & Ermert, 2013) utilized as benchmarks. Using this coupled model
development helps to create a framework (WRF‐Hydro plus VECTRI) that allows an explicit representation of
the spatiotemporal hydrological and climatological determinants of malaria transmission, exemplarily shown here
for the Health and Demographic Surveillance Systems (HDSS) site regions of Nouna in Burkina Faso. To that
end, we have conducted a suite of sensitivity experiments to calibrate soil parameters, aiming to generate more
accurate estimates of surface water, malaria vectors, and transmission dynamics. In the following, Section 2
discusses the study area and the description of the models, followed by the methods and experimental setup,
forward operator, and temporary pond fraction technique. The data collection is given in Section 3. In Section 4,
the results are presented and discussed. The discussions and conclusions are given in Sections 5 and 6,
respectively.

2. Study Area and Field Data
2.1. Study Area

Our modeling approach is exemplarily setup, tested, and validated for the SSA region around Nouna in Burkina
Faso. Nouna Town (Figure 1c) is located in the northwestern part of Burkina Faso in the Province of Kossi
(Figure 1b) with a current population of about 30,000 inhabitants. It lies between latitude 27.43°N and 29.20°N
and longitude 94.42°E and 95.35°E. The Center de Recherche en Santé de Nouna (CRSN)'s research area, the
so‐called Nouna Health and Demographic Surveillance System covers currently 124,957 inhabitants (CRSN,
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2022) distributed in 15,014 households, settled over 1.775 km2. This area is a dry orchard Savannah, populated
almost exclusively with subsistence farmers of various ethnic groups. The area has a sub‐Saharan climate (one
rainy season usually lasting from July to September), with a mean annual rainfall of 796 mm (range 483–
1,083 mm) over the past five decades and overall high temperatures throughout the year, peaking in April/
May. This zone was chosen as the study area because malaria is frequent throughout the year in this district (Sie
et al., 2010), with average malaria cases ranging from 279 in 2012 to 2,817 in 2016. From 2013 to 2020, the
Nouna part of the Sahelo‐Sudanese zones accounted for 59% of total malaria cases (Sangaré et al., 2022). Being
part of the HDSS, Nouna Hospital has been equipped with diagnostic and treatment facilities for malaria and it
serves as a reporting center for malaria incidence under the International Network for the Demographic
Evaluation of Populations and Their Health in Developing Countries (INDEPTH) (Hondula et al., 2012;
Sauerborn, 2017). Agriculture is the primary economic driver and most of the population in the district is
engaged in agricultural activity. The public health facilities include one hospital and 17 health centers. The
district is one of the malaria‐endemic districts in the region. Numerous initiatives have been implemented in
addition to quick diagnosis and treatment to prevent and control the disease. Previous studies have examined
clinical research, epidemiology, health economics, and health systems research areas (Diboulo et al., 2016;
Ndugwa et al., 2008; Sié et al., 2008).

Figure 1. (a) The terrain elevation map of the 5‐km resolution WRF model nested grid domains (d01). (b) WRF‐Hydro has the same settings as WRF, except the inner
domain (d02, 1 km) is coupled with a routing subgrid in WRF‐Hydro (100 m). (c) Geographic locations of Nouna HDSS. The Nouna HDSS is located within the Nouna
health district area in northwest Burkina Faso in the Kossi province, 300 km from the capital city, Ouagadougou.
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2.2. Field Data

• Population density:
Gridded estimates of the human population in Africa were used to evaluate the number of individuals falling
within areas climatically suitable for malaria transmission. This data set is based on the 2020 Gridded Pop-
ulation of theWorld, Version 4 (GPWv4, GPWv4: Population Density, Revision 11 (2018). It relies on counts
that align with national censuses and population registrations. All population data sets were at a resolution of
30 arc seconds (around 1 km at the equator) with results aggregated to the continental and country level.

• Epidemiological data:
Data sources are useful for generating meaningful statistics regarding malaria; they must be thorough, ac-
curate, relevant, and/or representative, and available promptly. This is not the case in many African countries
(Nachega et al., 2012). Eight years (2013–2020) of malaria cases with strict quality control operated by the
National Health Data Warehouse or ENDOS‐BF (Burkina Faso ministry data system) were obtained. The data
was collected using both active and passive surveillance methods which comprised several blood samples
collected and tested positive either for Plasmodium vivax or Plasmodium falciparum infection or mixed
infection. The data have been classified into age, confirmed and suspected cases, and simple and severe cases.
In Figure S1 (Supporting Information S1), only total confirmed severe and simple cases have been represented
and considered in this study. We observed higher simple cases than severe for all age categories mainly
between the ages of 1–4 years. As already mentioned by the World Health Organization (WHO, 2018), Africa
accounts for 90% of global malaria cases, with over 75% affecting children and expectant mothers. In our
analysis, both simulated and reported malaria time series were standardized over their respective periods to
show anomalies. The standardized value was calculated using the following formula:

Standardized value =
X − μ
δ

(1)

where X = the value of an observation/simulation, μ = the mean value and δ = the standard deviation.

• Meteorological data sets:
The meteorological data consists of daily rainfall, daily minimum and maximum temperature, and relative
humidity records collected from weather stations of the Burkina Faso Weather Service. In addition, the
reference observation‐based data set used in this study is the Climate Hazards Group Infrared Precipitation
from 2000 to 2020 and daily maximum and minimum temperature data with Stations (CHIRPS, Funk
et al., 2014, CHIRTS, Funk et al., 2019) from 2000 to 2016 available at 0.05° spatial resolution.

• Surface water occurrence from satellite remote sensing:
Satellite remote sensing has attracted a lot of attention in the past two decades, it can be used as an op-
portunity for validating model outputs due to direct observations of various hydrological variables as well
as large geographical and temporal coverage (Jiang & Wang, 2019; Khaki, 2023; Meyer Oliveira
et al., 2021). We used the monthly surface water occurrence maps and the surface water dynamics from
Sentinel‐1 data during 2015–2020 with a spatial resolution of 10 m (later aggregated to model resolution at
100 m). The data were processed into calibrated, topographically normalized backscatter images. These
preprocessed images were classified into binary water body maps using scene‐dependent thresholds. These
thresholds were determined based on existing geospatial information of permanent water areas, obtained
from the Global Surface Water Explorer (Pekel et al., 2016). Monthly surface water composites were
created from the individual classified scenes. Additionally, all unique classified scenes were used to pro-
duce a surface water dynamics layer representing the percentage of water occurring in each pixel ‐ relative
to the number of valid observations. The product represents a measure of the changing spatial extent of
water bodies (permanent vs. seasonal water bodies) following Steinbach et al. (2021). Post‐processing
included the removal of false positives (mainly radar shadows) by using the Multi‐resolution Valley
Bottom Flatness index (Gallant & Dowling, 2003). This results in surface water dynamics representing the
percentage of water occurring in each pixel from 2015 to 2020 (Figure 2). To assess how strongly the
Sentinel 1 products corresponded to our model outputs, we compared pixel‐wise area averages aggregated
to the land resolution (100 m).
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3. Models Description and Numerical Experiment Design
Figures 3 and 4 visualize the conceptual schematic and the coupling of model components. Three distinct models
are employed in this study: 1: a regional atmospheric model (WRF‐ARW) for the dynamical downscaling of
global reanalyzes to the target resolutions of 5 and 1 km, 2: a hydrologically enhanced land surface model (WRF‐
Hydro) to simulate the relevant reservoirs upon and below the land surface, and 3: a dynamical transmission
model for vector‐based diseases (VECTRI). Before each model runs, a 3‐month spin‐up period is performed to

Figure 2. Surface water dynamics layer representing the percentage of water occurring in each pixel from 2015 to 2020 over Nouna HDSS.

Figure 3. Fully‐coupledWRF‐Hydro and VECTRImodel coupling framework. The left part of the figure (WRF‐Hydro) illustrates the fully coupled high‐resolution joint
atmospheric‐terrestrial hydrology modeling and integration of satellite‐derived land use information. The right part illustrates the schematic of the VECTRI model
(larvae status, vector state, and host infective state) obtained from Tompkins and Ermert (2013).
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ensure that all three models reach equilibrium. In the following, the models
and their configurations are briefly described.

3.1. Climate Modeling

The regional climate model Weather Research and Forecasting Model (WRF‐
ARW) has been used to provide detailed information on climatic conditions
such as precipitation, relative humidity, maximal and minimal air tempera-
ture, and wind speed at the local scale required for modeling malaria. The
WRF‐ARW model (V4.0) is a time‐split non‐hydrostatic atmospheric model
and is the most widely applied mesoscale numerical weather prediction
model. It is widely used in the study of land‐atmosphere interactions (Con-
stantinidou et al., 2020), dynamical downscaling (Laux et al., 2021), weather
and climate research (Igri et al., 2018). The ability of WRF to resolve strongly
nonlinear small‐scale phenomena such as stratiform precipitation and
convective precipitation (Klein et al., 2015) makes it suitable for the coupling
study of atmospheric and hydrological processes. Detailed information about
WRF can be found in Skamarock et al. (2008). Optimal physical parame-
terization settings for the West African Region were obtained under the West
African Science Service Center on Climate Change and Adapted Land Use
(est African Science Service Center on Climate Change and Adapted Land)
project (Heinzeller et al., 2018). Table 1 lists the model setup. The initial and
lateral boundary conditions of the model were acquired from the fifth gen-
eration ERA5 reanalysis (30 km) of the European Centre for Medium‐Range
Weather Forecasts (Hersbach et al., 2020).

3.2. Land Surface Modeling

WRF offers several options for land surface schemes that can be used to describe the heat, moisture, and mo-
mentum exchange across the surface‐atmosphere interface. For the fully coupled WRF/WRF‐Hydro simulation,
Noah Multi‐Parameterization (Noah‐MP) LSM was the land model used. The Noah‐MP land surface model (Niu
et al., 2011) is an enhanced version of the Noah land surface model (Noah LSM, Ek et al. (2003)) coupled with
WRF, and introduces a framework for multiple schemes. Due to the enhancement of biophysical and soil freeze‐
thaw processes, these LSMs have been widely used and the most common land surface process module
configuration applied in WRF studies in SSA (Arnault et al., 2016; Campbell et al., 2019; Diaz et al., 2015;
García‐Ortega et al., 2020; Klein et al., 2015). Noah LSM, and especially Noah‐MP, account for the column
hydrological processes (i.e., through fall, evapotranspiration, soil infiltration, vertical soil water movement, and
accumulation of both surface and underground runoff). The required input fields passed from the Noah‐MP to the
WRF‐Hydro (see the section below) routing modules include maximum soil moisture (SM) for each soil type,
infiltration capacity excess, lateral surface hydraulic conductivity for each soil type, and the SM content for each
soil layer.

Figure 4. Workflow for the joint climate–hydrology‐malaria modeling. The
dashed lines represent the input data streams for VECTRI. Three different
schemes are employed to describe surface water ponding (S0, S1, S2). In our
experiment, (a) the climate parameters (blue and red): daily mean
temperature and rainfall at 0.1° × 0.1° resolution; (b) the surface
hydrological data set (green): three different estimated ponded water (PW)
and (c) the population density (gray) from 2000 to 2020 are used as inputs to
the VECTRI model (dark green) for the simulation. The first PW (Scheme
S0) is derived from WRF‐Hydro itself, whilst in the second and the third
(scheme S1 and S2), the rainfall from WRF at 1 km resolution drives the
VECTRI puddle model. The population density at 1 km resolution is based
on the 2020 Gridded Population of the World, Version 4 (GPWv4, Gridded
Population of the World, Version 4 (GPWv4): Population Density, Revision
11 (2018).

Table 1
WRF Physical Parameterizations Used in This Study

Physics categories Selected option Reference

Microphysics WRF Single‐Moment 6‐class scheme (WSM6) Hong and Lim (2006)

Cumulus parametrization None

Planetary boundary layer Asymmetric Convection Model version 2 (ACM2) Pleim (2007)

Land surface model Noah‐MP Niu et al. (2011)

Longwave radiation Rapid Radiative Transfer Model (RRTM) Mlawer et al. (1997)

Shortwave radiation Dudhia Dudhia (1989)
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3.3. Hydrological Modeling

WRF‐Hydro is a comprehensive atmosphere‐hydrology model system specifically designed to enable the
coupling of land‐surface modeling with WRF (Arnault et al., 2016; Kerandi et al., 2018). In this study, we apply
version 5.0 with a particular interest in one major improvement inWRF‐Hydro, which consists of allowing excess
infiltration to remain as ponded water (PW) (100 m resolution) for subsequent lateral redistribution in combi-
nation with precipitation in the following model time step (Yucel et al., 2015). This integrated model system
requires high‐resolution topography and channel networks to depict hydrological processes impacting terrestrial
water accurately. This includes lateral water flows in the subsurface, overland, and rivers, which enhances the
representation of land‐atmosphere feedback. Such improvements, as demonstrated by, for example, Lahmers
et al. (2019) and Arnault et al. (2021), addressed questions regarding land use's influence on climate change and
water availability. Here, WRF‐Hydro allowed benefiting from several remotely sensed data sources to predict the
probability of pond presence. WRF‐Hydro utilizes the high‐resolution digital elevation model (DEM, 30 s),
providing a high‐quality terrain data set derived from Shuttle Radar Topography Mission data. In this study,
Noah‐MP (see Section 3.2) is parameterized over a 1 km × 1 km grid, while WRF‐Hydro water routing processes
are run over a 100 m × 100 m grid.

3.4. Malaria Modeling

VECTRI features a spatially explicit representation of Anopheles mosquito population interactions with humans
and natural environments. It provides an organized, structured, and process‐based approach representing the
environmental causes of malaria transmission. VECTRI (VECTor borne disease community model of Interna-
tional Center for Theoretical Physics, TRIeste, Tompkins & Ermert, 2013) is a grid cell distributed dynamical
model (Figure 2). It accounts for the temperature and rainfall influences on the parasite and vector life cycles
which are finely resolved to correctly represent the delay between the rains and the malaria season. Most re-
lationships are taken from the literature for the Anopheles gambiae vector and the Plasmodium faciparum parasite
species. The model accounts for the population density in calculating daily biting rates. It is designed for regional
to continental scales at high spatial resolutions of around 1–10 km using a daily integration time step. VECTRI is
just one example of several mechanistic models for malaria transmission. VECTRI is the only model that ac-
counts for climate and population density and includes a simple representation of immunity (Laneri et al., 2010;
Tompkins & Thomson, 2018). It also has two different parameterizations of the local surface hydrology which
will be introduced below. The model has been used for both seasonal forecasting purposes and investigating the
impact of climate change on malaria transmission (Caminade et al., 2014; Colón‐González et al., 2021; Tompkins
et al., 2019). The VECTRI model fits the spatial scales of the Nouna (≈700 km2) region. This study applies to
version 1.9 of VECTRI.

3.5. Experiment Design: Joint Hydro‐Climate‐Malaria Modeling

Figure 3 summarizes the components and steps of the high‐resolution climate to malaria modeling chain including
the coupling with the atmospheric‐hydrological model WRF/WRF‐Hydro (Gochis et al., 2018) and the dynamical
Malaria transmission model VECTRI (Tompkins & Ermert, 2013). The atmospheric model domain is centred at
3.87°W, 12.61°N with a total of 400 × 400 grid points at 5 km spatial resolution (Figure 1a). It is set up in a one‐
way nesting approach with two domains: the outer domain d01, referred to as WRF@5 km, covers most of West
Africa (37°W to 48°E, 18°S to 36°N) (see Figure 1) at a resolution of 0.05° (5 km, 400 × 400), and a nested inner
domain d02, referred to as WRF@1 km, covering a region centred on Nouna HDSS (27.5°W to 27.5°E, 7.5°S,
27.5°N) at a resolution of 0.01° (1 km, 200 × 200). Next, theWRFmodel (1 km) generates atmospheric input data
for calibrating hydrological processes. Afterwards, rainfall, temperature, and population density are used as
driving data for VECTRI runs over the domain of 1 km by processing the two surfaces hydrological model
provided by VECTRI (Schemes S1 and S2). Lastly, we include the scheme S0 (WRF‐Hydro) to consider WRF‐
Hydro calculated surface water across the land surface at 100 m‐grid in the malaria modeling chain. The
simulation period was set to 20 years (2000–2020) but the evaluation period span from 2015 to 2020 following the
availability of the clinical data. We have carried out a suite of sensitivity experiments to calibrate relevant soil
parameters in WRF‐Hydro scheme S0, to produce reliable and realistic estimates of surface water in comparison
to those aggregated from remote sensing data (Sentinel‐1) for subsequent modeling of the malaria vector and
dynamics of malaria transmission.
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3.6. Ponding Water Calculations: Hydrology Comparison Method

3.6.1. Ponding Scheme S0 (WRF‐Hydro)

WRF‐Hydro allows estimating the instantaneous value of the depth of water ponding on the surface (units of mm).

In each grid cell, the SM (ΔSM, Equation 2) and surface water coverage (ΔPW, Equation 3) components are
related by the following budget equations.

ΔSM = IN − EX − TR − EV − PC − SF (2)

ΔPW = BP + EX − IN − OF − CF (3)

The 1‐dimensional (1D) column land surface model first computes the vertical energy fluxes (sensible and latent
heat, net radiation) and moisture (canopy interception, infiltration, infiltration‐excess (IN), deep percolation, the
accumulated liquid precipitation falling on the bare soil (BP)), as well as the thermal and moisture states of the
soil. Infiltration excess (IN), PW depth (PW), and SM are then disaggregated from a 1D LSM grid with a spatial
resolution of 1–4 km to a high‐resolution routing grid with a spatial resolution of 30–100 m using a time‐step
weighted method (Gochis & Chen, 2003) and passed to the subsurface (subsurface flow (SF)) and overland
flow (OF) terrain‐routing modules. The key output variables, depending on the physics settings used, are the
surface evaporation components (soil evaporation (EV), transpiration (TR), canopy water evaporation, snow
sublimation, and PW evaporation). Subgrid aggregation/disaggregation is utilized in WRF‐Hydro to simulate
overland (OF) and SF processes at considerably finer grid resolutions than the native land surface model grid.
Then, prior to routing OF, WRF‐Hydro calculates subsurface lateral flow to allow exfiltration (EX) from fully
saturated grid cells to be added to the infiltration excess computed from the LSM. Channel flows are cascaded
upstream to downstream under the premise of negligible backwater effects.

The basic requirement for the presence of mosquitoes is the availability of water bodies. We are particularly
interested in one key upgrade introduced by WRF‐Hydro, which allows the IN to remain as PW. According to
Bomblies et al. (2008), An. Gambiae (90% in Nouna) dispersal behaviour and Sahelian hydrologic characteristics
suggest appropriate model domain dimensions of several kilometers square surrounding villages or human
populations of interest and a resolution of 10 m. However, this scale may change based on the type of urbani-
zation, road network, vegetation, water, and socio‐economic level. Our choice of scale reference (100 m reso-
lution) for mapping the potential surface water is taken from the previous studies conducted in Nouna by
Dambach et al. (2009, 2012, 2018, 2019). In Nouna HDSS, Dambach et al. (2012) used remote sensing at 10 m
and in‐situ data for mapping surface water; they reported that the smallest pond recorded on the ground
covered one 10 m pixel. Thus, direct water detection was not appropriate because object detection is feasible
only when the object size is larger than the pixel size. In addition, the DEM provided useful information for
mapping surface water (100 m), a higher resolution than 100 mwould require significant computational, memory,
and disk.

WRF‐Hydro Calibration: Before implementing the experimental modeling, a series of WRF‐Hydro runs in the
offline mode (hydro components do not feedback to WRF) were first performed in our target region to
calibrate the relevant hydrological parameters. The model calibration can be defined as finding a set of WRF‐
Hydro model parameters that describe temporary ponding fractions as closely as possible to the Sentinel‐1.
The required meteorological variables model inputs are the downward shortwave and longwave radiation, air
temperature, air humidity, pressure, wind speed, and precipitation rate. WRF‐Hydro is calibrated using
available data from May to September for 2015, 2016, and 2017, with validation conducted from 2018 to
2020. The model optimization can involve numerous variables depending on the specific requirements or
demands. Based on the literature review on flood forecasting, we identified six empirical model parameters:
(a) the infiltration/runoff generation parameter (REFKDT), (b) the surface retention depth (RETDEPRTFAC),
(c) the lateral saturated hydraulic conductivity (LKSATFAC), (d) the overland roughness (OVROUGHRT-
FAC), (e) the coefficient for deep drainage (SLOPE), and (f) the soil hydraulic parameter (Ksat) which
corresponds to the scaling of saturated hydraulic conductivity. They have been documented as sensitive
parameters for runoff simulation and re‐infiltration process crucial for PW under different
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hydrometeorological/geographical conditions (e.g., Arnault et al., 2016; Fersch et al., 2020; Kerandi
et al., 2018; Naabil et al., 2017; Senatore et al., 2015; Silver et al., 2017; Zhang et al., 2020). Yucel
et al. (2015) calibrated and validated WRF‐Hydro for flood forecasting, they give an overview of the pa-
rameters and their relevance. We followed a similar approach and combined the parameters range from the
previous study (Arnault et al., 2016; Zhang et al., 2020). The following steps were used for modeling: (a) We
first assumed a 10 mm water depth threshold for each cell (100 m resolution) to be considered as a breeding
site and (b) then compared each observed and simulated pixel to determine the number of matches/mis-
matches in average monthly surface water occurrence maps before and after parameters calibration. We have
performed different sensitivity tests for the six parameters (see Table 2 and Supporting Information S1).
Sentinel‐1 and WRF‐Hydro both cover a 1 km × 1 km approximate area. Sentinel‐1's surface hydrology
description is 10 m pixel, whereas WRF‐Hydro's is 100 m. WRF‐Hydro high‐resolution simulations and
calibrations require intensive computing resources, memory and disk. In Figure 5, we compared monthly
surface water time series from simulated and Sentinel one pixel by pixel to highlight good matches (poor
matches) in % for the calibration and the validation periods. After calibration, WRF‐Hydro demonstrated the
ability to produce the availability of potential vector breeding sites with more than 90% accuracy using
Sentinel‐1 data. The final parameter sets and goodness‐of‐fit measures are listed in Table S1 in Supporting
Information S1 (Figure 6).

3.6.2. Ponding Schemes S1 and S2 (VECTRI)

Compared to WRF‐Hydro, the intrinsic formulation of hydrology in the VECTRI model is highly simplified. In
each cell the total water fraction, w, available for breeding is split into three categories:

w = wperm + wurban + wpond (4)

where wperm is the water fraction associated with the breeding sites that are present at the borders of permanent
water features such as large village ponds, lakes, or rivers (the latter is usually more commonly used by funestus.
wurban allows one to include a representation of urban‐based breeding sites for vectors such as stephensi but is set
to zero in these experiments which focus on the gambiae vector prevalent in the region of focus, which favors rain
driven temporary ponds. These temporary ponds are represented by the term wpond, which Harpex‐Sahel ex-
periments have shown that they form in regions with small‐scale catchments usually limited to a few km in size
(Goutorbe & Kabat, 1995; Prince et al., 1995). Two different approaches for the computation of the temporary
pond wpond are available in VECTRI and are explained in the following.

Scheme S1 estimates the fractional water coverage area in each time step and grid cell using a simplified surface
hydrological parametrization. However, it neglects several factors, including topographical slope, lateral flow
between model grid cells, soil texture (although this can now be optionally incorporated), and vegetation. The rate
of change of pond fraction is given by:

dwpond
dt

= Kw [P(Wmax − Wpond) − Wpond(E + I)] (5)

Table 2
Experimental Design for Sensitive Model Parameters Used in This Study

Parameters Abbreviations Unit Min Max Default Values

Infiltration coefficient REFKDT – 0.1 10 3 0.1, 0.2, 0.3, 0.4, 0.5, …, 10

Surface retention depth RETDEPRTFAC – 0 10 1 0, 1, 2, 4, 6, 8, 10

Lateral saturated hydraulic conductivity LKSATFAC – 10 10,000 1,000 10, 100, 500, 1,000, 5,000, 10,000

Overland roughness OVROUGHRTFAC – 1 100 1 1, 2, 5, 10, 50, 100

Coefficient for deep drainage SLOPE – 0.1 1 0.1 0.1, 0.2, 0.5, 0.8, 1

Saturated hydraulic conductivity factor Ksat – Multiply by 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3, 3.5, 4.5, 5
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where wmax is the maximum temporary pond coverage area, P is precipitation rate, E and I are evaporation rate
and infiltration rate respectively, and Kw is a constant that links rainfall to the growth of the temporary ponds. See
the description in Tompkins and Ermert (2013) for full details on the scheme.

Scheme S2 retains the foundation of Scheme S1 but aims to rectify certain shortcomings, including deficiencies in
OF, runoff, and infiltration processes. The model scheme description and configuration details are given in Asare,
Tompkins, Amekudzi, et al. (2016). The relationship between the pond growth and rainfall is modified to a more

Figure 5. (a) Performance of WRF‐Hydro (scheme S0) in simulating surface water during the wet months (May–September)
in Nouna using the pixel match with Sentinel‐1 before calibration. (b) After calibration during training (2015–2017) and
validation (2018–2020) periods.

Figure 6. Simulated averaged weekly rainfall and surface water before and calibration (upper panel) in 2015–2020.
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realistic representation of the catchment geometry, with the spatial heterogeneity of infiltration rates between the
pond interior and edges accounted for. The loss of water from overflow (O), infiltration (I), and evaporation (E)
are accounted for. A study done by Asare, Tompkins, Amekudzi, and Ermert (2016) over Banizoumbou village in
southwestern Niger with similar climate conditions as Nouna, evaluated and showed good agreement of Scheme
S2 with in situ observations.

4. Results
In the following, the climate‐driven data (rainfall, temperatures, and relative humidity) from the WRF‐Hydro
model are first assessed against the observation data. Then, the reliability and accuracy of simulated surface
water occurrence are evaluated against the observed data through Sentinel 1. Finally, we predict seasonal/
interannual variability in malaria vector mosquito populations that lead to variations in malaria transmission.

4.1. Seasonal Variation of Malaria Environmental Determinants

Figure 7 compares the simulated WRF‐Hydro at 1 km spatial resolution to two observed data sets (CHIRPS in
blue, local weather station in orange). The weekly WRF‐Hydro precipitation Figure 7a for the Nouna HDSS is
relatively close to that derived from CHIRPS and local weather station, with the mean coefficient of determi-
nation (R2) equal to 0.68 (Figure 7b). The R2 values betweenWRF‐Hydro and the two observed data sets (CHIRPs
and local weather station) are about 0.87 and 0.69 for mean temperature (Figure 7c) and 0.79 and 0.65 for
maximum temperature (Figure 7d) respectively, which indicates a good agreement between observed and

Figure 7. Nouna HDSS time series of weekly average rainfall for WRF‐Hydro, CHIRPS, and observed local weather station (a) between 2000 and 2020, (b) scatter plots
of simulated WRF‐Hydro versus observed (CHIRTS and local weather station) for minimum temperature, (c) for mean temperature, (d) for maximum temperature for
period 2000–2016, and (e) for relative humidity for 2020 only.
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simulated temperature (p‐values below 0.05). The model‐to‐observation Root mean square error of the annual
temperatures is fairly small, in the range of 0.5–1.9°C. Thus, it can be concluded that the rainfall and temperature
variations are well simulated by WRF‐Hydro and hence demonstrate the ability of the coupled atmosphere‐
hydrology modeling system to reproduce the hydrometeorological data relevant for modeling the transmission
dynamics of malaria incidence in the study domain (Figures 8 and 9). Note that no bias correction is applied to
climate inputs here because, in this study, model outputs from the simulation at 1 km spatial resolution were much
finer than the existing observational grids. In addition, gridded observations are insufficient to correct the very
high‐resolution model on daily time scales, as they overestimate low‐intensity precipitation due to spatial
averaging (Argüeso et al., 2013).

4.2. Surface Hydrology Evaluation

Figure 8 shows the agreement betweenWRF‐Hydro (Scheme S0), VECTRI (Schemes S1 and S2), and Sentinel‐1
surface water fraction for the years 2015–2020. The S0 simulation results demonstrate the influence of calibration
on water fraction estimation, WRF‐Hydro could simulate water fraction fairly well, with only a 4% difference in
measurements over Nouna after calibration. This finding lends credence to the hypothesis that, with knowledge of
the physically based factors that affect surface hydrology, WRF‐Hydro can potentially be employed to simulate
the formation and persistence of the breeding habitat of mosquito vector density. The two VECTRI surface
hydrology parameterization schemes (S1 and S2) can reproduce surface fractional water coverage with roughly
90% accuracy, except for S1 in September, which only matches 30% with Sentinel‐1 data. It is clear from these
experiments that the reason for this disparity is the different responses of the three different schemes to rainfall
patterns, land use, soil type, geology, vegetation, slope, and heterogeneity in water infiltration rates. For example,
2016 (calibration period) observed wet season precipitation totaled 147 mm in June, 194 mm in July, 288 mm in
August, and 78 mm in September with respectively 10 (June), 13 (July), 12 (August), and 4 (September) number
of wet days with rainfall of at least 1 mm. The WRF‐Hydro Scheme S0 simulation results demonstrate that the
variability in the daily water fraction follows trends in rainfall relating to its maximum rainfall period, intensity,
and frequency. We observed more fluctuations in S0 temporary water coverage (compared to S1 and S2) with
peaks in addition to dips in June, July, August, and September. Setting the maximum infiltration parameter fix for

Figure 8. Comparison of average water fraction betweenWRF‐Hydro (scheme S0), VECTRI (schemes S1 and S2) and Sentinel‐1 using pixels matches (in %) during the
rainy season from 2015 to 2020 (a). Weekly climatology of estimated precipitation (black line), water fraction (blue line: S0, cyan line: S1 and dark blue line: S2) (b).
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Figure 9. Time series comparison of weekly simulated larvae number (red line) and mosquitoes abundance (black line) for
schemes S0 (a), S1 (b), and S2 (c) in Nouna HDSS for the period 2015–2020.
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the wet season which depends on the local hydrology, soil type, and the water losses due to overflow resulted in
the S2 water fraction closest to observations (Asare, Tompkins, & Bomblies, 2016). Based on previous research
conducted in a Sahelian setting, approximately 90% of water loss is attributed to infiltration (Gianotti et al., 2009).
S0 shows the significance of representing the infiltration process in fractional water coverage evolution, espe-
cially for areas with flat terrains and soils with high clay content like Nouna (see Figure 5 and Supporting
Information S1).

4.3. Malaria Transmission Dynamics

Further, the nexus between temperatures (mean and DTR) and rainfall with water coverage, larvae number/
mosquito density, and EIR in terms of weekly/monthly variations are shown in Figures 9 and 10. The EIR
measures the number of infectious bites per person per unit of time. It includes the effects of vector dynamics such
as mosquito development, survival, feeding activity, and parasite development.

In a month with more consecutive wet days, a significant increase in mosquito densities immediately followed
(Figure 9). Both water coverage and mosquito density exhibit an upward trend beginning in July, reaching their
peak in August, and later declining to negligible levels from September onward. Several water pools serving as
mosquito breeding sites are mostly generated by rainfall during the rainy season. This allows mosquitoes to lay
their eggs, which later develop into adult mosquitoes if the pools are sustained for at least 14 days. Our fully
coupled model does keep the pools represented on the surface (Figure 8).

Seasonal temperature changes affect the larvae and mosquito seasonality, the highest larval density is recorded
when the temperature variability is lower. From June to September, the mean temperature decreases (with fewer
variations between the minimum and maximum), while the mosquito abundance per km2 increases with rainfall
and temperature (when temperatures range between 26 and 29°C and rainfall exceeds 10 mm/day). With
temperatures exceeding 30°C and rainfall below 3 mm/day, the vector density decrease reaches its minimum.
Indeed, Anopheles develops from a juvenile to an adult stage under optimum conditions of 28°C in around
14 days, whereas falciparum malaria symptoms appear between 7 and 15 days later depending on the host's
immunity (Depinay et al., 2004; Ermert et al., 2011; Laneri et al., 2010). In VECTRI‐simulated Scheme S1, the
water coverage and the mosquito density start just after the first recorded amount of rainfall, while with
VECTRI‐simulated Scheme S2 the mosquito density starts one to 2 weeks later. The density of larvae or
mosquitoes with S0 closely resembles that with S2. Most noticeable here is VECTRI model response to hy-
drological inputs, particularly between the conceptual model (S1 and S2) and detailed physical processes
model (S0).

We find that mosquitoes had their highest abundance in August with high biting activity of up to 20 bites per
person per day (Figures 10f–10h and 10j) and contrast with research findings of Dambach et al. (2018) in Nouna
HDSS. Dambach et al. (2018) conducted a negative binomial regression framework to statistically analyze the
host‐seeking activities of Anopheles species across hours, months, and villages. They observed differences in the
pattern of biting cycles between the early peak (around 25 bites) and late rainy season (10 bites). The findings here
again confirm a significant association between a rise in malaria risk in a given month and an increase in the total
accumulated rainfall (rainfall is high in the province Figures 10 and 11) during that month and the 2–3 months
preceding it. There were only minor rainfalls after End‐October, Anopheles activity stayed above 5 bites per
person per day until the end of the rainy season.

The monthly malaria incidence from 2015 to 2020 is shown in Figure 11, the model results are displayed as a set
of statistics showing the standardized anomalies of the predictive model against real outcomes from the data
(lower panel). In terms of month‐wise malaria cases, it becomes clear from Figure 11 (upper panel) that the
VECTRI model is sensitive to surface hydrology representation for the predicted number of cases. The overall
picture of VECTRI‐simulated seasonal malaria variability (lower panel) is similar to those reported. However, it's
worth noting a delay ranging from 2 weeks (VECTRI‐S0) to 1 month (VECTRI‐S1 and S2) before the observed
onset of the malaria season. Our study reveals that by leveraging knowledge of the direct interaction between
hydroclimatological processes and climate variability on malaria risk, we can accurately simulate malaria dy-
namics using a dynamical malaria transmission model system.
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Figure 10. Monthly variation of simulated climate ((a)–(d): rainfall, mean temperature, relative humidity, diurnal temperature range) and malaria parameters ((e)–(j):
mosquito density and EIR) from 2015 to 2020. Only the latter two parameters depend on the applied scheme, that is, WRF‐Hydro scheme S0, VECTRI‐simulated
schemes (S1 and S2).
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5. Discussion
The transmission force of malaria infection requires the interaction of environmental risk factors jointly with the
human host, the malaria parasite, and the Anopheles vector. Temperature, precipitation, and humidity are ex-
amples of environmental risk factors. However, another crucial environmental risk factor affecting malaria
transmission is the availability of temporary PW, essential for the vector mosquito larval habitats and develop-
ment (e.g., Bomblies et al., 2008; Getachew et al., 2020; Mwakalinga et al., 2018; Smith et al., 2013; Yamana
et al., 2016). The crucial points of our study are to investigate the sensitivity/performance of three different
surface hydrological approaches, aiming to quantitatively estimate the malaria vector larval habitats (i.e., the PW)
in combination with other climatic variables. The idea is to implement the physical processes involved in the
hydro‐climatic malaria transmission chain, following the study of Smith et al. (2020) in which the Lisflood
hydrological model (Van Der Knijff et al., 2010) was coupled with a malaria climate suitability model for Africa.
The authors highlighted the importance of moving forward to fine‐scale hydrological processes: (a) to determine
the availability of Anopheles breeding habitat, (b) to permit other physical processes, such as the larval flushing
effects of high‐velocity river flows, and (c) to depict vector habitats explicitly. In this contribution, our first
method (Scheme S0) is based on a coupled atmospheric‐ and terrestrial model system, with 1 km grid spacing for
the atmospheric and 100 m grid spacing for the hydrological part. The second method (Scheme S1) is derived
from simple (implicit) surface hydrological simulations (rainfall drives the puddle model). The third method
(Scheme S2) builds upon the concept of Scheme S1, incorporating additional detailed information regarding soil
texture and considering variables such as infiltration. Unlike Scheme S1, the evaporation rate in Scheme S2 is not
held constant. On the one side, depending on the hydrological used schemes, the model system consisting of
WRF‐Hydro and VECTRI can provide results comparable to previous malaria transmission studies. On the other
side, it documents the necessity of further efforts to build this capability. The performance of our joint hydro‐
climate‐malaria modeling is discussed in the following.

Figure 11. Boxplot of the annual malaria cases (upper panel). Values represent, from top to bottom, maximum, median, and
minimum. The low panel illustrates the seasonal transmission periods of monthly malaria cases across Nouna HDSS from
2015 to 2020 of observed cohort malaria data compared to simulated scheme S0, S1, and S2 anomalies.
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5.1. Joint WRF‐Hydro VECTRI Model Results and Its Limitations

We stress three points that explain the variation in results for the specific case in the Nouna HDSS area: (a) the
climate‐driven variability, (b) the prediction of PW, and (c) the malaria transmission intensity.

5.1.1. Climate‐Driven Variability

The WRF‐Hydro model outputs reflected the observed in‐situ climate data (rainfall, mean‐, minimum‐, and
maximum temperatures, as well as diurnal temperature range) reasonably well with minor exceptions (e.g., high
correlation coefficients with p‐values below 0.05). This proves the ability of the coupled atmosphere‐hydrology
modeling system to reproduce the hydrometeorological data consistent with findings from previous studies
(Naabil et al., 2017; Quenum et al., 2022; Z. Zhang et al., 2021). Our simulations revealed at least 40%–60%
(Figure 5 and Figure S3 in Supporting Information S1) of the research area might have served as a potential larval
habitat (temporary water coverage). Dambach et al. (2009) observed in Nouna up to 60% of the surface within the
500 m buffer covered with very high and high‐risk habitats. Our results are in line with the previous malaria
studies that related the amount and sub‐seasonal variability of rainfall to the increase of mosquito density through
the availability of anopheline mosquito breeding sites (Bomblies, 2012; Bomblies et al., 2008). Mosquito density
values decrease above a certain threshold (temperature above 30°C and rainfall less than 3 mm/day). Further,
modeling revealed that both minimum and maximum temperature ranges significantly affect the development of
the malaria parasite and its mosquito vector. Numerous research from tropical and semi‐tropical regions of the
world (Blanford et al., 2013; Mohammadkhani et al., 2016; Ouedraogo et al., 2018) studied the relationship
between temperature and malaria, and the findings are consistent with our study.

5.1.2. Prediction of Ponded Water

Regarding the surface hydrology scheme efficiencies, we can conclude that the WRF‐Hydro surface hydrology
scheme (S0) accurately reproduces the seasonal and intraseasonal changes in the surface water fraction (Figure 5)
ranging from 20% before calibration to 96% after calibration when compared to Sentinel‐1 data at 100‐m reso-
lution. The advantage of WRF‐Hydro compared with the existing S1 and S2 is that it improves the description of
lateral terrestrial water movement, which is not expressed in these standard models. According to earlier studies,
with the use of an appropriate calibration method, WRF‐hydro can simulate SM, estimate streamflow, and
identify associated flood events (Arnault et al., 2016; Givati et al., 2011; Yucel et al., 2015). We find the effects of
the different tested parameters on the spatio‐temporal evolution of fractional water coverage (Figure S2 in
Supporting Information S1). Meng et al. (2023) compared the performance of the developed lateral terrestrial
water schemes flow in Noah‐MP to improve SM representation. The findings show that maximum infiltration has
a considerable influence on volumetric SM, which in turn influences the depth of water inundation (Figures 8 and
9 and Figures S3 and S4 in Supporting Information S1). Suppose the soil infiltration rate is faster after the rain, it
minimizes any standing water, which in turn shortens the lifespan of mosquitoes to the extent that malaria
transmission does not occur. Following calibration, the model accurately reproduces the impact of rainfall
variability on simulated daily pond fraction (see Figure 4), facilitating the methodology's application across
different regions. For the cases studied here, it has been determined that in addition to rainfall, these three pa-
rameters (saturated hydraulic conductivity (Ksat), runoff partition parameter (REFKDT), and the overland
roughness (OVROUGHRTFAC)) have the most substantial impacts on the water fraction estimation process
(Figure S2 in Supporting Information S1). Those model parameters are surface runoff scaling parameters used in
the Noah‐MP model to limit the amount of runoff produced for a given volume of precipitation. This implies that
alterations or fluctuations in these parameters may exert a comparatively stronger influence on the predicted
levels of PW compared to other parameters examined. Givati et al. (2016) performed WRF‐Hydro model sim-
ulations to determine the potential added value for hydrometeorological predictions and flood forecasting, they
documented that REFKDT can significantly influence surface infiltration and partition of total runoff into surface
and subsurface runoff, where increasing REFKDT leads to a decrease in surface runoff (Niu et al., 2011). As
found in this study, the sensitivity of the infiltration processes to these three parameters was confirmed in the
results of Zhang et al. (2020). The fully coupled modeling approach potentially yields even more significant
improvements when complemented by timely and accurate maps of observed surface water (Remote sensing plus
in situ data). Accessing such information can be beneficial for mapping malaria risk and targeting disease control
interventions effectively. However, other studies recommended that current product methods may not be suitable
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for effectively mapping dynamic and frequently obscured aquatic habitats of mosquitoes, especially those con-
cealed by emergent vegetation (Hardy et al., 2019).

5.1.3. Malaria Transmission Intensity

We found that VECTRI is a suitable model for investigating malaria transmission with a stronger ability to
capture the levels of malaria endemicity. Our results prove that VECTRI model is sensitive to surface hydrology
representation for larvae density, vector abundance and EIR variables. The simulated malaria incidence range is
in agreement with the signs of the observations change (peak of malaria e.g. from June to September and the
decreasing malaria cases on time). Studies by Asare and Amekudzi (2017) in Ghana and Fall et al. (2022) in
Senegal using VECTRI yielded similar results. However, the current model tuning does not consider the intro-
duction of various vector control interventions (such as bednet use), leading to an earlier onset of malaria season
as shown in Figure 11. The decline in both clinical episodes and deaths due to malaria is primarily associated with
the expansion of vector‐control measures, such as insecticide‐treated bednets and indoor residual spraying
(Elmardi et al., 2021; Musiime et al., 2019; Sadoine et al., 2024). While tuning model parameters, we observed a
significant sensitivity of VECTRI schemes S1 and S2 to the parameter “wperm” (fraction of permanent water
bodies, see Equation 4), that is, setting “wperm” to 0.001 produces results that match the observed malaria cases
from January to May. This indicates that the parameter “wperm” plays a crucial role in influencing the model's
performance or predictions during this time frame. This might be a structural error in the model that requires
further attention beyond parameter adjustments. Further, certain modifications and improvements are required in
VECTRI. One potential solution could involve adjusting the permanent fraction to only impact a small fraction
nearby instead of the whole domain. On the other hand, the study proves that the VECTRI model effectively
reproduces the seasonal cycle of malaria cases in response to the rainy season, as highlighted by Tompkins and
Thomson (2018). Additional research on parameters contributing most to VECTRI output variability is required
to strengthen the knowledge base to reduce VECTRI output uncertainty, for example, as discussed by Parihar
et al. (2024). In 2021, the African Region was home to 95% of malaria cases and 96% of malaria deaths.
Approximately 80% of all malaria‐related deaths in the region were among children under 5 years old (WHO,
2023). An important future development of the VECTRI representation of malaria transmission is age‐specific to
supply much information about the force of infection and malaria burden in the population. Future research
should explore environmental changes, socioeconomic status, human activities such as farming, and population
movement and settlement (density) in the VECTRI model.

5.2. Uncertainty Around Reported Malaria Cases

As stated above, additional uncertainties arise from the reported cases (gaps between the healthcare facilities and
government statistics). This is attributed to a high bias and obscurity rate, particularly in SSA, due to out‐of‐
sample generalization over space and time, erroneous diagnosis, and under‐counting due to varying health‐
seeking behaviour and policy (e.g., Yamba et al. (2022)). Our major limitation in Nouna was the inability to
distinguish between true missing values and “no data reported” as the case from July–October 2019, when
personnel from the health sector were on strike (Sangaré et al., 2022), see Figure 11. Uncertainty in malaria case
estimates in SSA ranges from approximately 30%–50% of the total numbers reported in the high‐prevalence SSA
countries (Sullivan, 2010). The WHO Global Technical Strategy for Malaria aims to achieve a reduction of 90%
in both case incidence and malaria deaths by 2030 compared to the levels recorded in 2015. We have learned that
malaria is declining across SSA, frommillions to about half a million deaths a year in 2018 (WHO, 2018). Despite
these advances, persistent uncertainties are observed in the highest malaria burden regions and those expected to
experience the highest decline (e.g., Nkumama et al., 2017). These targets as well as the need for capital in-
vestment, and good knowledge about all malaria‐determining factors and methodologies require accurate sur-
veillance to lower the limited availability of high‐quality data that is up to date and will offer benefits for climate
change studies.

6. Conclusions and Future Prospects
The findings underscore the importance of specific hydrological input variables, particularly surface water, and
their interaction with climate factors in shaping the spread of malaria‐carrying mosquitoes. We highlight the
differences between conceptual and detailed physical process models in malaria hydrology. The calibration of the
WRF‐Hydro model at 100 m using field data was comparable to hydrological and entomological conditions using
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the VECTRI model. TheWRF‐Hydro and VECTRI model coupling effectively depicts distributed hydrology that
fosters suitable breeding habitats for Anopheles mosquitoes, accurately capturing observed population dynamics
across seasonal and interannual scales. Nonetheless, the analysis is subject to uncertainties stemming from
various sources, including the multitude of model parameters in both VECTRI and WRF‐Hydro. These pa-
rameters contribute to the complexity of the models and introduce uncertainties in the simulation outcomes.
Additionally, data limitations pose significant challenges, particularly concerning the availability of compre-
hensive data sets for validation purposes (short time series about malaria incidences, the high number of unre-
ported cases, and missing data for validation of PW). The model's performance could further be improved through
(a) enhancing the quality and quantity of epidemiological data (such as case numbers/EIR and vector control
interventions) gathered from extensive and prolonged surveys or programs, and (b) refining the modeling system
by (a) increasing the resolution of WRF‐Hydro beyond 100 m for better representation of water bodies, and (b)
integrating sensitivity analyses of VECTRI model input parameters to gain deeper understanding on their impacts
on the state variables, particularly concerning malaria disease transmission and prevalence.

Data Availability Statement
The 1 km WRF and WRF‐Hydro simulations (Dieng et al. (2024)) are available at Zenodo store via https://doi.
org/10.5281/zenodo.10868443. Technical information about HydroSHEDS data is available online at https://
www.hydrosheds.org/hydrosheds‐core‐downloads. The WRF‐Hydro preprocessing tool is available online at
https://ral.ucar.edu/projects/wrf_hydro/pre‐processing‐tools. The Malaria data used in this study are available
from the Centre de Recherche en Santé de Nouna (CRSN)'s Institutional Data Access/Ethics Committee for
researchers who meet the criteria for access to confidential data. The HDSS data can be accessed by contacting
sieali@yahoo.fr. Satellite‐based Sentinel‐1 data information and access can be found at https://sentinel.esa.int/
web/sentinel/sentinel‐data‐access.

The weather station data can be obtained by contacting the Burkina‐Faso National Meteorological Agency
(https://www.meteoburkina.bf/). Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS,
Funk et al. (2015)) information and data access can be obtained at https://www.chc.ucsb.edu/data/chirps. The
minimum and maximum CHIRTS‐daily temperatures can be downloaded from https://data.chc.ucsb.edu/prod-
ucts/CHIRTSdaily/v1.0/ (Funk et al., 2019). The gridded population density data sets can be accessed from
https://sedac.ciesin.columbia.edu/data/set/gpw‐v4‐population‐density‐rev11 (Doxsey‐Whitfield et al., 2015).
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