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Empowering deep neural quantum states 
through efficient optimization

Ao Chen      & Markus Heyl     

Computing the ground state of interacting quantum matter is a 
long-standing challenge, especially for complex two-dimensional 
systems. Recent developments have highlighted the potential of 
neural quantum states to solve the quantum many-body problem by 
encoding the many-body wavefunction into artificial neural networks. 
However, this method has faced the critical limitation that existing 
optimization algorithms are not suitable for training modern large-scale 
deep network architectures. Here, we introduce a minimum-step 
stochastic-reconfiguration optimization algorithm, which allows us to train 
deep neural quantum states with up to 106 parameters. We demonstrate 
our method for paradigmatic frustrated spin-1/2 models on square and 
triangular lattices, for which our trained deep networks approach machine 
precision and yield improved variational energies compared to existing 
results. Equipped with our optimization algorithm, we find numerical 
evidence for gapless quantum-spin-liquid phases in the considered models, 
an open question to date. We present a method that captures the emergent 
complexity in quantum many-body problems through the expressive power 
of large-scale artificial neural networks.

It has been an ever-persisting quest in condensed-matter and quantum 
many-body physics to capture the essence of quantum many-body 
systems that is covered behind their exponential complexity. Although 
many numerical methods have been developed to access the quan-
tum many-body problem with strong interactions, it still remains an 
extraordinary challenge to obtain accurate ground-state solutions, 
especially for complex and large two-dimensional systems. The respec-
tive challenges depend on the method utilized, such as the ‘curse of 
dimensionality’ in exact diagonalization1, the notorious sign problem2 
in quantum Monte Carlo approaches3 or the growth of entanglement 
and matrix contraction complexity in tensor network methods4. One of 
the paradigmatic instances of such complex two-dimensional quantum 
matter is the putative quantum-spin-liquid (QSL) phase in frustrated 
magnets5. Although a large variety of different numerical methods have 
been applied, the nature of many of the presumed QSLs still remains 
debated, such as the prototypical frustrated Heisenberg J1–J2 magnets 
on square6–12 or triangular lattices13–22.

Recently, neural quantum states (NQSs) have been introduced 
as a promising alternative for solving the quantum many-body prob-
lem by means of artificial neural networks23. This approach has already 
seen tremendous progress for QSLs24–26. However, this method also 
faces an outstanding challenge critically limiting its capabilities and 
its potential to date. Due to the rugged quantum landscape27 with 
many saddle points, it is typically necessary to utilize stochastic 
reconfiguration (SR)28 in the optimization. SR is a quantum generali-
zation of natural gradient descent29 and has a 𝒪𝒪𝒪N3

p) complexity for a 
network with Np parameters, which impedes the training of deep 
networks. Consequently, the current applications of NQS mainly 
focus on shallow networks, such as a restricted Boltzmann machine 
(RBM)23,30 or shallow convolutional neural networks (CNNs)25,31 with 
no more than ten layers and around 103 parameters. Many efforts have 
been made to overcome the optimization difficulty in deep NQS based 
on either iterative solvers23, approximate optimizers32–36 or large-scale 
supercomputers37,38. However, the cost of SR still represents the key 
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major difficulty when optimizing deep NQSs with large Np. To reduce 
the cost of SR, we focus on a specific optimization case of a deep net-
work with a large number of parameters Np but a relatively small amount 
of batch samples Ns, as occurs in most deep learning research. In this 
case, as shown in Fig. 1b, the rank of the Np × Np matrix S is at most Ns, 
meaning that S contains much less information than its capacity. As a 
more efficient way to express the information of the quantum metric, 

we introduce the neural tangent kernel T = OO
†
 (ref. 41), which has the 

same non-zero eigenvalues as S but the matrix size reduces from Np × Np 
to Ns × Ns.

As derived in Methods, we propose a new method termed MinSR 
using T as the compressed matrix,

δθ = O
†
T−1ϵ withT = OO

†
, (3)

which is mathematically equivalent to the traditional SR solution but 
only has 𝒪𝒪𝒪NpN2

s + N3
s ) complexity. For large Np, it provides a tremen-

dous acceleration with a time cost proportional to Np instead of N3
p. 

Therefore, it can be viewed as a natural reformulation of traditional 
SR, which is particularly useful in the limit Np ≫ Ns, as relevant in deep 
learning situations. For a performance comparison, Extended Data 
Fig. 1 shows the time cost and accuracy of different optimization 
methods.

Benchmark models
To demonstrate the exceptional performance of MinSR, we consider 
in the following the paradigmatic spin-1/2 Heisenberg J1-J2 model on a 
square lattice. This choice serves two purposes. On the one hand, this 
model serves as a standard benchmark system in various NQS stud-
ies and provides a convenient comparison to other state-of-the-art 
methods. On the other hand, it represents a paradigmatic reference 
case of QSLs in frustrated magnets, as an outstanding question regard-
ing the nature of the QSL phase is whether it is gapped or gapless. The 
Hamiltonian of the system is given by

ℋ = J1 ∑
⟨i, j⟩

Si ⋅ S j + J2 ∑
⟨⟨i, j⟩⟩

Si ⋅ S j, (4)

where Si = 𝒪Sxi , S
y
i , S

z
i ) with Sxi , S

y
i , S

z
i  spin-1/2 operators at site i, ⟨i, j⟩ and 

⟨⟨i, j⟩⟩ indicate pairs of nearest-neighbour and next-nearest-neighbour 
sites, respectively, and J1 is chosen to be equal to 1 for simplicity in  
this work.

We will specifically focus on two points in the parameter 
space: J2/J1 = 0 and J2/J1 = 1/2. At J2/J1 = 0, the Hamiltonian reduces to 
the non-frustrated Heisenberg model. At J2/J1 = 1/2, the J1-J2 model  
becomes strongly frustrated close to the maximally frustrated point 
where the system resides in a QSL phase24, which imposes a great chal-
lenge for existing numerical methods, including NQS31,42. Two differ-
ent designs of residual neural networks (ResNet), whose details we 
describe in Methods, will be employed for variationally learning the 
ground states of these benchmark models. A direct comparison with 
exact diagonalization results for the 6 × 6 square lattice can be found in 
Extended Data Fig. 2, which shows that our network can even approach 
machine precision on modern GPU and TPU hardware.

For a non-frustrated Heisenberg model of a 10 × 10 square lattice, 
a deep NQS trained by MinSR provides an unprecedentedly precise 
result that is better than all existing variational methods, as shown 
in Fig. 2a. The adopted reference ground-state energy per site is 
EGS/N = −0.67155267(5), as given by a simulation based on a stochastic 
series expansion43 performed by ourselves, instead of the commonly 
used reference E/N = −0.671549(4) from ref. 44 because our best NQS 
variational energy E/N = −0.67155260(3) provides even better accuracy 
compared to this common reference energy. Thanks to the deep net-
work architecture and the efficient MinSR method, the relative error of 
the variational energy ϵrel = (E − EGS)/∣EGS∣ drops much faster than for the 

limitation in increasing the network size and, thereby, fully material-
izing the exceptional power of artificial neural networks for outstand-
ing physics problems.

In this work, we introduce an alternative training algorithm for 
NQS, which we term the minimum-step stochastic reconfiguration 
(MinSR). We show that the optimization cost in MinSR is reduced 
massively while it remains as accurate as SR. Concretely, the train-
ing cost of MinSR is only linear in Np, which represents an enormous 
acceleration compared to SR. This, in turn, allows us to push the NQS 
towards the deep era by training deep networks with up to 64 layers 
and 106 parameters. We apply our resulting algorithm to paradigmatic 
two-dimensional quantum spin systems, such as the spin-1/2 Heisen-
berg J1–J2 model, both to demonstrate the resulting accuracies for 
large system sizes beyond what is achievable with other computational 
methods and to address an outstanding question relating to the gaps 
in the model’s QSL phases.

Results
Minimum-step stochastic reconfiguration
In the NQS approach, a neural network is utilized to encode and com-
press the many-body wavefunction. In a system with N spin-1/2 degrees 
of freedom, the Hilbert space can be spanned by the Sz spin configura-
tion basis |σ⟩ = |σ1,… ,σN⟩  with σi = ↑ or ↓. An NQS with parameters θ 
maps every σ at the input to a wavefunction component ψθ,σ at the 
output23, as shown in Fig. 1a. The full quantum state is then given by 
the superposition |Ψθ⟩ = ∑σψθ,σ |σ⟩. When searching for ground states 
based on a variational Monte Carlo method (VMC), θ is optimized to 
minimize the variational energy Eθ = ⟨Ψθ|ℋ |Ψθ⟩ / ⟨Ψθ|Ψθ⟩.

The standard numerical approach for finding the minimal varia-
tional energy for NQS is SR. This is done by approximately implement-
ing imaginary-time evolution. Thus, as the training progresses, the 
contributions from eigenstates with higher energies are systematically 
reduced, thereby pushing the state towards the ground state step by 
step. In every training step, this requires minimizing the quantum 
distance d between the new variational state |Ψθ+δθ⟩  and the exact 
imaginary-time evolved state e−ℋδτ |Ψθ⟩, where δτ is the imaginary-time 
interval.

As proven in the Supplementary Information, the quantum dis-
tance d can be estimated for a group of samples σ with Pσ ∝ ∣ψσ∣2 as 

d 2 = ∑σ
||∑kOσkδθk − ϵσ||

2
, where ∑σ is performed on spin configurations 

in samples. We adopt the following notation: Oσk = 𝒪Oσk − ⟨Oσk⟩)/√Ns  

with Oσk =
1
ψσ

∂ψσ
∂θk

, and ϵσ = −δτ (Eloc,σ − ⟨Eloc,σ⟩) /√Ns with local energy 

Eloc,σ = ∑σ′
ψσ′
ψσ
Hσσ′, where Ns is the number of samples and ⟨…⟩ repre-

sents the mean value over the given set of samples.
Thus, the quantum distance d can be rewritten as d = ||Oδθ − ϵ|| 

if we treat δθ and ϵ  as vectors and O  as a matrix. As a key consequence, 
we introduce a new linear equation

Oδθ = ϵ, (1)

whose least-squares solution minimizes the quantum distance d 
and leads to the SR equation. Conceptually, one can understand the 
left-hand side of this equation as the change of the variational state 
induced by an optimization step of the parameters, and the right-hand 
side as the change of the exact imaginary-time evolving state. The tra-
ditional SR solution minimizing their difference is

δθ = S−1O
†
ϵ with S = O

†
O. (2)

As illustrated in Fig. 1a, the matrix S in equation (2) plays an impor-
tant role as the quantum metric in VMC29,39,40, which links the variations 
in the Hilbert space and the parameter space. However, inverting the 
matrix S, which has Np × Np elements, has 𝒪𝒪𝒪N3

p) complexity, and this a 
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one-layer RBM as Np increases and finally reaches a level of 10−7, greatly 
outperforming existing results.

To attain the next level of complexity, we will now focus on the 
frustrated J1–J2 model, whose accurate ground-state solution has 
remained a key challenge for all available computational approaches. 
Figure 2b shows that, for a 10 × 10 square lattice, our method based 
on MinSR allows us to reach ground-state energies below what is 
possible with any other numerical scheme so far. In this context, 
the Marshall sign rule (MSR) limit shows the energy one can obtain 
without considering any frustration. As shown in the figure, the use 
of deep NQS becomes absolutely crucial as the shallow CNN is not 
guaranteed to beat the MSR limit. Most importantly, the variational 
energy we obtained was reduced upon increasing the network size 
for both networks trained by MinSR. We finally trained unprecedent-
edly large networks with 64 convolutional layers in ResNet1 and 
more than one million parameters in ResNet2, to attain the best vari-
ational energy E/N = −0.4976921(4), which outperforms all existing 
numerical results. The extraordinary variational outcomes allow us 

to accurately estimate the ground-state energy EGS/N = −0.497715(9) 
by zero-variance extrapolation, as described in Methods. Compared 
with the previous best result24, ϵrel in our biggest network is around 
4 times lower, suggesting that our deep NQS result is substantially 
more accurate. From this, we conclude that the deep NQS trained by 
MinSR is superior even in the frustrated case, which was argued to 
be challenging for NQS on a general level45. The variational energies 
of different methods in this prototypical model are summarized in 
Extended Data Table 1.

Finally, we aim to provide evidence that our approach still exhibits 
advantageous performance compared to other computational meth-
ods upon further increasing the system size. Figure 2c presents the 
variational energy obtained for a 16 × 16 square lattice and compares 
the results with existing results in the literature. One can clearly see that 
our approach yields the best variational energy E/N = −0.4967163(8) 
for the frustrated J1-J2 model on such a large lattice. Compared with 
the best existing variational result given in ref. 37, ϵrel in this work is  
still 2.5 × 10−4 lower. In summary, the deep NQS trained by MinSR provides 
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Fig. 1 | Illustration of NQS and MinSR. a, In the NQS approach, an artificial neural 
network is used to represent a quantum many-body state. A change of the 
network parameters for the NQS leads to a new quantum state, whose distance to 
the previous NQS is given by the quantum metric S ∈ ℂNp×Np, where Np is the 

number of variational parameters. b, The quantum metric S = O
†
O  can be 

decomposed into a smaller matrix O ∈ ℂNs×Np with Ns ≪ Np the number of  

Monte Carlo samples. The optimization of an NQS involves the inversion of  
the quantum metric S, which is equivalent to determining its non-zero 
eigenvalues λi with i = 1, …, Ns. In MinSR, a neural tangent kernel 

T = OO
†
∈ ℂNs×NS is introduced with identical eigenvalues λi and, therefore,  

the essential information of S.
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results for large frustrated models that are not only on a par with other 
state-of-the-art methods but can substantially outperform them.

Energy gaps of a QSL
Although so far we have focused on demonstrating the exceptional per-
formance of the MinSR method, we now take the next step by addressing 
an outstanding physical question regarding the J1-J2 Heisenberg model 
considered. Concretely, we utilize the combination of the deep NQS and 
MinSR to study the gaps for two famous QSL candidates in the J1-J2 model 
on a square lattice and on a triangular lattice. In these systems, several 
works in the literature6–22 have shown the existence of QSL phases, 
although the energy gaps in the thermodynamic limit, especially for the 
triangular lattice, still remain debated. Figure 3 present an extrapolation 

of the energy gaps between states with total spin S = 0 and S = 1 to the 
thermodynamic limit within the most frustrated regime in which 
QSL candidates reside. As explained in Extended Data Figs. 3 and 4,  
the energy is estimated by NQS trained by MinSR with a Lanczos step 
and zero-variance extrapolation to increase accuracy. In the Supple-
mentary Information, we provide the spin and dimer structure factors 
to support the existence of a QSL phase on the triangular lattice and 
compare gap estimates with and without zero-variance extrapolation.

On the square lattice, the gaps are measured in the total spin S = 1 
sector and momentum k = (π, π) (M-point) at the most frustrated point 
J2/J1 = 0.5 for different system sizes, including 6 × 6, 8 × 8, 10 × 10, 12 × 12, 
16 × 16 and 20 × 20. As shown by the small fitting error in Fig. 3 with 
Δ = a + b/L + c/L2, the vanishing gap Δ = 0.00(3) in the thermodynamic 
limit provides an unprecedented precision and is so far the most accu-
rate extrapolation at this most frustrated point. In addition to the 
direct extrapolation of the energy gap Δ, we support our finding of a 
vanishing gap in the inset of Fig. 3, which display Δ × L as a function of  
1/L (ref. 24). Although a finite gap would imply a divergent Δ × L, we 
observe a constant value, further corroborating our conclusion of a gap-
less phase in the thermodynamic limit. Combined with the large lattice 
sizes used, this result shows strong evidence of gapless QSLs as suggested 
by refs. 10–12,24 in contrast to the conclusion of the gapped QSLs in ref. 6.

The triangular J1–J2 model has even stronger frustration compared 
to the square one, leading to larger variational errors in different meth-
ods and more controversy regarding the nature of the QSLs. To target 
the QSLs in this model, we also studied the most frustrated point at 
J2/J1 = 0.125. The gaps were measured for the S = 1 and k = (4π/3, 0) state 
on lattices 6 × 6, 6 × 9, 12 × 12 and 18 × 18 for the triangular lattice. Due 
to the larger variational error on the triangular lattice compared to the 
square case, a linear fitting Δ = a + b/L was utilized instead of the quad-
ratic one to prevent overfitting. For a lattice with unequal extents Lx 

and Ly in different dimensions, L is defined as √LxLy. Our data matches 

well with the linear relation Δ ∝ 1/L as expected for Dirac spin liquids, 
and the vanishing gap at the thermodynamic limit is Δ = −0.05(6). 
Furthermore, we also performed an extrapolation of Δ × L (inset of 
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Fig. 3). We found a finite Δ × L upon increasing the system size L, indicat-
ing a vanishing gap in the thermodynamic limit. We take these results 
as strong numerical evidence suggesting the existence of a gapless QSL 
as also indicated in refs. 13,16,20,22 instead of a gapped QSL in  
refs. 14,15,21. Consequently, these numerical results demonstrate the 
exceptional computational power of the MinSR method applied to NQS 
wavefunctions, especially for the challenging regime of frustrated 
quantum magnets in two dimensions.

Discussion
To date, there have been tremendous efforts in solving quantum 
many-body problems in two major directions, studying the simpli-
fied Hilbert space given by specific physical backgrounds on classical 
computers and traversing the full Hilbert space on quantum computers. 
In this work, we present another promising approach that is supported 
by deep NQSs. This method allows us to approximate the complexity 
of quantum many-body problems through the emergent expressive 
power of large-scale neural networks.

For the future, we envision promising research directions, for 
instance, studying fermionic systems including the celebrated Hub-
bard model46,47 or ab initio quantum chemistry48, in which the tra-
ditional methods have limited accuracy, especially in the strongly 
interacting regime. Moreover, it is key to point out that the MinSR 
method is not at all restricted to NQS. As a general optimization 
method in VMC, it can also be applied to other variational wavefunc-
tions, like tensor networks, so that a more complex ansatz can be 
introduced in these conventional methods to enhance the expres-
sivity. It will also be of great importance to exploit the expressive 
power of large-scale variational wavefunctions through a suit-
able design that would lower the computational cost and increase  
the accuracy.

We can further envision the application of MinSR beyond the 
scope of physics for general machine learning tasks, if a suitable space 
for optimization like the Hilbert space in physics can be defined for 
which we can construct an equation like equation (1). In reinforcement 
learning tasks, for instance, obtaining gradients from the action in the 
environment is usually the most time-consuming part of the training, 
so a MinSR-like natural policy gradient49 can provide more accurate 
optimization directions without substantially increased time cost 
and greatly improve the training efficiency, even for very deep neural 
networks. Recently, a method inspired by MinSR has already found 
applications in general machine learning tasks50.
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Methods
Derivation of the MinSR equation
MinSR was derived based on the observation that equation (1) is under-
determined when Ns < Np. To obtain a unique δθ solution, we employed 
the least-squares minimum-norm condition, which is widely used for 
underdetermined linear equations. To be specific, we chose, among 
all solutions with minimum residual error ||Oδθ − ϵ|| , the one minimiz-
ing the norm of the variational step ∣∣δθ∣∣, which helps to reduce 
higher-order effects, prevent overfitting and improve stability. We 
called this method MinSR due to the additional minimum-step condi-
tion. In this section, we adopt two different approaches, namely the 
Lagrangian multiplier method and the pseudo-inverse method, to 
derive the MinSR formula in equation (3).

Lagrangian multiplier. The MinSR solution can be derived by minimiz-
ing the variational step ∑k∣δθk∣2 under the constraint of minimum 
residual error ∑σ|∑kOσkδθk − ϵσ|2. To begin, we assume that the mini-
mum residual error is 0, which can always be achieved by letting Ns < Np 
and assuming a typical situation in VMC that Oσk  values obtained by 
different samples are linearly independent. This leads to constraints 
∑kOσkδθk − ϵσ = 0 for each σ. The Lagrange function is then given by

ℒ𝒪{δθk}, {ασ}) = ∑
k
|δθk|2 − [∑

σ
α∗σ∑

k
𝒪Oσkδθk − ϵσ) + h.c.] , (5)

where ασ is the Lagrangian multiplier. Written in matrix form, the 
Lagrangian function becomes

ℒ𝒪δθ,α) = δθ†δθ − α†𝒪Oδθ − ϵ ) − 𝒪δθ†O
†
− ϵ†)α. (6)

From ∂ℒ/∂𝒪δθ†) = 0, one obtains

δθ = O
†
α. (7)

Putting equation (7) back into Oδθ = ϵ , one can solve α as

α = 𝒪O O
†
) −1 ϵ. (8)

Combining equation (8) with equation (7), one obtains the final  
solution as

δθ = O
†
𝒪O O

†
) −1 ϵ, (9)

which is the MinSR formula in equation (3). A similar derivation also 
applies when O,δθ and ϵ  are all real.

In our simulations, the residual error is non-zero, which differs from 
our previous assumption. This is because the inverse in equation (9)  
is replaced by a pseudo-inverse with finite truncation to stabilize the 
solution in the numerical experiments.

Pseudo-inverse. To simplify the notation, we use A = O, x = δθ  and 
b = ϵ . We will prove that for a linear equation Ax = b,

x = A−1b = 𝒪A†A)−1A†b = A†𝒪AA†)−1b (10)

is the least-squares minimum-norm solution, where the matrix inverse 
is pseudo-inverse.

First, we prove x = A−1b is the solution we need. The singular value 
decomposition of A gives

A = UΣV †, (11)

where U and V are unitary matrices, and Σ is a diagonal matrix with 
σi = Σii = 0 if and only if i > r with r the rank of A. The least-squares  
solution is given by minimizing

||Ax − b|| 2 = ||UΣV †x − b||2

= ||Σx′ − b′||2

=
r
∑
i=1

(σix′i − b
′
i)

2
+

Ns
∑
i=r+1

b′2i ,

(12)

where x′ = V †x , b′ = U †b  and Ns is the dimension of b, and the  
second step is because applying a unitary matrix does not change the 
norm of a vector. Therefore, all the least-squares solutions take  
the form

x′i = {
b′i/σi, i ≤ r,

any value, i > r.
(13)

Among all these possible solutions, the one that minimizes  
||x|| = ||x′|| is

x′i = {
b′i/σi, i ≤ r,

0, i > r.
(14)

With the following definition of a pseudo-inverse

A−1 = VΣ+U †,

Σ
+
ij = δij × {

1/σi, σi > 0,

0, σi = 0,

(15)

we have x′ = Σ
+b′, so the final solution is

x = Vx′ = VΣ+U †b = A−1b. (16)

Furthermore, we show the following equality

A−1 = 𝒪A†A)−1A† = A†𝒪AA†)−1. (17)

With the singular value decomposition of A in equation (11),  
equation (17) can be directly proved by

𝒪A†A)−1A† = 𝒪VΣU †UΣV †)−1VΣU †

= V𝒪Σ+)2V †VΣU †

= VΣ+U †

= A−1,

(18)

and

A†𝒪AA†)−1 = VΣU †𝒪UΣV †VΣU †)−1

= VΣU †U𝒪Σ+)2U †

= VΣ+U †

= A−1.

(19)

In the derivation, the shapes of diagonal matrices Σ and Σ+ are not  
fixed but assumed to match their neighbour matrices to make the 
matrix multiplication valid.

Equation (17) shows that the SR solution in equation (2) and MinSR 
solution in equation (3) are both equivalent to the pseudo-inverse 
solution δθ = O

−1
ϵ , which justifies MinSR as a natural alternative to SR 

when Ns < Np.
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MinSR solution
Numerical solution. In this section, we focus on how to solve the MinSR 
equation numerically:

δθ = O
†
T−1ϵ. (20)

The whole computation, starting from T = OO
†

, should be executed 
under double-precision arithmetic to ensure that small eigenvalues 
are reliable.

Then a suitable pseudo-inverse should be applied to obtain a stable 
solution. In practice, the Hermitian matrix T is first diagonalized as 
T = UDU†, and the pseudo-inverse is given by

T−1 = UD+U †, (21)

where D+ is the pseudo-inverse of the diagonal matrix D, numerically 
given by a cutoff below which the eigenvalues are regarded as 0, that is

λ+i = {
1/λi, |λi| ≥ rpinv|λmax| + apinv,

0, |λi| < rpinv|λmax| + apinv,
(22)

where λi and λ+i  are the diagonal elements of D and D+, λmax is the largest 
value among λi, and rpinv and apinv are the relative and absolute 
pseudo-inverse cutoffs. In most cases, we choose rpinv = 10−12 and 
apinv = 0. Furthermore, we modify the aforementioned direct cutoff to 
a soft one52:

λ+i = [λi (1 + (
rpinv|λmax| + apinv

|λi|
)
6

)]
−1

(23)

to avoid abrupt changes when the eigenvalues cross the cutoff during 
optimization.

Complex neural networks. Our original MinSR formula equation (3) 
can be applied when the network is real or complex holomorphic. In 
our ResNet2 architecture, however, the neural network parameters are 
real but the network outputs can be complex, in which case  
equation (3) cannot be directly applied. For other non-holomorphic 
networks, a complex parameter can be taken as two independent real 
parameters but this problem still occurs. To obtain the MinSR 
equation in these special cases, notice that the quantum distance d 
between |Ψθ+δθ⟩ and eiℋδτ |Ψθ⟩ can be reformulated as

d 2 = ||Oδθ − ϵ||2

= ||Re𝒪O)δθ − Re𝒪 ϵ )||2 + || Im𝒪O)δθ − Im𝒪 ϵ )||2,
(24)

assuming O  and ϵ  are complex while δθ is real. By defining

O
′
= (

ReO

ImO
) , ϵ

′ = (
Re ϵ

Im ϵ
) , (25)

one can rewrite the quantum distance again as d 2 = ||O
′
δθ − ϵ ′||2  with 

all entities real. The MinSR solution, in this case, is similarly given by

δθ = O
′†
T′−1ϵ withT′ = O

′
O

′†
. (26)

Similar arguments can also provide the SR equation in the 
non-holomorphic case as

δθ = S ′−1F ′

with S ′ = O
′†
O

′
= Re S, F′ = O

′†
ϵ
′ = Re F,

(27)

where S = O
†
O  and F = O

†
ϵ  are the same as for the ordinary SR  

solution. This solution agrees with the widely used non-holomorphic 
SR solution53.

Neural quantum states
In this work, we adopt two different designs of ResNets. Several  
techniques are also applied to reduce the error.

ResNet1. The first architecture, as suggested in ref. 54, has two convo-
lutional layers in each residual block, each given by a layer normalization, 
a ReLU activation function and a convolutional layer sequentially. All the 
convolutional layers are real-valued with the same number of channels 
and kernel size. After the forward pass through all residual blocks, a final 
activation function f𝒪x) = cosh x 𝒪x > 0), 2 − cosh x 𝒪x < 0)  is applied, 
which resembles the cosh𝒪x)  activation in RBM but can also give  
negative outputs so that the whole network is able to express sign struc-
tures while still being real-valued. In the non-frustrated case, ∣f(x)∣ is used 
as the final activation function to make all outputs positive. After the 
final activation function, the outputs vi are used to compute the wave-
function as ψnet

σ =∏i𝒪vi/t), where t is a rescaling factor updated in every 
training step. t is used to prevent a data overflow after the product.

ResNet2. The second design of ResNet basically follows ref. 26. In this 
architecture, the residual blocks are the same as ResNet1 but the nor-
malization layers are removed. In the last layer, two different kinds of 
activations can be applied. For real-valued wavefunctions, we chose 
f𝒪x) = sinh𝒪x) + 1. For complex-valued wavefunctions, we split all chan-

nels in the last layer into two groups and employ f𝒪x1, x2) = exp𝒪x1 + ix2). 
A rescaling factor t is also inserted in suitable places in f to prevent an 
overflow.

Finally, a sum is performed to obtain the wavefunction. Consider-
ing the possible non-zero momentum q, the wavefunction is given by

ψnet
σ = ∑

i
e−iq⋅ri ∑

c
vc,i, (28)

where vc,i is the last-layer neuron at channel c and site i, and ri is the 
real-space position of site i. This definition ensures that the whole NQS 
has a momentum q.

In summary, ResNet1 performs better when one applies transfer 
learning from a small lattice to a larger one, but ResNet2, in general, 
has better accuracy and stability. Moreover, ResNet2 allows one to 
implement non-zero momentum, which is key to finding low-lying 
excited states.

Sign structure. On top of the raw output from the neural network ψnet
σ , 

the MSR55 is applied to wavefunctions on a square lattice, which serves 
as the exact sign structure for the non-frustrated Heisenberg model 
but is still the approximate sign structure in the frustrated region 
around J2/J1 ≈ 0.5. The sign structure representing the 120° magnetic 
order is also applied for the triangular lattice. Although these sign 
structures are additional physical inputs for specific models, the gen-
erality is not reduced because it has been shown that simple sign struc-
tures such as MSR can be exactly solved by an additional sign 
network56,57.

Symmetry. Symmetry plays an important role in improving the  
accuracy and finding low-lying excited states for NQS30,58. In this  
work, we apply symmetry on top of the well-trained ψnet

σ  to  
project variational states onto suitable symmetry sectors. Assuming 
the system permits a symmetry group of order ∣G∣ represented by 
operators Ti with characters ωi, the symmetrized wavefunction is then 
defined as30,59

ψsymm
σ = 1

|G| ∑i
ω−1
i ψ

net
Tiσ
. (29)

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-024-02566-1

With translation symmetry already enforced by the CNN architecture, 
the remaining symmetries applied by equation (29) are the point group 
symmetry, which is C4v for the square lattice and D6 for the triangular 
lattice, and the spin inversion symmetry σ → −σ (refs. 60–64).

Zero-variance extrapolation
The variational wavefunction provides an inexact estimate of the 
ground-state energy due to the variational error. Fortunately, in VMC 
one can compute the energy variance

σ2 = ⟨ℋ2⟩ − ⟨ℋ⟩2 (30)

as an estimate of the variational error. Hence, an extrapolation to zero 
energy variance gives a better estimate of the ground-state energy65,66, 
which has been successfully applied to NQS in refs. 30,37. In the fol-
lowing, we adopt the derivation in ref. 66 to show how to perform the 
extrapolation.

Assuming the normalized variational state |ψ⟩ deviates only slightly 
from the exact ground state ||ψg⟩, one can express it as

|ψ⟩ = √1 − λ2 ||ψg⟩ + λ |ψe⟩ , (31)

where |ψe⟩ represents the error in the variational state orthogonal to  
the ground state and λ is a small positive number indicating the  
error strength. Denoting Eg = ⟨ψg|ℋ|ψg⟩ ,  Ee = ⟨ψe|ℋ|ψe⟩  and 
⟨ℋ2⟩e = ⟨ψe|ℋ2|ψe⟩, one can express the variational energy as

E = ⟨ψ|ℋ|ψ⟩ = Eg + λ2𝒪Ee − Eg). (32)

Similarly, the energy variance can be written as

σ2 = λ2 (⟨ℋ2⟩e − 2EgEe + E 2
g ) + 𝒪𝒪𝒪λ4). (33)

If the error state |ψe⟩ does not change substantially in different training 
attempts, there is a linear relation

𝒪E − Eg) ∝ σ 2 (34)

for small λ, so a linear extrapolation to σ2 = 0 gives E = Eg.
As shown in Extended Data Fig. 3, the ratio (E − Eg)/σ2 also remains 

nearly unchanged for different lattice sizes and symmetry sectors. 
This empirical conclusion is adopted to estimate the ratio in the large 
lattice from smaller ones so as to reduce the error and the time cost.

Lanczos step. The Lanczos step is a popular method in VMC for improv-
ing the variational accuracy67. It is also used in NQS26,38.

The key idea of a Lanczos step is to construct new states ||ψp⟩ 
orthogonal to the well-trained variational wavefunction |ψ0⟩ and to 
minimize the energy of the new state formed by a linear combination 
of |ψ0⟩ and ||ψp⟩. The new energy is then guaranteed to be lower than  
the initial energy.

Only one Lanczos step is applied in this work, so we have one state 
|ψ1⟩ satisfying ⟨ψ0|ψ1⟩ = 0 given by

|ψ1⟩ =
ℋ − E0
σ |ψ0⟩ , (35)

where E0 = ⟨ψ0|ℋ|ψ0⟩ and σ 2 = ⟨ψ0|ℋ2|ψ0⟩ − E 2
0. The linear combination 

of |ψ0⟩ and |ψ1⟩ can be written as

|ψα⟩ = |ψ0⟩ + α |ψ1⟩ , (36)

whose energy is

Eα = E0 +
⟨ψα| 𝒪ℋ − E0) |ψα⟩

⟨ψα|ψα⟩
= E0 + σ

α2μ3 + 2α
α2 + 1

, (37)

where

μn =
⟨ψ0| 𝒪ℋ − E0)

n |ψ0⟩
σn . (38)

The minimal energy is achieved at

α∗ =
μ3 −√μ23 + 4

2 , (39)

and the lowest energy is

Eα∗ = E0 + σ
α2∗μ3 + 2α∗
α2∗ + 1

= E0 + σα∗. (40)

Initial guess of α. A direct way to compute μn is by measuring suitable 
quantities as expectation values of the initial state |ψ0⟩. However, the 
measurement becomes more accurate if it is performed with a state 
||ψα0 ⟩ closer to the ground state67.

In this paper, we estimate the suitable α0 to obtain a ||ψα0 ⟩ closer to 
the true ground state compared to |ψ0⟩. Then, from equation (37),  
one can compute μ3 as

μ3 =
(α20 + 1) (Eα0 − E0) /σ − 2α0

α20
, (41)

where Eα0 can be measured by Monte Carlo sampling. The optimal α* 
can be derived from μ3 by equation (39), and the lowest energy is then 
given by equation (40).

Energy variance. To compute the energy variance of |ψα⟩, we start with 
an intermediate quantity

vα =
⟨ψα| 𝒪ℋ − E0)

2 |ψα⟩
σ 2 ⟨ψα|ψα⟩

= α2μ4 + 2αμ3 + 1
α2 + 1

. (42)

Like the previous case, one can measure vα0 by Monte Carlo sampling 
and determine μ4 as

μ4 =
(α20 + 1) vα0 − 2α0μ3 − 1

α20
. (43)

Then vα∗ can be computed given μ3 and μ4, which gives the required 
energy variance as

σ2α∗ =
⟨ψα∗ || (ℋ − Eα∗ )

2 ||ψα∗ ⟩
⟨ψα∗ |ψα∗ ⟩

= σ2vα∗ − (E0 − Eα∗ )
2. (44)

Data availability
This research does not rely on any external datasets. The data shown in 
Figs. 2 and 3 and the obtained neural network weights are available via 
Zenodo at https://zenodo.org/doi/10.5281/zenodo.7657551 (ref. 68).

Code availability
We provide the code needed to reproduce our main results via Zenodo 
at https://zenodo.org/doi/10.5281/zenodo.7657551 (ref.68) and via 
GitHub at https://github.com/ChenAo-Phys/MinSR.
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Extended Data Fig. 1 | Performance evaluation of various optimization 
methods on the 10 × 10 square Heisenberg J1-J2 model. a, Time cost of solving 
the equation Oδθ = ϵ  for the different optimization methods for different 
numbers of Monte-Carlo samples Ns and variational parameters Np, measured at 
J2 = 0 on the ResNet1 architecture and an A100 80G GPU. The time cost of other 

contributions in a training step on 4 parallel A100 GPUs is presented as the black 
star, showing that the time cost of SR becomes the bottleneck for training deep 
networks if MinSR is not employed. b, Relative residual error ||Oδθ− ϵ||/||ϵ|| for 
Ns = 104 at J2 = 0 on ResNet1. c, Training curvea of ResNet2 at J2/J1 = 0.5 with Ns = 104 
and Np ≈ 106 comparing different optimizers.
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Extended Data Fig. 2 | NQS wave function amplitudes for the Heisenberg 
and J1-J2 models on a 6 × 6 square lattice obtained by ResNet1 with 64 
layers and 146320 parameters by means of MinSR. The ED wave function 
amplitudes obtained by the lattice-symmetries package [64] are shown as 
the black dotted lines, and the spin configurations are sorted according to the 
descending order of ED amplitudes. All wave function amplitudes are shown for 
the Heisenberg model, while for the J1-J2 model only one point is plotted among 
10000 successive points. In the inset, we show the infidelity with different 

numerical precision. The infidelity of a ResNet1 with 13750 parameters which 
approaches the size limit of SR (pinv) is also presented for comparison. This 
shows that the deep NQS trained by MinSR can approach TF32 precision in the 
non-frustrated case and BF16 precision in the frustrated case on the 6 × 6 lattice 
with a Hilbert space dimension of 15804956 after applying symmetry, while the 
shallow NQS trained by traditional SR cannot. In our further tests, the shallow 
network trained by traditional SR can only approach such precision on the 4 × 6 
lattice with a much smaller Hilbert space dimension of 15578.
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Extended Data Fig. 3 | Zero-variance extrapolation for the square J1-J2 model 
at J2/J1 = 0.5 with different lattice sizes. The three data points in the same 
fitting are obtained by two different sizes of real-valued ResNet2 with 34944 and 
139008 parameters and a Lanczos step on the larger one. The ground state sector 
is S = 0 and k = Γ = (0, 0), and the excited state sector is S = 1 and p = M = (π, π). 
The error bars show the standard deviations. On the largest 20 × 20 lattice, the 
estimation of the slope is inaccurate in direct linear fitting due to the uncertainty 
of data points. Consequently, we utilize an empirical assumption that the slope 

remains nearly unchanged for different system sizes and symmetry sectors. 
Excluding too small lattices in which the estimation of slopes is inaccurate due to 
too close data points, the tendency of unchanged slopes is obvious for the slopes 
on L = 10, 12, 16, respectively 0.17(2), 0.18(4), 0.15(4) for S = 0, and 0.14(3), 0.16(2), 
0.16(2) for S = 1. The unchanged slope is also observed in existing literature [8, 16, 
37]. Consequently, we employ the average of the aforementioned slopes as the 
slope on L = 20 to mitigate the error.
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Extended Data Fig. 4 | Zero-variance extrapolation for the triangular J1-J2 
model at J2/J1 = 0.125 with different lattice sizes. The three data points in the 
same fitting are obtained by two sizes of complex-valued ResNet2 with 34944 
and 139008 parameters and a Lanczos step on the larger one. The ground state 
sector is S = 0, k = Γ = (0, 0), and the excited state sector is S = 1, k = K = (4π/3, 0). 

The error bars show the standard deviations. Similar to the square lattice case, 
the slope on the 18 × 18 lattice is approximated by the slope on the 12 × 12 lattice 
to mitigate the error. The data on the 18 × 18 lattice is generated by networks with 
139008 parameters and a Lanczos step.
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Extended Data Table 1 | Variational ground state energies in the 10 × 10 square J1-J2 model with PBC at J2/J1 = 0.5

As a reference, the ground state energy estimated by zero-variance extrapolation in this work is − 0.497715(9).
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