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A B S T R A C T

Injection molding is a popular production process for short fiber reinforced components. The mechanical
properties of such components depend on process-induced fiber orientations which are commonly predicted
via numerical simulations. However, high computational costs prevent process simulations from being used
in iterative procedures, such as topology optimization or finding optimal injection locations. We propose a
fast approximation method that extracts nodal features and train a regression model to predict fill states,
cooling times, volumetric shrinkage, and fiber orientations. The features are determined by solving eikonal
equations with a fast iterative method and computing spatial moments to characterize node-adjacent material
distributions. Subsequently, we use these features to train feed forward neural networks and gradient boosted
regression trees with simulation data of a large dataset of geometries. This approach is significantly faster than
conventional methods, providing 20x speed-up for single simulations and more than 200x speed-up in gate
location optimization. It generalizes to arbitrary geometries and injection locations.
1. Introduction

Thermoplastic injection molding is used in a wide range of indus-
tries as an economic production process for complex three-dimensional
components. During the process, a reciprocating screw injects a thermo-
plastic polymer melt into a mold cavity that represents the components
shape. The polymer is commonly reinforced with glass or carbon fibers
to improve the mechanical properties of the molded component. How-
ever, local fiber orientations are influenced by the polymer flow into
the mold making the properties dependent on the molding process. For
example, this results in typical core–shell structures with fibers oriented
in flow direction in the shear-flow dominated shell region of a planar
section and perpendicular oriented fibers in the extension-flow domi-
nated core region [1,2]. As a qualitative understanding of reorientation
s not sufficient to leverage full light-weighting potential or to predict
arpage, there is a need for accurate quantitative predictions of the

illing process.
Numerical simulations of the injection molding process range back

o the 1980’s [3] and are well established by now.
Several commercial tools are available to model the mold fill-

ng process and fiber orientations at the macroscopic scale, while
esearch focuses i.a. on fiber migration phenomena [4–6], refining
rientation models with high-fidelity microscale models [7–9], and

∗ Corresponding author at: University of Augsburg, Institute of Materials Resource Management, Augsburg, Germany.
E-mail address: nils.meyer@uni-a.de (N. Meyer).

flow-fiber coupling [10–12]. However, even relatively efficient com-
mercial macroscale models require significant computational effort
with simulations taking up to several hours. Fast estimation of the cool-
ing time without a full simulation has been pursued in the past decades
leading to a range of different models of different complexity [13,14].
These models usually build on analytical solutions of the heat diffusion
equation in one or more dimensions to determine when the part has
reached a predefined ejection temperature.

There are several reasons that necessitate fast surrogate models of
injection molding simulations: First, optimization of process parameters
typically requires iterative evaluations of the objective function (e.g. for
different temperatures, pressures, injection locations, etc.), each of
which requires a full simulation run. Second, meaningful structural
optimization (e.g. shape, size, or topology) of the component itself
requires a process simulation in each iteration as the changed geometry
implies different process induced fiber orientations. Third, designers
would greatly benefit from a tighter integration of fast prediction tools
in their design software to iterate designs faster compared to sending
them to a specialist performing a lengthy process simulation.

Several authors use fully-connected feed forward neural networks to
predict a simulation result (e.g. warpage, stress on impact, clamp force)
depending on processing conditions and apply optimization algorithms
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(e.g. genetic algorithms, particle swarms) to find optimal process pa-
rameters [15–17]. Other groups used similar approaches to optimize
manufacturing parameters for warpage and volumetric shrinkage [18–
20]. These networks are trained with finite element simulations of a
specific use case with a specific geometry and are therefore limited to
this particular task without allowing for structural optimization of the
underlying part. In addition, Kriging models and Gaussian processes
have been used by several authors as surrogates for process optimiza-
tion [21,22], but are also trained for specific use cases. Mixed effect
Gaussian process models enable generalization to other geometries to
some extend [23]. Ospald et al. [24] account for process-dependent
fiber orientations in topology optimization using gradient information
of the solution to the eikonal equation (i.e. they use the gradient of
geodesic distances to the injection gate to define the fill front normal)
as surrogate for the process simulation. While their approximation of
fiber orientations generalizes to arbitrary domains, it requires an em-
pirical parameter to adjust the degree of anisotropy. Another approach
for process simulation surrogates, which are applicable to arbitrary
domains, are direct regression models trained on meshes, point clouds
or voxelized representations [25]. Uglov et al. [25] pre-process point
cloud data from 158 Autodesk Moldflow simulations by computing
shortest paths between all nodes and gates with Dijkstra’s algorithm.
Subsequently, they propose a gradient boosting model to predict fill
times and a convolutional neural network with 2D projections in order
to predict warpage. While clearly outperforming their naive estimator,
the fill time prediction could be improved further to generalize beyond
the geometry class of automotive dash panels used in their work.

In this work, we combine engineered nodal features and machine
learning models to rapidly predict nodal fill times, cooling times, fiber
orientations, and volumetric shrinkage in fiber reinforced injection
molding processes. The method should generalize to arbitrary meshed
geometries and injection gate locations, which is achieved with suitable
normalization and denormalization transformations. We aim to acceler-
ate the prediction by magnitudes, while keeping the relative root mean
squared error of the predicted fields below 10%.

2. Training data generation

Training and validation of fast approximation models requires a
ground truth. In this case, we generate the ground truth by running
state-of-the-art injection molding simulations on 629 randomly sampled
geometries from the ABC dataset [26], which is a large collection of
Computer Aided Design (CAD) geometries for geometric deep learning.
We mesh the sample surfaces with triangles using the open source
software gmsh and pick a single random node on the surface as an
injection location. Subsequently, we perform an automated Autodesk
Moldflow 2023 analysis for each geometry to simulate the injection
molding process.

The injection molding simulation solves the balance of mass
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮) = 0, (1)

the balance of linear momentum (neglecting inertia and body forces)
𝜕(𝜌𝐮)
𝜕𝑡

= −∇𝑝 + 𝜂𝛥𝐮 (2)

nd the balance of inner energy

𝑐p𝜃̇ = ∇ ⋅ (𝑘∇𝜃) + 𝜂∇𝐮 ∶ ∇𝐮 (3)

or all locations 𝐱 ∈ Ω in a part domain Ω and all times 𝑡. Here, 𝜌
enotes the polymer mass density, 𝐮 denotes the flow velocity vector,
denotes the hydrodynamic pressure, and 𝜃 denotes the polymer

emperature. The viscosity 𝜂 is modeled with a Cross-WLF model and
he pVT relation is modeled with a two-domain modified Tait model.
he material for all simulations is a polypropylene with 30 wt% glass
iber reinforcement by Celanese with trade name Factor PP GF 30 and
2 
ll material parameters are taken from the Autodesk Moldflow 2023 ma-
terial database. The flow rate 𝑉̇ at the injection gate 𝜕Ωi is determined
automatically for each geometry by Autodesk Moldflow with a quick
strip analysis in order to yield a low injection pressure. The injection
temperature of the melt is set to 270 °C. We employ no-slip boundary
conditions for the velocity at the mold walls Ωw and the mold surface
temperature is set to 45 °C. Volumetric shrinkage 𝑆vol is defined as the
local density increase from the packing phase to ambient conditions,
the cooling time 𝑡cool denotes the amount of time taken to cool the
molten plastic down to a defined ejection temperature of 100 °C. Both
quantities are derived from the solutions of Eqs. (1) to (3).

The fiber orientation state is described via a second order fiber
orientation tensor [27], which is the second moment of the fiber
orientation distribution function 𝜓(𝐩) defined as

𝐀 = ∫
𝐩⊗ 𝐩 𝜓(𝐩) d𝐴, (4)

where 𝐩 is a fiber direction and ∫ ⋅d𝐴 describes integration over
he surface of a unit sphere. The reorientation is computed with an
volution equation for the second order fiber orientation tensor via
he ARD-RSC model [28] using velocity gradients from the solution
f Eqs. (1) to (3) without flow-fiber coupling. After each computation,
esults are automatically exported as XML files and postprocessed to
tore the mesh as well as nodal values of fill time, cooling time,
olumetric shrinkage and fiber orientation in a neutral VTK file. The
erm fill time refers to the fill time field, i.e. the time when the melt front
eaches a point in the domain, and not to the single value describing the
ime to fill the entire domain. We made the dataset publicly available.1

. Fast approximation method

Our proposed workflow (see Fig. 1) assumes inputs in the form
f a tetragonally meshed domain Ω representing the component to
e molded, injection locations 𝜕Ωi and a polymer melt flow rate 𝑉̇
t the injection gates. It should predict the nodal values of fill time
fill, cooling time 𝑡cool, volumetric shrinkage 𝑆vol, and fiber orientation
tates 𝐀 as outputs.

The prediction is achieved by encoding feature tuples 𝐗 for each
ode, which are then normalized to 𝐗∗ and fed to a regression model.
his regression model is trained on the injection molding simulation
ataset from the previous section and will predict normalized nodal
esult tuples 𝐘̃∗ in inference mode. Finally, these results are denormal-
zed (using process conditions and analytical solutions) to give a nodal
utput prediction 𝐘̃.

.1. Node encoding

The meshed domain is a complex input parameter of varying size
nd complexity. In principle, it could be passed directly into a graph
onvolutional neural network, a point convolutional neural network,
r a convolutional neural network after rasterization. However, these
pproaches likely require a lot of training data as they have to learn
ome basic physical observations. For example, the fill time of a node
fill is affected by its distance to an injection gate and the orientation
s influenced by the geometric shape in its neighborhood. Hence, the
roposed workflow aims to encode such features for each node of the
esh in a computationally efficient way and train a regression model

ased on these encoded features.

.1.1. Distance features
The distance metrics should evaluate geodesic distances through the

omain Ω, i.e. a path that could be used by melt during filling. This
etric may differ from a simple Euclidean distance, as illustrated in

ig. 2.

1 https://doi.org/10.5281/zenodo.10027027.

https://doi.org/10.5281/zenodo.10027027
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Fig. 1. Workflow for the proposed fast approximation of the injection molding process.
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Fig. 2. Cut view of a three-dimensional domain Ω with its wall boundary Ωw and
oncentrated injection boundary 𝜕Ωi. The dashed line represents the shortest path from
ocation 𝐱 to the injection gate 𝜕Ωi within the domain and is different to the shortest
uclidean path.

We can compute such a distance metric as solution to the boundary
alue problem

∇𝜙(𝐱)‖ = 1
𝑓 (𝐱)

𝐱 ∈ Ω

𝜙(𝐱) = 𝜙0 𝐱 ∈ 𝜕Ω
(5)

hich computes the minimum travel time 𝜙(𝐱) from a point 𝐱 in a
omain Ω given the speed of travel 𝑓 (𝐱) with an exit penalty 𝜙0(𝐱).
his partial differential equation is known as the eikonal equation and
ay be solved with the finite element method after reformulation [29]

r iterative methods [30–32]. We utilize the package fim-python [33],
hich implements the tetragonal fast iterative method (tetFIM) by Fu
t al. [32], to solve the eikonal boundary value problem efficiently on
inear tetragonal domains with parallel computing architectures.

We solve three different configurations of Eq. (5), as summarized
n Table 1. The wall distance 𝐷w(𝐱) and injection gate distance 𝐷i(𝐱)
epresent the shortest geodesic distance from a point 𝐱 to the cor-
esponding boundary. However, this injection gate distance does not
ccount for faster travel speed of the polymer melt in wide channels
nd slower speed in narrow channels with higher shear rates and con-
equently higher flow resistance. Therefore, we use the wall distance
w(𝐱) as a proportional approximation of the travel speed to also

ompute a flow distance 𝐷f(𝐱), which should approximate the fill front
rogression through a domain. The exit penalty 𝜙0 could be used to
odel delayed injection gate opening sequences for multiple gates, but

s set to 0 as we treat single gate only in this work.
Fig. 3 visualizes the differences of 𝐷w, 𝐷i and 𝐷f using a simplified

D example.
 t

3 
Table 1
Distance metrics computed with the eikonal Eq. (5).

Distance metric 𝜙 𝜙0 𝑓 𝜕Ω

Wall distance 𝐷w 0 1 𝜕Ωw
Injection distance 𝐷i 0 1 𝜕Ωi
Flow distance 𝐷f 0 𝐷w 𝜕Ωi

3.1.2. Spatial moment
We compute a second moment tensor of the spatial material distri-

bution in the neighborhood of a node as

𝐒(𝐱𝑖) = ∫𝑖

1
𝑉𝑖
𝐼(𝐱)𝐝𝑖(𝐱)⊗ 𝐝𝑖(𝐱)d𝑉 ≈

∑

𝑗∈𝑖

𝑣𝑗
𝑉𝑖

𝐝𝑖𝑗 ⊗ 𝐝𝑖𝑗 (6)

where 𝐝𝑖(𝐱) denotes a unit vector pointing from 𝐱𝑖 to 𝐱, 𝐼(𝐱) is an
indicator function that is 1 inside the part and 0 otherwise, and 𝑉𝑖 =
∫𝑖

𝐼(𝐱)d𝑉 denotes the total part volume in the neighborhood around
𝐱𝑖. In the discrete approximation, 𝐝𝑖𝑗 denotes a unit vector pointing
from node i located at 𝐱𝑖 toward the center of cell j located at 𝐱̄𝑗 and
𝑗 denotes the volume of that cell. The neighborhood of each node i is
efined as

𝑖 = {𝑗 ∣ ‖𝐱̄𝑗 − 𝐱𝑖‖ < 𝑅 ∧ |𝐷i(𝐱̄𝑗 ) −𝐷i(𝐱𝑖)| < 𝑅} (7)

here 𝑅 is a parameter that determines the size of the neighborhood. In
his work, a ball tree algorithm provided by the sciki-learn library [34]
s used for the fast evaluation of that neighborhood. The neighborhood
ize is set to 𝑅 = 3ℎmax, with ℎmax being the longest element edges
resent in the mesh. Subsequently, centers are excluded which differ
n 𝐷𝑖 with more than 𝑅, since otherwise points which are close in
artesian distance but not in geodesic distance (i.e. in spiral structures)
educe the accuracy. Essentially, the spatial moment describes the local
irectionality of the material distribution on a scale prescribed by 𝑅:
t the center of large part, where the mold walls are further away than
, the spatial moment has an isotropic character. In a plate with a

hickness less than 2𝑅, it will encode the transversal nature by having
ne smaller eigenvalue in the thickness direction and larger eigenvalues
n the directions that are available for flow. In a rod with a diameter less
han 2𝑅, it will have only one larger eigenvalue with a corresponding
igenvector pointing in the direction of the rod.

.2. Feature normalization and preprocessing

The approximation method should handle arbitrary input geome-
ries and injection locations. As a consequence, computed nodal fea-
ures may differ by order of magnitudes between different geometries.
s this has a negative impact on the ability of a regression model
o generalize, normalization is applied to the nodal features before
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Fig. 3. Qualitative comparison of the three used distance metrics on a 2D example. While the injection distance 𝐷i is the closest geodesic path from inlet gate to a specific node,
for the flow distance 𝐷f the wall distance 𝐷w is used as an approximation for the travel speed of the polymer melt. Function values increase with color brightness..
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Fig. 4. Relative flow volume of a rod (solid) and a center-gated disk (dashed). The
insets show isovolumes 𝐷f

for different 𝑐 and illustrate how isovolumes increase
on-linear with flow distance 𝐷f in a disk and linear in a rod.

onstructing a feature tuple for training. The spatial moment is already
ormalized by definition and normalized distances are computed via

∗
w =

𝐷w
maxΩ𝐷w

, 𝐷∗
i =

𝐷i
maxΩ𝐷i

, and 𝐷∗
f =

𝐷f
maxΩ𝐷f

, (8)

where maxΩ (⋅) computes the maximum value within a domain Ω.
owever, the normalized flow distance 𝐷∗

f is not an ideal feature to
encode melt flow propagation through the domain, because isovolumes

𝐷∗
f
(𝑐) = {𝐱 ∈ Ω ∣ 𝐷∗

f (𝐱) < 𝑐} (9)

for different values of 𝑐 ∈ [0, 1] are not necessarily linearly related to
illed volumes during the filling process.

Consequently, we define a relative flow volume

∗
f (𝑐) =

∫𝐷f
d𝑉

∫Ω d𝑉
, (10)

which we expect to be a more meaningful feature for the fill front
progress within a component in comparison to distance only. This can
easily be understood by comparing a straight rod to a center-gated disk,
as illustrated in Fig. 4: If the rod is subjected to a constant flow rate 𝑉̇ ,
the filled volume increases linearly with distance and the relative flow

volume. In a center gated disk, the filled volume increases quadratically

4 
with distance for a constant flow rate at the gate. The relative flow
volume accounts for this behavior and is thus a nodal feature that
supports better generalization.

Further, we use gradients of the computed properties as features and
introduce the notation

∇∗(∙) = ∇∙
‖∇ ∙ ‖

(11)

or normalized gradients, i.e. the direction of a gradient.

.3. Machine learning

The normalized features are computed for each geometry in the
ataset reusing the Autodesk Moldflow mesh. They are summarized in
tuple

∗ =
(

𝑉 ∗
f ,∇

∗𝑉 ∗
f , 𝐷

∗
i ,∇

∗𝐷∗
i , 𝐷w, 𝐷

∗
w,∇

∗𝐷∗
w,𝐒

)⊤ (12)

or each node. Ideally, this fingerprint allows to infer some approxi-
ate information about the normalized injection molding result at the

orresponding node, namely the tuple

∗ =
(

𝑡∗fill, 𝑡
∗
cool, 𝑆

∗
vol,𝐀

)⊤ . (13)

n total, the dataset consists of 19 million pairs 𝐗∗ and 𝐘∗ grouped
n 629 geometries. The regression task is subsequently attempted with
hree different models: a naive benchmark model, a feed forward neural
etwork, and a gradient boosting regression model.

.3.1. Naive reference model
The naive model states that the predicted relative fill time 𝑡∗fill is

dentical to the relative flow volume 𝑉 ∗
f , as this feature is engineered

o be a meaningful predictor for the fill front progress. Cooling time
s predicted using an approximated solution of a 1D heat diffusion
quation (see Eq. (23)), normalized using the resulting 𝑡cool at the point
f maximum wall thickness 𝐷w. Volumetric shrinkage is approximated
s the increase in density of the material from injection conditions to
mbient conditions. This value is also used for denormalization (see
ection 3.4), therefore 𝑆∗

vol is 1 for all points in the naive model by
efinition. In addition, the naive prediction model adopts Ospald’s [24]
stimation of the orientation tensor

=
𝛽
3
𝐈 + (1 − 𝛽)∇∗𝐷i ⊗ ∇∗𝐷i (14)

with an adjustable parameter 𝛽 ∈ [0, 1] for the amount of anisotropy.
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3.3.2. Feed forward neural network
The relation between input features 𝐗∗ and outputs 𝐘∗ may be

modeled with a simple feed forward neural network (FNN). In an FNN,
inputs are processed by consecutive layers of artificial neurons that
perform the operation

𝐱𝑖+1 = 𝑓𝑖
(

𝐱𝑖𝐖⊤
𝑖 + 𝐛𝑖

)

(15)

with weight matrices 𝐖𝑖, biases 𝐛𝑖, and an activation function 𝑓𝑖.
he weights and biases of each neuron are adjusted to minimize the
rror on a training set of pairs (𝐗∗,𝐘∗) employing the backpropagation
lgorithm. This is done by minimizing the mean squared error on the
raining set employing the Adam optimizer with learning rate 0.001
n batches of 1024 node pairs with PyTorch. Different sets of hyperpa-
ameters (hidden neurons, hidden layers and activation functions) are
ested to yield a feasible balance between training effort and accuracy.

.3.3. Gradient boosting
Gradient boosted regression trees (GBRT) are an alternative model

or the regression task that maps from 𝐗∗ to 𝐘∗. The basic idea of this
achine learning model is a consecutive application of weak decision

rees, in which each newly added tree improves the accuracy. Formally,
his prediction model computes

∗ =
𝑘
∑

𝑖
𝜈𝑖𝐹𝑖(𝐗) (16)

ith 𝑘 decision trees 𝐹𝑖 ∈  . The model is trained in an additive
raining process to minimize the mean squared residual of each added
ecision tree employing the XGBoost library. The factors 𝜈𝑖 depend on
he learning rate and control the contribution of each tree to the final
rediction. Together with the limited tree depth of individual trees,
his prevents overfitting by limiting the complexity and contribution
f individual trees.

.4. Denormalization of output variables

All approximation models return normalized values for all output
ariables by design. In order to receive meaningful results, a denormal-
zation or rescaling is needed for fill time, cooling time and volumetric
hrinkage. The fiber-orientation tensor is normalized by definition and
oes not need to be changed.

We denormalize the fill time 𝑡fill of each geometry according to

fill =
𝑉
𝑉̇
𝑡∗fill (17)

sing the total volume 𝑉 and the applied flow rate 𝑉̇ . We denormalize
he volumetric shrinkage using the maximum theoretical shrinkage for
he material as

vol = 𝑆̃vol𝑆
∗
vol (18)

ith 𝑆̃vol being the density increase from molten state at high pressure
o ambient conditions taken from pvT data. Cooling times are denor-
alized using an approximation at the point of maximum wall distance
axΩ𝐷w.

cool = 𝑡cool𝑡
∗
cool (19)

Consequently, we need a rapid approximation of 𝑡cool to rescale the
ooling times to meaningful values. We use a spectral decomposition
f the spatial moment 𝐒 at the thickest point, i.e. at maxΩ𝐷w, to
stimate the geometric shape as a position on a triangle representing
easible neighborhood shapes in the eigenbasis (see Fig. 5). Then, we
an interpolate analytic solutions of the heat diffusion equation in 1D,
D and 3D to approximate

c̃ool =
𝑎𝑤𝑎(𝑟)𝑡cool,2D + 𝑏𝑤𝑏(𝑟)𝑡cool,1D + 𝑐𝑤𝑐 (𝑟)𝑡cool,3D . (20)
𝑎𝑤𝑎(𝑟) + 𝑏𝑤𝑏(𝑟) + 𝑐𝑤𝑐 (𝑟) R

5 
Fig. 5. Illustration of calculation of 𝑡cool.

ere, 𝑡cool,nD are the analytic estimations as explained below, 𝑤𝑥(𝑟)
re normalized distances in barycentric coordinates to the 1D, 2D, 3D
eference cases and 𝑎, 𝑏, 𝑐 are parameters fitted on the data set. The

radius 𝑟 for evaluating the spatial moment is defined as

= 𝑟𝑓 ⋅max
Ω
𝐷w. (21)

ith 𝑟𝑓 also being fitted to the dataset. The fitting process is detailed
n Appendix B.

In a perfect sphere, the heat from the center point will diffuse
erfectly symmetrical in all directions. The temperature at this point
ith respect to time can be estimated from the diffusion equation in
D spherical coordinates. Solving the partial differential equation and
olving for 𝑡 needed to reach the ejection temperature 𝑇end with a
onstant mold temperature 𝑇mold and a starting temperature 𝑇start leads
o

cool, 3D ≈ −
𝐷2

w
𝛼𝜋2

ln
(

1
2
𝑇end − 𝑇mold
𝑇start − 𝑇mold

)

(22)

with 𝛼 being the thermal diffusivity which is calculated from the
density and temperature-averaged values of the thermal conductivity
and the specific heat capacity of the used plastic. In contrast, a point
in the middle of an infinite plane sheet is surrounded by points of the
same temperature in two directions and can therefore be approximated
using the heat diffusion equation in 1D, leading to

𝑡cool, 1D ≈ −
4𝐷2

w
𝛼𝜋2

ln
(

𝜋
4
𝑇end − 𝑇mold
𝑇start − 𝑇mold

)

. (23)

A point in the middle of a long cylinder can distribute heat in a plane
and can be approximated using the solution of the 2D heat equation

𝑡cool, 2D ≈ −
𝐷2

w
5.783𝛼

ln
(

1
1.602

𝑇end − 𝑇mold
𝑇start − 𝑇mold

)

. (24)

ore information regarding the derivation of Eqs. (22)–(24) can be
ound in Appendix A.

. Results and discussion

First, we evaluate the prediction accuracy on test sets sampled from
he generated ABC injection molding simulations. Subsequently, we
llustrate inference quality, generalization potential, and computational
erformance gains on a generic application example.

Different hyperparameters were tested for the machine learning
odels and the performance metrics are detailed in Appendix C. For the

ollowing results, we use an FNN with 100 neurons per hidden layer,
eLu activation and four layers as well as a GBRT model with 100 trees



J. Greif et al.

p
p

4

g
a
t
p
s
b
e
a
p
t

4

a
f
i
f
t
d
l
l
A

m

Composites Part A 185 (2024) 108340 
of maximum depth of 𝑘 = 8 and a learning rate of 0.1. These hyper-
arameters represent a balance between accuracy and computational
erformance.

.1. Evaluation of prediction errors on ABC dataset

We created five different random samplings, each splitting the
enerated dataset of 629 geometries into a test set with 315 geometries
nd a training set containing the remaining geometries. We trained
he models (Naive, FNN, GBRT) on each training set and evaluate the
rediction for each node of each geometry in the corresponding test
et. Then, we compute the relative root mean squared error (RRMSE)
etween predictions 𝐘̃ and simulation results 𝐘 for each geometry of
ach test set. Error curves for each predicted variable are averaged over
ll five test sets, only plotting the mean curves due to low variance. For
erformance of the models on different size ratios of training set and
est set, see Appendix D.

.1.1. Fill time
Fig. 6 shows the sorted distribution of fill time errors averaged over

ll test sets. It becomes apparent that the machine learning models per-
orm only slightly better than the naive approximation of fill time. This
s expected as the feature 𝑉 ∗

f was specifically engineered to describe the
ill front progression and thus forms an excellent predictor for the fill
ime. Additional features, which may be used by the learned models,
o not improve the prediction significantly. Increasing the number of
earnable parameters and tuning the hyperparameters in both machine
earning models does not notably outperform the naive estimator (see
ppendix C).

Fig. 6. Sorted distribution of fill time errors on test sets averaged over five different
sets.

While the majority of RRMSE values (300 out of 314) are well below
0.1, a few geometries feature quite significant deviations between
approximation and injection molding simulation. The four geometries
with the greatest prediction error are visualized in Fig. 10. Significant
approximation errors mainly occur if there are considerable jumps in
wall thicknesses. In this case, the assumed travel speed in the flow
distance computation is an oversimplification of the actual physical
balance laws. However, in most cases, all models allow a quite accurate
prediction of the filling process without solving the full transient PDE
system stated in Eqs. (1)–(3). For fill time prediction, comparable errors
have been shown in literature before, with Uglov et al. [25] reporting
absolute RMSE values of 0.357 s with a total fill time of about 9 s, being
an RRMSE value of 0.04. This matches the median prediction accuracy
of the model presented here, however their prediction is limited to a
very specific task (automotive dashboard).

4.1.2. Orientation
Fig. 7 shows the sorted distribution of orientation errors averaged

over all test sets. The naive model performs best for 𝛼 = 0.85. The
achine learning models outperform the naive benchmark noticeably.
6 
Fig. 7. Sorted distribution of orientation error on test sets averaged over five different
sets.

In comparison to fill time prediction, the distribution is less skewed and
error levels overall are higher.

The worst predictions occur when the fill front is moving orthogonal
to the spatial moment of the part, since the fiber orientation prediction
is strongly correlated with this feature. This is especially noticeable in
Fig. 11(c), (f). Due to the inlet position, the fill front progresses in
𝑦-direction through the part, whereas the spatial moment assumes a
structural directionality in 𝑧-direction. Other inaccuracies can happen,
if the filtering mechanism during the evaluation of the neighborhood
fails due to similar values of 𝐷i, e.g. in a spring which is injected in the
middle. In that case, close to the injection location, the spatial moment
computation takes into account nodes that are not relevant for the
local direction, and consequently yields wrong predictions. This could
be mitigated by a geodesic measure to define the neighborhood  ,
which is computationally expensive. Alternatively, a more sophisticated
adaptive method for calculating the radius 𝑅 for an individual geometry
would be needed.

4.1.3. Cooling time
Fig. 8 shows the sorted distribution of cooling time errors for the

three models. For estimating the performance of the machine learning
models decoupled from additional uncertainties from the calculation
of 𝑡cool, Fig. 8 also shows the error distribution when using the de-
normalization value as extracted from the original numerical solution
𝑡cool, exact.

Fig. 8. Sorted distribution of cooling time errors on test sets averaged over five
different sets.

The plots are averaged over all test sets. Naturally, those using the
additional approximation show higher errors than their counterparts,
with the GBRT model performing slightly better than the FNN. How-
ever, both machine learning models show median errors of 0.1. The
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Naive reference model using the 1D approximation performs consider-
ably worse in contrast.

Fig. 12 shows representative geometries with the highest errors for
both denormalization methods. The calculation for 𝑡cool is most inaccu-
ate for parts where the calculation of the spatial moment has similar
roblems as explained before, i.e. points being taken into account
hich are close in cartesian but far in geodesic distance. For example,
long, thick-walled pipe is approximated as a cylinder (Fig. 12 b,e).

arge errors when denormalizing with 𝑡cool, exact mostly occur when
he point of maximum wall distance is located close to the injection
ate. Longer cooling times in this regime lead to an overestimation
n the whole part. Only one part (see Fig. 13) shows high errors for
oth variants of denormalization. This can be explained by it being the
mallest part in the dataset with a size of 1 × 1 × 0.5 mm. We suspect
hat for such a small volume, the hot region around the injection gate is
s large as the part itself. This is unique to this single geometry instance
nd thus not properly learned during training.

.1.4. Volumetric shrinkage
Fig. 9 shows the sorted distribution of errors for the volumetric

hrinkage of the three models averaged over all test sets. Being a
onstant value, the naive model exhibits very high errors, whereas both
achine learning models show errors mostly below 0.18.

Fig. 9. Sorted distribution of volumetric shrinkage errors on test sets averaged over
five different sets.

Fig. 14 shows the three parts with highest errors, which do not share
explicit characteristics. This is reflected in the error curves, which do
not show a strong increase for the last structures like for other variables.
While rectangular slabs are approximated best, no clear trend in the
worse approximated structures is found.

4.2. Generic application example

The approximation workflow is applied to a generic geometry,
which is not contained in the ABC dataset, to demonstrate the usage
phase after training and to analyze the computational performance in
inference mode.

4.2.1. Prediction accuracy
A quantitative evaluation of RRMSEs for the entire geometry is

given in Table 2. Fig. 15 compares the predicted fields of the FNN and
GBRT model with a full numerical simulation.

For the mold filling process, it can be seen that both approxima-
tion methods are in accordance with the simulation, only showing a
slight delay in the middle of the part and a small overestimation on
one end of the part. Regarding the fiber orientation, the predictions
correctly determine regions with predominant fiber orientation in the
𝑥-direction. However, the degree of orientation is underestimated when
compared to the simulated result. The general distribution of cooling
times is well approximated by both models, however the longer times
in thicker regions of the part are underestimated. Areas of longer
7 
Table 2
RRMSEs of the machine learning models on the generic control structure.

ML model Fill time Orientation Cooling time Shrinkage

GB 0.042 0.105 0.116 0.037
FNN 0.044 0.105 0.108 0.043

cooling are predicted thinner than in the simulation by both models and
the approximation for 𝑡cool underestimates the actual denormalization
alue. Both models overestimate the maximum volumetric shrinkage by
p to 1%, but capture the overall distribution correctly including the
ifference around the injection location. The FNN model additionally
ntroduces some variation in the planar areas of the part.

.2.2. Computational performance
The generic application example is meshed with 117,357 nodes and

29,846 linear tetrahedral elements. The comparison was performed on
n AMD Ryzen Threadripper PRO 5995WX workstation with 64 cores,
12 GB RAM and an NVIDIA RTX4090 GPU, respective computational
imes are given in Table 3. On this machine, meshing with Autodesk
oldflow 2023 took 62 s and the injection molding simulation required

dditional 1647 s. Training of the GBRT (𝑘 = 100) model and FNN (𝑛 =
00) takes 165 s and 688 s, respectively. Once meshed, computation
f the distance measures on CPU takes approximately 140 s, split into
2 s for solver initialization, 44 s for 𝐷w, 45 s for 𝐷i and 39 s for 𝐷f.
his can be accelerated significantly with a GPU down to 20 s (12,
.6, 3.3 and 2.8 s). Computing the spatial moment takes about 4 s,
hich is caused in equal parts by the neighborhood search utilizing a
all tree algorithm and computing the tensor products from Eq. (6).
inally, evaluation of the ML models based on the computed features
dds negligible computational time to the approximation.
able 3
omputational performance of the full numerical calculation against the proposed
pproximation model on generic application example with 117,357 nodes and 629,846
inear tetrahedral elements.
Software Task Full simulation Approximation

Moldflow Meshing 62 s 62 s
Moldflow PDE solver 1647 s –
tetFIM Initialization – 12 s
tetFIM 𝐷i – 3.3 s
tetFIM 𝐷w – 1.6 s
tetFIM 𝐷f – 2.8 s
SciPy, NumPy Spatial moment – 4 s

1709 s 85.7 s

For a single evaluation, these results indicate a significant accelera-
tion to 5% of the full simulation time, which might be further enhanced
with more efficient meshing or if a mesh is already available. However,
the real benefit comes from repeated evaluation, e.g. if the injection
location should be optimized. In this scenario, only 𝐷i and 𝐷f need to
be recomputed, which would take 6 s while a full new simulation with
a different injection gate would take 1650 s - a 275-fold acceleration.

4.2.3. Dependency on meshsize
The generic geometry is also used to investigate the influence of

mesh density on the approximation workflow. Fig. 16 shows errors of
different mesh densities for Moldflow simulations and the three fast
approximation models (Naive, FNN, GBRT) without mesh refinement
around the injection location. The errors are relative to the simulation
with the finest mesh, i.e. an edgelength of 2mm. While the numerical
simulation shows a decrease in accuracy with a coarser mesh for all
variables, the approximation errors are relatively constant. The full
numerical solution is heavily dependent on the underlying mesh and
requires sufficient refinement at regions with large velocity gradients,
whereas for the approximation models only the calculation of geodesic
distances is influenced by the mesh size. The approximation for 𝑡cool
may also be influenced in the computation of the spatial moment,
explaining the small variation in accuracy. For volumetric shrinkage,
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the approximation methods perform even better than the numerical
simulation with lower resolution, but also loose accuracy at a similar
rate. This can be explained with the representation of the thicker area
surrounding all edges of the part, which becomes worse for lower
resolution meshes.
8 
The ability to use coarser meshes makes the proposed approxima-

tion method even more suitable for optimization tasks. Computational

effort for both meshing and calculation of distances scale linearly with

the amount of nodes in the mesh, leading to even faster evaluation.
Fig. 10. Worst four geometries with highest fill time RRMSE. The visualizations show isovolumes for the indicated time threshold representing the fill front at this time.
Fig. 11. Worst three geometries with highest orientation RRMSE. Folded structures lead to errors in the spatial moment computation, further errors occur if the flowfront is
orthogonal to the calculated spatial moment.
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Fig. 12. Geometries with highest errors for the approximated cooling time. If the point of maximum wall thickness is located in proximity to the injection location, cooling times
are overestimated when denormalized with 𝑡cool, exact (a, d). The approximation tends to underestimate the cooling time when the part resembles the 1D cooling scenario but is
classified otherwise by the spatial moment (b,c,e,f).
Fig. 13. Geometry with high cooling time errors for both rescaling methods.
Fig. 14. Three geometries with highest RRMSE for volumetric shrinkage.
9 
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Fig. 15. Comparison of approximation methods and full numerical simulation on the generic reference geometry along with specific nodal values. Fill time and cooling time given
in seconds, volumetric shrinkage given in percent.
5. Conclusion

In this work, we generate a dataset of 3D injection molding sim-
ulations, computing several variables of interest in 629 geometries
sampled from the ABC geometry dataset. This dataset is publicly avail-
able to accelerate the development of data-driven process models for
injection molding in the community.

We propose a fast approximation method, which uses nodal features
based on the eikonal equation to encode distance metrics and a spatial
moment tensor to encode the local geometry around each node. The
distance based features are engineered such that they resemble the
flow front progression through the domain accounting for different
flow velocities and the flow rate at the injection gate. We train a feed
forward neural network and a gradient boosted regression tree model to
rapidly predict fill time, fiber orientation, cooling time, and volumetric
shrinkage at each node in a normalized form. The predictions are
denormalized, where we introduce an additional approximation of
cooling time based on analytic solutions of the heat diffusion equation.

The models are tested on a test set of geometries extracted from
the ABC dataset for a critical statistical evaluation of the relative root
mean squared errors. The machine learning models greatly outperform
10 
naive benchmark models for all quantities but fill time, where the
underlying distance feature is already a good predictor. For a generic
application example, we are able to predict fill times and shrinkage
with approximately 4% error as well as fiber orientations and cooling
times with approximately 10% error, while being 20 times faster than
a conventional injection molding simulation. The errors are computed
with respect to state of the art injection molding simulations, which
may feature errors in a similar range. However, opposed to full sim-
ulations, errors of the approximation models are barely influenced by
the resolution of the underlying mesh. This opens the possibility to use
coarser meshes opposed to what is needed for simulating the injection
molding process. In a next step, the fast prediction models should be
combined with a differentiable warpage simulation and trained with
real world data to potentially learn additional effects which are not
included in numerical models yet.

The computational speedup is further increased, if the mesh can
be reused, i.e. in optimization tasks. We envision to replace expensive
numerical simulations in such optimization tasks with the proposed
fast approximation model such that conventional injection molding
simulations are only needed to verify the final iteration.
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Fig. 16. RRMSEs of full numerical simulation and approximation models depending on
the edgelength of the underlying mesh, investigated on the generic validation sample.
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Appendix A. Derivation of cooling time approximations

This derivation is adopted from Mehrer [35]: We need to find the
solution to the boundary-value problem

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

= 𝛼
𝜕2𝑢(𝑥, 𝑡)
𝜕𝑡2

(A.1)

ith the following initial conditions

(0 < 𝑥 < 2𝐷w, 𝑡 = 0) = 𝑇start − 𝑇mold (A.2)

nd the boundary conditions

𝑢(𝑥 = 0, 𝑡) = 0 (A.3)

(𝑥 = 2𝐷w, 𝑡) = 0. (A.4)

eparation of variables leads to two non-connected solutions which are
ecombined:

(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) (A.5)

1
𝛼𝑇 (𝑡)

d𝑇 (𝑡)
d𝑡 = 1

𝑋(𝑥)
d𝑋2(𝑥)

d𝑥2
= −𝜆2 (A.6)

(𝑡) = 𝑇0𝑒
−𝛼𝜆2𝑡 𝑋(𝑥) = 𝑎 sin(𝜆𝑥) + 𝑏 cos (𝜆𝑥) (A.7)

(𝑥, 𝑡) = (𝑎 sin (𝜆𝑥) + 𝑏 cos (𝜆𝑥)) ⋅ 𝑇0𝑒−𝛼𝜆
2𝑡

= (𝐴 sin (𝜆𝑥) + 𝐵 cos (𝜆𝑥)) ⋅ 𝑒−𝛼𝜆
2𝑡

(A.8)

ll linear combinations are also possible solutions to the equation, i.e.

(𝑥, 𝑡) =
∞
∑

𝑛=1
𝐴𝑛 sin (𝜆𝑥) + 𝐵𝑛 cos (𝜆𝑥) ⋅ 𝑒

(

−𝛼𝜆2𝑛𝑡
)

. (A.9)

q. (A.3) leads to 𝐵𝑛 = 0, Eq. (A.4) leads to:

𝑇 (2𝐷w, 𝑡) =
∞
∑

𝑛=1
𝐴𝑛 sin

(

𝜆2𝐷w
)

⋅ 𝑒
(

−𝛼𝜆2𝑛𝑡
)

= 0

→
∞
∑

𝑛=1
sin

(

𝜆2𝐷w
)

= 0

→ 𝜆 = 𝑛𝜋
2𝐷w

(A.10)

he starting condition (A.2) leads to
∞

𝑛=1
𝐴𝑛 sin

(

𝑛𝜋
2𝐷w

)

= 𝑇start − 𝑇mold (A.11)

which can be solved by multiplying with sin (𝑚𝜋𝑥∕2𝐷w) (where 𝑚 ∈ N),
ntegrating from 0 to 2𝐷w and using the orthogonality of trigonometric
unctions:
∞
∑

𝑛=1
𝐴𝑛 ∫

2𝐷w

0
sin

(

𝑚𝜋𝑥
2𝐷w

)

sin
(

𝑛𝜋𝑥
2𝐷w

)

d𝑥

= (𝑇start − 𝑇mold)∫

2𝐷w

0
sin

(

𝑚𝜋𝑥
2𝐷w

)

d𝑥 (A.12)

ight side:

𝑇start − 𝑇mold)∫

2𝐷w

0
sin

(

𝑚𝜋𝑥
2𝐷w

)

d𝑥 =

{ 4𝐷w(𝑇start−𝑇mold)
𝑚𝜋 for odd 𝑚

0 for even 𝑚

(A.13)

eft side:

2𝐷w

0
cos

(

(𝑚 − 𝑛)𝜋𝑥
2𝐷w

)

− cos
(

(𝑚 + 𝑛)𝜋𝑥
2𝐷w

)

d𝑥 =

{

𝐷w for odd 𝑚
0 for even 𝑚

(A.14)

herefore, it can be concluded:

w𝐴𝑚 =

{ 4𝐷w(𝑇start−𝑇mold)
𝑚𝜋 for odd 𝑚

(A.15)

0 for even 𝑚
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With 𝑚 = 2𝑗 + 1 and 𝐴𝑚 = 4(𝑇start−𝑇mold)
𝑚𝜋 , the solution to (A.1) is:

(𝑥, 𝑡) =
4(𝑇start − 𝑇mold)

𝜋

∞
∑

𝑗=0

1
2𝑗 + 1

sin
(

(2𝑗 + 1)𝜋𝑥
2𝐷w

)

⋅

exp

(

−
𝛼(2𝑗 + 1)2𝜋2𝑡

4𝐷2
w

)

(A.16)

For 𝑡 ≫ 1, only using 𝑗 = 0 is a sufficient approximation:

𝑇 (𝑥, 𝑡 ≫ 1) ≈
4(𝑇start − 𝑇mold)

𝜋
sin

(

𝜋𝑥
2𝐷w

)

⋅ exp

(

− 𝛼𝜋
2𝑡

4𝐷2
w

)

(A.17)

For approximating the time, the center point takes to reach the
jection temperature, we set 𝑇 = 𝑇end − 𝑇mold and 𝑥 = 𝐷w and solve
or 𝑡 to receive

cool, 1D ≈ −
4𝐷2

w
𝛼𝜋2

ln
(

𝜋(𝑇end − 𝑇mold)
4(𝑇start − 𝑇mold)

)

. (A.18)

The heat equation in 3D and 2D is solved similarly using the
eparation of variables in the appropriate coordinate system (spherical
oordinates in 3D, cylindrical coordinates for 2D), yielding

(𝑥 = 𝐷w, 𝑡)3D ≈ 2(𝑇start − 𝑇mold) exp

(

−𝛼𝑡𝜋2

𝐷2
w

)

(A.19)

𝑡cool, 3D ≈ −
𝐷2

w
𝛼𝜋2

ln
(

1
2
𝑇end − 𝑇mold
𝑇start − 𝑇mold

)

(A.20)

and

𝑇 (𝑥 = 𝐷w, 𝑡)2D ≈
2(𝑇start − 𝑇mold)
𝛼𝐵,0𝐽1(𝛼𝐵,0)

exp

(

−𝛼𝑡𝛼2𝐵,0
𝐷2

w

)

= 1.602(𝑇start − 𝑇mold) exp

(

−5.783𝛼𝑡
𝐷2

w

) (A.21)

𝑡cool, 2D ≈ −
𝐷2

w
5.783𝛼

ln
(

1
1.602

𝑇end − 𝑇mold
𝑇start − 𝑇mold

)

. (A.22)

Here, 𝐽1(𝑥) is the Bessel’s function of first order and 𝛼𝐵,0 is the first
ositive root of the Bessel’s function zeroth order 𝐽0(𝑥).

Appendix B. Fitting of cooling time approximation model

This section explains how the parameters 𝑎, 𝑏, 𝑐 and 𝑟𝑓 where
etermined for the approximation model of cooling times at points of
aximum thickness. The minimization problem is given as

min
,𝑏,𝑐,𝑟𝑓

𝑛
∑

𝑖

|

|

|

|

|

𝑡cool,pr.,𝑖 − 𝑡cool,ex.,𝑖

𝑡cool,ex.,𝑖

|

|

|

|

|

(B.1)

with

𝑡cool,pr.,𝑖 =
𝑎𝑤𝑎,𝑖(𝑟𝑓 )𝑡cool, 2D + 𝑏𝑤𝑏,𝑖(𝑟𝑓 )𝑡cool, 1D + 𝑐𝑤𝑐,𝑖(𝑟𝑓 )𝑡cool, 3D

𝑎𝑤𝑎,𝑖(𝑟𝑓 ) + 𝑏𝑤𝑏,𝑖(𝑟𝑓 ) + 𝑐𝑤𝑐,𝑖(𝑟𝑓 )
(B.2)

and 𝑛 being the amount of geometries in the dataset. Without using
the relative error, thicker parts with higher cooling times would be
weighted more than thin parts, which is undesirable.

For optimizing, the L-BFGS-B algorithm [36,37] as implemented in
the Python module SciPy was used with an analytical Jacobian for

gradient evaluation. The used loss function  is given as

12 
 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

( 𝑡cool,pr.,𝑖 − 𝑡cool,ex.,𝑖

𝑡cool,ex.,𝑖
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ith the corresponding Jacobian defined as:
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Here, d𝑤𝑖(𝑟𝑓 ) denotes the central difference given as

d𝑤𝑖(𝑟𝑓 ) =
𝑡cool,pr.,𝑖(𝑟𝑓 + 0.1) − 𝑡cool,pr.,𝑖(𝑟𝑓 − 0.1)

2 ⋅ 0.1
(B.5)

which is used because of the discontinuity of the function with respect
to this variable. The variable 𝑟𝑓 defines the radius used for tensor
evaluation, where very small changes do not lead to more nodes being
included in the neighborhood evaluation. The fitting was done on all
geometries in the dataset for including the maximum variety of dif-
ferent structures and the most versatile approximation. A maximum of
25 steps were conducted starting from 15 different randomized points
(𝑎, 𝑏, 𝑐, 𝑟𝑓 ). No boundaries were imposed except for 𝑟𝑓 , which was
constrained between 1.1 and 10. The results from the best optimization
are shown together with the corresponding loss value  in Table B.4.
Table B.4
Parameters for cooling time approximation model as well as loss-function  for
optimization before and after optimization.

𝑎 𝑏 𝑐 𝑟𝑓 

Starting point 4.283 8.653 7.275 8.838 412.387
Optimized 17.825 8.871 0.146 4.227 0.034

Appendix C. Machine learning errors

Tables C.5 and C.6 list the minimum, maximum and median errors
for different machine learning configurations, averaged over the same
five test- and training set combinations. For the FNN models no extreme
differences are apparent, with some models performing slightly better
than others for single output variables. For the GBRT models, it can
be seen that a maximum of ten decision trees is not able to provide
accurate prediction, while other configurations show similar errors.

Appendix D. Error dependence on training set size

In order to find the influence of training set size on the resulting
machine learning models, the dataset was split in different ratios of
training set and test set from 10%/90% to 80%/20%. Five different
splits were considered per ratio with one FNN and one GBRT model be-
ing trained on each split. Tables D.7 and D.8 list minimum, median and
maximum errors averaged over all five splits per ratio. It can be seen
that, especially for median errors, a 50–50 split shows good results,
with smaller training sets showing higher errors and larger training
sets only leading to negligibly better predictions. Maximum errors alone
should not be considered for performance evaluation because they are
too dependent on the random decision of having difficult geometries
(see Figs. 10, 11, 12, 14) in the test set.
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Table C.5
Machine learning errors for different FNN configurations, averaged over five test- and training set samplings. Configurations
are defined as (Nodes per layer, Amount of layers, Activation function).
RRMSE 100,3,ReLu 100,4,ReLu 100,4,tanh 100,5,ReLu 200,4,ReLu 50,4,ReLu

min(𝑡fill) 0.0129 0.0130 0.0143 0.0139 0.0149 0.0124
max(𝑡fill) 0.2547 0.2565 0.2564 0.2558 0.2556 0.2562
median(𝑡fill) 0.0340 0.0339 0.0352 0.0347 0.0354 0.0338
min(𝐀) 0.0517 0.0503 0.0524 0.0493 0.0504 0.0562
max(𝐀) 0.1341 0.1354 0.1339 0.1333 0.1339 0.1359
median(𝐀) 0.0907 0.0895 0.0919 0.0895 0.0878 0.0933
min(𝑡cool) 0.0529 0.0516 0.0576 0.0500 0.0495 0.0552
max(𝑡cool) 0.2729 0.2723 0.2721 0.2818 0.2763 0.2774
median(𝑡cool) 0.0975 0.0968 0.1016 0.0962 0.0952 0.1013
min(𝑆vol) 0.0388 0.0341 0.0362 0.0314 0.0316 0.0383
max(𝑆vol) 0.2494 0.2466 0.2531 0.2432 0.2434 0.2517
median(𝑆vol) 0.1097 0.1072 0.1127 0.1058 0.1041 0.1100
Table C.6
Machine learning errors for different GBRT configurations, averaged over five test- and training set samplings.
Configurations are defined as (Amount of decision trees, Max. depth of each tree). The learning rate is equal
to 0.10 for all configurations.
RRMSE 10, 8 100, 10 100, 6 100, 8 200, 8 50, 8

min(𝑡fill) 0.1091 0.0090 0.0078 0.0082 0.0093 0.0082
max(𝑡fill) 0.2476 0.2557 0.2549 0.2550 0.2558 0.2536
median(𝑡fill) 0.1462 0.0347 0.0331 0.0338 0.0344 0.0334
min(𝐀) 0.0996 0.0425 0.0457 0.0436 0.0429 0.0453
max(𝐀) 0.1629 0.1296 0.1313 0.1302 0.1294 0.1314
median(𝐀) 0.1293 0.0848 0.0890 0.0863 0.0847 0.0891
min(𝑡cool) 0.0676 0.0442 0.0504 0.0483 0.0447 0.0516
max(𝑡cool) 0.3618 0.2604 0.2610 0.2600 0.2611 0.2629
median(𝑡cool) 0.1457 0.0947 0.0986 0.0962 0.0941 0.0983
min(𝑆vol) 0.0925 0.0220 0.0260 0.0229 0.0225 0.0235
max(𝑆vol) 0.3115 0.2507 0.2444 0.2493 0.2498 0.2486
median(𝑆vol) 0.1958 0.0976 0.1042 0.1003 0.0981 0.1018
Table D.7
Minimum, median and maximum RMSEs of FNN models depending on training set size. Averaged
over five models per size.
RRMSE 10-90 30-70 50-50 70-30 80-20

min(𝑡fill) 0.0190 0.0143 0.0130 0.0132 0.0132
median(𝑡fill) 0.0405 0.0364 0.0339 0.0350 0.0329
max(𝑡fill) 0.2843 0.2840 0.2565 0.2682 0.1738
min(𝐀) 0.0548 0.0512 0.0503 0.0488 0.0537
median(𝐀) 0.0973 0.0914 0.0895 0.0881 0.0873
max(𝐀) 0.1614 0.1338 0.1354 0.1261 0.1245
min(𝑡cool) 0.0569 0.0521 0.0516 0.0491 0.0542
median(𝑡cool) 0.1067 0.0989 0.0968 0.0937 0.0966
max(𝑡cool) 0.3016 0.2985 0.2723 0.2986 0.2586
min(𝑆vol) 0.0369 0.0337 0.0341 0.0315 0.0335
median(𝑆vol) 0.1163 0.1108 0.1072 0.1032 0.1029
max(𝑆vol) 0.3159 0.2577 0.2466 0.2356 0.2311
Table D.8
Minimum, median and maximum RMSEs of GB models depending on training set size. Averaged
over five models per size.
RRMSE 10-90 30-70 50-50 70-30 80-20

min(𝑡fill) 0.0099 0.0085 0.0082 0.0081 0.0082
median(𝑡fill) 0.0387 0.0348 0.0338 0.0341 0.0320
max(𝑡fill) 0.2894 0.2849 0.2550 0.2701 0.1735
min(𝐀) 0.0449 0.0427 0.0436 0.0428 0.0474
median(𝐀) 0.0912 0.0874 0.0863 0.0856 0.0853
max(𝐀) 0.1484 0.1323 0.1302 0.1270 0.1223
min(𝑡cool) 0.0426 0.0468 0.0483 0.0472 0.0501
median(𝑡cool) 0.1018 0.0980 0.0962 0.0946 0.0967
max(𝑡cool) 0.3122 0.3015 0.2600 0.2804 0.2513
min(𝑆vol) 0.0248 0.0229 0.0229 0.0231 0.0252
median(𝑆vol) 0.1068 0.1034 0.1003 0.0990 0.0966
max(𝑆vol) 0.3090 0.2536 0.2493 0.2260 0.2339
13 
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