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Tremor is one of themost commonneurological symptoms. Its clinical and neurobiological complexity
necessitates novel approaches for granular phenotyping. Instrumented neurophysiological analyses
haveprovenuseful, but are highly resource-intensive and lack broad accessibility. In contrast, bedside
scores are simple to administer, but lack the granularity to capture subtle but relevant tremor features.
We utilise the open-source computer vision pose tracking algorithm Mediapipe to track hands in
clinical video recordings and use the resulting time series to compute canonical tremor features. This
approach is compared tomarker-based 3Dmotion capture,wrist-worn accelerometry, clinical scoring
and a second, specifically trained tremor-specific algorithm in two independent clinical cohorts. These
cohorts consistedof 66patientsdiagnosedwith essential tremor, assessed indifferent taskconditions
and states of deep brain stimulation therapy. We find that Mediapipe-derived tremor metrics exhibit
high convergent clinical validity to scores (Spearman’s ρ = 0.55–0.86, p≤ .01) as well as an accuracy of
up to 2.60mm (95% CI [−3.13, 8.23]) and ≤0.21 Hz (95% CI [−0.05, 0.46]) for tremor amplitude and
frequency measurements, matching gold-standard equipment. Mediapipe, but not the disease-
specific algorithm, was capable of analysing videos involving complex configurational changes of the
hands. Moreover, it enabled the extraction of tremor features with diagnostic and prognostic
relevance, a dimension which conventional tremor scores were unable to provide. Collectively, this
demonstrates that current computer vision algorithms can be transformed into an accurate and highly
accessible tool for video-based tremor analysis, yielding comparable results to gold standard tremor
recordings.

Tremor syndromes are among themost commonneurological disorders.Of
these, essential tremor affects up to 4.6% of the global population ≥65 years
old1. This disorder is characterised by a mixture of postural and kinetic
tremors, which likely represent diverse facets of pathological oscillations in
brain motor networks2–4. Tremor is often accompanied by additional neu-
rological signs such as dystonia or ataxia. As such, tremor is also a common
symptom in a range of acquired and genetic neurological disorders, posing a
significant diagnostic challenge in clinical neurology. This translates into
high rates of misdiagnosed tremor disorders5, which has profound

therapeutic implications in particular for deep brain stimulation (DBS), a
potent neural circuit therapy for tremor disorders. DBS outcomes largely
hinge on accurate patient selection, which itself is influenced by accurate
tremor assessment6. The complexity of tremor syndromes has been a
roadblock to pathogenetic and diagnostic research, which culminated in a
call to redefine tremor classification through quantitative phenotyping4.

To this end, instrumented tremor analysis offers an unbiased and
detailed assessment of key tremor features, such as frequency and ampli-
tude, which are crucial for phenotyping7,8, therapeutic monitoring9,10,
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differential diagnosis11–15 and closed-loop neuromodulation16. 3D motion
capturemethods enable comprehensive characterisationof both tremor and
associated movement abnormalities (reviewed in ref. 17). However, the
reliance on these complex and resource-intensive methods restricts their
practical use, especially in routine clinical settings.

In contemporary practice, the complex phenomenology of tremor
syndromes is therefore condensed into low dimensional, ordinal rating
scales. These scales represent tremor items in a non-linear, logarithmic
manner18,19 and, despite their simplicity, suffer from considerable clini-
metric limitations. One of these limitations is interrater reliability, reported
to be as low as 0.1 (Cohen’s kappa)18,20–23.

While mobile technologies, such as smartphone accelerometers, have
emerged as promising tools for tremor frequency assessment7,24–27, theyhave
critical limitations, such as their reliance on calibration, sensor weight and
placement8. Additionally, they cannot readily measure associated
neurological signs.

Novel computer vision (CV) methods for marker-less pose tracking
havebeendeveloped for consumerapplications but are increasingly adapted
in movement sciences24,28–34. Pilot studies have shown the feasibility of CV-
based measurement of neurological motor symptoms29,33,35 and specifically,
tremor frequency23,31,36–38. However, CV-based measurement of tremor
amplitude remains unexplored, despite it being the key kinematic deter-
minant of patient life quality39.

A key challenge for pose tracking algorithms is a generalisation to
clinical contexts, where medical equipment interferes with body landmark
detection and disease-related alterations of movement and posture deviate
from their training data28–30,40. Tools like DeepLabCut23,29,41 enable super-
visedfine-tuningof pose-tracking algorithmswith task-specific data, but the
training can introduce biases that lead to overfitting. Finally, consumer CV
algorithms are evaluated with static metrics (i.e., Euclidean distances in
single frames) that are largely unrelated to the clinical quanta of interest (e.g.
frequencies, amplitudes)28,42. At present, there is a critical lack of rigorous
validation of CV algorithms against clinical gold standard methods and
application in larger neurological patient populations29,31.

To address these challenges, we repurpose Mediapipe, an open-source
pose tracking algorithm, for comprehensive tremor analysis.We evaluate its
capability to track hands in clinical standard videos of postural and kinetic
tremor assessments and use the resulting time series data to compute both
fundamental and advanced tremor features. We benchmark this CV fra-
mework against gold standard methods in a cohort of patients diagnosed
with essential tremor. Subsequently, we apply it to an independent, retro-
spective dataset of unstandardised, real-world videos from two clinical sites,
examining its convergent clinical validity and capability to characterise
therapeutic effects of deep brain stimulation on tremor. We assess the fra-
mework’s utility to inform diagnostic and prognostic challenges in two
clinical use case scenarios. Finally, we explore how different CV archi-
tectures impact the performance of tremor analysis by comparing Media-
pipe to a pose-tracking algorithm specifically fine-tuned for tremor analysis.

Results
Validation of the computer vision framework: tremor amplitudes
To assess the CV framework’s technical and clinical validity, we first applied
it to video data from a prospectively recruited cohort of patients with a
diagnosis of essential tremor and treated with thalamic DBS. Ground truth
values of tremor amplitudes and frequencies were determined using
laboratory gold standard technologies: marker-based 3D motion capture
and simultaneous wrist-mounted accelerometery.

CV-derived peak postural tremor amplitudes showed a strong corre-
lation with respective clinical scores, similarly to gold standard motion
capture (MP: ρ > 0.86, MC: ρ = 0.90, p < 0.001, Fig. 1a, b). Excellent agree-
ment of computer vision was found with motion capture (ρ = 0.89,
p < 0.001, Fig. 1c). In comparison tomotion capture, computer vision had a
mean absolute error of 10mm (95% CI [5.65, 14.4]). No systematic rela-
tionship between measurement and error magnitudes was observed (Fig.
1d). Computer vision-derived tremor amplitudes fell within equivalence

boundaries of motion capture tracking (±10mm, Supplementary Fig. 1a)
and were comparably responsive to DBS effect (d > 0.94, all p < 0.001, Fig.
1e), overall suggestive of equivalent accuracy. Median precision, measured
by the standard deviation of each amplitudemeasurement, was 1.29mmfor
motion capture and 0.54mm for Mediapipe. Precision values reached
equivalence to motion capture within gold-standard derived boundaries of
±3.63mm (Supplementary Fig. 1b). Reducing the 90% CI margins to ±1.5
and ±1.0mm did not substantially change these results, indicating robust-
ness beyond the defined boundaries.

Mediapipe’s peak kinetic tremor amplitude estimates were strongly
correlated to the clinical scores, again comparable tomotion capture derived
values (ρ = 0.55, p < 0.01, Fig. 1f, g). Mediapipe reached substantial agree-
mentwithmotion capture (ρ = 0.72, p < 0.001, Fig. 1h).Mean absolute error
was −2.60mm (95% CI [−3.13, 8.23], Fig. 1i). Mediapipe’s accuracy in
kinetic tremor amplitude measurement was equivalent to motion capture
(Supplementary Fig. 1a). Mediapipe and motion capture were again com-
parably responsive toDBS effects on kinetic tremor amplitude (d = 0.69 and
0.60, Fig. 1j). Median precision of kinetic tremor amplitude measurement
was calculated to be 0.31mm for motion capture and 0.49mm for Med-
iapipe. Mediapipe’s precision fell within the equivalence boundaries of
±2.1mm (Supplementary Fig. 1c). Repeating the equivalence tests with
empirically reduced 90% CI margins of ±1.5 and ±1.0mm did not sub-
stantially change these results. Notably, the aforementioned results were
similar when using mean instead of peak amplitude measurements (Sup-
plementary Figs. 2 and 3).

Validation of the computer vision framework: tremor frequencies
Computer vision-derived tremor frequency measurements were validated
against wrist-worn accelerometery, a clinical and laboratory gold standard
for tremor analysis. The correspondence of tremor frequencies from
Mediapipe andmotion capture to accelerometery was found to be similarly
strong (r > 0.40, Fig. 2a). The mean dominant frequency of postural tremor
was measured to be 5.7 ± 0.72 Hz with accelerometery, 6.04 ± 0.65Hz with
motion capture and 5.9 ± 0.58 Hz with Mediapipe, resulting in mean
absolute errors of −0.34 Hz [95% CI −0.08, 0.60] for motion capture and
−0.21 Hz [95% CI −0.05, 0.46] for Mediapipe (Fig. 2b).

Within the predefined margins of ±0.5 Hz, Mediapipe-derived fre-
quency measurements achieved equivalent accuracy to accelerometery,
while motion capture exceeded the equivalence bounds (Fig. 2c and Sup-
plementary Fig. 1d). Median precision of tremor frequency measurements
was 0.58Hz for accelerometery, 1.15Hz formotion capture and 1.12 Hz for
Mediapipe. Precision values from motion capture and Mediapipe were
equivalent to accelerometer within gold standard derived margins of ±2Hz
(Supplementary Fig. 1e). Again, reducing the 90% CI margins to ±1.5 and
±1.0 Hz did not substantially alter these results.

Both motion capture and Mediapipe-derived kinetic tremor fre-
quencies demonstratedmoderate agreement with respective accelerometric
measurements (motion capture: ρ = 0.38, p = 0.034; Mediapipe: ρ = 0.37,
p = 0.033, Fig. 2d). The mean dominant frequency of kinetic tremor was
5.25 ± 1.06Hz using accelerometery, 5.48 ± 0.41 Hz using motion capture
and 5.31 ± 0.34Hz using Mediapipe, with mean absolute errors of 0.22 Hz
(95% CI [−0.15, 0.59]) for motion capture and 0.06Hz (95% CI [−0.30,
0.41]) for Mediapipe. Bland-Altman plots for motion capture and Media-
pipe suggested a systematic relationship between error and measurement
magnitudes (Fig. 2e).

Within the predefined boundaries of ±0.5 Hz,Mediapipe’s accuracy in
frequency measurements was equivalent to accelerometery (Fig. 2f and
Supplementary Fig. 1d). In contrast, motion capture’s accuracy was sig-
nificantly lower than Mediapipe (T(31) = 2.98, 95% CI of difference [0.05,
0.28], p = 0.006). Median precision was 0.58 Hz for accelerometry, 0.14 Hz
for motion capture and 0.1 Hz for Mediapipe. Both motion capture and
Mediapipe precision values fell within equivalence boundaries derived from
the minimal precision achieved by accelerometery, ±2Hz (Supplementary
Fig. 1f). Reducing themargins to ±1.5 and ±1.25Hz in equivalence tests did
not substantially alter these results.
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Fig. 1 | Tremor amplitude analysis. Postural. a–c Both the computer vision and
motion capture outcomes show strong and significant agreement with clinical
postural tremor scores assigned to each hand (MP: ρ = 0.86, MC: ρ = 0.90, both
p < 0.001) as well as excellent inter-methodological agreement (ρ = 0.89, p < 0.001).
d Mean deviation of computer vision-derived amplitude measurements from
motion capture is 10 mm and Bland-Altman plotting shows no systematic rela-
tionship of measurement and error magnitudes. Of note, computer vision and
motion capture recordings were not identical (see methods) but reflect sequential
recordings. eComputer vision and motion capture-derived amplitudes are sensitive
to DBS effect, similar to clinical scores (effect size 0.94 for motion capture, 1.00 for

Mediapipe and clinical scores, all p < .001, Durbin-Conover corrected). Kinetic:
f–hMediapipe and motion capture-derived amplitudes show strong and significant
correlations with clinical scores (MP: ρ = 0.55, p = 0.01, MC: ρ = 0.62, p < 0.001)
while being strongly intercorrelated (MP vs. MC: ρ = 0.72, p < 0.001). i Mediapipe
exhibits an accuracy for kinetic tremor tracking of −2.6 mm, as measured by the
mean absolute deviation from motion capture. Bland-Altman plotting reveals no
systematic relationships of error and measurement magnitudes. j Mediapipe and
motion capture-derived amplitudes are responsive to DBS effect, with similar effect
sizes (MP: 0.69, p = 0.003, MC: 0.60, p = 0.022).
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Retrospective application: postural tremor
In order to clinically validate the CV framework in an independent sample,
we applied it to clinical videos of 43 individuals undergoing clinical tremor
assessment before and after thalamic DBS implantation. Peak postural
tremor amplitudes derived from Mediapipe were strongly correlated with
the corresponding tremor scores (Fig. 3a).Wilcoxon testing further revealed
that the CV framework’s peak amplitude measurements were highly
responsive to the effect of DBS, as were scores (Fig. 3b, c). Repeating the
analyses using mean instead of peak tremor amplitudes yielded similar
results with respect to score correlation (Supplementary Fig. 4). Mean
dominant frequency of postural tremor was calculated to be 5.96 ± 0.76 Hz.

Retrospective application: kinetic tremor
In the 25 available individuals, a moderate correlation was found between
the measured peak amplitudes and the corresponding tremor scores (Fig.
3d). Wilcoxon testing revealed that peak kinetic tremor amplitude mea-
surements were highly sensitive to the DBS effect (Fig. 3e, f). Repeating the
analyses using mean instead of peak amplitudes yielded similar results
(Supplementary Fig. 3). The mean dominant frequency of kinetic tremor
was calculated to be 5.75 ± 0.58 Hz.

Clinical use cases: diagnostic features
Instrumented tremor analysis can provide valuable differential diagnostic
clues for tremor syndromes. Beyond the basic tremor characteristics like
amplitude and frequency, advanced features such as harmonics or inter-
limb tremor coherence have previously been established to support differ-
ential diagnosis of tremor syndromes10. To this end,we investigatedwhether
the CV framework is capable of extracting advanced diagnostic tremor
features, which usually require electromyography or other sensors.

Indeed, the Mediapipe-derived tremor signal displayed a harmonic
peakwhichwas located at twice themean dominant frequency (Fig. 4a, b), a
feature previously reported to differentiate essential from parkinsonian
tremor43. Moreover, no significant inter-limb tremor coherence was
detected, a feature reported to discern essential tremor from orthostatic
tremor10,44 (Fig. 4c, d).

Clinical use cases: predictive modelling
Albeit efficacious in the majority of cases, thalamic DBS outcomes vary9.
Lackof tremor improvementor evenparadoxical increases inkinetic tremor
amplitude signify a poor DBS outcome6. Patient-specific factors such as
baseline clinical tremor scores have been shown to aid DBS outcome
prognostication across tremor disorders45, which facilitates patient
counselling.

Therefore, we aimed to assess the utility of computer vision-derived
metrics in predicting DBS outcomes from preoperative kinematics and
clinical score information. First, we found that kinetic tremor wasmarkedly
less strongly modulated by DBS than postural tremor (Fig. 5a). Since per-
sisting kinetic tremor is a key driver of functional disability in essential
tremor and among the main reasons for failed DBS interventions46,47, we
binarized our patient cohort into good and poor responders based on post-
operative tremor amplitudes. We chose a threshold of ≥2 cm residual tre-
mor amplitude and ≤30% relative tremor reduction in DBS ON, so as to
identify cases with clinically relevant disability6,46,47. Applying this threshold,
we found that kinetic tremor was significantly more frequently associated
with a poor outcome (55% vs. 21% fraction of poor responders, p < 0.001,
Fig. 5b).

To identify determinants of suboptimal DBS outcomes, which might
assist in preoperative patient counselling, we conducted a logistic regression
analysis. Using binarized response group as the outcome variable and
preoperative limb kinematic features as covariates, we detected a strong and
significant association of preoperative tremor measurements to DBS out-
comes (χ2 = 58.4, p < 0.001, McFadden R2 = 0.65). Among all covariates,
baseline kinetic tremor amplitude emerged as a significant and independent
predictor of DBS response (p = 0.002, OR 0.89, 95% CI [0.82, 0.96]).
Implementing a rigorous leave-one-out cross-validation to evaluate the
model’s performance yielded an area under the receiver operator curve of
0.88 and a F1-score of 0.89 (Fig. 5c). Moreover, baseline kinetic tremor
amplitude emerged as an independent predictor of DBS-associated
improvement of kinetic tremor amplitude in a linear regression model
(R2 = 0.18, p < 0.001; baseline kinetic tremor: p = 0.021, Fig. 5d). Of note,
preoperative tremor scores were neither a significant predictor of binary

Fig. 2 | Tremor frequency analysis. a In the postural tremor condition, Mediapipe
(MP) demonstrates strong correlations with accelerometer measurements (AM),
similar to motion capture (MC), when estimating tremor frequencies (MP: r = 0.40,
p < 0.05, MC: r = 0.46, p < 0.01). b Accuracies of postural tremor frequency mea-
surements were calculated to be −0.34 Hz for motion capture and −0.21 Hz for
Mediapipe. Bland–Altman plots revealed no systematic relationship of error and
measurement magnitudes. c Absolute errors of postural tremor frequency

measurements are equivalent to motion capture. d In the kinetic tremor condition,
Mediapipe and motion capture-derived frequencies showed similar correlation
strengths to accelerometric frequency measurements (ρ = 0.38, p < 0.05).
e Accuracies of kinetic tremor frequency measurements were calculated to be
−0.22 Hz for motion capture and −0.06 Hz for Mediapipe, however both with
systematic relationships of error andmeasurement magnitudes. fAbsolute errors of
kinetic tremor frequency measurements are equivalent to motion capture.
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outcome nor tremor amplitude change. For additional exploration of
clinical and demographic features across cohorts, please see supplementary
results.

Assessment of a disease-specific convolutional network:
DLC-RCNN
The performance of pose tracking algorithms is crucially influenced by task
and visual context, especially in clinical settings28,29,35. To gauge this effect’s
relevance in the context of tremor, we additionally developed a tremor-
specific residual convolutional neural network using DeepLabCut41 (DLC-
RCNN). This network was trained with >120,000 frames of clinical video
material. Finalperformance evaluation showedamedianEuclideandistance
of 3.56mm and 10.74mm between user-annotated and predicted key-
points, demonstrating acceptable generalisation and tracking accuracy
related to fingertip size (occupying 10-20 pixels, corresponding to
10–20mm on average29,48). The model’s generalisation to an out-of-sample
validation dataset (>15,000 frames) showed high confidence in predicting
postural tremor keypoints (median likelihood of 0.99, 4884 predictions) but
unacceptably low confidence for kinetic tremor keypoints (median like-
lihood of 0.22, 10,532 predictions, Supplementary Fig. 5). Therefore, DLC-
RCNN could only be used for postural tremor analysis.

In the prospective cohort, DLC-RCNN-derived tremor amplitudes
were strongly correlated to clinical scores (ρ = 0.92, p < 0.001) and gold
standardmotion capture (ρ = 0.88, p < 0.001, Fig. 6a, b). Themean absolute
error was 2.55mm (Fig. 6c). DLC-RCNN-derived mean dominant tremor
frequenciesweremoderately correlated to accelerometer (ρ = 0.44,p < 0.05),
with a mean absolute error of −0.69Hz (Fig. 6d, e). In the retrospective

cohort, DLC-RCNN-derived postural tremor amplitudes were moderately
to strongly correlated with assigned clinical scores (ρ = 0.72, p = 0.001, Fig.
6f). DLC-RCNN’s accuracy and precision (0.66mm) for amplitudes was
equivalent tomotion capture.Themeandominant frequencywas calculated
to be 6.38 ± 0.54Hz, but the DLC-RCNN’s frequency accuracy was sig-
nificantly lower thanMediapipe andmotion capture, hence not equivalent.

Discussion
Tremor disorders underscore the critical need for granular phenotyping in
clinical management. While traditional instrumented methods provide
valuable insights, their high resource demands significantly limit their
widespread application in clinical settings. As a result, clinicians often rely
on amore reductionist approach, employing semi-quantitative rating scales
that bear considerable clinimetric limitations18,20,21. Our study was aimed to
address these challenges by comprehensively assessing the feasibility and
robustness of computer vision methods enabling tremor analysis from
standard clinical videos.

First, we found that the CV framework achieves comparable accuracy
to specialised gold standard equipment in the measurement of both tremor
amplitude and frequency. Second, we demonstrated its practical utility not
only in characterising the effects of deep brain stimulation but also in
providing valuable insights into diagnostic and prognostic challenges –
aspects that conventional scores failed to capture. Finally, our study eluci-
dated the impact of different algorithmic architectures on clinical pose
tracking capability, providing a roadmap for future technical scalability.

The results of our prospective validation underline the framework’s
accuracy, precision and clinical validity, which largely match gold standard

Fig. 3 | Application of computer vision tremor analysis in an independent, ret-
rospective cohort. a, b Computer vision-derived postural tremor amplitude mea-
surements are strongly correlated to clinical scores (MP: ρ = 0.65, p < 0.001) as well
as responsive to DBS effects (MP: r = 0.49 (95% CI [0.34, 0.61]), p < 0.001; score:

r = 0.61 (95% CI [0.49, 0.71], p < 0.001, b, c). d For kinetic tremor, Mediapipe-
derived amplitude measurements are substantially correlated to respective clinical
scores (ρ = 0.42, p < 0.001) and responsive to the effect of DBS (MP: r = 0.37, 95% CI
[0.03, 0.61], p = 0.025; score: r = 0.64, 95% CI [0.48, 0.75], p < 0.001, e, f).
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equipment. While prior studies have tapped into the potential of computer
vision for tremor detection38,49 and frequency extraction24, amplitude
quantification remained largely unexplored. Yet, tremor amplitude is
pivotal in assessing patient disability and therapeutic outcomes6,9. Our
findings indicate that smartphone videos, coupled with computer vision
tracking tools, can gauge tremor amplitude with an accuracy of up to
2.6mm, a value that falls on the low end of reported pose tracking
accuracies28,32 and that is almost an order of magnitude smaller than the
lowest anchor value provided in the tremor rating scale (20mm).

Compared to gold standard accelerometery, computer vision-derived
tremor frequency measurements demonstrated a mean absolute error
between −0.06 and −0.21Hz, values falling well within, if not below
modern vision-based frameworks24. More generally, large scale studies
investigating clinical pose tracking in other movement disorders33,35 report
moderate to high score correlation strengths in the range of 0.6–0.8, which
corresponds closely to our reported values of 0.55–0.86. Overall, this is
strongly indicative that the CV framework effectively captured the clinically
relevant target information.

Notably, somecorrelationplots exhibit increasing residualswithhigher
scores, which is well in line with the notion of a logarithmic rather than
linear relationship of tremor severity and ordinal scores18. Continuous
digital biomarkers are not subject to such non-linearity, which often com-
plicates both intra- and interindividual comparisons relevant for clinical
studies and management.

Therefore, CV frameworks offer the potential to dramatically
simplify tremor analysis by eliminating the need formultiple devices and
sensors and even enabling the analysis of unstandardised legacy videos,
underscoring their generalisability and versatility. The fully vision-based
approach can be further scaled to additionally quantify tremor-
associated neurological signs such as ataxia50 or dystonia35. This cap-
ability aligns with the central goals of future quantitative phenotyping
efforts in tremor disorders4.

Next, we applied the CV framework in exemplary use cases that are
directly inspired by clinical tremormanagement. Mediapipe was capable of
extracting advanced diagnostic tremor features, which offer additional
insights relevant for thedifferential diagnosis of tremordisorders10,43,44,51. For

Fig. 4 | Using the CV framework to augment diagnostic insight. a Example power
spectrum derived with Mediapipe. In addition to the primary, dominant frequency
peak, there is a clear cut second peak, i.e. a harmonic. b In line with previous
electromyographic work43 demonstrating the diagnostic value of the presence of a
harmonic at twice the dominant tremor frequency, we divided the frequencies of the
second and first frequency peak and performed a one-sample t-test against 2.0,

which was not significant (p = 0.99, SD of discrepancy 0.03). cMediapipe-derived
tremor signals from both hands are not coherent. d On a group level, interlimb
coherence values fall below the time series length-dependent significance value of
0.15 (median MP: median 0.097, maximum 0.13), in line with electromyographic
literature43.
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example, a harmonic peak at twice the dominant tremor frequency or a lack
of inter-limb tremor coherence can be diagnostic clues differentiating
essential tremor from other tremor syndromes10,43,44. While our study was
not designed to facilitate comparisons across different tremor disorders, our

results nonetheless demonstrate the feasibility of using theCV framework to
derive diagnostically relevant tremor features, linking computer vision-
derived biomarkers with sensor- or EMG-based findings reported in the
neurophysiological literature10,43,44.

Fig. 6 | Application of a disease-specific convolutional neural network for pos-
tural tremor analysis across cohorts. a–c In the prospective cohort, DLC-RCNN-
derived amplitude measurements are strongly correlated to clinical scores (ρ = 0.72,
p < 0.001) and motion capture (ρ = 0.88, p < 0.001). Mean absolute error is 2.55 mm
(95%CI [−2.11, 7.29]) with no systematic relationship tomeasurementmagnitudes.

d, e DLC-RCNN frequency measurements are moderately correlated to accel-
erometer (r = 0.44, p < 0.05) with a mean absolute error of−0.69 Hz [95% CI−0.93,
0.44]. f In the retrospective cohort, DLC-RCNN-derived postural tremor amplitudes
show a moderate correlation to clinical scores (ρ = 0.72, p < 0.001). DLC-RCNN
however failed to capture and measure kinetic tremor in both cohorts.

Fig. 5 | Using the CV framework for DBS effect
quantification and prognostication. a DBS exerts
stronger effects on postural than kinetic tremor as
measured by relative amplitude reduction
(p < 0.001, effect size = 0.72). b Binarizing the sam-
ple into good (GR) and poor responders (PR) using a
combined criterion of ≥2 cm tremor amplitude and
≤30% amplitude decrease in DBS ON yields a sig-
nificant greater fraction of poor responders in the
context of kinetic tremor, which is an important
driver of functional disability (55% vs. 21% of cases,
p < 0.001). c Preoperative hand kinematic features
are strong and significant predictors of DBS out-
come (χ2 = 58.4, p < 0.001, McFadden R2 = 0.65).
Baseline kinetic tremor amplitude is found to be a
significant and independent predictor of DBS out-
come for kinetic tremor. Leave-one-out-cross-vali-
dation evaluation yields an AUROC of 0.88, a
balanced accuracy of 0.88, F1-score 0.89.
d Moreover, baseline kinetic tremor amplitude is a
significant predictor of the relative DBS response in
a linear model (p = 0.012), as measured by the per-
centual reduction of kinetic tremor amplitude
(R2 = 0.18, Pearson’s r = 0.35, p = 0.005).
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Second, CV-derived features could aid in characterising thalamic
neurostimulation outcomes. Our predictive model, focusing on kinetic
tremor reduction as the key determinant of disability and life quality after
DBS implantation3,6,9,46,52, identified baseline kinetic tremor amplitude as a
predictor of DBS outcome. Interestingly, conventional tremor scores lacked
this predictive power, emphasising the advantages of sensitive and con-
tinuously encoded digital biomarkers in capturing such nuanced clinical
relationships. This finding aligns with similar results for DBS outcome
prediction based on scores in Parkinson’s disease45 as well as emerging
evidence for the added value of digital phenotyping in neurological dis-
orders which reaches far beyond conventional scores29,33,35,53,54.

While both CV architectures excelled at postural tremor tracking,
their performance was reduced in kinetic tremor tracking. The tremor-
specific DeepLabCut model entirely failed to track kinetic tremor,
drastically reducing its versatility. We hypothesise that Mediapipe
outperformed the disease-specific model due to its 3D pose tracking
capability and high hand landmark coverage (21 landmarks), which is
essential for tracking the complex configurational changes of the hands
during the finger-to-nose test28,55,56. Similar observations were reported
for head tracking in the context of dystonia35, while another study found
that a disease-specific network trained with DeepLabCut outperformed
Mediapipe in the tracking of abnormal eye movements29. As the
interactions of task, context and algorithm selection for clinical pose
tracking are just beginning to be unravelled28,55, future research is
needed to explore the benefits of 3D tracking capabilities, task-specific
algorithm customisation and model combination in different clinical
scenarios.

Several limitations should be acknowledged.While effective across task
conditions, Mediapipe hands was less robust during kinetic tremor assess-
ments involving complex hand configurations. In addition, it does not track
proximal arm landmarks, which could be of interest for future mechanistic
investigations of DBS effects57,58. In future clinical pose tracking studies, a
combination of algorithms that synergise 3D and full-body tracking with
task-specific customisation could offer a more comprehensive approach to
tremor analysis across different body regions. Second, the CV framework
was highly accurate, but our sequential recording strategy – adopted to
minimisemarker interferencewhich could lead to overly optimistic tracking
results – might introduce biological variance in tremor amplitude
measurements59. This approach is likely to underestimate rather than
overestimate the framework’s accuracy, indicating that the technical
agreement between the CV framework and gold standard might, in fact, be
even higher. Lastly, while the CV framework was effective across both
cohorts, the prospective cohort was limited in size and recruited from a
single centre. In the future, larger multi-centric studies are needed to con-
firm the broader applicability and robustness of CV-based tremor analysis
in varied clinical settings.

In conclusion, repurposing open-source pose tracking algorithms like
Mediapipe enables tremor analysis from standard clinical video material
with comparable accuracy to gold-standard methods and high convergent
clinical validity. This approach enables the extraction of digital biomarkers
for tremor diagnosis and prognosis and represents a rapidly scalable alter-
native tomore resource-intensive andmarker-basedmethods. Future work
should focus on exploring hybrid approaches, combining different pose-
tracking algorithms for a more comprehensive analysis of tremor across
body regions and task conditions. We envision computer vision pose
tracking as a pivotal tool to strengthen anddemocratise digital andprecision
medicine approaches in Neurology.

Methods
Ethics approval
This study was conducted in accordance with the Declaration of Hel-
sinki and ethics approval was obtained from the Julius-Maximilians
University Wuerzburg’s ethics committee (#283/14 and 163/14_MP).
Patients provided written informed consent for all experimental
procedures.

Study cohorts and design
The study consists of two independent phases with independent cohorts.
This design was chosen to reflect best practices inmachine learning, aiming
to ensure validity, generalisability and reproducibility (Fig. 7). All patients
had a diagnosis of essential tremor based on the Movement Disorder
Society’s consensus criteria4 and active bilateral thalamic deep brain sti-
mulation, programmed to individually optimal settings. All patients were
refractory to anti-tremor medication (propranolol, primidone).

The retrospective cohort consisted of n = 58 patients (mean age at
surgery 66.4 ± 9.84 years, 32 males, mean disease duration at surgery
30.4 ± 19.3 years). 14 patients underwent DBS surgery at Wuerzburg Uni-
versity Hospital between 2016 and 2017 and the remaining 44 patients at
Kiel University Hospital between 2003 and 201513,60,61. The mean post-
operative interval to videotaping was 25.8 ± 20.8 months. Participants were
video recordedwhilst seated in a clinic roomwith standardambient lighting.
All videos were collected using various consumer grade, handheld or tripod
mounted cameras in the context of standard clinical care to document the
severity of postural and kinetic tremor components. Spatiotemporal video
resolution was at least 25Hz and 320 ×238 pixels (px), respectively. The
Fahn-Tolosa-MarinTremorRating Scale (FTM)was formally administered
before DBS surgery and again during optimal DBS settings, by movement
disorders specialists13,60–62. Separate video segments showing the assessment
of postural tremor (arms in front of chest, “wing-beating position”, fin-
gertips facing each other but not touching) and kinetic tremor (minimumof
three repetitions of finger-to-nose-test on both sides) were identified.
Clinical score distributions are shown in Supplementary Fig. 4a.

In the retrospective cohort, video quality criteria were utilised to
optimally balance standardisation, robustness and broad applicability.
Videoswere excluded for computervisionanalysis if thehands left the frame
and if excessive cameramovements or zoomingwere present. These criteria
reflect a practical consensus synthesised from previous work in computer
vision formovement analysis24,28,29,30 aswell as exploratory pilot experiments
preceding this study. Based on these criteria, n = 15 patients had to be
excluded for postural andn = 33patients for kinetic tremor tracking, leaving
videos of n = 43 and n = 25 individuals for subsequent computer vision-
based hand tracking in postural and kinetic conditions, respectively.

The prospective cohort consisted ofn = 8patients (mean age at surgery
66.6 ± 10.4 years, 4males, mean disease duration at surgery 30.2 ± 19.5). All
patients were recruited from the movement disorders clinics at the Uni-
versity Hospital Wuerzburg, department of Neurology, in 2021. The mean
postoperative interval to the experiment was 53.6 ± 33.3 months.

Prospective experimental design
Experiments were conducted at the department of Neurology, University
Hospital Wuerzburg. Participants underwent standardised assessment of
postural (holding arms in front of chest, “wing-beating position”, fingertips
facing each other but not touching, 3 blocks of 30 seconds) and kinetic
tremor (15 repetitions offinger-to-nosepointingper side, each starting from
a resting position of the laterally outstretched arm). Tremor assessments
were recorded in a 2 × 2 block designwithDBS (on/off) andmethod (video/
motion capture and accelerometery) as intraindividual factors. Minimal
DBS washout period after impulse generator deactivation was con-
servatively set to 45minutes to exclude stimulation carry over effects63,64.
Experimental blocks were pseudorandomized to reduce systematic biases.
Based on the video material, the corresponding items of the FTM tremor
rating scale (postural and kinetic tremor amplitudes) were annotated by a
clinician expert in movement disorders blinded to the experimental
condition (MMR).

Motion capture and accelerometery setup
A six-camera optoelectronic motion capture system (SMART-DX, BTS,
Italy) operating at a temporal resolution of 100Hz was used to track ret-
roreflective markers placed bilaterally on the upper limbs’ ulnar styloid,
lateral epicondyle of the humerus and the acromion, as previously
described14. Two additional markers were placed on the middle and index
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fingertips’ dorsal heads for the assessment of postural and kinetic tremor,
respectively. The signals for postural and kinetic tremors were computed
from the middle and index fingertips’ signals and exported for subsequent
computation of tremor characteristics. During all recording sessions, two
inertial measurement units (Opal, APDM, USA; dimensions:
48.5 × 36.5 × 13.5 mm; size: 22 g) were placed on the dorsum of both wrists.
Tri-axial accelerometer data were used to measure tremor frequencies
(sampling frequency: 128Hz). To avoid potential interference of retro-
reflective markers with computer vision tracking, experiments were repe-
ated without markers for sequential analysis, as previously described29.

Video hand tracking setup
Participantswere seated on a chair in front of a neutral background. Tremor
assessment was videotaped using a standard smartphone camera (Samsung
Galaxy S20, Samsung, Seoul, South Korea), operating at a spatiotemporal
resolution of 1920×1080 px and 60Hz. The camera was mounted on a
standard tripod in landscapemode at a viewing distanceof 3metres to cover
the full body of the participants centrally in the video frame throughout the
recording time. To avoid obscuring anatomical landmarks, participants
were asked to wear sleeveless tops exposing the shoulders and arms.
Watches or other jewellery were removed or covered with tape to prevent
any interference with the limb tracking, e.g., through aberrant reflections.
For videos, pixel-to-metric conversion was derived using a “ChArUco”
board (a checkerboard with additional geometric shapes of known metric
dimensions for calibration), which was presented before each new video

run, as previously described29. Motion capture markers and accelerometers
significantly change the visual appearance of hands, which impacts com-
puter vision tracking performance and reduces external validity in non-
instrumented settings. Hence, motion capture combined with accel-
erometery and computer vision recordings were taken separately.

Mediapipe
For video-based hand tracking, we utilised a powerful and widely used
computer vision and pose tracking framework,Mediapipe31,65 (MP). To this
end, the Mediapipe PyPI package was executed in Python Version 3.9 and
the respective hand landmark detection model applied to the video dataset
which loaded usingOpenCV66. Based onMediapipe’s internal computation
of “world referenced landmarks”, no further calibration stepwasneededand
the coordinate time series of the 21 landmarks per hand were exported for
subsequent calculation of tremor characteristics.

Tremor-specific convolutional neural network
Additionally, a residual convolutional neural network was fine-tuned using
DeepLabCut41,48 to track 29 upper body landmarks from diverse clinical
videos (henceforth DLC-RCNN). In an iterative process, frames were
extracted from a total of 202 clinical videos from 58 retrospective patients as
well as 10 videos from 10 healthy controls performing the finger-to-nose
test. These videos were deliberately taken in diverse video settings (per-
spective, lighting, background) to model variance typical to medical
videography29,67. To further broaden the coverage of variability in regards to

Fig. 7 | Workflow. The study was conducted into two independent cohorts/phases.
In the prospective validation phase, upper limb tremor was recorded with a state-of-
the-art motion capture (MC) and wrist-worn accelerometer (ACCEL) setup, as well
as with a smartphone camera for subsequent computer vision-based analysis (CV).
Additionally, tremor was scored using the Fahn-Tolosa-Marin clinical tremor
rating scale for each limb. Each hand’s time series data extracted from motion
capture, accelerometer and computer vision analysis was passed into a common
analytical pipeline to compute canonical tremor features for clinical and inter-
methodological correlation. Finally, the computer vision-based tremor analysis was
applied to a retrospective video dataset of ET patients before and under chronicDBS
treatment for additional clinical validation in an independent dataset. Given the

largely unstandardised video recordings, video selection criteria were applied in
order to ensure sufficient data quality, in accordance with best practice considera-
tions in computer vision movement analysis. Subjects were included for tremor
analysis if: (i) at least one preoperative as well as one postoperative follow-up video
under active DBS was available, (ii) video material was free of excessive camera
movements, (iii) video material did not contain visual distortion such as different
zoom depths, (iv) tracked limbs were fully visible in the video frame throughout the
recording, and (v) video material contained at least 5 seconds of continuous arm
holding for postural and 3 repetitions of finger-to-nose pointing per side for kinetic
tremor assessment. Informed consent to disclose images was obtained from the
patient shown.
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anthropomorphic, pose, lighting, background and other technical factors29,
a k-Means algorithm was utilised for frame extraction from videos.
Extracted frames were subsequently labelled by a trained annotator (AJR)
and validated by an expert annotator (MF). In order to minimise labelling
errors interfering with training efficiency, the labelled frames were plotted
and checked for accuracy and plausibility before the annotated frame sets
were passed into neural network training using 95% of data, leaving the
remainder as a test set for performance evaluation. In a total of 13 con-
secutive iterations, the CNN was initialised with ResNet-50 weights and
trained using both default and imgaug augmentation approaches. To ensure
sufficient convergence of the loss function, the maximum iterations were
varied between 500,000 and 1,030,000.

In addition, a subset of 10 retrospective clinical videoswasheldback for
an additional out-of-sample validation. Importantly, no videos of the pro-
spective cohort were included in CNN training in order to maintain strict
separation between training, test and validation datasets across the study
arms. Model performance was evaluated in a multi-faceted approach as
previously described29,68 (Supplementary Fig. 5).

Calculation of tremor characteristics
As previously reported29, an inverse relationship of the DLC-RCNN’s
tracking performance and spatial resolution of the videos was observed.
Therefore, videos were resampled to 1280×720 px. This value offered the
optimal trade-off of spatial information for landmark tracking and
favourable tracking performance.

Kinematic analysis of limbmovementswas implemented inPython3.9
using standard scientific analysis packages (pandas, sklearn, numpy, scipy)
and a custom analysis pipeline. Two-dimensional coordinate time series
were conditioned by removing low likelihood marker data points (con-
fidence/likelihood <0.5, default setting in Mediapipe). Mediapipe outputs
three-dimensional marker coordinates, but for fair comparison to the two-
dimensional DLC-RCNN, only the x and y coordinates were used. The
missing points were then interpolated using a linear filter. Furthermore, a
high pass filter was implemented to remove remaining low-frequency
components associated with slow arm drifts unrelated to tremor frequency.
Given its consistency at successful tracking across videos and its clinical
relevance we tracked the middle finger’s distal phalanx for postural tremor
analysis (Mediapipe marker “middle finger tip”) and tracked the index
finger’s distal phalanx (Mediapipe marker “index finger tip”) for kinetic
tremor quantification. A bandpass filter was implemented (postural: low
cut = 1Hz, high cut = 10Hz), removing both high frequency noise (such as
“prediction jitter” introduced by frame-to-frame tracking variability, or
failure) and low-frequency large-scale movements (such as slow arm drifts
unrelated to tremor frequency). To correct for occasional poor tracking, an
additional spiking threshold was applied that identified markers that dif-
fered from the previous marker coordinates by over 100px and removed
them prior to linear interpolation (this was only relevant in a minority of
kinetic tremor videos).

For pixel-to-metric conversion, an individual scaling factor was cal-
culated for each retrospective clinical video in which no systematic cali-
bration information (i.e., checkerboard) was available. To this end, the
interpupillary distance (IPD, pupil centre to pupil centre) was used, as
previously described29. The ground truthmetric IPDwas derived from each
individual’s preoperative structural T1w-MRI scans (averaged over three
measurements) using Suretune 3 (Medtronic Inc.,Minneapolis,MN,USA).
Apatient-specific scaling factorwas then calculated by the real IPD (inmm)
divided by the video IPD (in px) measured with the open-source software
GIMP 2.8.22 (GNU Image Manipulation Program). In the prospective
videos, a ChArUco board was used for pixel-to-metric conversion. Using
these scaling factors and the known temporal video resolution, the time
series could be spatiotemporally transformed to facilitate meaningful
comparisons with clinical tremor scores, which mainly rely on tremor
amplitude estimates, as well as previous tremor research.

Tremor amplitude was calculated by first computing a spectrogram of
the tremor signal which describes the power density of frequencies of a

signal as it varies with time. The frequency bin with the maximum power is
identified for each frame and the associated amplitude and frequency for
that frame is stored. Finally, the resulting feature time series were collapsed
per experimental condition (i.e., task, DBS status) into their aggregated
mean and peak values. In accordance with the clinical scoring assessing
maximal amplitude, peak values were primarily used for subsequent com-
parisons and correlations. Of note, all main results were reproducible using
mean instead of peak amplitudes (Supplementary Figs. 3 and 4).

Computation of tremor frequency from wrist-worn
accelerometer
Firstly, the axis with the highest range of variation in acceleration was
identified for further analysis. The data underwent pre-processing,
involving bandpass filtering between 1 and 10 Hz using a 5th order
Butterworth filter. The trials were then segmented based on the type of
tremor. Postural tremor trials were segmented by means of synchronised
video recordings (VIXTA, BTS, Italy), by excluding any initial or final
voluntary arm movements. Kinetic tremor trials were segmented by
thresholding the moving average of the absolute value of the signal. For
both types of tremor, power spectral density (PSD) of the accelerometric
signal was calculated using the pwelchmethod with a rectangular window
of 1 s duration and a 0.5 s overlap. Frequency peaks in the PSD were
identified, and average values and standard deviations across trials were
calculated for each patient and condition.

Computation of advanced diagnostic features frommotion
capture and computer vision
To further characterise the nature of the tremor, we analysed harmonics
based on the spectrograms derived from eachmethod. Beyond the dominant
frequency, we identified additional peaks, indicative of potential harmonics.
To determine the nature of these harmonics, we focused on the secondmost
prominent peak in the spectrogram. The frequency of this second peak was
divided by the dominant frequency to determine the harmonic relationship.
A resulting value of 2 would indicate that the second peak is an even-
numbered harmonic, which has previously been reported to be differential
diagnostically relevant43. Also, we analysed the inter-limb coherence between
the tremor signals of both hands. Inter-limb coherence provides ameasure of
the synchrony or similarity between the tremor oscillations in the two hands.
For essential tremor, a diagnostic feature is the presence of non-coherent
tremors between the two hands, as previously described44. To quantitatively
determine the coherence, we calculated the coherence value between the
tremor signals of the two hands, derived from both motion capture and
computer vision. Based on the length of the time series data, a significance
thresholdof 0.15was established.Coherence values below this thresholdwere
considered as non-coherent, consistent with essential tremor, while values
above this threshold suggested coherent tremor activity between the hands.

Statistical methods
For the definition of equivalence boundaries, the smallest effect size of
interest (SESOI)69,70was chosen in accordance to the anchor intervals used in
the FTM tremor scale. We reasoned that the minimal clinically relevant
difference of tremor amplitudes most likely corresponds to the boundary
between score 0, “no tremor” and score 1, “slight tremor”. However, no
amplitude estimate is used as an anchor for this differentiation in the Tre-
mor scale.Basedon the 20mm intervals used to differentiate the subsequent
score levels 2–4, which align with our clinical experience in terms of tremor
relevance to everyday life, aswell as previous technical validations of sensor-
based tremor amplitude measurements achieving accuracies ±10mm71, a
SESOI of 10 mmwas empirically derived. Half of the Tremor score anchor
interval, this value was intended to reflect a rather conservative estimate of
the minimally clinical important difference. For tremor frequency, a SESOI
of 0.5 Hz was chosen in accordance with similar previous work24. For pre-
cision metrics, no a priori information was available. In line with previous
work29, the respective SESOI was anchored at the minimum precision cal-
culated from gold standard, accelerometry. To exclude significant
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confounding by potential outliers, equivalence boundaries were empirically
lowered to determine a hypothetical minimum, given the data. Equivalence
was assessed with the two one-sample t-test (TOST) method as imple-
mented in JAMOVI Version 2.2.5.0.

Leave-one-out cross-validation (LOOCV) was used to evaluate the
performance of the logistic regression model for DBS outcome prediction.
We used kinematic features and the binarized outcome variable based on
a≥ 30% kinetic tremor amplitude increase for analysis. The LOOCV pro-
cedure involved iteratively training the model on all samples except one,
whichwas thenusedas the test set. This processwas repeated for each sample,
resulting in multiple rounds of training and testing. Performance metrics,
such as accuracy, precision, recall, F1-score, AUROC, balanced accuracy and
the confusion matrix, were calculated to assess the model’s predictive cap-
ability. Additionally, we performed aWald test to determine the significance
of each selected feature as an independent predictor of the outcome. The
LOOCVand associated performance evaluationwere executed using Python
and various libraries, including scikit-learn, statsmodels and seaborn, to
support the analysis and generate high-resolution plots for visualisation.

A post-hoc power analysis was conducted. The prospective cohort’s
size was constrained by the technically complex experimental setup and
patient burden resulting from the associated periods of DBS inactivation.
Other studies using motion capture to analyse DBS effects have reported
similar sample sizes between 5 and 11 patients in the target groups6,13,14,61,72.
We approximated the achieved power for our study’s main objective (cor-
relation between gold standard and computer vision tremor amplitudes),
post-hoc. Given the observed correlation strength of 0.72–0.89 and an α-
error probability of .05, this study achieved a power (1-β) of 0.69 – 0.99 in
our sample of 8 participants.

The normality of datasets was examined using the Shapiro-Wilk test
and additional inspection of quartile (“Q-Q”) plots to inform the
appropriate display of data distributions and the selection of subsequent
contrast tests. In case of a significant deviation of the (log-)normality
assumption, non-parametric tests, i.e., Wilcoxon rank-sum test and
matched rank biserial correlation were used. Linear relationships were
examined using Pearson or Spearman’s rank correlations. When
appropriate, outliers were removed using the robust regression and
outlier removal (ROUT) method with a balanced coefficient of Q = 1%73.
The significance level was set at p < 0.05.

Statistical computations were conducted using Python 3, JAMOVI
Version 2.2.574, R Studio75 and GraphPad Prism Version 9 (GraphPad
Software. GraphPad Prism).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Non-identifiable patient data are available upon request to the corre-
sponding author.

Code availability
Mediapipe hands model is openly available at https://developers.google.
com/mediapipe. DeepLabCut code is openly available at https://github.
com/DeepLabCut/DeepLabCut. The tremor analysis pipeline is available
through github: https://github.com/peach-lucien/PoET. The tremor-
specific DLC-RCNN model is available at https://doi.org/10.7910/DVN/
CRJRJF.
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