
Safe and Secure?
On the Timing Analysability of Cryptographic

Implementations

Alexander Stegmeier∗, Peter Knauer†, Philipp Schubaur†, Christian Piatka∗,
Dominik Merli† and Sebastian Altmeyer∗

∗University of Augsburg, Department of Computer Science, Augsburg, Germany
Email: [lastname]@es-augsburg.de

†Augsburg Technical University of Applied Sciences, Institute for Innovative Safety and Security, Augsburg, Germany
Email: [firstname].[lastname]@hs-augsburg.de

Abstract—Hard real-time systems are increasingly vulnerable
to cyberattacks. Since real-time systems represent a significant
proportion of safety-critical systems not only established safety
standards but also security standards have to be considered. In
particular, standard cryptographic libraries are required to reach
an adequate level of protection.

In this study, we investigate whether it is possible to en-
sure security and hard real-time without compromising either
side. Thus, we examine relevant state-of-the-art cryptographic
primitives provided by one of the de-facto standard libraries
Mbed TLS, which is widely-used in embedded systems. We
investigate the possibility to derive a Worst-Case Execution Time
(WCET) for these primitives and review the code base with
regard to compliance on safety-related coding guidelines. In
addition, we assess the relevant aspects when security concerns
must be considered in the safety-related context. Our research
reveals several obstacles to fully apply Mbed TLS in hard real-
time systems.

Index Terms—Security, Safety, Real-Time, Cryptography,
Static timing analysis

I. INTRODUCTION

According to established safety standards, like

IEC 61508 [1] or DO-178B [2], safety-critical systems

have to undergo a certification process to ensure a specific

level of safety by avoiding erroneous system behaviour. Hard

real-time systems represent a significant proportion of the

safety-critical sector [3]. These systems must satisfy timing

requirements by providing results within predetermined

timing intervals. The verification process addresses the

timing requirements of safety-critical systems. Nevertheless,

the interconnection of numerous systems and sensors has

created new opportunities for attacks, thereby increasing

the vulnerability of safety-critical systems to cyberattacks

that intend to steal or manipulate the information being

processed. The IEC 61508 standard stresses the significance

of security in safety-critical systems by specifying essential

safety requirements. It recommends IEC 62443 [4] and other

standards as key references for in-depth information on this

subject.

The IEC 62443 standard specifies the requirements for

a secure system, with the goal of attaining adequate levels

of Confidentiality, Integrity, Availability (CIA) of processed

information [4]. Utilizing cryptographic algorithms provides

protection against breaching these principles by cryptographic

principles. It is highly recommended to exclusively use vali-

dated cryptographic algorithms due to the intricacy of devel-

oping such algorithms. Due to the potential of unnoticed errors

introducing security flaws, it is not recommended developing

custom cryptographic implementations. This is in accordance

with the commonly accepted maxim within the security indus-

try of “don’t roll your own crypto” [5].

This research examines the conflict of interest at the edge

of security and real-time requirements, seeking to align the

demands of hard real-time systems with security concerns.

Consequently, we (experts in safety and security) address the

research question:

Can we ensure security and safety via real-time
without compromising either side?

This question requires clarification regarding whether cryp-

tographic algorithms and their implementations meet the im-

plementation requirements to be able to pass the certification

process for application in hard real-time systems. Furthermore,

there is a need to assess the extent to which we have to accept

compromises and whether we can still reasonably satisfy the

requirements of both fields after doing so.

To answer our research question, we take on the role of

a developer tasked with designing a system that addresses

security concerns while successfully passing the certification

process of common safety standards. Thereby, we narrow our

focus to the requirements on the implementation of the system.

To ensure that we develop a safe and secure embedded system,

we employ common cryptographic algorithms provided by a

widely used library in the embedded domain. Furthermore,

we consider the use of a suitable hardware platform given the

embedded nature of our system.

We focus on symmetric cryptography and authentication

mechanisms as they could be particularly relevant for safety-

critical embedded systems. We emphasize utilizing various

methods as building blocks for the algorithms being explored

68

to represent a broad range of cryptographic methods. This

study examines two modern cryptographic algorithms, Ad-

vanced Encryption Standard (AES) for symmetric encryp-

tion and Hash-based Message Authentication Code (HMAC)

for data authentication, which are relevant to hard real-time

systems. As Mbed TLS [6] is a quasi-standard library for

cryptographic algorithms in embedded systems, we utilized

the AES and a HMAC implementations provided therein. We

selected the AES algorithm in Cipher Block Chaining (CBC)

mode for both encryption and decryption functions, which is

acknowledged as a typical mechanism. On the other hand,

we focused on HMAC to guarantee message integrity by

using a Message Authentication Code (MAC) based on hash

calculations. We use the Infineon XMC4500 microcontroller

[7] as our reference hardware platform.

A significant challenge in achieving safety certification

on the highest integrity levels is performing a static timing
analysis to establish dependable upper limits on the software’s
Worst-Case Execution Time (WCET). Moreover, it is critical

to avoid excessive overestimation of the obtained results as

such timing bounds may render the application infeasible

for real-world scenarios. Notably, the demand for a low

overestimation restricts code design and prohibits structures

that cannot be analysed effectively, such as dynamic memory

allocation [8].

Our study explores the feasibility of analysing cryptographic

algorithms through static timing analysis for use in embedded

systems with a cutting-edge timing analysis tool. We use the

aiT tool from AbsInt [9] to conduct our analysis since it

supports the timing verification requirements of various safety

standards (e.g., ISO 26262 [10] and DO-178B [2]). We report

the challenges encountered during the process, as well as the

findings obtained. Furthermore, there are several guidelines

available that support software development according to pre-

viously mentioned safety and security standards. Hence, we

also review the code base according to the compliance with

those guidelines.

Our investigation has revealed existing issues and potential

causes of overestimation, which limit the accuracy of timing

upper bounds provided by the analysis. Furthermore, we

propose solutions to circumvent problematic code structures

when using the library under investigation alongside a rec-

ommendation to adjust its implementation to mitigate safety

concerns.

The remainder of this paper is structured as follows: Sec-

tion II reviews related work. Afterwards, Section III discusses

concerns in development affecting safety aspects and Sec-

tion IV refers to security aspects. Section V presents the pro-

cedure how we conducted the static WCET analysis. It follows

the investigation of Mbed TLS in Section VI, including a

description of the necessary analysis efforts and gained results.

A discussion about revealed problems and recommendations

to simultaneously satisfy real-time and security is presented

in Section VII. Finally, Section VIII concludes this study.

II. RELATED WORK

Combining of security and real-time application require-

ments were introduced by Mohan in 2008 [11]. The publi-

cation addresses the associated issues but does not provide an

in-depth analysis.

Research in the crossover field of security and cryptogra-

phy, and real-time safety is a current area of investigation.

Mueller studied security mechanisms for prevention, detection

and recovery, resilience and deterrence of attacks [12]. A

2022 publication by Ke [13] presents a method for assessing

the feasibility of ciphers in embedded Real-Time Operating

System (RTOS) through timed automata, providing a detailed

examination of AES implementation properties. There exists a

real-time related benchmark suite, namely TACLe bench [14].

This suite is intended to extensively test timing analysis

tools and contains some security primitives as part of its

workload. In contrast to the libraries considered in this study,

the implementations in TACLe are not validated according to

security concerns.

Yarza proposed a framework in the intersection of safety

and security in 2022 [15]. In comparison, the present paper

evaluates the WCET of a given system on a scientific basis.

Trilla conducted an analysis of the predictability of time and

side-channel attacks in cache memory. The study demonstrated

that whilst randomization methods enhance time-predictability,

they do not offer protection against side-channel attacks and

vice versa [16]. The detection of timing violations can be

solved by a performance counter, as introduced by Carelli in

2019 [17]. Furthermore, he explains a possible side-channel

attack vector based on the ability to read the performance

counter as well as the associated mitigation strategy. Zim-

mer has developed techniques for identifying intrusions in

an application by means of self-checks via the scheduler

of an operating system [18]. In the same field of research,

McDonald conducted a study in 2022 using timing anomalies

to detect intrusions in real-time systems via a dedicated kernel

module [19]; in contrast, modifications of the kernel is not in

scope of this paper.

Blackham ran a WCET analysis for seL4, a micro ker-
nel [20] whereas this study examines cryptographic primitives.

Horga published his doctoral thesis, evaluating the perfor-

mance via a measurement-based WCET analysis and security

of GPU-based applications [21]. In contrast, the presented

research focuses on resource-restricted embedded devices.

Völp discovered tasks that are usually analysed in regard to

accidental faults experience fundamentally diverse outcomes

when impaired by malicious attacks [22].

This paper examines the Mbed TLS library as one of the

de-facto standards for embedded devices. For this reason,

no comparison of cryptographic algorithms has been made

as in the publications by Wollinger [23] or Manifavas [24].

Furthermore, no security analysis of different cryptographic

libraries, as presented by Silde [25], was done. Additionally,

a resource evaluation for energy consumption, as explored by

Kerkhof [26], was not within the project’s scope.

69

III. SAFETY CONCERNS IN DEVELOPMENT

We aim to develop a real-time system that is certifiable ac-

cording to common safety and security standards. According to

safety requirements the software must provide a sound upper

bound on its execution time. Static timing analysis is able to
provide such bounds. This analysis method relies on static

methods to determine possible execution paths from assembly

code and calculate their execution time bound. A successful

timing analysis is mainly influenced by three different aspects.

These are the structure of the analysed software, the hardware

used for execution and the capabilities of the applied analysis

tool.

A. Guidelines for safety-critical software

Various sources in literature provide information about

characteristics of software that affect its analysability. Sev-

eral available guidelines facilitate the development of safety-

critical code. Different authorities recommend their applica-

tion. Here, we shortly present MISRA-C [27] and “The Power

of 10” [28]. Both guidelines are well known in safety industry

and are referred to in other safety coding standards like the

JPL Institutional Coding Standard for the C Programming

Language [29]. Additionally, Gebhard et al. [8] focuses on

the implications of such guidelines for conducting a static

real-time analysis. The investigated rules that influences a

software’s real-time analysability typically target one or more

of three aspects:

The first aspect concerns the reduction of infeasible paths

in code or a simplified automated detection of such paths.

MISRA-C targets this aspect for example by requiring that

there shall be no unreachable code [27]. Causing a similar

outcome, “The Power of 10” strongly restricts the usage of

pointers. Specifically, amongst others it allows only one level

of dereferencing. Furthermore, function pointers are com-

pletely forbidden, unless there is a “very strong justification”

for their usage [28].

The second aspect ensures a code structure that enables the

analysis tools to automatically determine the maximum num-

ber of executed iterations of loops (known as loop bounds). For

example, rules of MISRA-C forbid any objects of floating type

in the controlling expression of for statements or that numeric
variables being used for iteration counting of for loops shall
not be modified in the loop body [27]. “The Power of 10” is

even stronger in requiring that for each loop it shall be trivial

for a checking tool to statically prove that the loop cannot

exceed a preset upper bound on the number of iterations [28].

Finally, the third and last aspect is the reduction of memory

accesses that cannot be resolved to a precise address (im-

precise or unknown memory accesses). Targeting this aspect,

MISRA-C requires that dynamic heap memory allocation shall

not be used [27]. In “The Power of 10” the same rule is

stated in a slightly relaxed fashion. It forbids the usage of

dynamic memory allocation after initialization [28]. Note that

the rule targets the initialization phase of the entire system or

application and not the initialization of a single cryptographic

procedure at runtime.

The guidelines facilitate a static execution time analysis [8].

Hence, they reduce the need for developers to provide ad-

ditional information to conduct a successful analysis. The

reduction of that effort is a relevant criterion in safety-critical

software. Identifying relevant points in code and gathering

suitable information about the execution characteristics can be

challenging and is associated with additional effort. Moreover,

manually provided information about the execution behaviour

weakens the soundness of the analysis, since this information

is not covered by the guarantees provided by a previously

verified analysis tool.

B. WCET Analysis Tool

We apply aiT by AbsInt [9] to investigate the real-time

capabilities of the code we are examining. It is a state-of-

the-art tool for providing static timing analyses on executables.

Thereby, it disassembles the binary file and performs the anal-

ysis via abstract interpretation [30] on assembly instruction

level and a cycle accurate model of the hardware. However, if

there are sections in disassembly code that cannot be analysed

statically, manual effort is needed to provide hints about the

execution behaviour. For example, one may need to provide

the maximum number of iterations a given loop may perform.

According to Wilhelm et al. [31], the analysis comprises

several analysis stages. The binary is analysed to extract the

control-flow graph. Additionally, a loop and value analysis

is performed. Thereby, the control-flow graph is constructed

based on basic blocks, i.e., pieces of code that contain exactly

one entry and one exit point. The above analyses seek to

automatically include ceilings for the number of iterations of

each loop and intervals in which the values of variables can

be determined.

The pipeline analysis and the path analysis follow. The

pipeline analysis determines the WCETs of basic blocks when

executed on the target hardware. This analysis implicitly

includes a cache analysis in order to be able to determine cache

hits and cache misses. The path analysis uses all previous

analyses and determines the worst possible execution path of

the analysed program. Thereby, it uses the control flow graph

in conjunction with the possible variable values and loop limits

in order to determine the possible paths. The longest execution

path is specified by combining the determined execution paths

and the execution times of the basic blocks. The total execution

time of the longest path is the program’s WCET and thus the

final result of the WCET analysis.

C. Hardware Platform

Many current microcontrollers utilize hardware structures

that complicate a precise static WCET analysis. Hence, the

applied analysis tool must support the hardware applied for

our system design.

Since the Infineon XMC4500 microcontroller [7] is sup-

ported by our analysis tool [33], it is a suitable representative

for executing hard real-time applications where timely and

accurate responses are critical. It is a member of the Infineon

XMC family and designed for industrial applications such as

70

ROM & Flash

Bus Matrix

CPU

ARM Cortex-M4

DSRAM1 DSRAM2PSRAM

I/ODCodeSystem ICode

Data Code

System

Master

System
Slaves

Fig. 1: The Infineon XMC4500 microcontroller, based on [32]

electric motor control, industrial connectivity and sense &

control applications [7]. Figure 1 shows a simplified block

diagram of the microcontroller. It comprises an ARM Cortex-

M4 core, a boot ROM module, a flash module with 4 KB in-

struction cache and SRAM modules with sections for program,

communication, and data memory. While SRAM memory can

be accessed within one cycle, the flash memory exhibits an

access latency of 22 ns [32]. Given the operation frequency

of 120 MHz, there is a latency of 3 cycles for each access to

the flash memory that does not hit a cache entry.

This study uses the XMC4500 Relax Lite Kit evaluation

board [34] to execute the investigated cryptographic imple-

mentations. Thereby, the experiments performed on that board

serve to verify the correct functional behaviour of our imple-

mentations and to gather measured execution times. Although

we conduct our experiments on this particular architecture, we

assume our study to be valid beyond it.

IV. SECURITY CONCERNS IN DEVELOPMENT

To ensure software security in development, it is crucial to

follow guidelines for constructing a secure software system

that is engineered from the ground up with security in mind.

A. Guidelines for security-aware software

Cryptographic algorithms are essential to ensure the in-

tegrity and confidentiality of data in embedded systems. Given

their complexity, their deployment requires a professional

approach to mitigate vulnerabilities. Cryptographic libraries,

which have been developed and maintained by expert com-

munities, undergo rigorous testing to ensure reliability. These

libraries address common concerns such as memory safety

and buffer overflows. It is recommended to employ established

and verified cryptographic libraries approved by the security

community. Such libraries are optimized for achieving low-

overhead security mechanisms, while ensuring that system

functionality remains uncompromised. Foundational selection

criteria for cryptographic libraries in embedded systems should

prioritize protection goals like CIA. Integrity is especially

essential for safety-critical applications since it guarantees

the dependability and accuracy of processed information [35].

Utilizing dependable cryptographic libraries bolsters the secu-

rity posture of embedded systems, shielding them from cyber

threats and vulnerabilities.

B. Cryptographic Libraries for Embedded Systems

The selection of cryptographic libraries for embedded sys-

tems is complex due to the constrained availability and specific

requirements of these platforms. It is essential to choose

libraries that are widely recognized as well as thoroughly

tested but also align with the security paradigm of using

only validated implementations. In the following section, we

provide details on noteworthy libraries that meet the unique

demands of embedded cryptography:

Mbed TLS [36]: Mbed TLS is an open-source library that
is optimized for use in embedded systems. It provides a wide

range of cryptographic primitives and can be customized for

different applications by disabling unnecessary modules. This

allows developers to minimize the overall memory footprint,

making it suitable for resource-constrained environments. Fur-

thermore, its permissive licensing model and robust commu-

nity support enhance its accessibility for both developers and

researchers.

OpenSSL [37]: As a highly regarded cryptographic library,
OpenSSL fully supports both SSL and TLS protocols. While

OpenSSL’s broad range of cryptographic tools and algorithms

has led to widespread usage in various systems, its complexity

may render it unsuitable for resource-constrained embed-

ded systems. Additionally, due to its extensive complexity,

OpenSSL may prove too resource-intensive for the specific

safety-critical systems included in our study. As a result,

Mbed TLS may be a more optimal choice than OpenSSL.

wolfSSL/wolfCrypt [38]: WolfSSL is an SSL/TLS library
designed for embedded systems, and IoT devices. It is backed

by wolfCrypt, an underlying cryptographic library that can

be used independently or as part of wolfSSL. The library

is focused on achieving high performance, compactness, and

compliance with industry standards. Its modular design allows

users to select only the necessary features. However, due to

its wider recognition, easier licensing, integration with major

operating systems like Zephyr, and comprehensive offerings,

Mbed TLS is a better-suited candidate for our research.

TinyCrypt [39]: TinyCrypt is a minimalist cryptographic

library that provides fundamental cryptographic primitives,

making it an ideal choice for devices with limited memory and

computational resources. Although TinyCrypt’s minimalistic

design is advantageous for certain embedded applications, it

lacks the extensive cryptographic capabilities required for our

in-depth research, as opposed to Mbed TLS.

GnuTLS [40]: This open-source library enables secure

communication protocols, such as SSL, TLS, and DTLS.

GnuTLS takes a flexible and performance-oriented approach

to cryptography with a modular architecture that facilitates

selective feature inclusions. Despite its flexibility and support

for secure communication protocols, GnuTLS is not tailored

to embedded systems like Mbed TLS, which is a better fit for

our research focus.

71

TABLE I: Overview comparison, based on GitHub stars,

recency, license and binary size

GitHub Last Licensing Binary
Stars [42] Release Model Size [43]

Mbed TLS 4.8k Jan ’24 Apache 2.0 664 KiB
OpenSSL 23.8k Jan ’24 Apache 2.0 5,000 KiB
wolfSSL 2.1k Dec ’23 GPL-2.0 1,768 KiB
TinyCrypt 0.4k Aug ’17 3-Clause BSD –
GnuTLS 0.4k Jan ’24 LGPL 2.1 –
LibTomCrypt 1.5k Jul ’18 Unlicense –

LibTomCrypt [41]: LibTomCrypt is a versatile crypto-

graphic toolbox that caters to a variety of applications, from

embedded systems to server applications. Its modular design

enables users to select required components. However, chal-

lenges related to infrequent updates and licensing concerns

have been reported. Thus, Mbed TLS is a more reliable option

for our study due to its consistent updates and clear licensing.

The listed libraries differ in terms of distribution, code

quality, licensing, and implementation standards, according

to table I. Our evaluation, coupled with Stancu et al.’s [44]

research, indicates that Mbed TLS is the most favorable option

for conducting our analysis in real-time environments. Its de-

sign is customized specifically for embedded systems, which is

in line with the context of our study. The library’s emphasis on

modularity ensures that only essential features are included, re-

ducing potential vulnerabilities and preserving vital resources,

which is essential for security-critical applications. In addition,

its extensive range of cryptographic functions ensures resilient

and secure communication channels, which are essential for

real-time systems. Furthermore, the integration of Mbed TLS

with popular real-time operating systems, such as Zephyr OS,

not only confirms its capabilities in real-time applications,

but also establishes its reliability. With its adaptability to

various applications and recognition as a de facto standard for

embedded systems, Mbed TLS stands as an optimal candidate

for in-depth analysis in real-time security-critical scenarios.

We have therefore decided to focus our efforts on Mbed TLS

in release v3.2.1 and leave the extension of our findings to
multiple libraries to future work.

V. CONDUCTING THE WCET ANALYSIS

We conduct a WCET analysis by aiT from AbsInt by first

performing an analysis run followed by a phase of investing

manual effort based on the information gathered from the

previous analysis run. Thereby, the manual effort provides

information to the tool via annotation statements in order to

eliminate situations that impede the analysis until an aspired

level of precision is reached.

A. aiT Configuration Validation

Before starting the analysis, we ensure that our tool configu-

ration is sound. Hence, we analyse small synthetic benchmarks

which validate our configurations first.

We validate if aiT works correctly for the applied hard-

ware. Thus, we perform some simple experiments and check

the correctness of the analysis runs and if they exhibit the

expected results. The experiments aim to reduce the influence

of software structures like conditional execution. They execute

a number of nop instructions (10, 100 and 1000) within the
body of a for loop iterating for a fixed number of times (10
and 20).

Since the nop benchmarks include only a small number of
loops, routines or conditional execution, the number of basic

blocks is small, too. According to these characteristics the

results of the static analysis should be close to the measured

values but still higher than or equal to them. Our tests reveal

that the nop benchmarks show the expected behaviour. These
results give us confidence that we have the tool configured

correctly.

B. Problem Types

As introduced in Section III-A, safety-related literature

refers to three aspects to facilitate static real-time analysis.

These aspects are:

• Reduction of infeasible or unresolved execution paths

• Limitation of the maximum number of loop iterations

• Reduction of imprecise or unknown memory accesses

Our experiences gained during the analyses for this study

strengthen the finding that violating these aspects are the

major cause for an increased effort to reach a certain level

of precision of the analysis result.

The analysis may encounter various types of problems

related to the mentioned aspects. One type of problem prevents

the analysis to find possible execution path. An example is

the usage of dynamically assigned function pointers. Such

pointers prevent a static decision about possible execution

paths. Another problem is conditional executions, which con-

tain paths that are never executed. Those infeasible paths may

be assumed to be on the critical path and thus, may increase

the analysed WCET upper bound significantly. Additionally,

there may exist loops which are not bounded automatically.

If the number of executed iterations of a loop cannot be

bounded or is unknown, it is not possible to derive a safe

upper bound since it is theoretically possible to spin on that

loop forever. Finally, unknown or imprecise memory accesses

may cause overestimation since the access delay of the slowest

possible memory must be assumed. Furthermore, if caches are

used, each such access destroys the current state of the cache

analysis, resulting in overall poor cache performance in the

analysis results.

C. Solving Problems

We solve the presented problems by providing additional

information via annotations. Hence, the provided annotations

are not covered by the verified correctness of the tool and the

responsibility for their correctness remains to the developer.

The impacts of the mentioned problems to the analysis

lead to the following solving order to conduct the analysis

efficiently.

72

1) Ensure recognition of all possible execution paths

2) Exclude all infeasible paths

3) Determine maximal number of executions for each path

4) Refine unknown or imprecise memory accesses

First, we identify every possibly taken execution paths

to ensure that no required annotations will be missed in

subsequent analysis steps. Typically, this is done by solving

all issues due to unresolved paths. They originate e.g., at calls

to dynamically set function pointers. Thereby, the provided

information target the analysis stage of extracting the control

flow. If such code structures are encountered, the tool will

issue warnings. After this step, the analysis is able to calculate

the maximum reachable call graph.
Subsequently, in the second step it is reasonable to exclude

all infeasible paths to restrict the invested effort of subsequent

steps only to relevant paths. This step can only be solved

via manual code or call graph review and mainly consists of

an investigation of all conditional executions in order to find

execution paths that are actually impossible to enter. This step

facilitates the path analysis and restricts the number of possibly

executed paths either directly or by restricting variable values

that affect control flow. Depending on the size of the code base

this may cause a large amount of manual effort and can be

a challenging task. Moreover, this task has to be considered

error-prone since it cannot be supported with automatically

calculated information from the analysis. After the first two

steps the set of all possibly executed paths is known, and it is

the minimal set of paths.
After fixing the call graph the next step decides the number

of executions for each path. Typically, this issue arises for

loops. The tool is partly able to decide the maximum number

of iterations automatically. However, this ability depends on

the code structure and exit conditions of loops. In case a loop

cannot be bounded the tool throws a warning. Additional effort

may arise if bounds are dependent on the calling context. If

the relevant information for the loop bound is determined in

higher levels of the calling hierarchy, further annotations may

be necessary for each call level. The information provided in

this step are utilized by the loop and value analysis of the tool.
Finally, the last step refines the results by stating target

addresses of memory accesses. Providing information about

memory access locations affect the pipeline analysis and its

implicitly conducted cache analysis in terms of influencing

the calculated WCET bounds for the basic blocks. The tool

classifies each possible access as exact, nearly exact, imprecise
and unknown. Thereby, accesses that are located within a
maximum address range of 1024 bytes are classified as nearly
exact. Otherwise, if the addresses of each of the access’s
invocation can be specified, but the range is wider than stated

above they are classified as imprecise. If at least one of

the invocations of the memory operation cannot be decided

statically it is classified as unknown.
The refinement of memory access targets may be conducted

with various extents of precision. One option is to examine

the accesses as detailed as possible and annotate the smallest

possible set of target addresses. While this approach leads to

the most precise upper bounds, it may cause a tremendous

amount of analysis effort including increased risk for false

annotations. The other possibility is to only state address

ranges that restrict each access to the targeted memory module.

Such imprecise ranges destroy cache analysis but enable the

consideration of the correct memory access latencies. Hence,

the trade-off is to accept a larger overestimation to reduce the

analysis effort.

VI. INVESTIGATION OF MBED TLS

We put ourselves in a position of a developer tasked with

designing a system that addresses security and safety concerns.

Hence, we focus on a set of representative algorithms that

are particularly relevant and most likely chosen for embedded

systems. Our objective is to evaluate the principle possibility

of simultaneously serving the fields of security and real-time

without compromising either side. Hence, we avoid additional

complexity such as compiler optimization in the analysis of

our study. Therefore, if not stated otherwise, during this study,

we focus on binary files compiled with optimization level -O0,
since higher levels tend to complicate a precise analysis.

A. Implementations under analysis

We chose AES encryption for symmetric cryptography. The

CBC mode is utilized as the basic version of feedback from

the cryptographic result into the input. Additionally, we take

a closer look at the HMAC implementation of Mbed TLS

as representative of authentication mechanisms. In contrast to

AES, this mechanism is based on hash calculations instead

of block cipher cryptography. SHA-256 is a secure hash

algorithm, based on the Merkle-Damgård construction [45].

Mbed TLS provides the ability to statically exclude the

code of unused hash methods at design time via macro

definitions. This option allows resource efficient compilation

by significantly reducing the binary size. We investigate the

impact of such optimizations on timing analysis as well. Thus,

in this study we explore two variants of HMAC, one statically

configured variant and one without this optimization. Subse-

quently, we denote the resource efficient variant of HMAC as

static config. Defined by the chosen SHA-256 input hash, the
HMAC computes a 32 byte tag with an associated 64 byte

key while operating on 64 byte blocks. We considered Cipher

Block Chaining Message Authentication Code (CMAC) for the

investigation of an authentication algorithm, too. However, this

algorithm is based on block ciphers and thus, uses the same

technique as AES. Therefore, we decided against a detailed

analysis of CMAC in favour of HMAC. Nevertheless, we show

some problems we would face when conducting an analysis

of CMAC, since they are not present in AES or HMAC.

Figure 2 shows the characteristics of the implementations

under investigation in terms of code size and control flow

structures. The graph provides insight about five attributes

of the software under analysis. Two of them target the size

of the code. These are the number of instructions in code

(instructions) and the size of the binary code of bytes (bytes).

The remaining three aspects provide information about the

73

Fig. 2: Code characteristics of analysed Mbed TLS implemen-

tations

code structure. These are the number of loops included in

each primitive (loops) and the number of routines in code

(routines). Finally, the third aspect about code structure states

the number of basic blocks of the programs (blocks).

The depicted characteristics confirm that the HMAC im-

plementation with statically excluded code for unused hash

methods is significantly smaller than its counterpart in terms

of all presented characteristic (including code size). Looking

at symmetric cryptography implementations, the code base of

AES encryption and decryption show very similar character-

istics. This is an expected observation since the performed

operations in both methods are closely related. A comparison

of AES-CBC and HMAC reveals that HMAC is larger in terms

of code size and includes significantly more basic blocks and

routines. However, the number of loops is similar. The CMAC

implementation exhibits a code size which lies between both

variants of HMAC. However, the number of routines are

similar to HMAC without static configuration and in terms

of loop number and basic blocks it exceeds all presented

implementations.

Basically, all investigated implementations are executed in

three phases, which are initialization, processing, and finaliza-

tion. During initialization the execution context is allocated

and prepared. Subsequently, the processing phase applies the

context to actually perform the cryptography function. The

finalization phase is responsible for cleaning up the execution

context and removes security relevant data from memory.

Thereby, the invocation of the cryptographic implementation

differs according to the applied algorithm (AES, HMAC or

CMAC).

While the AES phases are directly invoked from the appli-

cation code, the operations of HMAC and CMAC are encap-

sulated in wrapper functions. This encapsulation in Mbed TLS

is a design choice aimed at promoting code reusability, sim-

plifying user interactions, and allowing for flexibility in the

choice of cryptographic algorithms. These wrapper functions

help in managing the initialization, processing, and finalization

phases of cryptographic operations, ensuring the correct and

consistent execution of cryptographic functions, irrespective

of the underlying algorithms being used. The wrappers also

manage memory allocation for execution contexts and encap-

sulate the execution of functions depending on the concrete

type specified as a wrapper parameter. Thereby, they ensure

the correct preparation and clean up of the applied memory

regions to tackle the security concerns that no information

should reside in memory after cryptographic processing. This

encapsulation facilitates better usability and convenience while

aiding in deprecation handling, as changes in underlying algo-

rithms or implementations can be managed within the wrapper

functions. Thus, it minimizes the impact on the application

code.

B. Initial Issues

We apply the process presented in Section V to conduct

the analysis for the AES and HMAC implementations. The

wrappers implemented in Mbed TLS use dynamic memory

allocation for storing context data. Thereby, the allocation

and de-allocation is performed via standard memory allocation

operations malloc, calloc and free. However, dynamic
memory management is known to be a challenging task

for static timing analyses [8]. Moreover, coding guidelines

focusing on safety-critical systems strongly discourage the use

of dynamic memory allocation [27], [28]. However, from the

security perspective the modification of the library implemen-

tation is strongly discouraged without a detailed examination

of the security impacts. Hence, we see no reasonable option
to avoid the usage of heap memory for the application of
the wrapper functionality in a realistic scenario.
Thus, the wrapper implementations of the Mbed TLS library

in the current shape are not worst-case timing analysable

by the applied state-of-the-art static analysis tool. Hence, in

favour of a successful timing analysis of the complete crypto-

graphic primitive including the wrapper invocation, we decided

to adapt the allocation mechanism of the Mbed TLS HMAC

implementation. Thus, for the rest of the paper we apply

a workaround memory management implementation which

allocates memory statically. We denote this variant HMAC
(adapted). Though, wrapper can be security relevant, this
adaptation is not verified according to security implications

since a detailed security analysis including the evaluation of

all potential flaws is out of scope of this study.

Figure 3 presents the number of issues reported from

aiT after a first run of the analysis without any additional

information provided. The tool basically reports the three issue

categories unresolved execution paths, unbounded loops and
unknown memory accesses. These categories correspond to the
problems solving steps presented in Section V-C. However,

it is not possible to automatically decide the number of

undetected infeasible paths in the code under analysis. Hence,

solving problems with infeasible code cannot be facilitated

with automatically generated information.

CMAC is the only investigated implementation that
exhibits unresolved execution paths. They originate from
function pointers of the wrapper implementation. The function

74

A
ES
de
c.

A
ES
en
c.

H
M
A
C

(s
ta
tic
co
nfi
g)

C
M
A
C

H
M
A
C

(a
da
pt
ed
)

0

1,000

2,000

0 0 0 5 012 9
102

203
278

118 94
188

2205

384

is
su
es
o
f
al
g
o
ri
th
m
s unresolved execution paths

unknown loop bounds

unknown memory accesses

Fig. 3: Issues of the analysed algorithms stated by aiT after

initial analysis run

pointers are used to call specific functions according to the

concrete type and mode selected for the cryptography by pass-

ing the corresponding parameter value. Though it is possible

to statically configure the library such that unused functions

are not included, the function pointers remain in code and their

target must be assigned to aiT with annotations.

All investigated implementations exhibit loops that can-
not be statically upper bounded without further informa-
tion. Thereby, the AES implementations show the lowest num-
ber of unbounded loops whereas HMAC (adapted) includes

most of them. Thereby, in HMAC the hash generation algo-

rithms like SHA-256 show a significant number of such loops.

The static configuration of HMAC excludes 4 out of 5 hash

methods from the binary. Hence, the number of unbounded

loops of the statically configured HMAC is significantly lower

than the regular one. Next to unbounded loops a similar issue

is the presence of recursion. We recognized indirect recursion

within the cipher update routine of CMAC. Providing a safe

execution time upper bound would mean to discover and

annotate the maximum number of recursive calls similar to

loop bounds.

All investigated implementations exhibit memory ac-
cesses that cannot be determined statically to target a
single address or a range of addresses. The HMAC im-

plementations provide higher numbers of unknown accesses

than AES. Thereby, both HMAC variants show a significant

difference because of the exclusion of various code segments.

In terms of stated unknown memory accesses CMAC exhibits

the highest number of all investigated implementations. More-

over, the revealed number is a multiple of the numbers of the

other implementations. Amongst others this is caused by the

presence of different types of executions and the inability to

statically decide the actually applied type. Each of those types

reveals a vast amount of unknown memory accesses.

Figure 4 shows a statistic of the memory accesses of

each analysed implementation. Thereby, the accesses differ

according to the precision with which the analysis is able to

determine the target addresses. When regarding the cumulative

number of non-exact accesses (nearly exact, imprecise and
unknown) the AES implementations exhibit small numbers

A
ES
de
c.

A
ES
en
c.

H
M
A
C

(s
ta
tic
co
nfi
g)

C
M
A
C

H
M
A
C

(a
da
pt
ed
)

0

2,000

4,000

6,000

m
em
o
ry
ac
ce
ss
p
re
ci
si
o
n

exact memory accesses

nearly exact memory accesses

imprecise memory accesses

unknown memory accesses

Fig. 4: Precision of memory accesses after initial analysis run

Listing 1: examples for the usage of annotation statements

rou t i n e " func1 " {

en t er with : reg (" r2 ") = 3 ;

}

rou t i n e " func2 " i n s t r u c t i o n −> 128 by te s {

a c c e s s e s : 0 x10000000 to 0 x 1 0 0 0 f f f f ;

}

i n s t r u c t i o n " func3 " −> c a l l (" func4 " , 1) {

en t er with : user (" l e n ") = 56 ;

}

loop " func4 . L1" {

bound : 0 . . user (" l e n ") ;
}

area 0 x8005cfc to 0 x8005c f f con ta in s d a t a ;

compared to the authentication implementations. The CMAC

lies in between both HMAC variants. The differentiation

according to the precision reveals another distinction between

symmetric cryptography and authentication. The percentage

of exactly located memory accesses compared to the total

number of accesses of one implementation is significantly

higher for AES than for HMAC and CMAC. Hence, there are

more imprecise or unknown accesses for the authentication

implementations. Thereby, CMAC and HMAC clearly show

different types of imprecision. While CMAC mostly shows

unknown memory accesses, HMAC mostly consists of almost

exact accesses.

C. Annotations

1) Annotations types: We distinguish four types of an-

notations which are mainly used in the analysis process.

They distinguish according to the type of code they refer to.

Listing 1 illustrates the different types of annotations and their

usage in our analysis on a basis of examples.

One annotation type refers to the call of a routine. The

first annotation in Listing 1 declares that func1 always

enters the execution with value 3 in processor register r2.
The second routine annotation example specifies that the

instruction located 128 bytes after the beginning of routine

75

func2 executes a memory access that target an address within
the range of 0x10000000 to 0x1000ffff which in our
case refers to program SRAM.

Another type of annotation refers to an actual instruction.

Routine and instruction annotation types can both refer to

an instruction within code. Hence, they can be used for the

same intention. Typically, in our analysis routine annotations

ensure that a processor register or memory location contains

a certain value or that accesses target a certain address range.

In contrast, an instruction statement normally defines a value

that is used in deeper levels of the call hierarchy to distinguish

different calling contexts or to directly state a value such

as message length that depends on the calling context. The

instruction annotation of Listing 1 refers to the first call of

func4 within func3 and assigns a variable len with 56 at
the entrance of func4. The variable only lives in the analysis
environment and is used in annotations deeper in the call

hierarchy.

The third type of annotation directly points to a loop.

Typically, loop annotations are used to provide loop bounds.

According to the naming conventions of aiT the loop an-

notation of Listing 1 refers to the first loop within func4
and reuses a previously defined variable len. It provides the
information that the number of iterations executed for each

call of that loop is within the interval 0 and the value of the

variable len.
The forth annotation type refers to a range in the address

space and enables the characterization of that area. The area

example annotation states that within the address range of

0x8005cfc to 0x8005cff the memory only contain data
and no code.

2) Provided annotations: We faced unresolved execution
paths only in the CMAC implementation. However, as already

mentioned, a detailed analysis of CMAC beyond the initial

analysis run is out of scope of this study.

The next step is to decide if there are any uncovered in-

feasible paths. As mentioned above, this task requires manual

code review. There are some relatively obvious infeasible paths

in HMAC (adapted). These are the paths including the unused

hash methods. Additionally, there are numerous less obvious
to find infeasible paths in both HMAC variants. They
accumulate to an amount of about ten paths in each variant

and would exceed the WCET upper bound many times over.

We state further annotations to upper bound the num-

ber of executed loop iterations. The determination of these

annotations summarizes to a significant amount of effort,

since the discovered loops often iterate over elements of data

structures such as arrays. More detailed, the cryptography

workload often iterates over parameters such as the input

text or key and initialization and finalization code often visits

each memory location of a data structure (e.g., via calls to

memset). These workload characteristics cause loop bounds
in terms of the size of a data structure in bytes. Next to the

initialization and finalization code the hash functions of the

HMAC implementations show a lot of bounds to specify.

H
M
A
C

(s
ta
tic
co
nfi
g)

A
ES
de
c.

H
M
A
C

(a
da
pt
ed
)

A
ES
en
c.

0

100

200

an
n
o
ta
ti
o
n
s
o
f
al
g
o
ri
th
m
s

routine annotations

loop annotations

instruction annotations

area annotations

Fig. 5: Annotations stated for the implementations after the

analysis is finished

Typical functions applied in initialization and finalization

code are memory operations such as memset and memcpy.
They are responsible for preparing memory before crypto-

graphic processing and cleaning up memory afterwards. Since

data that remain in memory after finishing cryptography are

considered a security issue, these functions are mandatory for

all types of cryptography implementations. Moreover, they

are on the critical path for timing analysis since they have

to be performed directly before and after the cryptography.

Typically, loop bounds have to be set only once. Nevertheless,

there is large amount of annotations necessary when functions

are called from multiple calling contexts each leading to

different loop bounds. Therefore, additional annotations are

necessary for each context that calls the loop.

For the investigation of unknown memory accesses we only

conducted a basic refinement of the analysis result by stating

the address range of the targeted memory module for each

unknown access. In doing so, we ensure the consideration of

the correct memory access latency but accept that the analysis

of the instruction cache connected to the flash memory module

is destroyed for each imprecise access to the flash. However,

according to the large amount of unknown accesses even this

simplified process means considerable effort.

Figure 5 depicts the number of annotations made during

analysis. The numbers of annotations of the AES implemen-

tations are significantly lower than the number of the HMAC

implementations. Thereby, the major part of the annotations

are routine annotations for deciding the target address range

of unknown memory accesses. In HMAC as well as in AES the

instruction annotations are mainly located in the initialization

or finalization since they are mainly used to specify the number

of iterations of a memset routine depending on the various
calling contexts. Most loop annotations, in contrast, target the

cryptography processing itself. Regarding HMAC, these are

the loops of the SHA-256 hash processing and in AES they

are needed for bounding loops of the set key routine.

Figure 6 states the precision of the analysed memory

accesses after finishing the analysis. Thereby, the total number

of memory accesses strongly decreased compared to the first

76

H
M
A
C

(s
ta
tic
co
nfi
g)

A
ES
de
c.

H
M
A
C

(a
da
pt
ed
)

A
ES
en
c.

0

500

1,000

m
em
o
ry
ac
ce
ss
p
re
ci
si
o
n

exact memory accesses

nearly exact memory accesses

imprecise memory accesses

unknown memory accesses

Fig. 6: Memory access precision after finishing the analysis

TABLE II: Analysed WCET upper bound and the applied

annotation effort. WCET is depicted as a multiple of the

measured execution time.

Algorithm Number of Annotations Discrepancy

AES enc. 24 1.14
AES dec. 50 1.11
HMAC (adapted) 253 2.10
HMAC (static config) 247 2.07

analysis run (see Figure 4) according to the exclusion of

infeasible paths. Since we provide information to the unknown

accesses which memory module is targeted, these accesses

mainly turned into imprecise accesses. However, in AES

several accesses could be directed to a precision of nearly
exact.
A detailed analysis of binaries compiled with higher level

of optimization is out of scope of this paper. However, we

conducted some experiments to get insights on the problems

when analysing optimized code. Though, an analysis of a

binary compiled with -O1 only costs minor additional effort,
generally the overall effort for generating annotations increases

with a growing optimization level for the compile process (e.g.,

-O2). The number of, e.g., loop boundaries remains almost the
same, but it becomes increasingly difficult to find a correct

and tight upper bound. The difficulty arises from the fact that

with high optimization levels it gets complicate to relate the

source code to the disassembly which is finally used for the

analysis. Similar difficulties arise at the investigation of target

addresses for memory accesses. The drift away of assembly

code from the initial source code complicates the decision of

correct target addresses.

D. Gained WCET upper bounds

Table II shows the discrepancy of the analysis results from

the measured execution time and the corresponding number of

annotations made. The measurements were conducted through

extensive testing and the maximum value being taken. The

same system platform and binary was used for the static analy-

sis and measurements, including the usage of the software and

the same input sizes. In each experiment, we ran the program

non-preemptively and without any operating system, i.e., bare

metal. We used the built-in hardware cycle counter to extract

the execution times.

We validated the timing behaviour for different inputs of

the same input size. While timing behaviour varies depending

on the processor state, the execution times of the conducted

experiments are not influenced by different inputs as long as

the input sizes and initial processor state remain unchanged.

This was expected, as the analysed algorithms from Mbed

TLS are designed to be resistant to side-channel attacks that

exploit input-dependent timing behaviour. In contrast, timing

variations were especially noticeable when comparing the

execution time with cold and warm caches.

Though, the real WCET remains unknown, the comparison

of the calculated upper bound with the measured time gives a

rough estimation of the overestimation gained by the analysis.

The depicted table reveals that AES needs less effort to be

analysed than HMAC while exhibiting more precise results

(i.e., lower overestimation) at the same time. Furthermore, the

overestimation of AES is bound to 14% whereas HMAC shows

an execution time of more than two times of the measured

execution time. While the overestimation of AES lives in the

expected range, the one of HMAC clearly renders the results

impractical.

In addition to the poor results, it is far more complicated for

the analysis of HMAC to achieve the presented tightness. On

the one hand, this is indicated by a comparison the numbers

of provided annotations. On the other hand, with HMAC

some annotations are way more complicated to determine

than with AES. It was necessary to conduct a detailed code

review to identify infeasible paths that in total caused a

refinement of the discrepancy from a factor of about 7 to the

presented discrepancy. Note that this review is necessary for

both examined HMAC variants. We stopped our refinement

at that point since the enormous effort to reach a reasonable

level of tightness became sufficiently clear.

We conducted further analysis runs to investigate the reason

of the remaining overestimation of HMAC. In one experiment,

we unrealistically assumed that the cache accesses always hit

to evaluate if the destruction of the cache analysis caused by

imprecise memory accesses lead to this overestimation. We

found that assuming only cache hits lead to a discrepancy

factor of 1.93 for HMAC (adapted) and to a factor of 1.89 for

the statically configured variant. As the HMAC discrepancy

factors are 2.10 and 2.07, the analysed worst case caching

effects cause at maximum about 18% of the overestimation.

Other experiments that e.g., assume only aligned memory

access have only minor impact on the analysis result.

Comparing both HMAC variants, the (static config) variant
reveals a WCET upper bound that is closer to the measured

execution time. In addition, this result is achieved with fewer

annotations. Moreover, the saved annotations belong to the

ones that cause an increased effort due to the determination

of infeasible paths. Though the savings in this particular case

seem marginal, they may be relevant in implementations that

are closer to a feasible upper bound.

Altogether, the AES implementations of Mbed TLS are

77

analysable with reasonable effort. In contrast, the HMAC

implementation does not show practically relevant results, even

when investing an overly high amount of effort.

VII. DISCUSSION

The AES encryption and decryption implementations of

Mbed TLS exhibit reasonable WCETs when analysed with aiT.

Furthermore, the static configuration of the primitives facili-

tates the safety considerations as it excludes various infeasible

paths and unbounded loops. Hence, static configurations not

only improves the resource consumption but also enhances the

timing analysability. We see the option to statically configure

the library according to the needs of the current application

as a crucial benefit that facilitates a static real-time analysis.

Hence, we recommend using this option extensively.

A. Safety concerns

The investigation of the authentication primitives re-
vealed significant difficulties for the application in hard
real-time systems. These difficulties are strongly related to
the wrappers applied by Mbed TLS. Typically, the wrappers

use dynamic memory allocation and partly apply function

pointers. Both design choices violate the recommendations of

safety coding guidelines. Since the library was developed to

be highly generic, manual effort is needed to determine the

correct pointer destination. Depending on the context, various

functions can be called by the same command. This can only

be examined at runtime. Unfortunately this issue cannot be

solved by statically configuring the library. Therefore, the

wrappers are not timing analysable with the analysis tool
at hand in their current shape.
The investigated security primitives exhibit a vast amount

of unbounded loops often with upper bounds that depend

on the calling context or the input size. Such loops mainly

occur within the hash calculation of authentication primitives.

However, they are also present in other parts of the primitives.

The presented safety guidelines recommend a simple loop

structure with an explicit integer counter that is not adapted

within the loop body. This recommendation is violated for

some loops e.g., when decreasing the iteration counter by a

value gathered from a return value of a function called within

the loop body. However, most of the loops can be refactored to

fit the safety field’s preferred structure. The actual adaptation

of the loops as well as a detailed security analysis is future

work.

The usage of recursion is related to the issue about un-

bounded loops. Direct as well as indirect recursion violates

the recommendations of MISRA-C and “The Power of 10”.

In the investigated implementations, CMAC exhibits indirect

recursion. Though forbidden in presented safety guidelines,

aiT provides the annotation of a recursion upper bound to

state the maximum number of recursive calls. However, such

bounds can typically not be stated automatically. As with

loops, it is necessary to determine an upper bound.

Especially the authentication mechanisms suffer from the

large amount of provided annotations necessary to achieve

reasonable timing bounds. Next to the effort it also weakens

the soundness of the analysis because the responsibility of the

correctness of the manually provided information remains to

the developer conducting the analysis. Hence, the additional

information are not covered by the verified correctness of the

analysis tool.

B. Security concerns

The usage of wrappers is strongly recommended in
terms of security to avoid missing security relevant initializa-
tion and clean up tasks and to ensure the correct application

of the library. On the other hand, an in-house adaptation of

the library is strongly discouraged, since the adapted code is

not part of the security evaluation process that guarantees the

secure behaviour of each primitive. Hence, each adaptation
may introduce errors or vulnerabilities and thus, conflict
with the recommendations of security standards.
According to the lack of proper timing analysability of

Mbed TLS primitives, one may be tempted to ignore the se-

curity industry maxim “don’t roll your own crypto”. This may

lead to a code base certifiable according to safety standards,

but it definitely violates security considerations. To illustrate

this fact we provide insight to security primitives found in

the real-time related benchmark suite TACLe bench, which

we mentioned in Section II. This suite comprises implemen-

tations of hash algorithms MD5 and SHA1 and symmetric

cryptography with AES.

An investigation in terms of security revealed that the AES

benchmark and all hash implementations in TACLe are not

intended for the usage in real world security scenarios. The

origin of those implementations partly remains unclear, and

the code base shows some obscure implementation details.

Furthermore, the provided hash algorithms are outdated, since

it has been shown that they are broken [46]. For that reason

the code base of TACLe security implementations must be

considered insecure. Hence, we see the maxim confirmed that

“rolling one’s own cryptography” implies an increased risk of

developing insecure code either via introducing security flaws

or applying outdated primitives.

C. Recommendations

Can we ensure security and safety via real-time without

compromising either? We have found non-analysable cryp-

tographic primitives in Mbed TLS and code that violates

common safety guidelines. Hence, in a general case it is

not possible to utilize this library in hard real-time systems.

However, there are also analysable primitives. Thus, in a more

specific scenario the applicability depends on the primitives

that are required to satisfy the security concerns arising in a

particular system under development.

The main reasons for compromising safety concerns are

located in the wrapper implementations of Mbed TLS. Their

usage of dynamic memory allocation and function pointers

significantly complicates static real-time analysis. However,

from a security point of view, they are mandatory to simplify

78

the application of the primitives and prevent the introduction

of security flaws through careless usage of the library.
If these issues can be solved securely, we see that security

primitives of Mbed TLS are able to fulfil the implementation

requirements for passing the safety certification processes.

Thereby, we recommend putting special focus on the wrapper

implementations. We propose to provide less generic wrappers

to eliminate hard-to-analyse function pointers. However, we

see that this approach would come at the price of an enlarged

set of wrappers. Furthermore, the usage of static memory

instead of dynamic memory allocation would be another

important advantage in terms of safety compliance. But those

adaptions must be subject to a detailed security evaluation to

prevent the introduction of subtle security flaws. Apart from

the adaptation of wrappers, we see potential for improvement

of the real-time capability in providing loop counters and

upper bounds that are compliant to the safety guidelines.

VIII. CONCLUSION

This study investigated the conflict of interests between

safety and security concerns in embedded hard real-time sys-

tems. Our question was whether we can serve the requirements

of both fields without compromising either. We examined this

question by deriving the WCET for state-of-the-art symmetric

cryptography and authentication provided by one of the de-

facto standard libraries for embedded systems, Mbed TLS.

Furthermore, we investigated its code base with regard to

compliance on safety-related coding guidelines. Finally, we

assessed the relevant aspects when security concerns must be

considered in the safety-related context.
According to the obtained results safety and security are not

combinable without compromising either in the general case.

Our investigations revealed that large parts of the code base

of Mbed TLS are not compliant with common safety coding

guidelines. Furthermore, important parts of the library are not

timing analysable with the state-of-the-art tool aiT for static

WCET analysis. However, few primitives of Mbed TLS are

applicable to hard real-time systems. Hence, in rare special

cases their application may be a suitable option.
Altogether, simultaneously complying with safety and se-

curity concerns remains an open problem. Hence, for future

work we propose to build a library for cryptographic primitives

that suits the requirements of both fields. The adaptation of an

existing commonly used library like Mbed TLS is also a viable

option. Either way the proposed library should be compliant to

common safety and security standards and provide a vast set

of cryptographic primitives to provide suitable cryptography

for a wide range of embedded applications.

REFERENCES

[1] IEC, IEC 61508:2010 CMV. VDE VERLAG GmbH, 2010.
[Online]. Available: https://www.vde-verlag.de/iec-normen/217360/iec-
61508-2010-cmv.html

[2] RTCA, DO-178B. VDE VERLAG GmbH, 1992. [Online]. Available:
https://www.iso.org/standard/68383.html

[3] D. Kästner and C. Ferdinand, “Safety Standards and WCET Analysis
Tools,” in Embedded Real Time Software and Systems (ERTS2012),
Toulouse, France, Feb. 2012. [Online]. Available: https://hal.science/hal-
02192406

[4] DIN, IEC 62443-4-2 VDE 0802-4-2:2019-12. VDE
VERLAG GmbH, 2019. [Online]. Available: https://www.vde-
verlag.de/normen/0800631/din-en-iec-62443-4-2-vde-0802-4-2-2019-
12.html

[5] R. Zabicki, Practical Security – Simple Practices for Defending Your
Systems. Pragmatic Programmers, LLC, The, 2019.

[6] TrustedFirmware, “Mbed TLS,” 2023, Accessed: 2023-05-05. [Online].
Available: https://www.trustedfirmware.org/projects/mbed-tls/

[7] XMC4500 Microcontroller Series for Industrial Ap-
plications - Reference Manual, Infineon Technolo-
gies AG, 2016, edition 2016-07. [Online]. Avail-
able: https://www.infineon.com/dgdl/Infineon-xmc4500_rm_v1.6_2016-
UM-v01_06-EN.pdf?fileId=db3a30433580b3710135a5f8b7bc6d13

[8] G. Gebhard, C. Cullmann, and R. Heckmann, “Software Structure and
WCET Predictability,” in Bringing Theory to Practice: Predictability
and Performance in Embedded Systems, ser. OpenAccess Series in
Informatics (OASIcs), P. Lucas, L. Thiele, B. Triquet, T. Ungerer, and
R. Wilhelm, Eds., vol. 18. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2011, pp. 1–10. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2011/3083

[9] AbsInt Angewandte Informatik GmbH, “AbsInt aiT,” 2023, Accessed:
2023-05-05. [Online]. Available: https://www.absint.com/ait/index.htm

[10] ISO, ISO 26262-1:2018. VDE VERLAG GmbH, 2018. [Online].
Available: https://www.iso.org/standard/68383.html

[11] S. Mohan, “Worst-Case Execution Time Analysis of Security
Policies for Deeply Embedded Real-Time Systems,” ACM
SIGBED Review, vol. 5, no. 1, Jan. 2008. [Online]. Available:
https://doi.org/10.1145/1366283.1366291

[12] F. Mueller, “Challenges for cyber-physical systems: Security,
timing analysis and soft error protection,” in High-Confidence
Software Platforms for Cyber-Physical Systems (HCSP-CPS)
Workshop, Alexandria, Virginia, vol. 6, 2006. [Online]. Avail-
able: https://ptolemy.berkeley.edu/projects/chess/pubs/601/cps-security-
challenges.pdf

[13] Y. Ke, X. Xia, and S. Babaie, “Timed Automaton-Based
Quantitative Feasibility Analysis of Symmetric Cipher in Embedded
RTOS: A Case Study of AES,” Security and Communication
Networks, vol. 2022, p. 4118994, 2022. [Online]. Available:
https://doi.org/10.1155/2022/4118994

[14] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch,
C. Rochange, M. Schoeberl, R. B. Sørensen, P. Wägemann, and
S. Wegener, “TACLeBench: A Benchmark Collection to Support
Worst-Case Execution Time Research,” in 16th International Workshop
on Worst-Case Execution Time Analysis, Toulouse, France, 2016.
[Online]. Available: https://hal.science/hal-02610690

[15] I. Yarza, I. Agirre, I. Mugarza, and J. Perez Cerrolaza,
“Safety and security collaborative analysis framework for high-
performance embedded computing devices,” Microprocessors and
Microsystems, vol. 93, p. 104572, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0141933122001247

[16] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla, “Cache
Side-Channel Attacks and Time-Predictability in High-Performance
Critical Real-Time Systems,” in Proceedings of the 55th Annual
Design Automation Conference, ser. DAC ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3195970.3196003

[17] A. Carelli, A. Vallero, and S. Di Carlo, “Performance Monitor Counters:
Interplay Between Safety and Security in Complex Cyber-Physical Sys-
tems,” IEEE Transactions on Device and Materials Reliability, vol. 19,
no. 1, pp. 73–83, 2019.

[18] C. Zimmer, B. Bhat, F. Mueller, and S. Mohan, “Time-Based
Intrusion Detection in Cyber-Physical Systems,” in Proceedings
of the 1st ACM/IEEE International Conference on Cyber-Physical
Systems, ser. ICCPS ’10. New York, NY, USA: Association
for Computing Machinery, 2010, pp. 109–118. [Online]. Available:
https://doi.org/10.1145/1795194.1795210

[19] B. McDonald and F. Mueller, “T-SYS: Timed-Based System Security for
Real-Time Kernels,” in 2022 ACM/IEEE 13th International Conference
on Cyber-Physical Systems (ICCPS), May 2022, pp. 247–258.

[20] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and
G. Heiser, “Timing Analysis of a Protected Operating System Kernel,”
in 2011 IEEE 32nd Real-Time Systems Symposium, 2011, pp. 339–348.

[21] A. Horga, “Performance and Security Analysis for GPU-Based Ap-
plications,” Ph.D. dissertation, Linköeping University, Software and

79

Systems, Faculty of Science and Engineering, 2022, funding agencies:
the Swedish Research Council (VR), the Ministry of Education of
Singapore (MOE), the Singapore National Research Foundation (NRF)
and the Swedish National Infrastructure for Computing (SNIC).

[22] M. Völp, D. Kozhaya, and P. Verissimo, “Facing the Safety-Security
Gap in RTES: the Challenge of Timeliness,” 2017. [Online].
Available: https://orbilu.uni.lu/bitstream/10993/34057/1/Timeliness-
SafeSecGap.pdf

[23] T. Wollinger, J. Guajardo, and C. Paar, “Cryptography in embedded
systems: An overview,” Proc. Embedded World, pp. 735–744, 2003.

[24] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and K. Rantos, “Lightweight
cryptography for embedded systems–a comparative analysis,” in Inter-
national Workshop on Data Privacy Management. Springer, 2013, pp.
333–349.

[25] T. Silde, “Comparative study of ECC libraries for embedded devices,”
Norwegian University of Science and Technology, Tech. Rep, 2019.

[26] S. Kerckhof, F. Durvaux, C. Hocquet, D. Bol, and F.-X. Standaert,
“Towards green cryptography: a comparison of lightweight ciphers
from the energy viewpoint,” in Cryptographic Hardware and Embedded
Systems–CHES 2012: 14th International Workshop, Leuven, Belgium,
September 9-12, 2012. Proceedings 14. Springer, 2012, pp. 390–407.

[27] The MISRA Consortium Limited, “Publications,” 2023, Accessed:
2023-10-06. [Online]. Available: https://misra.org.uk/publications/

[28] G. Holzmann, “The Power of 10: Rules for Developing Safety-Critical
Code,” IEEE Computer, vol. 39, pp. 95–97, Jun. 2006.

[29] JPL Jet Propulsion Laboratory, JPL Institutional Coding Standard for
the C Programming Language. California Institute of Technology,
2009. [Online]. Available: http://everyspec.com/NASA/NASA-JPL/JPL-
D-60411_VER-1_32832/

[30] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, ser. POPL ’77.
New York, NY, USA: Association for Computing Machinery, 1977, pp.
238–252.

[31] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The Worst-Case
Execution-Time Problem – overview of Methods and Survey of Tools,”
ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, May 2008.

[32] Infineon Technologies AG, XMC4500 Microcontroller Se-
ries for Industrial Applications - Data Sheet, Infineon
Technologies AG, 2023, edition 2023-04. [Online]. Avail-
able: https://www.infineon.com/dgdl/Infineon-XMC4500-DataSheet-
v01_06-EN.pdf?fileId=5546d46254e133b40154e1b56cbe0123

[33] AbsInt Angewandte Informatik GmbH, aiT for ARM -
Factsheet, AbsInt Angewandte Informatik GmbH, 2023, release
23.04i, [Online; accessed 28-September-2023]. [Online]. Available:
https://www.absint.com/factsheets/factsheet_ait_arm_web.pdf

[34] XMC 4500 Relax Kit & XMC 4500 Relax Lite
Kit - Board User’s Manual, Infineon Technologies
AG, 2014, edition 2014-01-13. [Online]. Available:
http://www.infineon.com/dgdl/Board_Users_Manual_XMC4500_Relax_
Kit-V1_R1.2_released.pdf?fileId=db3a30433acf32c9013adf6b97b112f9

[35] Q. Meng and L.-T. Hsu, “Integrity for autonomous vehicles and towards
a novel alert limit determination method,” Proceedings of the Institution
of Mechanical Engineers, Part D: Journal of Automobile Engineering,
vol. 235, no. 4, pp. 996–1006, Oct. 2020.

[36] Linaro Limited, “Mbed TLS,” 2009, Accessed: 2023-10-25. [Online].
Available: https://github.com/Mbed-TLS

[37] The OpenSSL Project, “OpenSSL,” 1998, Accessed: 2023-10-25.
[Online]. Available: https://www.openssl.org/

[38] T. Ouska, “wolfSSL/wolfCrypt,” 2006, Accessed: 2023-10-25. [Online].
Available: https://www.wolfssl.com/

[39] Intel, “wolfSSL/wolfCrypt,” 2015, Accessed: 2023-10-25. [Online].
Available: https://github.com/intel/tinycrypt

[40] N. Mavrogiannopoulos and S. Josefsson, “GnuTLS,” 2000, Accessed:
2023-10-25. [Online]. Available: https://www.gnutls.org/

[41] Team libtom, “LibTomCrypt,” 2001, Accessed: 2023-10-25. [Online].
Available: https://www.libtom.net/LibTomCrypt/

[42] GitHub, Inc., “Saving repositories with stars,” 2024, Accessed: 2024-02-
28. [Online]. Available: https://docs.github.com/en/get-started/exploring-
projects-on-github/saving-repositories-with-stars

[43] A. Khlebnikov, Demystifying Cryptography with OpenSSL 3.0, J. Adolf-
sen, Ed. Birmingham: Packt Publishing Limited, 2022.

[44] F. A. Stancu, C. D. Trancă, M. D. Chiroiu, and R. Rughiniş, “Evaluation
of cryptographic primitives on modern microcontroller platforms,” in
2018 17th RoEduNet Conference: Networking in Education and Re-
search (RoEduNet), Sep. 2018, pp. 1–6.

[45] NIST, US, “National Institute of Standards and Technology. Federal
information processing standards (FIPS 180-2). Announcing the Secure
Hash Standard (August 2002),” 2004, Accessed: 2023-10-09. [Online].
Available: https://csrc.nist.gov/pubs/fips/180-2/upd1/final

[46] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The
First Collision for Full SHA-1,” in Advances in Cryptology – CRYPTO
2017, J. Katz and H. Shacham, Eds. Cham: Springer International
Publishing, 2017, pp. 570–596.

80

