
Constraint-based
Specification, Planning
and Control for Mobile

Manipulators in Dynamic
Environments

Matthias Stüben

Dissertation
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

Corporate Design
Richtlinien

Fakultät für Angewandte Informatik

18. März 2024

Constraint-based Specification, Planning and Control
for Mobile Manipulators in Dynamic Environments

Erstgutachter: Prof. Dr. Wolfgang Reif
Zweitgutachter: Prof. Dr. Bernhard Bauer

Tag der mündlichen Prüfung: 27. Mai 2024

iv

Abstract

Assistive robots have the potential to improve human lives significantly in many
different forms. The possible applications are widespread, ranging from workplace
assistance to healthcare, therapy, and household applications. Mobile manipula-
tors, combining mobility and manipulation abilities, are an especially promising
type of robot for these kinds of applications. Robots operating in unstructured,
human-centered environments, as well as interacting with humans, have to be
able to safely and robustly deal with a dynamically changing environment and
sometimes unexpected motions by humans. Creating robot motions that respect
and appropriately react to any possible change in the environment is a challenging
research question. It begins with the specification of the requirements for robot
motions for the respective task. Both planning and reactive control are required
for robust robot motions. These two approaches are not always simple to com-
bine: following a plan often conflicts with reacting to changes and a method of
reconciling them is required.
This dissertation presents a method of specifying and generating robot motions
for mobile manipulators based on geometric constraints. Constraints express
whether the current robot position satisfies its requirements, and if not, how far
off it is. Constraint rules are introduced, and are used to adapt the parameters
of the constraints to changes in the environment. Constraint controllers are
applied to generate reactive robot motions based on the current value of the
constraints. Different types of constraints allow for different types of reactions.
The concept of an action brings together multiple constraint specifications, in
which priorities, tolerances, and weights are used to express the relative importance
of the requirements. Besides reactive control, a method to create and safely execute
motion plans for action specifications is presented. Furthermore, a method for
automatically detecting when planning is required is described.
In order to demonstrate the capabilities of the presented approach, it is evaluated
on two different case studies. The first consists of an object handover between
robot and human, the second considers a robot shining a flashlight to provide light
to a human. Both case studies are evaluated in a successful case and different
failure scenarios to assess the robustness of the approach.

v

vi

Kurzfassung

Assistenzroboter bieten das Potenzial, das menschliche Leben auf vielfältige Art
und Weise zu verbessern. Die möglichen Anwendungen sind dabei vielfältig.
Unterstützung am Arbeitsplatz, Pflege und Therapie sowie Unterstützung im
Haushalt stellen nur ein Teil der Möglichkeit dar. Mobile Manipulatoren, die
Mobilität mit der Fähigkeit zur Manipulation vereinen, sind für viele derartige
Anwendungen der vielversprechendste Robotertyp.
Solche Anwendungen erfordern meist, dass die Roboter in unstrukturierten und
Mensch-zentrierten Umgebungen eingesetzt werden und dabei auch direkt mit
Menschen interagieren. Daher müssen sie in der Lage sein, mit unvorhergesehenen
Änderungen in der Umgebung sowie verschiedensten Bewegungen des Menschen
auf sichere und robuste Art umzugehen. Es ist eine herausfordernde Forschungs-
frage, wie Roboterbewegungen, die auf alle möglichen Umgebungsänderungen
angemessen und sicher reagieren, generiert werden können. Die Fragestellungen
beginnen bereits bei der Spezifikation der Anforderungen an die Bewegung. Des
Weiteren müssen sowohl Planung als auch Reaktion berücksichtigt werden, wobei
diese Ansätze sich oftmals widersprechen. Daher muss eine Methode gefunden
werden, wie sie kombiniert werden können.
In dieser Dissertation wird eine Methode vorgestellt, mittels derer Roboterbewegun-
gen für mobile Manipulatoren spezifiziert und generiert werden können. Sie basiert
auf geometrischen Constraints, die ausdrücken, ob die aktuelle Roboterposition
den Anforderungen entspricht, und falls nicht, den Grad der Abweichung angeben.
Sogenannte Constraint Rules werden benutzt, um die Parameter der Constraints
an Änderungen in der Umgebung anzupassen. Constraint Controller setzen die
aktuellen Werte der Constraints in reaktiven Bewegungen um. Verschiedene
Arten von Controllern können für verschiedene Reaktionen eingesetzt werden. Im
Konzept der Action werden mehrere Constraint-Spezifikationen zusammengeführt,
wobei diese mit Prioritäten, Gewichten und Toleranzwerten parametriert werden,
um die relative Wichtigkeit des Constraints zu erfassen. Die Spezifikation einer
Action kann sowohl für reaktive als auch geplante Bewegungen benutzt werden.
Eine Methode, um geplante Bewegungen auch in dynamischer Umgebung sicher
auszuführen wird vorgestellt. Auch ein Verfahren, um automatisch zu erkennen,
wann Planung nötig ist, wird präsentiert.
Um die Leistungsfähigkeit des vorgestellten Ansatzes zu demonstrieren, wird er
anhand zweier Fallstudien evaluiert. Die erste Fallstudie besteht aus einer Objekt-
übergabe zwischen Roboter und Mensch. Die Zweite betrachtet einen Roboter,
der mittels einer Taschenlampe den Arbeitsbereich eines Menschen beleuchtet.
Beide Fallstudien werden sowohl im Erfolgsfall als auch in verschiedenen Störfällen
evaluiert, um die Robustheit des Ansatzes bewerten zu können.

vii

viii

Acknowledgments

This thesis would not have been possible without the support I received from
different sides. First, I want to give special thanks to my advisor, Professor Dr.
Wolfgang Reif. He provided me with the resources and guidance that I needed
for this work, while also giving me enough freedom to work on the topics of my
choice and develop my own ideas.
I would like to thank all the researchers and students that I worked with during
the many years of my employment at this chair. Especially the members of the
robotics group, namely Dr. Alexander Poeppel, Dr. Julian Hanke, Dr. Christian
Eymüller, Dr. Constantin Wanninger, Martin Schörner, Daniel Bermuth and
Michael Filipenko deserve thanks for the many discussions and the hands-on
support they provided for the various hardware issues of the robot. Thanks go
to my former colleague Dr. Alwin Hoffmann for introducing me to the field of
robotics as a student assistant and later on guiding my initial path of the work
on this thesis. I am grateful to our Technician Stefan Wolff, for the tremendous
practical support in the realization of the robot system.
I would like to thank my family for their unwavering support and understanding
throughout my studies, during easier and difficult times. Lastly, I want to thank
my partner Anna for her love and encouragement during the often challenging
times of writing this dissertation.

Matthias Stüben

ix

x

Contents

1 Overview and Motivation 1
1.1 Motivation and Goals . 1
1.2 Main Contributions and Thesis Outline 3

2 Preliminaries 5
2.1 Basic Concepts of Robotics . 5

2.1.1 Representations in Cartesian Space 5
2.1.2 Kinematic Modeling of Robots 6
2.1.3 Mobile and Redundant Robots 7
2.1.4 Redundancy . 8

2.2 Safety Aspects in Human-Robot Interaction 9
2.3 Behavior Modeling . 10

2.3.1 Behavior Trees . 10
2.3.2 State Machines . 11
2.3.3 Terminology Overview . 11

3 Description of the Case Studies and the Robot Platform 13
3.1 The Case Studies . 13

3.1.1 Case Study A: Object Handover 14
3.1.2 Case Study B: Following and Lighting 16

3.2 Description of the Robot Platform 17
3.2.1 Actuators . 17
3.2.2 Sensors . 19
3.2.3 Computing Hardware . 20

3.3 Simulation . 20

4 Perception and World Modeling 23
4.1 Image Processing . 24

4.1.1 3D Obstacle Map . 25
4.1.2 Monitoring of the Surroundings 27
4.1.3 People Detection and Pose Estimation 27

4.2 Environment Model and Robot Model 28
4.3 External Torque Estimation from Motor Torques 30

4.3.1 Related Work . 30
4.3.2 Model-based methods . 31
4.3.3 Learning-based methods . 31
4.3.4 Model-based Torque Estimation 32
4.3.5 External Torque Estimation with LSTM Networks 37
4.3.6 Validation . 39
4.3.7 Evaluation . 40

xi

5 Constraint-based Robot Control 47
5.1 Related Work . 48
5.2 Definition of Constraints . 50
5.3 Handling Dependencies on the Environment: Constraint Rules and

Tasks . 54
5.3.1 Inputs to Constraint Rules 55
5.3.2 Types of Constraint Rules 57

5.4 From Constraints to Velocity Bounds: Constraint Controllers . . . 67
5.4.1 The Follow-Controller . 68
5.4.2 The Limit-Controller . 69
5.4.3 The Stopping-Controller 71
5.4.4 The Hybrid-Controller . 72

5.5 Tasks and Actions . 73
5.5.1 Specification of Tasks . 73
5.5.2 Definition of Actions . 75

5.6 Finding an Optimal Control Signal 80
5.6.1 Formulation of a Quadratic Optimization Problem 80

5.7 Evaluation . 85
5.7.1 Linear Motions to Cartesian Targets 85
5.7.2 Null-space Motion . 86
5.7.3 Reaction to Obstacles . 88
5.7.4 Real-time Requirements . 94

6 Robotic Path Planning with Constraints 97
6.1 Related Work . 98

6.1.1 Basics of Path Planning . 98
6.1.2 Multi-level Planning . 101
6.1.3 Planning with Constraints 103
6.1.4 Planning in Dynamic Environments 109

6.2 Planning Pipeline . 110
6.3 Handling Path Constraints . 111

6.3.1 Path constraints in multi-level planning 112
6.4 Finding Goals from Constraints . 113
6.5 Initial configuration . 114
6.6 Planning with Soft Constraints . 116
6.7 Evaluation and Results . 117

6.7.1 Cartesian Goal with Obstacle 119
6.7.2 Narrow Passage . 122
6.7.3 Making room . 126
6.7.4 Conclusions . 128

7 Connecting Planning and Reactive Control 131
7.1 Execution of Plans in Dynamic Environments 131

7.1.1 State of the Art . 132
7.1.2 Execution of plans in reactive control 133

xii

7.2 Execution Modes . 134
7.2.1 Reactive Action Execution 134
7.2.2 Planned Action Execution 135
7.2.3 Autoplanning Action Execution 137
7.2.4 Evaluation . 138

7.3 Combining Actions to Behaviors 138

8 Implementation and Software Architecture 139
8.1 Integration into the ROS2 environment 139

8.1.1 Defining actions . 141
8.1.2 Defining Behaviors . 144

8.2 Extending the Framework . 145
8.2.1 Adding new Types of Rules, Controllers, Inputs, Solvers . . 145
8.2.2 Integration of a new robot 145

9 Realization and Evaluation of the Case Studies 147
9.1 Realization . 147

9.1.1 Description of the graphical notation of FlexBE 147
9.1.2 Case Study A: Object Handover 148
9.1.3 Case Study B: Following and Lighting 149

9.2 Evaluation . 151
9.2.1 Case Study A: Object Handover 151
9.2.2 Case Study B: Following and Lighting 161

10 Conclusion and Outlook 167
10.1 Summary of Research Contributions and Evaluation Results 167
10.2 Open Research Challenges and Future Directions 168

Bibliography 171

Own Publications 185

List of Figures 185

List of Tables 189

Listings 191

List of Algorithms 191

xiii

1
Overview and Motivation

This chapter provides the motivation and scope of this thesis. The research area
and its context, its current limitations and goals are briefly presented. Furthermore,
the structure of this thesis and the main scientific contributions are introduced.

1.1 Motivation and Goals
Ever since the idea of robots has been created, humans have dreamed of living
naturally alongside robots in their daily lives and in their homes and workplaces.
Whether it is in their early conceptions in the works of Karel Čapek and Isaac
Asimov, or in series popular to this day such as George Lucas’ Star Wars, robots
are most often envisioned as a technology that integrates seamlessly and effortlessly
into the living environment of humans.
The reality of robot use in modern practice is often very different, with robots
mostly being used as industrial robots strictly separated from humans. Some
statistics are given below to give an overview of the current state of robotics.
They are taken from the Artificial Intelligence Index Report 2023 created by
Stanford University [93]. In industrial applications, only 2.8% of newly installed
robots were intended for collaboration with humans in 2017. By the year 2021,
this number has increased to 7.5%, which shows a strongly increasing interest in
collaborative robots, but also that they are still vastly outnumbered by robots
without the ability for collaboration.
In the area of service robotics, the data similarly shows that their use is sharply
increasing, although overall still low. Between 2020 and 2021, the number of
professional service robots installed in the world in the application area of hospi-
tality almost doubled from 11,000 to 20,000. In the same time, the number of
installed service robots for transportation and logistics has increased by about
150% from 34,000 to 50,000. While this signifies a strong trend, the absolute
numbers are small compared to the 517,000 industrial robots that are reported to
have been installed in 2021. These numbers show that robots working together
and interacting with humans are not just science fiction, but are increasingly
becoming a reality for practical applications. However, their adoption is still
lagging far behind industrial robots, and many open research questions hinder
their use. One of the many problems faced is the safety and robustness of the
robots in unpredictable and dynamic environments. This is especially true for
mobile robots, which have no fixed environment.

1

1 Overview and Motivation

While industrial robots are relatively easy to program in their static environments
with clearly defined processes, this is much more difficult for assistive robots
in environments shared with humans. Environmental changes such as moved
furniture, pets walking around or other obstacles have to be accounted for. In the
interaction with a person, the robot motion can not be fully planned in advance,
but the robot has to react and adapt to the behavior of the human. Whether the
human behaves as predicted or not, the robot has to prevent causing damage to
its environment and itself. Furthermore, the robot should be efficient and pleasant
for the humans in its environment. A robot that is safe, but not able to fulfill
its tasks, or is more bothersome than useful to its human users, has no practical
value. Therefore, the requirements for robot behaviors in interaction with humans
are complex and not easy to realize.
In the industrial context, robot motions are usually programmed by explicitly
specifying the motions that the robot has to perform. The motions are specified
as joint positions or as poses in Cartesian space. This type of programming is
clearly not sufficient for interactive robots in dynamic environments. Instead of
simply performing a series of static motions, the tasks in human-robot interaction
are more abstract. An object handover between a person and a robot, for example,
can not be specified as a sequence of static motions. The target positions depend
on the environment, such as the pose of the human engaged in an interaction,
and can not be known in advance. The robot has to continuously adjust to the
environment, in what is called reactive control. At the same time, many different
requirements on the motion have to be respected: The robot should move its
gripper towards the object it is handed, but also make sure not to collide with
any obstacles or harm the human. Optional requirements, that make the process
more pleasant for the human, should also be respected, as long as they do not
disturb the other satisfaction of the more important requirements.
At the same time, pure reactive control is at risk of creating robot behaviors that
are too passive and can easily get stuck. The robot should not only react to its
environment, but also actively seek to fulfill its task. Therefore, motion planning,
which allows the robot to plan ahead of the current state, is also required. As
following a plan and reacting to the environment are often contradictory, some
method of reconciling these two approaches is required.
To summarize, the generation of robot motions in dynamic environments for the
purpose of human-robot-interaction requires the use of reactive control reacting
to its environment, motion planning to enable proactive behaviors, and a way
to connect the two approaches. As the requirements on the robot motions in
the various unpredictable situations that can occur are complex in themselves, a
suitable method of specifying them is required as well.

2

1.2 Main Contributions and Thesis Outline

1.2 Main Contributions and Thesis Outline
This work presents a method of specifying complex robot behaviors for mobile
manipulators in dynamic environments. The intended use cases are in the field of
human-robot interaction. Methods of using the same specifications for reactive
control as well as motion planning are presented. The paths generated by the
planner are executed safely by monitoring safety-critical requirements during the
executions. Furthermore, an approach for automatically detecting when planning
is required is presented. The specification is using modular building blocks, which
can be recombined in various ways to flexibly form a wide range of robot behaviors.
If the present building blocks do not suffice, the framework is also easy to extend
through the use of a plugin mechanism. The specified robot motions have a
simple interface, making it easy to combine them to complex robot behaviors, for
example by using state machines.
The method is evaluated in practical experiments on a mobile manipulator. Two
case studies are considered. The first is an object handover between a person and
the robot. The second case study presents an application in which the robot is
continuously following a person and providing light using a flashlight. While the
robot is following the person, it has to ensure that it is not getting stuck on the
obstacles and not getting in the way of the human, while still being close enough
to provide light.
This thesis begins with an overview of the basic concepts of robotics and related
technologies that are required for the understanding of this work. Afterward, the
case studies considered in this work and the robot platform used in their realization
are described in chapter 3. The robot’s sensors and the processing of their data
to a coherent world model are presented in chapter 4. The following chapter 5
introduces a method of specifying and generating reactively controlled robot
motions based on a constraint specification. The same method of specification is
then used in chapter 6 to formulate motion planning problems. Different solvers are
evaluated in their performance for typical problems. Chapter 7 connects these two
approaches, and presents different execution modes for given specifications which
combine planning and reactive control in different ways. The implementation
and practical realization of the case studies are presented in chapter 8, before the
evaluation results are presented in chapter 9. Chapter 10 concludes the thesis
with a summary and presents possible future directions of research.

3

1 Overview and Motivation

4

2
Preliminaries

In this chapter, the most important theoretical foundations of robotics are briefly
explained and their challenges regarding the work of this thesis are outlined. The
relevant terminology and notations are introduced. For further information, the
reader is referred to the Springer Handbook of Robotics [132].

2.1 Basic Concepts of Robotics
Most robots are systems of rigid bodies which are connected by joints. The
individual rigid bodies are called links. The links have a position and orientation
in Cartesian space. Together, they are called the pose of the link. The joints
connecting the links can be either actively controlled joints or passive joints.
Passive joints do not occur in our case studies and are not considered further in
this work. Throughout this work, we refer to the number of controlled joints as
n. In general, n is a positive natural number, n ∈ N \ {0}. Different topologies
in which the links are connected are possible. The most common is the serial
kinematic chain, where each link except the first and last are connected to exactly
two other links. The first and last are connected to exactly one other link. The
robot used in the case studies is modeled as a kinematic chain. The approaches
presented in this work are also applicable to the more generic kinematic tree, in
which the structure of links and joints describes a tree. Other topologies, such as
parallel mechanisms, are possible but not considered in this work.

2.1.1 Representations in Cartesian Space

Representations of poses of various bodies in space are a fundamental part
of robotics. Poses can be described by various representations, with different
advantages. Only a brief overview of the approaches used in this work is given here.
The representation of a pose requires at least six parameters. Many representations
however use more parameters, which are not fully independent.

A basic concept in the description of poses is that of coordinate reference frames
or just frames for short. A frame consists of an origin and three orthogonal basis
vectors, typically called (x, y, z). The basis vectors are also called the axis vectors.
Poses are always expressed relative to a frame. The pose of a link can also be
expressed as a frame relative to another frame.

5

2 Preliminaries

The position of a frame relative to another can thus be denoted by a three-element
vector. The components of this vector correspond to the displacement along the
direction of the basis vectors of the reference coordinate system:

p =

px

py

pz


For the representation of rotations, various different conventions are in use. Only
the two most important representations for this work are quickly described here:
rotation matrices and rotation vectors.
A rotation matrix is a matrix of size 3 × 3. Conventionally, rotation matrices
are called R. The components of R are the dot products of the basis vectors of
reference and target frame. While a representation of a rotation only requires
three independent parameters, a rotation matrix contains nine. Rotation matrices
are therefore not a minimal representation.
The second type of representation used in this work is the rotation vector. Having
only three parameters, this representation is minimal. It is based on the observation
that an orientation can be described as a single angle θ in combination with a unit
vector w, where w describes the axis of rotations. This representation is called the
axis-angle representation. To go from this representation to the minimal rotation
vector, the angle θ is expressed as the length of the vector w. In this way, the
rotation can be expressed as a single three-element vector, called the rotation
vector.
In this work, poses are assumed to be relative to a global, fixed origin frame,
unless noted otherwise.

2.1.2 Kinematic Modeling of Robots

The robot considered in this work can be described as a kinematic chain with nine
degrees of freedom. Six degrees of freedom correspond to the joints of the arm,
three correspond to the position and orientation of the base on the horizontal
plane. The modeling of the robot is described in more detail in the following
chapter, where the robot system is presented in detail.
A vector containing the position of each joint of a robot is called a robot configu-
ration, and commonly called q ∈ Rn. In the case of the mobile manipulator used
in the experiments, q is thus a nine-dimensional vector. The components of the
vector are indexed as follows: q = (qx, qy, qθ, q1, q2, q3, q4, q5, q6). qx and qy

refer to the position of the base in the plane, qθ is the orientation (yaw) of the
base. The remaining components of q refer to the position of the six arm joints.
The vectors q̇ and q̈ stand for the velocities and accelerations of the joints. Their
components are used with indices analogously to q.

6

2.1 Basic Concepts of Robotics

Finding the pose of robot frames, given a configuration, is the problem of forward
or direct kinematics. For kinematic chains, this can be solved by calculating the
transformation between the links of the robot and concatenating them. Inverse
kinematics is the problem of determining configurations that achieve a target
pose of a link. In contrast to forward kinematics, this problem does not have a
unique solution. For robots with more than six joints, the number of solutions is
generally infinite, and some method of choosing an optimal solution is required.
The velocity of a robot link in Cartesian space is found by what is called instanta-
neous or velocity kinematics. The required inputs are the current configuration q
and the joint velocities q̇. The velocity v of the referenced link can then be found
from the following equation:

v = J(q)q̇

The matrix J(q) ∈ R6×n depends on the current configuration q and is called the
Jacobian matrix, or just Jacobian for short, of the robot link. The calculation of
J is generally easy given the kinematic structure of the robot [132], and can be
assumed to be known for any robot link.
The problem of inverse instantaneous or inverse velocity kinematics is described
by the following equation:

q̇ = J−1(q)v

It determines the required joint velocities q̇ to achieve a given link velocity v in
the current configuration q. However, the above equation is only valid for six-joint
robots, as J is otherwise not a square matrix and cannot be inverted. For robots
with more joints, the pseudo-inverse of the Jacobian can be used instead. It can
be computed by the following equation:

J† = JT (JJT)−1

Using the pseudoinverse of the Jacobian for inverse velocity kinematics will
calculate the minimum-norm joint velocities that achieve the target link velocity
v.

2.1.3 Mobile and Redundant Robots

The robot used in the experiments is a mobile manipulator, consisting of a
manipulator arm mounted on a mobile base. The fact that the manipulator arm
is extended by the mobile base makes the robot both mobile and redundant. This
section introduces the most important foundations for these types of robots.

7

2 Preliminaries

Holonomic and omnidirectional mobile robots

An important property in the control of wheeled mobile robots is whether the
robots are holonomic [132]. In practical terms, a mobile robot is holonomic
if it can move and rotate in any direction on the horizontal plane from any
configuration. Robots with a two-wheel differential drive or a car-like Ackerman
steering geometry are thus not holonomic, because they can not move sideways
directly, without changing their configuration first.
Mathematically, a holonomic robot has only kinematic constraints that can be
expressed as explicit functions of position variables. In contrast, non-holonomic
robots are subject to kinematic constraints that depend on the derivatives of
the position variables. This definition is equivalent to the following: a robot is
holonomic if and only if the amount of degrees of freedom of the workspace is
equal to the amount of differential degrees of freedom of the robot [134]. The
number of differential degrees of freedom is equal to the number of independently
achievable velocities.
For a mobile robot moving on a horizontal plane, the workspace has three degrees
of freedom: (x, y, θ). A car-like robot has only two differential degrees of freedom,
corresponding to the linear velocity and the steering angle. Therefore, this type
of robot is not holonomic. While such a robot can achieve each pose (x, y, θ)
(possibly with complex maneuvering), it can not follow each path. This has to
considered in path planning and motion generation for these types of robots and
limits their ability to move freely.
A mobile robot on the horizontal plane thus needs three differential degrees of
freedom to be holonomic. This specific type of robot is called omnidirectional robot.
The ability to react to unforeseen scenarios is highly important for interactive
scenarios. Therefore, we use an omnidirectional mobile robot as the base of the
controlled system in this work.

2.1.4 Redundancy

Kinematically redundant robots have more joints than are strictly required for
their task. In a strict sense, it can not be said that a robot is inherently redundant,
but only redundant with respect to a given task. Typically, the task of a robot is
assumed to be the motion of the end-effector in space, which requires six degrees
of freedom. In practice, robots with more than six joints are therefore usually
called redundant.
The remaining degrees of freedom can be exploited for various purposes, such as
avoiding singularities, joint limits, or obstacles. Redundant robots are able to
execute motions that do not disturb the main task, i. e. typically the pose of the
end-effector. These motions are called self-motions, internal motions, or nullspace
motions. The presence of redundancy means that additional freedom exists in
the solution of inverse kinematics and inverse velocity kinematics. Usually, some
method of optimization of given metrics is used to find optimal ways to use this

8

2.2 Safety Aspects in Human-Robot Interaction

freedom. In general, redundancy resolution thus requires a formulation of different
tasks with different importance. A similar approach is used in the concepts
described in this thesis. However, we mostly do not use the term redundancy, as
it inherently assumes a hierarchy of a main task and secondary tasks. Instead,
a more general formulation of task importance is used, that generalizes these
concepts.

2.2 Safety Aspects in Human-Robot Interaction
The topic of safety is most important in human-robot interaction. While the topic
of safety is very broad, the most relevant consideration in robotics is the collision
or unwanted force exertion between robot and human [132].
The physical safety of the human interaction partner is the most important
aspect, but the safety of the robot and any handled objects are also considered.
Since human-robot interaction by definition considers applications where robots
and humans interact, safety is much more difficult to guarantee compared to
industrial applications where robots are completely separated from any human,
at least during their operation. The methods of achieving safety in human-robot
interaction can be either hardware design, software design, or a combination of
both [24]. An example of safety achieved through hardware design are robots that
are inherently soft and light, and thus unable to cause serious harm to a person.
These types of robots are however also limited in their ability to manipulate
their environment, which naturally requires the ability to produce larger forces.
This type of intrinsic safety is thus feasible for all robots, and usually a trade-off
between safety and performance has to be made [50].
However, even if the notion of safety is reduced to the aspect of collision between
human and robot, safety depends on many different factors. They range from
software dependability and mechanical failures to human errors [2]. To fully
ensure a safe system, a thorough hazard analysis has to be performed that takes
all these factors into account. The ISO standard ISO/TS 15066:2016 [27] has
been developed to give specifications for the safety requirements for collaborative
industrial robot systems, and proposes measures to reduce the risk of human
injury. Different collaboration modes and their requirements are defined.
Several times in this thesis, we refer to safe robot motions. In these cases, we do
not refer to safety in the sense of creating a standard-conforming, verified safe
system. The required aspects lie outside the scope of this work. Safety is used
only in the sense as it applies to motion planning and control. We thus refer
to safe motions and commands if, given the currently available information, the
robot does not actively cause a collision.

9

2 Preliminaries

Figure 2.1. Example of a behavior tree.

2.3 Behavior Modeling
Even after individual robot motions have been created, a specification of when
which motion is executed is required. Various methods of building behaviors from
a finite set of building blocks have been developed, from the field of robotics as
well as other fields. This section briefly describes the two most popular methods:
behavior trees and state machines.

2.3.1 Behavior Trees

Behavior trees have originally been developed for video games, but have since been
extensively studied and used for robotics as well [21]. Their main advantage is
claimed as handling complexity better than traditional state machines. Formally,
they can be shown to generalize state machines.
A behavior tree’s leaf nodes represent individual operations. Internal nodes
represent different compositions of the underlying operations. In the execution,
an activation signal called a tick is sent to its children with configured frequency.
Whenever a node receives a tick, it is executed and returns to its parent a status
which is one of Success, Running, or Failure. The leaves are usually Action nodes,
which perform their corresponding action as long as they receive ticks regularly.
The semantics of the execution of a behavior tree are defined according to the
types of composition nodes that are used. Standard composition nodes such as
Sequence, Condition, Parallel, and Fallback have different methods of sending
ticks to their children, and thus different execution schemes can be realized. Other
types of composition nodes can also be defined to extend the capabilities.
In figure 2.1 a simple example behavior tree is shown. Green nodes show individual
actions, while white nodes are composition nodes. The modeled behavior lets the
agent open a door, if it is not already open, then enter the room and close the
door afterward. It will attempt to open the door at most three times.

10

2.3 Behavior Modeling

Despite their advantages, behavior trees have also been criticized in comparison to
state machines. One main criticism is their lack of readability. While the possible
execution paths of state machines are fairly easy to understand from a human
perspective, by following possible paths through its states, the condition-based
syntax of behavior trees can be harder to read. The fact that ticks start from the
root in every cycle means that paths through the tree have to be repeated often
to understand the resulting behaviors. Another problem of behavior trees is that
of concurrent execution and handling of orthogonal physical subsystems that are
ubiquitous in robotics [20].

2.3.2 State Machines

State machines are the established and traditional model of behavior modeling in
robotics, and a plethora of other applications. Different variants exist, including
hierarchical state machines. The most common variant might be the state machine
diagram of the UML standard [122]. Their simplicity and easy-to-understand
control mechanism make them an attractive tool. As they grow in size, they
can however be hard to maintain. Given their extremely widespread use and
the wealth of existing literature, we will not give a further introduction to state
machines here.

Recent research on the use of state machines and behavior trees in open-source
robotics projects has found that state machines are far more popular at the
moment. [46]. Behavior trees are a powerful control architecture that generalizes
multiple other approaches, including state machines. However, their advantages
mostly come into play when the complexity of state machines becomes too high to
handle. On the other hand, state machines benefit from their simplicity and ease
of use, as well as their extensive support in theory and practical tooling. Since the
high-level control in our use cases is relatively simple, we decided to model them
as state machines. In particular, we chose to use the implementation FlexBE [124]
for its visualization capabilities, ROS2 integration, and easy extensibility.

2.3.3 Terminology Overview

Organizational concepts for the specification of robot motions are notoriously
hard to name precisely and concisely. In existing literature, terms are often used
with vastly different meanings by different authors and in different contexts. For
example, the term task is routinely used to refer to either a discrete high-level
action, or to distinguish control in Cartesian space from joint-level control. This
continues in composite terms, so that for example task planning [42] and task-
constrained planning [135], both commonly used terms in the field of robotics,
might seem closely related at first glance. However, they use entirely different
interpretations of the word task and there is very little overlap in these two
research areas. Many other terms, including behavior, action, capability, skill, and
activity, are similarly overloaded.

11

2 Preliminaries

The present work includes concepts on many different levels of abstraction in
robot control. We try to keep our terminology consistent with existing literature
and implementations as far as possible. Since the existing literature is in itself
not consistent, some deviation can however not be avoided.
In general, we use the following terms with the meanings given below:

• Action: A specification of a robot motion that can not be subdivided into
discrete states. Given a goal, actions execute the corresponding robot motion
until they either succeed, fail, or get canceled. During the execution, they
provide feedback about the current state to the caller. Planned Actions are
an exception, as they contain discrete state changes as a planning phase
and a plan execution phase. It is however not part of the specification of a
planned action to specify a sequence of discrete states. We use this term
to be consistent with the conventions of the Robot Operating System [89].
Examples of actions are moving the platform to a target position, following
a person, or moving the gripper to a target pose.

• Task: Elements of the definition of an action that define requirements on
the robot’s motion. Examples include the target end-effector pose, joint
limits, or avoidance of dynamic obstacles. Internally, tasks correspond to
constraints along with a definition of how the constraint is controlled, its
dependency on the environment, priorities, and other required information.
The name is chosen as it generalizes tasks as they are used, for example
in redundancy resolution, where the task of the robot usually refers to its
end-effector pose.

• Behavior: A specification that defines the sequence in which individual
actions are performed, depending on the results of the actions and outside
information. Common tools to define behaviors are behavior trees or state
machines. The term is used in this way to be consistent with software tools
for behavior modeling and related publications, e.g. [124]. An example to
would be specified as a behavior is a complete object handover, that consists
of multiple individual actions with discrete changes between them, such as
navigating to the person, moving the gripper to the handover pose, grasping
the object, et cetera.

Detailed descriptions of these concepts follow in the remainder of this work. Here,
the descriptions are given to clarify the intuitive meanings of the terminology for
the reader in the context of this work.

12

Summary. The ability of the presented approach to cre-
ate robust and reactive motions in dynamic environments
is evaluated in two case studies. The first is an object
handover between robot and person. Both unexpected
motions by the person and obstacles in the environment
have to be considered. The second case study consists of
the robot shining a flashlight to provide light to a human
walking around a factory setting, while avoiding obsta-
cles and staying out of the way of the person. Both case
studies are realized using a mobile manipulator with a
six-joint arm and a holonomic base. 3
Description of the Case Studies and

the Robot Platform

3.1 The Case Studies . 13
3.1.1 Case Study A: Object Handover 14
3.1.2 Case Study B: Following and Lighting 16

3.2 Description of the Robot Platform 17
3.2.1 Actuators . 17
3.2.2 Sensors . 19
3.2.3 Computing Hardware 20

3.3 Simulation . 20

The approaches described in this work are evaluated on two types of case studies.
These two case studies as well as the mobile manipulator and related equipment
used in them are presented in this chapter.

3.1 The Case Studies
Two types of case studies are considered in this work. They are intended to
illustrate the applicability of the approaches to realistic scenarios. The first case
study consists of an object handover between a person and the mobile manipulator.
This task occurs in many different applications of assistance robotics. Examples
include mobile robots supporting shop floor workers by bringing and returning
tools as they are needed. Another example lies in healthcare and household
applications, where robots can prove useful by delivering various objects, such as
medicine and water or by helping people with limited mobility to gain access to
hard-to-reach objects, such as objects that fell to the floor.
The second case study serves as an example of a long-running robot behavior that
is continuously adapting to the state of the environment. The chosen case study
consists of the mobile manipulator shining a light from a flashlight to provide light

13

3 Description of the Case Studies and the Robot Platform

for a person, for example, a person working in a mechanical workshop where the
worker needs to move around to different parts of the room. Different application
examples that are very similar from a robot control perspective also exist. By
exchanging the flashlight with a camera, and the lighting application with various
monitoring and inspection tasks, the same control definition can be used for
entirely different applications.

3.1.1 Case Study A: Object Handover

The object handover is one of the most essential capabilities in service robotics.
It is a complex skill, consisting of multiple phases and highly dependent on
factors such as the type of object, expectations of the interaction partner, and
the available sensors.
In the strictest sense, it can be said that the (physical) handover only begins
once both giver and receiver are in contact with the object, and ends as soon as
only the receiver is holding the object [104]. During this phase, no large robot
motions occur typically. Instead, the main topics of interest during this phase
are the small-scale reactions to the interactions partners hand, using techniques
such as force feedback. Perhaps the most important decisions during this phase
are determining when it is safe to release the object, when it is safe to close the
grasp without hurting the interaction partner, and when an object is safely held.
Tactile and force sensing are core techniques in this field. Much of the research
focus lies on accurate sensing of interaction forces and the handled objects, as
well as designing controllers based in this information [18, 74, 29, 23].
However, other phases of a handover process are just as important, as both pre-
handover and post-handover phases are critical to the success of the process. One
important aspect of human-robot object handovers is communication: to achieve
coordinated and successful object handovers, the robot needs to be aware of the
human’s intention. In human-to-human handovers, indicators such as speech,
gaze, and body movements are used to coordinate the handovers. Researchers are
trying to understand human-to-human handovers in order to apply the results to
robots [97, 136].
Other research questions related to the field include grasp planning, which is
concerned with questions such as how an object being received from a person
should be grasped, or determining the optimal way to grasp an object in order to
then hand it over to a person. The related works take into account how a person
can and wants to grasp an object considering the physical limitations of human
hands, as well as what the person might want to use the object for [17, 73, 4].
The sub-field that is most relevant for the present work is motion planning and
control for robot handovers. This field deals with the questions of how the robot
should move before, during, and after a handover. Requirements for robot motions
for object handovers can be categorized into two categories [104]:

14

3.1 The Case Studies

1. Legibility and Predictability: These are two related, but separate char-
acteristics that describe how easy to understand and conforming to expecta-
tions the robot’s motions are from a psychological standpoint. Specifically,
legibility enables a person to infer the goal of an action by observing the
motion. On the other hand, predictability means that the robot’s motions
conform to the expectations of a person who knows the goal of the action.

2. Robustness, Reactivity, and Context Awareness: These characteris-
tics describe the robot’s ability to accommodate changes in the environment,
and to accommodate the behaviors of different persons. The realization of
the characteristics require both planning and the consideration of feedback
about the current state of the environment.

In the present work, the focus lies on the latter category. Motion planning
and reactive control are used in conjunction with constraint specifications to
achieve optimal and safe robot motions in dynamic environments. The former
category is considered to a lesser degree. While the described approach enables
the implementation of these characteristics through different constraints, costs
and other specification methods, the question of what constitutes legible and
predictable motions can only be answered through psychological research and
studies, which lies outside the scope of this work.
Object handovers in both directions, from robot to person and from person to
robot, are considered. The focus of this work lies on the motions leading up to
the point where both participants are in contact with the object. Therefore, the
differences in the handover directions are small, and they are considered as a
single case study. For the sake of simplicity, the same flashlight that is also used
for case study B is used as the object that is handed over.
At the beginning of the scenario, it is assumed that the robot is situated at a
waiting position, not in the immediate surroundings of the person. Therefore, the
robot has to navigate to the person in the first step. Successful execution of the
object handover from a mobile manipulator consists of the following steps:

1. Navigate to the proximity of the person.
2. Approach the person
3. Move to a suitable handover position and perform the handover
4. Retreat
5. Navigate back to the waiting position

Besides the successful case, several scenarios of failed handover attempts are
evaluated as well. The following cases are considered:

15

3 Description of the Case Studies and the Robot Platform

• Uncooperative Person: The interaction partner does not cooperate and
does not appear to want to participate in the handover. The robot should
keep trying for a defined time, and then safely abort the process.

• Unexpected Obstacles: If, at any point, unexpected obstacles appear,
the robot must not collide with them, and should find a way to complete its
task despite the new obstacles, if still possible.

• Blocked Path: The path may be blocked completely, making it impossible
to reach the person. This case should also be detected and an appropriate
reaction performed. In this example, it will simply be the abortion of the
process.

For all the failure scenarios, a lot of the details of the best reaction by the robot
depend on the real-world application. If, for example, the interaction partner
does not seem to participate in the handover, it might be a better reaction to use
speech or other forms of communication to attempt to initiate an interaction, or
to use workflow models to try to understand the current intentions of the person.
These techniques do however form their own research areas and lie outside the
scope of this work. The important part, from the perspective of the present thesis,
is that the robot moves safely in all situations and different types of reactions
to failure cases can be expressed in the robot behaviors. Due to the multitude
of research questions arising from human-robot handovers, including topics such
as psychological factors, control during physical contact, and grasp planning for
optimal handovers, the focus of this work has to be narrowed, and not all the
aspects can be considered to the same degree. The main concern of this work
is thus put on robust and reactive motion planning and control in the pre- and
post-handover phases.

3.1.2 Case Study B: Following and Lighting
In this case study, the robot is used to provide light to a worker moving around
a factory floor. This use case is used as an example of a long-running, reactive
task. The robot is required to keep reasonably close to the worker, without
colliding or standing in the way. To provide the light, the robot is provided with
a flashlight in its gripper. For the sake of this evaluation scenario, the flashlight is
constantly turned on. Besides the basic ability to follow the person while aiming
the flashlight, the following cases have to be considered:

• Getting Stuck: The robot can get stuck on obstacles, and no longer be
able to follow the person in a purely reactive fashion. The robot should be
able to find a way around the obstacles to move into the proximity of the
person again.

• Making Room: As the robot is following the person, the the robot might
block the way of the person. For example, this can happen if the reactive
following has moved the robot into a corner, while the person wants to
access the same corner. The robot should be able to detect this case and
move out of the corner, to make room for the person.

16

3.2 Description of the Robot Platform

The case of an uncooperative person is not relevant here, as the person has no
active role in the scenario.
In our evaluation, we assume that the person’s location is always known to the
robot. This is realized through the use of a Vicon 3D motion-capturing system
[85]. In real-world applications, this can of course not always be guaranteed.
While it is not problematic to detect the human as long as it is close to the robot
in many cases, finding them again after the robot got stuck and couldn’t follow
them closely can be a challenge. One approach of a solution would be to move to
where the person was last seen, and begin a search from there. The use of other,
less elaborate tracking systems to find the worker again, at least approximately,
is also conceivable [22].

3.2 Description of the Robot Platform
A mobile manipulator consisting of a manipulator arm and an omnidirectional
base is used for the case studies of this work. It is additionally equipped with a
parallel gripper as its end-effector and various cameras and other sensors. The
details of the hardware as well as the kinematic model are described in this section.
Besides the actuators, sensors, and computers described in this section, the robot
is further equipped with a mount for the flashlight on top of the platform. It is
used for holding the flashlight before and after handovers, and to keep it during
transport.

3.2.1 Actuators

An omnidirectional base provides the robot with mobility, while a manipulator
arm and a gripper provide the ability to manipulate its environment and interact
with people.

Mobile Platform

The base of the mobile manipulator is a Neobotix MPO-700 mobile platform
[100]. It is equipped with four powered castor wheels, which allow omnidirectional
movements of the platform. The platform can drive at a maximum speed of 0.9
m/s, and the included batteries allow for an uptime of up to 5 h. In total, the
platform has a width of 0.658 m, and a length of 0.81 m. We use the terms
platform and base equally to refer to this part of the robot.

Manipulator

The robot is equipped with a Schunk LWA 4P [128] manipulator. This robot
arm has six degrees of freedom, and a maximum payload of 6 kg. The manipulator
is mounted on the platform with its base at a height of 0.348 m above the
floor. From its base to its flange, the manipulator has a height of 0.945 m. The
manipulator is controlled using a CANopen interface. When the term mobile
manipulator is used, it refers to the entire robot system consisting of mobile base

17

3 Description of the Case Studies and the Robot Platform

and arm. In contrast, if only the term manipulator is used, this refers to the arm
only. This is following the usual terminology within the field [132]. The terms
arm and manipulator are thus used interchangeably.

Gripper

The robot is equipped with a parallel gripper, specifically the model Weiss CRG-
200-85 [118]. This servo-electric gripper is designed for collaborative applications.
The gripper is controlled from the integrated platform computer using an IO-Link
interface. The gripper has a gripping force of up to 200 N. Objects with a weight
of up to 4.3 kg can be held with this gripper.

Kinematic Model

Strictly speaking, the entire mobile manipulator has 15 controlled degrees of
freedom:

• 6 arm joints
• 1 opening width of the gripper
• 4 omnidirectional wheels with two axes each

In planning and control, a high number of degrees of freedom often causes
significant increases in the required computational cost. This is known as the
Curse of Dimensionality. It is therefore desirable to reduce the number of controlled
degrees of freedom as much as possible. Firstly, the gripper is excluded from
reactive control and planning. While it is of course still used, its available motions
are limited to grasping or releasing an object. Further considerations of the
available degree of freedom are therefore not needed, and the associated dimension
does not need to be considered in planning and control. The six joints of the
arm are strictly necessary to consider both for planning and control, as they
have a direct and strong influence on the pose of the robot in Cartesian space.
They can therefore not be simplified. The degrees of freedom introduced by the
omnidirectional wheels can however be reduced significantly. The eight degrees
of freedom are used to control only three degrees of freedom in Cartesian space:
the position and orientation of the base on the floor. The position on the floor
has only two dimensions, the orientation only one. Besides these three degrees
of freedom, the effects of the wheels are minor. Due to the holonomic nature of
the platform, it is assumed that the platform can move in any direction from any
configuration of the wheels. The current heading of the wheels has therefore no
relevance for the control of the entire robot. The heading of the wheels has some
very minor influence on the shape of the base as a whole: depending on which
direction the wheels face, they stand out from the platform at different positions.
By using large enough safety distances from any obstacles, this is however not
practically relevant. In conclusion, the eight degrees of freedom of the wheels can
be reduced to three degrees of freedom for planning and control. These three
degrees of freedom are called the virtual base joints of the platform.

18

3.2 Description of the Robot Platform

They are called virtual because they do not correspond to physical joints, but
are otherwise treated like joints in the calculations. The planning and control
systems generate commands for the virtual joints. A low-level driver is tasked
with converting the velocity commands to the commands for the eight wheel axes.
The current position of the virtual joints is only partially based on the state of
the physical wheels: As the three virtual base joints describe the position of the
robot regarding a defined origin, determining the state of the virtual base joints
corresponds to the more general problem of localization. This is solved through a
combination of data sources from the wheel, laser scanners, and external tracking.
Many possible algorithms for robot localization exist, a recent overview is provided
by Panigrahi et al. [109].

In conclusion, nine degrees of freedom are considered in the concepts for planning
and control described in this work. They are three virtual base joints, that abstract
the hardware details of the wheeled base, and six arm joints. This kinematic
model of the robot forms a single, open kinematic chain. The three virtual base
joints are followed by the six arm joints. No branches or circles in the kinematic
structure occur.

3.2.2 Sensors

The platform is equipped with two safety-rated laser scanners of the type Sick
microScan 3 [133]. They are positioned at two diagonally opposite corners of the
platform. The scanning angle of 275 ◦ per sensor thus allows to safely supervise
the entire area around the robot. The scanners are mounted so that the scanned
area is 0.181 m above the ground. The laser scans are also used for mapping,
obstacle detection, and localization.

Besides these laser scanners, three different cameras have been added on a rack on
top of the platform. The first is a Ricoh Theta Z1 360-degree camera, providing
a spherical image of the entire surroundings of the robot. The surround view
of the camera thus enables the robot with visual information in every direction,
so that the robot can, for example, be aware of any human coming close to
it. The nature of 360◦ cameras means that some form of projection is required
to map the spherical image to a two-dimensional image. The vast majority of
existing computer vision algorithms, such as algorithms for pose estimation, are
designed to work on images using a perspective projection. Projecting the entire
spherical image with a perspective projection leads to a strongly warped image.
Therefore it is recommended to determine some smaller regions of interest and
apply the perspective projection to them individually. The further details of this
are described in chapter 4.

Besides this camera, a Basler Time-of-Flight (ToF) camera is used for accurate
depth information. The camera is an engineering sample and no official information
about it appears to be provided by the manufacturer at this point in time. Some
further information is available from other scientific publications [103].

19

3 Description of the Case Studies and the Robot Platform

3.2.3 Computing Hardware

The mobile platform is equipped with an on-board computer with an Intel i7
processor and 16 GB of RAM. The computer is running an Ubuntu 22.04 Linux
operating system, using a PREEMPT_RT real-time kernel [115] to ensure a real-time-
capable environment. This computer is used to control the Neobotix platform
as well as the Schunk LWA manipulator, and runs all processes related to the
control and planning of robot motions.
Besides this computer, an Nvidia Jetson AGX Orin [101] embedded computing
board has been added to the platform. This is intended to perform most of the
sensor data processing of the various sensors. These tasks can be computationally
intensive and benefit greatly from GPU acceleration, which the built-in computer
of the platform can not provide. It features a 2048-core Nvidia Ampere GPU
and a 12-core ARM CPU. This computing board is connected to the platform
computer using Gigabit Ethernet for fast data exchange.

3.3 Simulation
In some parts of this work, simulations of the robot are used. These are using the
Gazebo simulator [45], specifically version 11. Figure 3.1 shows the real robot
and its simulation next to each other. Further, the simplified collision geometries
of the robots are shown as transparent shapes. The collision geometries are
not only used in the Gazebo-simulation, but also for any other calculation that
considers collisions, such as planning and control. Since these geometric shapes
over-approximate the real robot geometry, the simplification is safe, and can only
cause collisions to be detected where none would occur in reality. The opposite,
that real collisions are not detected, can not occur. The collision geometry has a
much simpler shape than the real robot, which means that collision checks can be
performed much more efficiently.

20

3.3 Simulation

(a) Real robot (b) Simulated model (c) Collision geometry

Figure 3.1. The real robot compared to its simulated model and the simplified collision
geometry.

21

3 Description of the Case Studies and the Robot Platform

22

Summary. In this chapter, all aspects related to
the processing and storage of sensor data on the robot
platform are described. The first part outlines the
necessary steps to detect obstacles, people, and their
pose from the available sensors. Next, the environment
model and robot model, which encapsulate all relevant
data for planning and control, are specified. Lastly, two
approaches for the estimation of contact forces based
on the measurements of motor currents are presented.
One of the approaches is based on an explicit model
of dynamical effects, while the other approach uses
machine learning. The approaches are then evaluated and
compared to each other.

Publication. Parts of this chapter have been
published previously [138]. 4

Perception and World Modeling

4.1 Image Processing . 24
4.1.1 3D Obstacle Map 25
4.1.2 Monitoring of the Surroundings 27
4.1.3 People Detection and Pose Estimation 27

4.2 Environment Model and Robot Model 28
4.3 External Torque Estimation from Motor Torques . . 30

4.3.1 Related Work . 30
4.3.2 Model-based methods 31
4.3.3 Learning-based methods 31
4.3.4 Model-based Torque Estimation 32
4.3.5 External Torque Estimation with LSTM Networks . . 37
4.3.6 Validation . 39
4.3.7 Evaluation . 40

Motion planning and reactive control in dynamic environments require information
about the environment. This includes information about the obstacles in the
environment, the position of human interaction partners, and the positions of
objects to be manipulated. Furthermore, information about the robot itself
is necessary as well. The robot’s collision geometry, kinematic structure, and
joint limits, for example, are essential to motion generation. For safe physical
interaction with humans, some method of detecting and measuring contact forces
on the robot is required.

This chapter begins with a description of the image processing methods used
to estimate the state of the environment. This is followed by a description of
the environment robot and robot model, that encapsulate the available data at
run-time. To conclude this chapter, the topic of external torque estimation based
on motor torques is approached using two different methods.

23

4 Perception and World Modeling

Figure 4.1. Photo of the camera rack and the mounted cameras.

4.1 Image Processing
On the robot platform, three image sources are available:

• Ricoh Theta Z1, providing a 360-degree image
• Intel Realsense D435 camera, capturing color images and depth informa-

tion (RGB-D)
• Basler Time-of-Flight (ToF), also providing depth information.

All three cameras are statically mounted on the camera rack on the robot platform.
Their perspective in regards to the robot is thus static. It might be beneficial
to have a camera, especially one that provides depth information, installed close
to the gripper. This would provide data about close-range objects and objects
between the gripper fingers, as well as allow the robot to actively orient the camera
towards areas of interest without having to turn the entire platform, which only
allows orientation around one axis. However, the camera on the gripper could not
be realized due to technical issues. Therefore, all cameras are statically mounted
on the platform. They can be seen in figure 4.1. The Ricoh Theta Z1 is shown on
the left side of the image, the Intel Realsense D435 is in the middle, the Basler
Time-of-Flight camera is the rightmost camera.
Each of the three cameras provides different benefits to the system. The 360-
degree camera provides a complete view of the surrounding area but has no
depth information. The Realsense D435 camera provides RGB images as well
as depth information based on stereoscopic vision. The combination of RGB
images with depth information is helpful in the detection and pose estimation

24

4.1 Image Processing

of objects or people. While it is possible to combine the same information from
separate cameras, e.g., one depth camera and one RGB camera, this can be a
computationally intensive process and prone to errors, as the images are not
taken from the same perspective, and the images thus do not necessarily show the
same content. Objects that are visible from one perspective might be occluded
from another perspective. Matching RGB and depth data is thus considerably
simplified by the use of an integrated RGB-D camera.
The depth reconstruction based on stereoscopic matching is, however, highly
dependent on the visual features of the scene and can easily produce erroneous
results in difficult scenes. This makes it unsuitable as a sole data source for
obstacle avoidance. This is a problem that the time-of-flight technology, as used
by the Basler ToF camera, does not have. The downsides of this camera, lie in the
absent RGB information and comparatively slow frequency of up to 15 Hz, while
the Realsense D435 provides depth information at frequencies of up to 90 Hz.
We describe here a concept for the detection of obstacles and people from the
available sensors. Further perception abilities, such as object detection, are also
possible, but depend on the specific application details and are not described
here.
The cameras are used for different purposes according to their capabilities. The
time-of-flight camera is used strictly for obstacle detection. The 360-degree
camera is used to monitor the surroundings so that the robot can be aware of any
human approaching it. The RGB-D camera, lastly, is intended for the perception
of interaction objects, where both some segmentation and pose estimation are
required.

4.1.1 3D Obstacle Map

The depth information provided by the Basler ToF camera can be used to create
a three-dimensional environment map using, for example, the popular OctoMap
framework [60]. The resulting map, based on the data structure octree, can be
queried efficiently as a basis for obstacle avoidance in planning and control. This
simple solution has the problem that the robot itself is constantly recorded by
the camera. The robot itself should not be registered as an obstacle on not be
part of a map. The same goes for human interaction partners. While they must
of course not be harmed, the necessary reactions are often different from those
of more generic environmental obstacles and should thus be differentiated. For
example, in a handover, the robot has to come in direct physical contact with the
person, which should not happen with other environmental obstacles. The image
in figure 4.2 shows an example of a depth image provided by the camera, with the
robot gripper as well as the resulting occluded area behind it clearly visible.
The robot, and possibly the person, thus have to be removed from the depth
scans, while accounting for the current robot pose. For the robot, this can be
done based on the description of the robot’s geometry and the current robot
configuration. From this information, the predicted space occupied by the robot

25

4 Perception and World Modeling

Figure 4.2. Example depth scan from the Basler ToF camera.

in its current configuration can be calculated. Any scanned points that are within
a threshold of the calculated robot parts of the image are removed. A similar
process is used for the filtering of the person. Once the estimated pose of the
person is known, any points within a defined range around the estimated points
are removed from the scan. The thresholds are chosen in a way that makes it
much more likely that too much is removed rather than not removing enough.
Measurements that slip through the filter can disturb the robot controller by
being registered as an obstacle, and leading to an abrupt stop. On the other hand,
it is presumed to be unlikely that an obstacle newly appears within the direct
proximity of the person or the robot, without being registered on the map first,
while it was approaching.

The map, as provided by OctoMap, can then be used for planning and control.
Distance calculations using octrees are however relatively slow, compared to those
using a map based on primitive geometric shapes such as spheres, cubes, and
planes. Finding good approximations using geometric primitives based on a depth
map is however not trivial and quite computationally intensive [127]. Therefore, it
is currently not feasible in real-time. One approach to still make use of geometric
primitives can be to use phases where the robot is not in use to perform the
necessary calculations and simplify the map. As soon as there are substantial
changes to the map, this would have to be repeated.

26

4.1 Image Processing

4.1.2 Monitoring of the Surroundings

The Ricoh Theta Z1 360-degree camera is used to detect any person approaching
the robot. While the available image by the camera is not ideal for highly accurate
perception tasks, due to perspective projection issues and only containing two-
dimensional RGB data, the fact that it records in all directions makes it a valuable
sensor.
The image, as provided by the camera, covers a full 360-degree field of view.
Displaying it on a two-dimensional image, whether for human viewing or image
processing, thus requires some form of projection. The most basic projection is
the so-called equirectangular projection. This operation causes a curved distortion
on the image, which easily disturbs existing algorithms that are typically designed
to work with images using a perspective projection instead.
Therefore, the image should be projected to use a perspective projection before
further processing. The smaller the field of view, the smaller will be the distortion
on the resulting perspective-projected image. Therefore, not the full 360-degree
image is projected, but it is divided into four sections. Each section is then
projected individually. In order to avoid problems in cases where people are
positioned on the dividing line between sections, the sections are chosen to have
an angle of 120 degrees each, so that there is a significant overlap between the
sections. Each of the sections is then transferred to a perspective projection.
Example images showing the curved distortion of equirectangular projection, as
well as the resulting image section when using perspective projection, are shown
in figure 4.3.
The resulting images can then be used by a people detection method. This is
a highly active research area with many competing implementations. We have
chosen the popular peopleNet [116] for its good results and readily available
implementation for the Nvidia Jetson.
Once a person has been detected, the angle at which it approaches the robot
can be calculated from the person’s position in the image. Further steps for
an interaction are then taken using the Realsense RGB-D camera, as described
below.

4.1.3 People Detection and Pose Estimation

Once the person to interact with has been identified using the 360-degree camera,
the robot can position itself so that the person is within the field of view of
the Realsense D435 RGB-D Camera. Then, existing algorithms [15] based on
part-affinity fields are used to estimate the pose of the person from the RGB-D
image. The referenced algorithms provide implementations optimized to run on
the computing hardware of the Nvidia Jetson AGX computing board, so that
the GPU capabilities can be used as much as possible. For now, the system is
restricted to a single person within the proximity of the robot. If multiple people
are detected approaching the robot, it will stop moving as a safety precaution.

27

4 Perception and World Modeling

(a) Full 360-degree example image using equirectangular
projection.

(b) Image section transformed to
perspective projection, with the
result of person detection shown.

Figure 4.3. Example images from the 360-degree camera using equirectangular and
perspective projection.

To operate the robot in a multi-person scenario, some method of differentiating
them and detecting their identity is required. This lies outside of the scope of
this work.

4.2 Environment Model and Robot Model

In this section, the internal model used to represent the knowledge about the
environment as well as the structure and geometry of the robot itself are described.
The information about the robot itself is stored in the robot model. All information
about the environment, such as the poses of external frames, obstacles, etc., are
stored in the environment model.

28

4.2 Environment Model and Robot Model

Figure 4.4. Class Diagram of the Context model with the most important elements.

The combination of robot model and environment model is called the context.
Figure 4.4 shows the class structure of the context. The context encapsulates
the environment model and the robot model. It is important to note what are
not included in the context, namely the current state of the robot. The robot
model only contains the robot information that does not change over time, such
as the kinematic structure and the collision geometries of the robot’s links. The
robot’s current configuration, velocity, and other time-dependent information is
not included. This will be important later for planning, where multiple samples
of robot configurations are considered in the same context.
The environment model contains collision geometries of external obstacles, the
robot model collision geometries of the robot itself. In both cases, the geometries
can be described through different means. The currently supported types of
collision geometries, both for external obstacles and the robot itself, are:

• Spheres
• Cylinders
• Cones
• Boxes
• Convex Meshes
• Octrees

Distance computations using arbitrary meshes or octrees are generally much more
computationally intensive than calculations using geometric primitives, such as
spheres. It is advisable to simplify the geometries to geometric primitives as far
as possible. For the use of unstructured online sensor data, such as depth sensors,
octrees, or similar data structures might nonetheless be the only suitable choice.

29

4 Perception and World Modeling

4.3 External Torque Estimation from Motor Torques
For robots working in close proximity and interacting with humans, it is essential
to detect when humans are coming close or even touching the robot. Cameras,
including depth cameras, are not reliable enough for these scenarios. A main
factor is occlusion, which is almost unavoidable when in direct contact with the
robot.
Previous works have attempted to detect approaching human limbs reliably using
capacitive sensors on stationary robots [112]. However, capacitive sensing is highly
dependent on various environmental factors, including temperature and humidity.
While the sensors can mostly be calibrated to account for this variability in the
stationary case, this is not possible for mobile robots in changing environments.
Therefore, other solutions are needed. A big advantage of capacitive sensing is
its ability to detect human limbs before they come in contact with the robot.
Without some other form of specialized sensor hardware, this is not possible
otherwise. However, detecting touch and pressure can still have large benefits in
collaborative scenarios. This can be possible even without additional sensors.
The basic concept of the approach presented here is to compare the measured motor
torques to the expected torques without any contact. An important question is
then how the expected torques are found. We assume that environmental contact
is only relevant with the arm, not with the base. Collision avoidance of the
mobile base can be ensured through the laser scanners, and physical interaction
is typically not expected or required. The arm, on the other hand, is used to
interact with the environment and humans. It can thus not be restricted in this
way. Both methods presented here calculate the estimated external joint torques
τ̂ ext ∈ R6 of the six arm joints.

4.3.1 Related Work

The problem of torque estimation is strongly related to the problem of inverse
dynamics, where torques required to reach a given robot state are calculated. The
problem of inverse dynamics is to find the joint torques τ that are necessary to
reach a desired robot state, described by its position, velocity and acceleration
(q, q̇, q̈). As a function, it can be expressed as follows: f(q, q̇, q̈) = τ . In external
torque estimation, it is assumed that the problem is already solved within the
internal robot controllers. Nevertheless, the expected torques given the current
robot state need to be estimated to compare them to the measured values.
Recent works on mobile manipulator dynamics have applied inverse kinematics
to the problem of trajectory tracking, where both model-based [142, 114] and
learning-based methods [68, 28] are employed. The referenced works are only
examples from a multitude of publications. One publication attempted to identify
the full dynamics of a holonomic mobile manipulator with powered castor wheels
and a six-joint manipulator [65], similar to the one used in the present work.
However, the authors had to reduce the complexity by restricting the robot to
simple motions and excluding curves and self-rotations. This makes it unsuitable

30

4.3 External Torque Estimation from Motor Torques

for our intended application in human-robot interaction, where the full range
of robot motions is required. To our knowledge, no recent publication deals
with the estimation of external torques from measured joint torques on mobile
manipulators. Below, we give an overview of existing methods for fixed-base serial
manipulators.

4.3.2 Model-based methods

Modeling the dynamics of a serial manipulator by identifying the dynamic pa-
rameters is an established approach and has been successfully used for a range
of manipulators [44, 147], including the Schunk LWA manipulator [95, 84]. The
modified hardware we use, as well as the added influence of the mobile base,
make the identified parameters not immediately usable for our case. Related
methods have been used for many years and a wide range of techniques has been
proposed. There are too many to list here, recent surveys are available [79, 141].
Model-based torque estimation has also been studied extensively, the work of
Mamedov et al. [91] gives an overview.

4.3.3 Learning-based methods

The idea of using machine learning for inverse robot dynamics has been explored
in several publications. It is attractive for this use case as it does not require an
explicit model of the physical effects, and the relations can instead be automatically
inferred from recorded data. Machine learning approaches dealing with time series
data are often preferred for robot dynamics applications, because the temporal
relations of the data can be exploited and the results do not have to rely on a single
measurement. Long short-term memory networks (LSTM) [57] are a particularly
successful method used with great success in a wide variety of applications dealing
with time series, including robot dynamics. LSTM networks are a type of recurrent
neural network, that are especially designed to handle long-term dependencies.
They have proved successful in a large range of applications and are widely used
today.
Rueckert et al. [121] applied the LSTM technique to the problem of fixed-
base manipulator inverse dynamics prediction. They found a two-layer LSTM
architecture with 10 hidden neurons per layer and no dropout layer to perform
best for their use case. Yilmaz et al. [148] have successfully applied a set of
dense neural networks to external force estimation on the da Vinci surgical robot.
Similar to our approach, they use only joint positions and velocities as input,
however merely use dense neural networks and apply it to surgical robotics.
Another application of learning in robot dynamics is to allow the model to adapt
to changes that occur during the robots’ lifetime, for example due to wear [113].
In these cases, the learning process continues during the operation of the robot.
Lim et al. [81] have combined a model-based momentum observer with an LSTM
for uncertainty learning. Liu et al. [83] extensively evaluate LSTM techniques for
the inverse dynamics problem. Their results show that using only joint position

31

4 Perception and World Modeling

a α d θ

0 qx 0 0
0 qy 0 π/2
0 0.21 0.5753 qθ-π/2
π/2 0 0 q1
π 0.35 0 q2 + π/2
π/2 0 0 q3 + π/2
−π/2 0 0.305 q4
π/2 0 0 q5
0 0 0.075 q6

Table 4.1. Denavit-Hartenberg parameters of our robot model

as input for torque prediction leads to much lower precision compared to using
position, velocity and acceleration. They do not evaluate whether using position
and velocity is feasible. This is what is attempted by the work described in this
chapter.

4.3.4 Model-based Torque Estimation

Explicit modeling of the robot dynamics requires exact knowledge of its physical
properties. The required values are called the dynamic parameters. These are
usually not available from the manufacturer and difficult to measure directly, even
if the robot were to be dismantled into its parts. Instead, it is an established
technique to identify the dynamic parameters using a linearized dynamic model
and least-squares optimization on the measurements of a specifically designed
excitation trajectory. Our process for the identification of the dynamic parameters
is based on the six-step identification procedure outlined by Swevers et al. [140].
An additional seventh step describes the online estimation of external torques.
For each of the steps, our method is described below.

Modeling

A full dynamic model of a mobile manipulator with castor wheels would have to
consider the robot as a floating-base kinematic tree, where each wheel contributes
two controlled degrees of freedom and interactions between the wheels and the
ground are modeled explicitly. Since we are only interested in the torques occurring
at the arm joints, we can reduce the model significantly by only considering the
motions of the omnidirectional base in the horizontal plane as a whole. The base
is thus modeled by three virtual joints, corresponding to the linear x position,
linear y position, and yaw, respectively. Hence we model the robot system as a
single kinematic chain with 9 joints described by the standard Denavit-Hartenberg
parameters shown in table 4.1. Notationally, indices 1 through 6 refer to the
respective arm joints, while indices x, y, and θ are used for the virtual base
joints.

32

4.3 External Torque Estimation from Motor Torques

The model of robot dynamics is based on the classical dynamics equation for
serial manipulators:

M(q)q̈ + C(q, q̇)q̇ + F(q̇) + g(q) + τ ext = τ , (4.1)

where q, q̇, q̈ ∈ Rn are the generalized coordinates, velocities and accelerations, n
is the number of joints and has the value 9 in our case (3 virtual base joints and 6
arm joints). M(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n is the matrix
of Coriolis and centrifugal forces. Vectors F(q̇) ∈ Rn and g(q) ∈ Rn describe
the influence of friction and gravity, respectively. τ ∈ Rn and τ ext ∈ Rn are the
vectors of actuator and external torques. τ ext should be zero as long as the robot
is not in contact with the environment. Torques and forces in the virtual base
joints are not measured and they have no influence on friction or gravity, but they
do exert an influence on the inertial and Coriolis/centrifugal forces on the arm
joints through their movements. We do not distinguish this in the equations to
keep the notation simple. The identification process relies on the reformulation
of the dynamics equation into a form that is linear in the dynamic parameters
(assuming τ ext = 0):

Y(q, q̇, q̈)π = τ (4.2)

Y(q, q̇, q̈) is the so-called regressor matrix and π is the vector of dynamic param-
eters. The dynamic parameters that are considered vary in the related literature,
according to the considered effects. We have used a total of 117 elements in π, 13
for each link i:

πi = [mi lix liy liz Iixx Iixy Iixz

Iiyy Iiyz Iizz Imi fci fvi]T (4.3)

mi is the mass of the link, lix, liy, liz describe the center of mass, Imi models the
rotor inertia and Iixx, Iixy, Iixz, Iiyy, Iiyz, Iizz are the relevant entries of the inertia
tensor. We have modeled the effects of friction as part of the dynamic parameters,
using the values fci and fvi. The influence of friction is modeled as the sum of
Coulomb and viscous friction according to the following equation:

Fi(q̇i) = fci sign(q̇i) + fviq̇i (4.4)

The friction parameters can thus be estimated using the same process as used for
the other dynamic parameters. Other works have used different friction models
that are not linear in the dynamic parameters and thus cannot be handled in the
same way. A wide variety of friction models has been created [5, 102].

33

4 Perception and World Modeling

For the Schunk LWA manipulator, for example, load-dependent friction models
[84] and hyperbolic friction models [95] have been used. The former requires an
explicit gravity model, the latter produces results that are not consistent with
our measurements and uses a procedure that requires mounting the manipulator
in different orientations to isolate individual joints from the effects of gravity.
For the sake of simplicity, we have decided to use a linear friction model. More
intricate friction models might improve accuracy. In most cases, not all dynamic
parameters affect the joint torques. The number of required parameters can
be reduced by eliminating and linearly combining parameters. The remaining
minimum set of required parameters is known as the base parameters. Here, the
word base does not refer to the mobile base of the robot, but is used in the sense
that these parameters are the most important parameters.
The technique that we have used to estimate the values of the base parameters is
based on QR decomposition and was first described by Gautier et al. [43]. With
this technique, the dynamic parameters were reduced from the original 117 to
55 parameters. The resulting base parameters are shown in table 4.4 at the end
of this chapter. As expected, all dynamic parameters of the mobile base vanish,
as they do not influence the torques at the arm joints. For example, adding
additional weight to the platform would not change the effects that platform
motions have on the arm.

Experiment Design

The base parameters are identified from data recorded as the robot is moving
along a given trajectory. To find accurate parameters, it is important to use a
well-designed trajectory. An unfortunately chosen trajectory would not include
all relevant information to make a good estimate of the base parameters. If, for
example, each joint was only moved in isolation, the compound effects could
not be estimated from the recording of the trajectory. Thus, it is important to
choose a suitable trajectory for the experiments. A property that can measure
the suitability of a trajectory has been proposed. This property is called the
persistence of excitation [140]. This resulting trajectory is thus called the excitation
trajectory. In order to find an excitation trajectory, the trajectory is modeled as a
Fourier series:

qi(t) =
6∑

l=1

(
ai

l sin(ωlt)
ωl

− bi
l cos(ωlt)

ωl

)
+ qi,0 (4.5)

q̇i(t) =
6∑

l=1

(
ai

l cos(ωlt) + bi
l sin(ωlt)

)
(4.6)

34

4.3 External Torque Estimation from Motor Torques

Figure 4.5. The excitation trajectory for the arm joints.

Here, ω is the fundamental frequency and was set to 2π/60, so the trajectory
repeats after 60s. qi,0 is a static position offset. i stands for the index of the
respective joint. a and b are the optimization variables influencing the shape of
the trajectory. Using a Nelder-Mead method, they were chosen to minimize the
cost function cond(Y) + 1

σ(Y) over all trajectory points, where cond(Y) is the
condition number of the regressor matrix, and σ(Y) is its smallest singular value.
The mobile manipulator we use has a relatively high risk of self-collision, due to
the structure of the mobile base being very close to the arm links. This forced us
to use strict joint position constraints during the optimization. The trajectory
we have used has a total duration of 120s. The positions of the arm joints in the
trajectory are shown in figure 4.5, and the velocities of the virtual base joints are
shown in figure 4.6.

Data Acquisition

The controller used to control the robot along the excitation trajectory is running
at a rate of 250Hz. Positions, velocities, and torques of the arm joints are read
from internal sensors at the same rate. The base position and velocity are being
tracked with a rate of 120Hz by a Vicon Vantage infrared tracking system, to avoid
errors due to inaccurate odometry or localization. The manipulator is controlled
in interpolated position mode. The setup described here also applies to all other
recordings in this chapter.

35

4 Perception and World Modeling

Figure 4.6. Velocities of the base in the excitation trajectory.

Signal Processing

The dynamic model strongly depends on the joint accelerations q̈. However,
these are not measured directly and are subsequently not provided by the driver
interfaces. Therefore, they need to be estimated from the recorded data, namely
the joint velocities q̇. Since the accelerations are only used for the offline parameter
estimation, and not during online operation, the accelerations can be estimated
relatively well from the velocity measurements. Mathematically, the accelerations
can be found by simply differentiating the velocity measurements. However, the
presence of noise in the velocity measurements means that simple differentiation
is not suitable. The noise present in the velocity is increased substantially
during differentiation and the resulting signal would not be usable anymore. To
circumvent this, first, the recorded velocities have been filtered with with a zero-
phase bandpass Butterworth filter. A zero-phase filter is a filter that does not
produce phase shift on any frequency. After the velocities have been filtered thusly,
numerical differentiation is used to estimate the joint accelerations. These are
again filtered by a zero-phase lowpass filter to remove high-frequency noise.

Parameter Estimation

After the data has been recorded and processed, the joint positions q, velocities
q̇, accelerations q̈, and torques τ are available for each recorded trajectory point.
The regressor equation Y(q, q̇, q̈)π = τ can thus be set up for each trajectory
point. Still missing are the values of the base parameters π.

36

4.3 External Torque Estimation from Motor Torques

Since each trajectory point provides an equation depending on π, with all other
variables filled in, the values of π can be found using an optimization procedure
to find values that best fit the recorded data. A least-squares method has been
used for each recorded trajectory point of the excitation method to estimate the
55 base parameters. The resulting 55 values are listed in table 4.4.

Validation

The approach described above has been validated on a reference trajectory. For
the sake of brevity and in order to provide a better comparison, the validation
and its results are described together with the validation of the LSTM approach
in section 4.3.6.

External Torque Estimation

After the necessary base parameters have been estimated, still the expected torques
have to be found. Directly using equation (4.1) is not feasible for online torque
estimation. This is due to the fact that joint accelerations q̈ are not available
at runtime. Direct differentiation of the joint velocities q̇ is not applicable here.
Post-processing methods that were used in the offline parameter estimation step
are not applicable online. All available methods would either strongly amplify the
noise, rendering the signal nearly useless, or introduce a delay that is unacceptable
for collision detection.
Several methods have been developed to overcome this problem. The works of
Haddadin et al.[51] and Mamedov et al. [91] provide overviews. We decided to use
a well-established method, the so-called momentum observer [87, 86]. This method
estimates τ ext by observing the rate of change of the generalized momentum p:

p = M(q)q̇ ˙̂τ ext = L(ṗ− ˙̂p) (4.7)

L is a gain matrix, whose entries were tuned by hand in our case. Integration over
time then leads to the estimate of the external torques. Further details about the
momentum observer, including the handling of the friction model, can be found
in the referenced publications.

4.3.5 External Torque Estimation with LSTM Networks

The second method we employed is fundamentally different. Here, the torque
estimation is based on machine learning. No dynamic effects and their parameters
need to be modeled explicitly, only a learning architecture and the training data
need to be defined. Learning-based approaches have already been used to study

37

4 Perception and World Modeling

Figure 4.7. Our LSTM network architecture.

the classical inverse dynamics problem f(q, q̇, q̈) = τ [39]. As in the model-based
approach, the reliance on q̈ is problematic for online torque estimation.
In the model-based approach, a momentum observer has been used to circumvent
the need for accurate measurements of q̈ at run-time. During offline signal
processing, filtering methods have been used to find a less noisy acceleration
estimate.
Here, for the learning-based approach, we study the hypothesis that the neural
network will be able to find the necessary information by itself by providing it
with time-series information of the velocities q̇. Instead of explicitly estimating q̈
from noisy measurements of q̇, we are moving this task to the neural network.
Clearly, it is impossible to estimate q̈ from a single value of q̇. Instead, the neural
network is given a sequence of the last measurements of q̇. LSTMs are a type
of neural network that has been specifically designed as a variant of recurrent
neural networks (RNN) to work with sequential data points [56], which makes
them suitable for our application.

Network architecture

Figure 4.7 illustrates our network architecture. We achieved the best results with
two LSTM layers with 50 units each, followed by a dropout layer. The dropout
layer serves as a regularization method. Connections to the units in the LSTM
network are excluded from updates with a given probability, called the dropout
factor, during the training phase. This has the effect of reducing over-fitting.
Experiments with additional units and dense layers did not lead to improvements
in our case, but a systematic exploration may be worthwhile to further improve the
network performance. The input sequences consist of the last five measurements,
corresponding to 20 ms of measurements.
The input layer has 15 units, six manipulator joint positions, and nine joint
velocities including the virtual joints. The output layer has six units, which are
the six estimated torques of the arm joints. Results were improved by filtering the
torques used in training with a zero-phase lowpass filter. Training was performed
with a batch size of 128 and over 300 epochs.

38

4.3 External Torque Estimation from Motor Torques

A downside of neural networks, compared to explicit dynamic models, is that
generalization to unseen data points can be less predictable. With an explicit
model, the calculated values will always follow the physical laws of the dynamic
equation. Neural networks, on the other hand, make it much harder to predict how
they generalize to inputs that were not contained in the training set. Therefore
it is important that the training data covers as wide a range of data as possible,
contrary to the excitation trajectory for parameter identification, where numerical
stability of the estimate is important, but generalization is generally not a problem.
As training data, we used the excitation trajectory as described in section 4.3.4,
and added recordings of another two different 120 s trajectories, as well as 100
static positions and the motions between them. In total, eleven minutes of recorded
robot motions were used as training data for the LSTM.

External Force Estimation

The neural network is trained to estimate the actuator torques τ̂ under the
assumption that the robot is not in contact with the environment, i.e. τ ext = 0.
The estimated external torques τ̂ ext can then be found by comparing the predicted
torques τ̂ to the actual measurement τ :

τ̂ ext = τ − τ̂ (4.8)

A downside of this method is that noise found in the measurements of τ extends
directly to τ̂ ext. In order to alleviate this noise as much as possible, an additional
Kalman filter is used on the signal.

4.3.6 Validation

The two models are validated by comparing the model estimates to recorded
torques on a reference trajectory. We used a trajectory with a total duration
of 120 s, formed according to the Fourier series shown in equation (4.5). The
parameters are chosen differently than those for the excitation trajectory and the
LSTM training. The trajectory used for validation is plotted in figure 4.8 and
figure 4.9, showing the arm and base trajectories, respectively.
Here, we only compare the results for the estimated joint torques τ̂ and do not
consider the estimated external torques τ ext. As the validation trajectory does
not include any contact with the environment, τ ext is assumed to be zero over
the entire trajectory.
For the model-based approach, we calculate τ̂ using the base parameters according
to the regressor equation as defined in equation (4.2). The momentum observer is
not yet used. For the LSTM approach, we use the output of the network, without
comparing it to the recorded torques nor using a Kalman filter. The results are
shown in figure 4.10. While it can be seen that both methods generally follow the
shape of the recorded torques, some errors remain regardless in the outputs of
both methods.

39

4 Perception and World Modeling

Figure 4.8. The evaluation trajectory of the manipulator joints.

Added Weight
0 kg 0.8 kg 1.3 kg 2 kg 3.25 kg

Joint

1 0.353 0.636 0.454 0.551 0.478
2 32.066 22.497 29.737 25.634 32.142
3 14.704 4.370 5.017 3.702 5.686
4 0.548 1.527 2.342 1.751 2.822
5 0.041 0.017 0.023 0.024 0.042
6 0.002 0.004 0.002 0.003 0.004

Table 4.2. Mean squared error of the momentum observer estimations.

4.3.7 Evaluation

From the perspective of practical experiment design, applying accurate reference
forces to a moving mobile robot is challenging. As the influence of the moving
mobile base is a core question of this research, the robot should not be stationary.
The applied forces must be known exactly in order to evaluate the performance
of our approaches. Letting a person be in physical contact with the robot is thus
unsafe, as the robot should move at different speeds, including higher ones, and
can not yet safely react to collisions. Furthermore, this type of experiment would
also be unproductive, as the values of the applied forces would not be known and
thus no reference values for the model outputs would be available.

Our solution consists of attaching different weights to the robot’s end effector.
The robot then executed the trajectory shown in figure 4.8 and figure 4.9 with and
without the added weight. Any difference between the recorded torques with and

40

4.3 External Torque Estimation from Motor Torques

Figure 4.9. The evaluation trajectory of the base.

Added Weight
0 kg 0.8 kg 1.3 kg 2 kg 3.25 kg

Joint

1 0.041 0.458 0.405 0.482 0.358
2 14.317 16.948 11.991 11.950 13.903
3 4.942 5.042 4.638 4.162 3.863
4 1.087 2.624 3.780 2.977 3.492
5 0.042 0.033 0.044 0.046 0.047
6 0.025 0.025 0.030 0.027 0.028

Table 4.3. Mean squared error of the LSTM estimations.

without the added weights at the end-effector can then be used as the reference
external torque. As the recording of the reference torques also includes some noise,
they are filtered offline with a zero-phase low-pass filter. We evaluated our method
with four different weights with 0.8 kg, 1.3 kg, 2.0 kg and 3.25 kg, as well as with
the empty manipulator. The trajectory used for the evaluation has a duration of
120 s and was calculated as a Fourier series as described in equation (4.5).
The resulting mean squared error (MSE) of the momentum observer and the
LSTM are shown in table 4.2 and table 4.3, respectively. Additionally, the results
for the case with an added weight of 3.25 kg are plotted in figure 4.11. This
method of evaluation creates only very small external torques on joints 1 and 6.
Joint 1 is rotating around an axis perpendicular to the ground, as a consequence
physical effects related to gravity of the attached weight are almost absent for
this joint. Joint 6 rotates around an axis that crosses through the center of mass
of the attached weights, and it is the closest joint to the weight. The effects

41

4 Perception and World Modeling

caused by the additional weights are consequently very small for joint 6. The
measurements for joints 1 and 6 are thus dominated by noise and accurate tuning
of filters and gain parameters was not possible. Further evaluation with a different
experimental setup is needed to accurately assess the accuracy for these joints.
Overall, the amount of added weight does not seem to have a clear influence on
the accuracy. On joint 2, the joint with the largest external torques acting on
it, the LSTM performs significantly better than the momentum observer. There
is no clear preference for joint 3, although the momentum observer shows large
errors in the unweighted case. The momentum observer gives better results on
joints 4, 5, and 6.
While both methods give estimates close to the correct value for many data points,
significant errors remain as well. Further work is required to make the methods
accurate enough for use in precise control. At the moment, it must be concluded
that the method is not yet accurate enough for practical use and does not yet
allow for safe monitoring of external torques.

42

4.3 External Torque Estimation from Motor Torques

Parameter Value Parameter Value
Ia1 −7.42e−2 L4xy −1.17e−1

Ia3 −6.66 L4xz −9.72e−2

Ia4 −5.18e−1 L4yy + L5zz −5.59e−1

Ia5 2.64e−1 L4yz 1.06e−1

Ia6 2.60e−1 L5xy −1.42e−1

L2xy 3.19e−1 L5xz 3.57e−2

L2yz −4.13e−1 L5yz −3.90e−2

L3xy 1.96e−1 L6xx − L6yy 1.27e−1

L3xz −2.95e−1 L6xy 5.42e−4

L3yz 6.20e−1 L6xz −3.93e−2

L4xx − L4zz + L5zz 1.79 L6yz −9.10e−2

L6zz −8.36e−2 fv5 −2.07e−1

fc1 2.87 fv6 −3.17e−1

fc2 3.90 l1x −4.37e−1

fc3 2.27 l1z − l2z − l3y −1.75e−2

fc4 2.19 l2y 3.96e−2

fc5 −2.13e−1 l3x 3.48e−2

fc6 −3.10e−1 l4x 1.48e−2

fv1 1.18e−1 l4z + l5y −1.67e−2

fv2 2.53e−1 l5x −6.50e−3

fv3 9.65 l6x 1.23e−2

fv4 7.63 l6y −1.30e−2

Parameter Value
Ia2 + L2zz − 0.1225m2 − 0.1225m3 − 0.1225m4 − 0.1225m5 − 0.1225m6 −1.33e−1

L1yy + L2yy + L3zz − 0.1225m2 − 0.1225m3 − 0.1225m1 − 0.1225m2 − 0.1225m3 −1.05
L2xx − L2yy + 0.1225m2 + 0.1225m3 + 0.1225m1 + 0.1225m2 + 0.1225m3 −5.65e−1

L2xz − 0.35l2z − 0.35l3y 2.41e−1

L3xx − L3zz + L4zz − 0.61l4y + 0.093025m1 + 0.093025m2 + 0.093025m3 −1.99
L3yy + L4zz − 0.61l4y + 0.093025m1 + 0.093025m2 + 0.093025m3 6.01

L5xx − L5zz + L6yy + 0.15l6z + 0.005625m3 5.21e−1

L5yy + L6yy + 0.15l6z + 0.005625m3 −2.17e−1

l2x + 0.35m2 + 0.35m3 + 0.35m4 + 0.35m5 + 0.35m6 −8.22e−1

l3z − l4y + 0.305m4 + 0.305m2 + 0.305m6 −1.62
l5z + l6z + 0.075m6 −6.66e−2

Table 4.4. Base parameters and their identified values

43

4 Perception and World Modeling

(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

(e) Joint 5 (f) Joint 6

Figure 4.10. Validation of the estimated torques of the dynamic model and the LSTM
network on a 120 s test trajectory.

44

4.3 External Torque Estimation from Motor Torques

(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

(e) Joint 5 (f) Joint 6

Figure 4.11. Estimated and reference external torques with an attached weight of
3.25 kg.

45

4 Perception and World Modeling

46

Summary. This chapter describes how constraints are
used to define requirements for reactive robot control,
and how a control signal is found during the execution
using an optimization procedure.

Publication. Parts of this chapter have been
published previously [137].

5
Constraint-based Robot Control

5.1 Related Work . 48
5.2 Definition of Constraints 50
5.3 Handling Dependencies on the Environment: Con-

straint Rules and Tasks 54
5.3.1 Inputs to Constraint Rules 55
5.3.2 Types of Constraint Rules 57

5.4 From Constraints to Velocity Bounds: Constraint
Controllers . 67

5.4.1 The Follow-Controller 68
5.4.2 The Limit-Controller 69
5.4.3 The Stopping-Controller 71
5.4.4 The Hybrid-Controller 72

5.5 Tasks and Actions . 73
5.5.1 Specification of Tasks 73
5.5.2 Definition of Actions 75

5.6 Finding an Optimal Control Signal 80
5.6.1 Formulation of a Quadratic Optimization Problem . . 80

5.7 Evaluation . 85
5.7.1 Linear Motions to Cartesian Targets 85
5.7.2 Null-space Motion 86
5.7.3 Reaction to Obstacles 88
5.7.4 Real-time Requirements 94

In order to safely and efficiently perform its required tasks in a dynamic envi-
ronment, the mobile manipulator must be able to react to the changes in the
environment. Besides the ability to perceive the environment, this also requires the
control system to generate online motions that adapt to the changing environment.
In the use case example of an object handover to a person, the robot should
continuously adapt his own position to that of the person, which can not be
completely planned in advance. Similarly, the gripper pose has to take the current

47

5 Constraint-based Robot Control

pose of the person’s hand into account. While continuously adapting to these
dynamic elements, it is of even higher importance that the robot does not cause
any safety hazards: it is strictly necessary that the robot does not collide with
himself, the person, or other obstacles in the environment. This illustrates the
need for a method of introducing priorities between requirements: the requirement
for collision avoidance should not be circumvented by the requirement to perform
an object handover, as a failed handover is much less severe than a collision.
Therefore, the relative importance of the individual requirements needs to be
expressed and respected by the controller. The specification of an intended robot
behavior in a dynamic environment can become complex, especially for robots
with many degrees of freedom. Geometric constraints are a way in which the joint
positions as well as the motion in Cartesian space can be specified relatively intu-
itively and can be easily extended with priorities and weights to resolve conflicting
constraints.

This chapter is structured as follows: It begins with an overview of related ap-
proaches in section 5.1. Afterward, section 5.2 details the specification of robot
tasks based on constraints. Section 5.3 introduces constraint rules, which serve
to parametrize the geometric constraints to the current state of the dynamic
environment. The constraints still need to be converted into robot motions, there-
fore section 5.4 describes the concept of Constraint Controllers, which calculate
velocity bounds for their respective controlled robot links based on the current
constraint values. The velocity bounds are then used to formulate an optimization
problem which is solved in every control cycle to find an optimal control signal.
The details of this are described in section 5.6. To conclude the chapter, the
approach is evaluated with various experiments on the robot in section 5.7.

5.1 Related Work

Reactive control of robots in human-robot-collaboration scenarios or other dynamic
environments is an active area of research. Formalizing the requirements for safe
robot motions as a set of constraints with different priorities, that are used in an
optimization process is a common approach to this problem.

Often, publications on robot control in this area consider the safe execution
of plans, rather than purely reactive control. For example, Faroni et al. use
velocity scaling and redundancy-optimizing inverse kinematics [31] for safe online
modification of plans. This means that the planning problem and the execution of
the resulting plans are treated as two separate problems. However, if the design of
the planner and the controller are not compatible, the results may be suboptimal.
There is also the added user effort of creating two separate specifications: one
for the planning problem and another for the controller executing the plan. The
present work considers this topic in a later chapter, namely chapter 7. At this
point in this thesis, the focus lies on the related work for generating reactive
motions without a pre-existing motion plan.

48

5.1 Related Work

Many research works with this approach design their control architecture specifi-
cally for the respective robot kinematics, environment, and robot task of their
respective scenario. Furthermore, most works in this area are focused purely on
the controller performance with no regard for flexibility, modularity, extensibility,
or ease of specification. Often, the different constraints are statically defined for
the singular use case of the respective work [145, 41].
The research into the topic of the design of well-performing and safe controllers is
the foundation that the present work builds on. In order to bring these concepts
into practice, a software architecture to facilitate the design of new robot behaviors
is required.
Related work that deals specifically with the control of wheeled mobile manipula-
tors often simplifies the problem into control of the arm and control of the base
[64, 16]. This makes the control considerably easier but limits the ability to make
use of the robot’s redundancy, as well as restricting the fluidity of human-robot-
interactions. Considering the example scenario of an object handover, temporal
separation of arm and base motions means that the robot would have to stop
the arm from moving as soon as the interaction partner moves to a position that
the arm can no longer reach, move the base closer, and begin moving the arm
again.
Therefore, whole-body-control (WBC) methods have been developed, for mobile
manipulators and other types of redundant robots. These methods control all
degrees of freedom at the same time. A prominent work that controls redundant
robots reactively by considering a set of sub-tasks is the iTaSC framework [25, 26],
with a Jacobian-pseudoinverse-based control scheme. Other works have adopted
methods inspired by this, e.g. [99]. The Stack-of-Tasks [92], OpenSoT [58]
and eTaSL/eTC [1] are other prominent implementations, that use a quadratic
programming (QP) formulation to find control signals instead. Our method of
calculating joint velocities is based on these works.
A lot of work on constraint-based robot control is focused on legged, free-floating
systems such as walking humanoids. These are typically force-controlled systems
that deal with challenging dynamics problems, such as walking and balance.
These are not relevant for a dynamically stable, velocity-controlled wheeled mobile
manipulator such as ours. The downside is, of course, the limitation of wheeled
robots regarding uneven terrain, such as stairs. These complex requirements and
formal foundations of most works on constraint-based control have had the side
effect of making the solutions hard to use for practical applications.
In 2020, a workshop at the International Conference on Intelligent Robots and
Systems (IROS) was organized with the specific aim of closing the gap between
academic experimental frameworks for constraint-based control on the one hand,
and industry practice on the other hand [61]. In the years since, real-world
adoption of constraint-based approaches has not seen a significant increase, and
the aforementioned gap still exists. The goal of the present work is therefore not
focused on furthering the academic understanding of constraint-based control, but

49

5 Constraint-based Robot Control

more on the facilitation of the adoption of constraint-based control methods for
application developers using popular middlewares such as ROS, as well as keeping
the functionality extensible and modular to adapt it to different needs.
The Framework ControlIt! [36, 37] is similar to the presented work in the regard
that it attempts a modular and easy-to-use architecture for various whole-body-
control algorithms in a ROS environment. However, ControlIt! does not currently
have the ability to handle geometric primitives and dynamic environments, in-
stead being focused on explicit Cartesian poses and joint positions that have
to be determined through external means. It also does not seem to be actively
maintained at the time of writing.
Constraint-based control has also been used in the specification of manipulation
tasks, i. e. handling objects. Constraint specifications offer the benefit of
compact specifications of complex manipulation tasks. The research works do
mostly not consider dynamic environments and interaction.
Phoon et al. [111, 126, 125] present a framework for constraint-based control
of mobile manipulators with the goal of easy specification. Their focus lies on
sequential manipulation tasks, which they manage to execute in a time-optimal way
while smoothly interpolating between sequence steps. Contrary to our approach,
they consider manipulation in a static environment, with speed being the main
aim. Their work does not consider human-robot interaction or robustness in
dynamic environments. In a similar work, Halt et al. [52] built upon iTaSC to
present an intuitive system of programming manufacturing tasks.
In conclusion, our work in this chapter differentiates itself from the related work
on this topic in the following ways:

• The principles of constraint-based robot control are applied to human-robot
interaction in dynamic environments. Instead of defining constraints between
defined parts of a workspace, the specification focuses on the reactions to
dynamic environment changes.

• Its modular, extensible, and ROS-enabled architecture makes customization
and specification simple.

• The design enables the use of the same specification for reactive control,
sampling-based planning, and the safe execution of plans. Details of this
are described in the following chapter.

5.2 Definition of Constraints
Before describing the use of constraints in more detail, this section defines what
is understood as a constraint in the context of this work. We consider only
geometric constraints. Geometric constraints are constraints that can be evaluated
on a robot configuration q. This excludes constraints on the robot’s velocity,
acceleration, torques, et cetera, but allows expressing constraints on the robot’s
joint positions and link positions in Cartesian space. It should be noted that
the fact that constraints on velocities are not considered does not mean that

50

5.2 Definition of Constraints

the control framework does not have the ability to generate robot motions with
well-defined and user-specified velocities. However, the velocities are computed by
the constraint controllers based on the current value of the geometric constraints.
For more details on this, see section 5.4 below. In this section, the focus lies on
the geometric constraints themselves.
A (geometric) constraint is formally described by its corresponding constraint
function:

f : Rn → Rm

f(q) = c (5.1)

We refer to the value c as the constraint value for the robot configuration q.
The constraint is considered satisfied if and only if f(q) = 0. Consequently, any
value c 6= 0 means that the constraint is not satisfied. In general, the constraint
functions are assumed to be continuous and encode a distance metric for the cases
where f(q) 6= 0, i. e. the value of f(q) expresses how far from a satisfying
configuration q is. Therefore, the value constraint value c is alternatively called
the constraint’s error value.
In equation (5.1), n is the robots’ number of degrees of freedom. m ∈ N \ {0} is a
positive natural number called the constraint dimension. If m > n, the system
the constraint applies to is called over-constrained: There are more constraint
dimensions than available degrees of freedom. Conversely, a constrained system
with m < n is under-constrained. An under-constrained system has redundant
degrees of freedom that are not determined by the constraint. A classical example
of an under-constrained robot system is a seven-joint manipulator, whose end-
effector is constrained to a Cartesian pose. This corresponds to a 6-dimensional
constraint m = 6, while the robot has seven degrees of freedom n = 7. Therefore,
the robot has one redundant degree of freedom. Methods of redundancy resolution
are then required to determine the most suitable values for the redundant degree
of freedom. On the other hand, over-constrained systems might not have solutions
that satisfy the constraint completely and a method to resolve the conflicts is
required.
As all constraints are functions on the robot configurations, it is simple to combine
two constraints into one, as defined in equation (5.2) for two constraints f1 and
f2. The inverse operation, splitting a constraint with m > 1 into two, is equally
simple.

f1 : Rn → Rm1

f2 : Rn → Rm2

f1,2 : Rn → Rm1+m2

f1,2(q) =
(
f1(q)T , f2(q)T

)T

(5.2)

51

5 Constraint-based Robot Control

Figure 5.1. Plot of a joint limit constraint for a single joint with limits at -1 and 1.

As a simple, concrete, example, a constraint to keep the first arm joint q1 at
position 0 can be expressed by the following constraint function, whose value will
be the distance of the current position to the target 0:

f0 : Rn → R
f0(q) = 0− q1

(5.3)

A constraint to keep the joint in given limits qmax, qmin ∈ Rn can be expressed
by the following constraint function:

flimits : Rn → Rn

flimits(q) = min(qmax − q, 0) + max(qmin − q, 0)
(5.4)

Here, min and max are the element-wise minimum and maximum functions. The
function will have the value 0 as long as all joints are within their limits. If a joint
moves outside the limits, the corresponding constraint value will be the signed
distance to the nearest position within in the limits. Figure 5.1 shows a plot of
the function, for the example case of a single joint with limits at -1.0 and 1.0.

52

5.2 Definition of Constraints

As a further example, this time in Cartesian space, a constraint to keep the end-
effector at a given position ptarget is given in equation (5.5). The orientation is not
considered here, so the constraint is three-dimensional with the three dimensions
x, y, and z. In this equation, pEE(q) is the position of the end effector given the
joint positions q, as calculated by the direct kinematics function.

fcartesian : Rn → R3

fcartesian(q) = ptarget − pEE(q)
(5.5)

Other geometric constraints can be defined in similar ways. Given that constraints
can easily be combined or split into two, it can be ambiguous what is meant
when talking about "multiple constraints" or "a single constraint with multiple
dimensions". The terminology is subject to some interpretation, and the related
literature is inconsistent in that regard. In the most basic case, each constraint
dimension can be understood as a single constraint. With this interpretation, the
example for equation (5.5) would define three constraints, one for each axis of
Cartesian space. Other interpretations assume that all applied constraints are
combined into one function, so that in effect, the system is always understood to
have only one single constraint.
While both interpretations are mathematically equivalent, both of the above inter-
pretations can lead to some counter-intuitiveness when describing and specifying
constraints. If each degree of freedom is considered as an individual constraint,
the description of the constraints is too fine-grained to be intuitive. For example,
keeping within the joint limits while moving the end-effector to a pose in Cartesian
space would already lead to 9 + 6 = 15 individual constraints, in the case of our
mobile manipulator. It is assumed that it is more intuitive to most people to
describe this as 2 constraints, the joint limits and the Cartesian pose. Interpreting
this as a single constraint is similarly counter-intuitive.
In conclusion, we generally use the following convention when describing con-
straints: Individual constraints can be either constraints in joint space, or con-
straints in Cartesian space. A Cartesian constraint can have up to six dimensions,
all of which refer to the same robot link and the same reference coordinate system.
Each constraint dimension represents a different degree of freedom of Cartesian
space. Joint-space constraints can have up to n dimensions, each of which repre-
sents a different robot joint. Furthermore, each individual constraint is expected
to represent a shared requirement on all of its degrees of freedom. Consider an
example with two requirements: orienting the gripper toward the person, and
keeping the gripper at a certain height. This could be represented as a single
Cartesian constraint with four degrees of freedom, three for the orientation and
one for the height. This should however be formulated as two constraints, one
for the orientation and one for the height. The reasoning behind this is that
constraints will, later on, be used with different priorities, and it should be avoided
to have to split constraints after their definition in order to provide the different
dimensions with different priorities.

53

5 Constraint-based Robot Control

The definition of constraints provided here is still missing several key elements to
generate sensible robot motions. The rest of this chapter deals with the following
concepts: Constraint rules set the parameters of the constraints to reflect the
state of the dynamic environment. Constraint controllers define how a constraint
value influences the allowed motions of the robot. They are brought together in
the concept of tasks. Finally, the solver calculates an optimal control signal from
the active tasks and the current robot state.

5.3 Handling Dependencies on the Environment:
Constraint Rules and Tasks

The definition of constraints from the above section 5.2 defines constraints as
functions on the robot configuration q. Therefore, the constraints are evaluated
only on the current positions of the robot’s degrees of freedom. However, as
soon as the robot is supposed to react to a dynamic environment, this definition
falls short, as the constraint functions do not contain any dependency on the
current environment. In the example of an object handover, the robot must move
its gripper toward the hand of the person. The information about the pose of
the hand of the person can, of course, not be statically encoded at the design
time of the constraints, as it is only known online during the execution of the
handover, and continuously changing. This means that some method of reflecting
the changing environment in the constraint functions is needed.
Some of the first constraint-based robot control frameworks, such as eTasL/eTC
[1] and iTasC [25], use an approach based on virtual kinematic chains. All
relevant information from the environment is encoded in geometric frames, and
the transformations between the frames are connected by virtual kinematic chains.
In effect, the definition of a robot configuration is extended to contain all relevant
information from the environment as well, and the constraint functions are defined
on this extended configuration. They provide a strict procedure to be followed
to create a sound constraint specification. This strict procedure allows various
types of mathematical analyses to be performed on the constraint model and,
among other things, allows controlling force-controlled, velocity-controlled and
position-controlled robots with the same constraint specification.
However, the formal rigor of these methods comes at the cost of flexibility and
intuitiveness of the specification. Since everything has to be broken down into
explicit relationships between geometrical frames, constraints on complex geo-
metrical shapes, unknown numbers of obstacles, or unstructured sensor data are
difficult to define. Furthermore, this blending of environment data and robot
configuration complicates path planning with a constraint specification. This is
explained in more detail in chapter 6.
For these reasons, we chose another approach to introduce the dependencies on
the environment to the constraint functions. Instead of expanding the constraint
functions with virtual kinematic chains, we introduce a layer above the constraint
functions. This layer updates the parameters of the constraint functions based

54

5.3 Handling Dependencies on the Environment: Constraint Rules and Tasks

on the current state of the environment. This is also executed in every control
cycle, to ensure a fast reaction to environmental changes. Using this architecture,
the environment can be separated from the constraints on the robot. Once the
parameters are set, the constraints themselves fully encapsulate the requirements
of the robot motion, and no further knowledge of the environment is required.
Among other advantages, this facilitates planning for a given environment, which
will be described in the later chapter 6. Figure 5.2 shows a basic overview of the
control architecture.

Constraint rules use the current Context as described in section 4.2 to set the
parameters of the constraint functions. The Context contains the environment
data and the static information about the robot. The constraint functions calculate
the constraint error values from the current robot state. The constraint values
are then used by the constraint controllers to calculate velocity bounds. These
velocity bounds are used in the formulation of a quadratic programming (QP)
problem. The QP Solver finds an optimal control command while attempting to
respect all velocity bounds according to their weights and priorities. The control
command is finally sent to the hardware controllers, which realize it on the robot
hardware and report back the current robot state.

Thus, creating robot motions from an abstract requirement needs the following
elements:

• The constraint function

• The constraint rule

• The constraint controller

• The necessary inputs

An instance that brings these elements together is called a Task. They are
described in more detail in section 5.5.

5.3.1 Inputs to Constraint Rules

The inputs encapsulate all the dynamic information that is needed to set the
parameters of the constraint function. Inputs can be taken from the Context,
or be defined as separate command inputs provided by an external mechanism
or configuration. Typically, these inputs are used to define the targets of the
constraint rule. For example, a constraint rule moving the gripper to a pose in
Cartesian space needs to know the target Cartesian pose. This target pose might
be determined online from a perception system, might be statically pre-defined
in a configuration file, or might correspond to a frame in the current Context.
To separate the definition of a constraint rule from the definition of the targets,
these are encapsulated in the ConstraintRuleInput class. Before a constraint
rule can be used, all of its inputs must be ready, e.g. the Cartesian target pose
needs to be known. This is checked to avoid unexpected behavior due to missing
data or invalid configuration.

55

5 Constraint-based Robot Control

Figure 5.2. Overview of the concepts in our control architecture.

The method isReady() checks whether all inputs are able to produce the required
data and that the data passes initial validity checks. For example, joint limits
are checked to define a valid range. The method update() sets the input value
to the newest available value. This encapsulates any dependencies on the used
middleware. The different types of input that have been implemented are shown
in figure 5.3 and briefly explained below.

Sub-types of the CartesianPoseInput are used for rules that are dependent
on a pose in Cartesian space. The pose can be statically configured using the
StaticCartesianPoseInput type. This can also be specified to be relative to
a moving frame and thus has some flexibility. For example, it can be used to
specify a pose relative to the robot’s base. The TopicCartesianPoseInput type
is updated through a ROS topic. The FrameCartesianPose takes the Cartesian
pose from the pose of a frame, which must be known at run-time, the frame
must exist in the FrameBuffer of the Context. As a further specialization, the
CollisionGeometryCartesianPoseInput requires a frame with an associated
collision geometry.

56

5.3 Handling Dependencies on the Environment: Constraint Rules and Tasks

Figure 5.3. Class diagram of the implemented input types rules.

The abstract type JointSpaceInput stands for input in the joint space and
is extended by the type JointPositionInput, which can, in turn be stati-
cally configured (StaticJointPositionInput) or updated through a ROS topic
(TopicJointPosition). Lastly, the JointLimitsInput type is used to specify a
range of joint positions, using an upper and lower limit.
Besides these explicitly specified inputs, the robot’s kinematics and geometry, and
the obstacles of the environment are included in the context model and globally
available to all constraint rules. Moreover, the current robot configuration q is
also available globally, as it forms the basis of the controller calculations.

5.3.2 Types of Constraint Rules

In this section, the different available types of constraint rules are presented. The
implemented types are shown in a class diagram in figure 5.4. In the following,
each of them is described in detail. The definition of a constraint rule generally
consists of four parts:

• Configuration Parameters, used to adapt the definition to different use
cases. The values are specified in the task configuration file.

• Required Inputs, that provide all necessary dynamic data, that might
only be available online.

• Constraint Function, defined using the inputs and configuration parame-
ters.

• Constraint Jacobian, the matrix defining how movements of the joints will
affect the constraint. Used, among other things, to define the relationship
between the calculated velocity bounds and the joint velocities.

Each constraint rule is either a Cartesian rule, or a joint space rule, and conse-
quently each rule is a subtype of one of the abstract classes CartesianConstraintRule
or JointSpaceConstraintRule.

57

5 Constraint-based Robot Control

Figure 5.4. Class diagram of the implemented constraint rules.

Constraint Rules in Joint Space

All constraint rules that are sub-types of JointSpaceConstraintRule have in
common that the corresponding constraint Jacobian is simply the identity ma-
trix, JJointSpace = In ∈ Rn×n, where n is the number of controlled joints. For
constraints in joint space, no conversion between velocities is necessary, and the
Jacobian does not have to specify a further relationship between joint velocities
and the constraint. The currently implemented constraint rules in the joint space
are the following:

JointPosition This constraint rule type expresses the requirement to move the
robot’s joints to a target position. As such, it is the simplest example of a constraint
rule. An example of a practical use is to move the arm to a pre-defined transport
position. With a lower priority, it is also useful to guide the robot toward desired
solutions, for example, to prefer elbow-up positions over elbow-down positions.
This task requires a single input of type JointPositionInput. It specifies the
target joint positions qtarget. The constraint function calculates the error between
the target and the current configuration: fJointP osition(q) = qtarget − q. This
type of constraint rule has no further configuration parameters, all the possible
customization is done through parameters in the task and the controller.

JointLimits This constraint rule keeps the joint positions in the range of an
interval of joint values. The range is given as an input of type JointLimitInput,
specifying the upper (qmax ∈ Rn) and lower (qmin ∈ Rn) limits. Besides the
obvious example of always keeping the joints within the hardware limits, it can also
be used to define preferred ranges with a lower priority. This type of constraint
rule has the joint limits as a single input, and no configuration parameters. The
constraint function is given as the following function:

flimits(q) = min(qmax − q, 0) + max(qmin − q, 0)

58

5.3 Handling Dependencies on the Environment: Constraint Rules and Tasks

In the above equation, min and max are the element-wise minimum and maximum
functions. If the current joint position is within the limits, the constraint value
is zero, otherwise the signed distance to the limits is returned. The case that a
single joint is both above and below the valid range at the same time can not
occur for a valid JointLimitInput.

Constraint Rules in Cartesian Space

All Cartesian constraint rules have in common that they require configuration
parameters to define which link of the robot they control. The controlled link
is referred to as φcontrol. They also require a definition of the reference frame
φreference. The Cartesian requirements are then assumed to be relative to this
frame. In general, all Cartesian constraint rules use the following form for the
constraint Jacobian:

JCartesian(q) = Jgeom
φcontrol

(q)− Jgeom
φreference

(q)

In the case that φreference is not a part of the robot, but an uncontrolled frame in
the environment, its geometric Jacobian Jgeom

φreference
(q) will be zero, as the joints do

not influence it. In this case, the constraint Jacobian is just equal to the geometric
Jacobian of the controlled frame, Jgeom

φcontrol
(q). The controlled link is necessarily a

controlled robot frame, and, consequently, this Jacobian can never be zero. In
the case that both φreference and φcontrol are controlled links of the robot, both
their Jacobians must be considered to model the relative motions to each other.
An example where this is used is self-collision avoidance between two links of the
robot. Here, it is not the absolute movement of the links that is relevant, but only
their movement in relation to each other. Besides this, the relative movements
can also be used to specify other types of position requirements, for example, to
keep the gripper above the platform, or to avoid moving the elbow below the
end-effector. Configurations where φreference = φcontrol are invalid. The subtypes
of Cartesian constraint rules are further described below.

Cartesian Pose This constraint rule expresses the requirement of a given robot
link to be positioned at a target Cartesian pose. It requires an Input of type
CartesianPoseInput, defining the target pose ptarget.
The constraint function is concisely written as follows:

fCartesianP ose(q) =



xt − x
yt − y
zt − z

σx

σy

σz



59

5 Constraint-based Robot Control

Figure 5.5. Illustration of the Cartesian distance constraint rule. Here, the robot’s
flange is the controlled frame, which is required to stay at least 1.5 m away from the
target frame.

The constraint value expresses the error in Cartesian space between the target and
the current pose. Instead of a rotation matrix, the error in orientation is expressed
as a rotation vector to simplify the conversion of a rotation into velocities in the
constraint controllers. The vector (x, y, z)T represents the current position of
the controlled frame, (xt, yt, zt)T is the position component of the target pose.
σ = (σx, σy, σz)T is the vector expressing the rotational error. It is formed by
first calculating the difference rotation matrix Re between the current and target
orientation: Re = R−1Rt. Re is converted to a three-dimensional vector by
converting the rotation matrix to a rotation vector σe. Lastly, this vector has to
be rotated to be relative to the reference frame σ = Rσe

Cartesian Distance This rule has the intention of keeping the controlled frame
at a minimum distance to the reference frame. It controls only the frame’s position,
not its orientation. Thus, the constraint function has three dimensions. Also,
it takes only the distance between the origins of the frames into account, not
any collision geometry they might have. If the distance between geometrical
shapes is required instead, the ObstacleAvoidance or SelfCollisionAvoidance
constraint rules defined below should be used instead. Figure 5.5 shows an
illustration of this rule. The required distance d is given as a configuration
parameter by the name distance. The constraint function has the form of the
following equation:

fdistance(q) = c =

x
y
z



60

5.3 Handling Dependencies on the Environment: Constraint Rules and Tasks

Figure 5.6. Illustration of the aiming constraint rule. The z-Axis of the controlled
frame at the robot’s flange is aiming at the shown target frame.

The direction of the vector c is along the line between φcontrol and φreference.
Its magnitude depends on the distance between φcontrol and φreference. d̂ =
‖φreference − φcontrol‖. In conclusion, the constraint function is defined by the
following equation:

fdistance(q) = c =
{

0, d̂ ≤ d

(d̂− d) ∗ φreference−φcontrol
d̂

, otherwise

Aiming This constraint rule is used to let a robot frame point toward a target
Cartesian pose, either in the environment or as a part of the robot itself. For
example, it can be used to rotate the platform toward the person during an
interaction. If the robot is supposed to shine a light from a flashlight in its gripper,
this rule can be used to shine the light toward the target. This rule, on its own,
influences only the rotation of the controlled frame, never its position. Therefore,
only the lower three rows of the Jacobian are required here, and the constraint
function has only three dimensions. Figure 5.6 illustrates this.

It requires the axis configuration parameter, which can be set to one of the values
x, y, or z. This parameter determines which axis of the controlled frame should
point toward the target position ptarget. Besides, ptarget is required as an input of
type CartesianPoseTarget and specifies the target pose that the controlled link
should aim toward.

The constraint function looks as follows:

61

5 Constraint-based Robot Control

Figure 5.7. Illustration of the field-of-view constraint rule.

faiming(q) =

σx

σy

σz


The constraint value consists of the orientation error σ = (σx, σy, σz)T . The
target orientation is defined by the line between φcontrol and φreference. pt is the
normalized vector in the direction of this line:

pt = φcontrol − φreference
‖φcontrol − φreference‖

pc is of the normalized axis vector of φcontrol, as specified in the axis configuration
parameter. The cosine of the angle α between pt and pc can then be calculated as
cos(α) = pc ·pt. An orthogonal vector to pt and pc is defined by v = pc×pt. Using
these values, a quaternion r is defined as r = (vT , cos(α))T . This quaternion is
converted to a rotation vector σe. Lastly, σe is rotated to be relative to φreference:
σ = Rφcontrolσe.

Field of View This constraint rule is used to express that the controlled frame
should be in the field of view of the reference frame. The field of view is specified
through configuration parameters that define a cone, with its tip at the origin of
the target pose. This constraint rule is typically used to have the controlled link
in the field of view of a person, to create a natural interaction. The opposite, that

62

5.3 Handling Dependencies on the Environment: Constraint Rules and Tasks

some external object has to be kept in the view of a camera on the robot, is also
possible. The field of view here is described as a cone, with the parameters of the
opening angle and its height. The cone is oriented along one of the axes of the
target frame, which is given as a configuration parameter. What is not included
is the requirement that the line between the frames is not occluded. This would
require a model of visibility and occlusion, and can not be solved in a purely
reactive fashion.
The following configuration parameters are needed for this constraint rule:

• axis: The axis along which the cone is oriented.
• length: The length of the cone L.
• angle: The opening angle of the cone α.

Figure 5.7 shows an example of a cone, here oriented along the x-axis. For the
sake of simplicity, the calculations described here always assume the cone to be
oriented along the x-axis. The other cases can be calculated in analogous ways.
The constraint function has the following form:

fFoV(q) =

x
y
z


The calculation of the constraint function is designed from two requirements that
arise in order to be within the cone:

• The x-position of φcontrol relative to φreference must be positive, but not
larger than L.

• On the y-z-plane, the distance of φcontrol to the cone’s center line must be
no larger than the radius of the conic section at the x-position. The further
φcontrol is from φreference, the larger the cone becomes.

The first requirement is simple to express in the following form:

x =


xc, xc < 0
0, 0 ≤ xc ≤ L

xc − L, xc > L

In the above equation, xc is the x-position of φcontrol relative to φreference. For the
second requirement, the applicable radius of the cone section can be calculated
as r = max(0, min(xc, l)) sin(α

2). As long as xc is within the length of the cone, r
is the radius of the cone at that point, otherwise, it is the radius of the cone at
the closest end. If the φcontrol is within the cone radius, i. e.

√
y2

c + z2
c ≤ r, the

constraint values in y and z dimensions are zero.

y =

0,
√

y2
c + z2

c ≤ r
ryc√
y2

c +z2
c

, otherwise

63

5 Constraint-based Robot Control

Figure 5.8. Illustration of the self-collision avoidance constraint rule. Here, the distance
between the collisions geometries of a box and a cylinder is constrained.

z =

0,
√

y2
c + z2

c ≤ r
rzc√
y2

c +z2
c

, otherwise

Self-collision Avoidance Self-collision avoidance is realized by controlling the
distance between two robot links. Each SelfCollisionAvoidance constraint
rule is defined between exactly two frames with collision geometries on the robot.
Hence, multiple instances will often be required to fully avoid self-collisions. The
specified frames φreference and φcontrol must have defined collision geometries. The
constraint value is calculated as the distance between the closest points on the
shapes. This constraint rule has one configuration parameter, minimum_distance.
It defines the distance threshold: if the distance between the two frames falls
below this distance, the constraint is no longer satisfied. In formulas, this value is
written is dmin.
The method for calculating the constraint value begins by calculating the closest
points on the collision geometries of the two robot links. To find the closest points
on the two convex shapes of the collision geometries of the relevant robot links,
the Gilbert-Johnson-Keerthi (GJK) algorithm [47] is used. The resulting closest
points are referred to as pc, the point on the controlled frame, and pt, which is
the point on the reference frame.

64

5.3 Handling Dependencies on the Environment: Constraint Rules and Tasks

After the closest points and their distance have been calculated, it is still not
clear in which ways the motion of the controlled link should be constrained.
To determine which dimensions are relevant to keep the distance, the distance
gradient is computed:

∇d(pc, pt) =
(
∇lind(pc, pt)
∇rotd(pc, pt)

)

The linear part of the gradient is given as follows:

∇lind(pc, pt) = pc − pt

‖pc − pt‖

The rotational part of the gradient is defined by the following equation:

∇rotd(pc, pt) =

((1 0 0)T × r) ◦ ∇lind(pc, pt)
((0 1 0)T × r) ◦ ∇lind(pc, pt)
((0 0 1)T × r) ◦ ∇lind(pc, pt)



In the above equation, r is the radius of rotation of the controlled link. If pc is
the closest point on the geometry of φcontrol, and pc0 is the center of rotation of
the frame, the vector r is defined as r = pc − pc0. It must be noted that this
gradient only models the distance between the points that are currently closest to
each other. This does not always accurately reflect the total distance between
the collision geometries. Since only the currently closest points on the shapes are
considered, a rotation that increases the distance between these points might not
actually increase the distance between the obstacles. For example, the closest
points on two spheres can be moved away from each other by simply rotating the
spheres in any direction. Nevertheless, the distance between the spheres would, of
course, stay the same. Similar effects can happen with other shapes, for example
in the case of parallel cubes, where a rotation moves away one point, but moves
another one closer in the process. If this causes problems, more accurate methods
of computing the distance gradient are also available [30]. In our evaluations, this
does however not seem to cause practical problems.

The distance value d is calculated as the difference between the current distance
and the configured minimum distance: d = max(dmin − ‖po − pc‖, 0). Finally, the
constraint function is defined using this value and the gradient:

fSelfCollision(q) = ∇d(pc, pt)
d

65

5 Constraint-based Robot Control

ObstacleAvoidance This constraint rule is based on the idea of the repulsive
vector taking multiple obstacles into account as presented by Flacco et al. [35].
All obstacles within a configuration-defined radius are considered. Obstacles that
are further away than the radius are excluded to avoid wasting computation time
on obstacles with negligible effects.

φcontrol is required to have a defined collision geometry. This constraint rule is
the only Cartesian constraint rule that does not require an explicit target frame,
and uses simply all obstacles in the surrounding area instead. The following
parameters are required from the configuration file:

• radius: Obstacles further away than this value are not considered.

• minimum_distance: The minimum distance dmin to be kept to obstacles. If
all obstacles have a larger distance, the constraint value is 0, i. e.] the
constraint is satisfied for the current robot configuration.

The set of obstacles O is taken from the environment model. For each contained
obstacle o ∈ O, the nearest points on o and on the collision geometry of φcontrol are
calculated. As above, the method to calculate the closest points between the two
shapes is the GJK algorithm [47]. Let po be the nearest point on the obstacle, and
pc the nearest point on the controlled link. Next, a repulsive vector is generated
from them. The direction of the total repulsive vector takes all obstacles into
account.

V (O) =
∑
o∈O

(po − pc)

The magnitude of the resulting repulsive vector is based only on the distance to
the closest obstacle omin and the minimum allowed distance dmin. The distance
is calculated as d = max(dmin − ‖po − pc‖, 0). The resulting constraint function
then looks as follows:

fObstacle(q) = d
V (O)
‖V (O)‖

In its current form, this constraint rule uses only linear motion and thus three
dimensions. While it is possible to consider the rotational velocities as well, it is
currently unclear how to define the rotational gradient for multiple obstacles in
a suitable way. Since it does not seem to cause issues in practical experiments,
this is currently left out. The issue can also largely be circumvented by defining
the collision geometries of the controlled links in suitable ways. It is however a
possible future extension.

66

5.4 From Constraints to Velocity Bounds: Constraint Controllers

Figure 5.9. Illustration of the obstacle avoidance constraint rule.

5.4 From Constraints to Velocity Bounds: Constraint
Controllers

After constraint rules determine the constraint parameters based on the current
inputs and context, the constraint value can be calculated from the current robot
state q. For a single constraint f , this can be expressed by the formula f(q) = c. c
names the constraint value, also known as the current error value of the constraint.
This value, by itself, only contains the information whether the constraint is
satisfied (iff c = 0), and how large the error to a satisfying configuration is. To
define how the values should influence the robot’s motion, constraint controllers
are used. Various different types of reactions are possible. For example, if the
robot is supposed to move to a target Cartesian pose, the robot should move in
the direction opposite of the error, i. e. toward the target pose. If the error is
zero, i. e. the robot has already reached the target, the robot should stay there,
unless a higher-priority task requires it to move away.

Stopping the robot from driving into obstacles, for example, requires a completely
different reaction: Here, the error is zero when the robot has sufficient distance
from all obstacles. Not allowing the robot to move in this case would be highly
impractical. Instead, the robot should be stopped from moving closer to the
obstacles only as the error gets larger. In the case of c = 0, the robot should
however be able to move freely. Further, even if close to an obstacle, the robot
should not have to stop completely, which would mean that the robot is stuck
unless the obstacles move away. Instead, the robot should be free to move away
from the obstacles, but not be allowed to move any closer. Additionally, it should
be possible to specify different behaviors based on the same constraint rule, for
example not moving into obstacles or actively moving away from obstacles.

67

5 Constraint-based Robot Control

Thus, different reaction strategies for the constraint rules are needed. These
reaction strategies are defined by the constraint controllers. The same constraint
rules can be combined with different constraint controllers to different effects. As
an example, the ObstacleAvoidance rule can be used to move away from obstacles,
or to just slow down when approaching obstacles, depending on the controller
applied to it. It should be noted that, in this section, we are only concerned with
one single constraint at any point. How multiple, possibly conflicting, constraints
are resolved will be described in the following section 5.6. Furthermore, often the
controllers will be presented as if only a single degree of freedom is controlled,
for example in function plots. Of course, the controllers usually control more
degrees of freedom, but they are left out here for easier understanding. In practice,
multiple constraint controllers will be active during any robot action.

At first, it might be the most intuitive concept that each controller generates one
exact velocity as its output, which should then be applied to the joints or the
controlled link. However, this would be overly restrictive. Often, the task does
not require an exact motion, but it can be possible to express the requirements of
the task as a range of permitted velocities. In the example of obstacle avoidance,
it can be allowed to move away from the obstacle with a high velocity, but only
move toward the obstacle with a velocity that decreases until a minimum distance
is reached, when no further movement in the direction of the obstacle is permitted.
Therefore, constraint controllers do not generate a single velocity, but instead
calculate upper and lower bounds on the velocity. Depending on the type of the
constraint, these can be bounds on the Cartesian velocity of a robot link, or bounds
on the joint velocities of the robot’s joints. If the upper and lower bounds are
identical, the output corresponds to an exact value. The output of the constraint
controllers, the functions for the upper and lower bounds, must be continuous.
Discontinuities can lead to various undesirable effects, such as oscillation. The
exact behavior of the controllers can be adapted through configuration parameters,
for example, to influence the slope of the generated velocity curve. The output of
the controllers itself should be bounded, i. e. even a very far away target should
not lead to overly large velocities. In this section, the details of the different types
of controllers are presented.

In the remainder of this section, the different types of constraint controllers that
are used are described in detail. In the equations, b+ refers to the generated upper
bounds on the velocity, b− to the lower bounds. Both of them are functions that
depend on the constraint value c of the associated constraint.

5.4.1 The Follow-Controller

This controller has the intention of letting the robot follow the constraints exactly.
Therefore, the upper and lower bounds are set to the same value. The generated
velocity is moving in the opposite direction of the constraint value, in order to
decrease the error and move toward constraint satisfaction.

68

5.4 From Constraints to Velocity Bounds: Constraint Controllers

Figure 5.10. Plot of the output of the Follow-Controller (equation (5.6)) with L = 1.0
and various values for α.

In a very basic way, it could therefore just be defined as b+(c) = b−(c) = −c.
However, to handle the velocity limits smoothly, it is instead modeled as a sigmoid
function:

b+ (c) = b− (c) = −2L

1 + e−αc − L (5.6)

In equation (5.6), L refers to the maximum velocity output for this degree of
freedom. The resulting value is limited to the interval [−L, L]. The parameter
α ∈ R+ can be set by the user to influence the slope of the curve, i. e. how
sharply the controller reacts to an error value. Larger values of α lead to a steeper
slope. figure 5.10 shows the output of this controller for different values of α.

5.4.2 The Limit-Controller

This controller is used for scenarios where the robot should be stopped from
increasing the error value any further, after the error has reached a given threshold.
Before this threshold is reached, velocities that increase the error are increasingly
limited, i. e. the robot has to slow down. It is not enforced that the robot
actively moves to decrease the error. This type of controller is often used for
safety requirements, such as avoiding self-collisions.

69

5 Constraint-based Robot Control

Figure 5.11. Plots of the output of the Limit-controller (equation (5.8)) with L = 1.0.
Left side: c0 = 5.0, right side: c0 = 7.5.

This controller is based on the smoothstep function [110]. This function is a
popular choice for smooth interpolation and was originally designed for the field
of computer graphics. It is defined by the following equation:

smoothstep (x) =


0, x ≤ 0
3x2 − 2x3, 0 < x ≤ 1
1, x < 1

(5.7)

Defining the controller based on the smoothstep function has the following advan-
tages, compared to other functions that might be considered, such as the logistic
function:

• The function does actually reach its limits, instead of just converging toward
them. It does this at clearly defined points. These are 0 and 1 for the basic
smoothstep function. In the controller, these are 0 and ±c0. Therefore, the
user can be sure at which point the robot will no longer be allowed to move
against the constraint. With a function that is only converging toward its
limits, this behavior is harder to predict.

• The function is, at the same time, (once) continuously differentiable.
• From a user perspective, the function can be adapted by simply setting the

parameter c0, the point at which the robot must no longer continue to move
in this direction. This is conceptually much simpler to choose, compared to
a more abstract slope parameter.

70

5.4 From Constraints to Velocity Bounds: Constraint Controllers

Figure 5.12. Plots of the output of the Stopping-controller (equation (5.9)) with
L = 1.0. Left side: c0 = 5.0, right side: c0 = 7.5.

Using the smoothstep function, the controller is defined by the functions for b+
and b−, as defined in equation (5.8).

b+ (c) = L(smoothstep
(−c

c0

)
− 1)

b− (c) = −L(smoothstep
(c

c0

)
− 1)

(5.8)

figure 5.11 shows the output of the controller for two different values of c0. The
permitted velocities are highlighted in green. It can be seen that for c = 0, the
velocity is only bound to the interval [−L, L]. As the error value c increases, the
permitted velocity in the same direction smoothly get smaller, until it reaches 0
at c0. Moving against the direction of the error is always possible.

5.4.3 The Stopping-Controller

The Stopping-controller does not allow any motion when the error gets too large.
The velocity bounds at c = 0 are [−L, L] and gradually move toward zero as
c increases. Therefore, this controller does not actively attempt to fulfill the
constraint, but has the role of a monitor. Since the velocity is fixed to zero for
high values of c, this controller requires that external circumstances change in
order to allow motion again. A typical use case for this controller is slowing and
eventually stopping the robot when a person comes close. There are cases where
it is intended that the robot has to slow down and eventually come to a standstill
when a person comes close, and is not allowed to move away on its own either.

71

5 Constraint-based Robot Control

Figure 5.13. Plots of the output of the Hybrid-controller with L = 1.0. Left side:
x0 = 5.0, right side: x0 = 7.5.

The limiting controller is therefore not a valid solution for this case. Otherwise,
the calculation is very similar to the Limit-controller. The stopping controller is
described by the equations given in equation (5.9). Plots of the output for some
example values can be seen in figure 5.12.

b+ (c) = −L

(
smoothstep

(|c|
c0

)
− 1

)
b− (c) = −b+ (c)

(5.9)

5.4.4 The Hybrid-Controller

This controller is similar to Limit-controller, but while the Limit-controller always
allows the robot to stand still, i. e. a velocity of zero, this controller enforces
a velocity in the opposite direction of the error if the error gets too large. In
contrast to the Follow-controller, it permits a range of velocities, especially the
entire range [−L, L] at c = 0. However, if |c| > c0, the upper and lower bounds
converge toward the same value. figure 5.13 shows a plot of this controller. The
controller is named hybrid because it combines the enforcement of velocities that
decrease the error of the Follow-controller with the unconstrained motion in
low-error cases of the Limit-Controller. An example of the practical use of this
controller is keeping the robot base close to a person. If the base is close enough,
it is free to perform its other tasks, even if they slightly move the robot further
away. If, however, the distance increases further, the robot has to move toward
the person again.

72

5.5 Tasks and Actions

The control law is again based on the smoothstep function:

b+ (c) = −L

(
2smoothstep

(c
c0

)
+ 1

)
b− (c) = L

(
2smoothstep

(−c
c0

)
− 1

) (5.10)

The different available controller types are summarized below:
• Follow: Enforces velocities that reduce the error value.
• Limit: Prevents velocities that increase the error value beyond a specified

value.
• Stopping: Slows down and eventually stops as the error increases.
• Hybrid: A combination of Follow and Limit. Velocities are unconstrained

for small error values, but for higher error values velocities that reduce the
error are enforced.

5.5 Tasks and Actions
In the preceding sections of this chapter, the basic concepts of constraint-based
control of robots were introduced:

• Constraints describe geometric requirements on the robot.
• Constraint rules update the constraint parameters to a dynamic environment.
• Constraint controllers calculate velocity bounds based on the current con-

straint values.
After the above definitions of constraints, constraint controllers, and constraint
rules, they can be used to define tasks. Tasks, in turn, can be used to define
actions. This section starts by describing the definition of tasks, followed by the
description of how tasks are combined to define actions. Furthermore, concepts
for defining the relative importance of tasks and their required accuracy are
introduced.

5.5.1 Specification of Tasks

A task encapsulates a requirement on the robot’s behavior in regard to its
environment and how this requirement should influence the robot’s motion. As
such, it combines a constraint function and its associated constraint rule with a
controller and the required inputs.
The structure of a Task is shown in figure 5.14. Besides the above elements,
the task also contains other relevant parameters, namely tolerances and weights.
Their meaning is described below.

73

5 Constraint-based Robot Control

Figure 5.14. Class diagram showing the fundamental structure of Tasks

Tolerances

According to the fundamental definition of constraints in section 5.2, a constraint
is only fulfilled if its value is exactly zero. In many cases, this it not a practicable
method of deciding whether a task has successfully reached its goal. If, for
example, the goal contains a Cartesian pose for the end-effector, it is practically
almost impossible to position the gripper at the pose without any measurable
error. Therefore, this requirement often needs to be relaxed. Each task can define
a vector of tolerances, t ∈ Rm

≥0. If no tolerances are defined, 0 is assumed as the
default value.
A task is said to be satisfied iff, for its constraint function f , the vector of
tolerances t, and the constraint value f(q) = c, the following holds:

∀i ∈ {1, . . . , m} : |ci| ≤ ti

It is important to note that changing the tolerances will not change the generated
robot motion. The tolerance is only used to specify how much deviation is allowed
to consider the task as satisfied. The constraint controllers will still react in the
same way. For example, a Follow-controller will attempt to fulfill the constraint
as exactly as possible, regardless of the tolerances.

Weights

While tolerances define how exactly a constraint and its components must be
satisfied, without influencing the resulting motions, weights are used to specify
the relative importance of the constraint. They are specified as a vector w ∈ Rm

≥0.
If an element of w is set to 0, the corresponding dimension is removed from the
task. For example, a Cartesian pose task with the weights w = (0.5, 1.0, 0, 0, 0, 0)T

would only affect the x- and y- position of the controlled link. The z− position
as well as the three rotational axes are ignored. In the implementation, the task
is automatically reduced to a two-dimensional case, so that the implementation
is not weighed down by unnecessary zero-entries in the solver and other places.
These dimensions are then also no longer considered in the decision whether the
task is satisfied.

74

5.5 Tasks and Actions

Figure 5.15. Class diagram of an action.

Any weights ≥ 0 do however have the same influence on whether the task is
considered satisfied or not, the specific value has no effect on the decision whether
the task is satisfied.
In the above example, the x-dimension also has a lower weight (0.5) than the
y-dimension, which has a weight of 1.0. This has the effect that the constraint
value for the x-dimensions only grows half as fast as that for the y-direction. The
controller would thus react more strongly to an error in y-direction.

5.5.2 Definition of Actions

Actions combine multiple tasks into a single unit that can easily be interacted
with by the user. They include different tasks with different priorities to define
their relative importance. They do not include discrete state changes, such as a
change between navigating to a room and picking up an object. Such discrete
changes are introduced later in the concept of a behavior. Since actions already
provide a simple interface with a clear result, it is then simple to combine them,
e.g. in a state machine. Figure 5.15 shows the structure of an action. An action
simply contains four collections of Tasks, which are named Safety Tasks, Path
Tasks, Goal Tasks and Cost Tasks. For further specification of what constitutes
a Task, refer to figure 5.14. In the context of reactive control, the difference
between the four collections of tasks lies mostly in their priorities. The meaning
and definition of the priorities is described in the remainder of this subsection.

Priorities

Priorities describe the relative importance of a task over another. The execution
of a task with a lower priority should never disturb the execution of another task
with a higher priority. In theory, an unlimited amount of priority levels is possible.
The priority is often expressed as a natural number p ∈ N, with 0 being the most
important priority, and higher values becoming less important. This is contrary
to how priorities are labeled in natural language, where a high priority is the most
important, but has the advantage of having an obvious most important value
(0), and more levels can be introduced simply by following the natural numbers.

75

5 Constraint-based Robot Control

However, simply assigning tasks a numerical value is not an intuitive method of
specification. The user has to have the priority values for all other tasks in mind
when assigning the values, in order to not make any mistakes. In our experiments,
no more than four priority levels were needed, and is unlikely to be required
in practice. Furthermore, some classification of tasks beyond numeric values is
required to express the different semantics of tasks in the context of planning (see
chapter 6). Therefore, the following method of classifying tasks instead of simply
assigning priority numbers is proposed:

• Safety Tasks: Safety tasks have the highest priority (p = 0) and are
generally required for the safe operation of the robot. Typical examples of
safety tasks are keeping the joints within their limits, self-collision avoidance,
and collision prevention. Safety tasks are specified globally and automatically
added to each action. In some cases, the global safety tasks can, however,
conflict with the requirements of an action. For example, this is the case
when the robot puts the flashlight from its gripper into the flashlight mount
on the base. This would normally be prevented by the tasks for self-collision
avoidance. To still allow such motions to be possible, action specifications
can provide explicit overrides, that disable safety tasks.

• Path Tasks: Tasks that are required to be satisfied at any point during
the action, with priority p = 1. The difference to safety tasks is mainly the
fact that they are not specified globally, but for each action individually. An
example of a typical path task is the requirement to hold a glass of water
upright.

• Goal Tasks: These have a priority lower than safety and path tasks (p = 2).
Tasks in this class express the main intended goal of the action that should
be reached as long as it is compatible with the safety and path constraints.
An example would be to place the glass on a table, which might be the main
task, but should not override keeping the glass upright or the joint limits.

• Cost Tasks: These tasks have the lowest priority (p = 3), and are intended
to add a specification of optional criteria to the action, that are not critical
to the success of the action. Cost tasks are not considered when determining
whether the action has succeeded. In the example of placing a glass on a
table, this could be a task to keep the platform close to the table, in order
to leave more free space behind the robot.

The constraints found from safety, path, goal, and cost tasks are correspondingly
referred to as the safety, path, goal, and cost constraints of the action. Since safety
tasks are defined globally, a new action is completely defined by its path, goal,
and cost tasks, as well as optionally the safety overrides. Much of the details of
the action then lies in the definition of the tasks. In this way, a library of tasks
can be created that can be recombined in different ways to form new action types.
Figure 5.16 shows an example of how an action can be defined, using the form of
an object diagram.

76

5.5 Tasks and Actions

Figure 5.16. Object diagram of an example action. The global safety tasks are omitted
here, and shown in figure 5.17 instead.

The safety tasks are omitted for the sake of clarity. They are instead shown in
figure 5.17. Unless especially noted otherwise, these are globally defined for all
actions and will be the same for all actions. The safety tasks contain nine tasks.
One for keeping within the joint limits, four for obstacle avoidance with four
different controlled links, and another four for self-collision avoidance with four
controlled links. Weights and Tolerances of most of the tasks are not specified,
in consequence, they have their default values of 1 for weights, and 0 for the
tolerance. The only exception is the task jointLimits, which has the weights for
the three virtual platform joints set to zero, as they do not have position limits.
All tasks use a LimitController. Since the safety tasks are merely intended to
provide a baseline for safety, not to create motion in itself, this is appropriate here.
Two different controllers are instantiated with two different parameter sets. Both
will stop the robot relatively quickly after violating the constraints, with c0 set to
0.01 and 0.1, respectively. On the other hand, the minimum_distance parameter
in all the collision-related tasks is set to relatively low values. For example, the
SelfCollisionRules will only be violated if the link moves closer than 0.05 m.
The robot will always be rather close to its other links, so a more gradual slowing
would cause almost a general slowdown of the robot at any configuration. Instead,
the robot will come to a relatively quick stop if the lower-priority tasks move it
too close to a collision, whether with an obstacle or itself.

77

5 Constraint-based Robot Control

F
ig

ur
e

5.
17

.
O

bj
ec

t
di

ag
ra

m
of

th
e

sa
fe

ty
ta

sk
s.

78

5.5 Tasks and Actions

To summarize, the following concepts are used to define the requirements of robot
motions:

• A constraint (also constraint function) is a function that maps from a robot
configuration q to a vector of error values: f : Rn → Rm. A constraint is
satisfied for a configuration q if f(q) = 0. n is the number of controlled
degrees of freedom, m is the dimension of the constraint.

• A constraint rule updates the parameters of its associated constraint function
to reflect the influence of the current context the robot is situated in, as well
as the value of the inputs. The context encapsulates data such as obstacles,
collision geometries, and sensor data. Constraint rules can thus be seen as
functions mapping from a context ∈ C to a constraint: C → (Rn → Rm).

• A constraint controller is used to define how the robot reacts to the constraint
values. Given a current constraint value c ∈ Rm, upper and lower bounds on
the velocity are calculated. Formally, a controller can thus be seen as two
functions b+ : Rm → Rm and b− : Rm → Rm. The velocities can be joint
velocities or Cartesian velocities. Different types of constraint controllers
are available to define different reactions.

• A task combines a constraint rule with a controller, defines tolerances
and weights, and additional parameters that might be required by the
components. Tasks thus form a unit that expresses a requirement on the
robot’s motion. Tasks can, for example, express concepts such as "Keep the
gripper upright", "Avoid obstacles with the base", or "Move the arm to a
given position".

• Actions bring together multiple tasks on different levels of priority to describe
a type of motion. An action contains path tasks, goal tasks, and cost tasks.
Furthermore, safety tasks are globally defined and apply to all actions. For
purely reactive control, these categories just correspond to different levels of
priority. In the later chapters on planning, there or semantic differences to
be aware of for the different sets of tasks.

Execution of Actions

Once an action is fully specified, all the user has to do is start the action. The
action will then begin to execute the robot motions as determined by the QP
solver and the velocity bounds calculated from the individual tasks. Of course,
the execution of an action has to end at some point. To decide on the following
actions to take, each action will end with a result, that is either failure or success.
The execution of an action ends with success if all safety, path, and goal tasks are
satisfied. An action is called satisfied if all of its safety, path, and goal constraints
are satisfied.

79

5 Constraint-based Robot Control

Several options are available to the caller of an action to specify the execution:
• Success Duration: The action only succeeds if it is continuously satisfied

for the specified duration. If not specified, the action succeeds as soon as it
satisfied for a single instant.

• Timeout: If the action did not succeed after this amount of time, the
execution will fail. If this is not specified, the action will keep running until
it succeeds or is canceled.

• Cancel Currently Execution Action: If set to true, any currently exe-
cuting action will be canceled as soon as the new action is called. Otherwise,
the call of the new action will be rejected.

Besides these options, it is also always possible to cancel an action using an
external signal. This can be used for choices that need to be made using external
mechanisms and can not be decided using the action definition. This is the case,
for example, with an action that lets the robot follow a person. This action has
no natural successful ending that can be expressed only through the state of the
robot and its environment. The end of the action instead has to be determined
by an external decision-making procedure that selects the currently appropriate
action. For example, this could be a voice command transmitted to the robot, or
the robot’s low battery state forcing it to move to a charging station.

5.6 Finding an Optimal Control Signal
In the previous section, it was described how actions are defined and how they are
used for generating velocity bounds based on the robot state and the environment
state. In the next step, the velocity bounds, weights, and priorities need to be
used to find a concrete control signal. In our architecture, these are joint velocities
q̇.

5.6.1 Formulation of a Quadratic Optimization Problem

The search for an optimal joint velocity q̇ can be formulated as a quadratic pro-
gramming (QP) problem. First, we describe a simple formulation to introduce the
concept. Afterwards, the formulation is extended, until finally the full formulation
used to control the robot is given at the end of this section.

Simplified Formulation

min
q̇

q̇T q̇

s. t. b− ≤ Jq̇ ≤ b+

q̇min ≤ q̇ ≤ q̇max

(5.11)

equation (5.11) shows the QP formulation in its most basic form. This optimization
problem aims to determine the vector of joint velocities q̇ ∈ Rn, so that the term
q̇T q̇, i. e. the squared norm of q̇, is minimal.

80

5.6 Finding an Optimal Control Signal

While this requirement that q̇ is minimal is conventionally written as the first line
in the specification, the core of the problem lies much more in the side conditions.
The minimization of q̇ only matters in case that there are multiple equally valid
solutions to the constraints, in which the one with the lowest velocities should be
chosen. As an extreme example, the robot should stand still rather than move
arbitrarily if there are no constraints at all.
The side condition on the last line specifies that the joint velocities must lie within
their defined ranges (q̇min ≤ q̇ ≤ q̇max), where q̇min ∈ Rn and q̇max ∈ Rn are
the vectors of minimum and maximum joint velocities, respectively. The core
of the problem, the execution of the tasks, is specified in the second line of the
equation (5.11): the resulting velocities must respect the bounds given by the
constraint controllers: b− ≤ Jq̇ ≤ b+. To keep the equations as concise as
possible, we write b− and b+ to refer to the values of these functions b−(c) and
b+(c) given the current constraint values c.
J = [JT

1 . . . JT
s]T is the matrix formed by vertically stacking all constraint Jacobians

of the active tasks. s is the number of tasks in the active action. Similarly,
b− = (b−1, . . . , b−s)T and b− = (bT

+1, . . . , b+s)T are the stacked vectors of all the
velocity bounds generated by the constraint controllers of the tasks.

Full formulation

The above formulation of equation (5.11) is simplified for easier understanding
and is not yet adequate for the practical control of a robot. Several other factors
have to be considered in the QP formulation:

• No solution to equation (5.11) can be found if the outputs of the constraint
controllers are conflicting. Weights and priorities have to be added to the
formulation find the best possible solution even in this case.

• Weighting of joints: In many cases, some of the controlled joints are con-
sidered preferable to move over others. In the example of the mobile
manipulator, rotating the arm with its first joint is generally preferred to
rotating the entire platform. This should also be possible to specify in the
formulation.

• The platform should not be used with very small control signals, as it is not
able to accurately realize them.

The first two of these shortcomings can be resolved by extending the QP for-
mulation. The details of this are presented in the rest of this section. The last
shortcoming can not be handled by a pure QP formulation. The description of
our solution to this problem can be found in the following section 5.6.1.
The extended version of the QP formulation is given below:

min
γ

γT ηγ

s. t. b− − χ ≤ Jq̇ ≤b+ + χ

q̇min ≤ q̇ ≤q̇max

(5.12)

81

5 Constraint-based Robot Control

The last line, specifying the maximum joint velocities, is unchanged. To allow
for tasks to deviate from their velocity bounds, if necessary, slack variables
χ = (χT

1 , . . . , χT
s)T are introduced for each task. These variables capture how

far the task is outside its prescribed velocity bounds. Of course, this deviation
should be kept as small as possible. Therefore, the optimization variable that is
minimized is no longer just q̇, but extended to γ = (q̇T , χT). In the second line of
equation (5.12), the velocity bounds are extended by χ to let deviating solutions
become valid.
The matrix η = diag((ωT , wT)T) is a diagonal matrix containing the specification
of the weights of the individual joints ω ∈ Rn

≥0, and the stacked weights of all
active tasks wT = (εp1wT

1 , . . . , εpswT
s). The task weight vectors are multiplied

with the term εpt , where pt is the priority of the task. This is used to realize task
priorities, based on the observation that a lower priority is equal to taking the limit
of the task weight toward zero [26]. In practice, a very small value ε is a sufficient
approximation and can be generalized to more levels of priority by weighting a
task of priority p with εp. Other researchers have found this approximation to
have comparable accuracy to specialized solvers with explicit handling of priorities
[31].
To solve the QP problem, we have evaluated two different open-source solvers:
qpOASES [33] and qpmad [131]. They implement different solving algorithms:
qpOASES implements the online active set strategy [34], while qpmad implements
the Goldfarb-Idnani dual active set algorithm [48]. A third implementation
called eiquadprog [14] was assessed. Like qpmad, it implements the Goldfarb-
Idnani dual active set algorithm. However, in preliminary tests its efficiency
was not competitive with the other two implementations. Furthermore, the
mathematical formulation of the QP problem it uses is different from the other
implementations, for example, it does not explicitly support simple bounds on
the optimization variables. Therefore, this implementation was not investigated
further. A comparison of the solving performance of qpOASES and qpmad is
given below in section 5.7
Both qpOASES and qpmad require the problem to be positive definite. Since the
matrices in our formulation can often include zero-rows, making the problem only
positive semi-definite, some regularization is required. qpOASES offers an inte-
grated regularization scheme, which we have used. For qpmad, we have explicitly
added a regularization term 1× 10−8‖γ‖ to the QPproblem of equation (5.12).

Handling minimum velocities of the platform

Modeling the mobile manipulator as a single kinematic chain, with the platform
abstracted as three virtual joints, greatly simplifies the formulation of the control
problem in Cartesian space. However, this abstraction can not hide the differences
in the underlying hardware systems and their consequences for robot motions.

82

5.6 Finding an Optimal Control Signal

Figure 5.18. Behavior of the platform’s hardware controllers at small velocities.

The main problem that occurs is that the platform can not be controlled as exactly
as the arm. Since the platform is controlled by commanded velocities, this means
that very small velocities can not be used in practice. An exception is, of course,
the case when the commanded velocity is zero. In fact, the case of zero velocity is
the only case where the platform is controlled as exactly as the arm. Thus, in all
use cases that require exact control of the end-effector, the platform should stand
still.
If the hardware controller of the platform is commanded a small, but non-zero
velocity it is set to zero instead. For the Neobotix MPO-700 platform, the hardware
controller does not move the individual wheels if their commanded velocity is
below 0.001 rad/s. This is illustrated in figure 5.18. Given the wheel radius of
0.09 m, this corresponds to a linear velocity of roughly 0.09 m/s, assuming that
all wheels are moving linearly in the same direction. This threshold is referred
to as τ . In our practical implementation, we added some buffer to account for
small inaccuracies, thus we use τ = 0.1 m/s. For the control of the entire mobile
manipulator, using the method of equation (5.12), these discontinuities at ±τ can
cause two types of problems:

1. Inconsistent motions. Since the calculation is not aware that small
velocities are ignored by the platform, the resulting motions do not take
this into account. For example, consider a calculated motion in which
the end-effector stays still in Cartesian space, and the platform is slowly
moving backward. The arm is intended to compensate for the motion of
the platform to keep the end-effector still. However, the platform will not
move as intended, but the arm will still execute the compensation motion.
Therefore, the end-effector would actually move forward in Cartesian space.
Thus, both requirements to the keep end-effector still, and to move the
platform backward, are violated.

83

5 Constraint-based Robot Control

2. Oscillation. Often we observed the case that the commanded velocity
would oscillate around the threshold value. This leads to a behavior in
which the platform rapidly alternates between standing still and driving. It
is caused, among other cases, when the commanded value is smaller than
the cutoff value. Since the platform will not move, the error will grow until
the cutoff is exceeded again. If the error then shrinks again, the platform
will stop again, repeating the cycle.

Due to the above problems, this needs to be handled. The discontinuities that are
visible in figure 5.18 are characteristic of the hardware and can not be avoided
completely. However, some strategies can be used to mitigate their effects.

In order to mitigate the first problem mentioned above, the fact that small
velocities are ignored by the platform has to be encoded in the optimization
problem. The total velocity vbase of the platform is calculated as the Euclidean
norm of the three virtual base joints: vbase = ‖(q̇x, q̇y, q̇theta)T ‖. To generate
velocity commands that can be executed accurately, vbase should be either zero
or above the threshold τ . This either-or problem is, however, not possible
to express in a simple QP problem, as it can not be expressed as a (linear or
quadratic) constraint on real numbers. Instead, a discrete decision variable has
to be introduced. This type of problem, QP with additional discrete decision
variables, is called mixed integer quadratic programming (MIQP) and requires
special solving strategies [78].

In the absence of suitable solver implementations with real-time guarantees, we
decided to employ a simple strategy based on two solving attempts of the QP
solver. Since the only discrete variable in the problem is the two-state decision
variable X ∈ {0, 1}, which determines whether the platform stands still or moves
with a velocity above the threshold, only the two options need to be evaluated.
Each of these options can be formulated as a QP problem. Our strategy then is to
solve both of these QP problems sequentially. This is equivalent to two instances
of equation (5.12), only that in one of the instances the velocity limits q̇max and
q̇min for the virtual base joints are set to 0. Since the QP solving makes up only
a relatively small part of the calculation time required in each control cycle, the
increase in calculation time is not critical. For further details and a comparison
of the required solving times, see section 5.7 below.

The two solving attempts thus lead to two different results, and a decision still has
to be made. Let q̇full be the result of equation (5.12) without further restrictions,
and q̇arm the result of equation (5.12) with disabled platform motions. If the result
of the original formulation q̇full already fulfills the requirement vbase = 0∨vbase > τ ,
it is returned as the final result. Otherwise, q̇arm is used. This solution does
by definition fulfill vbase = 0 and the other velocities have been calculated to be
consistent with this. In this way, it is ensured that a solution is used that is aware
of the hardware limitations and platform and arm will move synchronized to each
other.

84

5.7 Evaluation

Figure 5.19. Class diagram of the available solver types.

Given the two QP solver implementations qpmad and qpOASES, as well as the
option to use the specialized solving method considering the minimum velocities of
the platform, four solving methods are currently available in our framework. They
all implement the same interface and can easily be switched through a setting in
a configuration file. While for the scenarios in the present work, only one of them
will be chosen according to the evaluation results, using a different approach can
be useful when using the software on a different robot, for example, one without
a mobile base with minimum velocities, or other circumstances. The available
classes of solvers and their structure are shown in figure 5.19.

5.7 Evaluation
The basic functionality of the reactive control method is evaluated in three different
scenarios. The first consists of a motion moving the end-effector to a predefined
Cartesian pose. The next scenario performs a null-space motion: here, the robot
should keep the end-effector still in Cartesian space, while moving the mobile base
to the side. Lastly, the third scenario begins with the same setting as the first,
but now the way is blocked by an obstacle. This is intended to evaluate the ability
to react to obstacles and handle conflicting tasks. Throughout the evaluations,
the required calculation time is measured to evaluate the real-time capabilities of
our implementation. The safety tasks that are used in the evaluation scenarios,
as well as all following executions, are the ones illustrated in figure 5.17.

5.7.1 Linear Motions to Cartesian Targets

In the first evaluation scenario, we evaluate the basic ability to perform accurate
Cartesian motions. The robot is moving its end-effector toward a point in Cartesian
space. The only active tasks are the global safety tasks as described above, and
the CartesianPose task to move toward the target point.

85

5 Constraint-based Robot Control

Figure 5.20. Object diagram of the action used in the Cartesian motion evaluation.
The global safety tasks are omitted here, and shown in figure 5.17 instead.

The definition of the action is thus simple, and consists only of the specification
of the single goal task for the Cartesian pose. The corresponding object diagram
can be seen in figure 5.20. Besides the safety tasks, the action consists of only a
single goal task, while cost and path tasks are empty. The goal task is to move
the gripper to the specified target pose. As only the first three weights of the
task are non-zero, the orientation is not enforced. A Follow-Controller is used to
reach the target, the target pose is provided as an input named evaluationPose,
whose value is statically defined in the configuration file. Tolerances for the three
relevant dimensions are set to 0.01 m.
Figure 5.23 shows the results for the solver without consideration of minimum
velocities, figure 5.24 with the minimum-velocity-aware solver. In both cases, the
scenario described here is shown in the first, lightly colored section of the plot.
The plots clearly show that the solver not considering minimum velocities leaves a
considerable Cartesian error to the target, which is reduced to almost zero when
using the improved solver.

5.7.2 Null-space Motion

In the next evaluation scenario, we introduce conflicting constraints to evaluate
their resolution. The robot is holding its end effector still at a given pose in
Cartesian space, while the base is moving to the side. The corresponding action is
shown in figure 5.21. As shown there, the action is very similar to the previously
defined one, but using an additional task for a target pose of the platform as a
cost task.

86

5.7 Evaluation

Figure 5.21. Object diagram of the action used in the nullspace motion evaluation.
The global safety tasks are omitted here, and shown in figure 5.17 instead.

Therefore, the platform should be moved to its target but without disturbing
the gripper pose. The evaluation is started after the previous action has been
executed, so the gripper is assumed to already be positioned at its target. Both
tasks use the same Follow-controller. The photos of the robot poses are shown in
figure 5.22
Again, the global safety tasks specified in figure 5.17 are also active. In this
scenario, the most relevant metric for this evaluation is the Cartesian end-effector
pose error: Since the end effector pose is of the highest priority in this scenario,
it should ideally not move from its pose. However, inaccuracies in the control,
especially of the platform, can still lead to deviations from the pose.
Figure 5.23 shows the Cartesian position error of the end-effector when executing
the Cartesian and null-space motions described above, using the solver without
minimum velocities. The Cartesian position error is defined as ‖~pEE − ~pt‖, where
~pt is the target position, and ~pEE is the target position defined in the task
definition. The plots of the two repeated experiments show that a significant
error remains even when only tasked with reaching the Cartesian pose. This
can be explained by the fact that the remaining error leads to a commanded
platform velocity below the minimum velocity threshold, which the platform will
simply not execute. Since the solver is not aware of this fact, the arm does not
compensate for it either. As soon as the active action switches to the null-space
motion experiment, the error shrinks substantially in the beginning. Since the
platform is commanded velocities that it can execute, the coordination of arm
and platform is working more accurately again. However, toward the end of the
motion, when the commanded velocities decrease below the minimum velocity of
the base again, the error increases once more, as arm and platform are no longer

87

5 Constraint-based Robot Control

(a) Home position (b) Reaching the target pose (c) After nullspace motion

Figure 5.22. Example photos of the evaluation experiments.

acting consistently. The equivalent plots for the same repeated experiment with
the specialized solver can be seen in figure 5.24. Here, the Cartesian position is
reached much more accurately. During the execution of the null-space motion,
some amount of error in the position of the Cartesian pose occurs, however, it is
much smaller than the one in figure 5.23.

5.7.3 Reaction to Obstacles

In this third evaluation scenario, the ability of the method to react safely to
obstacles is evaluated, especially the case where the obstacles are conflicting with
the targets of the task. Figure 5.25 illustrates the scenario.
As before, the task is to move the end-effector to a given target position. The
action definition thus is the same as already presented in figure 5.20. The difference
in this scenario lies only in the environment: a box obstacle is in the way to the
target pose, preventing the robot from reaching the Cartesian goal. A collision
with the obstacle will be prevented on account of the global safety tasks, which
include obstacle avoidance for four different robot links. Figure 5.25 illustrates the
scenario. With this scenario, we evaluate the handling of conflicting constraints.
The collision prevention has higher priority than the Cartesian target, and should
not be violated. Still, the Cartesian pose of the end-effector should behave
smoothly and in a predictable way.
Figure 5.26 shows a plot of the results. The end-effector does not reach its target,
but remains with a distance of about 0.2 m, when the platform can not move
any further. It stops smoothly as soon as no further progress is possible and
remains still at this position. The platform slows down as soon as the distance to
the obstacle falls below 0.5 m. The controller stops the platform as soon as the

88

5.7 Evaluation

distance to the obstacle falls below 0.49 m, which is consistent with the parameters
of the task. It can be seen that the platform reaches a distance that is slightly
below 0.49 m. Besides general control inaccuracies of the platform, this can be
explained by three causes:

1. Constraints only cause a reaction by the controllers when they are not
satisfied, i. e. the constraint value is not 0. In this example, this means
that the platform only begins to slow down when the specified obstacle
distance falls below 0.5 m.

2. The limit constraint controller only stops the constraint value from growing
when it reaches the specified maximum value c0. Stopping the robot instantly
as soon as the distance falls below 0.5 m, which would be equivalent to
c0 = 0, would lead to a discontinuity in the robot’s velocity and a very
sudden stop. It is not desirable that the robot comes to a sudden and
complete stop whenever an obstacle is within the area where obstacles are
considered at all. Instead, the robot slows down smoothly, which necessarily
can not be an instant reaction.

3. Some timing delay needs to be taken into account. When a state is reached
where the controller stops the platform, the platform is still executing the
previous command and thus can not stop in the same instant.

This is all expected behavior. It is however important that the user is aware of
these properties of the system. Creating a task to keep the obstacle distance to, for
example, 0.5 m, will not mean this distance will always be kept, but that the robot
will start to react when this distance is no longer satisfied. For the specifics of the
reaction, the used constraint controller and its parameters must be considered.
This evaluation shows, however, that our control method is able to deal with
conflicting constraints and respects their priorities. The resulting motions are still
smooth and predictable. It also shows that, when configuring minimum distances
and other parameters, the chain of reactions must be considered. The constraint
controller only begins to react when the constraint is no longer satisfied, so it is
important to choose appropriate limits in the parameters.
This evaluation scenario also illustrates that planning can be necessary, as it is
clearly not intended that a simple box in the way can indefinitely keep the robot
from moving forward. Instead, it should be able to find a way around the box.
This can however not be solved using a purely reactive approach, but requires
planning. The topic of planning and how an action specification can be used for
planning is described in the following chapter 6.

89

5 Constraint-based Robot Control

(a) First experiment

(b) Second experiment

Figure 5.23. Cartesian end-effector error without platform minimum velocities.
90

5.7 Evaluation

(a) First experiment

(b) Second experiment

Figure 5.24. Cartesian end-effector error with platform minimum velocities.
91

5 Constraint-based Robot Control

Figure 5.25. Photograph of the evaluation scenario with a box obstacle.

92

5.7 Evaluation

(a) End-effector error and platform-to-obstacle distance.

(b) Detail view

Figure 5.26. Results of the evaluation with an obstacle.

93

5 Constraint-based Robot Control

Solver Total QP
Avg. (ms) Max. (ms) Avg. (ms) Max. (ms)

QPMadSolver 1.30 4.12 0.94 3.12
QPMadSolverMinimumVelocities 2.03 7.57 1.08 7.25
QPoasesSolver 17.38 111.66 16.66 105.92
QPoasesSolverMinimumVelocities 23.09 84.15 22.50 83.38

Table 5.1. Average and maximum calculation times for a full control cycle and for
solving the QP problem using the different solvers.

5.7.4 Real-time Requirements

It is of high importance for robot control that the control signal is found within
predefined time limits. Especially since the method requires the solving of an
optimization problem in each control cycle, low cycle times can be a challenge. If
the control signal is only sent with unpredictable frequency, the robot motions,
especially regarding safety, can become equally unpredictable.
To evaluate the real-time behavior of our method and its implementation, we
have recorded the time that is necessary for each control cycle. The time that
is used only to solve the QP problem has been recorded separately, to provide
information about how the calculation time is spent. The evaluation is executed
on the internal robot computer as described in section 3.2.3. The four solvers
shown in figure 5.19 have been evaluated during 1500 control cycles each, while
performing the linear Cartesian and null-space motion described above, followed
by a homing motion.
Table 5.1 shows the statistics of the recorded measurements for the four different
solver implementations. Figure 5.27 and figure 5.28 show a plot of the required
solving times during the different motion types. The qpmad-based implementations
consistently perform faster than the ones employing qpOASES. The solver variants
that consider the minimum velocities generally take longer, as expected, because
they have to solve two QP instances. However, the effect on the total solving
time is relatively small and does not fully double the calculation time. Using the
qpmad implementations, the calculation time consistently stays below 10 ms, so
that a control frequency of 100 Hz can be achieved. Using qpOASES, the solving
time is not only longer on average, but also shows a higher variation, with some
spikes reaching more than 100 ms required calculation time.
Combined with the increased accuracy of the minimum velocities as evident in the
comparison of figure 5.23 and figure 5.24, QPoasesSolverMinimumVelocities is
the preferred implementation for our use case. If used with another robot, without
the minimum velocity requirement of the platform used here, the QPMadSolver
might be preferred. Judging by the available data, qpOASES is not competitive for
this use case. The results of our evaluation are consistent with other benchmarks
[130].

94

5.7 Evaluation

(a) QPMadSolver (b) QPMadSolverMinimumVelocities

Figure 5.27. Required calculations times of the qpmad-based solvers.

(a) QPoasesSolver (b) QPoasesSolverMinimumVelocities

Figure 5.28. Required calculations times of the qpOASES-based solvers.

95

5 Constraint-based Robot Control

96

Summary. Path planning can be used to circumvent
some of the limitations of reactive control. The same
action specification as used for reactive control can be
used to define a planning problem. Solutions to find
suitable goals, a valid start, and to respect hard and
soft constraints during the path are presented. Different
algorithms are evaluated in three evaluation scenarios in
order to find the most suitable method. 6

Robotic Path Planning with
Constraints

6.1 Related Work . 98
6.1.1 Basics of Path Planning 98
6.1.2 Multi-level Planning 101
6.1.3 Planning with Constraints 103
6.1.4 Planning in Dynamic Environments 109

6.2 Planning Pipeline . 110
6.3 Handling Path Constraints 111

6.3.1 Path constraints in multi-level planning 112
6.4 Finding Goals from Constraints 113
6.5 Initial configuration . 114
6.6 Planning with Soft Constraints 116
6.7 Evaluation and Results 117

6.7.1 Cartesian Goal with Obstacle 119
6.7.2 Narrow Passage . 122
6.7.3 Making room . 126
6.7.4 Conclusions . 128

Purely reactive control has several limitations: Its lack of foresight means that
it tends to get stuck in local minima and can fail to converge towards globally
optimal positions. Planning alleviates these problems by considering the entire
motion from start to finish, instead of just the current state. Usually, planning
begins with the creation of a planning problem, consisting of start configuration,
goal configuration, cost metrics, and a definition of valid states, among possibly
other elements. In a dynamic environment and with varying action specifications,
it is impractical to manually define all of these elements manually whenever
planning is required. Instead, we aim to use a given action specification as also
used for reactive control, and automatically use it to define and solve a planning
problem.

97

6 Robotic Path Planning with Constraints

This chapter begins with an overview of existing techniques of path planning,
especially those with constraints. Afterwards, a method of planning for an action
definition as defined in the previous chapter is presented. It includes finding
suitable goals as well as the path to the goals, while respecting hard and soft
constraints. To conclude the chapter, different planning algorithms are evaluated
and compared in multiple scenarios to find the ones most suitable for the use
cases of this work.

6.1 Related Work
In this section, an overview of the state of the art of path planning is given. It
will be helpful for the rest of this chapter to provide both the reasoning and
notation of the foundations of path planning, as well as state-of-the-art algorithms,
before describing our own work. After a general introduction to path planning in
section 6.1.1, related works for the particular challenges of the use cases of this
work are presented. These are mainly the consideration of constraints in planning,
which is presented in section 6.1.3; and planning in dynamic environments, which
is described in section 6.1.4.

6.1.1 Basics of Path Planning

Path planning is an essential tool for autonomous robots. The notion of the
configuration space is important in the context of planning. It describes the space
containing all possible robot configurations, and is typically partitioned into the
free space and the obstacle space. The free space contains all configurations that
are not in collision with any obstacles, the obstacle space is its complement. The
size of the configuration space and the difficulties of calculating the free space and
the obstacle space are often at the core of path planning problems. In general,
the problem of path planning is PSPACE-hard [108], and the complexity grows
with the number of degrees of freedom to be considered.
Potential field methods [69] can be seen as the first approaches for robotic path
planning. These methods work by generating a potential that draws the robot
towards the goal and pushes it away from undesirable configurations. The robot
follows the gradient of the potential to reach the goal. The potential is defined as a
function of the configurations, and therefore it is enough to know the configurations
that are part of the path and the potential at these configurations; the configuration
space does not need to be modeled explicitly. Two large downsides of this approach
exist, however: it can easily get stuck in local minima, and it is difficult to design
the potential functions so that the resulting path has all the desired characteristics.
While methods to avoid local minima have been proposed, it is hard to find general
solutions that are applicable to a wide range of problems. The problem of local
minima thus remains an obstacle in the adoption of potential field methods.
Path planning can also be framed as a graph search problem, and the well-
known methods for these problems, such as the A*-algorithm [55], can be applied.
However, this requires a discretization of the configuration space.

98

6.1 Related Work

With fine discretization, the search space gets very large, and the algorithms are
no longer efficient enough, especially in high-dimensional configuration spaces.
With a coarser discretization, the algorithms are no longer complete, i. e. they
might not find a solution, even though one exists. Due to these problems, these
methods are generally not used for robot path planning, except for low-dimensional
problems such as two-dimensional navigation.

The most popular approach for path planning is sampling-based planning. The
basic idea is to avoid computing the entire configuration space, and instead work
with randomly generated samples of configurations. While this can also be seen as
a discretization of the configuration space, it is different from static discretization
of the configuration space by the fact that new samples will continuously be added.
They are thus not limited to an initial discretization, and for most methods, the
probability of finding a solution (given that it exists) converges towards 1 with
an increasing number of samples. This is called probabilistic completeness. Some
methods are also asymptotically optimal: As the number of generated samples
goes towards infinity, the probability of finding an optimal path goes towards 1.

Sampling-based planners can be classified into two broad categories: graph-based
and tree-based. Graph-based methods, such as the probabilistic road map method
[67], create a map of the environment in the form of a connectivity graph that
can be used for all future queries in that environment. This is often efficient for
environments that do not change. Since our focus lies on dynamic environments,
we concentrate on the second category of sampling-based planners: the tree-based
planners. For each new query, a tree of configurations is grown from the start
configuration. The edges of the tree stand for possible connections between the
configurations at the nodes. When the tree contains both the goal and the starting
position, a path has been found.

The first tree-based planner is the method of rapidly exploring random trees
(RRT) [77]. A prototypical description of tree-based planning is described in
algorithm 6.1. Given a start configuration qstart and a goal configuration qgoal,
it begins by creating a tree containing only the start configuration as its root.
Then, it enters a loop that terminates only once the tree contains a path from
qstart to qgoal. This illustrates the lack of completeness of typical sampling-based
planners: there is no simple way to detect cases where no solution exists. Practical
implementations thus have to add other termination criteria, such as upper bounds
on the number of iterations. Moreover, it is often desirable to continue building
the tree even after a first solution has been found to find better paths.

99

6 Robotic Path Planning with Constraints

Algorithm 6.1 Basic procedure of tree-based planning.
Input: qstart, qgoal

T ← initTree(qstart);
while not T.containsPath(qstart, qgoal) do

qrand ← sample();
qnear ← select(T, qrand);
qnew ← extend(T, qrand);
if connect(qnew, qnear) then

T.insert(qnear, qnew

end if
end while
return T.findPath(qstart, qgoal)

As long as it is running, the algorithm will perform the following steps: A random
configuration qrand is created using the procedure sample(). This configuration
can usually be anywhere within the configuration space. Next, the nearest node
of the tree is determined using the procedure select(T, qrand). This is the node
where it will be attempted to extend the tree. Next, the configuration to be added
qnew is created by the procedure extend(T, qrand). Usually, this procedure creates
the new configuration by moving in the direction of qrand starting from qnear with
a defined step length. It is then checked whether it is possible to connect qnear

and qnew, using connect(qnew, qnear). This usually tests whether the robot can
move directly from qnear to qnew without collisions. If the check succeeds, qnew is
inserted into the tree.
Using the basic method of algorithm 6.1, sampling-based planning provides a
framework that is easy to adapt for many kinds of specialized applications. Many
variants can be defined just by changing the details of the procedures sample,
select, extend, connect, and insert. For example, the RRT can be used for
non-holonomic robots by using specialized connect and extend procedures that
consider the robot’s steering abilities. One method of handling constraints in an
RRT works by using a sample procedure that is already able to generate only
constraint-satisfying configurations. Further detail of this is given in section 6.1.3.
Other variants of tree-based planning use slight variations of the above algorithm,
for example by building multiple trees in parallel.
The RRT* [66] is an especially noteworthy variant of the RRT. It can be shown
to be asymptotically optimal and thus is able to find optimal paths, given enough
time. The main difference to the RRT is that the tree will be re-wired if shorter
paths are found. The operation of re-wiring the tree can be costly in itself,
however.
The transition-based RRT (TRRT) [62] is another noteworthy variant of the RRT
that attempts to produce paths that optimize a cost function. In contrast to the
RRT*, it is not guaranteed to converge towards an optimal solution. It aims to
produce low-cost paths that follow valleys and saddle points on the cost map of

100

6.1 Related Work

the configuration space. It uses the concept of transition tests from stochastic
optimization methods to accept or reject new potential states based on how much
they change the current cost.

In practical applications, RRTConnect [75] is a popular variant. Instead of just
growing one tree from start to goal, this method grows two trees from both ends
and attempts to connect them.

A large variety of variants of the RRT have been developed over the years, with
many specialized applications. There are too many to list exhaustively here.
The most relevant specializations will be described in the following sections.
First, multi-level planning, a specialized planning approach for systems with high
numbers of degrees of freedom, is described. This is followed by an overview of
methods for planning with constraints and planning in dynamic environments.

6.1.2 Multi-level Planning

Motion planning for a mobile manipulator in general has to consider all available
degrees of freedom. Even in scenarios that mostly focus on either the mobile base
or the arm, the rest of the robot can generally not be ignored. When navigating
only with the robot base, it might be necessary to move the arm to avoid obstacles.
On the other hand, moving only the arm limits the robot to a small work-space
that is immediately reachable from the current base position.

However, planning for all degrees of freedom at the same time is costly in terms
of efficiency. In many cases, it is also sufficient to keep either the base or the arm
still and only plan for the remaining degrees of freedom. Whether it is necessary
to consider all degrees of freedom or not is however not possible to decide in
advance, especially when dealing with unpredictable and dynamic environments.
Reducing the number of degrees of freedom can critically reduce the solution
space, but always planning with all available degrees of freedom is inefficient and
often unnecessary.

Multi-level planning is a recently proposed technique that attempts to resolve
this dilemma in a soundly formulated way [106, 105]. Instead of planning directly
in the full configuration space, these planning algorithms plan in a sequence of
simplified state spaces. For example, the simplified state spaces can be defined
by removing some degrees of freedom of the robot from the planning problem.
The proposed planning algorithm quotient-space rapidly exploring random tree
(QRRT) is growing trees, analogous to the original RRT, both sequentially and
simultaneously on each of the simplified configuration spaces. The final resulting
plan considers all degrees of freedom and solutions that require movement with
all degrees of freedom are not precluded. The sequential simplifications can be
exploited by focusing the exploration of the random trees on configurations that
are feasible in the lower-dimensional configuration spaces, which can be explored
much more quickly. The QRRT algorithm has been shown to be probabilistically
complete, but no optimality guarantees can be given.

101

6 Robotic Path Planning with Constraints

To give an example with the mobile manipulator used in this thesis, the full
configuration space is the nine-dimensional configuration space of the six arm
joints and the three virtual base joints. A possible simplification can be formed
by removing the arm joints, so that the configuration space is projected onto a
three-dimensional, simplified configuration space. The hope of using multi-level
planning is that the simplifications can be used to explore the state space in more
sensible ways, without precluding solutions that require all degrees of freedom.
Considering a navigation scenario that mostly requires the platform to move, with
little to no arm motion required. Using a standard RRT would waste a lot of
computation time on exploring different arm configurations. With multi-level
planning, the motions of the platform would be explored first, and only feasible
motions there completed by extending them with the arm again. The inverse type
of scenario, where only the arm is required to move, should equally be able to be
handled efficiently by multi-level planning: If the initial configuration of the base
already satisfies the goal requirements of the base, the exploration can focus on
exploring arm motions.

In general, the sequence of simplified configuration spaces is defined through the
projection operators between them. Projection in the direction of the simpler
state space is modeled as a mapping π : X → Y from the original configuration
space X to a lower-dimensional configuration space Y . The inverse mapping
is not unique and thus describes a set of solutions for each configuration y:
π−1(y) = {x ∈ X|π(x) = y}. This set is called the fiber of y in X.

The definition of suitable projections between state spaces, called admissible
lower-dimensional simplifications (ALDS), is very general and quite abstract. The
most important case of the so-called canonical ALDS is more intuitive: Given a
configuration space X that is the product of two sub-spaces Y and Z, X = Y ×Z,
the canonical projection π is defined as π : X → Y . In effect, Z is removed from
the configuration space. In practical terms, this corresponds to removing joints of
the robot.

Besides the configuration space itself, the validity checks of the configurations
must also be considered. Invalid configurations are, for example, configurations
in collision with obstacles, or other constraint-violating cases. In the case of a
canonical ALDS, the configurations in the projected state space Y are defined
to be invalid if and only if each element of its fiber π−1(y) is invalid in X. This
means that an invalid configuration in a simplified configuration space does not
need to be considered further, as it can never lead to a valid configuration in the
original configuration space.

However, this general definition of invalid configurations can lead to inefficient
computations, as every element of π−1(y) possibly has to be checked to determine
the validity of y. Thus, the canonical ALDS are further restricted to the efficient
ALDS. These are, roughly speaking, the ALDS where y can be checked for validity
with a single check. This is the case when leaving out parts of the robot to form a
simplification: If, for example, the mobile base of the robot is already in collision

102

6.1 Related Work

with an obstacle, then no possible configuration of the arm can create a valid
configuration.
In the evaluations of the creators of multi-level planners [105], they show remark-
able results. In most of the scenarios they considered, which have 21 or more
degrees of freedom, the multi-level planners are often faster by orders of mag-
nitude when compared to classical planning algorithms. Therefore, we consider
multi-level planning a promising approach for our applications and have evaluated
it below.

6.1.3 Planning with Constraints

In planning problems with constraints, it is not only required to find a path for
the robot from start to goal without collisions, but also to satisfy given constraints
during the entirety of the path. The first instances of constrained path planning
arose from industrial robotics. In this area, constraints are used mainly to describe
constraints on the end-effector. Example applications include welding and painting.
To apply paint, the robot has to constantly keep in touch with the surface to
be painted; in welding the end-effector has to closely follow a prescribed path.
Many other industrial applications similarly require geometric constraints of the
end-effector. For typical industrial manipulators with six degrees of freedom, these
constraints are relatively easy to handle. If the end-effector is constrained in all
six dimensions of Cartesian space, only up to eight satisfying joint configurations
exist (outside of singularities) for each pose. Planning constraint-satisfying paths
can thus be reduced to determining the constraint-satisfying configurations and
connecting them to form a path. For robots with more degrees of freedom, the
problem can become much more complex.

Equality and Inequality Constraints

In order to understand constrained path planning, this section introduces some
fundamental concepts. An often-used concept is that of the constraint manifold
[71]. Given that the configuration space of the complete planning problem is Q, the
constraint manifold Xf of a constraint f is defined as the set of all configurations
of Q that satisfy f :

Xf = {q ∈ Q|f(q) = 0} (6.1)

The volume of the constraint manifold is important for analyzing the complexity of
handling the constraint. The case where Xf has a positive volume in Q is the less
problematic one: elements of Xf can be found efficiently by sampling uniformly
from Q. This is the case, for example, with obstacle avoidance constraints. The
subspace of configurations not in collision with an obstacle has, except in rare
circumstances, a positive volume. Configurations in Xf can be found by sampling
and checking in Q, as samples of Xf are generated with a positive probability.

103

6 Robotic Path Planning with Constraints

(a) Equality constraint (b) Inequality constraint

Figure 6.1. Constraint manifold of a two-dimensional robot for equality and inequality
constraints.

More difficult to handle is the case where Xf has zero volume in Q. This is the
case, for example, when the end-effector is constrained to move in a line. Xf

thus has the shape of the line, which has zero volume in the ambient space Q.
Similarly, constraining the end-effector to a table surface induces a manifold in
the shape of a two-dimensional plane. Constraining the end-effector to have a
fixed distance to some target point means that Xf has the shape of a sphere, with
the end-effector moving on its surface. Constraint-satisfying configurations can
no longer be found through sampling Q as the probability of generating a sample
that lies in Xf is also zero. Generating samples directly from Xf is possible in
some special cases, but not generally applicable.
Figure 6.1 shows an illustration of the constraint manifold of an equality and
an inequality constraint of a two-dimensional robot. In the first image, the
end-effector is constrained to a given height, and the constraint manifold, shown
in green, forms a one-dimensional line. The second picture shows an obstacle
avoidance constraint as an example of an inequality constraint. The end-effector
is constrained not to move too closely to the robot’s base and not too close to the
obstacle shown in red. While the green constraint manifold is of course smaller
than the full configuration space, it still has positive volume. Randomly sampling
robot configurations will have a high probability of fulfilling the constraint.
Depending on the volume of the constraint manifold, constraints often require
different procedures to enforce them. Thus, we categorize constraints into these
two types:

104

6.1 Related Work

• Equality constraints have a constraint manifold of zero volume in the
surrounding ambient space, i. e. the full configuration space of the planning
problem. Therefore, they effectively reduce the available degrees of freedom
in the planning problem. While this may sound like a simplification at
first, it often makes the problem more difficult. This is due to the facts
that the constraint manifold can often not be directly sampled from, and
that a path on the constraint manifold is not necessarily executable in the
full configuration space. Therefore, planning has to consider both the full
configuration space, as well as the constraint manifold.

An example is a constraint constraining the end-effector to a certain height.
The constraint manifold embedded in Cartesian space thus has one less
dimension than the surrounding space as the height is no longer allowed to
vary. A similar example is a constraint enforcing that the end-effector has a
fixed distance to a target point. The constraint manifold of the Cartesian
positions thus has the shape of a sphere, and positions on the sphere can be
described as two-dimensional coordinates.

• Inequality constraints are constraints where the constraint manifold
has a positive volume. Examples include obstacle avoidance and joint
limits. It should be noted that the term inequality constraint do not directly
correspond to an inequality in our formulation of constraints. As defined in
section 5.2, we only consider constraints to be satisfied if f(q) = 0. In other
formulations, constraints requiring only the inequality f(q) ≤ 0 are used,
which inherently have a constraint manifold of positive volume. As such,
the term inequality constraint has become widespread for constraints with a
positive constraint manifold. We follow this terminology, even though they
are not actually described by an inequality in our case.

In the related literature, constraints in robot motion planning are often implicitly
assumed to be equality constraints [71], as inequality constraints are relatively
simple to handle and already included in standard algorithms such as the RRT. The
constraints are further seen as a secondary condition to be fulfilled, while the main
task of moving the robot to a goal is typically not expressed through constraints.
It is generally assumed that a constraint-satisfying starting configuration and goal
are provided. In our work, this is not the case: when an action is called, it can not
be guaranteed that the robot already fulfills its constraints, and goal configurations
are not available either. Moreover, constraints include both equality and inequality
constraints. Thus, our planning method requires the following additional steps,
which are typically not considered in constrained planning research:

1. Find a suitable starting configuration, and move to it.

2. Find suitable goals.

3. Create a planning problem from the action definition, that handles both
equality and inequality constraints in efficient ways.

105

6 Robotic Path Planning with Constraints

Soft Constraints

Another classification of constraints, that is often encountered in fields dealing with
constraints, is that of hard and soft constraints. Hard constraints are constraints
that have to be satisfied for a solution to be valid. Soft constraints should be
satisfied if possible, and if this is not possible, the solution should still be as close
as possible to a satisfying solution. The question by which metric this closeness to
a satisfying solution is measured has no simple answer in the general research area
of constraint solving. Choices include the total number of violated constraints,
possibly weighted, or constraint preferences, which define an order of importance
on the constraints [123].
Soft constraints in sampling-based planning have not received a lot of research
attention, although some works have been published on the topic [76, 143]. Soft
constraints with a well-defined formulation of constraint importance add consider-
able amount of complexity to the planning problem, and the existing approaches
are quite restrictive to their respective applications. Given the probabilistic nature
of sampling-based planning, optimal results for soft constraints are a challenge.
As even optimizing sampling-based planners such as the RRT ∗ can only achieve
asymptotic optimality, it can not be decided in finite time whether it is impossible
to fulfill a soft constraint. The requirement that soft constraints should only be
deviated from if they are impossible to fulfill is thus generally not practically
realizable.
As we are only considering geometric constraints, we assume that distance to the
closest satisfying configuration is the most appropriate metric, rather than counting
the number of violated constraints. In practical path planning, soft constraints
are usually approximated as hard constraints with a permissible tolerance for
deviation, or as path costs. When using path costs, the error values of the soft
constraints are included in the calculation of the path costs that is optimized
by optimizing planners. While this technique can not guarantee that the soft
constraints will be satisfied if possible, it will attempt to keep the deviation small.
Using hard constraints with a tolerance interval, on the other hand, means that
any generated solution will lie within the tolerance around the soft constraint, but
no attempt is made to exactly fulfill the soft constraint. Our method of planning,
which is presented below, is able to express soft constraints both as path costs to
be optimized, and as permissible tolerances on hard constraints.

Planning with hard equality constraints

We continue this section by giving an overview of the existing research on con-
strained path planning with hard equality constraints. In section 6.3, we describe
the planning algorithms we have used and how the constraint model of chapter 5,
which is generally over-constrained and uses constraints with priorities, has been
adapted to make use of existing work on constrained planning. Equality constraints
are generally a challenge for sampling-based planners, because of the difficulty of
generating samples that lie on the lower-dimensional constraint manifold. Uniform

106

6.1 Related Work

sampling only creates constraint-satisfying samples with a probability of zero.
Equality constraints thus need special treatment for sampling-based planning
and are the focus of most related work on constrained sampling-based planning.
Methods of handling constraints in sampling-based planning methods can be
classified into different categories:

1. Sample Rejection: Whenever a sample configuration is drawn, it is checked
whether it satisfies all relevant constraints. If not, the sample is rejected and
another sample will be drawn [10, 11, 119]. This is the simplest, yet often
inefficient method of enforcing path constraints. A big advantage of this
method is that it only requires the ability to check whether the constraints
are satisfied or not, and no further knowledge about the constraints is
needed. Sample Rejection is typically used for inequality constraints, such
as obstacle avoidance in classical planning algorithms. This method is not
recommended for handling equality constraints.

2. Constraint Relaxation: The constraint requirements are relaxed, so that a
constraint is considered satisfied not only if f(q) = 0, but also if ‖f(q)‖ < ε,
where ε ∈ R≥0 is a real number that expresses the amount of relaxation. With
this change, constraint-satisfying configurations of equality constraints can
be sampled with a probability larger than zero and sampling-based planners
can be used without further changes. However, there are two downsides
to this method: First, even the relaxed constraints can cause problems for
planning methods. The relaxed constraints are in effect equivalent to narrow
passages, which are a well-known problem for classical planners [8]. The
second downside is that the resulting plan will not satisfy the constraints
exactly. Depending on the details of the application, this can be acceptable.
Often, exact enforcement of the constraints is delegated to the controller
executing the plan instead.

3. Sample Projection: The idea of this method is to use (possibly) constraint-
violating samples to create constraint-satisfying samples. After a random
sample is generated, an iterative optimization procedure is used to attempt to
find a constraint-satisfying sample from the original sample [9, 96]. Usually,
this is based on various forms of gradient descent. Mathematically, this
mapping is expressed as the projection operator P (q) : Rn → Q, with
Q ⊆ Rn and f(q) = 0 for all q ∈ Q. This method can be used with most
sampling-based algorithms simply by replacing the sample() procedure with
a procedure that uses the projection operator. It is then said that the
algorithm is using a projected state space. While this method is among the
most widely used methods for constrained planning, it does have downsides
as well. In order to perform a gradient descent, the constraint functions
must not only decide whether a configuration is satisfying or not, but also
encode the distance to a satisfying configuration. Furthermore, the gradient
of the constraints must be available. Lastly, the calculation of the projection
can be computationally expensive.

107

6 Robotic Path Planning with Constraints

4. Tangent Spaces: Using a known constraint-satisfying configuration (begin-
ning with the start of the plan), new constraint-satisfying configurations are
found by constructing the tangent space of the constraint functions, a locally
linear approximation of the constraint manifold [70]. The computation of
tangent spaces requires computing multiple matrix decompositions and can
be computationally intensive. This requires that the constraint functions
define a manifold. Methods based on tangent spaces do not work well if the
constraint manifolds are not easily approximated by linear functions, for
example when the constraint manifolds are highly curved. These methods
can also not be used if the Jacobian does not have full rank. So-called
Atlas-based methods [63] store the tangent spaces to avoid re-computations.
While tangent-space-based methods have been shown to be computation-
ally efficient, they require comparatively strict mathematical preconditions,
which restrict them to specific use cases.

5. Direct Sampling with Reparametrization: This type of method aims to
create new configuration spaces, of which constraint-satisfying configuration
can be directly sampled without requiring further processing of the samples.
The robot’s geometry and knowledge about the constraints are used to
create a reparameterized configuration space, with a mapping to the original
configuration space [94, 53]. On top of this new configuration space, any
traditional (sampling-based) planner can be used. This approach is in
principle very elegant, as the constrained planning problem is reduced to
unconstrained planning. It does have serious downsides though, which
prevent general use. The reparametrization has to be calculated anew
for each type of robot and each constraint specification. In many cases,
reparametrization is not possible at all. Hence, this method can not be used
as a general method and heavily depends on the specific properties of the
robot and the constraints.

To summarize, constraints in path planning are an active field of research with
various different approaches being developed. However, none of the currently
available methods are generally usable independent of the characteristics of the
robot and the constraints. Therefore, the user has to be aware of this and make
appropriate choices in the selection of algorithms. Since there is no method
suitable for all types of constraints, multiple approaches are implemented in our
framework, drawing from sample projection, constraint relaxation, and sample
rejection methods. They are described in detail in section 6.3. Methods based on
tangent spaces and reparametrization have not been implemented due to their
highly specific requirements.

108

6.1 Related Work

6.1.4 Planning in Dynamic Environments

Classical path planning methods compute a single solution for a given, static
environment. In dynamic environments, changes in the environment need to be
considered as well. When the environment changes, a previous solution might
become invalid, a better solution might become available, or the goal could move
somewhere else. The simplest solution to changing environments is to stop the
execution of the plan as soon as something changes and create a new plan. This
is a computationally expensive solution, however, as the previous results are
completely discarded. Various algorithms have been proposed to re-plan in a new
environment while keeping some of the previously calculated results.

The execution-extended RRT [12] stores waypoints and uses them to generate
new trees. The dynamic RRT [32] places the root of the tree at the goal, so
that the same tree can be used to find alternate paths to the goal if some nodes
become invalid. This assumes that the goal itself will not change. The multipartite
RRT [149] keeps multiple subtrees in memory that are dynamically pruned and
reconnected. RRTX [107] is an approach that keeps a graph that is re-wired and
repaired whenever an obstacle or the robot moves. More recently, EB-RRT [144]
uses two hierarchical planners with dynamic replanning based on the elastic band
method.

All of the above approaches have in common that they are focused on mobile
robots navigating on a plane, with typically only three degrees of freedom. The
computational cost increases substantially when applying them to nine-dimensional
problems. The following assumptions about the use case of our work largely prevent
the application of the existing algorithms:

• We assume no information about the future development of the environment,
i. e. the constraints. Neither in the form of concrete predictions nor
probabilities.

• Constraints are used to define the cost of a path, the goal of the plan, and
the invalid configurations (for example, obstacles). Any of these can change
at any time. Many of the existing algorithms presuppose that, for example,
the goal stays the same, of only the goal can change.

• Replanning has to be done for all nine degrees of freedom of the robot,
considerably more than the three of planar mobile robots, which are mostly
considered in the related work.

To summarize, while various methods for sampling-based planning in dynamic
environments have been created, they are typically restricted to low-dimensional
problems and make restrictive assumptions about the nature of the dynamic
environment that do not hold in our use case. Therefore, we are not using specific
algorithms for planning in dynamic environments. Instead, our method relies on
the safe execution using the reactive controller, and possibly planning anew if
necessary.

109

6 Robotic Path Planning with Constraints

Model-predictive Control

A completely different approach to handling dynamic obstacles is model-predictive
control. This approach does not create a path that is then to be executed by the
controller, but instead extends the formulation of the control problem to include
optimization over a prediction of the future as well. This method has been explored
for obstacle avoidance in ground and flying vehicles [82, 40]. Model-predictive
control has also been applied to mobile manipulators, although in very limited use
cases that only contain basic obstacle avoidance while tracking given trajectories
[13, 80].
However, we do not consider it suitable for our use case due to two reasons: First,
the optimization over multiple steps into the future becomes costly very quickly
with increasing time horizons. Since we are interested in larger-scale plans, such
as navigation between rooms, rather than quick reactions in a driving vehicle, this
is problematic for our application. Second, model-predictive control requires an
exact model of the robot as well as its environment that can be predicted in to
the future. This is not available in our use case, and is difficult to produce for
human interaction partners.

6.2 Planning Pipeline
A planning method for the system described here needs to be able to produce
a complete motion path given only a high-level action definition, as well as the
current environment and robot state. Additionally, the plan needs to be executed
safely in a dynamic environment. These requirements mean that more steps are
necessary than the core planning algorithm itself. The pipeline of our planning
approach is graphically illustrated in figure 6.2.
The pipeline starts by determining suitable start configurations. This is only
necessary in cases where the planner is requested to produce a path satisfying
constraints that are not fulfilled in the current configuration.
In the next step, suitable goals for the action definition have to be determined.
Here, the action definition needs to be converted to concrete joint positions to use
as goal configurations in the planning process. If the action definition is only a
Cartesian pose, this is the well-known problem of inverse kinematics. Our action
definitions are much more general and do not necessarily define a target Cartesian
pose, but various constraints. This step is thus referred to as the generalized
inverse kinematics.
The next step in the pipeline is the core of the planning process. This is where
classical planning algorithms, such as rapidly-exploring random trees, are used to
find a path from the starting configuration to a goal. Since the resulting paths
can contain unnecessary detours and are often not smooth, this step is followed
by a post-processing step that attempts to simplify and smoothen the path. All
the previous steps are calculated using the environment state as it was when the
planning request was received. To ensure that the plan is still applicable in a

110

6.3 Handling Path Constraints

Figure 6.2. The pipeline of our planning method.

possibly changed environment, the plan is checked using the updated environment
state. If the plan is no longer safe, the pipeline starts from the beginning, if there
is still available time.

Lastly, the plan is executed safely, using the reactive control scheme described in
the previous chapter to safely react to any unforeseen circumstances. Each of the
steps in the pipeline is described in more detail in the following sections.

6.3 Handling Path Constraints

As has been described in the previous section, not everything that is expressed
as constraint in the control system described in chapter 5 can be handled in the
same way during planning.

Goal constraints describe only the goal of the plan, as the name already suggests,
and have no further relevance to the path leading to them. Inequality constraints
such as obstacle avoidance are classically implemented through a simple sample
rejection process. This a well-studied and understood method for collision-free
path planning, and should not be altered without good reason. However, equality
constraints such as holding a glass of water upright or keeping in touch with a
table surface, for example for cleaning or drawing, can not be efficiently handled
in this way.

111

6 Robotic Path Planning with Constraints

However, this problem has also been studied and methods to handle such con-
straints have been developed, such as sample projection. For constraints of this
type, these methods should hence be used.
Lastly, cost constraints should be considered during the path as far as possible, but
it is assumed that a costly path is still preferred over no path. These constraints
should thus be considered when optimizing a path, but not lead to full rejection
of samples.
6.3.1 Path constraints in multi-level planning

To make use of multi-level planning, such as the QRRT algorithm, the validity of
configurations has to be decided for simplified configuration spaces, which are in
our case formed by leaving out links of the robot. This is easy to do for simple
collision checking, as just the remaining parts can be checked for collision. For
the more general constraint specifications that we use, this is not as simple.
For example, constraints on the orientation of the end-effector can not be decided
if only the base configuration is known in the simplified configuration space. For
these types of constraints, their validity check can thus only be performed in the
full joint space. If possible, constraints should be evaluated as early as possible
however to exploit the simplified configuration space the most. For example, if
the platform orientation is constrained, this should already be checked in the
simplified configuration space so that unfeasible configurations are pruned as early
as possible. Hence, an automatic method to decide which constraints can be
evaluated on each simplified configuration space is required.
We consider only the case where degrees of freedom and their associated links are
removed from the kinematic tree to form simplified configuration spaces. Only
leaves or subtrees whose leaves are leaves of the original tree can be removed,
so that the resulting structure still forms a tree. We assume that the simplified
spaces are pre-defined by the user. Given the set of active tasks of the active
action, it has to be determined for each task whether its constraint can be decided
on each configuration space or not. Since the simplified configuration spaces are
formed by removing joints, the configuration spaces are identified by the set of
included joints.
For joint-space tasks, providing constraints directly on the joints with the Jacobian
being the identity matrix, this is a simple procedure. Generally, all joints are
required to evaluate these constraints, unless the weights of some joints are
explicitly set to zero. Thus, the task can be evaluated on the joints of a simplified
configuration space if and only if all joints with non-zero weight are included in
the configuration space. For Cartesian tasks, this is slightly more involved. All
joints that have an effect on the controlled link as well as the reference frame
have to be determined. This is done by a traversal of the kinematic tree. If
all the resulting joints are included in the configuration space, the task can be
evaluated. Given a sequence of configuration spaces with ALDS, the constraints
are evaluated with the QRRT algorithm on each configuration space where it is
possible to evaluate them.

112

6.4 Finding Goals from Constraints

(a) 3 Joints (b) 6 Joints (c) 9 Joints

Figure 6.3. Visualization of the three configuration spaces used with multi-level
planning.

In the practical evaluations, we have used two simplified configuration spaces,
formed by removing the first three and all six of the arm joints. Figure 6.3 shows
a visualization of the remaining robot links. In the evaluation, we refer to the
QRRT algorithm applied to all three of the configuration spaces as QRRT3. If
using only the first and the last configuration space, we refer to the algorithm as
QRRT2.

6.4 Finding Goals from Constraints
Most planning algorithms assume that the goal configuration is known explicitly.
In our case, only the action definition is available, and goals need to be determined
from this definition. For some planners, multiple goals can be used. If a goal is
given in Cartesian space, inverse kinematics are used to calculate a configuration.
For non-redundant robots, this is trivial. For redundant robots, however, the
redundancy needs to be resolved appropriately.
Specifically for mobile manipulators, inverse kinematics methods have been devel-
oped that express the available redundancy as explicit redundancy parameters,
which can then be chosen in optimal ways [129, 3].
However, this still assumes that the goal is explicitly given as a Cartesian pose,
with the rest of the available redundancy being only considered afterthoughts.
In contrast, when planning for the satisfaction of a set of arbitrary geometric
constraints, In our framework, it can not be assumed that the goal is given as a
Cartesian pose or a complete configuration. Instead, only a high-level description
of the goal in the form of geometric constraints is available.
For some planners, such as the basic RRT and RRT*, being able to decide whether
a configuration satisfies the goal constraint is enough: The tree is simply expanded
until a goal-satisfying configuration has been added to the tree. Many of the most
successful variants of the RRT require explicitly known goals though. This includes
planning with a goal bias, bidirectional planning, and multi-level planning.

113

6 Robotic Path Planning with Constraints

Algorithm 6.2 Algorithm for the calculation of goal configurations.
Input:
Constraint function f,
Constraint Jacobian J,
Initial Configuration q
Maximum number of iterations k
Output: Set of goal configurations Q
Q← ∅;
i← 0;
repeat

q← q + J†f(q)
if f(q) = 0 then

Q← Q ∪ {q}
q ← randomConfiguration();

end if
i← i + 1;

until i = k
return Q

Therefore, a method to find goal-satisfying configurations from a specification
of goal constraints is required. Our method is using the pseudoinverse of the
constraint Jacobian, notated as J†, which can be found through singular value
decomposition.
The procedure randomConfiguration() computes a configuration within the
joint limits [qmin, qmax] with a uniform distribution. In our implementation, one
second is given as the maximum duration for the process of finding goals. If no
valid goals can be found in this time, the request has failed. If more than 10
goal configurations are found, the process terminates early. Figure 6.4 shows
illustrations of two goal-finding processes and their intermediate states.

6.5 Initial configuration
During path planning, constraints from both safety and path tasks are initially
seen as hard constraints for the entire path. There is however one case where
they are handled in different ways: It arises when, in the current configuration,
i. e. the start of the plan, the hard constraints are not satisfied. If the safety
constraints are not fulfilled, the planning fails, as there is no valid initial state.
This is seen as sensible behavior, as the robot should not be able to move from
a position that violated safety constraints. However, for path constraints, this
can be an impractical assumption. Using path constraints would require the
user to ensure that the path constraints are fully satisfied before requesting a
plan. Often, the behavior that the user intends will be to generate a motion that
satisfies the path constraints as quickly as possible, and then proceeds with a
constraint-satisfying path from there.

114

6.5 Initial configuration

(a) Initial guess (b) Intermediate result (c) Resulting goal pose

(d) Second initial guess (e) Intermediate result (f) Resulting goal pose

Figure 6.4. Visualization of the goal-finding process.

Of course, there are limits to the ability to find a path constraint-satisfying initial
configuration. Both in terms of computational resources, and in terms of what is
considered sensible behavior. If the user requests a plan with the path constraint
of keeping the gripper upright, but the gripper is currently not exactly upright, it
is usually intended that the motion starts by moving the gripper to a fully upright
position. If, however, moving the gripper to an upright position would require a
larger motion, making room around obstacles etc., it might be more sensible to
report this to the user instead of autonomously executing larger motions that do
not conform to the constraints.

Thus, parameters can be set by the user to limit the number of iterations, and
the maximum distance between the current configuration and the newly found
solution. Finding a constraint-satisfying initial configuration is done using a
projection method based on the pseudo-inverse of the constraint Jacobian. The
algorithm is shown in algorithm 6.3. Since this algorithm is simply descending
along the direction defined by the constraint Jacobians, it can be assumed that it
can easily be reached from the current configuration using the reactive control
scheme. For more details about the execution of plans using the reactive controller,
see the following chapter 7.

115

6 Robotic Path Planning with Constraints

Algorithm 6.3 Algorithm for the calculation of a valid initial configuration.
Input: Combined Constraint function of safety and path constraints f,
Constraint Jacobian J,
Current Configuration q,
Maximum number of iterations k
Maximum distance dmax

Output: Initial configuration qinit

i← 0;
qinit ← q;
while i < k and f(qinit) 6= 0 and ‖qinit − q‖ ≤ dmax do

q← q + J†f(q)
if f(q) = 0 then

Q← Q ∪ {q}
q ← RandomConfiguration();

end if
i← i + 1;

end while
return qinit

6.6 Planning with Soft Constraints
As explained in section 6.1.3, soft constraints are approximated through two
different ways: Either by defining a cost function to be optimized over the path, or
by defining tolerances around hard constraints. The latter is simply specified by
defining the vector of tolerances in the task definition, which is then automatically
used when evaluating the task. Thus, no further steps are needed to use this
method in conjunction with constrained planning algorithms.
Planning with a cost metric is also simple to add to most planning algorithms.
The most important part is the definition of a suitable cost function. The cost of
a sampled configuration q is calculated by the following equation, given a set of
constraint functions F :

coststate(q) =
∑
f∈F

‖f(q)‖

Many planning algorithms use the notion of a motion cost between two states
instead of a state cost for individual states. The cost for a motion from q1 to q2
is defined as follows:

costmotion(q1, q2) = max (0, α (coststate(q2)− coststate(q1)))+(1−α)‖q2−q1‖

116

6.7 Evaluation and Results

The cost of a motion thus considers the difference in the constraint costs, as well
as the distance between the two configurations. The parameter α ∈ [0, 1] defines
the relative importance of the two cost factors. In our experiments, α = 0.5 has
been used. The difference in state costs has a lower bound at 0 put on it, as
negative cost is not compatible with the definition of most planning algorithms.
The definitions for the cost of a motion between two configurations can be extended
to define the cost of a path, consisting of a sequence of configurations. The cost
of a path P , consisting of a sequence of configuration waypoints (q1, . . . qe) is
defined as follows:

costpath(P) =
e∑

i=2
costmotion(qi−1, qi)

In the evaluations, the notion of path length is also used. It is defined as follows:
length(P) =

e∑
i=2
‖qi − qi−1‖

6.7 Evaluation and Results
In the preceding parts of this chapter, the state of the art in planning with
geometric constraints has been described, as well as the approach for using an
action specification to determine goal configurations, and find a plan for the goal
while respecting soft- and hard constraints. Different approaches are compared
regarding their efficiency and the quality of the results. The following algorithms
have been evaluated:

• RRT

• RRT ∗

• TRRT

• RRTConnect

• QRRT2

• QRRT3

The first four listed algorithms can be used for equality-constrained problems,
simply by changing the underlying state space to a projected state space. For
the last two, the multi-level RRT variants on quotient spaces, it is currently
not clear how to apply them to constrained state spaces. The quotient space
method uses a sequence of lower-dimensional spaces leading up to the original
state space, while the projected state space method projects the original state
space to the constraint manifold. Both methods thus build their own separate
sub-state-spaces of the original state space. Combining them is not possible using
their current formulations. It could be a fruitful direction for future research.
Currently, the algorithms QRRT2 and QRRT3 can not be used for problems with
equality constraints.

117

6 Robotic Path Planning with Constraints

Normally, a planning process in our system starts by finding possible goals, after
which the actual path planning starts. Since the nature of the goals has a large
influence on planner performance, for this comparison we have pre-determined
the goals and used the same goals for all planners. Giving statistics for the
goal-finding procedure is difficult because it highly depends on random chance, the
environment, and the given tasks. In the two evaluation scenarios we described,
three valid goals were found within two seconds. Since the planner evaluation
shows that a planning time under three seconds is well achievable, with some
algorithms staying below one second, we assume that a duration of under five
seconds that it takes for the robot to find a plan once it gets stuck is a realistic
expectation. After planning, the resulting paths are simplified using standard
smoothing and short-cutting algorithms. This is independent of the planning
algorithm in use. Our implementation of the algorithms is based on the Open
Motion Planning Library (OMPL) [139, 72]. The algorithms are evaluated in
three different scenarios, described below.

118

6.7 Evaluation and Results

Figure 6.5. Visualization of the first evaluated planning scenario, Cartesian Goal with
Obstacle.

6.7.1 Cartesian Goal with Obstacle

The first evaluation scenario has the intention of testing the basic functionality
of the different planning algorithms, without particular challenges. The action
definition is the same as in section 5.7.3. The planners thus have to find a path
to the Cartesian goal pose while avoiding the box obstacle. For this evaluation,
projected state spaces are not used, as there a no applicable equality constraints
in this scenario.

RRT RRT ∗ RRT -Connect TRRT QRRT2 QRRT3

Failure rate 0% 0% 0% 0% 44% 71%
Avg. path cost 7.04 5.24 7.09 5.73 7.40 6.90
Avg. path length 7.04 5.24 7.09 5.73 7.40 6.90
Avg. time (s) 0.02 2.55 0.01 0.04 0.38 0.61
Max. path cost 11.28 7.35 11.42 8.72 13.56 9.88
Max. path length 11.28 7.35 11.42 8.72 13.56 9.88
Max. time (s) 0.05 3.0 0.03 0.06 2.67 1.90

Table 6.1. Planner results for the scenario Cartesian Goal with Obstacle

In this scenario, no cost constraints are specified. Path cost is thus equivalent to
path length. Planning time is limited to three seconds to keep the planners usable

119

6 Robotic Path Planning with Constraints

(a) Best Plan (b) Worst Plan

Figure 6.6. Visualization of the best and worst generated paths for the scenario
Cartesian Goal with Obstacle.

in interactive scenarios. If the planner has not found a valid plan within three
seconds, it is counted as a failure. The results are shown in table 6.1 The failure
rate of all planners is zero, except for the multi-level planners. RRT ∗ takes by
far the longest time. This can however be trivially explained by the fact that, as
a optimizing planner, it uses all the time available to it. The TRRT produces
on average paths with cost almost as low as the RRT ∗, in a much shorter time.
RRT ∗ produced both the best paths on average, as well as the least bad paths,
i. e. the maximum cost paths it produced were not as costly as those of the
other planners. RRT − Connect takes, both on average and maximally, the least
time, but also produces relatively long paths. The classic RRT is quite similar.
The multilevel planners appear to produce results that are not able to keep up
with the other planners. In almost all metrics, they are considerably worse than
the other planners. It can thus be concluded that the overhead of multi-level
planning is not worth its benefits in this relatively low-dimensional state space of
nine dimensions. In figure 6.7, the average path cost and planning time of the
evaluated algorithms are compared. Judging only by the two criteria in the plot,
the TRRT appears to be the overall best algorithm in this scenario, considering
the trade-off of cost and time.

120

6.7 Evaluation and Results

Figure 6.7. Average path cost and required planning time of the planners for the
scenario Cartesian Goal with Obstacle.

121

6 Robotic Path Planning with Constraints

Figure 6.8. The Narrow Passage planning scenario. The collision geometry of the
gripper is highlighted in red.

6.7.2 Narrow Passage

This scenario is designed to evaluate the limits of the algorithms in challenging
conditions, even if they might not be realistic. The robot is tasked to move its
base to a position that is behind a wall. The wall has only a narrow passage
leading through it. Furthermore, the passage has a low ceiling, forcing the robot
to lower its gripper. The constraint to keep the gripper pointing upwards must
be respected at all times, making the lowering of the gripper more challenging.
Even though the goal does not specify any further requirements for the arm, the
planner has to fold the arm in order to fit through the narrow passage.

With the full robot hardware, there would be no feasible solutions due to the
camera rack being taller than the arm. Therefore, the rack has been removed
for this evaluation scenario. The planners have again been evaluated over 100
attempts each. The available time for each attempt was set to 20 seconds. The
pipeline begins by trying to determine a constraint-satisfying start configuration.
Figure 6.10 shows the resulting configuration. The action specification used for
planning is shown in figure 6.9. The controllers are omitted for the sake of brevity,
as they have no influence on planning. All the inputs are statically defined in
configuration files. They are omitted from the diagram as well. The safety tasks
are again the tasks shown in figure 5.17. Figure 6.13 shows a plot comparing
the average required calculation time and average resulting path cost. All the
planners are evaluated on a projected state space, with the projecting constraints
being the one to hold the gripper in an upright orientation.

For comparison, the planners were evaluated without projection as well. In
this case, the constraints were enforced only through sample rejection. None of
them were able to produce any constraint-satisfying paths in this case. This is

122

6.7 Evaluation and Results

Figure 6.9. Object diagram of the action used in the narrow passage evaluation scenario.
The global safety tasks are omitted here, and shown in figure 5.17 instead.

(a) Actual starting configuration (b) Result

Figure 6.10. Finding a constraint-satisfying initial configuration in the Narrow Passage
scenario.

expected, due to the very low probability of sampling suitable configurations.
As in the previous example (figure 6.7), the TRRT algorithm appears to be
the best candidate according to the presented metrics. It showed both faster
calculation times and better resulting paths than the RRT and RRT ∗. Only the
RRT − Connect produced faster, but also considerably worse results.

123

6 Robotic Path Planning with Constraints

(a) (b)

Figure 6.11. Best path generated for the Narrow Passage scenario.

(a) (b)

Figure 6.12. Worst path generated for the Narrow Passage scenario.

124

6.7 Evaluation and Results

RRT RRT ∗ RRTConnect TRRT

Failure rate 18% 19% 1% 3%
Avg. path cost 24.03 24.21 24.52 23.48
Avg. path length 10.78 10.11 10.96 10.60
Avg. time (s) 9.84 20.00 5.78 7.98
Max. path cost 31.84 29.52 46.98 31.04
Max. path length 12.54 11.61 19.96 14.89
Max. time (s) 19.23 20.00 14.61 18.57
Table 6.2. Planner results for the scenario Narrow Passage.

Figure 6.13. Average path cost and required planning time of the planners in the
Narrow Passage evaluation scenario.

125

6 Robotic Path Planning with Constraints

Figure 6.14. Object diagram of the action used in the Making Room evaluation scenario.
The global safety tasks are omitted here, and shown in figure 5.17 instead.

6.7.3 Making room

This scenario is an example of a case where purely reactive control gets stuck in
a local minimum. This can happen, for example, when the robot is given the
specification to stay out of the way of a person, but ends up in a corner. If now
the person is trying to move into the corner, the robot should still make room
for the person. However, reactive control can not achieve this, as every possible
motion leads it either closer to the walls, or closer to the person. Both go against
the specified constraints. The aim of planning here is to make the robot realize
that a temporary cost (moving closer to the person) will lead to a larger benefit
(successfully making room) at the end of the plan.
The action definition is shown in figure 6.14. Controllers are omitted, considering
that they have no influence in planning. Besides the shown tasks, the safety tasks
as per figure 5.17 are also active. Two path tasks are used: both of them use a
CartesianDistanceRule. The first is controlling the distance of the gripper to
the person, the second is controlling the distance of the base to the person. In
this path task, the target distance to the person, which has to be observed at
all times, is set to the relatively low 1.0 m. In the goal tasks, however, there is

126

6.7 Evaluation and Results

Figure 6.15. Some of the goal configurations determined for the Making Room scenario.

a second CartesianDistanceRule controlling the distance between person and
base. This time, the target distance is set to 2.5. By specifying two distance
values, once as a path task and once as a goal task, it can be expressed that the
distance should never fall below 1.0 m, but ideally be above 2.5 m. Another goal
task aims the z-axis of the gripper towards the person. This is used to let the
robot shine its flashlight towards the person. The flashlight is not shown in the
pictures of the simulation. Lastly, a single cost task is used to have the robot
keep the gripper above the base as much as possible. This is intended to avoid
configurations where the arm is extended far away from the base.
From a path planning perspective, the path to be found is not particularly
challenging. The challenge lies much more in finding an appropriate goal. Classical
planning approaches, which rely on a joint space or Cartesian target definition,
can not easily express the goal of "making room". With our approach, it can be
elegantly expressed. As this scenario requires equality constraints, the multilevel
planners are not used here.
Some examples of the generated goal configurations are shown in figure 6.15. Ten
goal configurations were found in 0.453 s, after which the goal-finding procedure
ended. The figure also shows one weakness that currently exists in our method.
The left-most goal configuration correctly points its end-effector towards the
person, but the obstacles in the way prevent the light (not simulated) from
reaching the person. To resolve this, an additional constraint rule taking visibility
and occlusion of obstacles into account would have to be defined.
A plot of the average calculation times and resulting path costs is shown in
Figure 6.17. In this scenario, choosing the best planner is less obvious than in the
previous scenarios. Here, there appears to be a clear correlation between longer
calculation times and path cost. No planner can be said to clearly outperform

127

6 Robotic Path Planning with Constraints

(a) Best Plan (b) Worst Plan

Figure 6.16. Visualization of the best and worst generated paths for the Making Room
scenario.

another. The choice must thus be made according to the criteria of how much
planning time is available, and how important path costs are in the scenario.
Figure 6.16 shows the best and worst plans that have been generated as examples.

RRT RRT ∗ RRTConnect TRRT

Failure rate 1% 0% 4% 2%
Avg. path cost 23.16 21.74 28.70 26.49
Avg. path length 11.24 9.93 13.66 12.35
Avg. time (s) 6.54 20.00 4.17 4.71
Max. path cost 63.94 43.77 71.54 54.95
Max. path length 29.32 22.22 34.12 26.31
Max. time (s) 16.64 20.00 17.64 14.00

Table 6.3. Planner results for the scenario Making Room.

6.7.4 Conclusions

Choosing planner algorithm and their respective parameters can be an arduous
task, even for a clearly defined and static scenario. In the present case, very few
assumptions can be made in advance about the nature of the planning scene.
Important factors such as the ratio of invalid configurations, the distance of the
goal and the properties of state costs depend critically on the action definition as
well as the context they are applied in. Different planners have been evaluated
in three different, exemplary planning scenarios. Multilevel planning did not
outperform any of the other considered planners and will thus not be used further.
The topic of selecting planner parameters has not been touched upon, instead,
we rely on the defaults and partially automatic parameter selection provided
by the OMPL. It is possible that manually tuning the parameters can lead to
performance boosts. However, the unpredictability of the problem makes this
difficult. Since the TRRT algorithm performed among the best in all evaluation
scenarios, it will be used as the default algorithm.

128

6.7 Evaluation and Results

Figure 6.17. Average path cost and required planning time of the planners in the
Making Room evaluation scenario.

129

6 Robotic Path Planning with Constraints

130

Summary. This chapter explains how plans are executed
safely in dynamic environments by using the reactive
control method. Additionaly, action execution modes are
presented that carry out a specified action while optionally
using planning in different conditions.

7
Connecting Planning and Reactive

Control

7.1 Execution of Plans in Dynamic Environments 131
7.1.1 State of the Art . 132
7.1.2 Execution of plans in reactive control 133

7.2 Execution Modes . 134
7.2.1 Reactive Action Execution 134
7.2.2 Planned Action Execution 135
7.2.3 Autoplanning Action Execution 137
7.2.4 Evaluation . 138

7.3 Combining Actions to Behaviors 138

The previous chapter has described how plans can be created using an action
specification. Still, it is not clear how the resulting plans as well as the process
of planning are connected with the reactive control scheme. The two main
questions to answer are how the created plans can be executed safely in a dynamic
environment, and when planning is initiated at all. Our solutions to these questions
are described in this chapter.

7.1 Execution of Plans in Dynamic Environments

The combination of motion plans and reactive control in dynamic environments
causes a conflict between the static plan and the possible changes in the envi-
ronment. Even after a plan exists, its execution takes some amount of time,
during which the environment will possibly change. Blindly executing the plan is
therefore not a safe approach, nor is it guaranteed that the plan will still be able
to fulfill its original goals.

131

7 Connecting Planning and Reactive Control

7.1.1 State of the Art

Widespread software solutions for manipulator motion planning, such as the ones
typically used in ROS [19], do not include solutions for the safe execution of the
resulting plans in dynamic environments. Only basic types of monitoring, such as
an upper bound on the position error and execution types, are supported. These
errors are not typically caused by a changing environment, but more likely due to
failures in the robot hardware.
Frameworks for two-dimensional navigation typically include some methods for
adapting the plan due unforeseen environments [88]. A classical solution is the
use of global and local planning: The global planner creates the full plan for the
goal using the data available at planning time. The local planner is tasked with
executing the global plan. Therefore, it cyclically creates a short-term plan that
followsthe waypoints provided by the global plan while taking the new information
about the changed environment into account.
Since navigation deals only with movements on the ground plane, the control space
is relatively small and solutions can be found much more easily, compared to the
nine-dimensional case. A classical example of an algorithm for two-dimensional
local planning is the dynamic window approach [38]. In each local planning
cycle, control commands are randomly sampled and scored based on the currently
available information. The scoring includes factors such as distance to obstacles
and distance to the next waypoint. A defined number of commands are sampled
and scored, and the best-scoring command is then sent to the robot. For a nine-
dimensional robot, it is not possible to efficiently search the available motions by
random sampling in a reasonable time. Hence, such approaches are not applicable
to our case.
Another, more modern approach to the problem is the timed elastic band [120,
146]. The local planner is described as an elastic band, whose initial shape follows
the path generated by the global planner. Artificial forces are formulated that
deform the elastic band in real-time, to create a short and smooth local path that
maintains distance from the obstacles. The elastic band continues to deform as
the environment changes. Thus, the robot can handle uncertainties and react to
unexpected dynamic obstacles.
While this method has been proven to be highly successful for navigation scenarios,
it can not easily be generalized to robots with a larger number of degrees of freedom.
Magyar et al. [90] have used it for manipulation planning, this still only works
for control of a single frame in Cartesian space. More general control of multiple
Cartesian and joint-space tasks is more challenging to express as an elastic band.
The types of tasks that we consider can not be simply considered as artificial
forces on the robot. Instead, the QP problem would have to be solved at least
once for every point on the elastic band to find a suitable deformation. This,
however, would be far too computationally intensive for practical application.

132

7.1 Execution of Plans in Dynamic Environments

Our approach instead is simply using the waypoints of the plan as intermediate
goals for the reactive control. The safety of the plan and reaction to obstacles
are maintained by the reactive controller. What this method can not achieve at
the moment, compared to the popular local planners used in navigation, is the
avoidance of local minima that can occur during the execution of the plan. This
happens, for example, if a dynamic obstacle blocks the way to the next waypoint
on the path. Local planners would be able to plan around this obstacle to still
follow the plan, at least to the extent that their range of motion forecasting allows.
Our approach, on the other hand, would first get stuck, before realizing this and
creating a new plan. This is of course less ideal, but the only method currently
feasible for the type of complex control formulations that we use. It could be
a possible direction of future research to explore local planning for the control
problem of the system described here.

7.1.2 Execution of plans in reactive control

As explained in the previous subsection, the plans are executed using the reactive
control scheme as described in chapter 5. The waypoints of the plan are given
as intermediate goals to the reactive controller. The execution should be based
on the original action that the plan was created for, and consider the specified
tasks as well as possible, even if the environment changes. On the other hand, to
actually execute the plan, the action that is executed has to be modified when a
plan is to be executed. The most obvious modification is the introduction of a new
task that lets the robot follow the waypoints of the plan. This new task has to be
integrated into the action so that the waypoints are followed, as long as it is safe
to do so, while still monitoring and trying to fulfill the other tasks present in the
action. Often, the reason why planning was used at all is that the robot got stuck
using the action in a purely reactive fashion. Consequently, it is necessary that
following the plan has a higher priority than the previous tasks, otherwise, the
robot might just continue being stuck. Considering the example of section 6.7.3,
the robot has to be allowed to move closer to the person in order to make room.
Safety tasks should however not be overridden by the plan, as they are required
for example to react to dynamic obstacles safely. The solution we use is to add
the task for following the waypoints as a task with priority that is between the
safety tasks and path tasks. In the optimization problem of section 5.6.1, the
following changes are thus performed whenever a plan is executed:

• A new JointPositionTask is added to the action. It is not considered to
be a part of the existing task categories (safety, goal, path, or cost), but
instead forms its own category. It has priority p = 1.

• All other tasks except safety tasks have their priority value increased by one
in order to ensure that they do not override the execution of the plan.

• The input to the newly introduced task is the current waypoint of the plan
that is being followed, beginning with the first, and moving forward whenever
the robot has come within in defined distance to the current waypoint.

133

7 Connecting Planning and Reactive Control

Using this method, plans can be executed while still respecting the specified
safety tasks and thus being able to safely react to a dynamic environment. The
other pre-existing tasks are still considered with lower priority and thus are only
executed as far as they do not disturb the execution of the plan. Since the
waypoints of the plan specify positions for all joints, there usually is no room to
consider the lower-priority tasks. It is however possible to exclude joints from
following the plan. This can be used, for example, to follow a plan only with the
base, while still controlling the arm reactively.

7.2 Execution Modes
So far, the question of when plans are created has not been touched upon. In some
cases, it is clear that an action should be executed completely without planning, or
conversely only by following a plan. In the latter case, still it is required that the
execution of the plan can react to the dynamic environment. In cases where it is
not clear beforehand whether planning is necessary, a typical use case of planning
is the case when the robot gets stuck. Therefore, it should also be possible to
automatically detect whether planning is required during the execution of an
action.
To meet these requirements, we propose three different execution modes that
can be used when executing an action. Actions can be started in three different
execution modes: reactive, planned, and autoplanning. Reactive actions only start
the reactive control and will never use planning. Planned actions will always
start planning as soon as they get activated, and not move until a plan is found.
Reactive control is still used in planned mode, but only to execute the plan. If it
is detected that the robot deviates too far from the plan, the plan is aborted and
the action is counted as having failed; the robot will not move until a new action is
started. Lastly, autoplanning combines the two execution modes. This execution
mode starts the same as Reactive mode, but will try to detect conditions that
require planning, and automatically start planning and following the plan then.
If the plan execution fails, control goes back into reactive mode. The subsections
below describe the different action modes in more detail.

7.2.1 Reactive Action Execution

The reactive mode of executing an action is the simplest one. It is only using
the reactive control as described in chapter 5. The only elements that are
newly introduced here are the termination criteria. It based on the condition
goalReached:

goalReached :=
∧

f∈C

|f(q)| ≤ tf (7.1)

In the equation above, C is the set of all safety, goal, and path constraints.
Consequently, an action is considered to have reached its goal once all of its

134

7.2 Execution Modes

Figure 7.1. State machine of the execution of an action in reactive mode.

safety, goal, and path constraints have errors below their defined tolerances. f
is the corresponding constraint function and q the current robot configuration.
The specified tolerances of the action are given in the vector tf . If they are not
specified explicitly, they will have the value 0.

Figure 7.1 shows a state machine specifying the behavior of a reactive action. The
included condition timeout is true if a specified time limit since the start of the
action has been exceeded. The condition canceled becomes true when an external
cancellation request has been received. This is the basic execution scheme when
an action is executed as a ReactiveActionExecution. To further customize the
execution, the following parameters can be set by the caller:

• timeout: The time in seconds after which the action is counted as having
failed.

• successDuration: The time in seconds that goalReached must continu-
ously be true in order for the action to succeed.

• keepActive: If this is set to true, the execution will not end after goalReached
becomes true. In this case, the action can only end through external cancel-
lation or a timeout.

7.2.2 Planned Action Execution

Planned action executions are intended for cases where it is clear to the user that
a plan is preferred for the execution of the user, and it should not be attempted to
execute it without planning beforehand. The behavior of planned actions follows
the state machine shown in figure 7.2. Like reactive actions, planned actions can
also be canceled at any point, which is seen as a failed action. This has been
omitted in the diagram for the sake of compactness.

135

7 Connecting Planning and Reactive Control

Figure 7.2. State machine of a planned action.

During the execution of plans, the plan will be aborted if at least one of the
following conditions becomes true:

• The robot does not move anymore. In this case, it is assumed that the robot
got stuck and can not follow the plan anymore. In some applications, it can
be acceptable to wait for some time before aborting the plan, for example
to wait for an obstacle to clear.

• The robot deviates too far from the waypoints of the plan. This usually
only occurs if the safety tasks do not allow for the execution of the plan,
and the robot had to move in other directions.

The condition errorTooLarge indicates when the second condition is fulfilled. It is
defined in equation (7.2). Here, qP stands for the next waypoint as given by the
plan that is currently being followed. η is the user-definable parameter indicating
the maximum allowed deviation from the plan.

errorTooLarge :=
n∧

i=1
‖q − qP ‖ ≥ η (7.2)

The first condition is expressed in the condition notMoving. This condition
monitors the joint velocities q̇ over a moving window of w control cycles.

136

7.2 Execution Modes

If the commanded joint velocities have not exceeded a defined threshold µ in
this window of time, the robot is considered stuck. This condition is defined in
equation (7.3). q̇i refers to the commanded velocities from i cycles ago. The
definition of goalReached used here is the same one as given in equation (7.1).

notMoving :=
w∧

i=1
‖q̇i‖ < µ (7.3)

This execution allows the same parameters as the ReactiveActionExecution
described above, as well as additional ones listed below:

• planner: The name of the planning algorithm to use. If not specified,
TRRT is used as a default.

• maximumWaypointError: The maximum amount that the robot is allowed
to deviate from the waypoints of the plan, before the plan execution fails.
Corresponds to η in Equation (7.2).

• movingThreshold: Determines the minimal joint velocities the robot has
to show in order not to be considered stuck. Corresponds to the value µ in
Equation (7.3).

• slidingWindowSize: The amount of control cycles contained in the sliding
window to determine whether the robot is not moving anymore. Corresponds
to the value w in Equation (7.3).

A further difference also exists in the meaning of the keepActive parameter:
The planned execution will switch to a reactive execution after a plan has been
successfully found and executed, and then behave as if executed as a ReactiveAc-
tionExecution with keepActive set to true. If any of the states FindValidStart,
FindGoals, CreatePlan, or ExecutePlan fail, the action will terminate and count
as a failure.

7.2.3 Autoplanning Action Execution

This execution mode begins with a simple reactive execution, but will automatically
initiate planning when it is deemed necessary. Planning is initiated if it is detected
that the robot has not moved significantly for a defined time window, and the
goal is not reached at the same time.

planningRequired := notMoving ∧ ¬goalReached (7.4)

If planningRequired (equation (7.4)) is fulfilled while the goal is not satisfied,
PlannedActionExection is automatically started for the active action. This
will result in either failure or success. Depending on the parameter keepActive,
the AutoplanningActionExecution will then terminate with the same result, or
continue execution using reactive control.

137

7 Connecting Planning and Reactive Control

Figure 7.3. State machine of a planned action.

Other criteria for the initiation of planning are possible. We have experimented
with definitions taking the current constraint costs into account, but have not found
satisfactory definitions for the general case. For example, monitoring whether the
constraint cost is increasing over time has not been found suitable, because this
can also be the case just when the environment is changing, which should not
necessarily trigger planning. Therefore, this simple formulation considering only
whether the robot is moving and whether the goal is fulfilled is used.
This execution mode supports all parameters of the other execution modes. In
addition, the following parameters are available only for this execution mode:

• startWithPlanning: If this is set to true, the execution will begin by
creating by attempting to plan. Otherwise, the execution starts purely
reactive and will only begin to plan if it is detected that the robot got stuck.

7.2.4 Evaluation

Both the reactive control method and the planning methods have already been
evaluated in isolation in Section 5.7 and section 6.7, respectively. The combination
of the various actions into behaviors will be evaluated as part of the case studies
in section 9.2. Therefore, only an example of an action definition being executed
in each of the different execution modes is presented here.

7.3 Combining Actions to Behaviors
Using the action execution modes presented in the previous section, actions can
be used with a simple interface and will always result in either failure or success.
Due to this simple interface, it is now simple to combine specified actions to form
more complex behaviors. In particular, state machines have been chosen as the
formalism to combine actions. The resulting state machines are referred to as
behaviors. Further examples and the modeling software used are presented in the
following chapter.

138

Summary. The existing components of the system, such
as controllers and constraint rules, can be configured in
many different ways to achieve new types of robot motions.
The required configuration methods are described in this
chapter. If the existing components do not provide enough
flexibility, the framework can easily be extended through
the use of a plugin mechanism. The use of standard
interfaces makes the integration of new robot types simple
as well. The necessary steps are also described in this
chapter. 8

Implementation and Software
Architecture

8.1 Integration into the ROS2 environment 139
8.1.1 Defining actions . 141
8.1.2 Defining Behaviors 144

8.2 Extending the Framework 145
8.2.1 Adding new Types of Rules, Controllers, Inputs, Solvers 145
8.2.2 Integration of a new robot 145

In this chapter, the software implementation of the previously described concepts
and their integration in the ROS2 environment are described. After an explanation
of the ROS2 interfaces, it is described how a user can configure new actions and
tasks using configuration files. To conclude this chapter, an outline of how the
system can be extended is given. It includes implementing new task types as well
as integrating new robots into the system.

8.1 Integration into the ROS2 environment
The approaches described in this thesis are implemented and integrated into a
ROS2 environment. The use of standard interfaces allows easy interaction with
other software components and extension of the system through the introduction
of new elements.
The interfaces of the system in ROS2 are graphically illustrated in figure 8.1.
The node constraint_control_node forms the central part of the constraint
control system. The node interacts with the hardware interfaces provided by
ros2_control, shown on the left side in green, to send hardware commands and
receive the current joint states. The constraint_control_node calculates the
joint velocity command for all controlled joints.

139

8 Implementation and Software Architecture

Figure 8.1. Overview of the ROS2 interfaces.

In the case of the mobile manipulator used in the case studies, these are the nine
joints corresponding to the three virtual base joints and the six arm joints. These
are sent to a velocity controller, which controls the arm and the base combined.
Data transmission happens through ROS topics.

The interfaces available to the user are shown on the right side of the diagram,
colored in red. The three different execution modes of actions are available as
different types of ROS actions: The ROS action type PlannedAction executes an
action as a PlannedActionExecution; the ROS action types ReactiveAction
and AutplanningAction analogously use the respective action execution modes
ReactiveActionExecution and AutoplanningActionExecution. The parame-
ters of the action execution types can be specified in the parameters of the goal
definition of the ROS action. During the execution, the actions will continuously
provide feedback on the current state of the action. This includes the currently
active tasks, the corresponding constraint values

They can either be called manually, from a script, or from behavior modeling
frameworks such as state machines or behavior trees. As usual in a ROS2 system,
the robot description is provided by the Robot State Publisher. Offline, the
user can define the available actions, tasks, inputs, and controllers in various
configuration files. The inputs are continuously updated to the current state
of the environment. This information can be accessed through various ROS2
mechanisms, depending on the type of the input, for example, topics and frames.

140

8.1 Integration into the ROS2 environment

8.1.1 Defining actions

The user can define actions as well as the underlying tasks through configuration
files in YAML format. Similarly, inputs, constraint controllers and global parame-
ters are also configured in YAML files. In the action configuration file, only the
tasks included in the action are listed, which completely specifies the action.

The respective components of the actions, such as controllers, inputs and rules,
are defined in their respective configuration files. In summary, there are thus
five configuration files for an application, which are explained in the following
subsections. In addition, behaviors can be built out of the defined actions.
However, they are not specified in the configuration files of the system described
here. Instead, the flexible interfaces provided allow them to be defined in various
different tools that can work with ROS actions.

The global configuration file

This file defines global parameters pertaining to the robot itself and other globally
relevant parameters. First, the names and the order of the controlled joints are
defined. This is required to interact with other ROS nodes. If the names of the
joints are not specified, the joint states and other joint data provided by other
ROS components can not be reliably interpreted. Additionally, this file can be
used to specify joints that are present in the robot specification, but should not
be actively controlled. In our use cases, this used for the gripper: The control
system should be aware of the gripper position, but should not attempt to control
the fingers of the gripper itself.

Furthermore, this file then also defines the velocity and position limits for each
joint. Lastly, the QP solver implementation is selected, and the minimum platform
velocity defined, if used.

The action configuration file

Actions are defined in this file by specifying the contained tasks. An example
of a definition of an action in YAML is shown in Listing 8.1. This corresponds
to the action shown in the object diagram of figure 5.16. The safety tasks are
defined globally at the top of the configuration file. Each action definition then
only needs to provide a list of path, goal, and cost tasks. The tasks referenced in
the action definition of listing 8.1 have to be defined in the task configuration file,
explained in the following section.

141

8 Implementation and Software Architecture

1 - id: prepareHandover
2 tasks:
3 path: [gripperUpright, distanceToPerson]
4 goal: [gripperPose]
5 cost: [lookAtPerson]

Listing 8.1. Example specification of an action in a YAML configuration file.

The task configuration file

This configuration file consists of a list of task definitions. Each task definition
begins by giving the defined task a name. Next, the constraint rule to be used
by the task is referenced. This implicitly defines the constraint function that
will be used. The weights and tolerances of the task are also specified here,
in the form of arrays of floating-point numbers. Each task is also associated
with a controller and an input. Cartesian tasks are further provided with
controlled_link. For joint space tasks, this is not applicable.

As an example, the task with id: gripperUpright is shown as it appears in the
YAML configuration in listing 8.2. The definition shows that the task named
gripperUpright is defined to use a constraint rule of the type cartesianPose,
and it controls the link gripper_link to move to the pose of the input base_link
from the input configuration file. In principle, any input providing a Cartesian
pose can be used here. Since all weights except those corresponding to the
orientation in x and y direction are set to zero, only these two will be considered.
These tolerances for these dimensions are also the only relevant ones. They are
set to 0.01 rad here, corresponding to roughly 0.5 ◦. As only x and y orientations
are considered, this task will not move the gripper to the base link, but only keep
the gripper in the same orientation as the base link. The rotation around the
z-axis is still free to move.

The constraint controller is defined to be the controller: genericFollowController
which is defined in the configuration file for controllers. The details of this are
described below.

142

8.1 Integration into the ROS2 environment

1 - id: gripperUpright
2 rule: cartesianPose
3 controlled_link: gripper_link
4 input: base_link
5 weights: [0, 0, 0, 1, 1, 0]
6 tolerance: [0, 0, 0, 0.01, 0.01, 0.0]
7 controller: genericFollowController

Listing 8.2. Example specification of a task in a YAML configuration file.

The input configuration file

This file defines all the required inputs, providing online data to the tasks. In the
example of listing 8.3, an input of type: cartesianPose, called base_link is
defined. Since source_type: yaml is used, its values are statically defined within
the YAML file itself. Here, they have a pose of zero in the reference_frame:
base_link, which means that this input just corresponds to the base link of the
robot. Other options are available to set input poses provided by frames or topics
at run-time, as well as other types of inputs, as shown in figure 5.3.

1 - id: base_link
2 type: cartesianPose
3 source_type: yaml
4 reference_frame: base_link
5 source:
6 pose: [0, 0, 0, 0, 0, 0]
7 reference_frame: base_link

Listing 8.3. Specification of the base_link input in the input configuration file in
YAML format.

The controller configuration file

This file defines the available controllers and their parameters. Listing 8.4 shows
an example definition of the genericFollowController. It is defined to be of
type: Follow, which means it will be an instance of a Follow-Controller, as
defined in section 5.4.1.

The gain and max_output: for the six dimensions of Cartesian poses are defined.
The max_output: corresponds to the value L in the formal definition of section 5.4,
and the gain corresponds to the value α.

143

8 Implementation and Software Architecture

1

2 - id: genericFollowController
3 type: Follow
4 gain: [3.1, 3.1, 3.1, 3.2, 3.2, 3.2]
5 max_output: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Listing 8.4. Specification of the genericFollowController in the controller configu-
ration file in YAML format.

8.1.2 Defining Behaviors

Action definitions and their different execution modes allow for flexible definitions
of various robot motions. Each action does, however, only correspond to one
specific motion description and no discrete changes in the type of motion can
be expressed within an action. Exceptions to this are the execution modes in
which the robot can switch between planned and reactive motion, however, these
discrete switches are still realizing the same action specification, just by different
approaches. In order to change between different actions during the operation of
the robot, a method of behavior modeling is required. The execution of individual
actions is implemented as ROS2 actions and always ends in success or failure.
This simple interface makes it easy to combine actions into behaviors.
Several tools exist that support behavior modeling based on ROS2 actions. For
the case studies, we have decided to use FlexBE [124]. This program enables the
graphical creation of state machines. Each state can correspond to an execution
of a ROS2 action, and other states are possible as well. For example, other
states can be used to control systems that are not directly controlled by our
constraint-based controller. In the case studies, we have used this to open and
close the gripper at specified times in the execution of a behavior. The fact the
FlexBE can be extended and customized through Python scripts has proven highly
practical in our implementations. New states can be added, and the available
parameters specified in the scripts, which can then be instantiated in the graphical
user interface. Besides the specification, FlexBE also enables the execution and
graphical monitoring of the execution of the specified state machines. Example
behavior specifications in FlexBE are shown in the description of the realization
of the case studies in chapter 9.
Besides FlexBE, various alternatives are available to the users. One simple
option is to simply call the actions from Python scripts, for which ROS2 and
the Python ecosystem provide mature tooling. SMACC2 [6] is an asynchronous,
behavioral state machine tool for ROS2, based on the semantics of UML state
charts. YASMIN [49] is another state machine tool for ROS2 focussing on ease
of use. Recently, FlexBE has been extended to support behavior trees as an
alternative to state machines as well [150]. BehaviorTree.ROS2 [7] provides
another implementation of behavior trees with ROS2 interfaces.

144

8.2 Extending the Framework

8.2 Extending the Framework
In the preceding parts of this chapter, the possibilities to create new actions
through different configurations of existing types of rules, actions, inputs and
controllers have been described. While this configuration allows to express a
wide range of different motion types, in some cases a user might want to create
specifications that can not be created through the combination of existing types.
In these cases, new types of tasks, inputs, and controllers can be added to the
software. The details of this are described below. Afterwards, the steps that
would be necessary to apply the software to a new type of robot are described.

8.2.1 Adding new Types of Rules, Controllers, Inputs, Solvers

The modular architecture enables easy extension of our framework through the
use of ROS2 plugins [117]. New types of inputs, solvers, constraint controllers,
and constraint rules can be added by implementing ROS2 plugins.
Constraint controllers, constraint rules, and inputs are implemented as ROS2
plugins. This means that they can be implemented and compiled independently of
the code of the main project. During the initialization phase, they are dynamically
loaded from dynamically linked libraries. In this way, the functionalities of the
constraint control system can be extended by a user without having to touch or
even possess the original source code. It is enough to have the interface of the
base classes that the new classes will extend, for example, the generic controller
interface. Since the plugins are loaded as regular classes into the application, no
communication overhead is added, and real-time capabilities are maintained (as
long as the loaded classes themselves are real-time capable).
New types of solvers, for example to use a different QP implementation, or with
hardware-specific adaptations such as the platform minimum velocity in our case,
can also simply be added through a plugin mechanism, and the chosen solver
specified in a configuration file.

8.2.2 Integration of a new robot

It is easy to use the framework presented here on different robots. As long as
the basics of a ROS2 integration are present, the robot can be used with our
framework without major changes.
In particular, we understand the basics of ROS integration to be the following:

• Availability of controllers, that can command the robot using velocity com-
mands and provide at least the current joint positions as feedback.

• Definition of the robot in a URDF file, providing the kinematic structure
and collision geometry of the robot.

Some limitations on the structure of the robot apply as well: The robot kinematics
have to be described as a kinematic tree (so closed kinematic chains are excluded),
and the robot has to be able to be controlled using velocity commands.

145

8 Implementation and Software Architecture

Using the new robot than only requires a new global configuration file, where the
joint characteristics are defined. Likely, the existing action definitions need to be
updated as well, unless the robots are very similar to each other. The framework
is written in such a way that all algorithms work on kinematic trees, so even
dual-arm robots can be used. This has however not been tested in practice.

146

Summary. The case studies are implemented using the
behaviors that contain various actions executed in different
modes. The behaviors are implemented in the graphical
tool FlexBE. The case studies evaluated using a real robot.
Different metrics are recorded for the successful scenarios
as well as different scenarios with unexpected environment
changes, to assess the robustness of our approach.

9
Realization and Evaluation of the

Case Studies

9.1 Realization . 147
9.1.1 Description of the graphical notation of FlexBE 147
9.1.2 Case Study A: Object Handover 148
9.1.3 Case Study B: Following and Lighting 149

9.2 Evaluation . 151
9.2.1 Case Study A: Object Handover 151
9.2.2 Case Study B: Following and Lighting 161

The case studies previously presented in chapter 3 have been realized on a real
robot. In this chapter, the details of their realization as well as the metrics
recorded during the corresponding experiments are described.

9.1 Realization
In this section, the practical realization of the case studies and the specification of
the created robot behaviors are presented. The created behaviors are shown here
as they have been created in FlexBE. This section will commence with a brief
description of the graphical notation, before describing the realization of the case
studies.

9.1.1 Description of the graphical notation of FlexBE

A behavior in FlexBE consists of a state machine. The execution of a behavior
begins at the initial state, displayed as a filled black circle. An example is shown
in figure 9.1a. An arrow outgoing from it indicates a state transition and points
to the next state in the execution. States are shown as yellow or red rectangles.
States shown in red stand for the execution of an embedded FlexBE behavior.

147

9 Realization and Evaluation of the Case Studies

(a) Initial and action
state (b) State with transi-

tions (c) Terminal state

Figure 9.1. Graphical elements in FlexBE

The output of this state corresponds to the terminal state it has reached. States
shown in yellow are individual states. In our examples, they mostly correspond
to an execution of an action. The name of the action is shown in the first line,
the execution type is shown in the second line. A PlannedActionState will
execute the action as a PlannedActionExecution. ReactionActionState and
AutoplanningActionState similarly use the corresponding execution modes. A
state in FlexBE is only left after the action of the corresponding action has finished.
Parallel execution of actions is not supported at the moment.
Not every state in FlexBE has to be an action execution. Other states, such as
a state for opening and closing the gripper, can also be used. Other examples
include states that request input from the user, or states that make decisions based
on other external events. In this way, flexibility can be added to the behaviors
that can not be achieved only by considering the results of action executions.
The outgoing transitions from each state have an attached label, in our case only
success or failure. Figure 9.1b shows an example. Which state is executed
next depends on the result of the previous one.
The execution ends as soon as a terminal state is reached. In the examples of this
work, this is always one of the two states finished or failed. Other terminal
states can be defined and used if other results of an execution are required. The
terminal states are illustrated by a filled black circle surrounded by another circle,
and have the name of the result written below them. In figure 9.1c, a terminal
state with the result finished is shown.

9.1.2 Case Study A: Object Handover

The robot behavior used for this case study is implemented as a state machine
and graphically modeled in the tool FlexBE. The resulting state machine can be
seen in figure 9.2. The behavior execution will begin at the top left. The first
activated state then is the state get_flashlight. The execution of this state will
execute another behavior, correspondingly called get_flashlight. It is shown in
the figure 9.3 and described below. The red color of the state indicates that the
state stands for an embedded behavior. A photograph taken during the execution
of the behavior can be seen in figure 9.4. Here, the robot is approaching the
flashlight with its gripper. The flashlight is contained in its mount on the robot
base.

148

9.1 Realization

The get_flashlight behavior.

The purpose of this behavior is to pick up the flashlight from the mount on the
robot’s base with the robot’s gripper. This behavior contains no dependencies
on the environment, no interaction with a person, and does not require any use
of the robot’s mobility, using only the arm. All referenced poses are completely
static with respect to the robot’s base. As such, this behavior also serves as an
example of how motions typical of classical industrial robot programming can be
realized in the framework presented here.

The behavior starts by moving the arm to its home position (home), once this has
succeeded, the robot will open its gripper (open_gripper). Next, the robot arm
is moved to a position directly above the flashlight (pre_flashlight), using a
point-to-point motion. Afterward, the gripper moves linearly toward the flashlight
(grasp_flashlight), where the gripper will be closed (close_gripper). This is
followed by a linear upward motion (grasp_flashlight_post). Afterward, the
arm is moved to a folded position (fold_arm). All of this assumes that each
action succeeds. In case any action fails, the entire behavior will terminate with
the final state failed. This behavior assumes that no external disturbances are
occurring during the execution. Any disturbances, such as a person moving their
arm in between the robot arm and the robot base, are not part of the expected
behavior and thus will simply result in a failure of the behavior. If such failures
would have to be considered and the operation continued, an appropriate reaction
needs to be defined and can then be added to the state machine of the behavior.

All the actions in this behavior are executed as reactive actions. This might
be unexpected, considering they are all executed in a static environment which
typically calls for planning rather than reactive control. However, our experiments
have shown that the reactive control has fewer possible causes for failure or
suboptimal results. The probabilistic nature of the planning algorithms means
that an optimal plan is unlikely, and rarely planning can even fail. The chance
that the plan will include some unnecessary detours is not to be ignored, while
the reactive control is sure to take the direct path. As long as there is no risk
of getting stuck in local minima, the reactive execution is thus more robust and
predictable.

9.1.3 Case Study B: Following and Lighting

The realization of the behavior used for the second case study is a lot more simple.
Considering that most of the behavior is described as a single reactive control
application, the need for complex state machines is low. Figure 9.5 shows the
behavior definition from FlexBE. Only two actions are used. The first is the
action follow_and_light, which contains the main success scenario of the case
study. The definition of this action is shown separated into the different task
types. Figure 9.6 shows the path tasks, figure 9.7 shows the goal tasks, and lastly,
figure 9.8 shows the cost tasks.

149

9 Realization and Evaluation of the Case Studies

Figure 9.2. State machine of the object handover behavior, as it appears in FlexBE.

Details regarding tolerances, controller parameters, and others have been omit-
ted to keep the graphics concise. The safety tasks are again the global safety
tasks defined in chapter 5. There a two path tasks: stopBaseWhenClose and
stopEEWhenClose. Both are controlled using StoppingControllers. The effect
is that the base and the end-effector will slow down and stop when the hand or the
torso of the person come close to the controlled links. Three goal tasks are in use.
toPerson is intended to keep the robot close to the person, while keepDistance
ensures that the distance will not become too small either. toPerson uses a
FollowController, while a HybridController is used for keepDistance. In
this way, the robot can move even while keepDistance is fulfilled, while not being
allowed to move away from the person due to the task toPerson. Lastly, the
task shineLight uses an AimingRule to let the robot point the flashlight in its
gripper toward the person.

Three cost tasks are specified. These are used to let the robot face its base toward
the person, keep the arm in a nicely folded position, and to keep the end-effector
above a certain minimum height. Of course, as these are cost tasks, they are
only realized as far as they do not disturb the other tasks. All the cost tasks
are controlled by FollowControllers. Since they are usually overridden by the
other tasks anyway, using more lenient controllers has rarely proven useful in our
experiments.

150

9.2 Evaluation

Figure 9.3. State machine of the behavior to pick up the flashlight, as it appears in
FlexBE.

Only if this action follow_and_light fails, typically because it can no longer
reach the person, is the other action of the behavior, move_to_waiting_position,
called. This is executed as a PlannedActionExecution and has the sole purpose
of returning the robot to a defined waiting position. Whether this action succeeds
or not, the overall outcome of the behavior is failed, as the main action failed.

9.2 Evaluation
The behaviors described above have been executed on the real robot, with different
behaviors and different motions performed by the human interaction partner. In
this section, different metrics that have been recorded during the experiments are
presented and interpreted.

9.2.1 Case Study A: Object Handover

The object handover scenario is evaluated in four different executions. In the
first execution, the successful execution case is evaluated, with a person that is
cooperative in the handover, and no blocking obstacles present. Next, in order to
evaluate the robustness of our method to different challenging scenarios, three
failure cases are tested as well. First, the path to the person is blocked by
obstacles. Next, the person shows no interest in the handover, does not cooperate
with the robot, and does not move their hand toward the handover position.

151

9 Realization and Evaluation of the Case Studies

(a) Picking up the flashlight (b) Handover

Figure 9.4. Photographs of the experiments.

Lastly, a scenario is tried where the person attempts to cooperate at first, but
then continues with unexpected motions, moving their hand behind the robot’s
gripper.

Picking up the flashlight

As a prerequisite to the handover, first, the ability to pick up the flashlight from
the mount on the robot’s base is analyzed. The included actions are shown in
figure 9.3. While most of the included actions are simple point-to-point motions
of the arm, the approaching motion toward the flashlight is a bit more interesting.

Figure 9.5. State machine of the case study B, as it appears in FlexBE.

152

9.2 Evaluation

Figure 9.6. Overview of the path tasks in the action follow_and_light.

It corresponds to the action grasp_flashlight. The name refers to the arm
motion to grasp the flashlight, the closing of the gripper is contained in the action
close_gripper. All actions of the gripper are using the interfaces provided by
the gripper’s driver directly, and are not controlled by the constraint-based control
system.

When moving the gripper fingers around the flashlight, as well as when pulling
the flashlight out of its mount, the gripper has to move linearly. Otherwise, the
flashlight would collide with the sides of the mount when putting it into the
mount, or the gripper fingers would collide with the top of the flashlight when
moving them to the grasping position. The action begins from a position above
the flashlight. The action is thus described by two main tasks: one to move the
gripper downwards toward a suitable (statically defined) grasping position, and a
second one that prevents any sideways motion of the gripper. The corresponding
object diagram is shown in figure 9.9.

Both tasks, avoidXYMotion and moveDownwards, use the same input flashlightPose,
which is statically stored in the configuration, as the pose is static on the robot
itself. avoidXYMotion uses a follow-Controller with a steep response (α = 10)
to ensure a quick reaction to any deviation, while moveDownwards uses α = 2 for
a gentler approach of the flashlight.

Besides these two tasks, the global safety tasks are active, except for the self-
collision avoidance between gripper and base, which has been overridden in order
to allow the gripper to move close enough to the flashlight. This evaluation serves
as an experiment to analyze the capability of the constraint-based system to
realize standard motions in robot programming. For the final grasping motion,
the robot has to move the gripper about 0.075 m downwards.

153

9 Realization and Evaluation of the Case Studies

Figure 9.7. Overview of the goal tasks in the action follow_and_light.

Figure 9.10 shows a plot of the position errors recorded during the execution.
The plot shows the error along the z-axis as the gripper moves downwards, as
well as the deviation on the x-y-plane that occurs during the motion. This
deviation should ideally be zero. It can be seen that some deviation occurs, with
a maximum magnitude of 2.5 mm. Such measurements of path accuracy are
difficult to compare to other results, as they are heavily dependent on the robot
model, pose and execution speed. To provide some assessment of the recorded
values, the value can be compared to those of other robots. For a KUKA KR 5
robot, the path accuracy at 10% speed has been measured to be 1.844 mm on a
rectangular path, and 1.493 mm on a figure-eight-shaped path, and decreases up
to 4.464 mm at full speed [98]. Thus it can be concluded that the accuracy of our
experiments is within an acceptable range. It does not quite reach to accuracy of
industrial control systems. It must also be considered that neither the Schunk
LWA manipulator nor the constraint-based control method presented here have
the same focus on path accuracy as the KUKA KR 5, with welding being one of
its main applications. Also highlighted in the plot is the time at which the action
terminates and succeeds.

154

9.2 Evaluation

Figure 9.8. Overview of the cost tasks in the action follow_and_light.

Figure 9.9. Object diagram of the configuration used during the flashlight pickup.
Safety tasks are excluded.

As the tolerances are all set to very small values in the example, the action only
terminates once the error values reach very small values. The other actions of
this behavior are not further evaluated here. The linear motion to pull out the
flashlight is the same in the opposite direction. The other motions are either
simple point-to-point motions or gripper motions, which use the gripper driver
interface directly.

155

9 Realization and Evaluation of the Case Studies

Figure 9.10. Accuracy plot of the linear motion downwards toward the flashlight.

156

9.2 Evaluation

Successful execution

At first, the successful scenario is evaluated, where all steps of the specified
behavior are executed successfully. Thus, the following actions are executed in
order:

1. approach_person

2. move_in_front_of_person

3. handover_pose

4. gripper_to_hand

5. retract_arm

6. move_to_waiting_position

The results of each of these actions are briefly described below. Excluded are
handover_pose, retract_arm, move_to_waiting_position, which are simple
motions without explicit dependencies on the outside environment. As the ability
to perform basic motions has already been analyzed in section 5.7, they are not
evaluated further here.

approach_person: The robot has executed the planned action to move to close
enough to the person in order to begin the interaction. In this simple, first scenario,
there are no further obstacles in between robot and person. This action is thus a
simple planning problem. Using the default TRRT planner, a suitable plan has
been found in 0.74 s. The plan is then executed successfully in 4.01 s.

move_in_front_of_person: This is a reactive action, ensuring that the robot
is positioned in front of the person. In the successful scenario where the person is
actively engaged in the handover, this is already the case after the previous action
and the action succeeds immediately.

handover_pose: This is a simple motion, moving the arm from its transport
position to a more forward position, more suitable to begin the handover from.
In this case, without unexpected obstacles, there are no metrics of interest to
record.

gripper_to_hand: This action controls the position of the gripper, leading up
to the physical handover. The action is shown in figure 9.12. The robot is supposed
to adjust the height of the gripper and its orientation to enable a handover. As
the person’s hand comes closer to the gripper, the gripper should stop moving
actively, to ensure safety. The former requirement is expressed through the tasks
gripperHeight and faceTowardsHand. The latter is realized through the task
stopEEWhenClose. The used StoppingController will stop the gripper once the
person’s hand comes too close to the gripper. No cost tasks are used in this
action.

157

9 Realization and Evaluation of the Case Studies

Figure 9.11. Recorded data of gripper velocity and distance to the person’s hand

The magnitude of the Cartesian gripper velocity and the distance between gripper
and the person’s right hand have been recorded. The data is shown in figure 9.11.
In the recording, the hand approaches the gripper for a first time, before retreating
a bit. Later, it approaches again and fully comes in contact with the gripper. It
can be seen that the gripper velocity goes toward zero as the hand approaches
the gripper. As soon as the distance between gripper and hand has been below
the task’s tolerance for long enough, the action succeeds. It can be seen that the
slowing of the gripper as the hand comes closer works as intended. Furthermore,
the method of determining the success of the action through the state of the
individual tasks is successfully used as well.

Scenarios with Obstacles

Two scenarios with additional obstacles have been evaluated. In the first, the
path toward the human is blocked completely, and approaching the human is thus
not possible. The scenario is shown in figure 9.13. The execution of the behavior
is simple in this case: As approach_person can not find a valid path, planning
is aborted after the configured maximum duration of 10 s, and the execution
continues with the action move_to_waiting_position. As the robot has not
yet moved from its waiting position, this succeeds immediately and the behavior
finishes.

158

9.2 Evaluation

Figure 9.12. Object diagram of the action gripper_to_hand

In the second scenario with obstacles, the obstacles leave a narrow, door-like
passage between them. This is shown in figure 9.14. In the execution, this
is encountered during the execution of the action approach_person. As this
execution is executed using planning, the effects of the obstacles mean only that
the planning problem has become slightly more challenging. As before, the default
planner TRRT is used. The planning took 1.34 s, and the plan was successfully
executed in 12.10 s. These results show that the approach is robust to obstacles
appearing in the described way. Planning times are still relatively low, only the
execution takes somewhat longer. Besides the simple fact that the robot has to
drive a longer path, the fact that the robot slows down more as it is closer to the
obstacles also contributes to the increased execution time.

After this phase, the execution of the handover proceeds as in the scenario without
any obstacles, described in the subsection above.

Person ignoring the robot

This evaluation case describes an execution where the person does not have the
intention to interact with the robot in any way, and does not move toward it. At
the moment, no sophisticated method of estimating the person’s intention is used.
As long as the person is positioning themselves in a way that allows the robot
to fulfill its tasks, such as bringing the gripper close to the person’s hand, the
robot will perform the actions of the designed behavior in sequence and consider

159

9 Realization and Evaluation of the Case Studies

Figure 9.13. Handover scenario with obstacles completely blocking the robot from the
person.

it a success. The design of the presented system allows however for a simple
integration of such systems through the use of interfaces to start and cancel robot
actions at any time. At the moment, the only metric that can be evaluated here
is whether the robot behaves safely even if the person is not participating in the
interaction. As long as the robot is able to fulfill all the specified actions, it will
consider the actions a success. The action gripper_to_hand can not be fulfilled
without the person actively moving their hand towards the gripper. If the person
does not do this, the action will time out and the execution of the behavior will
fail. In this way, a simple method of handling a person that does not interact with
the robot has been realized. For practical use, more complex methods based on
visual cues or other information should be used to recognize the human’s intention.
The described system allows for the easy integration of such external decisions.

Unexpected motions by the person

In this scenario, the person behaves as expected for the handover at first, but
then continues with unexpected motion by moving their hand behind the gripper
instead of grasping the object. This is shown in figure 9.15. The requirements on
the robot’s motion here are that it neither creates any unsafe motions that could
hurt the person, nor releases the object from its gripper because it is not held by
the person.

A plot of the Cartesian gripper velocity compared to the distance between gripper
and hand is shown in figure 9.16. It can be seen that the distance approaches
zero, and the gripper safely comes to a stop. As the person does, however, not
keep their hand close, and instead increases the distance again, this time behind
the gripper, the action does not succeed. The hand is not close enough to the
gripper for a long enough duration.

160

9.2 Evaluation

Figure 9.14. Handover scenario with additional obstacles.

It must be said that a potentially unsafe scenario could occur from the given
specification, if the person moves their hand even further behind the gripper, so
that it is free to move again. As the specification only takes the location of the
hand into account, the fact that the person’s chest would now be dangerously
close to the robot is currently not considered in the specification as it was used in
the experiments. While this might be an untypical motion, this also shows the
need for extensive testing and verification of all possible human behaviors. The
behavior is rather easy to fix by introducing another task that stops the whole
robot as soon as the torso of the human approaches. In a real-world application,
more sophisticated methods of intention estimation would be desirable, taking
more data into account than just the position of the hand. However, such methods
are outside the scope of this work.

It can, however, be seen that the robot safely comes to a stop as the human hand
approaches. The action failed after the configured 5 s timeout duration, after
which the robot returned to its waiting position.

9.2.2 Case Study B: Following and Lighting

Similarly to the evaluation of case study A, we evaluate this case study in a simple
success scenario as well as different failure cases with unexpected environments
or motions by the interaction partner. First, the basic ability to follow a human
around while providing light is evaluated. Afterward, small obstacles are intro-
duced that should still be able to be handled in a purely reactive fashion. Then,
larger obstacles are introduced that cause the robot to get stuck when attempting
to follow the person and require planning.

161

9 Realization and Evaluation of the Case Studies

Figure 9.15. Example of an uncooperative person during the handover: Reaching past
the gripper.

Successful Execution

Figure 9.18 shows plots of both the distance between the person and the platform,
as well as the angular distance between the direction the flashlight is shining
in, and the direction of the person. It can be seen that the angular distance is
strongly increasing whenever the person comes close to the platform. This can be
explained by the fact that the robot is forced to slow down and eventually stop as
the human comes closer, as enforced by the task stopEEWhenClose. Hence, the
robot can no longer move the flashlight in the correct direction, and the angular
distance increases. Therefore, this is an expected effect, as specified in the action
definition. The robot is actively trying to keep a distance of at most 2.0 m. By
itself, the robot will not move closer toward the person and stop at this distance.
If the person actively approaches the robot, it will however not retreat.

The green horizontal line in the distance plot illustrates the distance that the robot
is attempting to keep between itself and the person, according to the behavior
specification. This effect is achieved by the task toPerson, moving it toward the
person, and the task keepDistance, which ensures it does not move too close.
Toward the end of the plotted evaluation run, the person is moving away from
the robot in a direction that the robot can not follow, due to its given position
limits. Thus the distance increases strongly.

The accuracy of the aiming of the flashlight can potentially be increased substan-
tially by fine-tuning the controller parameters and allowing higher joint velocities.
In experiments, this however had the unpleasant side effects of a jittery appear-
ance of the light, and a subjectively hectic-looking robot. Therefore, the task
parameters have been set to create a slower, more stable reaction at the cost of
some accuracy.

162

9.2 Evaluation

Figure 9.16. Plot of recorded gripper velocity and its distance to the human hand.

Getting stuck on obstacles

In this scenario, the robot is at first following and lighting the human as described
above. After a while, obstacles in the environment prevent the robot from
following the human any further. The use of autoplanning means that this should
be recognized and planning initiated. The execution of the plan should then
resolve the problem, and move the robot to a position from which it can fulfill its
tasks reactively again.

Figure 9.19 shows plots of the total velocity command magnitude, as well as the
constraint costs during the execution. In the first phase, it can be seen that the
robot is moving relatively fast, and the cost is mostly kept at a level below three.
In this phase, the robot is reactively following the robot. Then, as obstacles
appear, the robot is no longer able the follow the human, and the commanded
velocities decrease substantially. Consequently, the costs rise. After a while, the
high cost in combination with low velocities triggers the autoplanning action to
start path planning. During the planning phase, which takes about 2.5 s, the
robot still does not move much.

163

9 Realization and Evaluation of the Case Studies

Figure 9.17. Robot shining its flashlight at a person’s feet.

Then, however, after a plan has been found, it is executed and the robot is
commanded high velocities again. The cost during the execution rises further
at first: moving around the obstacles requires the robot to move even further
away from the person. After a while, the costs decrease again however as the
robot is now able to reach the person again. During the execution of the plan,
some oscillation in the velocity commands can be seen. This is caused by the
waypoint-based method of executing plans, in combination with the use of a simple
proportional position controller. Whenever the robot comes close to a waypoint,
the velocities calculated by the controllers decrease and increase sharply again as
the next waypoint is used as the next target. This could be alleviated through the
use of feed-forward control, which takes not only the position to reach, but also
the velocity the robot should have at this point into account. The robot would
thus not temporarily attempt to come to a standstill at every waypoint.
All in all, this scenario illustrates the validity of our autoplanning method for
detecting when planning is required, and its ability to find plans that lead the
robot out of local minima.

164

9.2 Evaluation

(a) Distance between platform and person

(b) Angular distance between flashlight center line and person

Figure 9.18. Plots of the recorded data during following and lighting.

165

9 Realization and Evaluation of the Case Studies

Figure 9.19. Plots of commanded velocity and constraint costs.

166

10
Conclusion and Outlook

At the moment, assistive robots are still not widely applied despite their large
potential. Safety in interaction and dynamic environments is one of the most
challenging causes of the current limitations. The generation of robot motions
that are safe and robust in unforeseeable environments remains a core challenge.
This work offers several research contributions to these questions. Most important
is a method for the specification of requirements for robot motions, which can
automatically be executed safely and robustly. Both planning and reactive control
are supported and can be combined in different ways.

10.1 Summary of Research Contributions and
Evaluation Results

Motivated by the case studies of object handovers and lighting using a mobile
manipulator, we have developed a method of specifying requirements on robot
motions based on geometric constraints. Different methods for specifying their
relative importance are supported. These include weights, priorities, and tolerances.
Constraints are formulated as simple functions on the robot configuration. This
makes them easy to describe formally and enables their simple use for path
planning. On the other hand, this means that they do not explicitly depend
on the state of the dynamic environment. This dependency is instead handled
by constraint rules. Constraint rules adapt the parameters of the constraints to
reflect the current state of the environment.
Constraint controllers compute velocity bounds of their respective controlled links
or joints based on the current value of the constraint functions. These velocity
bounds are then used in conjunction with the specification of weights and priorities
to formulate a quadratic programming problem. This problem is solved by a QP
solver, and results in an optimal control signal which is then executed by the
robot. It has been shown that the mobile manipulator can be controlled at a
frequency of 100 Hz in this way.
The use of independent and encapsulated components for the specification of
robot motions enables great flexibility in the combination of individual elements
to create new robot motions. The same action specification can be executed as a
planned, reactive, or autoplanning motion. The same constraint specification can
be used for different reactions by applying a different controller to it.

167

10 Conclusion and Outlook

Similarly, the inputs used by the constraints can be easily exchanged, for example
using data from ROS topics, statically configured data, or environment frames.
Further customization can be achieved through various parameters, which enable
a wide range of robot motions through only small configuration changes. At the
same time, the architecture allows for the specification of global safety constraints,
which are automatically monitored and make it possible to specify actions without
having to consider safety anew every time.
Each action uses a simple interface with a clearly defined result, making it easy to
combine actions to more complex behaviors, using state machines, behavior trees
or other established methods. Furthermore, the framework is easy to extend by
implementing new types of constraint rules, solvers, inputs, or controllers, which
can be added easily through the use of a plugin mechanism.
The approach was evaluated in the two case studies. Both simulated and real
evaluations were used. The results show that the presented method is able to
generate safe and robust motions from simple specifications. If the environment
and the human interaction partner allow for the successful execution of the
specified behavior, it is executed quickly as specified. Various scenarios in which
no successful execution is possible have been evaluated to test the robustness
of the approach. The results show that the robot behaves safely in all cases.
Planning is automatically employed when required to resolve situations when the
robot gets stuck using reactive control.

10.2 Open Research Challenges and Future
Directions

Many research questions remain to be solved before assistive robots can be widely
and robustly applied in human-centered environments. Many of them lie outside
the scope of this work. While all of them have received research attention, none
of them can be considered as generally solved. Considerable work is required on
many topics before the robot presented here can be used as a generally applicable
assistive robot. Aspects that are lacking at the moment include human-robot
communication and human intention estimation. The robot behaviors are started
manually for the evaluation, but for practical application, a better method of
understanding what the human partner expects of the robot in the current moment
is required. Similarly, better scene understanding, object recognition, and grasp
planning are required so that the robot is no longer limited to interactions with
a single object. The physical interaction, such as the phase during a handover
where both participants are in contact with the object, needs further attention as
well. Here, sensing capabilities are most relevant, as visual methods fall short.
The system has been evaluated in two case studies with various failure scenarios.
However, no statements about the coverage of these isolated tests can be given at
the moment. Given that both the environment and the human can in principle
change in any possible way in any possible way, verification of control methods
in dynamic environments remains a challenge. While neither formal methods

168

nor testing can fully capture the complexity of human-robot interaction at the
moment, at least some more systematic methods of evaluating and measuring the
robustness and safety of robots would be highly desirable.
Regarding the details of the presented framework, some future directions can
be pointed to as well. Object manipulation is not explicitly considered by the
specification at the moment. Instead, such motions have to be manually described
by geometric constraints. To enable specification at a higher level of abstraction,
constraints could be automatically generated from a description of the object
geometries. The experiments have also shown that the lack of awareness of
visibility and occlusion can be a problem. Tasks to stay in the field of view of a
camera or to shine a light at a position only consider the absolute position. This
can lead to results where a wall between the light source and the target is not
seen as a problem. To fix this, the environment and robot models need to be
enriched with information about occlusion.
Practical experience gathered during the evaluations shows that, while the specifi-
cation is always respected, the emerging motions can be hard to analyze. The large
amount of parameters to configure in the controllers, inputs, and rules can make
it difficult to achieve the desired motion in some cases. This is further amplified
by the unpredictable environment and behavior of the interaction participants.
No unsafe motions are created if specified accordingly. Still, the exact cause for
the resulting motions can be hard to understand.
The cause for this lies in the underlying complexity of controlling nine degrees of
freedom in a dynamic environment and an interactive scenario. While machine
learning techniques such as reinforcement learning have become a popular method
to deal with problems that are hard to parametrize manually, safely generating
enough usable data for use cases such as object handovers is still a challenge.

169

170

Bibliography

[1] Erwin Aertbeliën and Joris De Schutter. “eTaSL/eTC: A Constraint-
Based Task Specification Language and Robot Controller Using Expression
Graphs”. eng. In: IEEE, 2014, pp. 1540–1546. isbn: 9781479969340.

[2] Rachid Alami, Alin Albu-Schäffer, Antonio Bicchi, Rainer Bischoff, Raja
Chatila, Alessandro De Luca, Agostino De Santis, Georges Giralt, Jérémie
Guiochet, Gerd Hirzinger, et al. “Safe and dependable physical human-
robot interaction in anthropic domains: State of the art and challenges”.
In: 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2006, pp. 1–16.

[3] Roberto Ancona. “Redundancy modelling and resolution for robotic mobile
manipulators: a general approach”. In: Advanced Robotics 31.13 (2017),
pp. 706–715.

[4] Paola Ardón, Maria E Cabrera, Eric Pairet, Ronald PA Petrick, Subrama-
nian Ramamoorthy, Katrin S Lohan, and Maya Cakmak. “Affordance-aware
handovers with human arm mobility constraints”. In: IEEE Robotics and
Automation Letters 6.2 (2021), pp. 3136–3143.

[5] Brian Armstrong-Hélouvry, Pierre Dupont, and Carlos Canudas De Wit. “A
survey of models, analysis tools and compensation methods for the control
of machines with friction”. In: Automatica 30.7 (1994), pp. 1083–1138. issn:
0005-1098. doi: https://doi.org/10.1016/0005-1098(94)90209-7.

[6] SMACC authors. SMACC2. https://smacc.dev. [Available online; ac-
cessed 08. March 2024]. 2024.

[7] BehaviorTree.ROS2. https://github.com/BehaviorTree/BehaviorTree.
ROS2. [Available online; accessed 08. March 2024]. 2024.

[8] Amine Belaid, Boubekeur Mendil, and Ali Djenadi. “Narrow Passage RRT*:
A New Variant of RRT*”. In: Int. J. Comput. Vision Robot. 12.1 (Jan.
2022), pp. 85–100. issn: 1752-9131. doi: 10.1504/ijcvr.2022.119247.

[9] Dmitry Berenson, Siddhartha Srinivasa, Dave Ferguson, and James Kuffner.
“Manipulation planning on constraint manifolds”. In: May 2009, pp. 625–
632. doi: 10.1109/ROBOT.2009.5152399.

[10] Joshua Bialkowski, Michael Otte, and Emilio Frazzoli. “Free-configuration
biased sampling for motion planning”. In: 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2013, pp. 1272–1279. doi:
10.1109/IROS.2013.6696513.

[11] Manuel Bonilla, Lucia Pallottino, and Antonio Bicchi. “Noninteracting
constrained motion planning and control for robot manipulators”. In: 2017
IEEE International Conference on Robotics and Automation (ICRA). 2017,
pp. 4038–4043. doi: 10.1109/ICRA.2017.7989463.

171

https://doi.org/https://doi.org/10.1016/0005-1098(94)90209-7
https://smacc.dev
https://github.com/BehaviorTree/BehaviorTree.ROS2
https://github.com/BehaviorTree/BehaviorTree.ROS2
https://doi.org/10.1504/ijcvr.2022.119247
https://doi.org/10.1109/ROBOT.2009.5152399
https://doi.org/10.1109/IROS.2013.6696513
https://doi.org/10.1109/ICRA.2017.7989463

[12] James Bruce and Manuela Veloso. “Real-time randomized path planning
for robot navigation”. In: IEEE/RSJ international conference on intelligent
robots and systems. Vol. 3. IEEE. 2002, pp. 2383–2388.

[13] Giovanni Buizza Avanzini, Andrea Maria Zanchettin, and Paolo Rocco.
“Constrained model predictive control for mobile robotic manipulators”. In:
Robotica 36.1 (2018), pp. 19–38. doi: 10.1017/S0263574717000133.

[14] Gabriele Buondonno. eiquadprog. https://github.com/stack-of-tasks/
eiquadprog. [Available online; accessed 01. November 2023]. 2023.

[15] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime Multi-
Person 2D Pose Estimation using Part Affinity Fields. 2017. arXiv: 1611.
08050 [cs.CV].

[16] Jan Carius, Martin Wermelinger, Balasubramanian Rajasekaran, Kai Holt-
mann, and Marco Hutter. “Deployment of an autonomous mobile manip-
ulator at MBZIRC”. In: Journal of Field Robotics 35 (Oct. 2018). doi:
10.1002/rob.21825.

[17] Luca Cavalli, Gianpaolo Di Pietro, and Matteo Matteucci. “Towards affor-
dance prediction with vision via task oriented grasp quality metrics”. In:
arXiv preprint arXiv:1907.04761 (2019).

[18] Wesley P Chan, Iori Kumagai, Shunichi Nozawa, Yohei Kakiuchi, Kei
Okada, and Masayuki Inaba. “Implementation of a robot-human object
handover controller on a compliant underactuated hand using joint position
error measurements for grip force and load force estimations”. In: 2014
IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2014, pp. 1190–1195.

[19] David Coleman, Ioan Alexandru Sucan, Sachin Chitta, and Nikolaus Correll.
“Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt!
Case Study”. In: CoRR abs/1404.3785 (2014). arXiv: 1404.3785. url:
http://arxiv.org/abs/1404.3785.

[20] Michele Colledanchise and Lorenzo Natale. “Analysis and Exploitation of
Synchronized Parallel Executions in Behavior Trees”. In: CoRR abs/1908.01539
(2019). arXiv: 1908.01539. url: http://arxiv.org/abs/1908.01539.

[21] Michele Colledanchise and Petter Ögren. Behavior trees in robotics and
AI: An introduction. CRC Press, 2018.

[22] Kevin Curran, Eoghan Furey, Tom Lunney, Jose Santos, Derek Woods,
and Aidan Mccaughey. “An evaluation of indoor location determination
technologies”. In: J. Location Based Services 5 (June 2011), pp. 61–78. doi:
10.1080/17489725.2011.562927.

[23] Mohammad-Javad Davari, Michael Hegedus, Kamal Gupta, and Mehran
Mehrandezh. “Identifying Multiple Interaction Events from Tactile Data
during Robot-Human Object Transfer”. In: 2019 28th IEEE International
Conference on Robot and Human Interactive Communication (RO-MAN).
2019, pp. 1–6. doi: 10.1109/RO-MAN46459.2019.8956306.

172

https://doi.org/10.1017/S0263574717000133
https://github.com/stack-of-tasks/eiquadprog
https://github.com/stack-of-tasks/eiquadprog
https://arxiv.org/abs/1611.08050
https://arxiv.org/abs/1611.08050
https://doi.org/10.1002/rob.21825
https://arxiv.org/abs/1404.3785
http://arxiv.org/abs/1404.3785
https://arxiv.org/abs/1908.01539
http://arxiv.org/abs/1908.01539
https://doi.org/10.1080/17489725.2011.562927
https://doi.org/10.1109/RO-MAN46459.2019.8956306

[24] Agostino De Santis, Bruno Siciliano, Alessandro De Luca, and Antonio
Bicchi. “An atlas of physical human–robot interaction”. In: Mechanism and
Machine Theory 43.3 (2008), pp. 253–270.

[25] Joris De Schutter, Tinne De Laet, Johan Rutgeerts, Wilm Decré, Ruben
Smits, Erwin Aertbeliëen, Kasper Claes, and Herman Bruyninckx. “Constraint-
Based Task Specification and Estimation for Sensor-Based Robot Systems
in the Presence of Geometric Uncertainty”. In: The International Journal
of Robotics Research 26.5 (2007), pp. 433–455.

[26] Wilm Decré, Ruben Smits, Herman Bruyninckx, and Joris De Schutter.
“Extending iTaSC to support inequality constraints and non-instantaneous
task specification”. In: Proceedings of the 2009 IEEE International Confer-
ence on Robotics and Automation. Kobe, Japan, 2009, pp. 964–971.

[27] Robots and robotic devices – Collaborative robots. Standard. International
Organization for Standardization, Mar. 2016.

[28] Ke Dong, Karime Pereida, Florian Shkurti, and Angela P. Schoellig. “Catch
the Ball: Accurate High-Speed Motions for Mobile Manipulators via Inverse
Dynamics Learning”. In: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2020, pp. 6718–6725. doi: 10.
1109/IROS45743.2020.9341134.

[29] A Gomez Eguiluz, Iñaki Rañó, Sonya A Coleman, and T Martin McGinnity.
“Reliable object handover through tactile force sensing and effort control
in the shadow robot hand”. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2017, pp. 372–377.

[30] Adrien Escande, Sylvain Miossec, Mehdi Benallegue, and Abderrahmane
Kheddar. “A Strictly Convex Hull for Computing Proximity Distances
With Continuous Gradients”. In: Robotics, IEEE Transactions on 30 (June
2014), pp. 666–678. doi: 10.1109/TRO.2013.2296332.

[31] Marco Faroni, Manuel Beschi, and Nicola Pedrocchi. “An MPC Framework
for Online Motion Planning in Human-Robot Collaborative Tasks”. In:
2019 24th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA). 2019, pp. 1555–1558. doi: 10.1109/ETFA.
2019.8869047.

[32] Dave Ferguson, Nidhi Kalra, and Anthony Stentz. “Replanning with rrts”.
In: Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006. IEEE. 2006, pp. 1243–1248.

[33] H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock, and M. Diehl. “qpOASES:
A parametric active-set algorithm for quadratic programming”. In: Mathe-
matical Programming Computation 6.4 (2014), pp. 327–363.

173

https://doi.org/10.1109/IROS45743.2020.9341134
https://doi.org/10.1109/IROS45743.2020.9341134
https://doi.org/10.1109/TRO.2013.2296332
https://doi.org/10.1109/ETFA.2019.8869047
https://doi.org/10.1109/ETFA.2019.8869047

[34] Hans Joachim Ferreau, Peter Ortner, Peter Langthaler, Luigi del Re, and
Moritz Diehl. “Predictive control of a real-world Diesel engine using an
extended online active set strategy”. In: Annual Reviews in Control 31.2
(2007), pp. 293–301. issn: 1367-5788. doi: https://doi.org/10.1016/j.
arcontrol.2007.09.001.

[35] Fabrizio Flacco, Torsten Kroger, Alessandro Luca, and Oussama Khatib.
“Depth space approach to human-robot collision avoidance”. In: Proceedings
- IEEE International Conference on Robotics and Automation (May 2012),
pp. 338–345. doi: 10.1109/ICRA.2012.6225245.

[36] Chien-Liang Fok, Gwendolyn Johnson, John D Yamokoski, Aloysius Mok,
and Luis Sentis. “ControlIt!a software framework for whole-body opera-
tional space control”. In: International Journal of Humanoid Robotics 13.01
(2016), p. 1550040.

[37] Chien-Liang Fok and Luis Sentis. “Integration and usage of a ROS-Based
whole body control software framework”. In: Robot Operating System (ROS)
The Complete Reference (Volume 1) (2016), pp. 535–563.

[38] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. “The dynamic window
approach to collision avoidance”. In: IEEE Robotics & Automation Magazine
4.1 (1997), pp. 23–33.

[39] Daichi Furuta, Kyo Kutsuzawa, Sho Sakaino, and Toshiaki Tsuji. “LSTM
Learning of Inverse Dynamics with Contact in Various Environments”. In:
2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics.
2018, pp. 149–154. doi: 10.1109/MECATRONICS.2018.8495698.

[40] Magnus Gaertner, Marko Bjelonic, Farbod Farshidian, and Marco Hutter.
“Collision-free MPC for legged robots in static and dynamic scenes”. In:
2021 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2021, pp. 8266–8272.

[41] Mirosaw Galicki. “An adaptive non-linear constraint control of mobile ma-
nipulators”. In: Mechanism and Machine Theory 88 (2015), pp. 63–85. issn:
0094-114X. doi: https://doi.org/10.1016/j.mechmachtheory.2015.
02.001. url: https://www.sciencedirect.com/science/article/
pii/S0094114X15000269.

[42] Cipriano Galindo, Juan-Antonio Fernández-Madrigal, Javier González,
and Alessandro Saffiotti. “Robot task planning using semantic maps”. In:
Robotics and autonomous systems 56.11 (2008), pp. 955–966.

[43] M. Gautier. “Numerical calculation of the base inertial parameters of
robots”. In: Journal of Robotic Systems 8.4 (1991), pp. 485–506. doi:
https://doi.org/10.1002/rob.4620080405.

174

https://doi.org/https://doi.org/10.1016/j.arcontrol.2007.09.001
https://doi.org/https://doi.org/10.1016/j.arcontrol.2007.09.001
https://doi.org/10.1109/ICRA.2012.6225245
https://doi.org/10.1109/MECATRONICS.2018.8495698
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2015.02.001
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2015.02.001
https://www.sciencedirect.com/science/article/pii/S0094114X15000269
https://www.sciencedirect.com/science/article/pii/S0094114X15000269
https://doi.org/https://doi.org/10.1002/rob.4620080405

[44] Claudio Gaz, Marco Cognetti, Alexander Oliva, Paolo Robuffo Giordano,
and Alessandro De Luca. “Dynamic Identification of the Franka Emika
Panda Robot With Retrieval of Feasible Parameters Using Penalty-Based
Optimization”. In: IEEE Robotics and Automation Letters 4.4 (2019),
pp. 4147–4154. doi: 10.1109/LRA.2019.2931248.

[45] Gazebo. www.gazebosim.org. [Online; accessed 15-December-2023]. 2023.
[46] Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Andrzej Wasowski,

and Swaib Dragule. Behavior Trees and State Machines in Robotics Appli-
cations. 2023. arXiv: 2208.04211 [cs.RO].

[47] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. “A fast procedure for
computing the distance between complex objects in three-dimensional
space”. In: IEEE Journal on Robotics and Automation 4.2 (1988), pp. 193–
203. doi: 10.1109/56.2083.

[48] Donald Goldfarb and Ashok Idnani. “A numerically stable dual method for
solving strictly convex quadratic programs”. In: Mathematical programming
27.1 (1983), pp. 1–33.

[49] Miguel Á. González-Santamarta, Francisco J. Rodríguez-Lera, Vicente
Matellán-Olivera, and Camino Fernández-Llamas. “YASMIN: Yet Another
State MachINe”. In: ROBOT2022: Fifth Iberian Robotics Conference. Ed.
by Danilo Tardioli, Vicente Matellán, Guillermo Heredia, Manuel F. Silva,
and Lino Marques. Cham: Springer International Publishing, 2023, pp. 528–
539. isbn: 978-3-031-21062-4.

[50] Sami Haddadin, Alin Albu-Schäffer, and Gerd Hirzinger. “Requirements for
safe robots: Measurements, analysis and new insights”. In: The International
Journal of Robotics Research 28.11-12 (2009), pp. 1507–1527.

[51] Sami Haddadin, Alessandro De Luca, and Alin Albu-Schäffer. “Robot
Collisions: A Survey on Detection, Isolation, and Identification”. In: IEEE
Transactions on Robotics 33.6 (2017), pp. 1292–1312. doi: 10.1109/TRO.
2017.2723903.

[52] Lorenz Halt, Frank Nagele, Philipp Tenbrock, and Andreas Pott. “Intuitive
Constraint-Based Robot Programming for Robotic Assembly Tasks”. In:
2018 IEEE International Conference on Robotics and Automation (ICRA).
2018, pp. 520–526. doi: 10.1109/ICRA.2018.8462882.

[53] Li Han, Lee Rudolph, Jonathon Blumenthal, and Ihar Valodzin. “Stratified
deformation space and path planning for a planar closed chain with revolute
joints”. In: Algorithmic Foundation of Robotics VII: Selected Contributions
of the Seventh International Workshop on the Algorithmic Foundations of
Robotics. Springer. 2008, pp. 235–250.

[55] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for
the heuristic determination of minimum cost paths”. In: IEEE transactions
on Systems Science and Cybernetics 4.2 (1968), pp. 100–107.

175

https://doi.org/10.1109/LRA.2019.2931248
www.gazebosim.org
https://arxiv.org/abs/2208.04211
https://doi.org/10.1109/56.2083
https://doi.org/10.1109/TRO.2017.2723903
https://doi.org/10.1109/TRO.2017.2723903
https://doi.org/10.1109/ICRA.2018.8462882

[56] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”.
In: Neural Computation 9.8 (1997), pp. 1735–1780. doi: 10.1162/neco.
1997.9.8.1735.

[57] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In:
Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.
9.8.1735.

[58] Enrico Mingo Hoffman, Alessio Rocchi, Arturo Laurenzi, and Nikos G.
Tsagarakis. “Robot control for dummies: Insights and examples using Open-
SoT”. In: 2017 IEEE-RAS 17th International Conference on Humanoid
Robotics (Humanoids). 2017, pp. 736–741. doi: 10.1109/HUMANOIDS.2017.
8246954.

[60] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and
Wolfram Burgard. “OctoMap: An efficient probabilistic 3D mapping frame-
work based on octrees”. In: Autonomous robots 34 (2013), pp. 189–206.

[61] IROS 2020 Workshop on Bringing Constraint-based Robot Programming to
Real-World Applications (IROS CobaRoP). https://iros2020-workshop-
cobarop.gitlab.io/. Accessed: 2024-01-18. Las Vegas, NV, USA.

[62] Léonard Jaillet, Juan Cortés, and Thierry Siméon. “Transition-based RRT
for path planning in continuous cost spaces”. In: 2008 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE. 2008, pp. 2145–
2150.

[63] Léonard Jaillet and Josep M. Porta. “Path Planning Under Kinematic
Constraints by Rapidly Exploring Manifolds”. In: IEEE Transactions on
Robotics 29.1 (2013), pp. 105–117. doi: 10.1109/TRO.2012.2222272.

[64] Advait Jain and Charles Kemp. “EL-E: An assistive mobile manipulator
that autonomously fetches objects from flat surfaces”. In: Autonomous
Robots 28 (Sept. 2010), pp. 45–64. doi: 10.1007/s10514-009-9148-5.

[65] Wenji Jia, Guiling Yang, Lefeng Gu, and Tianjiang Zheng. “Dynamics
modelling of a mobile manipulator with powered castor wheels”. In: 2017
IEEE International Conference on Cybernetics and Intelligent Systems
(CIS) and IEEE Conference on Robotics, Automation and Mechatronics
(RAM). IEEE. 2017, pp. 730–735.

[66] Sertac Karaman and Emilio Frazzoli. Incremental Sampling-based Algo-
rithms for Optimal Motion Planning. 2010. arXiv: 1005.0416 [cs.RO].

[67] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars.
“Probabilistic roadmaps for path planning in high-dimensional configuration
spaces”. In: IEEE transactions on Robotics and Automation 12.4 (1996),
pp. 566–580.

[68] Ameer Hamza Khan, Shuai Li, Dechao Chen, and Liefa Liao. “Tracking
control of redundant mobile manipulator: An RNN based metaheuristic
approach”. In: Neurocomputing 400 (2020), pp. 272–284. issn: 0925-2312.
doi: https://doi.org/10.1016/j.neucom.2020.02.109.

176

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/HUMANOIDS.2017.8246954
https://doi.org/10.1109/HUMANOIDS.2017.8246954
https://iros2020-workshop-cobarop.gitlab.io/
https://iros2020-workshop-cobarop.gitlab.io/
https://doi.org/10.1109/TRO.2012.2222272
https://doi.org/10.1007/s10514-009-9148-5
https://arxiv.org/abs/1005.0416
https://doi.org/https://doi.org/10.1016/j.neucom.2020.02.109

[69] O. Khatib. “Real-time obstacle avoidance for manipulators and mobile
robots”. In: Proceedings. 1985 IEEE International Conference on Robotics
and Automation. Vol. 2. 1985, pp. 500–505. doi: 10.1109/ROBOT.1985.
1087247.

[70] Beobkyoon Kim, Terry Taewoong Um, Chansu Suh, and F. C. Park. “Tan-
gent bundle RRT: A randomized algorithm for constrained motion plan-
ning”. In: Robotica 34.1 (2016), pp. 202–225. doi: 10.1017/S0263574714001234.

[71] Zachary Kingston, Mark Moll, and Lydia E Kavraki. “Sampling-based
methods for motion planning with constraints”. In: Annual review of control,
robotics, and autonomous systems 1 (2018), pp. 159–185.

[72] Zachary Kingston, Mark Moll, and Lydia E. Kavraki. “Exploring Im-
plicit Spaces for Constrained Sampling-Based Planning”. In: Intl. J. of
Robotics Research 38.10–11 (Sept. 2019), pp. 1151–1178. doi: 10.1177/
0278364919868530.

[73] Mia Kokic, Danica Kragic, and Jeannette Bohg. “Learning task-oriented
grasping from human activity datasets”. In: IEEE Robotics and Automation
Letters 5.2 (2020), pp. 3352–3359.

[74] Jelizaveta Konstantinova, Senka Krivic, Agostino Stilli, Justus Piater,
and Kaspar Althoefer. “Autonomous object handover using wrist tactile
information”. In: Towards Autonomous Robotic Systems: 18th Annual
Conference, TAROS 2017, Guildford, UK, July 19–21, 2017, Proceedings
18. Springer. 2017, pp. 450–463.

[75] J.J. Kuffner and S.M. LaValle. “RRT-connect: An efficient approach to
single-query path planning”. In: Proceedings 2000 ICRA. Millennium Con-
ference. IEEE International Conference on Robotics and Automation. Sym-
posia Proceedings (Cat. No.00CH37065). Vol. 2. 2000, 995–1001 vol.2. doi:
10.1109/ROBOT.2000.844730.

[76] Tobias Kunz and Mike Stilman. “Manipulation planning with soft task
constraints”. In: 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2012, pp. 1937–1942. doi: 10.1109/IROS.2012.
6386134.

[77] Steven LaValle. “Rapidly-exploring random trees: A new tool for path
planning”. In: Research Report 9811 (1998).

[78] Rafael Lazimy. “Mixed-integer quadratic programming”. In: Mathematical
Programming 22 (1982), pp. 332–349.

[79] Quentin Leboutet, Julien Roux, Alexandre Janot, Julio Rogelio Guadarrama-
Olvera, and Gordon Cheng. “Inertial parameter identification in robotics:
A survey”. In: Applied Sciences 11.9 (2021), p. 4303.

[80] Wei Li and Rong Xiong. “Dynamical Obstacle Avoidance of Task-Constrained
Mobile Manipulation Using Model Predictive Control”. In: 7 (2019), pp. 88301–
88311. doi: 10.1109/ACCESS.2019.2925428.

177

https://doi.org/10.1109/ROBOT.1985.1087247
https://doi.org/10.1109/ROBOT.1985.1087247
https://doi.org/10.1017/S0263574714001234
https://doi.org/10.1177/0278364919868530
https://doi.org/10.1177/0278364919868530
https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1109/IROS.2012.6386134
https://doi.org/10.1109/IROS.2012.6386134
https://doi.org/10.1109/ACCESS.2019.2925428

[81] Daegyu Lim, Donghyeon Kim, and Jaeheung Park. “Momentum Observer-
Based Collision Detection Using LSTM for Model Uncertainty Learning”.
In: 2021 IEEE International Conference on Robotics and Automation
(ICRA). 2021, pp. 4516–4522. doi: 10.1109/ICRA48506.2021.9561667.

[82] Björn Lindqvist, Sina Sharif Mansouri, Ali-akbar Agha-mohammadi, and
George Nikolakopoulos. “Nonlinear MPC for collision avoidance and control
of UAVs with dynamic obstacles”. In: IEEE robotics and automation letters
5.4 (2020), pp. 6001–6008.

[83] Nan Liu, Liangyu Li, Bing Hao, Liusong Yang, Tonghai Hu, Tao Xue, and
Shoujun Wang. “Modeling and Simulation of Robot Inverse Dynamics Using
LSTM-based Deep Learning Algorithm for Smart Cities and Factories”. In:
IEEE Access 7 (2019), pp. 173989–173998. doi: 10.1109/ACCESS.2019.
2957019.

[84] Stefan B. Liu and Matthias Althoff. “Reachset Conformance of Forward
Dynamic Models for the Formal Analysis of Robots”. In: 2018 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). Madrid,
Spain: IEEE Press, 2018, pp. 370–376. doi: 10.1109/IROS.2018.8593975.

[85] Vicon Motion Systems Ltd. Vicon Motion Capture Systems. https://www.
vicon.com/. [Available online; accessed 11. March 2024]. 2024.

[86] A. de Luca and R. Mattone. “Sensorless Robot Collision Detection and
Hybrid Force/Motion Control”. In: Proceedings of the 2005 IEEE Interna-
tional Conference on Robotics and Automation. 2005, pp. 999–1004. doi:
10.1109/ROBOT.2005.1570247.

[87] Alessandro De Luca and Raffaella Mattone. “Actuator failure detection
and isolation using generalized momenta”. In: 2003 IEEE International
Conference on Robotics and Automation (Cat. No.03CH37422) 1 (2003),
634–639 vol.1.

[88] Steve Macenski, Francisco Martín, Ruffin White, and Jonatan Ginés
Clavero. “The Marathon 2: A Navigation System”. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2020.
url: https://github.com/ros-planning/navigation2.

[89] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. “Robot Operating System 2: Design, architecture, and uses in
the wild”. In: Science Robotics 7.66 (2022), eabm6074. doi: 10.1126/
scirobotics.abm6074.

[90] Bence Magyar, Nikolaos Tsiogkas, Jérémie Deray, Sammy Pfeiffer, and
David Lane. “Timed-elastic bands for manipulation motion planning”. In:
IEEE Robotics and Automation Letters 4.4 (2019), pp. 3513–3520.

[91] Shamil Mamedov and Stanislav Mikhel. “Practical Aspects of Model-Based
Collision Detection”. In: Frontiers in Robotics and AI 7 (2020). issn:
2296-9144. doi: 10.3389/frobt.2020.571574.

178

https://doi.org/10.1109/ICRA48506.2021.9561667
https://doi.org/10.1109/ACCESS.2019.2957019
https://doi.org/10.1109/ACCESS.2019.2957019
https://doi.org/10.1109/IROS.2018.8593975
https://www.vicon.com/
https://www.vicon.com/
https://doi.org/10.1109/ROBOT.2005.1570247
https://github.com/ros-planning/navigation2
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.3389/frobt.2020.571574

[92] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar. “A Versatile Generalized
Inverted Kinematics Implementation for Collaborative Working Humanoid
Robots: The Stack of Tasks”. In: International Conference on Advanced
Robotics (ICAR). June 2009, p. 119.

[93] Nestor Maslej, Loredana Fattorini, Erik Brynjolfsson, John Etchemendy,
Katrina Ligett, Terah Lyons, James Manyika, Helen Ngo, Juan Carlos
Niebles, Vanessa Parli, Yoav Shoham, Russell Wald, Jack Clark, and
Raymond Perrault. Artificial Intelligence Index Report 2023. 2023. arXiv:
2310.03715 [cs.AI].

[94] Troy McMahon, Shawna Thomas, and Nancy M. Amato. “Sampling-based
motion planning with reachable volumes: Theoretical foundations”. In: 2014
IEEE International Conference on Robotics and Automation (ICRA). 2014,
pp. 6514–6521. doi: 10.1109/ICRA.2014.6907820.

[95] Amirhossein H Memar and Ehsan T Esfahani. “Modeling and dynamic
parameter identification of the Schunk Powerball robotic arm”. In: Inter-
national Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. Vol. 57144. American Society of
Mechanical Engineers. 2015, V05CT08A024.

[96] Joseph Mirabel, Steve Tonneau, Pierre Fernbach, Anna-Kaarina Seppälä,
Mylène Campana, Nicolas Mansard, and Florent Lamiraux. “HPP: A new
software for constrained motion planning”. In: 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). 2016, pp. 383–
389. doi: 10.1109/IROS.2016.7759083.

[97] AJung Moon, Daniel M Troniak, Brian Gleeson, Matthew KXJ Pan,
Minhua Zheng, Benjamin A Blumer, Karon MacLean, and Elizabeth A
Croft. “Meet me where i’m gazing: how shared attention gaze affects
human-robot handover timing”. In: Proceedings of the 2014 ACM/IEEE
international conference on Human-robot interaction. 2014, pp. 334–341.

[98] M. Morozov, J. Riise, R. Summan, S.G. Pierce, C. Mineo, C.N. MacLeod,
and R.H. Brown. “Assessing the accuracy of industrial robots through
metrology for the enhancement of automated non-destructive testing”. In:
2016 IEEE International Conference on Multisensor Fusion and Integration
for Intelligent Systems (MFI). 2016, pp. 335–340. doi: 10.1109/MFI.2016.
7849510.

[99] Dennis Mronga, Tobias Knobloch, José de Gea Fernández, and Frank Kirch-
ner. “A Constraint-Based Approach for Human-Robot Collision Avoidance”.
In: Advanced Robotics (2020), pp. 1–17.

[100] Neobotix MPO-700. www.neobotix-robots.com. [Online; accessed 02-
March-2021]. 2021.

[101] NVIDIA Jetson Orin Modules. https : / / www . nvidia . com / en - us /
autonomous-machines/embedded-systems/jetson-orin/. [Online; ac-
cessed 02-February-2024]. 2024.

179

https://arxiv.org/abs/2310.03715
https://doi.org/10.1109/ICRA.2014.6907820
https://doi.org/10.1109/IROS.2016.7759083
https://doi.org/10.1109/MFI.2016.7849510
https://doi.org/10.1109/MFI.2016.7849510
www.neobotix-robots.com
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/

[102] Henrik Olsson, Karl Johan Åström, Carlos Canudas De Wit, Magnus
Gäfvert, and Pablo Lischinsky. “Friction models and friction compensation”.
In: Eur. J. Control 4.3 (1998), pp. 176–195.

[103] Roberto Opromolla, Giancarmine Fasano, Giancarlo Rufino, and Michele
Grassi. “Characterization and Testing of a High-Resolution Time-of-Flight
Camera for Autonomous Navigation”. In: 2018 5th IEEE International
Workshop on Metrology for AeroSpace (MetroAeroSpace). 2018, pp. 380–385.
doi: 10.1109/MetroAeroSpace.2018.8453522.

[104] Valerio Ortenzi, Akansel Cosgun, Tommaso Pardi, Wesley P. Chan, Eliza-
beth Croft, and Dana Kuli. “Object Handovers: A Review for Robotics”.
In: IEEE Transactions on Robotics 37.6 (2021), pp. 1855–1873. doi: 10.
1109/TRO.2021.3075365.

[105] Andreas Orthey, Sohaib Akbar, and Marc Toussaint. “Multilevel Motion
Planning: A Fiber Bundle Formulation”. In: CoRR abs/2007.09435 (2020).
arXiv: 2007.09435. url: https://arxiv.org/abs/2007.09435.

[106] Andreas Orthey and Marc Toussaint. “Rapidly-Exploring Quotient-Space
Trees: Motion Planning using Sequential Simplifications”. In: CoRR abs/1906.01350
(2019). arXiv: 1906.01350. url: http://arxiv.org/abs/1906.01350.

[107] Michael Otte and Emilio Frazzoli. “RRTX: Asymptotically optimal single-
query sampling-based motion planning with quick replanning”. In: The
International Journal of Robotics Research 35.7 (2016), pp. 797–822. doi:
10.1177/0278364915594679.

[108] Tony Owen. “The Complexity of Robot Motion Planning”. In: Robotica 8.3
(1990), pp. 259–260. doi: 10.1017/S0263574700000151.

[109] Prabin Kumar Panigrahi and Sukant Kishoro Bisoy. “Localization strategies
for autonomous mobile robots: A review”. In: Journal of King Saud Univer-
sity - Computer and Information Sciences 34.8, Part B (2022), pp. 6019–
6039. issn: 1319-1578. doi: https://doi.org/10.1016/j.jksuci.2021.
02.015. url: https://www.sciencedirect.com/science/article/
pii/S1319157821000550.

[110] Ken Perlin. “An Image Synthesizer”. In: Proceedings of the 12th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH
’85. New York, NY, USA: Association for Computing Machinery, 1985,
pp. 287–296. isbn: 0897911660. doi: 10 . 1145 / 325334 . 325247. url:
https://doi.org/10.1145/325334.325247.

[111] Mun Seng Phoon, Philipp S. Schmitt, and Georg V. Wichert. “Constraint-
based Task Specification and Trajectory Optimization for Sequential Ma-
nipulation”. In: 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2022, pp. 197–202. doi: 10.1109/IROS47612.
2022.9981909.

180

https://doi.org/10.1109/MetroAeroSpace.2018.8453522
https://doi.org/10.1109/TRO.2021.3075365
https://doi.org/10.1109/TRO.2021.3075365
https://arxiv.org/abs/2007.09435
https://arxiv.org/abs/2007.09435
https://arxiv.org/abs/1906.01350
http://arxiv.org/abs/1906.01350
https://doi.org/10.1177/0278364915594679
https://doi.org/10.1017/S0263574700000151
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.02.015
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.02.015
https://www.sciencedirect.com/science/article/pii/S1319157821000550
https://www.sciencedirect.com/science/article/pii/S1319157821000550
https://doi.org/10.1145/325334.325247
https://doi.org/10.1145/325334.325247
https://doi.org/10.1109/IROS47612.2022.9981909
https://doi.org/10.1109/IROS47612.2022.9981909

[112] Alexander Poeppel, Alwin Hoffmann, Martin Siehler, and Wolfgang Reif.
“Robust Distance Estimation of Capacitive Proximity Sensors in HRI using
Neural Networks”. In: 2020 Fourth IEEE International Conference on
Robotic Computing (IRC). 2020, pp. 344–351. doi: 10.1109/IRC.2020.
00061.

[113] Athanasios S. Polydoros, Evangelos Boukas, and Lazaros Nalpantidis. “On-
line multi-target learning of inverse dynamics models for computed-torque
control of compliant manipulators”. In: 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). 2017, pp. 4716–4722.
doi: 10.1109/IROS.2017.8206344.

[114] Ronghuai Qi, Amir Khajepour, and William W. Melek. “Modeling, tracking,
vibration and balance control of an underactuated mobile manipulator
(UMM)”. In: Control Engineering Practice 93 (2019), p. 104159. issn: 0967-
0661. doi: https://doi.org/10.1016/j.conengprac.2019.104159.

[115] Real-Time Linux. https : / / wiki . linuxfoundation . org / realtime /
start. [Online; accessed 06-February-2024]. 2024.

[116] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. 2016. arXiv: 1506.02640
[cs.CV].

[117] Open Robotics. Creating and using plugins. https://docs.ros.org/
en/humble/Tutorials/Beginner-Client-Libraries/Pluginlib.html.
[Available online; accessed 08. March 2024]. 2024.

[118] Weiss Robotics. CRG Series. https://weiss-robotics.com/servo-
electric/crg-series/product/crg/selectVariant/crg-200-085-
191/. [Available online; accessed 13. December 2023]. 2023.

[119] Samuel Rodriguez, Shawna Thomas, Roger Pearce, and Nancy M. Amato.
“RESAMPL: A Region-Sensitive Adaptive Motion Planner”. In: Algo-
rithmic Foundation of Robotics VII: Selected Contributions of the Sev-
enth International Workshop on the Algorithmic Foundations of Robotics.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 285–300. doi:
10.1007/978-3-540-68405-3_18.

[120] Christoph Roesmann, Wendelin Feiten, Thomas Woesch, Frank Hoffmann,
and Torsten Bertram. “Trajectory modification considering dynamic con-
straints of autonomous robots”. In: ROBOTIK 2012; 7th German Confer-
ence on Robotics. 2012, pp. 1–6.

[121] Elmar Rueckert, Moritz Nakatenus, Samuele Tosatto, and Jan Peters.
“Learning inverse dynamics models in O(n) time with LSTM networks”.
In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics
(Humanoids). 2017, pp. 811–816. doi: 10.1109/HUMANOIDS.2017.8246965.

[122] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling
Language Reference Manual, The (2nd Edition). Pearson Higher Education,
2004. isbn: 0321245628.

181

https://doi.org/10.1109/IRC.2020.00061
https://doi.org/10.1109/IRC.2020.00061
https://doi.org/10.1109/IROS.2017.8206344
https://doi.org/https://doi.org/10.1016/j.conengprac.2019.104159
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Pluginlib.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Pluginlib.html
https://weiss-robotics.com/servo-electric/crg-series/product/crg/selectVariant/crg-200-085-191/
https://weiss-robotics.com/servo-electric/crg-series/product/crg/selectVariant/crg-200-085-191/
https://weiss-robotics.com/servo-electric/crg-series/product/crg/selectVariant/crg-200-085-191/
https://doi.org/10.1007/978-3-540-68405-3_18
https://doi.org/10.1109/HUMANOIDS.2017.8246965

[123] Alexander Schiendorfer, Alexander Knapp, Gerrit Anders, and Wolfgang
Reif. “MiniBrass: soft constraints for MiniZinc”. In: Constraints 23 (2018),
pp. 403–450.

[124] Philipp Schillinger, Stefan Kohlbrecher, and Oskar von Stryk. “Human-
Robot Collaborative High-Level Control with an Application to Rescue
Robotics”. In: IEEE International Conference on Robotics and Automation.
Stockholm, Sweden, May 2016.

[125] Philipp S Schmitt, Florian Wirnshofer, Kai M Wurm, Georg v Wichert, and
Wolfram Burgard. “Modeling and planning manipulation in dynamic envi-
ronments”. In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE. 2019, pp. 176–182.

[126] Philipp S. Schmitt, Florian Wirnshofer, Kai M. Wurm, Georg v. Wichert,
and Wolfram Burgard. “Planning Reactive Manipulation in Dynamic En-
vironments”. In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2019, pp. 136–143. doi: 10.1109/IROS40897.
2019.8968452.

[127] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. “Efficient RANSAC
for point-cloud shape detection”. In: Computer graphics forum. Vol. 26. 2.
Wiley Online Library. 2007, pp. 214–226.

[128] Schunk LWA 4P. www.schunk.com. [Online; accessed 02-March-2021]. 2021.
[129] Shashank Sharma, Gerhard K. Kraetzschmar, Christian Scheurer, and

Rainer Bischoff. “Unified Closed Form Inverse Kinematics for the KUKA
youBot”. In: ROBOTIK 2012; 7th German Conference on Robotics. 2012,
pp. 1–6.

[130] Alexander Sherikov. Comparative benchmark of QP solvers. https://
github.com/asherikov/qpmad_benchmark. [Available online; accessed 04.
December 2023]. 2023.

[131] Alexander Sherikov. qpmad: Eigen-based C++ QP solver. https://www.
sherikov.net/qpmad. [Available online; accessed 01. November 2023].
2023.

[132] Bruno Siciliano, Oussama Khatib, and Torsten Kröger. Springer handbook
of robotics. Vol. 200. Springer, 2008.

[133] Sick microScan 3. https://www.sick.com/de/en/catalog/products/
safety/safety-laser-scanners/microscan3/c/g295657. [Online; ac-
cessed 06-February-2024]. 2024.

[134] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Intro-
duction to autonomous mobile robots. MIT press, 2011.

[135] Mike Stilman. “Task constrained motion planning in robot joint space”.
In: 2007 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2007, pp. 3074–3081.

182

https://doi.org/10.1109/IROS40897.2019.8968452
https://doi.org/10.1109/IROS40897.2019.8968452
www.schunk.com
https://github.com/asherikov/qpmad_benchmark
https://github.com/asherikov/qpmad_benchmark
https://www.sherikov.net/qpmad
https://www.sherikov.net/qpmad
https://www.sick.com/de/en/catalog/products/safety/safety-laser-scanners/microscan3/c/g295657
https://www.sick.com/de/en/catalog/products/safety/safety-laser-scanners/microscan3/c/g295657

[136] Kyle Strabala, Min Kyung Lee, Anca Dragan, Jodi Forlizzi, Siddhartha S.
Srinivasa, Maya Cakmak, and Vincenzo Micelli. “Toward seamless human-
robot handovers”. In: J. Hum.-Robot Interact. 2.1 (Feb. 2013), pp. 112–132.
doi: 10.5898/JHRI.2.1.Strabala. url: https://doi.org/10.5898/
JHRI.2.1.Strabala.

[139] Ioan A. ucan, Mark Moll, and Lydia E. Kavraki. “The Open Motion
Planning Library”. In: IEEE Robotics & Automation Magazine 19.4 (Dec.
2012). https://ompl.kavrakilab.org, pp. 72–82. doi: 10.1109/MRA.
2012.2205651.

[140] Jan Swevers, Walter Verdonck, and Joris De Schutter. “Dynamic model
identification for industrial robots”. In: IEEE control systems magazine
27.5 (2007), pp. 58–71.

[141] Claudio Urrea and José Pascal. “Design, simulation, comparison and eval-
uation of parameter identification methods for an industrial robot”. In:
Computers & Electrical Engineering 67 (2018), pp. 791–806. issn: 0045-7906.
doi: https://doi.org/10.1016/j.compeleceng.2016.09.004.

[142] José Varela-Aldás, Víctor Hugo Andaluz, and Fernando A. Chicaiza. “Mod-
elling and Control of a Mobile Manipulator for Trajectory Tracking”. In:
2018 International Conference on Information Systems and Computer Sci-
ence (INCISCOS). 2018, pp. 69–74. doi: 10.1109/INCISCOS.2018.00018.

[143] Jiangping Wang, Shirong Liu, Botao Zhang, and Changbin Yu. “Manip-
ulation planning with soft constraints by randomized exploration of the
composite configuration space”. In: International Journal of Control, Au-
tomation and Systems 19 (2021), pp. 1340–1351.

[144] Jiankun Wang, Max Q.-H. Meng, and Oussama Khatib. “EB-RRT: Optimal
Motion Planning for Mobile Robots”. In: IEEE Transactions on Automation
Science and Engineering 17.4 (2020), pp. 2063–2073. doi: 10.1109/TASE.
2020.2987397.

[145] Yuquan Wang and Lihui Wang. “Real-time collision-free multi-objective
robot motion generation”. In: Advanced Human-Robot Collaboration in
Manufacturing. Springer, 2021, pp. 115–139.

[146] Jiafeng Wu, Xianghua Ma, Tongrui Peng, and Haojie Wang. “An Improved
Timed Elastic Band (TEB) Algorithm of Autonomous Ground Vehicle
(AGV) in Complex Environment”. In: Sensors 21.24 (2021). issn: 1424-
8220. doi: 10.3390/s21248312. url: https://www.mdpi.com/1424-
8220/21/24/8312.

[147] Tian Xu, Jizhuang Fan, Yiwen Chen, Xianyao Ng, Marcelo H. Ang, Qian-
qian Fang, Yanhe Zhu, and Jie Zhao. “Dynamic Identification of the
KUKA LBR iiwa Robot With Retrieval of Physical Parameters Using
Global Optimization”. In: IEEE Access 8 (2020), pp. 108018–108031. doi:
10.1109/ACCESS.2020.3000997.

183

https://doi.org/10.5898/JHRI.2.1.Strabala
https://doi.org/10.5898/JHRI.2.1.Strabala
https://doi.org/10.5898/JHRI.2.1.Strabala
https://ompl.kavrakilab.org
https://doi.org/10.1109/MRA.2012.2205651
https://doi.org/10.1109/MRA.2012.2205651
https://doi.org/https://doi.org/10.1016/j.compeleceng.2016.09.004
https://doi.org/10.1109/INCISCOS.2018.00018
https://doi.org/10.1109/TASE.2020.2987397
https://doi.org/10.1109/TASE.2020.2987397
https://doi.org/10.3390/s21248312
https://www.mdpi.com/1424-8220/21/24/8312
https://www.mdpi.com/1424-8220/21/24/8312
https://doi.org/10.1109/ACCESS.2020.3000997

[148] Nural Yilmaz, Jie Ying Wu, Peter Kazanzides, and Ugur Tumerdem.
“Neural Network based Inverse Dynamics Identification and External Force
Estimation on the da Vinci Research Kit”. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). 2020, pp. 1387–1393. doi:
10.1109/ICRA40945.2020.9197445.

[149] Matt Zucker, James Kuffner, and Michael Branicky. “Multipartite RRTs for
rapid replanning in dynamic environments”. In: Proceedings 2007 IEEE In-
ternational Conference on Robotics and Automation. IEEE. 2007, pp. 1603–
1609.

[150] Joshua M. Zutell, David C. Conner, and Philipp Schillinger. Flexible
Behavior Trees: In search of the mythical HFSMBTH for Collaborative
Autonomy in Robotics. 2022. arXiv: 2203.05389 [cs.RO].

184

https://doi.org/10.1109/ICRA40945.2020.9197445
https://arxiv.org/abs/2203.05389

Own Publications

[54] Julian Hanke, Matthias Stueben, Christian Eymüller, Maximilian Enrico
Müller, Alexander Poeppel, and Wolfgang Reif. “CASP: Computer Aided
Specimen Placement for Robot-Based Component Testing”. In: Proceedings
of the 20th International Conference on Informatics in Control, Automa-
tion and Robotics, ICINCO 2023, Rome, Italy, November 13-15, 2023,
Volume 1. Ed. by Giuseppina Gini, Henk Nijmeijer, and Dimitar P. Filev.
SCITEPRESS, 2023, pp. 374–382. doi: 10.5220/0012155000003543. url:
https://doi.org/10.5220/0012155000003543.

[59] Alwin Hoffmann, Andreas Schierl, Andreas Angerer, Matthias Stueben,
Michael Vistein, and Wolfgang Reif. “Robot collision avoidance using an
environment model for capacitive sensors”. In: Planning, Control, and
Sensing for Safe Human-Robot Interaction, 2015 IEEE International Con-
ference on Robotics and Automation, Seattle, USA, May 26-30, 2015. 2015.
url: https://cs.stanford.edu/people/tkr/icra2015/index.html.

[137] Matthias Stueben, Alwin Hoffmann, and Wolfgang Reif. “Constraint-
based Whole-Body-Control of Mobile Manipulators in Human-Centered
Environments”. In: 2021 26th IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA). 2021, pp. 1–8. doi:
10.1109/ETFA45728.2021.9613281.

[138] Matthias Stueben, Alexander Poeppel, and Wolfgang Reif. “External
Torque Estimation for Mobile Manipulators: A Comparison of Model-
based and LSTM Methods”. In: 2022 Sixth IEEE International Conference
on Robotic Computing (IRC). 2022, pp. 95–102. doi: 10.1109/IRC55401.
2022.00026.

185

https://doi.org/10.5220/0012155000003543
https://doi.org/10.5220/0012155000003543
https://cs.stanford.edu/people/tkr/icra2015/index.html
https://doi.org/10.1109/ETFA45728.2021.9613281
https://doi.org/10.1109/IRC55401.2022.00026
https://doi.org/10.1109/IRC55401.2022.00026

186

List of Figures

2.1 Example of a behavior tree. 10

3.1 The real robot compared to its simulated model and the simplified
collision geometry. 21

4.1 Photo of the camera rack and the mounted cameras. 24
4.2 Example depth scan from the Basler ToF camera. 26
4.3 Example images from the 360-degree camera using equirectangular

and perspective projection. 28
4.4 Class Diagram of the Context model with the most important

elements. 29
4.5 The excitation trajectory for the arm joints. 35
4.6 Velocities of the base in the excitation trajectory. 36
4.7 Our LSTM network architecture. 38
4.8 The evaluation trajectory of the manipulator joints. 40
4.9 The evaluation trajectory of the base. 41
4.10 Validation of the estimated torques of the dynamic model and the

LSTM network on a 120 s test trajectory. 44
4.11 Estimated and reference external torques with an attached weight

of 3.25 kg. 45

5.1 Plot of a joint limit constraint for a single joint with limits at -1
and 1. 52

5.2 Overview of the concepts in our control architecture. 56
5.3 Class diagram of the implemented input types rules. 57
5.4 Class diagram of the implemented constraint rules. 58
5.5 Illustration of the Cartesian distance constraint rule. 60
5.6 Illustration of the aiming constraint rule. 61
5.7 Illustration of the field-of-view constraint rule. 62
5.8 Illustration of the self-collision avoidance constraint rule. 64
5.9 Illustration of the obstacle avoidance constraint rule. 67
5.10 Plot of the output of the Follow-Controller (equation (5.6)) with

L = 1.0 and various values for α. 69
5.11 Plots of the output of the Limit-controller (equation (5.8)) with

L = 1.0. Left side: c0 = 5.0, right side: c0 = 7.5. 70
5.12 Plots of the output of the Stopping-controller (equation (5.9)) with

L = 1.0. Left side: c0 = 5.0, right side: c0 = 7.5. 71
5.13 Plots of the output of the Hybrid-controller with L = 1.0. Left

side: x0 = 5.0, right side: x0 = 7.5. 72
5.14 Class diagram showing the fundamental structure of Tasks 74
5.15 Class diagram of an action. 75

187

5.16 Object diagram of an example action. 77
5.17 Object diagram of the safety tasks. 78
5.18 Behavior of the platform’s hardware controllers at small velocities. 83
5.19 Class diagram of the available solver types. 85
5.20 Object diagram of the action used in cartesian motion evaluation. . 86
5.21 Object diagram of the action used in the nullspace motion evaluation. 87
5.22 Example photos of the evaluation experiments. 88
5.23 Cartesian end-effector error without platform minimum velocities. 90
5.24 Cartesian end-effector error with platform minimum velocities. . . 91
5.25 Photograph of the evaluation scenario with a box obstacle. 92
5.26 Results of the evaluation with an obstacle. 93
5.27 Required calculations times of the qpmad-based solvers. 95
5.28 Required calculations times of the qpOASES-based solvers. 95

6.1 Constraint manifold of a two-dimensional robot for equality and
inequality constraints. 104

6.2 The pipeline of our planning method. 111
6.3 Visualization of the three configuration spaces used with multi-level

planning. 113
6.4 Visualization of the goal-finding process. 115
6.5 Visualization of the first evaluated planning scenario, Cartesian

Goal with Obstacle. 119
6.6 Visualization of the best and worst generated paths for the scenario

Cartesian Goal with Obstacle. 120
6.7 Average path cost and required planning time of the planners for

the scenario Cartesian Goal with Obstacle. 121
6.8 The Narrow Passage planning scenario. The collision geometry of

the gripper is highlighted in red. 122
6.9 Object diagram of the action used in the narrow passage evaluation

scenario. 123
6.10 Finding a constraint-satisfying initial configuration in the Narrow

Passage scenario. 123
6.11 Best path generated for the Narrow Passage scenario. 124
6.12 Worst path generated for the Narrow Passage scenario. 124
6.13 Average path cost and required planning time of the planners in

the Narrow Passage evaluation scenario. 125
6.14 Object diagram of the action used in the Making Room evaluation

scenario. 126
6.15 Some of the goal configurations determined for the Making Room

scenario. 127
6.16 Visualization of the best and worst generated paths for the Making

Room scenario. 128
6.17 Average path cost and required planning time of the planners in

the Making Room evaluation scenario. 129

188

7.1 State machine of the execution of an action in reactive mode. . . 135
7.2 State machine of a planned action. 136
7.3 State machine of a planned action. 138

8.1 Overview of the ROS2 interfaces. 140

9.1 Graphical elements in FlexBE . 148
9.2 State machine of the object handover behavior, as it appears in

FlexBE. 150
9.3 State machine of the behavior to pick up the flashlight, as it appears

in FlexBE. 151
9.4 Photographs of the experiments. 152
9.5 State machine of the case study B, as it appears in FlexBE. 152
9.6 Overview of the path tasks in the action follow_and_light. . . . 153
9.7 Overview of the goal tasks in the action follow_and_light. 154
9.8 Overview of the cost tasks in the action follow_and_light. 155
9.9 Object diagram of the configuration used during the flashlight

pickup. Safety tasks are excluded. 155
9.10 Accuracy plot of the linear motion downwards toward the flashlight.156
9.11 Recorded data of gripper velocity and distance to the person’s hand158
9.12 Object diagram of the action gripper_to_hand 159
9.13 Handover scenario with obstacles completely blocking the robot

from the person. 160
9.14 Handover scenario with additional obstacles. 161
9.15 Example of an uncooperative person during the handover: Reaching

past the gripper. 162
9.16 Plot of recorded gripper velocity and its distance to the human hand.163
9.17 Robot shining its flashlight at a person’s feet. 164
9.18 Plots of the recorded data during following and lighting. 165
9.19 Plots of commanded velocity and constraint costs. 166

189

190

List of Tables

4.1 Denavit-Hartenberg parameters of our robot model 32
4.2 Mean squared error of the momentum observer estimations. 40
4.3 Mean squared error of the LSTM estimations. 41
4.4 Base parameters and their identified values 43

5.1 Average and maximum calculation times for a full control cycle and
for solving the QP problem using the different solvers. 94

6.1 Planner results for the scenario Cartesian Goal with Obstacle . . . 119
6.2 Planner results for the scenario Narrow Passage. 125
6.3 Planner results for the scenario Making Room. 128

List of Listings

8.1 Example specification of an action in a YAML configuration file. . 142
8.2 Example specification of a task in a YAML configuration file. . . . 143
8.3 Specification of the base_link input in the input configuration file

in YAML format. 143
8.4 Specification of the genericFollowController in the controller

configuration file in YAML format. 144

List of Algorithms

6.1 Basic procedure of tree-based planning. 100
6.2 Algorithm for the calculation of goal configurations. 114
6.3 Algorithm for the calculation of a valid initial configuration. 116

191

	Contents
	Overview and Motivation
	Motivation and Goals
	Main Contributions and Thesis Outline

	Preliminaries
	Basic Concepts of Robotics
	Representations in Cartesian Space
	Kinematic Modeling of Robots
	Mobile and Redundant Robots
	Redundancy

	Safety Aspects in Human-Robot Interaction
	Behavior Modeling
	Behavior Trees
	State Machines
	Terminology Overview

	Description of the Case Studies and the Robot Platform
	The Case Studies
	Case Study A: Object Handover
	Case Study B: Following and Lighting

	Description of the Robot Platform
	Actuators
	Sensors
	Computing Hardware

	Simulation

	Perception and World Modeling
	Image Processing
	3D Obstacle Map
	Monitoring of the Surroundings
	People Detection and Pose Estimation

	Environment Model and Robot Model
	External Torque Estimation from Motor Torques
	Related Work
	Model-based methods
	Learning-based methods
	Model-based Torque Estimation
	External Torque Estimation with LSTM Networks
	Validation
	Evaluation

	Constraint-based Robot Control
	Related Work
	Definition of Constraints
	Handling Dependencies on the Environment: Constraint Rules and Tasks
	Inputs to Constraint Rules
	Types of Constraint Rules

	From Constraints to Velocity Bounds: Constraint Controllers
	The Follow-Controller
	The Limit-Controller
	The Stopping-Controller
	The Hybrid-Controller

	Tasks and Actions
	Specification of Tasks
	Definition of Actions

	Finding an Optimal Control Signal
	Formulation of a Quadratic Optimization Problem

	Evaluation
	Linear Motions to Cartesian Targets
	Null-space Motion
	Reaction to Obstacles
	Real-time Requirements

	Robotic Path Planning with Constraints
	Related Work
	Basics of Path Planning
	Multi-level Planning
	Planning with Constraints
	Planning in Dynamic Environments

	Planning Pipeline
	Handling Path Constraints
	Path constraints in multi-level planning

	Finding Goals from Constraints
	Initial configuration
	Planning with Soft Constraints
	Evaluation and Results
	Cartesian Goal with Obstacle
	Narrow Passage
	Making room
	Conclusions

	Connecting Planning and Reactive Control
	Execution of Plans in Dynamic Environments
	State of the Art
	Execution of plans in reactive control

	Execution Modes
	Reactive Action Execution
	Planned Action Execution
	Autoplanning Action Execution
	Evaluation

	Combining Actions to Behaviors

	Implementation and Software Architecture
	Integration into the ROS2 environment
	Defining actions
	Defining Behaviors

	Extending the Framework
	Adding new Types of Rules, Controllers, Inputs, Solvers
	Integration of a new robot

	Realization and Evaluation of the Case Studies
	Realization
	Description of the graphical notation of FlexBE
	Case Study A: Object Handover
	Case Study B: Following and Lighting

	Evaluation
	Case Study A: Object Handover
	Case Study B: Following and Lighting

	Conclusion and Outlook
	Summary of Research Contributions and Evaluation Results
	Open Research Challenges and Future Directions

	Bibliography
	Own Publications
	List of Figures
	List of Tables
	Listings
	List of Algorithms

