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Precise in situ radius measurement of individual optically trapped microspheres
using negative optical torque exerted by focused vortex beams
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We demonstrate a method for determining the radius of micron-sized particles trapped by a vortex laser beam.
The technique is based on measuring the rotation experienced by the center of mass of a microsphere that is
laterally displaced by a Stokes drag force to an off-axis equilibrium position. The rotation results from an optical
torque pointing along the direction opposite to the vortex beam angular momentum. We fit the rotation angle data
for different Laguerre-Gaussian modes taking the radius as a fitting parameter in the Mie-Debye theory of optical
tweezers. We also demonstrate how the setup described here can be employed to characterize the astigmatism
and spherical aberration introduced by the experimental setup, while at the same time determining the height of
a microsphere with respect to the bottom of the solution within which it is contained.
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I. INTRODUCTION

Negative optical torque is a remarkable example of a non-
trivial exchange of angular momentum between light and
matter. It arises from the generation of scattered light carrying
an excess angular momentum, thus leading to a recoil torque
along the direction opposite to the angular momentum of
the incident light. Recent proposals [1,2] and experimental
demonstrations [3–9] cover a wide spectrum of systems.

Negative torque experiments usually employ the spin an-
gular momentum associated with circular polarization. In this
paper, we use instead the orbital angular momentum of vortex
beams which are used to trap a dielectric microsphere in our
otherwise typical optical tweezers setup, shown in Fig. 1. Our
experimental conditions are such that the laser beam annular
focal spot is comparable to or smaller than the microsphere
radius, thus leading to a stable trap on the beam axis, in
contrast to the nonequilibrium steady state of orbital motion
measured with smaller beads [10,11]. We then apply a lateral
Stokes force and displace the microsphere to a new off-axis
equilibrium position, as illustrated by Fig. 1(a). The optical
torque on the microsphere center-of-mass leads to a rotation
of the equilibrium position with respect to the direction of
the applied force, which we measure for several values of the
vortex beam topological charge �. In most cases, the rotation
is opposite to the handedness defined by the sign of �.
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For small values of the Stokes force, the rotation angle is a
measure of the vorticity of the optical force field near the beam
axis. The vorticity is very sensitive to parameters describing
the trapped microsphere as well as the focused laser beam. For
instance, the chirality of a spherical bead can, in principle, be
characterized by measuring the rotation angle [12,13]. Here,
we determine the microsphere radius with nanometric preci-
sion as we benefit from the enhanced negative torque exerted
by vortex beams. Indeed, these modes carry an orbital angular
momentum �h̄ per photon that originates from the field’s
spatial variation [14], while the spin angular momentum is
limited to ±h̄ per photon.

The radius of an airborne optically trapped microsphere
near a surface was measured by analyzing its Brownian fluc-
tuations [15]. Precise measurements of airborne microspheres
are usually based on Mie resonances, taking advantage of
the high quality factor of whispering gallery modes [16,17].
However, colloidal particles in a water suspension typically
correspond to low refractive index contrasts, thus leading
to broader resonances. Dynamic light scattering is a com-
mon approach for such systems [18]. Nevertheless, since
it relies on measuring intensity fluctuations of light scat-
tered by a sample containing many Brownian particles, this
technique does not measure the radius of single individual
particles.

Recently, the radius of a Rayleigh particle was deter-
mined by measuring the ratio between forward and backward
scattering amplitudes [19]. However, applications of optical
tweezers typically require larger particles [20], outside the
range of validity of the Rayleigh approximation. The radius
of an individual microsphere can be inferred by comparing
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FIG. 1. (a) A trapped particle is subject to a constant drag force
FS and finds a new off-axis equilibrium position rotated with respect
to the direction of this force by an angle α. Fρ and Fφ denote
cylindrical optical force components, and vS represents the fluid
velocity. (b) Lateral view of the sample region showing the density
plot (red) of the electric energy density for the nonparaxial focused
beam. L denotes the height of the paraxial focal plane with respect to
the coverslip. PI represents the piezoelectric nanopositioning system
used to move the microscope stage. (c) Schematic representation of
the experimental setup: The laser beam propagates through a polar-
izing beam splitter (PBS) towards the spatial light modulator (SLM).
The resulting first order of diffraction crosses a quarter-wave plate
(QWP) before entering the microscope (dotted frame). The beam is
then focused by an oil-immersion objective into the sample chamber.

its optical image pattern (hologram) with theoretical models
based on Mie scattering [21–23]. Such a method is usually
slow as it relies on the acquisition and analysis of many gray-
level maps representing the detailed microsphere holograms,
although the throughput is considerably optimized when using
machine learning algorithms [24].

In contrast, our method relies entirely on the measure-
ment of the microsphere position and is, in principle, less
demanding in terms of data acquisition and analysis. Although
the experimental implementation reported here also relies on
video microscopy as a tool for probing the position, our
approach is fully compatible with standard position measure-
ment techniques based on the detection of the scattered light
by quadrant photodiodes [25], which would allow for a much
higher throughput.

In addition to measuring properties of the trapped particle,
our method also allows us to characterize its height with
respect to the bottom of the sample, as well as the astigmatism
parameters of the beam before focusing. This is possible be-
cause such parameters directly affect the optical trapping force
and can be taken into account in the context of the Mie-Debye
theory for optical tweezers. The particle’s height with respect
to the bottom of the sample is closely related to the amount of
spherical aberration added to the beam due to the refraction
of the focusing beam at an interface between two different
media. As for astigmatism, the fact that it defines a prefer-
ential direction, thus breaking the azimuthal symmetry of the
focused beam’s intensity profile, implies that the gradient of
the electric energy density is not radial. Consequently, the op-
tical force develops a conservative azimuthal component that
is not related to any angular momentum exchange between the
beam and the particle, but it also contributes to the rotation of
the equilibrium position. It should be noted, though, that since
the effects of optical aberrations become less relevant as one
approaches the geometrical optics regime, the determination
of their parameters can only be done reliably if the trapped
particle is well within the Mie scattering regime, i.e., if its
size is close to the wavelength of the trapping beam.

The paper is organized as follows: Section II presents the
experimental setup and procedure, as well as how the rotation
angle is extracted from the raw data. Section III presents the
theoretical model developed to describe the experiments. The
results are discussed in Sec. IV, and concluding remarks are
presented in Sec. V. Technical details are presented in two
Appendixes.

II. EXPERIMENTAL SETUP AND PROCEDURE

Our method for radius measurements goes as follows. We
apply a constant Stokes drag force FS on a sphere trapped
by optical tweezers with a given Laguerre-Gaussian mode
LGp�, with radial order p = 0 and topological charge �, at
the objective entrance port. The particle is displaced until it
finds an off-axis equilibrium position rotated by an angle α

with respect to the direction of the drag force, as depicted
in Figs. 1(a) and 1(b). Then, we vary the topological charge,
measuring rotation angles as a discrete function of �. Finally,
we fit these data to the theoretical model presented in the next
section, leaving the radius as a free parameter and, in some
cases, also the astigmatism parameters and the paraxial focal
height.

The experimental setup for the measurements of α is
illustrated in Fig. 1(c). A TEM00 laser beam (IPG photon-
ics, model YLR-5-1064LP) with vacuum wavelength λ0 =
1064 nm illuminates a spatial light modulator (SLM). This
device enables the modulation of both the field’s amplitude
and phase [26], which allows us to convert the incident beam
into chosen LG0� modes with appropriate waist w0 via a
complex phase modulation. Notice that we choose a different
beam waist for each mode to ensure an appropriate filling at
the objective’s entrance. The criteria for choosing the waists
and the method to measure them are described in Appendix A,
while the waist values are given in Table VI. Before entering
an inverted microscope, the beam is left-handed circularly
polarized by a quarter-wave plate. It is then focused by a 100×
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oil-immersion objective with numerical aperture NA = 1.4
and back aperture radius Robj = 2.8 mm through the glass-
water interface into an aqueous dispersion of polystyrene
beads (Polysciences), where the optical trapping occurs [see
Fig. 1(b)]. This solution is illuminated by a 470 nm blue LED
whose scattered light, after being collected by the objective, is
recollimated by a tube lens (Lt ) to form an image on a CMOS
camera (Hamamatsu Orca-Flash 2.8 C11440-10C).

To choose the height of the focal plane with respect to
the coverslip in a controlled way, we first trap a microsphere
with a Gaussian beam (� = 0). Then, we lower the objective
until the microsphere touches the bottom of the sample cham-
ber. As a final step, we move up the objective by a height
of d = (2 ± 1) µm so as to define a new trapping position
a few microns above the coverslip. Once the height of the
focal plane is defined by the above procedure, we replace the
Gaussian beam by a LG0� mode. We take several values for
the topological charge � keeping the same focal height in all
cases.

To apply a constant drag force, we use a piezoelectric
nanopositioning stage (Digital Piezo Controller E-710, Physik
Instrumente) to move the microscope stage with the velocity
vS = ±vS x̂, vS = 20 µm/s for 0.5 s, alternating between the
positive and negative x directions. At each cycle, the Stokes
drag force displaces the particle from its on-axis equilibrium
position. In a given run, the bead’s movement is recorded for
10 s. The center-of-mass position on the xy plane at each
frame is later determined by video analysis with Fiji [27], as
depicted by way of example for the x coordinate in the upper
panel of Fig. 2.

While displaced off-axis by the Stokes drag force, the
microsphere’s center of mass is rotated by an angle whose
magnitude is generally smaller than 10◦ with respect to the
Stokes force direction along the x-axis. Thus, if the camera’s
horizontal axis is parallel to the Stokes force, the displace-
ments along the x direction will be much larger than those
along the y direction, giving the former a larger relative pre-
cision at the latter’s expense. To circumvent this problem, we
rotate the camera by an angle of roughly 45◦, ensuring that the
displacements along the x and y directions are roughly of the
same magnitude.

The central panel in Fig. 2 depicts all particle positions
obtained from the measured x coordinates shown in the upper
panel as well as from the corresponding y coordinates (not
shown) for a typical run. All recorded positions are catego-
rized into three separate clusters by means of a Scikit-learn
routine [28] and marked as blue, green, and orange points in
Fig. 2. In this way, the orange points that lie in between the
two main clusters are identified and no longer considered for
the analysis.

To ensure that the off-axis equilibrium positions are well
defined, care should be taken when choosing speed and power
values. These quantities indirectly affect the rotation angle,
as they determine the radial coordinate at which the optical
and drag forces cancel each other. If the speed is too low, or
the power too high, the positions associated with positive and
negative velocities might become so close that their coordi-
nates become impossible to classify into separate clusters. On
the other hand, if the speed is too high or the power too low,
the particle might escape the trap. Here, we use a speed of

FIG. 2. The x and y coordinates of the bead are measured over a
time of T = 10 s. The upper panel shows a distribution of the mea-
sured x coordinates for a typical experimental run. Green and blue
clusters correspond to opposite velocities of the microscope stage.
The central panel shows the measured positions on the xy plane.
The histograms for the x and y coordinates are fitted by Gaussian
functions in order to determine the equilibrium positions under the
Stokes force (red points). The rotation angle α is then obtained from
the slope of the red line connecting the two equilibrium positions.

20 µm/s and a power of about P = 60 mW at the objective
entrance port. Our data empirically show that such a choice
of speed and power input provides stability and well-defined
equilibrium positions at every topological charge used in the
experiments presented here.

The marginal distributions for the x and y directions can be
fairly well described by Gaussian distributions so that we fit
the two main clusters to two-dimensional Gaussians in order
to determine the coordinates of the two equilibrium positions.
We then obtain the angle depicted in Fig. 2 between the line
connecting the two equilibrium positions and the x direction.
Its error is computed by propagating the error of the coor-
dinates. Finally, to determine the rotation angle α depicted
in Fig. 1(a), we subtract the camera offset angle, which is
determined by recording the position of a fixed reference spot
in the coverslip as the microscope stage is driven.
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Apart from the rotation angle, we also extract the radial
displacement ρeq of the sphere from the focal point. By as-
suming that the movement of the bead is symmetric, we can
compute the displacement from the distance between the two
equilibrium positions.

For each beam mode �, the measurement was repeated
several times.

III. MDSA+ THEORY OF THE OPTICAL FORCE BY A
FOCUSED VORTEX BEAM

The optical force acting on an illuminated particle is gen-
erally computed by integrating the time-averaged Maxwell
stress tensor over a surface that encloses the particle. The
stress tensor includes the incident and scattered field con-
tributions. Within the Mie-Debye theory [29,30], the former
is described by a Debye-type nonparaxial model [31] for a
tightly focused beam, while the latter follows from standard
Mie scattering by a spherical particle. An extension to include
the spherical aberration introduced by focusing through the
glass-water planar interface led to the MDSA (Mie-Debye
with spherical aberration) theory [32,33]. In [34], the model
was further extended (MDSA+ theory) to allow for the pres-
ence of any primary aberration on the paraxial Gaussian beam
before focusing.

To mimic the experimental setup discussed in Sec. II, here
we consider that the laser beam at the objective entrance port
is a Laguerre-Gaussian mode LG0�. Expressions for the apla-
natic focusing of a Laguerre-Gaussian beam were developed
in [35]. Building on these earlier results, we find the following
angular spectrum decomposition for the electric field in an
aqueous solution obtained from focusing a circularly polar-
ized LG0� beam at the objective entrance port:

E(σ,�)(r) = − ik f E0e−ik f

2π
(
√

2γ )|�|
∫ 2π

0
dϕ ei�ϕ

×
∫ θm

0
dθ sin θ

√
cos θ sin|�|(θ )e−γ 2 sin2 θ

× T (θ )ei(�g-w+�ast )eikw·rε̂σ (θw, ϕw) . (1)

The spherical components (k, θ, ϕ) describe the wave vectors
in the glass slide. The parameter γ = f /w0 defines the ratio
of the objective focal length f and the beam waist w0 at the
objective entrance port. The polar angle θw in the host medium
is defined through Snell’s law: sin θw = sin θ/Ns, where Ns =
nw/ns is the relative refractive index between the fluid and
the glass slide. The integration is performed up to a maxi-
mum angle θm given by sin θm = min(Ns, sin θ0) with sin θ0 =
NA/nw, where NA denotes the numerical aperture of the ob-
jective. The wave vector kw in the sample is characterized by
its modulus kw = Nsk and the spherical angles (θw, ϕw) where
ϕw = ϕ. The unit vector ε̂σ (θw, ϕw) = eiσϕw (θ̂w + iσ ϕ̂w)/

√
2

accounts for a right- (σ = −1) or left-handed (σ = 1) cir-
cularly polarized Fourier component along the propagation
direction (θw, ϕw). It is obtained by rotating the unit vector
(x̂ + iσ ŷ)/

√
2 at the entrance of the objective by the Euler

angles (ϕw, θw,−ϕw).
The astigmatism (ast) introduced by the optical elements

of the experimental setup is accounted for by the Zernike

phase [36,37]

�ast = 2πAast

(
sin θ

sin θ0

)2

cos [2(ϕ − φast)] (2)

given in terms of the amplitude Aast and of the angle φast

defining the astigmatism axis and thus breaking rotational
symmetry.

We also take into account the spherical aberration intro-
duced by refraction at the interface between the coverslip and
the aqueous suspension. Neglecting the dependence of the
Fresnel refraction coefficients on the polarization, the trans-
mission amplitude is [32]

T (θ ) = 2 cos θ

cos θ + Ns cos θw
(3)

whereas the spherical aberration phase reads [38]

�g-w = kL

(
Ns cos θw − cos θ

Ns

)
, (4)

where L is the distance between the glass-water (g-w) inter-
face and the paraxial focus as illustrated in Fig. 1(b).

The incident field (1) is inserted into the Maxwell stress
tensor together with the scattered field, which is obtained by
solving the scattering problem using Mie theory for spheri-
cal particles combined with the appropriate Wigner rotation
matrix elements. The integration over the stress tensor can be
worked out analytically. Explicit expressions for the cylindri-
cal force components (Fρ, Fφ, Fz) as functions of the position
of the sphere center R(ρ, φ, z) with respect to the focus can
be found in Appendix B.

IV. RESULTS AND DISCUSSION

A. Numerical analysis

The sphere radius R as well as the parameters for the opti-
cal aberrations can be obtained by fitting the experimental data
with the rotation angles obtained from the MDSA+ theory.
Two optical aberrations are considered in our model. The first
one is the spherical aberration produced at the glass-water
interface, which is characterized by the phase (4) proportional
to the distance L of the paraxial focus from the coverslip.
The second is astigmatism, defined by (2) in terms of the
amplitude Aast and the angle of the principal meridian φast.
The distance L can, in principle, be determined by emulating
the experimental procedure described in Sec. II [32]. Con-
sidering a Gaussian mode at the entrance of the objective,
we first compute the initial focal height L0 for which the
on-axis equilibrium position is such that the sphere is touching
the coverslip. The equilibrium position is obtained from the
requirement of a vanishing axial force component

F (�=0)
z (ρ = 0, φ = 0, z = R − L0, L = L0) = 0 . (5)

Afterwards, the focal plane is displaced upwards by d leading
to the final height L = L0 + Nsd . The rotation angle for each
mode � can then be found by solving the following system of
equations for the equilibrium position Req = Req(ρeq, α, zeq)
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under the applied Stokes drag force:

F (�)
z (Req) = 0,

arctan

(
F (�)

φ (Req)

F (�)
ρ (Req)

)
= α

(6)

with the force expressions given in Appendix B. The rotation
angle α corresponds to the azimuth angle φ of the bead at its
equilibrium position. The radial component ρeq is extracted
from the experimental data as described in the previous sec-
tion. We found that the rotation angle depends only weakly on
ρeq, meaning that the changes in the rotation angle with the
radial distance are negligible compared to the experimental
error. For each LG0� mode, we thus average ρeq over all
measurement runs for a given bead, and we use the resulting
average value as input for the radial equilibrium coordinate.

Note that without astigmatism (Aast = 0), the force com-
ponents do not explicitly depend on the azimuthal angle φ.
Hence, the set of equations (6) no longer needs to be solved
simultaneously. Instead, after determining the axial equilib-
rium position, we can directly calculate the rotation angle.
The computation time using only the MDSA theory is thus
significantly reduced compared to the full calculation within
the MDSA+ theory.

The fitting is done by minimizing a weighted sum of
squared errors between the theoretical and experimental re-
sults for the rotation angle

χ2 = 1

N

∑
�

1

M�

∑
r

(
α(�) − αexp(�, r)

�αexp(�, r)

)2

, (7)

where αexp(�, r) ± �αexp(�, r) is the experimentally obtained
rotation angle and its error for the beam mode � and run r, N is
the number of modes used for fitting, and M� is the number of
measurement runs performed for each beam mode. As a rule,
we aimed for five runs per mode. However, M� varies in each
case due to three reasons. In a few cases, the bead was lost
before all five runs were completed. In addition, we excluded
the few runs in which we observed an individual cluster to
drift by an amount larger than twice the standard deviation
of position averaged over all clusters of the considered run.
We have also performed an experiment with M� = 10 for
every mode employed to test whether the final results would
become more precise. No gain in precision was observed in
comparison to experiments performed with smaller values
of M�.

The force calculation was implemented in Python using
the scientific libraries NumPy [39] and SciPy [40]. For the
minimization of χ2 we used the IMINUIT package [41].

Relevant parameters for the simulations not yet mentioned
include the refractive index of the immersion oil ns = 1.518
and the refractive index of the polystyrene beads n = 1.5694,
which we obtained by linearly interpolating the data given in
[42] to our wavelength of λ0 = 1064 nm. The laser power at
the objective entrance port is too low to heat the sample, so we
assume it to be in thermal equilibrium with its environment
and use the refractive index for water nw = 1.3246 at T =
19 ◦C in our calculations. For comparison, we also performed

FIG. 3. Microsphere rotation angle α vs beam mode � for beads
A and B. The circles depict the experimental results, and the squares
and triangles are the result of fitting with MDSA and MDSA+ theo-
ries, respectively, with the latter including the effect of astigmatism.
In all plots, we have added lines connecting the data points as a guide
to the eye.

the calculation for T = 24 ◦C with nw = 1.3242 and found no
significant change in the fitted parameters. These refractive
indices for λ0 were obtained from a linear interpolation of the
data given in [43].

B. Beads of nominal radius 1.5 µm

We begin by discussing the results for two beads whose
nominal radius is (1.50 ± 0.04) µm. In the following, we refer
to them as beads A and B. Figure 3 shows the experimental
results for the rotation angles of each bead for beam modes
ranging from � = −4 to 4. The error bars are the standard
deviations of α computed from the multiple runs of measure-
ment. The total number of runs per mode for bead A ranges
from three to four, while for bead B a total of five runs was
performed for every value of �. As expected, the rotation
angles are not symmetric with respect to the � = 0 case due
to the additional spin angular momentum associated with the
left-handed circular polarization.

For each sphere we performed a fit, where we excluded the
� = 4 case for which we found no reasonable value for α. We
believe that the reason for this is that � = 4 is close to the

TABLE I. Optimal radii for beads of nominal radius (1.50 ±
0.04) µm from a fit within the MDSA theory (zero astigmatism).

Bead R (µm) χ 2

A 1.500 ± 0.004 21.7
B 1.494 ± 0.003 26.4
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TABLE II. Fit parameters for beads of nominal radius (1.50 ±
0.04) µm.

Bead R (µm) L (µm) Aast φast (rad) χ 2

A 1.503 ± 0.007 5.8 ± 0.6 0.245 ± 0.026 0.37 ± 0.14 2.2
B 1.492 ± 0.005 4.7 ± 0.6 0.262 ± 0.024 0.44 ± 0.12 2.3

bistable trapping regime demonstrated in Ref. [11]. Although
the bead does have stability around the axis, it also probes a
region of positive torque near the annular focal spot, due to
its thermal fluctuations. This causes the experimental value of
α to be much less negative than the value of about −15.7◦
predicted by theory.

First, we fitted the experimental curve by just using the
MDSA theory with L determined as described above. The
fitted radii can be found in Table I, and α as a function of �

is depicted in Fig. 3. Overall, the fitted data points show good
qualitative agreement with the experimental result, except for
� = 0. In this case, theory predicts a negative rotation angle,
while the experimentally observed one is positive. We will
discuss the reason for this discrepancy below.

Next, we used the MDSA+ theory for fitting with Aast, φast,
and L as additional parameters. The parameters obtained from
the fit can be found in Table II. The fitted data points depicted
in Fig. 3 show almost perfect agreement with the experimental
results. Notice that there is no evidence of overfitting, since
χ2 > 1 in both cases. Furthermore, in spite of the large num-
ber of parameters, the two independent fits for beads A and B
found astigmatism parameters Aast and φast that agree within
error bars. This is to be expected since the astigmatism is a
characteristic of the experimental setup, thus remaining the
same for measurements with both beads. On the other hand,
the difference of about 1 µm between the values of L for the
two beads is still consistent with the large error of adjusting
the height of the objective as mentioned in Sec. II. Following
this reasoning, we also performed a joint fit for beads A and
B with shared parameters for the astigmatism. The results can
be found in Table III.

As for the fitted radii, notice that they are close to the ones
found by fitting the data to the MDSA theory. This shows
that if one wishes solely to characterize a bead’s radius, the
method can be performed with this simpler version of the
theory, drastically reducing the necessary computation time.
Furthermore, we have performed the MDSA-fit for each in-
dividual round and found values for the radius compatible
with the ones in Table I, suggesting that the method could be
greatly simplified.

The parameters in Table III can be used to calculate the
height of a bead on the optical axis with respect to the bottom
sample through the equation

h = zeq(ρ = 0, Aast, φast, L) + L. (8)

TABLE IV. Height of bead A with respect to the bottom of the
sample for each LG0� mode used for fitting.

� hA (µm)

−4 4.6 ± 0.7
−3 4.7 ± 0.7
−2 4.8 ± 0.8
−1 5.0 ± 0.8

0 5.2 ± 0.8
1 5.0 ± 0.8
2 4.9 ± 0.8
3 4.7 ± 0.7
4 4.6 ± 0.7

To determine h with its error, we evaluate Eq. (8) for 250
points normally distributed around the fitted value of L with
a standard deviation equal to that found in the fitting. This
results in a distribution for h, from which we take the average
and standard deviation. For a bead on the optical axis, the
astigmatism parameters affect zeq much less than L, so that
the error of h is essentially determined by its dependence
on L. In Table IV, we present values of the height hA of
bead A calculated in this manner for every mode used in the
experiment. Notice that the standard deviations are very close
to that of LA.

It should be noted that only the presence of higher-
order modes allows the distinction between spheres A and
B. The measured rotation angles for a Gaussian mode
are αA(� = 0) = (0.7 ± 0.2)◦ and αB(� = 0) = (1.1 ± 0.4)◦,
respectively, for beads A and B. They are practically indis-
tinguishable within error bars. However, if we now look at
the case � = 2, the corresponding results are αA(� = 2) =
(−6.3 ± 0.1)◦ and αB(� = 2) = (−7.3 ± 0.1)◦. Note that in
that case not only are the values farther apart, but they are
distinguishable beyond error bars.

Finally, we emphasize that for all modes except � = 0,
the angular momentum gained by the particle is opposite to
that carried by the paraxial beam. Such an exception hap-
pens because the angular momentum of h̄ per photon at
this mode was not large enough to overcome the symmetry-
breaking effect of astigmatism. This is corroborated by � =
−1, where the total angular momentum per photon is zero,
and the torque, caused exclusively by the spot-asymmetry,
is positive. Also, as we have highlighted earlier, when the
fitting is performed without astigmatism, the theory predicts
a negative angle. We thus demonstrate that the type of near-
focus interactions reported in [6], in which the scattered
field carries an angular momentum excess in comparison
to the incident one while exerting a negative torque upon
the sphere, can also happen in optical tweezers with vortex
beams.

TABLE III. Parameters from the joint fit for two beads with nominal radius (1.50 ± 0.04) µm using shared values for the astigmatism.

RA (µm) RB (µm) LA (µm) LB (µm) Aast φast (rad) χ 2
A,B

1.502 ± 0.010 1.492 ± 0.007 5.56 ± 0.83 4.85 ± 0.78 0.254 ± 0.026 0.41 ± 0.14 2.4, 2.4
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FIG. 4. Rotation angles for beads C and D as functions of the
beam mode �. The circles depict the experimental results. The fitted
data from the MDSA theory are shown in blue. The values at � = ±7
were excluded from the fit. The green data points were calculated for
the nominal radius RN. As in Fig. 3, the lines connecting the data
points serve as a visual aid.

C. Beads of nominal radius 2.26 µm

We now discuss the results for two beads whose radii have
a nominal value of RN = (2.260 ± 0.075) µm and are referred
to as beads C and D in the following. Due to their larger
size, these beads were stably trapped on the optical axis for
a broader range of topological charges [11] when compared
to the smaller beads discussed above. The experiments were
performed with � ranging from −7 to 7 yielding the data
shown in Fig. 4. The total number of runs per mode for bead C
was 10 for every value of �. As for bead D, this number ranges
from 1 to 4. Such variation is due to the exclusion of data in
which a drift was observed, according to the criteria explained
in Sec. IV A below Eq. (7).

Beads in the geometrical optics regime R � λ are less
sensitive to optical aberrations because the asymmetries in the
field distribution are averaged out over the sphere. We thus
neglect the astigmatism and use fixed values for the distance L
as determined from the known displacement d of the objective
when fitting the experimental data. The experimental data for
� ranging from −6 to 6 were fitted. In the cases � = ±7, we
could not find equilibrium positions for all radii in the fitting
interval ranging from 2.11 to 2.41 µm. We believe that the
explanation lies again in the size of the annular focal spot,
which is too large to allow for stable trapping on the beam
axis for the highest values of |�|. The radii obtained from
the fit are given in Table V, and the fitted data for α are
depicted in Fig. 4. For comparison, we also performed the fit
using the MDSA+ theory with the astigmatism parameters
obtained from the joint fit of beads A and B. The resulting
radii lie within the error bars of the radii obtained within the
MDSA theory, and the quality of the fit shows no significant

TABLE V. Optimal radii for beads of nominal radius (2.260 ±
0.075) µm.

Bead R (µm) χ 2

C 2.339 ± 0.003 40.1
D 2.331 ± 0.003 67.7

improvement. Due to the high relative error of measuring the
displacement d , we also performed the fit with d = 3 µm,
which again leads to the same optimal radii. Our findings thus
confirm that both astigmatism and spherical aberration are less
critical for larger spheres, which implies that here the fitting
process is even more robust than for smaller spheres.

The sensitivity of our method with respect to changes in the
radii can be inferred from Fig. 4, where the rotation angles are
also depicted for the nominal radius RN. The agreement with
the experimental data becomes much worse in this case, and
the qualitative aspects of the curve change, with even an op-
posite sign for the rotation angles for modes with topological
charges in the range −3 � � � 2.

Figure 5 displays χ2 as a function of the sphere radius for
bead A (upper panel) and beads C and D (lower panel). Notice
that the curves for beads C and D not only exhibit a minimum
at the optimal fit, but they also possess local minima at other
values of the radius. The height of the dashed and dotted line
serves as a reference for comparison with χ2 for the optimal
fit. The gray area indicates the error interval around the nom-
inal radius. The observed pseudo-oscillations originate in the
semiclassical scattering limit from the interference between
direct reflection and radial round-trip propagation inside the

FIG. 5. In the bottom panel, χ 2 as a function of the radius R
for beads C (circles) and D (squares) is shown within the MDSA
theory. The gray area depicts the error interval for the nominal radius
(2.260 ± 0.075) µm provided by the bead manufacturer. The dotted
(dashed) line shows the value of χ 2 for bead C (D) found from the fit
and given in Table V. The top panel shows, for comparison, χ 2 for
bead A. The gray area represents the error interval (1.50 ± 0.04) µm.
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sphere over a distance 4R [29], and their period is given by
λ0/4n ≈ 0.169 µm. The distance between the first two and the
last two minima is found for bead C as 0.170 and 0.171 µm,
respectively, and for bead D as 0.164 and 0.172 µm, respec-
tively. These values are close to the theoretically expected
period considering the error bars of the fitted radii.

The ambiguity arising from multiple minima does not have
an impact on the results for bead A, as indicated in the upper
panel of Fig. 5. Since its radius is closer to the wavelength of
the trapping light, the interference effect described above is
not as pronounced as in the case of the larger spheres C and
D. Consequently, their fitted radii values correspond to more
clearly defined global minima.

As for beads C and D, the radii given in Table V correspond
to the global minima of χ2 and they lie closer to the nominal
value than radii associated with additional local minima of
χ2. The minima displayed in the lower panel of Fig. 5 at radii
beyond 2.5 µm have values of χ2 comparable to the global
minima as can be seen by means of the horizontal lines. How-
ever, these radii differ from the nominal value by more than
3σ and therefore should be excluded. Even though the local
minima of χ2 at a radius around 2.17 µm clearly lie above
the respective global minimum, we need to assess whether the
difference between the two values of χ2 is significant. To this
end, we consider the maximum of χ2 within the error interval
of the fitted radii according to Table V. For bead C, we find
a maximal value of 41.2 as compared to the value of 48.1
at a radius of 2.169 µm. Therefore, the global minimum is
significantly better than the local minimum. A similar analysis
can be carried out for bead D confirming that also in this case
the global minimum is indeed significantly better.

V. CONCLUSIONS

In conclusion, we have presented a method for measuring
the radii of optically trapped microspheres with errors on the
order of a nanometer, well below the usual manufacturer’s
standard error. One of its main advantages is that it allows
us to address a specific optically trapped spherical particle
in situ by measuring its equilibrium position under a lateral
Stokes drag force. A comparable precision would be obtained
by employing electron microscopy. However, in this case one
would have the inconveniences and risks of isolating the cho-
sen bead, transporting and drying the solution, and coating the
sample.

Furthermore, we showed that microsized particles with
R ≈ λ can be used to probe the optical aberrations of the
experimental setup as well as to get an estimate for the height
of the sphere above the coverslip, which is an experimental
parameter that is hard to determine with precision.

Here we have demonstrated our method by using digital
video microscopy for the measurement of the particle position
on the xy plane. Replacing it by a standard position measure-
ment based on quadrant photodetection of the scattered light
would significantly improve the speed of the radius determi-
nation, possibly allowing for real-time measurements.
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APPENDIX A: WAIST AND OBJECTIVE FILLING
To ensure good trapping conditions in optical tweezers, one

must guarantee that the waist of the paraxial beam is such that
it illuminates the objective entrance with a significant fraction
of its power distributed near the border of the lenses. In this
way, the marginal rays are strongly deflected, optimizing the
focused beam’s intensity gradient. For a Gaussian beam, this
means simply overfilling the entrance. However, Laguerre-
Gaussian beams require a more careful choice of waist, since
most of their power is localized far from the optical axis and
may leak outside the objective if the beam waist is too large.
In the experiments presented here, we have used two criteria
for the choice of each mode’s waist. One is the theoretical
criterion presented in [11] to control the objective filling by
the ratio r�/Robj, where r� is the radius of maximum intensity
of the paraxial LG0� beam. The second criterion was empiri-
cal, based on the limitations of the SLM. As the topological
charge increases, the modulation masks necessary to reduce
the beam’s waist become larger, to the point that they can no
longer fit inside the SLM’s display. Hence, one must choose
waist values that sufficiently optimize the optical tweezers’
intensity gradient and, at the same time, are produced by
masks that fit inside the SLM’s display.

To experimentally measure the waist values of each
Laguerre-Gaussian mode, we have employed a variation of the
method described in [32]. It consists of measuring the power
through a diaphragm of radius a centered at the beam’s axis
as a function of this aperture, and then fitting the power to the
integrated intensity in the diaphragm’s area. In the case of a
Laguerre-Gaussian mode, we have

P�(a) = Pt

[
�(|�| + 1) − �

(
|�| + 1,

2a2

w2
0

)]
, (A1)

where Pt = (π/2)w2
0I0 is the total beam power in the � = 0

(Gaussian) case. Instead of an actual diaphragm, we have sim-
ulated its effect by using the spatial light modulator to divert
all light outside a circle with controllable radius a centered at

TABLE VI. Measured waist for each LG0� mode.

� w0 (mm) r�/Robj

0 2.150 ± 0.004
±1 1.732 ± 0.008 0.44
±2 1.204 ± 0.004 0.43
±3 1.171 ± 0.005 0.51
±4 1.039 ± 0.007 0.52
±5 0.948 ± 0.003 0.54
±6 0.867 ± 0.002 0.54
±7 0.806 ± 0.002 0.54
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the beam axis. The measured waist values and the ratio r�/Robj

for each mode are presented in Table VI.

APPENDIX B: MULTIPOLE EXPANSION
OF THE OPTICAL FORCE

Here, we present the series expansion of the optical
force components for a Laguerre-Gaussian beam within the
MDSA+ theory [34].

We use a dimensionless force Q = F/(nwP/c), with the
laser beam power P, the speed of light c, and the refractive

index in the sample region nw. The force is given by subtract-
ing the loss at the sphere (−Qs) from the total extinction (Qe),

Q(R) = Qs + Qe, (B1)

and it is calculated at the position R = R(ρ, φ, z) of the spher-
ical particle with respect to the focal spot.

First, we present the components of the scattering force.
The axial part of the scattering force is given by

Q(σ,�)
sz = − 8γ 2

A�Ns
Re

∞∑
j=1

j∑
m=− j

[√
j( j + 2)( j − m + 1)( j + m + 1)

j + 1
(a ja

∗
j+1 + b jb

∗
j+1)G(σ,�)

j,m G(σ,�)∗
j+1,m + σm

2 j + 1

j( j + 1)
a jb

∗
j

∣∣G(σ,�)
j,m

∣∣2

]
,

(B2)

where a j and b j are the Mie coefficients, and A� defines the so-called filling factor given by

A� = 8(2γ 2)|�|+1
∫ sin θm

0
t2|�|+1e−2γ 2t2

√
(1 − t2)

(
N2

s − t2
)

(√
1 − t2 + √

N2
s − t2

)2 dt . (B3)

The transverse components of the scattering force are given by{
Q(σ,�)

sρ

Q(σ,�)
sφ

}
= 4γ 2

A�Ns

{
Im

−Re

} ∞∑
j=1

j∑
m=− j

[√
j( j + 2)( j + m + 1)( j + m + 2)

j + 1
(a ja

∗
j+1 + b jb

∗
j+1)

× (
G(σ,�)

j,m G(σ,�)∗
j+1,m+1 ± G(σ,�)

j,−mG(σ,�)∗
j+1,−m−1

) − 2σ
2 j + 1

j( j + 1)

√
( j − m)( j + m + 1)Re(a jb

∗
j )G

(σ,�)
j,m G(σ,�)∗

j,m+1

]
, (B4)

where the upper sign corresponds to the radial force component, while the lower sign is for the azimuthal part. The multipole
coefficients of the circularly polarized Laguerre-Gaussian beam, including optical aberrations, are given by

G(σ,�)
j,m (R) = (

√
2γ )|�|

∫ θm

0
dθ

√
cos(θ ) sin|�|+1(θ )e−γ 2 sin2(θ )d j

m,σ (θw) f (σ,�)
m (R)eikw cos(θw )z+i�g-w . (B5)

The coefficient f (σ,�)
m accounts for the astigmatism. The explicit expression for a Gaussian beam can be found in Eq. (8) of

[34], and for a Laguerre-Gaussian beam we obtained

f (σ,�)
m (R) =

∞∑
s=−∞

(−i)sJs

(
2πAast

sin2 θ

sin2 θ0

)
J2s+m−σ−�(kρ sin θ )e2is(φast−φ) . (B6)

In the absence of astigmatism Aast = 0, only the s = 0 term contributes to the sum, and the coefficient reduces to

f (σ,�)
m (R) = Jm−σ−�(kρ sin θ ) . (B7)

Next, we present the expressions for the extinction force. The axial part is given by

Q(σ,�)
ez = 4γ 2

A�Ns
Re

∑
j,m

(2 j + 1)(a j + b j )G
(σ,�)
j,m

(
G(σ,�)′

j,m

)∗
. (B8)

The coefficient G(σ,�)′
j,m can be expressed in terms of the multipole coefficients (B5) by applying the recursion relation for

Wigner-d matrix elements (Ref. [44], p. 90),

G(σ,�)′
j,m =

√
j( j + 2)[( j + 1)2 − m2]

(2 j + 1)( j + 1)
G(σ,�)

j+1,m +
√

( j2 − m2)( j2 − 1)

j(2 j + 1)
G(σ,�)

j−1,m + σ
m

j( j + 1)
G(σ,�)

l,m . (B9)

The transverse components of Qe are given by{
Q(σ,�)

eρ

Q(σ,�)
eφ

}
= 2γ 2

A�Ns

{
Im

−Re

}∑
j,m

(2 j + 1)(a j + b j )G
(σ,�)
j,m

(
G−,(σ,�)

j,m+1 ∓ G+,(σ,�)
j,m−1

)∗
. (B10)
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The negative (positive) sign corresponds to the radial (azimuthal) component. The multipole coefficients G±,(σ,�)
j,m−1 can also be

expressed in terms of the coefficients G(σ,�)
j,m−1 by again applying recursion relations

G±,(σ,�)
j,m = ∓

√
( j ± m)( j ± m + 1)( j2 − 1)

j(2 j + 1)
G(σ,�)

j−1,m + σ

√
( j ∓ m)( j ± m + 1)

j( j + 1)
G(σ,�)

j,m

±
√

( j ∓ m)( j ∓ m + 1)[( j + 1)2 − 1]

( j + 1)(2 j + 1)
G(σ,�)

j+1,m. (B11)

Making use of the recursion relations (B9) and (B11) drastically reduces the need to explicitly evaluate integrals of the form
(B5) and thus significantly improves the runtime of the numerical calculations.
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