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ABSTRACT Protein-DNA interactions and protein-mediated DNA compaction play key roles in a range of biological processes.
The length scales typically involved in DNA bending, bridging, looping, and compaction (R1 kbp) are challenging to address
experimentally or by all-atom molecular dynamics simulations, making coarse-grained simulations a natural approach. Here,
we present a simple and generic coarse-grained model for DNA-protein and protein-protein interactions and investigate the
role of the latter in the protein-induced compaction of DNA. Our approach models the DNA as a discrete worm-like chain.
The proteins are treated in the grand canonical ensemble, and the protein-DNA binding strength is taken from experimental mea-
surements. Protein-DNA interactions are modeled as an isotropic binding potential with an imposed binding valency without spe-
cific assumptions about the binding geometry. To systematically and quantitatively classify DNA-protein complexes, we present
an unsupervised machine learning pipeline that receives a large set of structural order parameters as input, reduces the dimen-
sionality via principal-component analysis, and groups the results using a Gaussian mixture model. We apply our method to
recent data on the compaction of viral genome-length DNA by HIV integrase and find that protein-protein interactions are critical
to the formation of looped intermediate structures seen experimentally. Our methodology is broadly applicable to DNA-binding
proteins and protein-induced DNA compaction and provides a systematic and semi-quantitative approach for analyzing their
mesoscale complexes.
SIGNIFICANCE DNA is central to the storage and transmission of genetic information and is frequently compacted and
condensed by interactions with proteins. Their size and dynamic nature make the resulting complexes difficult to probe
experimentally or by all-atom simulations.We present a simple coarse-grainedmodel to explore�kbp DNA interacting with
proteins of defined valency and concentration. Our analysis uses unsupervised learning to define the conformational states
of the DNA-protein complexes and the pathways between them. We apply our simulations and analysis to the compaction
of viral genome-length DNA by HIV integrase. We find that protein-protein interactions are critical to account for the
experimentally observed intermediates and that our simulated complexes are in good agreement with experimental
observations.
INTRODUCTION

DNA is central to the storage and transmission of genetic
information, which critically involves a broad range of
DNA-protein interactions. Both cellular and viral DNA are
compacted by interactions with proteins, and recent evi-
dence suggests that DNA often occupies cellular microenvi-
ronments or subcompartments, i.e., where DNA-protein
*Correspondence: m.e.dejager@uu.nl
interactions create condensates and membrane-less organ-
elles (1–10). It has been shown that DNA-protein interac-
tions are sufficient to compact DNA and create defined
clusters (11–13). For example, vaccinia topoisomerase IB
was found to induce the formation of DNA-protein filaments
at low protein/DNA ratios by creating bridges between two
segments of a single DNA molecule and the formation of
DNA-protein clusters of multiple DNA molecules at high
protein/DNA ratios (14). Recent work has highlighted
that DNA bridging can explain the compaction of DNA
by structural maintenance of chromosome (SMC) cohesin
complexes in a phase diagram with an extended and a
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compacted phase (15). Similarly, DNA-protein interactions
drive condensation involved in DNA repair (16) and the
compaction of mitochondrial DNA in nucleoids (17,18).

As DNA looping and bridging—and ultimately compac-
tion and clustering—typically involve length scales
exceeding the DNA bending persistence length (40–
50 nm, corresponding to z120–150 base pairs), character-
izing the resulting mesoscale structures, either at high
resolution experimentally (19,20) or by all-atom molecular
dynamics simulations (21–24), becomes a challenging
endeavor. Consequently, coarse-grained simulations can
offer a highly complementary view that can test mecha-
nisms and provide microscopic insights not available
directly from experiments in the spirit of a computational
microscope (25,26). Coarse-grained simulations have pro-
vided many insights into DNA topology and dynamics
(27–29), and coarse-grained simulations of simple DNA-
protein models have contributed to our understanding of
the formation of protein bridges and the resulting
bridging-induced compaction (30–35). As a more specific
example, coarse-grained models (36) explained the liquid
droplet formation of heterochromatin due to heterochromat-
in protein 1 (37,38).

In a recent experimental work, we observed DNA
compaction by HIV integrase (IN) via a ‘‘rosette’’ interme-
diate (i.e., a central nucleo-protein core with extruding DNA
loops) and introduced a coarse-grained model to explain this
behavior (39). Here, we present this model in detail, as well
as the analysis method that we used to understand the forma-
tion of DNA-protein complexes. Our coarse-grained model
consists of DNA interacting with proteins, where both pro-
tein-DNA as well as protein-protein interactions are tuned to
match experimental observations from (39). Specifically,
the DNA is represented by a discrete worm-like chain, while
proteins are treated as simple spherical particles. Our model
is generic and can be readily extended to other proteins, as it
reduces the protein-DNA interactions to a simple isotropic
pair potential with a defined binding valency without mak-
ing specific assumptions about the binding geometry. The
protein-DNA binding strength is taken from experimental
measurements.

In order to characterize the effect of protein-protein inter-
actions on the protein-mediated compaction of DNA, we
present an unsupervised machine learning pipeline to sys-
tematically and quantitatively classify DNA-protein com-
plexes: first, we define a set of structural parameters; next,
we reduce the dimensionality via principal-component anal-
ysis (PCA); and finally, we divide the conformations into
distinct groups with a Gaussian mixture model (GMM).
We apply the approach to the IN-DNA compaction data
(39) and find that protein-protein interactions are critical
to the formation of looped intermediated structures (ro-
settes) seen experimentally. We expect our methodology
to be widely applicable to DNA-binding proteins and pro-
tein-induced DNA compaction.
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MATERIALS AND METHODS

We simulate the DNA-protein systems using Monte Carlo (MC) simula-

tions of coarse-grained models written in C. In this section, we introduce

the specific representations of both the DNA and proteins and explain

how we determine the binding strength between the two to match with ex-

periments (39).
Coarse-grained model for DNA

To model the double-stranded DNA, we use the common discrete worm-

like chain model (11,15,33,40–43) and perform MC simulations of a dou-

ble-stranded DNA in the canonical ensemble (44). This model is also

frequently referred to as the beads-on-a-string model, as the DNA is treated

as a string of N beads of diameter s connected via finitely extensible

nonlinear elastic (FENE) springs. The springs are described by the potential

fFENEðrÞ ¼ � 1
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stiffness of the DNA chain is included via a bending potential
and zero otherwise. The interaction strength e is set to 0:7k T (15). The

fbendðqÞ ¼ kqð1 � cos qÞ: (3)
Here, kq is the spring constant for bending, and q is the angle between

successive springs. In order to imitate the experimental DNA, which has

a persistence length of approximately 40 nm, we use DNA beads of

s ¼ 4 nm, which corresponds to the effective diameter under physiological

ionic strength (27), and obtain the desired persistence length of by taking

kq ¼ 11kBT (see the supporting material).

In this work, we mainly consider four lengths of DNA, 150, 289, 408, and

774 beads, which correspond to roughly 1.8, 3.4, 4.8, and 9.1 kbp, respec-

tively. The latter three lengths correspond to DNA constructs used in exper-

iments probing DNA interactions with HIV IN (39) to enable qualitative

comparison of our simulation results to experiments. Depending on the

length of the worm-like chain, proper equilibration may require a signifi-

cant amount of time. Hence, to speed up equilibration, each chain is initial-

ized as a random walk with a fixed step size of s and bending angles evenly

distributed between 0% q% qmax. The maximum bending angle qmax is set

to qmax ¼ 2 cos� 1ðe�s=lp Þ, such that the initial chain has the approximate

desired persistence length (42), i.e., lp ¼ 10s. We equilibrate each DNA

chain for at least 5 � 107 MC cycles. Note that, on average, each DNA

bead undergoes one trial move per MC cycle (44). During such a trial

move, the DNA bead is displaced by a random vector, whose individual

x, y, and z components are drawn from a uniform distribution between

50:12s. For this value, the self-diffusion time of an isolated 4 nm DNA

bead is �100 MC cycles. We validate our model for DNA by reproducing

the theoretical radius of gyration for a worm-like chain (see the supporting

material).
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FIGURE 1 Schematic representation of the coarse-grained DNA-protein

system. The zoom in shows the protein—with its isotropic binding poten-

tial—binding only the four nearest DNA beads. To see this figure in color,

go online.
Coarse-grained model for proteins

Generally in DNA-protein systems, the proteins have a defined number of

binding sites for DNA. For these kinds of systems, a patchy particle model

is often used to simulate the coarse-grained multimer, see, e.g.,

(11,15,35,41,45–47). However, as the exact geometry of the binding sites

is often either unknown or poorly defined due to conformational flexibility

of the protein, we decided against the use of a patchy particle model to pre-

vent any potential restrictions of the patch geometry on the compaction of

DNA. Instead, we choose to reduce the complex structure of the protein to a

single protein bead with an isotropic binding potential and restrict the bind-

ing valence of the protein to nmax DNA beads (Fig. 1). Similar valence

models have frequently been used to approximate patchy particles, see,

e.g., (48,49). In this section, we explain the mechanism behind this valence

restriction.

For HIV IN, which is our main focus here, the active complex binding

to DNA is thought to be a tetramer with four binding sites. The binding

of HIV IN is relatively sequence unspecific, and its binding footprint was

experimentally determined to be 10–20 bp (39), which corresponds

roughly to one-tenth of the persistence length of DNA. For this reason,

we model the DNA using beads of s ¼ 4 nm and the proteins as spheres

with the same diameter s. This ensures a binding footprint of 10–20 bp.

However, one could easily simulate smaller or larger proteins. Prelimi-

nary tests with proteins of diameter 2s gave qualitatively similar results

to the ones reported in this work. This also suggests that weak deform-

ability or softness of the protein bead would not qualitatively affect our

results.

We assume a sequence-unspecific binding for the protein-DNA model,

meaning that the protein can bind to any DNA bead, and ensure that the

binding between the protein and DNA is short ranged, i.e., with an effective

width of approximately 0.5 nm (50), by using the 18–36 Lennard-Jones (LJ)

potential

fbindðrÞ ¼ 4εb

��s
r

�36
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�18�
� εc for r% rc (4)
and zero otherwise. Here, εb is the binding strength, rc ¼ 1:4s is the dis-

tance of truncation, and εc is the energy shift such that the potential is
zero at r ¼ rc. The valence restriction is established by introducing a

bond swapping potential

fswapðrÞ ¼
��fbindðrminÞ for r% rmin;

�fbindðrÞ otherwise;
(5)
where rmin is the minimum of the binding potential. This potential is

inspired by the one of Sciortino (51) and provides the possibility of freely

swapping between (potential) bonds, i.e., without any additional energy

cost or gain, while preserving both the condition of detailed balance and

the excluded volume interactions that occur for r < rmin. To illustrate how

this works in general, assume that one wants to restrict the maximum num-

ber of bonds per protein to nmax. For each protein, one then wants to take

only the energy gain of the nmax shortest bonds into account. To accomplish

this, we first find all DNA beads within the distance rc of a protein i and sort

them according to their center-to-center distance. We then compute the total

binding energy of protein i using

f
ðiÞ
p�DNA ¼

Xnbond
j ¼ 1

fbind

�
rij
�þ Xnbond

j ¼ nmaxþ1

fswap

�
rij
�
; (6)

where
Pnbond

j is the sum over the sorted list of nbond DNA beads j with

rij < rc. In this work, we use nmax ¼ 4 to match with the four binding sites
of the active IN complex (39).

Lastly, we need to define the protein-protein interaction. As the exact pro-

tein-protein interaction is unknown, here, we (semi-)quantitatively tune the

model such that the simulations reproduce the experimental observations

from (39). We first look for a model that reproduces the protein-DNA struc-

tures observed in the experiments. Second, we further tune the model such

that, given a specific DNA length, the critical protein concentration at which

compaction sets in in the simulations approximately matches the critical con-

centration at which compaction arises in the experiments. Specifically, we

consider two general cases for the protein-protein interaction. The first is a

purely excluded volume interaction, which is included via theWCA potential

with ε ¼ 0:7kBT, same as for the DNA beads (Eq. 2). Secondly, we consider

the possibility of some form of mutual attraction between the proteins in

addition to the excluded volume interactions. This is realized by changing

the protein-protein interactions from the WCA potential into the regular 6–

12 LJ potential with attraction strength εpp. The LJ potential is truncated

and shifted at r ¼ 3s. We explore a couple of attraction strengths, from

0:7 to 5kBT, to find out what best fits the experimental observations.
Protein-DNA binding strength

The key parameter describing the protein-DNA interactions is the binding

strength εb. Frequently, this binding energy has been treated as a free param-

eter in simulations of protein-DNA interactions, or it is estimated roughly

from affinity measurements. Here, however, we use the binding strength

taken from experimental measurements performed in (39). In order to obtain

the protein-DNA binding strength, they used atomic force microscopy im-

ages of short double-stranded DNA constructs in the presence of relative

low concentrations of protein. By counting the number of protein molecules

bound to the DNA constructs, the binding probability can be directly deter-

mined and is, in turn, compared quantitatively to simulations to obtain εb.

Note that the binding probability is computed by dividing the total number

of bound protein molecules by the total number of DNA constructs consid-

ered and the number of possible binding sites on a DNA construct. The short

DNA constructs and low IN concentration ensure that both multiple IN

copies overlapping and protein-protein interactions are negligible. The bind-

ing probability increases monotonously with increasing binding strength

with a crossover between simulations and experiments at a binding strength

between 4:5 and 5:0kBT (39). We, therefore, take εb ¼ 5kBT in this work.

Note that for the experiments reported in (39), the IN concentrations are

expressed in terms of the monomer concentration, [IN]. However, since the

complexes actually binding to the DNA are thought to be tetramers consist-

ing of four IN proteins, the protein concentrations in the simulations need to

be adjusted to directly compare the experiments. Hence, we will express the

protein concentration in terms of the monomer concentration throughout

this work. Yet, keep in mind that the simulated protein beads, which repre-

sent the IN tetramers, will have a concentration equivalent to one-fourth of

the monomer concentration.
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Semi-grand canonical simulations to model DNA-
protein mixtures

The experiments reported in (39) were performed at relatively low DNA

concentrations, i.e., around 0.5 ng/mL, such that the observed protein-

DNA condensates typically contained only a single DNA chain and the

IN buffer was not depleted during the condensation. To reproduce this bio-

logically relevant scenario in the simulations, we consider simulations of a

single DNA strand treated in the canonical ensemble and treat the proteins

in the grand canonical ensemble. As a substantial number of proteins can be

involved in the protein-induced compaction of DNA, this ensures that the

free proteins are not depleted in our simulation box. On top of the regular

trial moves of a canonical ensemble, in the grand canonical ensemble, one

needs trial insertions and removals of proteins (44). In order to prevent these

insertions and removals from disturbing the DNA dynamics and allow us to

explore the intermediate structures during compaction, we restrict the part

of the simulation box where we perform insertion and deletion moves. Spe-

cifically, we take a spherical volume of radius R around the center of mass

of the DNA chain and prohibit the insertion or removal of proteins in this

volume. The radius R is taken as the distance to the furthest DNA bead

plus an additional padding of 5rc. Mirroring the experimental conditions,

we will consider protein concentrations in the nanomolar to micromolar

range. In the supporting material, we provide more details on the semi-

grand canonical simulations and demonstrate that the concentration of

free protein is not depleted during the compaction of DNA.
RESULTS AND DISCUSSION

We examine the protein-induced compaction of DNA by
performing a large set of simulations for the different pro-
tein-protein interactions (i.e., attractive and nonattractive)
and for a large range of protein concentrations. For each
protein-protein interaction and protein concentration, we
perform 10–12 independent simulations. To initialize the
combined DNA-protein systems, we use an equilibrated
DNA chain and insert the desired concentration of protein
at random positions in the box. After equilibrating the total
system for 106 MC cycles with the DNA-protein interaction
turned off, we gradually turn on the DNA-protein interaction
within 100 MC cycles and simulate for a maximum of
another 5 � 108 MC cycles. Each simulation took around
1–20 days on a single, modern CPU core.

During these simulations of the DNA-protein mixtures,
we observe a range of different structures and conforma-
tions, depending on protein concentration and the form
and strength of their mutual interactions. Some examples
of typical DNA-protein conformations are shown in
Fig. 2, A–G. Even though we can distinguish between
some of these conformations by eye, it is difficult to classify
all of them using a single order parameter like, e.g., the
radius of gyration of the molecule. Hence, in order to sys-
tematically analyze and categorize the conformations
formed in the simulations, we design an unsupervised ma-
chine learning pipeline.

The remainder of the results and discussion section is
split in two. In the first part, we explain and set up the unsu-
pervised machine learning pipeline for the classification of
DNA-protein complexes. In the second part, we investigate
the possible compaction pathways for the protein-mediated
compaction of DNA by applying the trained machine
learning pipeline to our simulations and classifying for
each the structure of the DNA-protein complex as a function
of time.
Unsupervised machine-learned classification

In short, the unsupervised machine learning pipeline for the
classification of protein-DNA complexes operates as fol-
lows. First, it receives a multidimensional set of order pa-
rameters describing the geometrical characteristics of each
conformation. It then applies a dimensionality reduction
scheme, which extracts its most important features. Lastly,
a clustering algorithm identifies distinct groups of confor-
mations in the resulting lower-dimensional space. For the
implementation of the dimensionality reduction and the
grouping, we use the Python package scikit-learn (52). In
this section, we explain the specifics of our classification
approach in more detail.
Structural order parameters

To start, we first define a set of order parameters that capture
the geometrical characteristics of each conformation. Note
that for this initial selection of parameters, it is irrelevant
whether parameters are independent or covary strongly. In
the subsequent processing steps, these correlations are taken
into account or can be removed if needed. So, while it is
desirable to define parameters that capture a broad range
of conformational features, it is not critical in our approach
to a priori pick uncorrelated parameters. By looking at ex-
amples of different conformations (e.g., Fig. 2, A–G), we
compose a set of 15 parameters, which can be grouped
into different categories.

1) Global conformation of the DNA chain: the radius of gy-
ration Rg, the normalized asphericity b=R2

g, and the
anisotropy k of the DNA chain.

2) Bending angles of the DNA chain: the average and stan-
dard deviation of the bending angle, CqD and sðqÞ, respec-
tively.

3) Proteins bound: the total number of proteins bound to
DNA Nb, the fraction of DNA beads bound to at least
one protein xo, and the average and standard deviation
of the number of proteins bound per DNA bead, CnbD
and sðnbÞ, respectively.

4) Bare DNA segments: the total number of unoccupied
DNA segments Ns and the average and standard devia-
tion of the size of these unoccupied DNA segments,
CnsD and sðnsÞ, respectively.

5) Protein clusters: the total number of clusters of bound
protein Nc and the average and standard deviation of
the size of these clusters, CncD and sðncÞ, respectively.
Exact definitions of the different parameters can be found

in the supporting material.
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FIGURE 2 (A-G) Example conformations

observed in simulations of DNA of 408 beads.

Note that these are closeups and that the total

three-dimensional simulation box is many times

larger. The DNA beads are indicated by light blue

spheres and the proteins are indicated by dark blue

spheres. For visualization purposes, the free proteins

are not displayed. (H) The weight of each order

parameter in the composition of the first three prin-

cipal components (PCs). (I) Density distribution of

the training dataset in the PC1-PC2 plane and the

PC1-PC3 plane. (J) Grouping according to the

Gaussian mixture model (GMM). The seven groups

are indicated with different colors, and they corre-

spond to the typical conformations found in (A)–

(G), i.e., (A) no compaction (blue), (B) bridging

(pink), (C) bridging-induced compaction (purple),

(D) rosette (yellow), (E) full compaction (red), (F)

fully compacted complex with a bare tail (brown),

and (G) multiple fully compacted complexes (or-

ange). To see this figure in color, go online.
Dimensionality reduction

To extract the important features of the 15-dimensional
space of order parameters, we need to reduce its dimension-
ality. There are many options, both linear and nonlinear, for
unsupervised dimensionality reduction, e.g., PCA (53–56),
autoencoders (57–60), and manifold learning methods
(61–65). For our problem, we found that PCA, despite being
purely linear, robustly provides a satisfactory separation of
the various states of compaction. To check for the effects
of linearity, we have also confirmed that using a simple
nonlinear neural-network-based autoencoder, like the one
in (59), does not improve our ability to classify structures
for this problem. Since PCA is computationally efficient,
deterministic, and parameter free, we here choose to use it
for the remainder of this manuscript.

It is important to note that, in general, dimensionality
reduction schemes require a balanced dataset, consisting
of a fairly equal representation of the various possible states,
for the scheme to perform well. Hence, as a first test to
demonstrate our classification method, we focus on the
DNA of 408 beads for which we compose a training set of
nearly 15,000 configurations. This dataset contains roughly
equal numbers of noncompacted configurations, configura-
tions in different states of compaction mediated by mutual
nonattractive proteins, and the same for compaction medi-
ated by mutual attractive proteins with an attraction strength
of 2:0kBT. We later explain how to extend this to include
configurations of DNA of different lengths.

After constructing this balanced set of configurations, we
normalize the distribution of each order parameter using
standard scaling before feeding it to PCA. This ensures
that each order parameter has an average value of zero
and a variance of one, such that the variations in each
parameter are treated as equally important. We determine
the number of relevant principal components (PCs) by look-
ing at the proportion of variance explained of each PC. In
this case, the first three PCs combined capture more than
75% of the total variance of the dataset. Further analysis
on the proportion of variance explained using the elbow
method (66) also confirms the use of the first three PCs
(see the supporting material).
                                                3235



The weight of each order parameter in the composition of
the first three PCs is shown in Fig. 2 H, and Fig. 2 I shows
the density distribution of the training dataset. We can
already, by eye, distinguish some groups in this density dis-
tribution. For example, we see a distinct group on the top
left of the PC1-PC2 plane from which two separate branches
grow. The weights reveal that configurations in this group
have a large radius of gyration and not many bound proteins;
hence, this group most likely contains configurations of non-
compacted DNA. Note that the weights also reveal that
some order parameters are indeed highly correlated and
therefore most likely redundant. For example, the aspheric-
ity and anisotropy have very similar weights, as well as the
average and standard deviation of the number of proteins
bound per DNA bead. At this stage, one could spend some
time sieving out the redundant order parameters. However,
since the resulting classification was already sufficient in
our case, we did not do this here.
Identifying the distinct DNA-protein
conformations

To finish up the classification, we use a clustering algorithm
to divide the three-dimensional distribution of PCs into
distinct regions. As for the dimensionality reduction, there
are many options for clustering (67), e.g., K-means, spectral
clustering and GMMs. We find that, in our case, the GMM
provides a satisfactory distinction of the different groups in
the PC landscape. We want to stress that the term ‘‘clus-
tering’’ here means the classification of DNA-protein con-
figurations into distinct groups with similar geometric
features and should not be confused with the condensation
or compaction of DNA-protein complexes, which can also
be called clustering.

To determine the number of groups, we first look for a
minimum in the Bayesian information criterion (68), which
indicates how well a GMM fits the distribution while simul-
taneously penalizing the number of groups to prevent over-
fitting. However, as an alternative criterion to safeguard
against overfitting, we additionally look for an elbow in
the clustering entropy (69).

SK ¼ �
XD
i ¼ 1

XK
j ¼ 1

Pij log
�
Pij

�
; (7)

where D is the size of the dataset that needs to be grouped, K
is the number of groups, and Pij is the probability of data

point i to belong to group j. We find that the optimum num-
ber of groups is seven (see the supporting material).

By definition, the GMM provides a ‘‘soft grouping,’’ i.e.,
the probability for a given configuration to belong to any of
the groups. To turn this into a discrete grouping, we assign
each configuration to the group it is most likely to belong
to. Fig. 2 J shows the resulting grouping using seven groups
for the GMM. Comparing Fig. 2, J and I, we see that these
3236                                                 
groups nicely correspond to the groups visible in the density
profile. Furthermore, by looking at various configurations
belonging to these seven groups, we can identify them.
Each group can be identified by one of the (deliberately cho-
sen) example conformations depicted in Fig. 2, A–G, i.e.,
(Fig. 2 A) no compaction, (Fig. 2 B) bridging, (Fig. 2 C)
bridging-induced compaction, (Fig. 2 D) rosette, (Fig. 2
E) full compaction, (Fig. 2 F) fully compacted complex
with a bare tail, and (Fig. 2 G) multiple fully compacted
complexes connected by bare segment(s) of DNA.
Two pathways for the protein-mediated
compaction of DNA

In order to investigate the effect of the protein-protein inter-
actions on the time evolution of the protein-mediated
compaction of DNA, we apply our trained classification
method to our simulations of DNA of 408 beads. For each
simulation, we classify at regular time intervals the structure
of the DNA-protein complex such that we can easily interpret
its time evolution. To demonstrate the strength of the ma-
chine-learned classification, in Fig. 3, A and B, we show
two typical simulation trajectories, the first for mutually non-
attractive proteins (Fig. 3 A) and the second for mutually
attractive proteins (Fig. 3 B). We clearly see that the two sim-
ulations follow two very different paths in the landscape of
the PCs. Moreover, taking the classification of the GMM
into account, we find that these are even two completely
separate pathways, i.e., a pathway that goes via bridging to
bridging-induced compaction for nonattractive protein-pro-
tein interactions (blue-pink-purple classification) and a
pathway that goes via rosette to full compaction for attractive
protein-protein interactions (blue-yellow-brown-red classifi-
cation). (Note that here we observe two clear pathways that
we connect to nonattractive and attractive protein-protein in-
teractions. However, note that this is only true for sufficiently
strong attraction.) The latter pathway corresponds to the
structures observed in experiments (39).

By examining the time evolution of the classification of
all 10–12 simulations per protein concentration and pro-
tein-protein interaction, we find that none of these simula-
tions exhibit a crossover between the bridging and rosette
states. This confirms that the bridging-induced compaction
and rosette to full compaction are two completely separate
pathways and, moreover, that the compaction pathway is
fully determined by the protein-protein interaction. To illus-
trate that this result is independent of the protein concentra-
tion, we select the most typical simulation per concentration
and show the associated time evolution of the classification
in Fig. 3, C and D. These trajectories are selected based on
the inverse of the time the system needs to start (irreversible)
compaction and the time spent in either the bridging or
rosette state. A trajectory is coined ‘‘most typical’’ when
these (inverse) times best match with the average (inverse)
times for the system at that protein concentration. One can



0 100 200 300 400 500

6000

5000

4000

3000

1000

Time  (x10    MC cycles)6

[IN
]  

(n
M

)

0 100 200 300 400 500
2200
2000
1800
1600
1400
1200
1000

800
600
400
200
100

Time  (x10    MC cycles)6

[IN
]  

(n
M

)

C D
N
B
BIC
R
FC
T
M

Clas.TimeB
B1 B2

B3 B4

B1

B3
B2

B4

Time Clas.A
A1 A2

A3 A4

A1

A3

A4

A2
FIGURE 3 Typical simulations of DNA of 408

beads in (A and C) a system with nonattractive pro-

tein-protein interactions and (B and D) a system

with attractive protein-protein interactions of strength

bεpp ¼ 2:0. (A) and (B) show, for protein concentra-

tions of, respectively, ½IN� ¼ 5000 and ½IN� ¼ 1200

nM, the simulation trajectories on top of PC1-PC2 dis-

tribution of the training dataset. The trajectories are

colored with a blue gradient indicating the simulation

time (first colorbar), and the second colorbar is the

classification according to the GMM. The figure

blocks (A1–A4) and (B1–B4) each show four charac-

teristic configurations during the simulation. (C and

D) Time evolution of the classification as a function

of protein concentration. Each bar represents the

most typical run for each protein concentration stud-
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Fig. 2) no compaction (N), bridging (B), bridging-

induced compaction (BIC), rosette (R), full compac-

tion (FC), fully compacted complex with a bare tail

(T), and multiple fully compacted complexes (M).

When a bar ends in white, it means that the simulation

was terminated early, as the most interesting behavior

had already happened. To see this figure in color, go

online.
clearly see that there is no crossover between the pathway of
bridging-induced compaction (observed in Fig. 3 C) and the
pathway of rosette to full compaction (observed in Fig. 3D).

Furthermore, it is noteworthy that from these simulations,
we can conclude that protein-protein attractions promote
DNA compaction; Fig. 3, C and D, clearly show that
DNA compaction in systems with 2kBT protein-protein
attraction sets in at lower protein concentrations than in sys-
tems without protein-protein attraction. Although this is not
surprising—protein-protein attractions naturally lead to a
higher affinity to compact—it is interesting to explore the
effect of the attraction strength on the onset of DNA
compaction.
Role of DNA length and protein-protein attraction
strength

To explore the effect of protein-protein attraction strength in
the protein-induced compaction of DNA, we focus on
attraction strengths of 1:5 and 2:0kBT and protein concentra-
tions from 100 to 2400 nM. Additionally, we investigate the
role of DNA length by considering the DNA of 150, 289,
408, and 774 beads. Importantly, given the dependence of
some of the structural order parameters used as input in
the classification on DNA length (e.g., the number of bound
proteins or the length and number of bare DNA segments),
we need to adjust our classification to accommodate
different DNA lengths. In order to use one pipeline for the
classification of systems with different DNA lengths, we
first obtain a balanced training dataset for each DNA length,
which we then normalize separately from one another. This
ensures that even though the important features differ in ab-
solute values, they are treated as roughly equal in each
normalized dataset. Note that we were able to do this
because no new or distinctly different structures emerged
as a result of varying the DNA length and protein-protein
attraction strength.

Next, we combine these separately normalized sets and
obtain a new classification by retraining both the PCA and
GMM on the combined dataset. To demonstrate that the new
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classification is indeed able to identify conformations like the
rosette conformation for the differentDNA lengths,we show a
short time series of a typical trajectory for the DNA of 150,
289, and 774 beads in Fig. 4. Even though the rosette confor-
mation, for example, looks undeniably different for different
DNA lengths, the classification is able to identify it as the
same conformation for all DNA lengths.

Using the newly trained pipeline, we classify all 12 sim-
ulations per DNA length and protein-protein attraction
strength. To illustrate the influence of both DNA length
and protein-protein attraction strength on the protein-medi-
ated compaction of DNA, we again select the most typical
simulation per concentration and system and show the asso-
ciated time evolution of the classification in Fig. 5. Note
that, as mentioned before, these typical trajectories are
selected based on the inverse of the time the system needs
to start (irreversible) compaction and the time spent in the
rosette state. There are four key observations that can be
deduced from Fig. 5. First, we find that all trajectories lead-
ing to compaction go through a transient rosette state (indi-
cated in yellow), independent of the DNA length or protein
concentration. Second, we observe that the time spent in a
rosette conformation increases with the DNA length. Third,
it is evident that stronger protein-protein attractions facili-
tate DNA compaction at lower protein concentrations for
all investigated DNA lengths. Lastly, we see that an increase
of DNA length similarly enables compaction at lower pro-
tein concentrations.

Note that the experiments demonstrated the same depen-
dency on the DNA length (39). Additionally, by tuning the
protein-protein attraction strength to 1:5 � 2:0kBT, we
approximately matched the protein concentrations at which
compaction sets in to the experimental protein concentra-
tions at which full compaction sets in. Preliminary tests
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with εpp > 3:0kBT revealed structures not observed in exper-
iments, such as fully compacted DNA-protein structures
covered in additional proteins or (large) aggregates of free
protein.

In order to translate some of our observations into quan-
titative measures, we compute the rate of compaction as a
function of protein concentration for the different systems.
Assuming that the start of compaction in our simulations
is a rare event that has a censored exponential distribution,
i.e., not necessarily all simulations managed to compact,
we can approximate the rate l with (70).

l ¼ mPn
i ¼ 1 ti

; (8)

where the sum is taken over the n ¼ 12 simulations per-
formed for a specific system, m is the number of simulations

in which the DNA managed to compact, and ti is the time of
simulation i at which (irreversible) compaction starts. Prac-
tically, ti is the last instance of a conformation classified as
not compacted (indicated by blue in Fig. 5). Note that the
sum over all n ¼ 12 simulations also includes the time of
the simulations in which the DNA did not manage to
compact. The resulting rates are given in Fig. 6. Here, we
have normalized the rates with the DNA length, such that
a rough collapse onto a master curve for both protein-pro-
tein attraction strengths is revealed. The trends of these mas-
ter curves suggest that the compaction of DNA is an
activating event with a rate given by

l

	
N ¼ C0 exp

�
�C1

cp

�
; (9)

where cp is the protein concentration andC0 andC1 are param-
eters that depend on the protein-protein attraction strength.



FIGURE 5 The most typical runs for a range of protein concentrations for the four DNA lengths studied. The top row gives the results for a mutual protein

interaction with attraction strength bεpp ¼ 1:5 and the bottom row bεpp ¼ 2:0. See Fig. 3 for the interpretation of the classification that the colors of the bars

represent. To see this figure in color, go online.
Note that although the translation to real time is not as
direct as for, e.g., molecular dynamics simulations, the ob-
tained rates can still be roughly related to real time given
that the self-diffusion time of an isolated 4 nm DNA bead
is �100 MC cycles in our simulations and corresponds to
roughly 25 ns. Moreover, the relative trends obtained from
comparing different systems give legitimate insights into
the workings of protein-mediated compaction of DNA.
CONCLUSION

To conclude, we presented a simple coarse-grained model
for DNA-protein mixtures that treats the protein-DNA inter-
actions as an isotropic binding potential with an imposed
binding valency without specific assumptions about the
FIGURE 6 The rate of compaction divided by the DNA length as a func-

tion of the protein concentration. The shapes of the markers indicate the

four different lengths of DNA, and the two different attraction strengths

bεpp ¼ 1:5 and bεpp ¼ 2:0 are indicated by the open and closed markers,

respectively. The lines indicate fits to Eq. 9. To see this figure in color, go

online.
binding geometry. While we have designed this model to
capture (semi-)quantitatively the behavior of DNA mixed
with HIV IN, this approach for protein-DNA binding pre-
sents a generic solution for the many cases in which the
exact geometry of the binding sites is either unknown or
poorly defined due to conformational flexibility of the pro-
tein. Additionally, we designed a simple, fast, and effective
unsupervised machine learning model for the classification
of the DNA-protein complexes into different conforma-
tional states. We applied our model to recent data on the
compaction of viral genome-length DNA by HIV IN and
found that protein-protein attractions are critical to the for-
mation of looped intermediated structures (‘‘rosettes’’)
observed experimentally. Not only is our model applicable
to a broad range of different protein and nucleic acid sys-
tems, but the additional unsupervised learning method for
the classification of the intricate complexes formed in
such systems can offer key insights into the variety of
conformational states and their formation pathways.
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A data package containing the data supporting the findings
of this study as well as the self-developed C codes for per-
forming the simulations and C and Python codes for the
structural analysis is openly available on Zenodo at
https://doi.org/10.5281/zenodo.12770995.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2024.07.023.
                                                3239

https://doi.org/10.5281/zenodo.12770995
https://doi.org/10.1016/j.bpj.2024.07.023
https://doi.org/10.1016/j.bpj.2024.07.023


AUTHOR CONTRIBUTIONS

Experimental work of P.J.K., W.V., and J.L. initiated the research question.

The model, simulation methods, and classification algorithm were designed

by L.F. and M.d.J. L.F. supervised the project. M.d.J. wrote all the code and

performed the simulations and analysis. All authors contributed to the inter-

pretation and the manuscript.
ACKNOWLEDGMENTS

We would like to thank Frank Smallenburg and Rinske Alkemade for many

useful discussions. We acknowledge funding from the Vidi research pro-

gram with project number VI.VIDI.192.102, which is financed by the Dutch

Research Council (NWO) and Utrecht University.
DECLARATION OF INTERESTS

The authors declare no competing interests.
SUPPORTING CITATIONS

References (71–73) appear in the supporting material.
REFERENCES

1. Liu-Yesucevitz, L., A. Bilgutay, ., B. Wolozin. 2010. Tar DNA bind-
ing protein-43 (TDP-43) associates with stress granules: analysis of
cultured cells and pathological brain tissue. PLoS One. 5:e13250.

2. Hyman, A. A., C. A. Weber, and F. J€ulicher. 2014. Liquid-liquid phase
separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58.

3. Bergeron-Sandoval, L.-P., N. Safaee, and S. W. Michnick. 2016. Mech-
anisms and consequences of macromolecular phase separation. Cell.
165:1067–1079.

4. Frykholm, K., L. K. Nyberg, and F. Westerlund. 2017. Exploring
DNA–protein interactions on the single DNA molecule level using
nanofluidic tools. Integr. Biol. 9:650–661.

5. Andr�e, A. A. M., and E. Spruijt. 2018. Rigidity rules in DNA droplets:
Nucleic acid flexibility affects model membraneless organelles.
Biophys. J. 115:1837–1839.

6. Sazer, S., and H. Schiessel. 2018. The biology and polymer physics un-
derlying large-scale chromosome organization. Traffic. 19:87–104.

7. Sawyer, I. A., J. Bartek, and M. Dundr. 2019. Phase separated micro-
environments inside the cell nucleus are linked to disease and regulate
epigenetic state, transcription and RNA processing. Semin. Cell Dev.
Biol. 90:94–103.

8. Choi, J.-M., A. S. Holehouse, and R. V. Pappu. 2020. Physical princi-
ples underlying the complex biology of intracellular phase transitions.
Annu. Rev. Biophys. 49:107–133.

9. Weinmann, R., L. Frank, and K. Rippe. 2023. Approaches to charac-
terize chromatin subcompartment organization in the cell nucleus.
Curr. Opin. Struct. Biol. 83:102695.

10. Uversky, V. N. 2023. Biological Liquid–Liquid Phase Separation, Bio-
molecular Condensates, and Membraneless Organelles: Now You See
Me, Now You Don’t. Int. J. Mol. Sci. 24:13150.

11. Brackley, C. A., S. Taylor, ., D. Marenduzzo. 2013. Nonspecific
bridging-induced attraction drives clustering of DNA-binding proteins
and genome organization. Proc. Natl. Acad. Sci. USA. 110:E3605–
E3611.

12. Jiang, K., N. Humbert, ., F. Westerlund. 2021. The HIV-1 nucleo-
capsid chaperone protein forms locally compacted globules on long
double-stranded DNA. Nucleic Acids Res. 49:4550–4563.
3240                                                 
13. Gien, H., M. Morse, ., M. C. Williams. 2022. HIV-1 nucleocapsid
protein binds double-stranded DNA in multiple modes to regulate
compaction and capsid uncoating. Viruses. 14:235.

14. Moreno-Herrero, F., L. Holtzer, ., N. H. Dekker. 2005. Atomic force
microscopy shows that vaccinia topoisomerase IB generates filaments
on DNA in a cooperative fashion. Nucleic Acids Res. 33:5945–5953.

15. Ryu, J.-K., C. Bouchoux,., C. Dekker. 2021. Bridging-induced phase
separation induced by cohesin SMC protein complexes. Sci. Adv.
7:eabe5905.

16. Chappidi, N., T. Quail, ., S. Alberti. 2024. PARP1-DNA co-conden-
sation drives DNA repair site assembly to prevent disjunction of broken
DNA ends. Cell. 187:945–961.e18.

17. Farge, G., M. Mehmedovic,., M. Falkenberg. 2014. In vitro-reconsti-
tuted nucleoids can block mitochondrial DNA replication and tran-
scription. Cell Rep. 8:66–74.

18. Isaac, R. S., T. W. Tullius,., L. S. Churchman. 2024. Single-nucleoid
architecture reveals heterogeneous packaging of mitochondrial DNA.
Nat. Struct. Mol. Biol. 31:568–577.

19. Jones, S., P. Van Heyningen, ., J. M. Thornton. 1999. Protein-DNA
interactions: a structural analysis. J. Mol. Biol. 287:877–896.

20. Marsh, J. A., and S. A. Teichmann. 2015. Structure, dynamics, assem-
bly, and evolution of protein complexes. Annu. Rev. Biochem.
84:551–575.

21. Orozco, M., A. P�erez, ., F. J. Luque. 2003. Theoretical methods for
the simulation of nucleic acids. Chem. Soc. Rev. 32:350–364.

22. P�erez, A., F. J. Luque, and M. Orozco. 2012. Frontiers in molecular dy-
namics simulations of DNA. Acc. Chem. Res. 45:196–205.

23. Noy, A., T. Sutthibutpong, and S. A Harris. 2016. Protein/DNA inter-
actions in complex DNA topologies: expect the unexpected. Biophys.
Rev. 8:145–155.

24. Yoo, J., D. Winogradoff, and A. Aksimentiev. 2020. Molecular dy-
namics simulations of DNA–DNA and DNA–protein interactions.
Curr. Opin. Struct. Biol. 64:88–96.

25. Lee, E. H., J. Hsin, ., K. Schulten. 2009. Discovery through the
computational microscope. Structure. 17:1295–1306.

26. Dror, R. O., R. M. Dirks, ., D. E. Shaw. 2012. Biomolecular simula-
tion: a computational microscope for molecular biology. Annu. Rev.
Biophys. 41:429–452.

27. Vologodskii, A. V., and N. R. Cozzarelli. 1994. Conformational and
thermodynamic properties of supercoiled DNA. Annu. Rev. Biophys.
Biomol. Struct. 23:609–643.
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