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Abstract

Rainfall strongly influences the availability of water on the land surface, and hence, its quan-

tification is utterly relevant for addressing a variety of social, economic, and environmental

matters. Quantification via traditional rainfall measuring devices has its limitations and can

be supported by opportunistic sensors like commercial microwave links (CMLs), which theo-

retically enable rainfall estimation on large spatial scales due to their vast global abundance.

However, estimation across organizational (e.g., national) boundaries is challenging due to

heterogeneous CML data sets with customized rainfall retrieval methods. Moreover, com-

mon interpolation techniques have shortcomings in using path-averaged CML observations

for spatial rainfall reconstruction. These challenges of CML-based transboundary rainfall

estimation have been addressed in this thesis by generating rainfall maps of hourly tempo-

ral resolution, which were evaluated using a weather radar reference. Two large CML data

sets from Germany and the Czech Republic with distinctly different network characteristics

were combined and processed jointly via established and extended algorithms to generate

transboundary rainfall maps. Beyond that, the German CML data set was combined with a

countrywide network of rain gauges to generate rainfall maps via a stochastic reconstruction

approach called Random Mixing (RM). The quality of these maps was analyzed considering

an alternative standard Kriging approach and an object-based validation scheme named

eSAL, which quantifies errors in structure, amplitude, and location. The computational

complexity of RM was examined and reduced. It was found that the German and Czech

CML data sets could be processed jointly to generate consistent transboundary rainfall

maps once issues of limited data quality were identified and addressed by appropriate uni-

versal algorithms. The strong influence of partly hardware-dependent data quality issues

could be demonstrated. Furthermore, stochastic reconstruction via RM proved to enable the

generation of rainfall maps with accurate pattern representation. Despite a general under-

estimation and relatively high computational complexity, the method had clear advantages

over the Kriging approach as indicated in particular by significantly lower structure errors

and by providing probabilistic ensemble solutions. The results yield evidence for the ca-

pabilities of generating high-quality CML-based rainfall maps on large spatial scales, even

across political borders, and hence, they contribute to better utilize the potential of CMLs

as widespread rainfall sensors worldwide.
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Kurzfassung

Niederschlagsmengen haben einen großen Einfluss auf die Verfügbarkeit von Wasser

auf der Landoberfläche, weshalb ihre Quantifizierung für eine Vielzahl von sozialen,

ökonomischen und ökologischen Fragen äußerst wichtig ist. Die Quantifizierung mittels

herkömmlicher Niederschlagsmessgeräte hat ihre Grenzen und kann durch opportunistis-

che Sensoren wie kommerzielle Richtfunkverbindungen (CMLs) unterstützt werden, die

aufgrund ihrer enormen globalen Verbreitung theoretisch eine Niederschlagsschätzung auf

großen räumlichen Skalen ermöglichen. Die Schätzung über organisatorische (z. B. na-

tionale) Grenzen hinweg ist jedoch aufgrund heterogener CML-Datensätze mit individuell

angepassten Methoden zur Ableitung der Regenmengen eine Herausforderung. Außerdem

haben gängige Interpolationsmethoden Defizite bei der Verwendung pfadgemittelter CML-

Beobachtungen für die räumliche Niederschlagsrekonstruktion. Diese Herausforderungen

der CML-basierten grenzüberschreitenden Niederschlagsschätzung wurden in dieser Arbeit

thematisiert, indem Niederschlagskarten mit stündlicher Auflösung erstellt und anhand

einer Wetterradar-Referenz evaluiert wurden. Zwei große CML-Datensätze aus Deutschland

und der Tschechischen Republik mit deutlich unterschiedlichen Netzwerkeigenschaften wur-

den kombiniert und gemeinsam mittels bewährter sowie erweiterter Methoden verarbeitet,

sodass grenzüberschreitende Niederschlagskarten erstellt werden konnten. Der deutsche

CML-Datensatz wurde zudem mit einem landesweiten Netz von Regenmessern kombiniert,

um Niederschlagskarten mittels eines stochastischen Rekonstruktionsansatzes namens

Random Mixing (RM) zu erstellen. Die Qualität dieser Karten wurde unter Berücksichti-

gung eines alternativen Standard-Kriging-Ansatzes und einer objektbasierten Validierung

namens eSAL analysiert, die Fehler in Struktur, Amplitude und Lage quantifiziert. Der

Rechenaufwand von RM wurde untersucht und reduziert. Es wurde festgestellt, dass

die deutschen und tschechischen CML-Datensätze gemeinsam verarbeitet werden können,

um konsistente grenzüberschreitende Niederschlagskarten zu erstellen, sobald Probleme

begrenzter Datenqualität erkannt und durch geeignete universelle Algorithmen behoben

wurden. Der starke Einfluss von teilweise hardwareabhängigen Datenqualitätsproblemen

konnte nachgewiesen werden. Darüber hinaus hat sich gezeigt, dass die stochastische

Rekonstruktion mittels RM die Erstellung von Niederschlagskarten mit genauer räumlicher

Verteilung ermöglicht. Trotz einer generellen Unterschätzung und eines relativ hohen

Rechenaufwands hatte die Methode deutliche Vorteile gegenüber dem Kriging-Ansatz,
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die sich insbesondere in wesentlich geringeren Strukturfehlern und in der Bereitstellung

probabilistischer Ensemble-Lösungen zeigten. Die Ergebnisse belegen, dass es möglich ist,

qualitativ hochwertige CML-basierte Niederschlagskarten auf großen räumlichen Skalen,

auch über politische Grenzen hinweg, zu erstellen und tragen somit dazu bei, das Potenzial

von CMLs als weit verbreitete Niederschlagssensoren weltweit besser nutzbar zu machen.
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Chapter 1

Introduction

1.1 Significance, Aim, and Challenge of Rainfall Estimation

The amount and distribution of water is essential to all forms of life. All species on the

land surface directly depend on water. Humans, moreover, not only require drinking water

but also need it for indirect purposes such as establishing and maintaining agriculture,

hydraulic energy supply, transportation, industrial cooling, etc. Throughout history, human

cultures have been tightly interconnected with the presence of water and its significance is

indisputable.

The amount of water on land is on the one hand limited and on the other hand unequally

distributed. Consequently, water shortage is a serious widespread threat (Vörösmarty et al.,

2010; Mekonnen and Hoekstra, 2016; Liu et al., 2017)). Water scarcity can be expected

to become more severe due to population increase but also due to changing availability

related to climate change (IPCC, 2022). Severe droughts such as the one in the Horn of

Africa (UNHCR, 2023) that lasts for several years by now, or the ones in large parts of

Europe in recent summers (Rousi et al., 2023) are occurring with increasing frequency and

intensity. Conversely, too much water can be a threat, too. Cases of floods, landslides or

soil erosion show the harmful potential of a surplus of water. The flooding in Belgium,

France, Luxembourg, and western Germany in July 2021 (Tradowsky et al., 2023), in Iran

and Pakistan in summer 2022 (World Economic Forum, 2023), or in Greece and Libya in

September 2023 are recent examples of the catastrophic consequences of enormous river

discharges.

Precipitation is the prime direct source for water on land. Hence, the amount and distri-

bution of precipitation directly causes both extreme shortcomings and surpluses of water.

Too little water is usually associated with a shortage of rainfall over several days, months,

or even years (Mishra and Singh, 2010). For extreme precipitation, on the other hand,

the crucial time spans can be distinctly different. While flooding can be related to longer
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periods of strong precipitation in a region, they can in many cases be linked to relatively

short events of extreme precipitation. Flash floods, in particular, are often the direct result

of such exceptional events that may last not more than a few hours (Hapuarachchi et al.,

2011).

In order to learn about water availability, quantitative precipitation estimation (QPE) is

of greatest relevance. QPE is required to answer crucial questions like: how much did it

rain over a particular river catchment? What was the peak rain rate of a given event?

Where and when exactly did it occur? The basis for answering these and similar questions,

is to quantify precipitation accurately in space and time. The better the knowledge about

precipitation the better the forecast of river discharges and water availability on the land

surface. Such forecasts enable more suitable response measures – whether, for example, in

mitigating the damage induced by floods or optimizing the irrigation arrangements on a

crop field. While QPE considers both solid and liquid precipitation, focus can be given to

rainfall as its predominant type.

Whereas accurate rainfall estimation is highly valuable, it is also very challenging. Regard-

ing flash floods, for example, forecasting errors in the rainfall field are considered the largest

source of uncertainty (Hapuarachchi et al., 2011). The difficulties in quantifying rainfall

can be explained to a large extent by its specific and fairly unique properties. For example,

rainfall is very different from other meteorological parameters such as temperature or pres-

sure in that it displays intermittency. That is, there is a binary element to rainfall as it can

be zero or nonzero and therefore, it cannot be modeled as a continuous function in space or

time. And noteworthy, zero rainfall is much more common than nonzero rainfall, particu-

larly when considering rather short time spans (Schleiss et al., 2011). Moreover, rainfall can

be highly variable: At a given point in time, for instance, there might be extreme rainfall

at one location, whereas it remains dry relatively close by. Similarly, it may be dry only a

few minutes after extreme rainfall at a given location. Furthermore, aggregating over time

influences the spatial variability, and vice versa: In a given region, for example, the spatial

variability may be moderate when considering rainfall amounts over long periods (such as

years or months) but increases when considering amounts over short periods (such as hours

or minutes) (Krajewski et al., 2003).

In spite of these challenges, rainfall quantification should ideally be accurate and cover large

spatial and temporal extents consistently with a high resolution. Neither the instantaneous

rainfall amount of one isolated minute, nor the temporal continuous information for only

a tiny subset of a river catchment is of much help to forecast river discharges, or any

other hydrologically relevant information. As will become clear in the following, especially

the wide and dense spatial coverage of rainfall information is a major challenge involving

political and scientific obstacles.
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1.2. State of the Art

1.2 State of the Art

1.2.1 Rainfall Observations

In order to gain knowledge of rainfall, the fundamental approach is to measure it. No-

tably, also (numerical) weather models can provide information on rainfall and these have

improved significantly with respect to quality and resolution in recent decades Bauer et al.

(2015). However, even the development and the validation of such models depends on actual

observations as the primary source of information.

Several diverse types of measurement instruments exist to observe rainfall amounts: rain

gauges, weather radar and satellites provide information on rainfall in quite different ways

and each of those has its specific advantages and shortcomings. Next to such dedicated

instruments, also information from other sources are used opportunistically.

Rain gauges have been used since ancient times (Strangeways, 2010) and still play an im-

portant role in modern rainfall observation. A rain gauge directly measures the amount of

rainfall in time at a specific location. While their observations can be considered accurate

(Lanza and Vuerich, 2009), rain gauge measurements are restricted to the tiny local area in

the order of 0.02 m2 per sensor. For the spatially highly variable rainfall, this lack of spatial

representativeness is a limiting factor (Ciach and Krajewski, 2006).

Newer, but well-established rainfall observations come from weather radars. They provide

area-wide information via remote sensing and, hence, overcome the rain gauges’ lack of

spatial coverage. However, weather radars also have shortcomings stemming from the in-

direct measurement, beam blockage, ground clutter and the fact that rainfall is observed

at significant height above ground (Hazenberg et al., 2011; Berne and Krajewski, 2013).

Moreover, weather radars are simply not available in many regions as their installation and

maintenance involve high costs.

Additionally, remote sensing of rainfall can be achieved by satellites of various types. Ac-

curate and spatially high-resolved information, e.g., is provided by the Global Precipitation

Measurement Mission (Hou et al., 2014; Skofronick-Jackson et al., 2017), which involves

a core satellite with two radar sensors. However, being a non-stationary low Earth or-

bit satellite, it provides only snapshots in time. These can be combined with radiometer

measurements of other satellites to provide continuous coverage (e.g., via the Integrated

Multi-satellite Retrievals for GPM (IMERG) product (Huffman et al., 2020)), for which,

however, the accuracy and quality of the temporal continuity is not comparable to a pure

radar observation. Geostationary satellites (e.g., MSG SEVIRI (Aminou, 2002)) can also

be used for rainfall estimation via visible or infrared channels. Their major disadvantage is

considerable uncertainty stemming from the indirect measurement of clouds’ top.
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Since the aforementioned dedicated sensors are not free of limitations, opportunistic sensing

devices have been considered as an additional source of information. These are devices

which are not primarily installed to measure rainfall, at least not on a professional level,

but which produce data that allows a rainfall estimation nonetheless. As they are installed

and primarily used for other purposes, they usually require no additional installation or

maintenance costs. Opportunistic sensing can be used as a support for dedicated sensors,

but more importantly, it may be the only source of information in regions where no dedicated

sensors exist.

Commercial microwave links (CMLs) are arguably the best studied and most widely used

opportunistic sensing devices for rainfall monitoring. They have been used for almost two

decades. A CML constitutes a line of sight connection between two sites established by

the transmission of microwave radiation between directional antennas. CMLs have the

primary purpose of facilitating cell phone communication or other types of communication

infrastructure via the exchange of microwave radiation. The radiation is attenuated by rain

which allows an estimation of path-averaged rain rates based on observed signal intensities

(Messer, 2006; Leijnse et al., 2007). CMLs are very abundant, notably also in regions

where dedicated sensors are not (Overeem et al., 2016b). Moreover, they measure close to

the ground and can be used even in mountainous terrain which is problematic for weather

radars (Smiatek et al., 2017; Nebuloni et al., 2022). Unfortunately, being opportunistic

sensors, CMLs lack strict conventions and require elaborate processing routines, which are

not unified but usually adapted to individual data sets. Moreover, they provide only average

rainfall information along their paths, and they are limited with respect to estimating solid

precipitation (Overeem et al., 2016b; Graf et al., 2020).

In summary, no type of observation alone provides the desired quality of rainfall information.

Often, a combination of data sources increases the quality (McKee and Binns, 2016; Ochoa-

Rodriguez et al., 2019) and such combined products are used on an operational basis, e.g.,

by meteorological services. Typically, rain gauges are used to adjust spatial satellite or radar

products. However, dedicated sensors are still limited and most importantly not available

everywhere. Hence, rainfall estimation can benefit from the consideration of opportunistic

CML data. For this purpose and despite the progress in recent decades, further research

is required to address the specific challenges involved in their usage. Most prominently

addressed in this thesis, is the question: how to best derive spatial rainfall estimates over

large extents from CML observations.

1.2.2 Spatial Rainfall Estimates

Whenever CMLs or rain gauges should be considered independently and not only to support

spatial (radar- or satellite-based) products, a crucial question needs to be addressed: how

to derive spatial estimates from scattered local observations? While the observations may
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provide extensive and highly-resolved information with respect to time, the spatial coverage

is naturally always limited as the rainfall sensors cannot be located everywhere.

Consequently, using CML or rain gauge data requires some way of spatial interpolation to

estimate rainfall in space, that is, to estimate rainfall maps. This is particularly challenging

due to the high spatial variability of rainfall in combination with the relatively low sensor

density. For CMLs, moreover, it is not obvious how to account for their path-averaged

nature: Their measurement involves uncertainty of the exact location of rainfall along the

CML paths. Furthermore, the path-averaged information cannot fully represent extreme

values as they are naturally smoothed by the process of averaging. Spatial estimation

techniques should ideally be able to account for these effects.

CML-based rainfall maps have been estimated in a variety of studies (e.g., Zinevich et al.

(2008); Goldshtein et al. (2009); Overeem et al. (2013, 2016b); D’Amico et al. (2016); Graf

et al. (2020); Roversi et al. (2020)). Partly, these maps have been generated by standard

ways of spatial interpolation like Inverse Distance Weighting (Graf et al., 2020) or Ordinary

Kriging (Overeem et al., 2013, 2016b; Roversi et al., 2020). In these attempts the path-based

nature of the observation is disregarded and the CML is considered a virtual gauge at the

center of the path. While these attempts provide meaningful results, they are certainly not

optimal as information is lost. There have also been studies focusing on the interpolation

part and on how to best use the path-averaged CML information. Goldshtein et al. (2009)

considered not only the midpoint but several points along the CML paths. However, still

not the full integral character is represented by this method, and its calculation is sensi-

tive to rain cell characteristics. Zinevich et al. (2008) and D’Amico et al. (2016) applied

different approaches of tomographic models to estimate spatial rainfall. While the latter

study considered only an area of a few hundreds of square kilometers and three CMLs, the

former considered a relatively large area of 3200 m2 but obtained accurate high spatial res-

olution rainfall fields only for an urban subregion where the CML density was particularly

high. A different approach of Bayesian assimilation (Scheidegger and Rieckermann, 2014)

showed potential in a small setting but with the shortcoming that a Gaussian distribution

is required, which does not apply for a typical rainfall distribution. Another method was

applied by Haese et al. (2017): They showed the potential of stochastic reconstruction via

the so-called Random Mixing (RM) method (Bárdossy and Hörning, 2016b) for the usage in

rainfall estimation. The method enables the generation of rainfall fields that can represent

rainfall statistics and account for the effect of path-averaging of CMLs. These promising

results, however, have so far only been obtained on the scale of rather small river catchments

with a limited amount of data. So far, no study has focused on the aspect of interpolation

and at the same time considered particularly large spatial extents and amounts of data.
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1.2.3 Spatial Extension of Rainfall Estimates

When considering large spatial extents a crucial barrier is imposed by political and or-

ganizational boundaries. Both the networks of dedicated sensors and those of CMLs are

commonly organized on regional or national levels. Generating consistent rainfall estimates

across boundaries is not straightforward as data acquisition, data quality control, and pro-

cessing routines can vary significantly between independent networks. Nevertheless, the

generation of transnational rainfall estimates has been addressed: for example, European

composites are generated via merging of individual radar data sets by the European Mete-

orological Network (EUMETNET) in the OPERA program. Despite major advancements,

there remain various challenges involved in the process of merging and substantial limita-

tions in the quality of the composites (Huuskonen et al., 2014; Haase and Johnson, 2018).

While it is difficult even for dedicated sensors to generate transboundary rainfall products, it

is arguably even more challenging for CMLs. Firstly, data access and hence data exchange

across borders is generally very limited as individual agreements with network providers

need to be established (Chwala and Kunstmann, 2019). Moreover, CML networks are not

designed to measure rainfall and hence no conventions and homogeneity of data quality

exist as, for example, for rain gauge or radar networks. Independent CML data sets have

their specific hardware characteristics, e.g., different distributions of antenna distances, dif-

ferent radiation frequencies, and different types and rates of recording. That is, for several

historical reasons there exists a significant heterogeneity among independent national CML

networks. The differences affect the usability of data as well as rainfall retrieval and map-

ping processes. Hence also the complex processing routines that are necessary to derive

rainfall from raw observable data, are closely adapted and specific to individual data sets.

Actually, these challenges have so far prevented transboundary CML-based rainfall estima-

tion altogether. While many studies have generated rainfall maps on different scales, the

countrywide scale, e.g., of the Netherlands (Overeem et al., 2016b) or Germany (Graf et al.,

2020), could not yet be transgressed. All examples of CML-based rainfall estimation are

based on individual regional or at most national data sets obtained from single network

providers. Therefore, it is utterly unclear whether two independent CML data sets from

different countries and different network providers can be combined and processed jointly to

estimate rainfall across national borders. This research gap disguises whether the enormous

potential given by the global availability of CMLs could actually be utilized.

1.2.4 Spatial Validation

After generating rainfall maps, a common step is their validation via performance metrics

considering a reference. Many of the above mentioned studies that focus on CML-based

rainfall maps have based their conclusions of the quality of reconstructions on specific per-
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formance metrics. The usual metrics comprise bias, correlation coefficient, coefficient of

variation, etc. which are central, e.g., in Zinevich et al. (2008); Overeem et al. (2013); Graf

et al. (2020). However, it is also known that these metrics have shortcomings and often

cannot give a final answer to the question whether a reconstruction is actually a good repre-

sentation of the reference that is regarded as the truth (Ebert, 2008; Gilleland et al., 2009).

Some crucial aspects of the reconstruction such as a representation of reasonable rainfall

patterns can hardly be assessed by such metrics.

Several other classes of performance metrics exist which enable a broader quality evaluation

(Gilleland et al., 2009), however, few of these have been consulted in CML-based rainfall

maps in earlier studies. For example, the so-called SAL metrics (Wernli et al., 2008) provide

a useful way of validating rainfall patterns by focusing on the correct representation of

rainfall objects within the maps. The extension (e)SAL (Radanovics et al., 2018) is even

suitable to validate stochastic ensemble-based rainfall maps. These metrics have so far been

considered mainly for the validation of model-derived rainfall fields (Portele et al., 2021;

Laux et al., 2021), but not for CML-derived maps.

1.3 Research Questions and Objectives

Based on the state of the art and the research gaps presented in the previous chapter, the

overarching research questions of this thesis are formulated as follows:

• Can two large independent CML data sets be combined and processed jointly to gen-

erate consistent transboundary rainfall maps?

• What are the benefits of rainfall maps generated by stochastic reconstruction via

Random Mixing (RM) using large CML and rain gauge data sets?

These questions are addressed in this thesis via two main case studies. The first objective is

to combine two independent and heterogeneous CML data sets from Germany and the Czech

Republic and to produce transboundary rainfall maps. In this case study a central aspect

considered is the processing of CML raw data: The aim is to homogenize the individual CML

data sets to allow for joint and consistent rain rate retrieval and mapping procedures. This

involves a detailed investigation of aspects of data quality. Adapted and new algorithms

are tested in a range of combinations, and their effect is analyzed via an evaluation of the

estimated path-averaged rainfall per CML and the rainfall maps.

The second main objective of this thesis is the generation of rainfall maps using a combi-

nation of CMLs and rain gauges in Germany in a stochastic reconstruction approach. The

method RM is used for the first time with a combination of large (countrywide) rain gauge

and CML data sets. These maps are thoroughly evaluated by different sets of performance

indices with the particular aim of quantifying the quality of the representation of rainfall pat-
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terns via the so-called eSAL performance metrics. Moreover, the advantage of the stochastic

approach and its ability for ensemble calculation are evaluated. The evaluation includes a

direct comparison of RM with a deterministic reconstruction via Ordinary Kriging (OK).

Additionally, this thesis addresses technical aspects of the applied methods as these are in-

separably connected to answering the scientific questions: first, the reconstruction method

RM had to be adjusted to enable its usage with the large data sets considered in this thesis.

In this context, the method and its subroutines were analyzed with respect to their compu-

tational cost and runtime requirements. Moreover, the calculation of the eSAL performance

metrics that were applied to quantify aspects of rainfall patterns was implemented in the

Python programming language.

1.4 Innovation

This thesis provides several insights in CML-based rainfall estimation and addresses various

aspects of processing raw data, spatial reconstruction and validation. It combines data and

methods for reconstruction and validation in several new ways. Moreover, it presents solu-

tions to technical obstacles in the methods of rainfall quantification. The main innovations

are:

• the generation of the first transboundary CML-based rainfall maps;

• the development of the methodology to allow for combining independent data sets of

CMLs;

• the generation of the first countrywide CML-based rainfall reconstruction via RM;

• the contribution to overcome obstacles for the application of RM with large CML and

rain gauge data sets; and

• the implementation of the calculation of the (e)SAL performance metrics in Python.

1.5 Structure of this Thesis

The remainder of this thesis is broadly structured into three parts: Chapters 2–5 describe

theory, data, and methods, Chapters 6 and 7 present the results, and Chapter 8 provides

final conclusions. An overview of the main aspects of CML-based QPE, its validation, and

how the chapters of this thesis relate to those aspects is presented in Figure 1.1.

In Chapter 2 essential theory of the considered sensor types, as well as the actually used

data sets are described. Subsequently, Chapter 3 presents general challenges and the ap-

plied algorithms of CML data processing for rainfall estimation. Chapter 4 introduces aims

and concepts of spatial reconstruction methods and describes the stochastic reconstruction
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Figure 1.1: Thesis structure by reference to a typical CML-based QPE procedure (left). The
procedure starts when rainfall affects the raw signal data of CMLs, which is processed via
quality control and rain rate retrieval algorithms to obtain path-averaged rainfall informa-
tion; based on this scattered information, a rainfall map is generated via a reconstruction
method and the validation of the map provides performance metrics. The results are pre-
sented in two case studies each addressing one of the posed research questions and each
focusing on different parts of the QPE procedure.

method RM. Chapter 5 is about the validation of rainfall estimates and describes several

performance metrics with the focus on the (e)SAL metrics. Chapter 6 is about results of

the case study on the combination of independent CML data sets that are used to generate

transboundary rainfall maps. Chapter 7 presents the results of the case study on country-

wide rainfall maps using CML and rain gauge data, the RM reconstruction method, and the

eSAL validation approach. Finally, Chapter 8 provides answers to the research questions,

a discussion of the results, and an outlook on potential future research in this field.

1.6 Publications

Note that the results presented in Chapter 6 and Chapter 7 are based on the two publications

• Blettner, N., Fencl, M., Bareš, V, Kunstmann, H., and Chwala, C. Transboundary

rainfall estimation using commercial microwave links. Earth and Space Science, 10(8),

2023. doi: 10.1029/2023EA002869

Abstract: Unlike actual rainfall, the spatial extent of rainfall maps is often deter-

mined by administrative and political boundaries. Similarly, data from commercial

microwave links (CMLs) is usually acquired on a national basis and exchange among
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countries is limited. Up to now, this has prohibited the generation of transboundary

CML-based rainfall maps despite the great extension of networks across the world. We

present CML based transboundary rainfall maps for the first time, using independent

CML data sets from Germany and the Czech Republic. We show that straightforward

algorithms used for quality control strongly reduce anomalies in the results. We find

that, after quality control, CML-based rainfall maps can be generated via joint and

consistent processing, and that these maps allow to seamlessly visualize rainfall events

traversing the German-Czech border. This demonstrates that quality control repre-

sents a crucial step for large-scale (e.g., continental) CML-based rainfall estimation.

• Blettner, N., Chwala, C., Haese, B., Hörning, S., and Kunstmann, H. (2022). Combin-

ing commercial microwave link and rain gauge observations to estimate countrywide

precipitation: A stochastic reconstruction and pattern analysis approach. Water Re-

sources Research, 58(10), 2022. doi: 10.1029/2022WR032563

Abstract: Accurate spatiotemporal precipitation quantification is a crucial pre-

requisite for hydrological analyses. The optimal reconstruction of the spatial distri-

bution, that is, the rainfall patterns, is particularly challenging. In this study, we

reconstructed spatial rainfall on a countrywide scale for Germany by combining com-

mercial microwave link and rain gauge observations for a better representation of

the variability and spatial structure of rainfall. We further developed and applied

the Random-Mixing-Whittaker-Shannon method, enabling the stochastic reconstruc-

tion of ensembles of spatial fields via linear combinations of unconditional random

fields. The pattern of rainfall objects is evaluated by three performance characteris-

tics, that is, ensemble Structure-, Amplitude-, and Location-error. Precipitation esti-

mates obtained are in good agreement with the gauge-adjusted weather radar product

RADOLAN-RW of the German Weather Service (DWD) which was used as a ref-

erence. Compared to reconstructions by Ordinary Kriging, Random Mixing showed

clear advantages in the pattern representation via a five times smaller median structure

error.
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Chapter 2

Data: Rainfall Observations

This chapter gives an overview of observational data that is used in this thesis. It includes

theoretical background as well as an introduction to the specific used data sets. Dedicated

devices, that is, rain gauges and weather radar are covered in Section 2.1. The opportunistic

sensing via commercial microwave links (CMLs) is the topic of Section 2.2.

2.1 Dedicated Rainfall Sensors: Rain Gauges and Weather

Radar

2.1.1 Sensing Principle

As mentioned above, rain gauges have a long history and provide accurate but very local

observations. They constitute the standard ground-based rainfall information and are in-

stalled and maintained by many meteorological services and other institutions on various

scales. Rain gauges directly measure the amount of precipitation in a usually cylindrical

container (see Figure 2.1). The exact way of measuring can vary and has evolved over time.

In the simpler and earlier versions, rainfall amount was read from a scale at the side of the

device. Modern gauges usually measure by the number of tilts of a scale (tipping-bucket) or

by weighing the amount of water that entered the container. The devices are often heated

to allow for measuring even solid precipitation. Contemporary instruments provide accurate

measurements even though wind induced bias has a considerable effect (Pollock et al., 2018;

Por and Sevruk, 1999). Depending on the network size and density, only moderate costs for

installation and maintenance are required. Nonetheless, on a global scale, the number of

rain gauges and particularly the orifice area is very limited (Lorenz and Kunstmann, 2012;

Kidd et al., 2017).

Weather radars enable rainfall measurement via remote sensing and thereby provide area-

wide information quite in contrast to rain gauges (see Figure 2.1). A base station sends out

radio waves which are reflected by snow, hail, or rain droplets. From the reflected signal
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Figure 2.1: Schematic simplified illustration of the operating principles of the three sensor
types used in this thesis: weather radar, rain gauge, and CML. The top row shows how
rainfall is sensed in side view, and the bottom row shows the area (in dark yellow) that
can be observed this way, in top view. The width of the CML observation orthogonal to
the path direction is defined by the so-called Fresnel zones and very short compared to
the distance between the antennas. The observation is therefore generally considered to
represent a simple line. Note that the drawings are not true to scale.

intensity the amount of rainfall can be deduced using the power law relation

Z = αRβ (2.1)

where Z is the reflectivity calculated by the observed returned radiation intensity and R the

rain rate. The parameters α and β depend on the kind of rainfall and especially the so-called

drop size distribution (DSD) (Ulbrich and Lee, 1999). The DSD describes the number of

drops of various diameter classes within a volume of air and is a crucial parameter influencing

the measurements of remote sensing devices. Typically, the values for α range between

roughly 200 and 520 and those of β between 1.2 and 1.8 (Ulbrich and Lee, 1999). Considering

the arrival time of the reflected signal also allows the positioning, i.e., the distance of the

rainfall from the base station. Thereby, weather radars enable area-wide rainfall estimation

in a radius of more than 100 km in the surrounding of the base station. However, the

local accuracy is not comparable to that of rain gauges and usually the spatial resolution of

radar products is at best 1 km × 1 km (Ochoa-Rodriguez et al., 2019). Furthermore, it is
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important to note that several processes such as ground clutter or (partial) beam blockage

can corrupt this measurement (Berne and Krajewski, 2013). These effects limit the quality

of rainfall estimation from weather radars especially in mountainous terrain. Moreover,

the height above the ground of the measurement increases with the distance from the base

station and hence the validity of the measurement for the actual precipitation at ground

level diminishes. A relatively dense network that involves redundancy through overlapping

observations of single radar stations can help to reduce the limitations. However, dedicated

weather radars and especially dense networks of these exist only in limited parts of the

world.

2.1.2 Used Data Sets

For the studies of this thesis, rain gauge data and a rain gauge-adjusted radar product

(RADOLAN-RW1) of the German Weather Service (DWD) were used. Both the rain

gauge and radar network have a high quality with respect to spatiotemporal coverage com-

pared to the global average. RADOLAN-RW is based on data from 17 dual-polarization

doppler radars that provide spatial rainfall information on a 900 km × 900 km grid with a

1 km × 1 km spatial and an hourly temporal resolution. The radar information is adjusted

to the local information of over 1000 rain gauges via additive and multiplicative correction

schemes (Bartels et al., 2004). These rain gauges are partly of the DWD network, but are

supplemented by gauges organized on the level of German federal states and also by gauges

of the meteorological services of all the surrounding countries. RADOLAN-RW is used as

a reference data set throughout this thesis. RADOLAN-RW was chosen for this purpose as

it is the official real-time product for quantitative precipitation estimation of DWD and has

been used in several studies, such as Graf et al. (2020) and Polz et al. (2020).

Apart from the rain gauges used for the radar adjustment, rain gauges from DWD are

also used for generating reconstructions. They are considered as input data in combination

with CMLs in one of the two case studies (Chapter 7). The network used for this purpose

comprises 953 rain gauges distributed over Germany (see Figure 2.2). These rain gauges

provide minutely information on rainfall amounts which are aggregated to hourly amounts

for their application in this thesis. Note that this data set is not independent but a subset

of the one used for the rain gauge adjustment in RADOLAN-RW.

1https://www.dwd.de/DE/leistungen/radolan/radolan.html, last access October 13, 2023
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Figure 2.2: Map showing the spatial coverage of all used data. These are rain gauges and
RADOLAN-RW of DWD, and CMLs from Germany and the Czech Republic. Note that the
limited sensor density in north-eastern Germany and the eastern part of the Czech Republic
does not represent a general lack of sensors in those regions, but only a lack of sensors of the
particular providers from which the data is obtained. The coordinates represent the distance
from the lower left corner of the RADOLAN-RW projection, which is used throughout this
thesis.
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2.2 Opportunistic Sensors: CMLs

2.2.1 Sensing Principle and Previous Applications

CMLs are part of cellular networks. While such networks can be used for different tasks

that require regional data exchange, their typical purpose is the facilitation of cell phone

communication. That is, they provide the infrastructure to forward telecommunication

data across spatial distances. CMLs as the building blocks of these networks constitute the

connection between two specific directional antennas mounted at nodes of the network. The

connection is established via the exchange of microwave radiation at frequencies between

approximately 5 GHz and 40 GHz (K-band) or 70–90 GHz (E-band). Regarding rainfall

estimation the crucial property of this microwave radiation is the fact that it is significantly

scattered and absorbed by rain droplets (see Figure 2.1). That is, if it rains along the path

of a CML, the signal intensity is attenuated more than it would be without rainfall. Hence,

the difference between the transmitted intensity at one antenna and the received intensity

at the other antenna allows an estimation of the rain rate along the CML path. This effect,

which is undesired from the perspective of the network operator, enables the exploitation

of CML data in the realm of rainfall estimation.

The observable raw data of a CML usually consists of transmitted and received signal levels

(TSL and RSL, respectively) recorded at the two involved antennas. Typically, values are

recorded either instantaneously on minutely or even sub-minutely basis (Chwala et al., 2016;

Fencl et al., 2015; Nebuloni et al., 2022), or as minimum and maximum values over a 15-

minute period (Messer, 2006; Overeem et al., 2013). Note that the data transmission is

bi-directional which means that from both antennas both transmitted and received signal

levels can be obtained. The so-called two sublinks of a CML, which refer to the opposing

directions, hence provide two sets of observations for the same path. The width of the

traversed path, which is defined by so-called Fresnel zones, is very short such that for

practical application it is usually not considered. From TSL and RSL of a given sublink,

the attenuation (later referred to as total loss or TL) can be calculated. Then, considering

aspects such as random noise and attenuation stemming from other sources (see Chapter 3),

the data enables the estimation of the average rainfall along the CML path applying the

following power-law relation:

k = aRb. (2.2)

In Equation 2.2, k is the specific attenuation in units dB/km, R is the rainfall rate in mm/h, a

and b are parameters dependent on the frequency and polarization of the radiation, and of the

DSD and drop temperature (Olsen et al., 1978). More details about the calculation are given

in Chapter 3. A beneficial aspect of this equation for rainfall estimation is that it is almost

linear, i.e., b is close to 1, for radiation of approximately 33 GHz frequencies (Atlas and
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Ulbrich, 1977). A large part of CMLs operates relatively close to this frequency so that b ≈ 1

can be assumed for them. Moreover, at these frequencies the equation is rather independent

of the DSD (Chwala and Kunstmann, 2019). The International Telecommunication Union

provides recommendations for values of a and b dependent on frequencies and polarizations

(ITU-R, 2005).

While the rain-induced attenuation of microwave radiation of millimeter wavelengths has

been known for many decades (Hogg, 1968), the usage of CMLs in the realm of rainfall

quantification has evolved and become established over the past 15–20 years. The first

applications show the potential via comparing the rainfall estimation from seven CMLs

in Israel (Messer, 2006) and two CMLs in the Netherlands (Leijnse et al., 2007) to rain

gauges and weather radar observations. After these initial studies that focused on feasibility,

research has evolved to estimate rainfall maps at various scales considering cities (Fencl et al.,

2015), regions (Zinevich et al., 2008; Roversi et al., 2020), or whole countries (Overeem et al.,

2013, 2016b; Graf et al., 2020). However, data processing from raw observations to final

products has always been a crucial and challenging aspect. The developed algorithms were

not always physically based, but often heuristically adjusted to the available data sets.

Hence, other studies focused on a better understanding of specific aspects that need to be

considered in the processing, like classification of wet periods (Schleiss and Berne, 2010;

Wang et al., 2012; Habi and Messer, 2018; Polz et al., 2020), the estimation of attenuation

induced by wet antennas (Leijnse et al., 2008; Schleiss et al., 2013; Fencl and Vojtěch, 2018;

Valtr et al., 2019; Moroder et al., 2020; Pastorek et al., 2021), or the best application of

CMLs in mapping (Goldshtein et al., 2009; Zinevich et al., 2008; D’Amico et al., 2016;

Haese et al., 2017; Eshel et al., 2020, 2021). These aspects are described in more detail in

Chapter 3 and Chapter 4.

Many studies have focused on Europe or Israel where commonly dedicated observational

networks like rain gauges or weather radar are present. However, since early on, it has

been clear that the potential of CML-based rainfall estimation is largest in countries where

other observations are scarce (Gosset et al., 2016). Burkina Faso provides an example for a

country with no weather radar and very limited number of rain gauges, where, conversely, the

availability of rainfall is particularly crucial for agricultural management and food security.

There, the potential of CMLs for rainfall estimation was first shown by Doumounia et al.

(2014) and recently the first purely CML-based rainfall maps have been generated (Djibo

et al., 2023). The applicability has also been shown in Sri Lanka (Overeem et al., 2021) and

Kenya in combination with satellite data (Kumah et al., 2022).

2.2.2 Used Data Sets

Two different CML data sets are used in this thesis. One of those comprises 3904 CMLs

(Ericsson MINI-LINK) from Germany operated by Ericsson. The data is retrieved in real
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time with a 1-minute resolution (Chwala et al., 2016). The network comprises CMLs with

a length distribution ranging from 0.2 km to 29 km whereas 50% (the interquartile range)

of CMLs have lengths between 4 km and 11 km. The frequencies range from approximately

7 GHz to 39 GHz with an interquartile range from 19 GHz to 26 GHz (see Figure 2.3).

Approximately 90% of the German CMLs have a vertical polarization.

Figure 2.3: Length and frequency distributions of the two used CML data sets from Germany
(DE) and the Czech Republic (CZ).

The second data set comprises CMLs from the Czech Republic. These are 2980 CMLs (also

MINI-LINK from Ericsson) owned by T-Mobile Czech Republic, which provide data also

with a 1-minute temporal resolution. The CMLs are located mostly in the Western part of

the country (Figure 2.2). Compared to the German network, the Czech network is distinctly

more variable with respect to length and frequency distributions. The lengths range from

0.03 km to 34 km (interquartile range: 1.0 km to 5.4 km) while frequencies range from

8 GHz to 86 GHz (interquartile range: 23 GHz to 81 GHz). The polarization of all Czech

CMLs is vertical.

The German data set is used throughout this thesis while the Czech data set is only used

in Chapter 6. The exact way of data processing differs among the studies and is explained

in the respective Chapters 6 and 7. General aspects of CML data processing are presented

in the following chapter.
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Chapter 3

Methods: CML Data Processing

CMLs are opportunistic sensors that are not originally designed to provide reliable rainfall

information. Hence, there are specific challenges involved in using them for rainfall estima-

tion, which go beyond the ones that need to be considered when using dedicated sensors.

This chapter is about these challenges and about common processing steps that enable

the retrieval of rainfall information nonetheless. It deals with the aspects that need to be

considered to generate path-averaged rainfall information; the aspect of using this rainfall

information for spatial reconstructions is then covered in Chapter 4.

Section 3.1 deals with aspects of CML processing in general terms. It does not start with

the raw data but also considers the aspect of accessing the data in the first place as this is

a crucial procedural challenge in the application of CMLs as rainfall sensors. Regarding the

subsequent data processing, the described aspects are rather universal, i.e., related to most

CML data. However, the exact way of addressing them is highly adjusted to individual data

sets. The common basis of the processing algorithms applied in this thesis is summarized

in Section 3.2.

3.1 Deriving Rain Rates from CML Observations

3.1.1 Accessing the Data

In theory, the amount of CML data is enormous. CMLs are very abundant globally as

they provide important infrastructure for communication networks that are increasingly

deployed around the world. However, in spite of this huge potential, only a very low share

of CML data could so far be used for research purposes. The major limiting factor is

the difficulties involved in accessing the data. For this, an individual cooperation with

the network providers needs to be established and maintained. The network providers,

however, generally have no operational advantage in sharing the data. On the contrary,

they are usually not inclined to have the locations of the CML antennas publicly available.
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Even if access is granted, the technical infrastructure needs to be established to poll and

store the data, ideally in real-time. Mounting data loggers at the antennas is usually not

feasible due to the involved costs and efforts at least for large data sets (Chwala et al., 2016).

Fortunately, the network operators usually store data for monitoring the quality of the

connections via network management systems. This data can, from a technical perspective,

be obtained relatively easily. However, the obtained data is not necessarily optimal for the

usage in rainfall retrieval. Commonly, the data either comprises the instantaneous recording

of transmitted and received signal levels (TSL and RSL) (Fencl et al., 2015; Chwala et al.,

2016; Andersson et al., 2022) or minima and maxima of signal levels within periods of 15

minutes (Messer, 2006; Overeem et al., 2016b; Nebuloni et al., 2022).

3.1.2 Dealing with Data Quality Issues

The raw CML data obtained from the network provider needs to be investigated thoroughly

and not all of it can be used for rainfall estimation. Usually, a considerable part of the data

is affected by issues of low data quality.

CMLs can strongly be influenced by multi-path propagation, reflection, or refraction of the

radiation (Upton et al., 2005). Also water vapor can lead to attenuation that impairs the

observed signal (David et al., 2009; Fencl et al., 2020). Moreover, CML hardware charac-

teristics such as the frequency of radiation and the length (i.e., the distance between the

antennas) are crucial aspects affecting the sensitivity to rainfall. CMLs with low frequencies

and short lengths, for instance, may not be usable for rain rate retrieval as they are very in-

sensitive. While some CMLs generally provide non-usable data, e.g., based on the hardware

characteristics, others may show only periods of bad quality. Sometimes the reasons for

issues of data quality can be explained at least partly by physical (atmospheric) phenomena

such as dew, wind, temperature or insolation, but sometimes they cannot. Some issues

may instead depend on technical details of data logging or aspects of the engineering that

are hardly identifiable without consultation with the network provider; such consultation,

however, is generally not envisaged and not feasible under common arrangements between

research institutions and the providers.

The data quality issues usually manifest as fluctuations, spikes, steps, drifts, or gaps in the

time series of the raw data (see Figure 3.1). Unreliable CMLs are commonly filtered from

the analyses in research applications. Fencl et al. (2015), for instance, did this filtering based

on visual inspection which, however, is only possible in relatively small data sets. Overeem

et al. (2013), Overeem et al. (2016b), and Roversi et al. (2020) remove CMLs based on

the observations from the vicinity, and Graf et al. (2020) developed a routine that takes

into account the rolling standard deviation of each CML’s time series to filter those with

high amount of fluctuations that cannot be caused by actual rainfall. Other more technical
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quality issues like implausible metadata or missing time steps are also addressed in Overeem

et al. (2016a) and Graf et al. (2020).

Figure 3.1: Examples of RSL time series of four different CMLs for a period of one week.
One CML shows no apparent issue with respect to data quality while the others display
data that is impractical to use for rainfall retrieval. Shown issues comprise: many gaps,
strong fluctuation, or drifts in a diurnal pattern. The actual rain rate retrieval for the one
CML without issues is shown for one rainfall event in Figure 3.2. Note that absolute RSL
values can vary significantly between different CMLs which is why information about TSL
is needed in addition.

3.1.3 Rain Rate Retrieval

Once a clean data set is available after quality control, the process of rain rate retrieval can

begin. Although the erroneous data has been removed at this stage, noise is still present.

Hence, the retrieval part involves several steps like the detection of rain events, the account

for the background attenuation, and the correction for the attenuation induced by wet

antennas. Considering these aspects is mandatory in order to estimate the attenuation that

is actually induced by rainfall. Finally, the rain-induced attenuation is used to calculate the

average rain rate along the CML path.

The recorded data consists of TSL and RSL either instantaneously sampled or given as

minima and maxima over usually a 15-minute period. Often these signal levels are not

independent of each other: that is, the TSL may be increased for compensation via automatic

transmit power control (ATPC) when the RSL drops. In this case, the difference of TSL
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and RSL, referred to as total loss (TL)

TL = TSL− RSL (3.1)

is required for inferences on rainfall. If no ATCP is active, the TSL values are mostly

constant and hence the RSL values can be used directly (Overeem et al., 2016a).

Naturally, the signals are not free of random noise. In order to not estimate low rain rates

at every noisy period, the actual rainy periods need to be detected. More precisely, it is

important to classify every part of the time series as either wet or dry. A wrong balance of

this classification can easily lead to overestimation and false positives, or underestimation

and false negatives. Many approaches have been proposed to perform such a classification.

Some of those are based on the patterns observed in the time series of single CMLs via clas-

sifying periods of high variability: via Fourier transform (Chwala et al., 2012), the rolling

standard deviation (Schleiss and Berne, 2010; Wang et al., 2012; Graf et al., 2020), or ma-

chine learning in the form of convolutional neural networks (Polz et al., 2020). Furthermore,

there are approaches that consider the information from neighboring CMLs (Overeem et al.,

2016a) or from transmission errors (Habi and Messer, 2018). Also, other data sources like

rain gauges are used for this step (Fencl et al., 2015).

The signal of CMLs is always attenuated, that is, TSL is higher than RSL even if it does not

rain along the path. Hence, after the wet periods are identified, a baseline level (BL) needs

to be defined for those periods. This BL can be subtracted from the TL. The approaches to

define the BL depend on the way the data is recorded but usually consider a constant level

(Roversi et al., 2020; Graf et al., 2020), or a linear interpolation between the end and start

of the previous and following dry period, respectively (Fencl et al., 2015). The BL level is

usually estimated for each rainfall event individually, as it can shift in between the events.

Another crucial aspect that needs to be accounted for, is the attenuation induced by wet

antennas. Obviously, antenna covers often get wet during rainfall events that affect a CML.

The wetness induces additional attenuation, which needs to be subtracted to derive the rain-

induced attenuation. Methods to account for this wet antenna attenuation (WAA) range

from considering a constant amount of WAA during the whole rainfall event (Overeem

et al., 2011; Fencl et al., 2015) to more complex functions that depend on time (Schleiss

et al., 2013), or on the rainfall intensity, CML hardware characteristics, and antenna prop-

erties (Leijnse et al., 2008). Other rain rate dependent approaches have been presented by

Kharadly and Ross (2001) and Pastorek et al. (2021). Note that despite the amount of

methods and the related research, a comprehensive physical explanation and a universal

model for WAA is not yet available and many challenges remain (Tiede et al., 2023). The

estimated WAA is subtracted from the remaining signal during the wet periods. In short,
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Figure 3.2: Exemplary rain rate retrieval for a CML time series of 12 h (a subset of the time
series labeled CML 1 in Figure 3.1). a) The raw data TSL and RSL. b) The attenuation
TL, the period classified as wet, the estimated BL level and the estimated effect of WAA.
c) the estimated path-averaged rain rate.

rain-induced path attenuation is considered to equal

AR = TL− BL−WAA (3.2)

and can then be used to calculate the path-averaged rain rate R in mm/h. First, AR in dB

can be expressed as the integral of the specific attenuation k in dB/km by

AR =

∫ G

0
k(g)dg (3.3)

where G is the CML length. By inserting the power-law relation defined in Equation 2.2,

this can be formulated as

AR =

∫ G

0
aR(g)bdg (3.4)

where R(g) is the rainfall along the CML path. Since linearity of the power-law relation, that

is b ≈ 1, can be assumed for typical CML frequencies (Atlas and Ulbrich, 1977), Equation
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3.4 can be simplified to

AR = aR
b
G. (3.5)

Simple rearrangement provides a value for the path-averaged rain rate:

R =

(
AR

aG

) 1
b

(3.6)

The parameters a and b are dependent on CML frequency and polarization and can be re-

trieved from literature recommendations like the one provided by the International Telecom-

munication Union (ITU) (ITU-R, 2005) or fitted to reference data. Following the equations

above, it becomes clear that the rain rate retrieval procedure is strongly influenced by the

CML characteristics, that is, its frequency, length, and polarization.

3.2 Basis of the Applied Quality Control and Rain Rate Re-

trieval

The following describes the specific algorithms that are conducted in this thesis to account

for the challenges addressed above. The processing described here is taken from Graf et al.

(2020) who developed it for the same CML data from Germany that is used in this thesis.

They adjusted the processing considering one year of data from September 2017 to August

2018. Their approach is applied in all the case studies of this thesis. However, specific

extensions to the procedure will be introduced and applied both in Chapter 6 and Chap-

ter 7. The whole algorithm considers the time series of each CML individually and uses the

functionality of the Python-based software package pycomlink (Chwala et al., 2021).

The quality control starts with the removal of numerical fill values. Moreover, short gaps

of up to 5 minutes in the time series are interpolated linearly. To account for fluctuations

on different time scales two criteria are considered: For each CML, it is first tested whether

the 5-hour rolling standard deviation of the TL time series exceeds 2 dB at least 10% of the

time. Secondly, it is tested whether the 1-hour rolling standard deviation of the total loss

exceeds 0.8 dB at least 33% of the time. The CML is removed from the analysis if it fulfills

at least one of these criteria.

The classification of wet events is based on the variability of the TL time series. The

applied approach is a modified version of the one presented in Schleiss and Berne (2010).

The threshold value that separates low from high variability, and thereby dry from wet

periods, is defined as

l = 1.12 · q80(stdroll(60)(TL)) (3.7)

where q80(stdroll(60)(TL)) is the 80th percentile of the 60-minute-rolling standard deviation

of TL. While the 60-minute period is adopted from Schleiss and Berne (2010), the 80th
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percentile is chosen heuristically: based on the assumption that it is generally dry a least

80 % of the time in the German climate, the 80th percentile represents fluctuations that

are rather strong but most certainly not related to rainfall. The factor 1.12 accounts for a

CML-independent adjustment and was fitted by Graf et al. (2020) to a subset of the data

they used. Wet time steps are those for which the 60-minute-rolling standard deviation of

TL exceeds l.

After the classification of wet and dry time steps, the BL for each time step is calculated. The

BL is considered constant and equal to the last TL value before the given event started. The

WAA correction is based on the estimation originally proposed by Leijnse et al. (2008). It

assumes that WAA is dependent on water cover on the antennas which in turn is dependent

on the rain rate via a power law relation. Moreover, frequency and antenna cover properties

are considered (see Leijnse et al. (2008) for the exact formulation of the equations).

Finally, the rain rate is calculated via Equation 3.6 with the parameters a and b derived

from the ITU recommendations (ITU-R, 2005). For the purpose of generating maps and

comparison to the reference, the minutely rain rates in mm/h are aggregated to hourly

rainfall amounts in mm.
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Chapter 4

Methods: Spatial Reconstruction of

Rainfall

This chapter is about the generation of rainfall reconstructions. First, fundamental theo-

retical aspects and several challenges specific to this thesis are introduced in Section 4.1.

Then, the applied methods are described: Section 4.2 presents the standard methods Inverse

Distance Weighting (IDW) and Ordinary Kriging (OK) and, finally, Random Mixing (RM)

as the central reconstruction method of this thesis, is presented in Section 4.3.

4.1 Concepts and Challenges

4.1.1 General Purpose of Spatial Reconstruction

The term spatial reconstruction or just reconstruction is used in this thesis for the result of

interpolating rainfall values in two-dimensional, horizontal space, i.e., generating a rainfall

map. In other words it is the process of deriving gridded data from scattered data. First, a

grid is defined that determines the resolution at which the reconstruction shall be conducted.

Based on the local scattered observations of rain gauges or CMLs a value is computed at

every grid point via one of the methods described below. This value is assumed to represent

the surrounding grid cell such that discretized area-wide information is available. Note

that such a reconstruction is generally not restricted to a two-dimensional field but can

be carried out in more dimensions, e.g., when considering vertical height. However, the

spatial reconstruction considered in this thesis is restricted to two-dimensional regular grids

representing the land surface. A simple setting is illustrated by 16 grid cells, one rain gauge,

and one CML observation in Figure 4.1.

Spatial rainfall information is crucial for all hydrological applications. The local observations

are not sufficient to predict the water volume that enters a river system, for instance. Hence,

reconstructions are an essential part of rainfall estimation.
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Figure 4.1: Minimal example to illustrate the goals and challenges of spatial reconstruction
using rain gauges and CMLs. One rain gauge is represented by the orange circle and one
CML by the blue line. While the rain gauge can be assumed representative for the grid cell
it is in, it is less certain how to use the path-averaged information from the CML for the
grid cells which are intersected by it, and even less certain what values may be estimated
for the grid cells far away from the observations.

The basic prerequisite that enables reconstructions in the first place is a nonzero spatial

auto-correlation, which is generally assumed to decrease with distance. That is, locations

that are close to each other are likely to have experienced rather similar rainfall amounts.

This characteristic allows estimates about the value at a location based on a value at a

nearby observed location. Spatial auto-correlation can certainly be assumed for rainfall,

and hence, local observations contain information about their surrounding. However, the

spatial variability of rainfall is high, which means that the auto-correlation and thereby

the certainty of an estimation drops fast with increasing distance from the observation. A

basic challenge in the process of reconstructing is to determine a model for the degree of

auto-correlation. That is, relating to the example of Figure 4.1: How much does the rain

gauge observation affect the nearby grid cell x22 and how much still the farther away grid

cell x32? Considering the path-averaged CML information, these questions are even more

difficult to answer.

As a first approach, a reconstruction can be achieved straightforwardly by various kinds of

methods such as nearest-neighbor interpolation, (bi)linear interpolation, (bi)cubic interpo-

lation, or triangulation. These methods usually expect observations that can be represented

as points. Considering the data used in this thesis, the assumption of representing point data

can readily be made for rain gauges. For path-averaged CMLs, it is less straightforward, but
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can be achieved, e.g., via considering the midpoints along the paths as virtual gauges. Such

techniques can generate reconstructions that fit to the observations locally, however, the

rainfall maps do generally not represent real rainfall as they do not have value distributions

and spatial patterns that fit those of actual rainfall. Moreover, such reconstructions do not

account for uncertainties involved in the process of deriving values at unknown locations.

Before proceeding to more sophisticated methods, it is important to state what the specific

goals for a reconstruction are.

4.1.2 Specific Goals of Spatial Reconstruction

Optimally, the reconstruction should fulfill the following goals:

• respect the observations locally

• respect the rainfall statistics

– the correct marginal distribution

– the correct spatial dependence structure

• quantify uncertainties

Obviously, the reconstruction should respect the observations, that is, at the locations where

observational information is available, the reconstruction should have similar values as the

observed ones. This is relatively straightforward to achieve for rain gauges if one considers

the rain gauge representative for the pixel of the grid on which it is located. As stated

above, this goal cannot be treated in the same way for path-averaged CML observations.

The challenge of accounting for CML information in reconstructions is specifically addressed

in Section 4.1.4.

If the reconstruction fits to the observations at their locations, it is, however, not necessarily

a good solution yet. Another important aspect needs to be considered, which is the rainfall

statistics (commonly also referred to as prior information, Zhou et al. (2014)). Here, the

rainfall statistics are defined as being composed of the marginal rainfall value distribution on

the one hand, and the spatial dependence structure on the other hand. In other words, the

reconstruction should be in agreement with the observations not only at their locations but

also it should share the statistical properties considering the full data amount. Optimally

in fact, the rainfall statistics of the reconstruction would additionally be similar to general

information on rainfall, perhaps taking into account the regional and temporal climatic

rainfall characteristics.

Finally, it should be considered that it is impossible to generate a single perfect recon-

struction for each event and each location. Inevitably, there are uncertainties involved in
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Rainfall Observations

Forward (physical) process

Inverse problem

Figure 4.2: Illustration of the inverse problem. The physical process can be described by
rainfall inducing observations. Hence, rainfall reconstruction is an inverse problem and as
such involves several challenges.

the generated rainfall maps, even when assuming a perfect quality of the underlying data.

Hence, the reconstruction method ideally provides a way to quantify these uncertainties.

Achieving all the outlined goals makes the generation of high-quality reconstructions a

complex task. The limited area that is actually observed and the high spatial variability

and intermittency of rainfall leave room for considerable uncertainty. The following provides

useful concepts to address these challenges.

4.1.3 Inverse Problem Theory and Geostatistics

The challenge of reconstruction can be conceptualized as finding a linkage between the

physical phenomenon (rainfall) and the observations. A forward model would represent

the processes that lead from rainfall to observations. The goal pursued here, however, is

to model rainfall starting from the observations which constitutes an inverse problem (see

Figure 4.2). Tarantola (2005) defines inverse modeling as “use of the actual results of

some measurements of the observable parameters to infer the actual values of the model

parameters” (p. 2). In this regard, rainfall is the model parameter and the information

from rain gauges and CMLs are the observational parameters.

A common feature of inverse problems is that they are ill-posed (Kabanikhin, 2012) which

means that the solution is not existent, not unique, or not stable. Particularly, uniqueness

is often not attained (Zhou et al., 2014). In the case of this thesis, the uniqueness is also

not given: many reconstructions are imaginable based on a given set of observations. Such

problems are usually addressed by algorithms that involve optimization. This means that

reconstructions are ideally not deterministic solutions but represent the random uncertain-

ties.

Methods that deal with such problems can be summarized under the term of geostatistics.

The major factor distinguishing geostatistics from simple interpolation is that only the

former treats the model parameter as a random variable. It assumes that the variable can be

described by a random function at every point in space. More generally, Chilès and Delfiner

(2009) describe geostatistics as “the application of probabilistic methods to regionalized
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variables” (p. 2). Geostatistics is a field initiated by works as that of Matheron (1965)

and had its origin in the mining industry where problems are usually three-dimensional.

Nevertheless, the concept is used in vast areas of all the geosciences, and is applicable to

two-dimensional problems like the reconstruction of rainfall maps.

In geostatistics the notion is that a regional variable (which is rainfall in the present case)

constitutes one of many possible realizations of a random function. This implies, for ex-

ample, that observations at their given locations are one of many possible realizations.

Furthermore, it is assumed that the random function is similar across space. More precisely,

the assumption of intrinsic hypothesis states that expected value and variance of the random

function remain unchanged regardless of the location (Abzalov, 2016). This assumption pro-

vides the link in space: When coupled with a function about the spatial auto-correlation, the

probabilistic values at unobserved locations can be estimated. Theoretical semivariograms

are functions that describe the variability in relation to the distance between two locations.

That is, they are a model of the spatial dependence structure and provide a crucial foun-

dation of geostatistics methods. Formally, a theoretical semivariogram is a function of the

following form

γ(h) =
1

2
var(Ω(x)− Ω(x+ h)) (4.1)

where γ(h) describes the variance of the parameter (e.g., hourly rainfall amount) dependent

on a separation vector h. Ω(x) is the parameter value at the location x, Ω(x + h) the

parameter value at location x+h, and var() the variance function. A semivariogram function

cannot be found this way in practice since not every location is observed and since the

variability does not only depend on distance. Empirical semivariograms are usually obtained

by calculating the variance for several distance classes and by fitting a semivariogram model

to this data. Note that some ambiguity about the usage of the terms semivariogram and

variogram (formally, twice the semivariogram) exists (Bachmaier and Backes, 2011) which

is often not crucial in a conceptual application.

Empirical semivariograms can be estimated in various ways. For example, they are the

result of calculating the variances between observations within classes of similar separation

distances. Important characteristics describing the shape of the semivariogram function are

nugget, range, and sill. The nugget accounts for random variation at zero distance displaying

measurement uncertainty or variation below the level of resolution, the range accounts for

the maximum distance in which there is correlation observable, and the sill accounts for the

variation of values that are not spatially correlated, i.e., which are farther apart than the

distance defined by the range.

A major advantage of geostatistical approaches and the application of semivariograms is

that they provide a way to generate rainfall maps that follow a certain spatial dependence

structure throughout the map extent. Under the assumption of second-order stationarity
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Figure 4.3: Examples of fields with a standard normal value distribution for three semi-
variogram models. Each semivariogram can be used to generate fields of a certain spatial
dependence structure. All models in this figure have a nugget of zero and a sill of 1. As
the sill is only approached asymptotically, the range parameter is defined by the distance
at which the semivariogram value exceeds 95% of the sill. All fields (realizations) in a par-
ticular row are different with regard to the locations of high (red) and low (blue) values,
but they have a similar spatial pattern. From top to bottom row the spatial dependence
(auto-correlation) increases so that in the lower rows larger clusters of either high or low
values exist.

the variogram is directly linked to the covariance of a field (Journel and Huijbregts, 1978).

Hence, fields of a certain spatial structure can be derived from a semivariogram model. This

aspect can be considered without any local constraints of data. Figure 4.3 shows several

semivariogram models and related fields: While the location of high and low values differs

among all fields, the spatial structure is similar if based on the same semivariogram model.

A particular class of geostatistic methods is composed of techniques that generate solutions

in a stochastic manner (Zhou et al., 2014). They are similar to other geostatistic methods

as they consider the variable the result of a random process. However, stochastic methods

do not attempt to find a single optimal solution. They respect that there is variability and

that different solutions may equally well represent the true situation, which is unknown.

Hence, these methods enable the estimation of ensembles consisting of many equally valid

solutions. The distribution of such ensemble members provides probabilistic results and the
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possibility for the quantification of uncertainties. Stochastic methods constitute the most

sophisticated approach to fulfill all the goals outlined in Section 4.1.2.

4.1.4 Specific Challenges of CML-based Reconstruction

As mentioned before, there is not one best solution for using CML-based path-averaged

rainfall information for spatial reconstruction. When CMLs are considered as virtual gauges

at the center of the link paths as done in many studies (e.g., Overeem et al. (2016b); Graf

et al. (2020); Roversi et al. (2020)), it is obviously not accounting for the full information

and the related uncertainties about the exact position and amount of rainfall. For instance,

if a CML is several tens of km long, the average rain rate does not tell whether the rainfall

was close to the one antenna, or to the other, or, whether it was equally distributed along the

path. Similarly, it may not reveal very high rain rates that affect only part of the CML paths

as these get lost in the process of averaging. This effect is theoretically more problematic

the larger the CML length and the shorter the range of the semivariogram model are. The

effect of averaging along the path and thereby reducing the extreme values, is particularly

problematic as many reconstruction methods involve reducing extreme values even further.

This also implies that it is impractical to estimate the precise marginal distribution of rainfall

via CML observations.

Aside from the challenges related to path-averaging, also the network topology is not nec-

essarily optimal for generating maps. The individual CMLs are generally not equally dis-

tributed in space which results in areas with higher and lower sensor density. For example,

the amount of sensors is commonly much higher in urban areas (Uijlenhoet et al., 2018).

Moreover, the arrangement often is such that one central node is connected to several nodes,

which leads to irregular clusters of observation. With low network density, the uncertainties

of the reconstruction are larger, and the area for which a single CML is assumed to be

representative is higher.

Despite the mentioned challenges, there are also benefits of the specific characteristics of

CML observations. For instance, the path-based information of individual CMLs can rep-

resent greater areas than rain gauges and the total amount of data is often large. Hence, to

make use of the opportunities, the challenges should ideally be addressed appropriately.

4.2 Deterministic Approaches: Inverse Distance Weighting

and Ordinary Kriging

A popular straightforward approach of reconstruction via simple interpolation is Inverse

Distance Weighting (IDW). The algorithm is the following: For a specific grid point, one

considers a set of neighboring observations and calculates the weighted mean of those neigh-
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bors. The weights for each observation are estimated dependent on the distance of that

observation to the grid point of interest, i.e., higher for nearby and smaller for far observa-

tions. IDW is straightforward at the cost of not considering the overall value distribution and

spatial correlation, and not accounting for uncertainties. Extrapolation, that is generating

values outside the range of measured values, is not possible.

The method is applicable to point data like rain gauges. Therefore, using IDW with CML

data requires the path information be reduced to a virtual gauge. For the application

of IDW in Chapter 6, the path-averaged values are hence assumed to be represented by

the midpoints along the paths, as was also done by, e.g., Graf et al. (2020). Moreover, a

maximum distance in which neighbors are considered is set to 30 km. The simple IDW

method is applied in this case study as the focus there is on the transferability of processing

algorithms and not on the details of reconstruction quality.

More sophisticated reconstructions can be achieved via Kriging methods. These are geo-

statistical methods which date back to independent works of Matheron (1965) and Gandin

(1966). Kriging is arguably the most popular geostatistical method. It is, in fact, inseparable

from the origin of geostatistics and the central aspect of traditional geostatistics. Kriging

estimates spatial variability based on a semivariogram. It generates reconstructions in a

deterministic way by considering the neighbors but also the spatial dependence structure

and redundancy of observations. Even in more advanced methods that have evolved over

the past decades, Kriging often plays a role as a sub-algorithm (Zhou et al., 2014).

In this thesis Ordinary Kriging (OK) is applied as a reference method in Chapter 7. OK

is a Kriging variant in which the mean value is assumed to be unknown but constant

over the neighborhood of the location that is being estimated. However, this assumption

is not necessarily justifiable for rainfall due to its high spatial variability. That is, OK

involves limitations that can be particularly severe in its application for rainfall estimation.

Nevertheless it is widely applied in this context. In this thesis, the PyKrige1 Python package

(version 1.6.1) is applied, with an exponential semivariogram model and a moving window

that considers the ten closest points. The parameters of the semivariogram are calculated

by the package’s default L1 norm minimization scheme. Like IDW, OK requires point data.

Hence, also for OK the CML observations are reduced from path-averages to virtual gauges

at their midpoints, similar to what was done by, e.g., Overeem et al. (2013, 2016b). OK

generally allows the creation of values that are outside the range of observations. In its

application, this led to nonsensical negative rainfall values in a few cases, which were set to

zero prior to the analyses.

1https://pypi.org/project/PyKrige/, last access October 13, 2023
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4.3 Stochastic Approach: Random Mixing (RM)

4.3.1 Introduction to RM

Random Mixing (RM) is a stochastic reconstruction approach that enables solving inverse

problems and was first presented by Bárdossy and Hörning (2016b). It is based on the

gradual deformation approach (Hu, 2000) but enables the consideration of parameters that

do not exhibit a normal distribution. RM was originally developed to deal with challenges

of inverse groundwater modeling (e.g., Bárdossy and Hörning (2016a)). In groundwater

modeling there are linear and nonlinear constraints, e.g., hydraulic transmissivities and

hydraulic head values, respectively. Later, it was found that the methodology also suits

spatial rainfall estimation. Although rainfall has different statistical characteristics such as

a different marginal distribution and spatial correlation, and different kinds of observations,

the method proved to be applicable: Haese et al. (2017) used RM with a combination of rain

gauges and CMLs on the scale of rather small river catchments. The point-like rain gauge

observations can be considered linear constraints and the path-averages of CMLs nonlinear

constraints. The mentioned study of Haese et al. (2017) showed benefits of RM over OK for

reconstructions of maps for the small catchments. RM has been evolving over recent years

and a notable technical improvement was the usage of the Whittaker-Shannon algorithm

for faster optimization (Hörning et al., 2019).

A major benefit of RM is that it can account for such different constraints as those of point-

like rain gauges and path-averages from CMLs, and that these can be regarded without

corrupting the overall statistics of the field. Importantly, RM does not require the input

data to follow a standard normal distribution, which rainfall (among many other variables)

does not follow, indeed. To be suitable to problems of variables that are generally not dis-

tributed in a standard normal manner, a transformation from the actual values space to

the standard normal space and its inverse need to be defined. For estimating the spatial

dependence structure, RM makes use of copulas which are invariant to the marginal distri-

bution and therefore outliers in the data (Nelsen, 2006). It is an important step towards

generalization that the distribution in real space needs only be describable by a Gaussian

copula (Bárdossy and Li, 2008). Furthermore, being stochastic in nature, RM allows for

variability at unobserved locations, that is, at locations without any measurement as well

as along the CML paths. Hence, there is not only one solution but the possibility to cal-

culate ensembles of reconstructions which enables the quantification of uncertainties. In

summary, RM can be used to reconstruct rainfall fields that represent gauge observations

locally, account for CML observations, fulfill the rainfall statistics as inferred from the data,

and provide a probabilistic solution. Hence it is capable of addressing all the goals defined

in Section 4.1.2.
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4.3.2 The Core Principle of RM

RM, like gradual deformation, works in standard normal space. That is, it first generates

fields that have a standard normal value distribution and a spatial dependence structure

that fits to the data.

Let UF i(x) be a number of unconditional random fields consisting of values for each grid

location x. The UF i are random as they do not account for any observations. However,

all UF i are constructed such that they have a standard normal marginal distribution, i.e.,

expected values E(UF i) = 0 and variance var(UF i) = 1, and a spatial correlation defined

by a covariance matrix Γ equal for all UF i. Then, a linear combination

NF =
∑
i

αiUF i(x). (4.2)

constructs a new field with the same expected value, i.e., E(NF ) = 0. By enforcing that

the scalar weights αi fulfill ∑
i

α2
i = 1, (4.3)

it follows that also var(NF ) = var(UF i) = 1 and ΓNF = ΓUF i , which means that also the

spatial dependence structure is preserved.

There are an infinite number of solutions for such NF . The observations can hence be

used as additional constraints. This is done for linear constraints and nonlinear constraints

separately. The field NF can also be expressed as

NF = IF +HF , (4.4)

that is, as the sum of two fields, whereas IF and HF are each weighted linear combinations of

unconditional fields UF i. This formulation allows for the considering of linear constraints at

their locations in IF , and adding random noise at other locations via HF (see Section 4.3.3

for the details). IF and HF do not each need to be of unit variance, that is, they do not

need to have weights that fulfill Equation 4.3. However, their weights need to be chosen

such that the combined weights guarantee unit variance for NF .

Linear constraints (rain gauge observations) are transformed to standard normal space be-

fore conditioning. Nonlinear constraints (CML observations) are regarded as the actual

rainfall values and compared to the fields after these are back-transformed from their stan-

dard normal distribution to actual rainfall values. Repeated random selection of the un-

conditional fields in various linear combinations, constitutes the stochastic element of the

approach.
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4.3.3 The Algorithm as a Python Implementation (RMWSPy)

In the previous section, the core principle was briefly outlined. This section, in contrast, is a

more detailed description of the algorithm according to the Python implementation (Hörning

and Haese, 2021), or more precisely, its adaptation used in this thesis (Hörning and Blettner,

2022). Also the naming convention used here is partly adopted from the implementation.

Figure 4.4 presents the algorithm in a flowchart whereas the shown numbers refer to the

steps of the algorithm as defined below.

Figure 4.4: Random Mixing flowchart. Starting point is the rain gauge (RG) input data.
The fields are indicated by squares with thick contours. Data and fields are colored accord-
ing to their value space: orange for standard normal space and blue for actual rainfall. The
intensity of orange color indicates the variance of the fields (while all UF and NF have a
variance of 1, HF and IF have lower variances). Black solid arrows indicate linear combina-
tions, dotted arrows indicate repetitions, and gray arrows all other processes. The encircled
numbers refer to the steps described in Section 4.3.3.

Preparation: Locate the Observations on the Grid

Let P be the number of rain gauges and (vp)p∈[1..P ] their observed values. Moreover, let Q be

the number of CML observations and wq their path-averaged values. First, the locations of

the observations need to be adjusted to a regular rectangular grid. For this, each rain gauge

observation is shifted to the nearest grid point at the locations xp. The CML locations are

defined by the positions of the antenna pairs. To account for their full paths, the Bresenham

Line Algorithm is applied which defines the pixels that are intersect by each path. While
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the vp are used in several of the following steps, the usage of the wq is described in Step 9

at the end of the algorithm.

Step 1: Derive the Spatial Dependence Structure

The observations from the rain gauges are used to estimate the spatial dependence structure

represented by the covariance matrix (Γ). The covariance matrix is derived from a semi-

variogram model that consists of a nugget, range, sill, and a core function that describes

the variability dependent on the distance (e.g., the spherical or exponential function). In

the standard normal value space the sill is always equal to 1. The nugget is predefined in

the used implementation. Hence, the estimation of Γ requires only to find an appropriate

range parameter and a core function, which are estimated in an iterative procedure. For

this purpose, the values of the rain gauge observations are transformed to rank values of

the interval (0, 1) and grouped into random subsets of spatially close members. Then, the

density of a Gaussian copula is computed for various combinations of a) the core functions,

b) the range parameter, and c) arrangements of spatial subsets. Finally, the semivariogram

model γ∗ which result in the highest copula density, is chosen to define Γ as

Γ(h) = 1− γ∗(h,nug , rng) (4.5)

where nug is the nugget, rng the range, and h the distance in grid units.

Step 2: Derive the Transformation Function

In the next step, a transformation function that relates the value space of actual rainfall

with the standard normal value space is estimated. The forward transformation that relates

any rainfall value vrain with its counterpart in standard normal space vstdn is defined as

vstdn = ϑ(vrain) =

Φ−1((1− p0)χ(log(
vrain

10 )) + p0) if vrain > 0

Φ−1(p0) if vrain = 0
(4.6)

where χ() is the marginal distribution of the rainfall obtained from the distribution of the

rainfall observations, Φ−1() is the inverse standard normal cumulative distribution function

and p0 is the percentage of dry observations. Note that the logarithm function and the

factor 10 in Equation 4.6 have only numerical reasons.

The marginal distribution χ is retrieved via a kernel density estimation. For this, only

the rain gauge data is used as it can be expected to better represent the true marginal

distribution of rainfall compared to the CML data that involves path-averaging. Notably,

extreme values of the CML observations could also be considered for the estimation of χ

to enable their representation in the fields, if they exceed the extrema of the rain gauge

observations.
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Step 3: Transform the Rain Gauge Observation to Linear Constraints

The rain gauge observations are not only used to define ϑ but also they are transformed to

standard normal space according to Equation 4.6 so that they can be accounted for as linear

constraints on the Gaussian fields. However, Equation 4.6 first transforms all zero (dry)

observations to the same value in standard normal space. For the conditioning, it is necessary

that also the dry observations are spread over the standard normal space. This is achieved

via a stochastic (Markov Chain Monte Carlo) subroutine called the Metropolis-Hastings

random walk (MHRW), which takes into account the conditional mean and covariances of

the observations. Consequently, dry observations that are close to wet observations are

transformed to relatively higher values than dry observations which are far from wet ones.

Nevertheless, these values all remain below the ones of wet observations, so that they end

up to be zero in the final fields (cf. Step 8). Note that the wet observations are transformed

in a deterministic way which needs to be done only once. The MHRW applied to the dry

observations, however, involves a random distribution which is conducted every time the

linear constraints are considered in the algorithm. In the following vp refers to vstdnp .

Step 4: Generate Unconditional Fields

In this step, the inner part of RM starts. Unconditional random Gaussian fields (UF i)i∈[1..K]

are generated via inverse fast Fourier transformation considering the estimated covariance

matrix Γ and thereby fulfilling the estimated spatial dependence structure. A large pool of

such fields is generated at this stage of the algorithm. The exact number of fields K is not

critical but should suffice the extent of the given problem and at least exceed the number of

rain gauges considered. As a general rule, the more observations the more fields should be

created (cf. Section 4.3.4). Albeit, the algorithm includes the possibility to generate fields

afterwards, if the initial number was not sufficiently high.

Step 5: Create the Inner Field Representing the Rain Gauge Observations

In the next step the eponymous “mixing” starts. Linear combinations of a subset of the

unconditional fields UF i are calculated considering the linear constraints vp to generate the

inner field :

IF (xp) =
I∑

i=1

βiUF i(xp) = vp. (4.7)

The weights βi are required to fulfill

I∑
i=1

β2
i < εIF . (4.8)
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In general, εIF should be as low as possible and needs to be below 1 at least, so that IF

has a low variance, which is desirable as it enables to add variability later on. To calculate

such an IF , I must be at least as high as the number of linear constraints P . In an iterative

manner, I is increased until the conditions are fulfilled.

Step 6: Create Random Noise via a Homogeneous Field

The next step is the generation of a homogeneous field (HF ). Again, the generation is based

on combining a subset of the unconditional fields (UF i) in linear combinations. Now, in

contrast to the previous step, not the linear constraints are respected but the constraint is

that at those very locations the result of the linear combination is equal to zero. Formally,

HF (xp) =
H∑
i=1

γiVF i(xp) = 0. (4.9)

In Equation 4.9 the VF i have the same properties as the UF i, that is, E(VF i) = 0,

var(VF i) = 1, and ΓVF i = ΓUF i . The different name is introduced only to clarify that

not identical fields are used in Equation 4.7 and Equation 4.9. Both IF and HF have an

infinite number of solutions once I > P and H > P . The weights need to fulfill

H∑
i=1

γ2i = 1−
I∑

i=1

β2
i . (4.10)

such that the variance of IF and HF add up to 1. Equation 4.9 guarantees that the

homogeneous fields can be combined with the inner fields without corrupting the correct

values of the inner field at the locations of the rain gauges.

Step 7: Combine the Inner Field and the Homogeneous Field

In this step, the fields constructed in Step 6 and 7 are combined according to Equation 4.4, to

generate a normal field (NF = IF+HF ). The definition of the weights in the previous steps

guarantees the right spatial dependence structure of this normal field NF , which therefore

follows the spatial dependence structure given by the covariance Γ. Moreover, it follows

from the construction of IF and HF that NF respects the linear constraints vp.

Step 8: Back-transform the Normal Field

The pixel values of NF can now be transformed to the value space of actual rainfall by the

inverse of Equation 4.6. Formally, the transformation is given by:

FF =


1
10 exp

(
χ−1

(
Φ(NF )−p0

1−p0

))
if Φ(NF ) > p0

0 if Φ(NF ) ≤ p0

(4.11)
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and provides a final field (FF ) with actual rainfall values. The conditional definition of

Equation 4.11 ensures that the percentage of zero values within FF is similar to that of the

observations.

Step 9: Apply the CML Observations as Nonlinear Constraints

This step compares the CML observations wq with the values of FF . Considering Q CML

observations and J pixels along the path of a particular CML, FF q,j represents the values

of FF at the pixels along the CMLs. The average along the path FF q can be compared

directly to the observed CML values wq. The fit over all CMLs quantified by the Euclidean

distance is defined as

ϕ(wq,FF q) =

Q∑
q=1

(wq − FF q)
2. (4.12)

The objective function ϕ is minimized in an iterative manner via creating different homo-

geneous fields HF , that is, by entering the algorithm at Step 6 repeatedly until

ϕ(wq,FF q) < εCML (4.13)

where εCML is a predefined threshold. For the optimization, the Whittaker-Shannon algo-

rithm is applied which enables relative fast convergence by selecting appropriate HF (details

on this part can be found in Hörning et al. (2019)). Note that additionally a maximum num-

ber of iterations of the optimization procedure is defined such that the algorithm terminates

even if the threshold is not reached. If Equation 4.13 is fulfilled, HF is a complete reconstruc-

tion, then denoted as SF . It represents the rainfall statistics, the rain gauge observations

at their locations exactly, and it matches closely with the CML observations.

Step 10: Generate an Ensemble

Finally, it is possible to create an ensemble of solutions. The one SF that has been calculated

is not the only solution and other fields can fulfill the necessary conditions, too. Especially

at unobserved locations but also along the CMLs’ paths, different values are permissible that

still are in accordance with the observations and the rainfall statistics. In order to calculate

further ensemble members, the algorithm can be entered again at Step 5 by creating a new

inner field IF and also a new homogeneous field HF (Step 6).

Chosen Parameter Values

There are several parameters that govern the RM algorithm and that are adjustable. A

selection of crucial parameters and their chosen values is given in Table 4.1. The choice of

values was not tested thoroughly, but mostly adopted from the existing RM applications.

Only the choice for the nugget is based on a rough sensibility test and the εIF was increased
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slightly as a consequence of computational issues, which are discussed in the following sec-

tion.

Table 4.1: Selection of internal parameters of RM and their chosen values in the applied
version.

Meaning Parameter Value

Nugget of semivariogram model nug 0.001
Number of unconditional fields K 10000
Threshold for variance of inner field εIF 0.2
Threshold for CML fitting εCML 0.4
Maximum number of iterations for CML fitting - 300

4.3.4 Technical Challenges and Computational Complexity

Being a stochastic method, RM requires considerable computational resources, which is

why this aspect is covered in this separate section. Note that the following refers to the

Python implementation RMWSPy (Hörning and Haese, 2021). RM involves the continuous

storage of fields (mainly the unconditional fields, UF i) as they are combined in various

linear combinations throughout the algorithm. Hence, there is no easy solution to prevent

the occupation of working memory by these fields. Obviously, the issue scales with the

problem size, i.e., mainly the considered grid size, which is relatively large in the analyses of

this thesis. Similarly, the computation time rises with increasing problem sizes. A detailed

analysis of this can be found in Chapter 7.

The RM algorithm, though successfully applied in several smaller scale studies before, was

initially (i.e., at the start of the work on this thesis) not capable of dealing with large

amounts of rain gauges and CMLs. On the one hand, the computational complexity was

very high for the large data sets and a large target grid size; in fact the implementation

available in the beginning would have required more than the available resources. However,

it was not only an issue of computational resources. Even more crucially, the algorithm

did not terminate. More precisely, the computation of the inner field IF which requires

adjustment to the linear constraints in an optimization loop did not converge.

These issues required adaptations to the code: Primarily, to allow the algorithm to terminate

at all for a high number of rain gauges, but also to make large-scale computations feasible

on a moderate-sized high performance computer. This was required to allow for an analysis

of not only a large grid and a large number of observations, but also over a considerable

time span.

Thorough investigations revealed that with regard to the optimization of the inner field a

major issue were the observations that recorded no rainfall (dry observations). For hourly

rainfall estimation, there were, naturally, a large share of dry rain gauge observations. As

stated before, dealing with dry observations, i.e., the intermittency of rainfall is a common
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challenge of rainfall quantification. In the RM algorithm dry rain gauge observations are

transformed within the standard normal value space to enable the computation of the inner

field (see Step 3 of Section 4.3.3.) The MHRW algorithm was improved by a much higher

but determined number of iterations and a more suitable decision criterion at each step to

raise the quality of the distribution of values. The adjustment of the MHRW implemen-

tation enabled the necessary step of calculating the inner field that fits to the rain gauge

observations.

The computational complexity could then be alleviated by several adaptations: specific

Python packages were replaced by more efficient alternatives (e.g., by replacing NumPy2

by SciPy3 functionality in several cases); parallel computing was introduced in the part

where the final field (FF ) is compared to CML data (Step 9 above); the code was refactored

as to avoid the superfluous creation of copies of variables. These adaptations made it

possible to run the code on the available high-performance computing cluster and to conduct

the central case study presented in Chapter 7. Nevertheless, RM is still computationally

demanding. Both computation time and working memory requirements are crucial aspects

if using large amounts of data or a grid with many cells. Hence, Chapter 7 includes an

analysis of computational aspects. Note that the adaptations outlined above were conducted

in collaboration and are documented in Hörning and Blettner (2022).

2https://pypi.org/project/numpy/, last access October 13, 2023
3https://pypi.org/project/scipy/, last access October 13, 2023
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Chapter 5

Methods: Validating Rainfall Esti-

mates

Once rainfall fields are generated the major goal of QPE is accomplished; these fields could

be fed into hydrological applications. However, if possible, it is important to assess the

quality of the reconstruction to estimate their value for follow-up applications. In fact, it is

helpful to assess the quality also at intermediate steps along the rainfall estimation process.

In this thesis, validation is done for path-based rainfall estimates of CMLs and for the final

spatial reconstructions. Ideally, the estimates (whether they are rainfall amounts along

CML paths or rainfall maps) would be compared to the true rainfall, which, however, is

generally unknown. Nevertheless, the possibility of quality assessment arises when reference

data is available, with which the estimates can be compared, and which can be assumed

to represent the truth reasonably well. A standard approach of validation is to calculate

performance metrics based on a comparison between the estimations and a reference. The

purpose of such metrics is to help interpret the degree of similarity. This is commonly

achieved by reducing the dimensionality and by providing a numerical value which is often

bound to a certain range or at least has an optimal value. Thereby, the complexity of the

comparison is reduced.

This chapter provides the theory and applications of how rainfall estimates are analyzed.

First, the validation based on CML path-based rainfall amounts is described in Section 5.1.

The main focus, however, lies on rainfall maps and their validation, which is the topic of

Section 5.2.

5.1 Path-based Validation

To validate CML rainfall estimates directly requires reference information along the CML

paths. Such reference data generally does not exist, however, it is possible to derive path-

based values from a gridded reference. In this thesis, path-based reference data is derived
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from RADOLAN-RW. To achieve this, a weighted mean of the pixel values that have an

intersection with a given CML are considered. The weights are proportional to the lengths

of the intersection between each pixel and the CML path.

The analysis then consists in a comparison between estimates and reference and the calcu-

lation of several performance metrics. The metrics used in this thesis are mean absolute

error (MAE ), Pearson correlation coefficient (PCC ), and bias (BIAS ), which are calculated

for every CML by aggregating over time. Formally, the metrics are defined as

MAEtime = µtime(|Rest −Rref |), (5.1)

PCCtime =
covtime(Rest, Rref )

σ(Rest)σtime(Rref )
, (5.2)

BIAStime =
µtime(Rest −Rref )

µtime(Rref )
, (5.3)

where Rest, Rref is the rainfall amount for all time steps of the estimation and the reference,

respectively. The functions µtime(), covtime(), σtime() (defined in Appendix A) denote the

arithmetic mean, the covariance, and the standard deviation over time, respectively.

The mentioned performance metrics all quantify different aspects of the quality of the es-

timation. The MAE is an accuracy measure that can take values of the range [0,∞). The

closer its value is to zero the better the estimation fits to the reference. The MAE is scale-

dependent and preserves the units of the data. The PCC quantifies the degree to which a

linear correlation exists between the estimation and the reference. It takes a value of the

range [−1, 1] and is not defined if either of Rest and Rref has zero variance. For a perfect

positive correlation its value is 1, for a perfect negative correlation - 1, and for no correlation

it equals 0. In contrast to the MAE , the PCC has no units and is therefore independent of

scale. The bias quantifies systematic errors. The above definition allows values in the range

[−1,∞) as rainfall amounts represented by Rest and Rref are always positive. The BIAS

is not defined if the mean of Rref , and hence all values of Rref , are 0. A negative BIAS

reveals underestimation while a positive BIAS shows overestimation. Its optimal value is

zero, which represents that there is no systematic error. Like the PCC , the BIAS has no

units.
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5.2 Spatial Validation

5.2.1 General Aspects of Spatial Validation

The evaluation of the rainfall maps is particularly important as large uncertainties lie in

the process of reconstructing described in Chapter 4. Hence, it is extremely valuable to

quantify the quality of reconstructions before using them, e.g., in hydrological applications.

However, the selection of means to validate, i.e., the selection of performance metrics, is

nontrivial as different metrics quantify different aspects.

Two major challenges can be distinguished when trying to evaluate maps. On the one hand,

a trustworthy reference is required, and, on the other hand, it is not necessarily clear how

to best validate the similarity between reconstruction and reference. Often no spatial ref-

erence of sufficient resolution exists and where it exists, it is not free of shortcomings itself.

Nevertheless, validation usually needs to make the assumption of the available reference

representing the truth. Moreover, in many cases the reference needs to have the same grid

dimensions as the reconstruction. Regarding the validation method, a crucial question is:

what aspect of the field should be assessed? Not only the reference but also the validation

methods, i.e., the performance metrics have their limitations and need to be chosen carefully.

As stated above, performance metrics usually provide metrics that reduce dimensionality.

That is, rather than considering the differences of two rainfall maps directly, only two scalar

values need to be considered which makes the interpretation clearer. However, many per-

formance metrics are available and different metrics can provide quite contrary suggestions

about the reached quality.

A common approach of validation is to compare the simulated field with a reference field on a

pixel basis. That is, if the fields have the same spatial resolution each pixel is compared to the

respective pixel of the reference field. The quality of the whole field can then be described

by metrics like the mean error, root-mean-square error, bias, or correlation coefficients,

which are metrics that aggregate the information gathered from all pixels into a single

value. This provides a straightforward way to assess the likeliness of two fields and is often

considered in spatial analyses. However, it has several shortcomings. A common issue is that

reconstructions with spatial offsets of objects, such as rainfall cells, may score particularly

bad according to those metrics. This effect is known as the double-penalty problem (Ebert,

2008) that can be illustrated by an example: at one location there are high values only in

the reference, so that the metrics punish the underestimation; close by, the values are high

only in the reconstruction and the metrics punish the overestimation. In fact, however, the

reconstruction may be good as it did produce the rainfall object, regardless of the (perhaps

small) offset. This effect is amplified for situations with high spatial variability (relative to

the grid resolution) as often encountered in rainfall fields. That is, convective rainfall, for
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example, may affect only a few grid cells. If the rainfall occurrence is displaced even only

by a few grid cells the double penalty issue is fully effective as it is possible that no wet grid

cell of the reconstruction coincides with a wet grid cell of the reference. The metrics are

then often better if the reconstruction is rather smooth but does not represent the spatial

correlation, just because this reduces the double-penalty problem. However, the spatial

correlation is a crucial aspect and a reconstruction should be rewarded for representing this

correctly.

In the attempt to overcome such issues, many other methods have been developed. Gille-

land et al. (2009) distinguishes four groups of spatial verification methods that go beyond

the pixel-by-pixel comparison. Those are a) neighborhood / fuzzy methods which consider

neighborhoods of connected pixels instead of the pixels individually, b) scale-separation

methods which consider different spatial scales for validation whereas these scales are often

adjusted to physical patterns such as convective cells, c) feature-based / object-based meth-

ods that distinguish and compare objects which are constituted of connected pixels, and

d) field deformation methods which analyze what spatial deformation would be required to

approximate the reconstruction to the reference considering the whole field at once.

In this thesis, emphasis is put on a validation approach belonging to the class of object-

based methods. It distinguishes rainfall cells as connected pixels on the grid and treats

them as separate objects with specific characteristics. The applied method which calculates

a structure, an amplitude, and a location error (SAL) was proposed by Wernli et al. (2008)

and later extended by Radanovics et al. (2018). The method is described in detail in

Section 5.2.3. Before, standard pixel-based metrics, which are also applied in this thesis,

are introduced in the following.

5.2.2 Pixel-based Comparison

For pixel-based validation, three common metrics are applied in this thesis. These are

the root-mean-square error (RMSE ), the Pearson correlation coefficient (PCC ), and the

bias (BIAS ). Note that the PCC and the BIAS have already been defined in Section 5.1

where the metrics were calculated for every CML by aggregating over the dimension of time.

Here, on the contrary, the metrics are calculated for every time step by aggregating over

the spatial dimension. The difference is denoted via the use of the suffixes time and space.

In the chapters presenting the results, the suffixes are generally omitted as it is clear from

the context which of the two set of metrics is applied, that is, the path-based analysis is

only considered in Chapter 6 while the spatial analysis is only considered in Chapter 7. The

spatial pixel-based performance metrics are defined by

RMSEspace =
√
µspace((Rrec −Rref )2) (5.4)
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PCCspace =
covspace(Rrec, Rref )

σspace(Rrec) ∗ σspace(Rref )
(5.5)

BIASspace =
µspace(Rrec −Rref )

µspace(Rref )
(5.6)

where Rrec, Rref is the rainfall amount for all pixels of the reconstruction and the reference,

respectively. The functions µspace(), covspace(), and σspace() (defined in Appendix A) are the

arithmetic mean, the covariance, and the standard deviation, respectively.

A general description of the metrics MAE , PCC , and BIAS has been given in Section 5.1.

For the spatial validation, the RMSE is used instead of the similar MAE . They are both

measures of accuracy, but with the main difference that RMSE is more sensitive to outliers.

5.2.3 Pattern Analysis via (e)SAL

A set of spatial performance metrics called SAL was first introduced by Wernli et al. (2008).

The three components that are abbreviated by the letters S, A, and L are structure error,

amplitude error, and location error. In this thesis, also the performance metrics eSAL are

applied. These metrics constitute an extension to SAL introduced by Radanovics et al.

(2018). The novelty of eSAL is its possibility to calculate the error metrics for ensembles.

Whenever the term (e)SAL is used in the following, this relates to both methods and there

is no need to discriminate between the two.

The validation via (e)SAL has been developed specifically for rainfall field validation. Obvi-

ously it is not limited to this application, but fits it very well. A central aspect of (e)SAL is

its consideration of objects. That is, instead of considering single pixels, the field is divided

into objects. These are defined as connected pixels with values above a certain threshold

value. Such a separation of objects from their surrounding can usually be done effectively for

rainfall which often occurs as separate cells with dry regions in between if the aggregation

times are not too long. The (e)SAL methodology is helpful if spatial patterns should be

analyzed. The reconstructions by RM (see Section 4.3) are designed to account for the spa-

tial patterns of rainfall. Hence, the (e)SAL performance metrics constitute an appropriate

method to validate whether the pattern representation was actually achieved by the RM

reconstructions.

The three metrics structure, amplitude, and location error are designed to quantify distinct

aspects of the fields and the correlation between them is close to zero. The structure error

quantifies the disagreement of the shapes of rainfall objects. It is a measure of the relation

of the volume and the peak of a rainfall cell. A negative structure error represents the

case in which the rainfall objects in the reconstruction are rather narrow with regard to

spatial extent or have rather high peaks, i.e., maximum values within the object. The case

of a positive structure error signifies rather widespread or not very peaked objects. By
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definition, the value range for the structure error is [−2, 2]. The amplitude error quantifies

overall underestimation or overestimation. In fact, it is directly related to the spatial BIAS

and does not consider rainfall objects. It is negative if the reconstruction shows less overall

rainfall than the reference, and positive if it shows more. Similar to the structure error, also

the amplitude error ranges between - 2 and 2. The location error quantifies displacements

in space. It consists of two components L1 and L2. L1 does not consider rainfall objects but

the centers of mass of the whole fields. L2 considers the centers of mass of the individual

objects. A discrepancy of location causes a location error which is defined such that it can

range between 0 and 2.

The extension to SAL introduced by eSAL enables the quantification of ensembles without

the ensemble dimension in the resulting metrics. That is, whether a single field is evaluated

or an ensemble of many fields, the calculation yields a single value for each of the three SAL

parameters. In theory, both reconstruction and reference can be ensembles, however, in this

thesis the reference is always a single field.

The aspect of the (e)SAL validation marking the crucial difference to the aforementioned

pixel-based metrics is its consideration of objects. Thereby (e)SAL allows for a validation

that takes into account a typical property of rainfall which is its occurrence in separate cells.

It is thereby also closer related to a visual qualitative validation of the fields, whereas the

quantitative metrics enhance comparability. Note, however, that the objects are actually

only considered for the calculation of S and L. The parameter A, on the other hand,

quantifies the overall domain-wide rainfall independent of the objects. In fact, it is a function

of the bias but with a value range that is in accordance with S and L and hence allows useful

direct comparison to those two parameters.

5.2.4 Algorithm of the (e)SAL Calculation

Within the scope of this thesis, the computation of (e)SAL parameters has been made

available as Python code (Blettner, 2022). This section describes the implementation which

is adopted from the original definition of Wernli et al. (2008) and the ensemble-related

extensions of Radanovics et al. (2018). In terms of nomenclature, it partly follows the

mentioned publications which are not fully consistent among each other. A clarification of

the nomenclature and its usage in the studies is provided in Table 5.1.

Calculating the (e)SAL parameters involves calculating properties of reconstructed and ref-

erence fields, and of rainfall objects within these fields. Fields, in this sense, can refer to

the reconstruction or the reference, and, if an ensemble is involved, the term refers to an

individual ensemble member. That is, in the case of ensembles, first the properties are cal-

culated for each member and afterwards they are combined to describe the whole ensemble.

Before calculating the field-specific parameters, the way by which to distinguish objects and
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Table 5.1: Nomenclature of parameters used for (e)SAL calculation (cf. Figure 5.1).

Meaning Parameter

Rainfall threshold R∗

Threshold factor f
95th percentile of rainfall R95

Maximum domain distance d
Average rainfall of field Df

Center of mass of field xf

Center of mass of object xo

Maximum rainfall of object Rmax
o

Rainfall sum of object Rsum
o

Scaled volume of field Vf

Scaled distance rf
Number of objects in field O
Number of ensemble members M

the maximum distance on the grid need to be defined. Figure 5.1 visualizes the procedure

and gives an overview of the calculated parameters.

Preparation

The first step is to define a threshold that defines how to distinguish the rainfall objects.

It marks the boundary between rainfall amounts that are high enough to be counted to a

rainfall object and those amounts that are lower and comprise the areas in between objects.

An object is a cluster of connected pixels with values above the threshold. The thresholds

(R∗) for the reconstruction and reference are calculated as

R∗
rec = R95

rec · f (5.7)

R∗
ref = R95

ref · f (5.8)

where the threshold factor f is defined as

f = max

(
1

15
,
0.1mm

R95
ref

)
(5.9)

and R95
rec, and R95

ref are the 95th percentile rainfall amount of reconstruction and reference,

respectively. In the case of the reconstruction or the reference being an ensemble, R95
rec or

R95
ref take into account all the ensemble members. While the thresholds for reconstruction

and reference are different from one another, the threshold factor (Equation 5.9) depends

always only on R95
ref . That is, the threshold factor is 1

15 except for situations where this

would lead to a threshold below the precision limit of the reference. It depends only on

the reference rainfall amount, as no precision limit is given in the reconstructions. The

value 1
15 was introduced by Wernli et al. (2008) without objective reasoning. More details

51



Chapter 5. Methods: Validating Rainfall Estimates

Figure 5.1: Illustration of the (e)SAL calculation. The connection between the parameters
that are calculated for individual objects, fields, and full ensembles are shown. The principle
remains the same also if no ensemble is considered. The detailed parameter connections are
only shown for the reconstruction. For the reference, the procedure is the same. Further
explanation can be found in the text and in Table 5.1.

related to the calculation of the thresholds can be found in Radanovics et al. (2018) who

also conducted a sensitivity analysis to assess the appropriate definitions. Importantly,

the above definition implies that the threshold, which defines objects, can differ between

the reconstruction and the reference. This guarantees that the SAL metrics are largely

independent from one another as the object classification is not influenced by a potential

overall bias.

For the calculation of the L parameter of (e)SAL, the maximum distance d within the

domain is required. This is considered to be the length of a diagonal of the rectangular grid.

Note that this definition differs from the one of Radanovics et al. (2018) who consider d

to be equal to the longer of the two grid axes. The definition chosen here, guarantees that

both L1 and L2 are within the interval [0, 1] such that L is in the interval [0, 2].

Field-specific Properties

With the threshold values and the maximum distance defined, the field-specific properties

can be calculated. They depend on the object-specific properties and can be aggregated to

ensemble-specific properties if applicable. Both in Figure 5.1 and in the following part of

the text the procedure is described for the reconstruction. A similar procedure is done for

the reference but not explicitly outlined to avoid redundancy.
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First, for each field the total center of mass (xf ) is calculated. This defines the location

of the center of gravity when virtually converting rainfall amounts to mass. It considers all

pixels directly, regardless of whether they belong to objects. Moreover, the average rainfall

Df is calculated as the arithmetic mean of all pixel values.

Subsequently, the rainfall objects are defined via image processing. Connected pixels with

values above the threshold R∗
rec are identified and each such set of pixels is considered an

independent object. Then, the following parameters of the individual objects are calculated:

the local center of mass xo, the maximum rainfall amount Rmax
o , and the rainfall sum Rsum

o .

With these object-specific parameters the following quantities concerning the whole field

are calculated. The normalized volume Vf is defined via the rainfall sum of the objects

normalized by the maximum rainfall amount of that object and the overall rainfall sum of

all objects, formally

Vf =

O∑
o=1

Rsum
o

Rsum
o

Rmax
o

O∑
o=1

Rsum
o

(5.10)

where O is the number of objects within the field. Moreover, the distances between the

objects’ specific local centers of mass (xo) to the total center of mass of the field (xf ) are

calculated. This is normalized by the domain sum of rainfall amount to yield the weighted

averaged distance, formally

rf =

O∑
o=1

Rsum
o |xf − xo|

O∑
o=1

Rsum
o

(5.11)

In the case of ensembles, the above field-specific parameters are calculated for each member

that is part of the ensemble. The corresponding parameters (V , D, x, and r) that represent

the whole ensemble are then derived straightforwardly. V , D, and x are obtained simply

via averaging over the ensemble dimension of Vf , Df , and xf , respectively. That is,

V =
1

M

M∑
f=1

Vf , D =
1

M

M∑
f=1

Df , and x =
1

M

M∑
f=1

xf (5.12)

where M is the number of ensemble members. For r, in contrast, the set containing all rf

is considered, that is,

r = (rf )f∈[1..M ]. (5.13)

Note that no special treatment for non-ensembles (M = 1) is required: in this case, V , D,

and x are equal to Vf , Df , xf following Equation 5.12; and for r, the set simply contains

only one element.

53



Chapter 5. Methods: Validating Rainfall Estimates

The four parameters V , D, x, and r are used for the calculation of the (e)SAL error metrics

together with the corresponding parameters of the reference that are derived similarly. In

the following, the subscript rec or ref is used again to discriminate whether a parameter

describes the reconstruction or the reference, respectively.

Actual (e)SAL Metrics

For the calculation of the S parameter, the volume parameters of reconstruction (Vrec) and

reference (Vref ) are required:

S =
Vrec − Vref

0.5(Vrec + Vref )
(5.14)

For the calculation of A, none of the object specific parameters is required. A is defined as

A = 2 ·
Drec −Dref

Drec +Dref
. (5.15)

The L parameter is the sum of the two components L1 and L2. L1 considers the total

centers of mass, while L2 considers the aggregated, weighted distances of the local centers

of mass of the individual objects to the total center of mass of the fields. Formally,

L = L1 + L2 (5.16)

with

L1 =
dist(xrec,xref )

d
(5.17)

where dist() is the Euclidean distance function, and

L2 = 2 · crps
(
P
(rrec

d

)
, P
(rref

d

))
. (5.18)

In Equation 5.18 the function crps() (defined in Appendix A) is the continuous ranked

probability score, and P () the empirical cumulative distribution function. The function

crps() provides a measure of distance between two cumulative distribution functions. In the

case in which no ensembles are considered, it is equal to the mean absolute error.

5.2.5 Interpretation of (e)SAL and Pixel-based Performance Metrics

While the calculation of the SAL metrics has been introduced above it may not yet be

clear what inferences can be drawn from their values and how they relate to other metrics.

Figure 5.2 provides basic constructed examples showing edge cases in each of which only one

of the three parameters is affected. This visualizes that the parameters can quantify aspects

of the field independent of one another. The reference in Figure 5.2 is always the same (top

left). If the reconstruction is the same (Rec 0) all metrics are zero. Rec 1 is a reconstruction

which has the same overall amount as the reference (hence, A is zero), however, a different,

54



5.2. Spatial Validation

more peaked and narrow shape. Consequently, the S parameter is negative. For Rec 2, on

the other hand, the reconstruction shows a widespread not so peaked rainfall object. Again,

the overall amount is similar to the reference, but here, the structure error is positive.

Rec 3 and Rec 4 show examples where only the amplitude error changes as there are only

differences in the overall amount. The structure error remains at zero in these examples as

the relation between maximum values and the volume remains constant. The last example

(Rec 5) shows a displacement of the rainfall object. The total amount and the shape of

the objects are similar. The different location leads to a nonzero location error. The error

is rather small, however, because only the component L1 deviates from zero whereas L2 is

always zero if only a single object exists.

Figure 5.2: Illustration of SAL metrics via constructed exemplary fields. The upper-left field
is the reference for all reconstructions (Rec 0 – Rec 5). Below the fields the respective SAL
(and standard) metrics are shown. Units of field values are omitted as they are irrelevant
for the calculation of the metrics.
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Figure 5.2 additionally shows standard metrics RMSE , BIAS , and PCC as defined in Equa-

tions 5.4, 5.5, and 5.6, respectively. The two examples with nonzero structure errors show

no bias and a similarly high PCC . The RMSE is nonzero in both of those cases and larger

in the case of the narrow peaked reconstruction (Rec 1) as in the case of the widespread

smooth reconstruction (Rec 2). This reveals an interesting difference between the quantita-

tive range of the errors: According to S both Rec 1 and Rec 2 resemble Ref equally well,

and only differ in their sign; according to RMSE , on the other hand, the too widespread

object is not as bad as the too narrow one, and according to PCC , Rec 1 is slightly better.

With respect to Rec 3 and Rec 4, there is no error according to PCC . RMSE is nonzero but

much higher for the case with very high rain rates in the reconstruction (Rec 4). The BIAS

always shows the same tendency as A but via a different value range, which is not centered

around zero, but within the interval [−1,∞). The last example of displacement (Rec 5)

receives a very poor PCC value, which represents approximately the quality of a random

guess. Also the RMSE is considerably high. According to the BIAS , on the contrary, Rec

5 represents a perfect fit, i.e., no systematic error exists. This latter example of Rec 5 in

particular shows how standard metrics, like PCC and RMSE , can be misleading as a result

of the double-penalty problem described above.

These constructed cases show clearly how important it is to select suitable parameters for

validation. It is necessary to decide on the aspects of the reconstruction that are most

relevant in a particular case of application. Note that these examples show only single

rainfall objects. (e)SAL is of course not restricted to such simple cases and many objects

may be present and their number may be different in reference and reconstruction. In

Chapter 7 the (e)SAL validation is applied to real scenarios.
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Chapter 6

Results: Transboundary Rainfall

Reconstruction

This chapter presents the results of the case study on generating transboundary CML-based

rainfall maps. The main research question being addressed in this chapter is: Can two

large independent CML data sets be combined and processed jointly to generate consistent

transboundary rainfall maps? While data and methods have been introduced in Chapters 2–

5, this chapter starts with Section 6.1 describing the specific data and methods used only

in this case study. Subsequently, the results are presented in Section 6.2.

6.1 Case-related Data and Methods

The case study presented in this chapter uses the CML data from both Germany and

the Czech Republic and focuses on transferability of CML processing algorithms. Hence,

several new methodological aspects of this processing are introduced here. An overview of

the setting of the case study is given in Figure 6.1.

This case study covers a one-month period (June 2021) and focuses on the border region

between Germany and the Czech Republic. The two respective CML data sets are described

in detail in Section 2.2. Overall data from approximately 3900 and 2900 CMLs are available

from Germany and the Czech Republic, respectively. In the analyses of this chapter, 1167

(Germany) and 2244 (Czech Republic) CMLs are considered, which are located in the border

region as defined in Figure 6.2.

In the context of this case study, it is important to note that the two used CML data

sets vary significantly with respect to spatial distribution, frequencies and lengths. The

Czech data set has a significantly higher CML density in populated regions (e.g., the city

of Prague), whereas in Germany the CMLs are more evenly distributed across the country.

In Germany, CML frequencies essentially vary between 12 and 39 GHz while in the Czech
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Figure 6.1: Overview of the design of the first case study with the focus on transboundary
rainfall maps. Two CML data sets from Germany (DE) and the Czech Republic (CZ) and the
rain gauge-adjusted radar product RADOLAN-RW are used. The CML data is combined
and processed to obtain path-averaged rainfall information. The path-averaged rainfall
information of the CMLs is used to generate transboundary maps, and compared to path-
averaged rainfall information derived from RADOLAN-RW to calculate the performance
metrics MAE , BIAS , PCC .

Republic the data set comprises approximately 30% E-band CMLs with frequencies above

70 GHz. The CML length in Germany is above 1 km in 99% of the cases. In the Czech

Republic, 26% of CMLs have a length below 1 km and 1% even below 0.1 km.

These differences have a strong effect on the sensitivity of the path attenuation on rainfall,

that is, on the CML’s detection limit DL, a parameter used throughout this case study. It

is defined as

DL =
Aq

G · a(freq , pol)
(6.1)

where Aq is the quantization which is assumed to be at 0.33 dB for all CMLs. The param-

eter G represents the CML length and a is the factor of the k-R relation (Equation 2.2)

which is dependent on the frequency (freq) and polarization (pol), and is obtained from

the ITU recommendations (ITU-R, 2005). By this definition, the detection limit quantifies

the minimum rain rate that is required to induce an observable difference in the signal.

Also, it roughly determines the precision of the retrieved rain rate. The detection limit is

dependent on frequency and length which have a wider range of values in the Czech data,

and hence, also the range of detection limits is larger in the Czech data. The Czech CMLs

have detection limits from 0.04 to 132 mm/h, whereas the detection limit of the German

data lies mostly between 0.2 and 1 mm/h, and only two German CMLs exceed a detection
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limit of 2 mm/h. Note that a crucial difference in this regard is the presence (for the Czech

Republic) and absence (for Germany) of E-band CMLs which are generally rather sensitive

to rainfall. The E-band CMLs that are longer than a few kilometers have an exceptionally

low detection limit below 0.1 mm/h. This property is beneficial for sensing light rainfall but

these highly sensitive CMLs are also more prone to experience very high attenuation. Strong

rainfall can therefore even lead to a loss of connectivity along the CML as the receiver fails

to record below a certain level (see Polz et al. (2023) and the description of blackout gaps

in Section 6.2.2).

As a reference, the gridded rain gauge-adjusted weather radar product RADOLAN-RW

is used and described in Section 2.1. Despite the fact that two countries are considered

in this case study, RADOLAN-RW serves as the only reference. This is done to avoid

additional potential error sources stemming from combining independent reference data sets.

Unfortunately, there is no gridded data set of comparable resolution and quality available

that covers both Germany and the Czech Republic completely. Nevertheless, the border

region considered in this case study is covered by RADOLAN-RW to a large extent (see

Figure 6.2), and hence RADOLAN-RW can be considered a suitable reference.

In this case study, the estimated rainfall maps are compared to RADOLAN-RW directly

(Section 6.2.5), but also, rainfall retrieval based on the CML paths is evaluated (Sec-

tion 6.2.4). For the path-based evaluation, reference values along the paths need to be

derived. Therefore, a weighted sum of the RADOLAN-RW pixel values along the path of

every CML is computed. The weights are proportional to the length of the intersection of

pixels and CML paths (cf. Figure 4.1 where the weight of pixel x33 would be larger than

that of pixel x23, for instance).
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Figure 6.2: Data overview. Top: Sensor locations with the analyzed border region defined
by the black box; the shaded background shows the coverage of RADOLAN-RW. Bottom:
Distribution of frequency versus length of CMLs within the analyzed region (German and
Czech CMLs in left and right panel, respectively); dashed lines show levels of detection
limit.
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The CML processing algorithms are primarily based on those applied in Graf et al. (2020),

which originally were adjusted to a purely German CML data set and a different period

than considered in this case study. The processing can be subdivided into two aspects: a)

dealing with erroneous data, that is, quality control (QC), which is particularly relevant

for opportunistic data with its potentially high number of error sources associated with

engineering details rather than atmospheric aspects; and b) rain rate retrieval and map-

ping which involve steps that are related to well-understood challenges but nonetheless are

associated with considerable uncertainties. The difference between the German and Czech

CML data sets required some adaptations and extensions to the QC part of the established

algorithms.

The results involve an investigation of data quality issues, QC algorithms that are adapted to

the observed patterns, and their effects in Sections 6.2.1–6.2.3. In Section 6.2.4, the quality

of path-averaged CML rainfall amounts on an hourly basis is quantified in a comparison to

RADOLAN-RW along the paths using the performance metrics MAE , PCC , and BIAS as

defined in Section 5.1. Finally, in Section 6.2.5, the rainfall maps are evaluated qualitatively.

6.2 Results of the Case Study

6.2.1 Identifying Issues of Data Quality

Investigating the data sets reveals the necessity for quality control algorithms. Before de-

scribing the individual algorithms conducted in this regard, the main observations that

justify them are summarized. The justification is largely based on the physical limits of

rainfall, its statistics and the knowledge of how rainfall can and cannot be reflected in CML

observations. For most described patterns, an example is given in Figure 6.3.

Anomalous data points and periods are observed in several CMLs. For instance, a limited

number of unreasonably low or high values leads to spikes in the time series. Moreover,

the time series of some Czech CMLs show periods in which the baseline of received signal

levels (RSL) drops to values far below the median and then stays at approximately (but

not exactly) this level for several minutes, hours or even days before it leaps up again.

These patterns are referred to as plateaus. Furthermore, gaps in the time series of the RSL

are encountered at presumably rainy periods, when the signal before or after the gap is

significantly lower than the median of the whole time series. Those gaps are considered

blackouts, that is, they are gaps caused by a failure of the receiver to process RSL values

below a certain threshold in the case of heavy rainfall (Polz et al., 2023). Moreover, short

gaps in the time series can be observed, due to outages in the acquisition or other technical

aspects. These are not considered blackouts if the RSL is not particularly low before or

after the gaps.
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In addition to the period-based observations, there are issues that affect CMLs as a whole.

Most prominently, several CMLs show high fluctuations throughout the raw signal time

series. These fluctuations may occur in daily or random patterns and are often clearly

stronger and affect more time steps than the fluctuations induced by rainfall. Moreover, the

Czech data includes CMLs with very high detection limits. These CMLs are, by definition,

not capable of measuring weak rainfall. Furthermore, they are less precise even if the rainfall

exceeds the detection limit. The quantization of the recorded signal only allows a coarse

estimation in these cases.

The above mentioned observations led to the definition of the following steps that are applied

to improve data quality. Of those, the first four affect only single data points of the time

series, while the latter two affect CMLs as a whole.

6.2.2 Adapted Quality Control Algorithms

Step 1: Removing Specific Fill Values

Missing values are often given as numerical fill values, for which there is not a strict conven-

tion. Signal levels are set to missing values if they have any of the following values: - 99.9,

- 99, 255, or approximately 1e37. Of course, other fill values might occur in other data sets.

Nevertheless, this step is defined in a specific way as each fill value might have a different

unknown reason and meaning, which makes it useful to identify them and to address them

directly.

Step 2: Filtering Plateaus

The plateau filter applies to data points that fulfill both of the following conditions: a) the

centered rolling maximum RSL of three data points is below - 85 dB, and b) the centered

rolling standard deviation of RSL of three data points is smaller than 0.5 dB. Additionally,

data points that are adjacent (next and second to next) to such plateaus are filtered. The

threshold of - 85 dB was chosen as the distribution of RSL exhibits a peak for lower values,

which is not explicable by rainfall induced attenuation.

Step 3: Filling Blackout Gaps

Following the approach of Polz et al. (2023), a period of missing values is considered to be

a blackout gap if the last RSL value before the gap or the first value after the gap is below

- 65 dB. In this step, these gaps are filled by the lowest RSL recorded by the CML over the

whole month. Note that the maximum period that can be filled does not exceed 1 h, that

is, at maximum 0.5 h after a gap starts and 0.5 h before the end of a gap. The gap is not

filled at all if its length exceeds 1 h. Note that periods that are considered blackout gaps

are always classified as being wet in the rain rate retrieval part of the processing.
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Step 4: Filling 5-Minute Gaps in the Time Series

The steps above depend on RSL. Step 4, in contrast, is based on the total loss (TL), that

is, the difference between transmitted signal level (TSL) and RSL. If there are gaps in the

TL time series and if they do not exceed 5 minutes, they are interpolated linearly. If they

exceed 5 minutes they remain unaffected by this step.

Step 5: Filter due to Fluctuations in the Time Series

This filter comprises two tests: a) the 5-hour rolling standard deviation of the TL exceeds

2 dB at least 10% of the time; b) the 1-hour rolling standard deviation of the TL exceeds

0.8 dB at least 33% of the time. All CMLs that fulfill at least one of these conditions are

removed in this step. Note that this step and the previous Step 4 are similar to what was

already done by Graf et al. (2020); however, they are specified here to explicitly state the

full QC sequence.

Step 6: Filter by Detection Limit

The detection limit is defined as the minimum rainfall required to induce an observable

change in the signal of a CML. It is calculated via Equation 6.1. Step 6 removes CMLs

with a detection limit of at least 2 mm/h. This threshold was chosen heuristically but based

on the fact that a large proportion of the rainfall amount in the Central European climate

can be attributed to rain rates below this value. Hence, CMLs that cannot sense such low

intensity rainfall are neglected.

Application of the Algorithms

For the following part of the analyses, three processing lines are distinguished, which differ

in the selection of the steps defined in this section. These processing lines are referred to

by the terms No Filter, Graf 2020, and Full. In the No Filter case, only the basic Step

1 is performed. In the Graf 2020 case, additionally Steps 4 and 5 are performed. These

steps have been adopted from Graf et al. (2020), and hence, this processing line represents

a current standard approach of dealing with data quality adjusted to a purely German data

set. In the processing line Full, all steps defined in Section 6.2.2 are performed. The steps

are always conducted in the order used above. The effect of the different processing lines

is considered in Sections 6.2.4 and 6.2.5. In Section 6.2.3, on the contrary, the individual

steps of the Full processing line are considered and their effects are analyzed separately.

6.2.3 Effect of Quality Control Algorithms

Figure 6.3 showcases the effect of steps introduced in Section 6.2.2 via exemplary time series.

The first example shows that there would be extremely high hourly rainfall amounts towards
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the end of the shown period, if the plateau filter was not active. The second example shows

how blackout gap filling can help to capture a rain event that otherwise would have been

missed. In the third example, a strongly fluctuating CML yields rain events far too often

and without correlation to the reference. The fourth example presents a CML with a high

detection limit; although it captures most of the rain events, the amount is generally far

too high and even minor changes in RSL suggest strong rain. In the latter two examples,

the respective CMLs are removed completely from the analysis when considering the Full

processing line.

Figure 6.3: Examples of data quality issues and QC algorithms. Four exemplary time series
are shown of which each has been treated by one of the steps of Section 6.2.2. The left
column treats period-based steps, and the right column steps that affect CMLs as a whole.
For each example, the received signal level (RSL) and hourly rainfall sums (RH) are shown.
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Figure 6.4 provides statistics about the amount of data that is influenced by steps of QC.

It shows that only a small amount of data is affected by the plateau filter and the blackout

gap filling. Affected hours are defined as hours in which at least 10 minutes are labeled

either as a plateau or as a blackout gap. Only for the class of data points that are associated

with high reference rainfall amounts and either very low or very high detection limits, the

plateau filter affects a larger share. For the blackout gap filling, there is a clear positive

correlation between the amount of affected hours and reference rainfall amounts. Moreover,

CMLs with lower detection limit are affected more often. Similarly, mostly the CMLs with

low detection limits are affected by high fluctuation. By definition, the filter based on the

detection limit affects only the class with the highest detection limit. The effect of filtering

CMLs on the spatial sensor density can be seen in Figure B.1 in the Appendix.

Figure 6.4: Effects of QC algorithms shown via statistics about the abundance of occurrences
of data quality issues. The left column treats period-based steps, and the right column steps
that affect CMLs as a whole (cf. Figure 6.3). In the left column affected means that at least
10 minutes per hour are either filtered (plateau filter) or filled (blackout gap filling). In the
right column, the percentage of CMLs affected by either fluctuation or high detection limit
is shown. Note that this analysis relates to the processing line Full in which all the steps of
QC are conducted.
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6.2.4 Path-based Quantitative Analysis

Path-averaged rainfall amounts of the CMLs in the border region for one month are evaluated

by comparison to RADOLAN-RW along the CML paths and by analyzing the performance

metrics. Figure 6.5 shows CML quantities and the performance metrics dependent on de-

tection limit, the kind of QC algorithms, and the country. The boxplots indicate the spread

over the CML dimension.

The different range of detection limits of the two data sets can be seen in the upper row

of Fig 6.5. The filtering involved in the QC algorithm causes a general reduction of the

number of CMLs. While this reduction affects the data sets of both countries, it is clearly

more pronounced for the Czech data set. Starting from No Filter the additional filtering of

Graf 2020 affects CMLs of all classes of detection limits. The additional steps (Full) almost

only affect the Czech CMLs and primarily the ones of high detection limits.

The values of the performance metrics and their distributions depend on the detection limit.

All three metrics deteriorate towards the classes of high detection limits. This can be seen

by worse median values, and, in a more pronounced manner, by the worse mean values and

the marked skewness of the distributions. A skewed distribution can especially be observed

for the detection limit classes > 0.5 mm/h. The BIAS additionally shows a general increase

with detection limit: While CMLs with very low detection limit (e.g., the ones of E-band

frequency) tend to underestimate the rainfall amounts, the ones with high detection limits

tend to overestimate. The effect of the detection limit can mainly be seen in the Czech data

where each class contains a considerable number of CMLs. For Germany, the effect is less

clear due to the small number of CMLs with detection limits above 1 mm/h in the German

data set. Nonetheless, outliers in MAE and BIAS are more prevalent for the detection limit

class of 0.5–1 mm/h compared to the class 0.1–0.5 mm/h, also in the German data. Note

that for readability not all outliers of MAE and BIAS are shown in Figure 6.5.

The performance metrics also depend on the three processing lines and the two countries.

Considering the effect independent of the detection limit, that is, focusing on the shaded

parts of Figure 6.5, a reduction of outliers with extended processing can be observed through-

out. While the median of the MAE varies only little for the different processing lines, the

number of outliers is clearly reduced by the enhanced processing. This can particularly be

seen for the Czech data by the improved mean values: for example, the MAE of the Czech

CMLs has the values 0.19 mm, 0.19 mm, 0.11 mm, for the No Filter, the Graf 2020, and the

Full processing lines, respectively (an overview of the metrics is provided in the Appendix

in Tables B.1 and B.2). A similar observation can be made for the BIAS , where the medi-

ans are very close to zero for all processing lines, but where the mean values of No Filter

(0.46) and Graf 2020 (0.46) are clearly higher than those of the processing line Full (0.02).

Independent of the country, the PCC improves with increasingly effective processing both

66



6.2. Results of the Case Study

in terms of the median (from 0.89 over 0.91 to 0.93 for the German data, and from 0.84

over 0.84 to 0.86 for the Czech data) as well as by a reduction of the number of outliers and

increasing mean values.

The effect of the processing lines can also be seen within individual classes of detection

limit. Especially for the category of CMLs with detection limits in the range 0.5–1 mm/h,

the extended processing affects the mean of MAE and BIAS strongly, while the effects on

the quantiles depicted in the boxplots are small. This shows that the extended processing

mainly reduces the number of outliers and thereby their influence on the metrics.
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Figure 6.5: A path-based quantitative analysis for the whole month (June 2021). The CMLs
are categorized into classes of detection limit and three different processing lines are shown
by different color intensities of bars and boxplots. By definition, CMLs are not available
(NA) in the Full processing for the highest class of detection limits. The first row shows the
amount of CMLs in each class. The latter three rows show the mean absolute error (MAE ),
the BIAS , and the Pearson correlation coefficient (PCC ), respectively. The shaded part
of the figures considers all CMLs independent of their detection limits. The left and right
column consider the German and Czech CMLs, respectively. For Germany, two classes of
detection limit contain very few CMLs and for those the metrics are shown as individual
points for each CML instead of boxplots. Note that not all data points lie within the
presented range of values for the MAE and the BIAS .
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6.2.5 Spatial Rainfall Reconstruction

Figure 6.6 shows rainfall maps for an event (June 21st, 21:50 to June 22nd, 4:50) that

traverses the German-Czech border. Via all of the processing lines (first three rows in

Figure 6.6) it is possible to generate maps that reproduce the overall pattern of the event.

Nevertheless, particularly for the No Filter processing line several shortcomings can be

observed. For example, there are spots of overestimation. These appear most prominently

in the cities and towns in the Czech Republic where the CML networks are dense. (e.g., in

Prague located within the red square in the upper left map of Figure 6.6, and Strakonice

encapsulated by the orange square in the panel of the last time step). Moreover, there

are white spots of underestimation within the rainfall field, particularly, at the time stamp

01:50 (highlighted by a purple square). Furthermore, for the first two time steps in which the

rainfall is mostly located over Germany (region highlighted by magenta square), the high

spatial variability as well as the high amounts observable in the reference is only weakly

represented in the CML-derived maps.

Figure 6.6: Maps of a rainfall event (June 21st, 21:50 to June 22nd, 4:50) (time progressing
from left to right). The first three rows are interpolations based on CMLs for the different
processing lines. The bottom row is the reference RADOLAN-RW. A comparison of the
Full processing and RADOLAN-RW in a movie sequence can be found in Blettner (2023).
Another event is shown in Figure B.2 in the Appendix.
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Positive effects of extended QC algorithms can be observed by comparing the different

processing lines in Figure 6.6. The spots of overestimation in the Prague region are present

in all time steps for the No Filter case, and also in the Graf 2020 case, but not anymore

when applying the Full processing. The local false rainfall in Strakonice is already removed

via the Graf 2020 processing. The extended processing also helps to reduce some white

spots that appear while the rain event is located over the westernmost part of the Czech

Republic (e.g., time step 01:50), though several of these spots persist. The underestimation

in the time steps 21:50 and 22:50 is reduced from the No Filter to the Full processing lines,

even though the representation of the spatial variability remains limited.

While hourly rainfall sums are depicted in Figure 6.6, their sums over the whole analyzed

month are presented in Figure 6.7. For the processing lines No Filter and Graf 2020, areas

of very strong rainfall can be observed within the Czech Republic and along the border.

Similarly high values cannot be found in the reference, and their occurrence can clearly

be attributed to individual outliers in the observations that have a strong influence on

their surrounding in the IDW interpolation. While only minor effects can be seen by the

processing of Graf 2020, the extreme overestimations are strongly reduced considering the

Full processing line. The map of the Full processing line is roughly comparable to the

reference: Whereas finer structures cannot be captured in the monthly sum (which is partly

explicable by the application of the simple IDW interpolation) the broader areas of high and

low rainfall sums coincide, and also the total amounts are in the same order of magnitude.

Figure 6.7: Maps of the monthly rainfall sum for June 2021. From left, the first three maps
are interpolations based on CMLs for the different processing lines. The map on the right
is the reference RADOLAN-RW.
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6.3 Summary and Discussion

It was found that two individual CML data sets can be processed consistently with accept-

able results even when applying algorithms that had been adjusted to only one of them and

for a different period. However, while this holds for many CMLs and over most periods,

it produces unrealistic rainfall amounts in some situations, which, despite their rarity can

have strong influence on the maps.

Thereby, this case study confirmed that it is crucial to deal with quality control (QC) when

using CML data for rainfall estimation. Not only the frequency and the length distributions

that determine the detection limit of the CMLs, but also unreliable periods or gaps in the

time series of individual CMLs need to be considered. Some issues such as blackout gaps

and CMLs with high fluctuations in the signal exist in both data sets. Others, like the

periods that are referred to as plateaus are essentially only observable in the Czech data

set. Global processing algorithms are required that address the individual characteristics

but still allow for a consistent treatment of all available data. The need to extend the set

of algorithms developed for one data set when applied to a different independent data set,

shows precisely the degree to which established routines are transferable, and where they

are insufficient.

QC algorithms, which were partly adopted from Graf et al. (2020) and partly developed

in this case study, were applied and analyzed. These algorithms involve filtering, that is,

a reduction of the amount of data, which is generally not desirable. However, filtering is

less problematic for generating rainfall maps if the sensor density is high in relation to

the resolution of the map. In this case study, the majority of filtered CMLs is in the Czech

Republic and often in the cities where the network is dense enough so that the loss of several

devices with questionable observations is justifiable.

Note that a set of steps to improve data quality is described and analyzed, which is not nec-

essarily considered optimal and exhaustive, but which help to deal with the major challenges

that were encountered. There is room to improve the algorithms and to add additional ones.

For example, the classification of wet and dry events may be improved by including a spatial

consistency check similar to what was done by Overeem et al. (2016a), instead of basing it

purely on the time series of individual CMLs.

In this case study, the feasibility of combining heterogeneous CML data sets to generate

transboundary rainfall maps is shown. Furthermore, straightforward algorithms that can

help to deal with issues of data quality are presented. Thereby, another step was made

towards minimizing erroneous data points, which need to be expected, given that CMLs

are opportunistic rainfall sensors. The persistence of minor issues of data quality does not

prevent the generation of consistent transboundary maps. This shows the potential of CMLs

71



Chapter 6. Results: Transboundary Rainfall Reconstruction

providing a basis for even larger-scale (e.g., continental) rainfall maps, which is a challenge

even for dedicated sensors.

72



Chapter 7

Results: Countrywide Reconstruc-

tion via Random Mixing

This chapter presents the results of the case study that focuses on the stochastic recon-

struction of countrywide rainfall maps for Germany. The main research question being

addressed in this chapter is: What are the benefits of rainfall maps generated by stochastic

reconstruction via Random Mixing (RM) using large CML and rain gauge data sets? While

data and methods have been introduced in Chapters 2–5, this chapter starts with describing

the specific data and methods used in this case study in Section 7.1, before presenting the

results in Section 7.2.

7.1 Case-related Data and Methods

7.1.1 General Setting

In this case study data from CMLs and rain gauges in Germany is used, the RM and Kriging

method for reconstruction are applied, and the results are analyzed by comparing them

to gauge-adjusted radar data RADOLAN-RW via standard and the (e)SAL performance

metrics. An overview of the design of the case study is given in Figure 7.1.

The analyses of this chapter consider a period of three months (June through August 2019)

with an hourly resolution. The rain gauges are from the network of DWD and comprise 953

devices (see Section 2.1 and Figure 7.2). Note that the rain gauges used for the reconstruc-

tions are also deployed for the radar adjustment. The CML data set is that of Germany

described in Section 2.2 consisting of 3904 sensors. In the analyzed months, there are several

periods in which almost no CML data is available due to failures of the data acquisition

system (see shaded parts in the time series in Figure 7.3). Such periods are disregarded in

the analysis entirely. This reduces the total number of 1-hour time steps from 2208 (three

months) to 1885.
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Figure 7.1: Overview of the design of the case study on countrywide rainfall maps via RM.
CML data is processed to path-averaged information and then combined with rain gauge
(RG) data. Two types of maps are constructed from this: one via RM and one via Ordinary
Kriging (OK). The maps are validated via a comparison to RADOLAN-RW that provides
a set of performance metrics. Note that the RG input data set used for the reconstruction
is not independent from the RG data used for radar adjustment in RADOLAN-RW (see
Chapter 2).

The sensor locations are projected onto the polar stereographic coordinate system used for

RADOLAN-RW. One of the rain gauges lies outside the grid extent and thus is disregarded.

The projection differs slightly between the reconstruction methods applied in this case study:

For the use in RM, the locations are projected onto the grid points, while for Kriging, the

exact (off-grid) values are kept.

Then, a filtering routine is applied, which concerns CML data only, and goes beyond steps

that are described in Graf et al. (2020) and Section 3.2. It is a spatial sanity check in which

single observations at given time steps are excluded from the analysis if they measured values

that are distinctly different from the ones of neighboring sensors. As was acknowledged by

Graf et al. (2020) and Polz et al. (2020) there still is a considerable amount of false-positive

CML rainfall values in the used data set, despite the quality control routines that have been

applied. Compared to these two studies, the focus here lies on spatial rainfall estimation

and an analysis of the derived rainfall patterns. Hence, eliminating spatially isolated false-

positive CML rainfall, which impacts its whole surrounding area, has a higher importance in

this case study. Thus, the following heuristic filtering scheme is applied to remove spatially

isolated suspicious data points: For any wet (nonzero) observation qObs, it is tested whether

the neighboring observations are all dry. For this, only neighbors in a radius of 15 km are
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Figure 7.2: Locations of sensors. Areas outside the German borders are not considered in
the evaluation. The coordinates represent the distance from the lower left corner of the
RADOLAN-RW projection.

considered. If there exist at least five such neighbors and if they all observe no rainfall, the

observation in question qObs is disregarded. This way, approximately 2.8% of CML data is

removed. Two examples of the effect of this filter can be found in Figures C.5 and C.6 in

the Appendix. Note that this filter is similar to the nearby link approach (Overeem et al.,

2016a), which has been applied in several studies (e.g., de Vos et al. (2019), Roversi et al.

(2020)) for identifying wet periods and filtering outliers. An important difference is that the

filter applied here uses processed rainfall amounts instead of the raw signal.

Furthermore, whole time steps are disregarded if they are too dry. That is, only time

steps are considered in which at least five percent of rain gauges and five percent of CMLs

record some rainfall. One reason for this is the observation-based estimation of the spatial

dependence structure which requires a minimum of nonzero observations. Moreover, most

interesting are rainfall events that cover considerable spatial extents to allow for a meaningful
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pattern analysis. This measure further reduces the number of total time steps from 1885

to 819. The disregard of many rather dry time steps limits the applicability to operational

use, for which a different approach to the calculation of the spatial dependence structure

would be required.

Figure 7.3: Overview of the analyzed period and the selected events. Top row: Time series of
the analyzed period (June–August 2019) including spatial mean rainfall of the RADOLAN-
RW reference, and indications where reconstructions were calculated and which time steps
were selected for the event-based analyses. Below: For each of the selected time steps,
hourly rainfall sums (RH) of CML observations, rain gauge observations, RADOLAN-RW,
and a single RM reconstruction are shown. Areas that are not covered by RADOLAN-RW
as well as observations that did not record values are colored in gray.

Via the RM reconstructions, an ensemble of 20 single realizations is calculated for each time

step. This number is sufficiently high to see several effects that the ensemble calculation

features. At the same time, performance metrics are not expected to vary by much for

greater ensemble sizes (see Section 7.2.4) and the computational complexity which depends

on the ensemble size, needs to be considered as a limiting factor in RM calculations (see

Section 7.2.5).
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7.1.2 Selected Events: Synoptic Situation

The analysis covers the three months June, July, and August 2019. During the summer

months, there is generally almost no solid precipitation, but a mixture of convective and

stratiform rainfall patterns over Germany. Throughout the country, this summer was char-

acterized by warm and dry conditions. However, several intense rainfall events took place

particularly in the southern parts of the country.

In addition to the analysis over the three month period, three time steps are selected for a

detailed analysis of rainfall patterns. One rainfall event from each of the analyzed months

is chosen. Those events differ in terms of rainfall location, type, and synoptic conditions.

All three time steps represent synoptic conditions that are common in Germany (Werner

and Gerstengarbe, 2010).

The first selected time step is June 11 at 01:50 a.m. The synoptic condition at this time

was dominated by high pressure over Central Europe. Germany was influenced by anti-

cyclonic patterns. For several days the weather in Germany was characterized by strong

thunderstorms which had particular strong severity in southern parts of the country. At

the selected time step there was widespread intense rainfall over southwestern Germany and

several rainfall cells along the Baltic Sea and the border to Poland. The second selected time

step is July 28 at 13:50. The conditions were characterized by a high pressure zone over the

Atlantic and low pressure over western Asia. Especially in the southern half of Germany

there were local and partly very intensive convective rainfall cells. The synoptic condition

of the third time step (August 18 at 12:50) was dominated by zonal westerly directions of

inflow and a cyclonic regime. There was a center of low pressure over the northern Atlantic

between Iceland and the British Isles, and a belt of high pressure reaching from the Azores

through central Europe and Germany, to Russia. Over Germany, there was a decline in

pressure from the Alps to the North Sea. These conditions led to cyclonic frontal rainfall

over northwestern Germany. The synoptic conditions were derived using archived weather

charts1 and the classification defined in Werner and Gerstengarbe (2010).

7.1.3 Setting of the Computational Complexity Analysis

In addition to the quality of reconstruction, RM is analyzed with respect to working memory

and run time requirements in Section 7.2.5. This involves a focused consideration of the

three selected time steps described in Section 7.1.2 and subsets of the full data amount. In

contrast to the other analyses presented in this chapter, the number of unconditional fields is

reduced to 5000, only one ensemble member is considered, and the spatial extent is varied to

assess the effect of problem sizes on the computational complexity. The arbitrarily defined

problem sizes are shown in Table 7.1. They represent subregions of Germany starting with

1https://wetter3.de/archiv_gfs_dt.html, last access October 13, 2023)

77

https://wetter3.de/archiv_gfs_dt.html


Chapter 7. Results: Countrywide Reconstruction via Random Mixing

a 50 km × 50 km grid (of 1 km × 1 km resolution) that is extended gradually to a size of

450 km × 450 km. The spatial extents are shown in Figure C.7 in the Appendix.

Table 7.1: Setting of the computational complexity analysis. The table shows the grid sizes,
the number of observations, the number of unconditional fields K (cf. Section 4.3.3), and
the number of ensemble members for the various subregions considered in the computational
complexity analysis. Also, the full extent considered in the other analyses of this chapter
is given for comparability. A map showing the extents of the subregions is provided in
Figure C.7 in the Appendix.

Label No. Pixels No. CMLs No. RGs K No. Ens. Memb.

Subregion “tiny” 50× 50 9 6 5000 1
Subregion “small” 150× 150 227 51 5000 1
Subregion “medium” 250× 250 526 137 5000 1
Subregion “large” 350× 350 709 194 5000 1
Subregion “huge” 450× 450 890 274 5000 1
Full extent 700× 900 3904 953 10000 20

7.1.4 Setup of the Analyses and Nomenclature

Figure 7.3 shows which time steps of the three months periods are considered and gives an

overview of observational data, reference data, and an RM reconstruction for each of the

three selected time steps. In the following section, first SAL results for these events will

be presented, followed by the SAL statistics for all calculated time steps. Subsequently,

Section 7.2 will cover the analysis based on standard performance metrics, and an analysis

of the ensemble means of different ensemble sizes which range between three and the total of

20 ensemble members that have been calculated via RM. Finally, aspects of computational

complexity are addressed.

It is generally referred to RM reconstructions by eRM, sRM, and mRM(M) if the whole

ensemble, a single ensemble member, or the mean ofM members are considered, respectively.

Kriging reconstructions are denoted KRI. Note that for the (e)SAL analysis it is generally

referred to the parameters by S, A, L omitting the leading e. For eRM, this implies that S

is actually eS (likewise for A and L), i.e., a single value describing the whole ensemble.

7.2 Results of the Case Study

7.2.1 (e)SAL Analysis for the Selected Events

For the selected time steps, rainfall maps of reference, KRI, and one of the sRM reconstruc-

tions are presented together with the SAL parameters in Figures 7.4, 7.5, and 7.6. Note

that in the case of RM, SAL parameters are shown for the whole ensemble (eRM) as well as

for the individual ensemble members (sRM). Similar figures showing the aggregates (mRM)

can be found in the Appendix (Figures C.1, C.2, and C.3).
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Figure 7.4: Rainfall maps and (e)SAL metrics for the first selected time step (Jun 11, 01:50).
Top row: Rainfall maps for reference, KRI reconstruction, and sRM reconstruction (a single
ensemble member), with centers of mass indicated by the crosses (all three crosses are shown
in each map), and threshold values that encapsulate the rainfall objects (see Section 5.2.3
for details). Below the maps, the (e)SAL error metrics are shown: The framed squares rep-
resent eSAL results of eRM, smaller squares represent SAL results of all individual ensemble
members, and the circles represent SAL of KRI.

On June 11, 2019 at 01:50 (Figure 7.4) there was considerable rainfall over southwestern

and northeastern Germany. By visual comparison, both the sRM and KRI reconstructions

are in good agreement with the reference. The spatial extent as well as rainfall amounts are

well represented in the reconstructions. Comparing sRM and KRI, a general difference in

the structure can be seen along the edges of the rainfall objects: KRI objects have straight

edges while for sRM they are rather convoluted. This displays a high spatial variability in

sRM.

The visual observations can be supported by the SAL metrics. Table C.1 in the Appendix

gives an overview of metrics that are discussed in the following. The S parameters for eRM

and for KRI are positive which shows that both eRM and KRI produce too widespread or

less peaked objects. However, for eRM (S = 0.100) this value is clearly smaller than for KRI

(S = 0.355) which indicates that the structure is better captured in eRM. The tendency for

79



Chapter 7. Results: Countrywide Reconstruction via Random Mixing

too smooth spatial gradients is implicit in OK as the variability is strongly constrained by

local observations. RM, on the other hand, enables a reconstruction that does not involve

this tendency. The A parameter reveals that the error in representing domain-wide rainfall

is small for both eRM and KRI. Both reconstructions suffer from slight underestimations

that are similar in magnitude. The amplitude errors for eRM (A = −0.072) and KRI

(A = −0.096) represent approximately 93% and 91% of the reference rainfall, respectively.

The L parameters show that dislocation is generally small. The domain-wide dislocations

measured by L1 indicate a shift of approximately 10 km for both eRM and KRI (both with

L1 = 0.009).

Figure 7.5: Rainfall maps and SAL metrics for the second selected time step. The maps
show the reference data, a Kriging reconstruction, and a single sRM reconstruction, with
centers of mass and threshold values that encapsulate the rainfall objects. Below the maps,
eSAL results for eRM are shown by the framed squares, SAL of individual sRM members
by the smaller squares, and SAL of KRI by the circles (cf. Figure 7.4).

The second selected time step (July 28, 13:50, see Figure 7.5) is characterized by several

convective cells with large rainfall amounts over southern Germany. As for the first event,

the overall picture is captured by the reconstructions. For this time step, strong differences

are observable in the representation of the rainfall structures between sRM and KRI. sRM

represents the small scale spatial variability and produces many narrow but peaked rainfall
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objects. KRI, on the other hand, is characterized by much broader objects and less loca-

tions with very high rainfall amounts. The sharp spatial gradients observable in convective

conditions are not captured in KRI. Instead, fewer features are present that are connected

over relatively large extents.

The difference in structure that can be seen in the maps, is also represented by the S param-

eter which is very high for KRI (S = 1.331) and much closer to zero for eRM (S = −0.257).

Again, the large structural error demonstrates that rainfall objects are too smooth and

widespread in the KRI reconstruction, and confirm that KRI has shortcomings in produc-

ing adequate peaks and finer structures. The amplitude error reveals that KRI represents

the overall rainfall amount well. Its A value of - 0.058 relates to a representation of approx-

imately 94% of reference rainfall. For eRM, an underestimation (A = −0.152) is observed,

which translates to approximately 86% of reference rainfall. As in the aforementioned ex-

ample, the location error is small for both eRM and KRI. The displacement of the total

center of mass is towards the south-west for both the shown sRM ensemble member and

KRI. The L1 component of eRM (0.029) and KRI (0.014) indicate dislocations of the total

center of mass of approximately 33 and 16 km, respectively.

The third selected time step (August 18, 12:50, Figure 7.6) is characterized by frontal rain

that covers the northern parts of Germany. In contrast to the other examples, a clearly

anisotropic rainfall pattern can be observed, i.e., rainfall objects are elongated in SW-NE

direction in the reference. The elongation can also be seen in the reconstructions on a

large scale. However, on a smaller scale, e.g., when focusing on single peaks, the elongation

is not well represented in the reconstructions. Moreover, some of the rainfall objects of

rather low amplitudes that are visible in the reference are not present in both sRM and

KRI. On the other hand, there are several small objects that are present in KRI but not

in the reference or sRM. These might be attributed to false-positive rainfall values of the

CMLs that were missed by the applied filter (see Section 7.1). With regard to the relation

of spatial extent, sRM and KRI reconstructions differ substantially. For KRI, a large area

is covered by moderate rainfall, while for sRM the spatial extent is smaller but the peaks

are higher. Especially in the northern and western parts of the domain, KRI produces

widespread objects and sRM several smaller ones.

Similar to both events discussed above, the structure error is smaller for eRM (S = 0.158)

than for KRI (S = 0.376). The amplitude error is slightly positive and similar for KRI and

eRM. Their values (A = 0.220 for KRI) and (A = 0.142 for eRM) represent approximately

125% and 115% of reference rain, respectively. Location errors for the eRM and KRI are

particularly small.
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Figure 7.6: Rainfall maps and SAL metrics for the third selected time step. The maps show
the reference data, a Kriging reconstruction, and a single sRM reconstruction, with centers
of mass and threshold values that encapsulate the rainfall objects. Below the maps, eSAL
results for eRM are shown by the framed squares, SAL of individual sRM members by the
smaller squares, and SAL of KRI by the circles (cf. Figure 7.4).

7.2.2 (e)SAL Analysis: Overall Statistics

The following presents the SAL results for the whole analyzed period. Figure 7.7 shows

boxplots of the parameter distributions for eRM, mRM(20), and KRI over time. Note

that sample sizes of the parameters do not differ among the three cases. While S of KRI

and mRM(20) is mostly strongly positive (median of 0.583 and 0.530, respectively), S of

eRM displays smaller values (median of - 0.110). This shows the tendency of KRI to produce

rather widespread, flat objects, while eRM has only a weak tendency for too peaked objects.

mRM(20) is similar to KRI with regard to the structural error. For the A parameter, there

is, by definition, no difference in eRM and mRM(20). From median values of - 0.159 it

follows that 85% of the reference rainfall amount is represented by eRM. For KRI, the

median A value is - 0.035 which corresponds to approximately 97% of the reference rainfall

amount. Compared to S and A, the location error is relatively small for eRM, mRM(20),

and KRI. Moreover it shows a narrow range of values. Median values of 0.042 (eRM), 0.057

(mRM(20)), and 0.059 (KRI) reveal a slight advantage for eRM with regard to representing
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the location of rainfall. The median L1 parameter of eRM (and mRM(20)) is 0.021 which

corresponds to a distance in the location of the total center of mass of approximately 24 km.

For KRI, the median L1 is only slightly higher (0.023).

Figure 7.7: Distribution of the (e)SAL metrics for the whole analyzed period. Boxplots for
eSAL of eRM, SAL of mRM(20), and SAL of KRI (left); probability density of the SAL
value distribution in contour plots (right) of A vs. S, L vs. S, and L vs. A. For each of
the reconstructions, the outer, middle, and inner contour represent a probability density of
25%, 50%, and 75%, respectively.

Figure 7.7 also presents the internal mutual dependencies of the three SAL parameters. It

should be noted that the SAL parameters are constructed (e.g., by applying field dependent

rainfall threshold values and scaling of objects for the calculation of S) such that they

measure distinct features and do not exhibit strong correlation. In fact, Figure 7.7 (right)

suggests that the parameters can be considered largely independent from one another.

On the contrary, a clear correlation can be found when considering the overall rainfall

amount. Figure 7.8 shows all data points in the time series colored according to the spatial

mean rain of the RADOLAN-RW reference. For all parameters and particularly for A, it can

be seen that time steps with little rain display a larger scatter. Moreover, a small positive

correlation is observable between A and S in cases with little rainfall. Strong rainfall on the

other hand is associated with smaller SAL errors and smaller scatter. These observations

are similar for eRM and KRI. Since the (e)SAL parameters are relative measures, they are

likely to be more sensitive and more correlated under conditions of little total rain.

7.2.3 Analysis by Standard Performance Metrics

To put the results from the SAL analysis into perspective, the reconstructions were also

analyzed using standard performance metrics that are based on a pixel-by-pixel comparison.

A summary of these metrics for eRM, mRM(20), and KRI is shown in Figure 7.9. Note that
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Figure 7.8: Relation of (e)SAL parameters as scatter plots for all available time steps shown
separately for KRI (left) and eRM (right). The markers are colored according to rainfall
amount for which three categories are considered: 25% time steps with least, 50% with
intermediate, and 25% with highest mean rainfall amount of the RADOLAN-RW reference.

for eRM, the median over the ensemble dimension is considered. The metrics for sRM are

shown in Figure C.4 in the Appendix.

The correlation index PCC shows a wide range of positive values in all three cases. eRM

performs worse than KRI with regard to this metric. The median (over time) PCC is

0.651 and 0.762 for eRM and KRI, respectively. mRM(20) (median of 0.766), however,

shows correlations that are slightly higher than KRI correlations. In a similar manner eRM

generally performs worse than KRI with regard to RMSE . Higher errors can be seen for

eRM (median of 0.274 mm) than for mRM(20) and KRI (median of 0.164 mm and 0.159 mm,

respectively). RMSE shows a strongly skewed distribution with several outliers that have

high errors. The BIAS , which is directly related to the A parameter of the SAL analysis,

is similar for eRM and mRM(20) (median of - 0.151 and - 0.147, respectively). It is also

negative but of lower magnitude for KRI (median of - 0.034). All the reconstructions show

a tendency for underestimation.

The analysis of standard performance metrics displays a contrast to the SAL analysis above,

and thereby highlights that metrics based on pixel-by-pixel comparison cannot account for all

relevant features of a reconstruction. Focusing on PCC and RMSE , KRI has an advantage

over eRM. The pattern analysis, on the other hand, suggested that eRM is capable of

reproducing the structure better than KRI. In both regards, mRM(20) is closer to KRI

than eRM. That is, the shortcoming of eRM with regard to PCC and RMSE is more than

compensated when considering mRM(20); however, at the same time, the advantage of eRM

with regard to the structure is reduced for mRM(20). So far, only single fields have been
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Figure 7.9: Pixel-based performance metrics for the whole analyzed period. For eRM, the
median of the ensemble is considered.

compared with the mean of the whole ensemble containing 20 single members. The next

section will present an analysis that takes into account averages over different ensemble

sizes.

7.2.4 Analysis of Ensemble Averages

It was shown that eRM has benefits over KRI with respect to pattern representation and

shortcomings with respect to standard performance metrics, and that considering mRM(M)

ensemble means can be used to reduce the differences in both cases. So far, single fields and

the mean of the whole ensemble which consists of 20 members were considered. Now, the

performances of various aggregation sizes M ∈ [1, 3, 5, 10, 20] are compared (Figure 7.10),

whereas mRM(1) is equivalent to sRM. Apart from the caseM = 20, a subset of the ensemble

is selected randomly. Various combinations of random selections were tested, which showed

that the selection does result only in negligibly small variance of the metrics. Note that the

number of possible combinations is different and can be very large depending on M, such

that the calculation of all combinations is not practicable.

It is found that standard metrics like PCC and RMSE that indicate a relatively low per-

formance of sRM improve significantly once ensemble mean fields even of small sizes are

considered. Both PCC and RMSE are very close to KRI for mRM(5) and almost equal for

mRM(10). As seen above, mRM(20) already performs slightly better than KRI. However,

it can also be seen that the rate of change levels out for the large ensemble sizes. The
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Figure 7.10: Various performance metrics for ensemble mean fields of different ensemble
sizes. Solid lines represent mRM and dotted lines KRI. The latter is represented by a single
value and not dependent on the ensemble dimension.

structure error S, on the contrary, deteriorates with increasing M . While it is - 0.130 for a

single sRM member, it is 0.325 for mRM(5). It further increases for larger M but levels off,

too. In all cases the structure error of mRM is clearly below S of KRI. The location error

is also lowest for sRM single fields. It increases slightly for mRM(3) but does not change

for larger M . Besides, it is almost equal to L of KRI once M > 1. The A parameter and

the BIAS are generally not influenced by the ensemble size, and slightly worse for sRM and

mRM compared to KRI.

These comparisons highlight the potential that comes with the ensemble calculation in RM.

Single fields show better structure representation but worse standard metrics. However,

averaging over the ensemble dimension can help to remove the shortcomings of RM with

regard to the latter set of metrics. Although the structure representation of these ensemble

averages is worse than that of RM single fields, it is still better than that of KRI. The

ensemble size considered for averaging can be adjusted to specific use cases, depending on

which aspect of the field is of most interest. No large changes in the metrics are expected for

ensemble sizes that are greater than the one considered in this case study, since Figure 7.10

clearly shows the convergence of the metrics with increasing number of RM ensemble mem-

bers. Moreover, the size suffices to achieve PCC and RMSE values for mRM that are similar
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to KRI. Only the overall underestimation of RM cannot be reduced by averaging over the

ensemble dimension.

7.2.5 Analysis of the Computational Complexity

In addressing the research question in the previous sections, RM was compared to OK.

Hence, it is of interest how these two methods differ with regard to their computational

complexity. Being a stochastic method, RM is computationally clearly more demanding than

OK. Considering the full data extent, the time to compute an RM ensemble for one time step

was on average 3.8 h with most time steps requiring less than 2 h but a few even more than

10 h (using AMD EPYC™ 7452 computers with 32 cores and 2.35 GHz frequency2). OK,

on the contrary, produced solutions (albeit no ensembles) generally in less than 1 minute

per time step. Moreover, RM requires large working memory resources in the case of the

consideration of a large grid. For the countrywide case study, approximately 30 GB and

1 GB of working memory per time step were required for RM and OK, respectively.

To assess computational demands in more detail, RM is examined in a smaller setting as

defined in Section 7.1.3. For this analysis, an Intel® Xeon® Processor E5-4650 v3 with

12 cores and 2.1 GHz frequency was used3. Figure 7.11 shows time and working memory

requirements of the RM algorithm and selected subroutines depending on the size of the

problem and for the three independent time steps. It can be observed that regarding both

time and memory requirements, the generation of unconditional fields plays a major role. In

terms of memory it is obviously the single dominant aspect. Regarding time, also the fitting

of CML data and the Metropolis-Hastings random walk (MHRW) contribute significantly to

the overall demand. The MHRW also requires a noticeable share of the total working mem-

ory while the fitting to CML data does not. The initial aspect of fitting the spatial model

requires no significant amount of working memory and not much computation time despite

being an iterative process. The general picture is similar in all three time steps, however,

time requirements vary much more between the time steps than do memory requirements.

Moreover, time requirements vary more between the independent model runs (indicated

by the shaded areas in Figure 7.11) compared to memory requirements. An exemplary

evolution of used working memory over time is shown in the Appendix in Figure C.8.

Regarding computation time, it is important to consider the ensemble size when assessing

the share of the subroutines. The unconditional fields need to be constructed only once,

regardless of the number of ensemble members that are generated. The MHRW is partly

dependent on the ensemble size as it needs to be conducted for each new ensemble member,

whereas it requires significantly less time for the second and all following members. The part

2https://www.amd.com/en/product/8801, last access October 13, 2023
3https://ark.intel.com/content/www/us/en/ark/products/85762/intel-xeon-processor-e5-4650-v3-30m-

cache-2-10-ghz.html, last access October 13, 2023
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Figure 7.11: Computational complexity of selected parts of the RM algorithm for the three
selected time steps and dependent on subregions of various sizes (see Table 7.1 and Figure C.7
in the Appendix). In each case, only one ensemble member is generated. The computation
was run 10 times for each case and the shaded area represents the mean ± one standard
deviation of those independent runs. The solid lines all represent a particular randomly
selected run. For the time step Aug, 18, the tiny case could not be calculated due to too
few wet observations. Note that the black line Total refers to the full algorithm and not
only to the sum of the selected subroutines. The numbers behind the subroutines refer to
the steps described in Section 4.3.3.

associated with fitting the CML data, on the contrary, is fully dependent on the number

of ensemble members that are calculated and can therefore become significant for large

ensembles. Moreover, this subroutine is not deterministic and can be variable in speed

dependent on how fast an appropriate solution is found.

While the observations show the rising computational demands for large-scale reconstruc-

tions, they also reveal potential for improvement. For instance, memory requirements might

be reducible by tuning the number of unconditional fields K to the problem size. However,

optimizing the method was not focused upon in this thesis.

7.3 Summary and Discussion

The RM method was applied for producing countrywide spatial rainfall estimates based

on CML and rain gauge data and a validation was applied using (e)SAL, a specific set

of metrics for structure, amplitude and location errors of spatial data. It was found that
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RM reconstructions show a reasonable agreement with the reference data. Moreover, when

comparing RM reconstructions with Ordinary Kriging reconstructions (KRI), it was shown

that the former has advantages in reproducing rainfall patterns, while at the same time,

the single RM fields display lower performance than KRI fields when analyzed via standard

performance metrics.

RM works fundamentally different from KRI. It does not interpolate observation values in

space, but rather generates possible rainfall fields that agree with the observations. The

generated rainfall fields follow a specific spatial dependence structure derived from the ob-

servations. This explains the much better performance of RM rainfall fields with regards

to spatial structures compared to the KRI fields which are always much too smooth. Es-

pecially for complex patterns this aspect is crucial. The greatest advantage of RM over

KRI was found for the case of convective conditions, where spatial variability is particu-

larly pronounced. However, the fact that RM generates possible rainfall fields can result

in large variations further away from the observations which constrain the generation pro-

cess. Hence, single RM rainfall fields can show large deviations from the reference in regions

without observations, leading to relatively weak performance according to standard met-

rics. When considering an ensemble of rainfall fields, this variation does, however, reflect

the uncertainty of the rainfall field reconstruction.

The possibility of RM to generate an ensemble of possible rainfall fields that fit to the point

observations of the rain gauges and the path-averages from CMLs is a major advantage.

Considering ensemble averages, a reduction of the variability that is present in the single

ensemble members can be achieved. Such averages are similar to a KRI reconstruction with

regard to most performance metrics. They show a slightly worse pattern representation,

but enhanced pixel-based metrics, compared to single ensemble members. Thus, RM allows

the consideration of a spectrum of solutions, from single ensemble members to ensemble

averages of various sizes, depending on the application.

A disadvantage of RM observed in this case study is its stronger (compared to KRI) tendency

for underestimation. This, in contrast to the other analyzed properties of the fields, cannot

be influenced by the consideration of ensemble aggregates. However, the underestimation

might be minimized by adjustments in the RM algorithm. For instance, the estimation

of the marginal distribution can probably be optimized and calibrated to reduce this bias.

Furthermore, shortcomings were observed in representing the anisotropy of rainfall objects,

which might be accounted for in future applications. Also, the inherent computational

complexity provides an obstacle to the applicability of RM. This, however, could also be

mitigated by optimizations of the code and the choice of parameters.

In spite of the limitations, it could be shown that RM has the potential to produce valuable

estimates that can outperform standard methods depending on the use case. For certain
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hydrological models, it might be useful to consider single RM ensemble members that give

a true representation of spatial gradients. This allows the assessment of expected spatial

extents relative to the total rainfall amount of a rainfall object. That is, RM can reduce

overestimation of spatial extents as well as underestimation of peaks. One can further use

different ensemble members as model input for the estimation of uncertainties, or consider

ensemble averages which are less variable and more conservative.

This shows that RM constitutes a suitable method for precipitation estimation. It is capable

of dealing with a combination of different and extensive observational data appropriately,

produces fields with high quality pattern representation, and allows for different perspectives

via the consideration of ensemble aggregates.
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Conclusions

This chapter aims at bringing the results presented above into a broader perspective. First,

the research questions posed in the beginning are answered directly in Section 8.1. In

Section 8.2, the strengths and limitations of the methods are discussed. Finally, Section 8.3

presents an outlook for further related research.

8.1 Answers to the Research Questions

Can two large independent CML data sets be combined and processed jointly

to generate consistent transboundary rainfall maps?

Two CML data sets from Germany and the Czech Republic, each containing thousands of

sensors, were combined in the first case study of this thesis. Initially, the data was processed

by algorithms of quality control (QC), rain rate retrieval, and a spatial reconstruction,

which had been developed for the German data set. Applying these algorithms, acceptable

transboundary rainfall maps for the border region of Germany and the Czech Republic could

indeed be generated.

However, the resulting maps were of limited quality and not sufficiently consistent through-

out the considered domain. Particularly, several artifacts induced by a few but strong

outliers could be observed. It was found that a reason for these issues was poor data qual-

ity that affected a considerable amount of raw data. For instance, signal levels that could

clearly not be attributed to rainfall or any other atmospheric process persisted for periods

of various lengths. Moreover, strong periodic fluctuations, or gaps in the time series induced

the artifacts in the maps. Such issues of data quality can partly be explained by the CML

hardware characteristics which influence the way rainfall reflects in the observable signal. As

the hardware characteristics differ significantly between the data sets, so do the observed

issues. However, direct physical explanation for the issues cannot be found in all cases.

Technical details of data collecting and storing might explain some aspects but these are
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not easily accessible. Regardless of their reasons, issues of data quality proved to be the

crucial obstacle for achieving consistency and a satisfying level of quality of the maps.

Hence, the QC aspect of the applied algorithms required particular attention as the measures

that had been developed for a single data set were not capable of addressing all data quality

issues of the combined data sets. Accordingly, new algorithms were developed that filter

periods of clearly impaired data, fill gaps where the signal loss is assumed to stem from

heavy rainfall, or remove whole sensors due to inadequate hardware characteristics. The

large amount of data required automatic algorithms that could be applied universally to

both data sets even if the issues were not all present in both data sets. Overall QC involved

a reduction of data which is acceptable given a high sensor density particularly in regions

where the filtering was most effective. While QC required adjustments, the other parts of the

processing, namely, rain rate retrieval and reconstruction could be applied to the combined

data set without substantial changes. It was shown that the renewed QC improved both

the path-based rainfall estimates as well as the consistency of the rainfall maps.

The results show that it is possible to combine two CML data sets from Germany and the

Czech Republic to generate seamless transboundary rainfall maps for the border region of the

two countries. The full processing from raw data to consistent transboundary rainfall maps

could be conducted jointly via universal algorithms. These first transboundary CML-based

rainfall maps constitute a step towards using CMLs for addressing hydrometeorological

questions on continental scale or inter-state border regions.

What are the benefits of rainfall maps generated by stochastic reconstruction

via RM using large CML and rain gauge data sets?

Generally, RM is capable of producing rainfall reconstructions which represent both the

rainfall statistics as well as the local observations. The marginal distribution and spatial

structure of rainfall can be inferred directly from the data. Moreover, rain gauges and CMLs

can be treated as independent constraints considering their point-like and path-based nature.

Via the creation of ensembles, RM additionally provides a probabilistic solution.

Countrywide rainfall reconstructions were generated for the first time via RM using a large

CML and a large rain gauge data set. The results show that RM ensemble members rep-

resent the rainfall patterns better than Ordinary Kriging (OK) reconstructions. Especially

the tendency for producing smooth spatial gradients, which is an inherent feature of most

standard reconstruction methods including OK, was not observed when applying RM. This

advantage could be quantified by the object-based eSAL validation approach which showed

significantly smaller structure errors of RM compared to OK. The possibility to reconstruct

rainfall patterns and thereby spatial variability of rainfall more accurately constitutes an

important benefit: particularly, for events of strong but local convective rainfall, it can be
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crucial not to overestimate the spatial extent or underestimate the maxima of rainfall cells

to assess the hydrological response correctly. In fact, RM showed the strongest advantage

for the selected event that represented such convective conditions.

However, the reconstructions generated by RM showed a stronger general underestimation

than the ones generated by OK. Also, the RM reconstructions showed weaknesses when

evaluated by standard performance metrics that compare the individual pixels directly.

The discrepancy between quality assessments via the pixel-based comparison and the eSAL

approach shows the importance of choosing appropriate performance metrics. Different

metrics can highlight different beneficial aspects but they cannot provide a universal measure

of quality.

Despite some ambiguity of the benefits, RM has the clear advantage of allowing an en-

semble calculation and thereby providing a bandwidth of perspectives ranging from the

consideration of single ensemble members to ensemble averages. Single members provide

highly variable solutions with a good pattern representation that might be punished in a

pixel-wise comparison. Ensemble averages, on the contrary, are closer to a deterministic

best guess, thereby reducing errors at unobserved locations at the cost of reducing pattern

representation quality. Nevertheless, by averaging over an appropriate number of ensemble

members, the RM reconstruction shows similar standard metrics but still an advantage in

the structure representation compared to OK. Moreover, the uncertainty about estimates

is reflected by the ensemble variability and can provide valuable insights when using the

reconstructions for hydrological applications. Thereby, RM proved to be the more flexible

approach when various aspects of the rainfall reconstruction should be considered. It needs

to be noted, however, that the flexibility provided by the stochastic RM approach involves

a significant computational effort when considering large amounts of data. While this could

certainly be optimized, it is likely to remain clearly higher than that required for OK.

8.2 Strengths and Limitations

This thesis confirmed that CMLs are valuable opportunistic rainfall sensors and that they

have an enormous potential for large-scale rainfall maps. The first transboundary CML-

based rainfall maps constitute an important step towards continental scale rainfall maps

which are so far only provided by satellites or merged radar products with limitations in

either accuracy, spatiotemporal resolution, or spatial extent (Huffman et al., 2020; Haase

and Johnson, 2018). However, many steps remain towards achieving CML-based continental

rainfall maps. They would involve combining not only two but many independent data sets.

And, while the data sets used in this thesis have been very different from one another in

terms of network characteristics and data quality issues, some potential challenges did not

have to be addressed. For example, common ways of raw data sampling involve recordings
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of minimum and maximum values over 15-minute periods (Messer, 2006; Overeem et al.,

2016b; Roversi et al., 2020; Overeem et al., 2021; Nebuloni et al., 2022) as well as the

instantaneous sampling of the used and other data sets (e.g., Andersson et al. (2022)).

Combining data sets with different sampling strategies might involve additional difficulties

compared to combining two data sets that are similar in this regard. However, it can be

considered promising that only QC needed to be extended in the presented case study and

that the main algorithms for rain rate retrieval proved to be transferable. This indicates

that the retrieval algorithms are relatively robust despite many remaining limitations in

the understanding of additional factors that cause attenuation (Van Leth et al., 2018).

Nevertheless, it cannot be assumed that the extended QC conducted in the presented case

study is sufficient to deal with all potential issues that might be found in other data sets.

Hence, thorough investigation of the data is expected to be a general requirement for their

usage and combination. As was done in this thesis, the presented QC algorithms should

generally be defined to be universally applicable. For other data sets other algorithms might

be required but this is not necessarily problematic as long as the erroneous data of one set

is not easily confused with the sound data of the other set, and as long as there is enough

useful data still available after QC.

In testing the feasibility of generating transboundary maps, the first case study put less

focus onto the aspects of the most adequate consideration of the path-averaged nature of

CML observations in reconstructions. In this case study, CML observations were reduced

to virtual gauges. Although the disregard of the CML path can be considered state of the

art for large-scale CML-based rainfall maps (Overeem et al., 2016b; Graf et al., 2020), it is

certainly a simplification which diminishes the underlying information. The consequences

of this simplification depend on the path lengths and the spatial structure of the rainfall

and can be severe if long CMLs are considered in situations of highly variable convective

rainfall. Therefore, the second case study aimed at adequately representing the path-based

CML observations, for which RM was selected. It deals with CMLs in an adequate manner

as it considers all values along the paths in the matching of the reconstruction with the

observations. The uncertainty about the exact location of rainfall along the path can then

be represented via the ensemble spread.

Besides these advantages in the path-representation and the capability of generating accurate

rainfall patterns, this thesis also revealed the challenges of applying RM with large amounts

of data. The algorithm had to be adjusted until finally the considered data was manageable.

Further increase of data, e.g., as would be required when considering transboundary or

continental-scale rainfall maps, may be difficult. The usage with almost a thousand rain

gauges and approximately 3900 CMLs was already computationally demanding and hence

technical issues could inhibit the applicability for even larger data sets. And even given

feasibility, long calculation times might strongly inhibit the usage of the method for close to
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real-time application. This aspect is obviously dependent on the computational resources

and whether the method can be optimized in this regard.

RM was not only good in representing CML observations but very suitable to the combina-

tion of CMLs and rain gauges as it can account for both types of observations separately.

Despite this advantage for regions where both sensor types exist, a considerable limitation

of RM is that it cannot easily be applied with CML data only. It requires point data like

rain gauge observations to estimate the rainfall statistics, that is, the marginal distribution

and the spatial dependence structure. Consequently, RM could only be applied with a pure

CML data set if the statistics were derivable from CMLs. This would require, for example,

to reduce CMLs to virtual gauges only for the derivation of the statistics but to consider

full paths for the conditioning of the fields. However, the path-averaged values would lead

to a marginal distribution that does not represent extreme values, and also to a spatial

model that might overestimate correlation distances. Another method has been presented

to enable the estimation of the spatial model accounting for the effect of path-averaging by

Eshel et al. (2022). However, it has so far not been used within the RM algorithm or with

any real CML data. Notably, rainfall statistics can also be obtained from climatological

data as done, e.g., by Overeem et al. (2013) and Overeem et al. (2016a) for their Kriging-

based reconstructions. This, however, requires additional data, which may, in general, not

represent the statistics of the considered event accurately. The difficulties in using RM with

CMLs only constitute a significant limitation, especially since the largest potential of CML-

based products is precisely in regions without or with a small number of dedicated sensors

such as rain gauges (David et al., 2013). Moreover, it should be noted that by using both

rain gauges and CMLs, the effect of each of the two sensor types has not been analyzed

separately in this thesis.

In focusing on the generation of rainfall maps, this thesis mostly leaves out the temporal

component of rainfall, which is not less relevant (Cristiano et al., 2017). All reconstructions

that have been generated in this thesis represented single points in time independent of their

temporal correlation. Also, RM as used in this thesis cannot easily incorporate the temporal

correlation between time steps. While the disregard of time in the generation process can

certainly be considered a shortcoming, meaningful temporal evolution of rainfall over several

hours could nevertheless be shown in Section 6.2.5. The consistency over a series of several

time steps constitutes one aspect of the temporal aspect, whereas the long term extent is

another. Also long-term estimation has its limitations with the approaches presented in

this thesis: A general shortcoming of CML-based rainfall estimation is the fact that sensing

solid precipitation is not possible in comparable quality as is sensing liquid precipitation

(Vivekanandan et al., 1999). Overeem et al. (2016b) and Graf et al. (2020) showed that the

quality of estimation is significantly reduced in winter months when there is a considerable

amount of solid precipitation in the respective study regions (the Netherlands and Germany).
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While this limitation inhibits long-term analyses that cover all months of the year in colder

climates, it has no negative effect for most periods and most regions as rainfall is clearly the

predominant type of precipitation.

8.3 Outlook

While the potential for CML-based continental rainfall maps was shown from a scientific

perspective, legal and administrative constraints remain the dominant factors preventing

such maps in the nearest future. Without an economic benefit for the network providers,

data access and exchange is likely to remain limited (Chwala and Kunstmann, 2019). Nev-

ertheless, progress in opening up the data access exists. Recently, a data set containing

hundreds of CMLs in Gothenburg, Sweden has been made publicly available by Andersson

et al. (2022). While such a network from a city is far from the continental scale, it provides

the first example of openly shared extensive amounts of CML data, and might be followed

by others that cover larger areas. Although not publicly shared, the access and application

of CML data is slowly increasing also in several other countries around the globe as shown

by relatively recent studies in Brazil (Rios Gaona et al., 2018), Sri Lanka (Overeem et al.,

2021), and Kenya (Kumah et al., 2022). If data accessibility continues to increase, the pre-

sented case study on transboundary maps provides a basis for research on even larger scales

or in other regions.

Despite the fact that no other studies have combined independent CML data sets, there

is progress to enabling broader consistent approaches of working with CML data. The

EU cost action OPENSENSE1,2 was initiated to foster interoperability and international

collaboration with CML and other opportunistic rainfall data. A major step already reached

is the agreement on data naming and storing conventions documented in Fencl et al. (2023)

(under review).

Moreover, the scientific advances in CML-based rainfall estimation have led several me-

teorological services in Europe to envisage the operational use of CMLs in combination

with other sensors3. In these cases, sharing data could be made profitable for the network

providers. Once the meteorological services can significantly improve their products using

the additional information, they might request and pay for long-term, stable data access.

The future applicability of CMLs will, however, not only depend on data availability but

also on their quality as rainfall sensors. The number of CMLs worldwide is likely to increase

(Chwala and Kunstmann, 2019) which is promising especially in face of the limited amount

of dedicated rainfall sensors (Lorenz and Kunstmann, 2012; Kidd et al., 2017). However,

1https://www.cost.eu/actions/CA20136/, last access October 13, 2023
2https://opensenseaction.eu/, last access October 13, 2023
3https://www.wasser.sachsen.de/Projektinformationen.html, last access October 13, 2023
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hardware characteristics and hence the quality of CML-based rainfall estimation are subject

to change. For instance, CMLs that operate at E-band frequencies may become more

prevalent and for these, the rain rate retrieval involves more uncertainty due to nonlinearity

of the retrieval function and its increased dependence on the drop size distribution. On the

other hand, E-band CMLs provide opportunities for measuring light rainfall or water vapor

(Fencl et al., 2020).

Given the availability of suitable CML data, this thesis showed how it can advantageously

be used in reconstructions via RM. The promising results should promote endeavors to

further improve the method’s applicability. For instance, current research is directed towards

deriving the spatial dependence structure of rainfall from CMLs by considering Block Kriging

concepts, which would be a step towards using RM with CMLs only and thus in regions

where rain gauges are sparse or do not exist. Another general improvement would be the

consideration of the temporal correlation of rainfall in the field generation process. Finally,

with regard to the method’s computational complexity, it could be further adapted to its

use with large amounts of rainfall data; e.g., by adjusting internal parameters that govern

the stochastic field generation process to the considered problem size, or, considering the

intermittency of rainfall, by disregarding in the computations those areas that are certainly

dry.

Considering the enormous importance of accurate spatial rainfall estimation, it should be

aimed for continual improvement of the methods to make use of the available data as ef-

fectively as possible. The results presented in this thesis are a step in this direction. Both

extending the application of CML rainfall retrieval across borders and applying a sophisti-

cated method for high-quality reconstructions have provided valuable insights upon which

future research may build.
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Appendix A

Definition of Standard Functions

The following is a list of several functions that were used but not explicitly stated in the

main part:

• the arithmetic mean

µ(X) =
1

C

C∑
i=1

Xi; (A.1)

• the covariance

cov(X,Y ) =
1

C

C∑
i=1

(Xi − µ(X))(Yi − µ(Y )); (A.2)

• the standard deviation

σ(X,Y ) =

√√√√ 1

C

C∑
i=1

(Xi − µ(X))2; (A.3)

• the variance

var(X,Y ) = σ2(X,Y ); (A.4)

• the two-dimensional Euclidean distance

dist(x,y) =
√

(x1 − y1)2 + x2 − y2)2; (A.5)

• the continuous ranked probability score

crps(P (X), P (Y )) =

∫ ∞

−∞
(P (X)− P (Y ))2dx. (A.6)
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In the definitions above, X and Y are sets of values and C their size in the dimension of

interest, e.g., for µtime(X), C equals the number of time steps. The vectors x and y define

a position on a grid. P () is the empirical cumulative distribution function.
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Appendix B

Transboundary Reconstruction

The CML sensor density in the case study on transboundary reconstruction (Chapter 6) is

shown in Figure B.1 for the three processing lines. A second rainfall event of June 29, 2021

is shown in Figure B.2. The mean and median of the performance metrics are presented in

Table B.1 and Table B.2, respectively.

Figure B.1: CML sensor density maps for the three processing lines. The region is divided
into squares of 10 km × 10 km and for each of these squares the number of CMLs is shown.
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Figure B.2: Transboundary reconstruction of a second rainfall event of June 29, 2021. (cf.
Figure 6.6).

Table B.1: Mean performance metrics distinguishing the three processing lines and the two
countries. The mean value is calculated over all CMLs and irrespective of the detection
limit.

Country No Filter Graf 2020 Full

MAE [mm] DE 0.080 0.078 0.082
MAE [mm] CZ 0.190 0.193 0.111
MAE [mm] Both countries 0.145 0.145 0.098

BIAS [-] DE - 0.038 - 0.068 - 0.067
BIAS [-] CZ 0.799 0.829 0.104
BIAS [-] Both countries 0.458 0.456 0.024

PCC [-] DE 0.862 0.884 0.912
PCC [-] CZ 0.778 0.792 0.836
PCC [-] Both countries 0.812 0.830 0.871
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Table B.2: Median performance metrics distinguishing the three processing lines and the two
countries. The median value is calculated over all CMLs and irrespective of the detection
limit.

Country No Filter Graf 2020 Full

MAE [mm] DE 0.069 0.071 0.075
MAE [mm] CZ 0.099 0.103 0.098
MAE [mm] Both countries 0.085 0.086 0.087

BIAS [-] DE - 0.097 - 0.109 - 0.113
BIAS [-] CZ - 0.001 0.031 - 0.066
BIAS [-] Both countries - 0.068 - 0.068 - 0.093

PCC [-] DE 0.892 0.905 0.929
PCC [-] CZ 0.832 0.840 0.861
PCC [-] Both countries 0.860 0.869 0.896
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Appendix C

Countrywide Reconstruction

Table C.1 summarizes performance metrics that are partly presented and discussed in Chap-

ter 7. For the three selected case studies discussed in Chapter 7, the respective Random

Mixing ensemble averages of various sizes are shown in Figures C.1–C.3. Standard perfor-

mance metrics considering individual RM ensemble members are presented in Figure C.4.

Figures C.5 and C.6 visualize the effect of the filtering approach for false-positive CMLs,

which is described in Section 7.1. Related to the analysis of computational complexity,

Figure C.7 displays the spatial extents of the considered subregions and Figure C.8 shows

the working memory requirements over time for calculating the reconstruction of one time

step.
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Table C.1: Performance metrics for selected time steps and median over the whole period.
Metrics are shown for the Random Mixing ensemble (eRM), ensemble mean fields (mRM),
and Kriging (KRI). eSAL (eRM) and SAL (KRI) for the selected time steps are discussed
in Section 7.2.1. SAL (mRM) for the three time steps is shown in Figures C.1 to C.3.
Median over time SAL values are discussed in Section 7.2.2. Standard performance indices
are shown for all selected time steps for completeness, but only the median over time is
discussed in Section 7.2.3. Note that for the standard performance metrics related to eRM
the median over the ensemble dimension is considered before calculating the median over
time.

Jun 11, 01:50 Jul 28, 13:50 Aug 18, 12:50 Median over time

S (eRM) 0.100 - 0.257 0.158 - 0.110
S (mRM(20)) 0.298 0.799 0.530 0.530
S (KRI) 0.355 1.331 0.376 0.583

A (eRM) - 0.072 - 0.152 0.142 - 0.159
A (mRM(20)) - 0.072 - 0.152 0.142 - 0.159
A (KRI) - 0.096 0.058 0.220 - 0.035

L (eRM) 0.016 0.067 0.059 0.042
L (mRM(20)) 0.026 0.070 0.070 0.057
L (KRI) 0.021 0.028 0.036 0.059

L1 (eRM) 0.009 0.029 0.027 0.021
L1 (mRM(20)) 0.009 0.029 0.027 0.021
L1 (KRI) 0.009 0.014 0.018 0.023

PCC (eRM) 0.905 0.432 0.826 0.651
PCC (mRM) 0.933 0.560 0.912 0.766
PCC (KRI) 0.924 0.649 0.917 0.762

RMSE (eRM) 0.494 2.333 0.207 0.274
RMSE (mRM) 0.363 1.576 0.089 0.164
RMSE (KRI) 0.419 1.277 0.085 0.159

BIAS (eRM) - 0.069 - 0.151 0.150 - 0.151
BIAS (mRM) - 0.069 - 0.141 0.153 - 0.147
BIAS (KRI) - 0.091 0.060 0.247 - 0.034
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Figure C.1: Rainfall maps of the first selected time step (Jun 11, 01:50) for the reference, KRI
reconstruction, and mRM reconstructions with the number of randomly chosen ensemble
members considered in brackets (cf. Figure 7.4). Below the maps, the SAL error metrics
are shown.
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Appendix C. Countrywide Reconstruction

Figure C.2: Rainfall maps of the second selected time step (Jul 28, 13:50) for the reference,
KRI reconstruction, and mRM reconstructions with the number of randomly chosen ensem-
ble members considered in brackets (cf. Figure 7.5). Below the maps, the SAL error metrics
are shown.
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Figure C.3: Rainfall maps of the third selected time step (Aug 18, 12:50) for the reference,
KRI reconstruction, and mRM reconstructions with the number of randomly chosen ensem-
ble members considered in brackets (cf. Figure 7.6). Below the maps, the SAL error metrics
are shown.
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Figure C.4: Standard performance metrics of the individual ensemble members.
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Figure C.5: First example of filtering false-positive CMLs. Note the separate color scale for
the inset.
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Figure C.6: Second example of filtering false-positive CMLs. Note the separate color scale
for the inset.
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Figure C.7: Spatial extents considered in the computational complexity analysis. The five
different regional extents are shown by the black boxes. The coordinates represent the
distance from the lower left corner of the RADOLAN-RW projection.
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Figure C.8: Evolution of RM working memory requirements over time. The considered
event is that of July 28 at 13:50 and the problem size is medium (see Table 7.1). The colors
represent an approximate separation into the major parts of the algorithm corresponding to
the colors of Figure C.7. The numbers behind the subroutines refer to the steps described
in Section 4.3.3. Note that the MHRW is conducted after the generation of unconditional
fields but described before it in Section 4.3.3 for better comprehensibility; the order of these
to subroutines is irrelevant. Also note that the algorithm involves more than the parts
presented in this figure; however, the time requirements of the omitted parts are much
smaller and can therefore not be displayed.

116



Bibliography

Abzalov, M. Applied Mining Geology, volume 12 of Modern Approaches in Solid Earth Sci-

ences. Springer International Publishing, Cham, 2016. doi: 10.1007/978-3-319-39264-6.

Aminou, D. MSG’s SEVIRI instrument. ESA Bulletin(0376-4265), 2002. https://

www-cdn.eumetsat.int/files/2020-04/pdf_msg_seviri.pdf, last access October 13,

2023.

Andersson, J. C. M., Olsson, J., Van De Beek, R. C. Z., and Hansryd, J. OpenMRG: Open

data from Microwave links, Radar, and Gauges for rainfall quantification in Gothenburg,

Sweden. Earth System Science Data, 14(12), 2022. doi: 10.5194/essd-14-5411-2022.

Atlas, D. and Ulbrich, C. W. Path- and area-integrated rainfall measurement by microwave

attenuation in the 1–3 cm band. Journal of Applied Meteorology and Climatology, 16(12),

1977. doi: 10.1175/1520-0450(1977)016⟨1322:PAAIRM⟩2.0.CO;2.

Bachmaier, M. and Backes, M. Variogram or Semivariogram? Variance or Semivariance?

Allan Variance or Introducing a New Term? Mathematical Geosciences, 43(6), 2011. doi:

10.1007/s11004-011-9348-3.

Bartels, H., Weigl, E., Reich, D. T., Lang, P., Wagner, A., Kohler, O., and Ger-

lach, N. Routineverfahren zur Online-Aneichung der Radarniederschlagsdaten

mit Hilfe von automatischen Bodenniederschlagsstationen (Ombrometer). 2004.

https://www.dwd.de/DE/leistungen/radolan/radolan_info/\abschlussbericht_

pdf.pdf?__blob=publicationFile&v=2, last access October 13, 2023.

Bauer, P., Thorpe, A., and Brunet, G. The quiet revolution of numerical weather prediction.

Nature, 525(7567), 2015. doi: 10.1038/nature14956.

Berne, A. and Krajewski, W. Radar for hydrology: Unfulfilled promise or unrecognized

potential? Advances in Water Resources, 51, 2013. doi: 10.1016/j.advwatres.2012.05.005.

Blettner, N. nblettner/eSALpy: v1.0.0. 2022. doi: 10.5281/zenodo.7049846.

Blettner, N. nblettner/transboundary cml rainfall maps: v0.0.1. 2023. doi: 10.5281/zenodo.

7973736.

117

https://www-cdn.eumetsat.int/files/2020-04/pdf_msg_seviri.pdf
https://www-cdn.eumetsat.int/files/2020-04/pdf_msg_seviri.pdf
https://www.dwd.de/DE/leistungen/radolan/radolan_info/\abschlussbericht_pdf.pdf?__blob=publicationFile&v=2
https://www.dwd.de/DE/leistungen/radolan/radolan_info/\abschlussbericht_pdf.pdf?__blob=publicationFile&v=2


Bibliography

Blettner, N., Chwala, C., Haese, B., Hörning, S., and Kunstmann, H. Combining Com-

mercial Microwave Link and Rain Gauge Observations to Estimate Countrywide Precip-

itation: A Stochastic Reconstruction and Pattern Analysis Approach. Water Resources

Research, 58(10), 2022. doi: 10.1029/2022WR032563.
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IPCC. Summary for policymakers [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczan-
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Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green,

P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M. Global

threats to human water security and river biodiversity. Nature, 467(7315), 2010. doi:

10.1038/nature09440.

Wang, Z., Schleiss, M., Jaffrain, J., Berne, A., and Rieckermann, J. Using Markov switching

models to infer dry and rainy periods from telecommunication microwave link signals.

Atmospheric Measurement Techniques, 5(7), 2012. doi: 10.5194/amt-5-1847-2012.

Werner, P. C. and Gerstengarbe, F.-W. Katalog der Großwetterlagen Europas (1881-

2009), 2010. https://publications.pik-potsdam.de/pubman/item/item_16367_1/

component/file_16368/4609.pdf, last access October 13, 2023.

Wernli, H., Paulat, M., Hagen, M., and Frei, C. SAL—A Novel Quality Measure for the

Verification of Quantitative Precipitation Forecasts. Monthly Weather Review, 136(11),

2008. doi: 10.1175/2008MWR2415.1.

World Economic Forum. The global risks report. Technical report, 2023. https://www3.

weforum.org/docs/WEF_Global_Risks_Report_2023.pdf, last access October 13, 2023.

127

https://publications.pik-potsdam.de/pubman/item/item_16367_1/component/file_16368/4609.pdf
https://publications.pik-potsdam.de/pubman/item/item_16367_1/component/file_16368/4609.pdf
https://www3.weforum.org/docs/WEF_Global_Risks_Report_2023.pdf
https://www3.weforum.org/docs/WEF_Global_Risks_Report_2023.pdf


Bibliography
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