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A B S T R A C T

This article presents a novel model for building biweekly rosters for physicians according to the regulations
of a German teaching hospital, while also ensuring the viability of breaks. Currently, rosters are manually
prepared by experienced physicians with basic spreadsheet knowledge, leading to significant costs and time
consumption because of the complexity of the problem and the individual working conditions of the physicians.
Unfortunately, manually generated rosters frequently prove to be non-compliant with labor regulations and
ergonomic agreements, resulting in potential overtime hours and employee dissatisfaction. A particular concern
is the inability of physicians to take mandatory breaks, which negatively affects both employee motivation
and the hospital service level. To address these challenges, we propose a data-driven formulation of an
operational physician scheduling problem, considering overstaffing and overtime hours as primary cost drivers
and integrating shift preferences and break viability as ergonomic objectives. We develop and train a survival
regression model to predict the viability of breaks, allowing practitioners to define break-time windows
appropriately. Given the limitations of standard solvers in producing high-quality solutions within a reasonable
timeframe, we adopt a Dantzig–Wolfe decomposition to reformulate the proposed model. Furthermore, we
develop a branch-and-price algorithm to achieve optimal solutions and introduce a problem-specific variable
selection strategy for efficient branching. To assess the algorithm’s effectiveness and examine the impact of
the new break assignment constraint, we conducted a comprehensive computational study using real-world
data from a German training hospital. Using our approach, healthcare institutions can streamline the rostering
process, minimize the costs associated with overstaffing and overtime hours, and improve employee satisfaction
by ensuring that physicians can take their legally mandated breaks. Ultimately, this contributes to better
employee motivation and improves the overall level of hospital service.
1. Motivation and introduction

In recent decades, hospitals have experienced a surge in patient care
demands. This growth can be attributed to two main factors: a reduc-
tion in the number of hospitals [1] and the demographic shift, which
is continuously leading to an increase in the number of patients due
to the aging population [e.g., 2]. In Germany, the number of patients
increased almost 25% within 25 years until 2015 [1] and the number
of hospitals decreased from 2411 hospitals to 1951 hospitals during the
same timescale [1,3]. To cope with this increasing workload, hospital
management must find ways to efficiently manage medical personnel.
Unfortunately, the significant number of vacant annual positions [4]
prohibits the hiring of additional physicians, making it imperative for
hospitals to optimize their existing resources and capacities.
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Efficient personnel scheduling is vital to avoid additional over-
time hours for physicians while ensuring the required quantity and
desired quality of care. However, the current practice of creating sched-
ules is manual, with experienced physicians using basic spreadsheet
knowledge [5]. This process is time-consuming and costly due to the
intricate nature of the problem and the individual working conditions
of physicians. The workforce typically comprises a mix of residents
and specialists, some of whom work part-time and others full-time.
Additionally, the planner must deal with different input plans, further
complicating practical implementation. For example, medical residents
often have long-term schedules generated at least once a year, speci-
fying the department they will work in Kraul [6]. On the other hand,
the duty schedule is created monthly, assigning physicians to overnight
duties [7]. Combining the information from these two schedules, the
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responsible planner generates weekly rosters for each physician in the
department between one and two months in advance. The rosters must
be matched to a task schedule such as a surgery schedule, which
is not sufficiently determined when planned [8]. Unfortunately, the
resulting roster is often flawed and causes several problems, including
overtime, understaffing, and insufficient breaks. These problems have
direct implications on the department’s service level and employee
satisfaction, and overtime is a significant cost driver [9].

Consistent and anticipated breaks play an important role in improv-
ing the mental and physical health of physicians, which in turn impacts
their effectiveness and the standard of care they provide. Physicians
who are overburdened or take breaks inconsistently are more prone
to increased stress and exhaustion. Consequently, this can result in
reduced cognitive function, affecting the precision of diagnoses and the
quality of patient care. Facilitating regular breaks for physicians also
reflects ethical concerns about maintaining a healthy work-life balance.
Physicians who can better anticipate their workload are likely to expe-
rience higher job satisfaction and reduced turnover rates, ultimately
benefiting the healthcare system in general.

To address these challenges, the purpose of this paper is to deter-
mine an optimal work schedule for each physician covering a planning
horizon of multiple weeks. We propose a mathematical programming
approach that considers legal, ergonomic, and personnel-related as-
pects. This includes adhering to predefined start time windows for
assigned shifts within a sequence of working days for each physician,
minimizing overtime hours, and taking into account individual shift
type preferences.

One of the main contributions of this research is the explicit plan-
ning and assignment of rest periods within physician shifts. We address
the issue of current practices and literature neglecting to assign breaks
to physicians, and we use a data-driven scenario-based approach to
ensure the viability of breaks. This approach considers the fact that
physicians may not always be able to take their breaks, despite legal re-
quirements. We propose a survival regression model to define resilient
break periods using surgery data from a full-care provider hospital with
more than 1500 beds, allowing healthcare managers to determine break
windows effectively. Additionally, the paper strives to accurately meet
demand in each period of each planning day by minimizing the number
of overstaffed periods within the planning horizon. We emphasize the
practical applicability of our approach, making realistic assumptions to
ensure its relevance in real-life settings. Furthermore, we highlight the
potential for our approach to improve physicians’ work-life balance by
increasing planning certainty, allowing for solving a planning horizon
consisting of multiple weeks. To address the formulated mixed-integer
programming (MIP) model, we use a Dantzig–Wolfe decomposition
and apply a branch-and-price (B&P) algorithm to generate individual
schedules for each physician. We develop a problem-specific vari-
able selection strategy for branching to enhance the efficiency of the
algorithm.

The structure of the paper is organized as follows: The following sec-
tion reviews the current literature on physician scheduling and related
research aspects. Section 3 presents the problem and the formulated
mathematical programming approach. Section 4 covers the Dantzig–
Wolfe decomposition, the B&P approach, and the survival regression
model. The experimental study is then presented in Section 5, evaluat-
ing the predictions of our survival regression model and the algorithm’s
performance, and analyzing the effect of considering the viability of
breaks. Finally, the article concludes with a summary of the key insights
and ideas for future research in Section 6.

2. Review of relevant literature

To pinpoint the research gap that we aim to address, it is necessary
to examine various research streams. Initially, we will explore the
most relevant literature on physician scheduling. Subsequently, we will
evaluate the body of literature that considers breaks in staff scheduling
problems. Lastly, we will examine the literature that delves into fairness
2

and ergonomic aspects.
2.1. Physician scheduling

In recent decades, the problem of scheduling physicians has at-
tracted increased attention. However, there is a notable disparity be-
tween the amount of research on this problem and the nurse scheduling
problem. This section provides an overview of the relevant literature
in current research. For a comprehensive review of the physician
scheduling problem, we refer the interested readers to Erhard et al.
[10].

In the current literature, physician scheduling problems typically
involve work schedules that span predetermined planning horizons.
However, the current literature has largely neglected the proper alloca-
tion of breaks for physicians. Baum et al. [11] scheduled physicians in a
radiology division over a three-month planning horizon, focusing solely
on predefined shifts. The incorporation of hospital-specific constraints
resulted in an approximately 8% increase in revenue due to reduced
paid working hours. Shamia et al. [12] also used predetermined shifts,
employing a goal programming approach to assign physicians of vary-
ing experience and skills to shifts. Their objective was to maximize
adherence to physician preferences, although optimizing resource uti-
lization to improve service quality. The resulting mathematical model,
solvable to optimality, delivered improved schedules in a short com-
putation time. The flexibility in scheduling was increased by Bowers
et al. [13], who proposed an MIP model that accounts for multiple
shifts with varying start times, lengths, and desirabilities as defined by
physicians. The MIP approach aimed to enhance the fairness of work-
load among physicians, achieving an average 7% fairness improvement,
subsequently implemented in real-life scenarios.

Marchesi et al. [14] propose a two-stage stochastic model using
a sample average approximation to assist in physician staffing and
scheduling within an emergency department, taking into account un-
certainties related to patient arrivals. They integrate various shifts and
skill levels of physicians and aim to minimize the total expected number
of patients waiting for treatment. Their findings indicate that their
model can decrease the queue frequency by 22% based on a case study.
The primary focus of Tohidi et al. [15] is on the uncertainty of demand
with respect to treatment time. They employed a two-stage formulation,
with the first stage characterized as an adjustable robust scheduling
problem. Their objective is to minimize the costs associated with vari-
ous resources, such as physicians and rooms, in addition to the costs of
patient rejection. Through a computational analysis, they demonstrated
that their modeling strategy leads to notably lower costs compared
to its deterministic counterpart. Investigating physician rescheduling
in conjunction with minimizing the risk tolerance level, Wang et al.
[16] introduced a bi-objective formulation that balances operational
costs and capacity shortage risk. They introduced an exact iterative
algorithm capable of identifying all Pareto-optimal solutions.

All of these articles share the commonality of overlooking breaks
during a work shift. Although the latest research acknowledges un-
certainties regarding demand, the rosters they suggest are expected
to underestimate the costs resulting from missed breaks. Furthermore,
most studies focus on reducing operational costs, some incorporating a
patient-centered approach. Although these points of view are crucial
and deserve attention, a third aspect is absent, that of physicians.
Given the significant staff shortage in the healthcare industry, hospital
administrators must address this issue by improving the quality of
work.

2.2. Planning of breaks

The current literature predominantly ignores break assignments in
physician scheduling. Focusing on a physician staffing problem, Brun-
ner et al. [17] introduced maximal flexibility in shift types, allowing
different start periods and lengths. Break assignment and balanced shift
starts were addressed within a mathematical programming framework

solved using a decomposition heuristic. High-quality schedules were
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quickly produced by the heuristic approach, validated in real-world
settings. To deal with larger instances, Brunner et al. [18] employed
a B&P approach for optimality, improving performance in various test
cases. Similarly to Brunner et al. [17,18], Erhard [19] introduced
flexibility, integrating various sequences of working days, shift types,
and break assignments, using a column generation (CG) heuristic due to
the complexity of the problem. The results highlighted the substantial
positive impact of flexibility on labor costs.

Stolletz and Brunner [20] analyze a physician scheduling problem
that minimizes labor costs using a reduced set covering approach,
demonstrating the superiority of explicit shift modeling over implicit
assignment. They incorporate predefined break-time windows to ensure
labor regulations and include fairness by minimizing both overtimes
and undertimes of physicians regular working time.

In particular, breaks have received limited attention in all personnel
scheduling literature [21]. Breaks are usually limited to predefined
time windows [22], although Bechtold and Jacobs [23] extended this
to the implicit formulation. Aykin [24] further enhanced the implicit
formulation by accommodating three different breaks within one shift,
reducing the variable count. Sungur et al. [25] adopted this approach
to analyze optimal break periods and intervals, striving to minimize
labor costs. Kiermaier et al. [26] introduced a two-stage decomposi-
tion to solve the assignment problem of breaks independently of the
rostering problem. They proofed several break assignment problems to
be NP-hard.

All of these papers assume that breaks are given as specific timeslots
or time windows, without discussing and explaining how they are de-
rived. In our paper, we close this gap by providing this sequential step
in the modeling of breaks. We adopt the concept of a predefined break-
time window using the earliest and latest break periods. Instead of a
continuous time window, we further restrict the possibility of breaks.
In addition, we propose a survival regression model to derive the
break-time windows using real data to ensure more resilient scheduling.

2.3. Fairness and ergonomic aspects

In recent years, there has been a growing emphasis on integrating
individual preferences into personnel scheduling problems [21]. Within
any given organization, employees may find themselves assigned tasks
or shifts that are not their top choices. Facilitating an even distribu-
tion of less preferred tasks or shifts is commonly viewed as a fair
approach to personnel decisions [7,20,27–30]. An equal outcome is fre-
quently achieved by incorporating soft constraints into multi-objective
optimization processes [21,31].

Bard and Purnomo [32] responded to the shortage of nurses by
creating a model that considers shift preferences, identifying different
degrees of violation. They emphasize the importance of managing
individual preferences and requests for days off in a manner that is
considered fair. The model incorporates penalties for working overtime
and for variations in shifts. The authors suggest a column generation
heuristic to address their problem for a maximum of 100 nurses,
incorporating both 8 and 12 h shifts. In pursuit of long-term fairness
and adherence to individual preferences, Gross et al. [33] introduced
an indicator that measures the fulfillment of individual preferences
in independently generated one-month work schedules. The results
of the formulated MIP model indicate a better performance of the
implemented preference indicator in terms of an equal distribution of
satisfaction between all physicians.

Adams et al. [34] aim to balance the workload among physicians by
minimizing the largest difference in workload between several groups
of physicians over the planning horizon. They generate cyclic rosters
for general medical physicians to improve continuity of care.

The study conducted by Rea et al. [35] examines the balance
between equality and equity in addressing fair personnel scheduling
3

problems, using a case study on physician scheduling. Equity is defined o
by a variety of employee factors, such as seniority, leadership, produc-
tivity, and developmental efforts. A parameter is employed to allow
management to assess schedules with varying emphases, thereby show-
casing the Pareto frontier of the equity-equality trade-off. Through the
integration of surveys, they demonstrated that employees’ perceptions
of fairness and satisfaction saw enhancements compared to the prior
planning method.

The concept of fairness is a common topic in academic discus-
sions. However, it is frequently highlighted that the perception of
fairness may not align with the actual fairness in a given situation.
Within a workday, fairness is determined by how shifts are allocated
or the distribution of preferred tasks. Weekly or monthly, fairness is
often described considering deviations from agreed-upon work hours,
differences in shift patterns, and individual preferences for specific
shifts. In this study, we will focus on factors such as shift preferences,
deviations from contracted hours, and variations in shift schedules. Fur-
thermore, we will introduce the viability of breaks as an additional cri-
terion for fairness, a dimension that has not been explored in previous
research.

To our knowledge, the existing literature lacks an approach that
addresses the explicit placement of breaks at the operational level
when creating work schedules for physicians with the uncertainty of
taking a break. The paper closest to ours is from Stolletz and Brunner
[20]. The main differences are that we include additional ergonomic
measures, i.e., differences in start times of shifts within a week and
viability of breaks. Moreover, we do not assume that breaks can be
taken throughout a given time window. We describe and analyze a way
to define appropriate break-time windows using survival regression
models. Furthermore, this study aims to bridge research gaps by ac-
commodating various groups of physicians who differ in labor contract,
expertise, and shift preferences.

3. Problem statement and mathematical model

The problem under consideration aims to minimize overstaffing,
overtime, and shift starting disparities, although concurrently maximiz-
ing physician preferences’ adherence and break scheduling. To achieve
this, we develop a distinct work schedule for each physician indexed
by 𝑖, encompassing the entire planning horizon. The set of physicians,
denoted as 𝐼 , encompasses a range of employees distinguished by their
contractual working regulations and qualification levels. Specifically,
𝐼𝑠𝑝𝑒𝑐 , a subset of 𝐼 , pertains to physicians who have completed their
residency programs. The planning period spans |𝐷| days, subdivided
nto |𝑃 | periods of uniform duration, where each period 𝑝 is defined

as one hour. It is worth noting that alternative period lengths, such as
30-minute intervals, can be considered if required.

To establish individual rosters for each physician, a set of shifts
denoted as S is available for assignment. The binary parameter 𝐴𝑠𝑝
defines the working periods within a shift, taking the value of 1 if the
period 𝑝 is part of a working period in shift 𝑠, and 0 otherwise. The
binary decision variable 𝑥𝑖𝑠𝑑 is used to assign a specific shift 𝑠 to a
hysician 𝑖 on day 𝑑, with a value of 1 indicating assignment and 0
ndicating no assignment.

It is important to consider physician availability, denoted by 𝑉𝑖𝑑 ,
s not all physicians are available every day. Our focus aligns with
ostering at an individual level, as presented by Erhard et al. (2017).
his includes the inclusion of overnight duties, involving 24-hour shifts.
n such cases, a physician, when assigned to duty on day 𝑑, first
erforms a 12 h shift, followed by 12 h on call during the night.
onsequently, they are not assigned to any shift on the following day
+ 1. It is noteworthy that different duty structures are feasible, such

s an eight-hour shift followed by 16 h on-call. Duty assignments are
redetermined and serve as input, indicated by the binary parameter
𝑖𝑑 , where 1 denotes the physician’s duty on day 𝑑, and 0 indicates

therwise.
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Table 1
Shift-specific break windows for one physician 𝑖 and day 𝑑, 0 indicating the break.

𝐴𝑠𝑝 − 𝑏𝑖𝑠𝑝𝑑 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 1 1 0 1 1 1 1
2 1 1 1 1 0 1 1 1 1
3 1 1 0 1 1 1 1 1 1
4 1 1 1 1 1 0 1 1 1 1 1
5 1 1 1 1 0 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 0 1 1 1 1
To promote balanced shift assignments, we introduce the concept
f time windows for shift starts. For a given physician 𝑖 in week 𝑤,

𝑒𝑖𝑤 and 𝑙𝑖𝑤 represent the earliest and latest allowed shift start times,
respectively. According to legal mandates, consecutive shift assign-
ments are spaced by a minimum number of rest periods, denoted
𝐵𝑟𝑒𝑠𝑡. Furthermore, we are bound by government and labor regulations,
mandating compliance with a weekly working period limit 𝜔𝑖𝑤 for each
physician 𝑖, depending on their individual labor contracts.

To manage break assignments, a defined time window governs
appropriate break periods. The parameter 𝐵𝑝𝑟𝑒

𝑠 specifies the count of
working periods within a shift preceding a break assignment, whereas
𝐵𝑝𝑜𝑠𝑡
𝑠 determines the minimum mandatory working hours after a break

is assigned. Breaks are allocated using the binary decision variable 𝑏𝑖𝑠𝑝𝑑 ,
which individually assigns breaks to physicians during specific shifts 𝑠,
in periods 𝑝, and on days 𝑑.

For illustration, consider Table 1, which presents an example of
reak time windows for various types of shifts. This table includes six
istinct shifts, each with varying start periods and durations. These
hifts are available for personnel assignment across 13 planning periods
ithin a single hour-long day.

The binary parameter 𝐴𝑠𝑝 delimits the working periods within a
pecific shift by taking the value of 1. For example, in the case of

Shift 2, it starts in period 2 and ends in period 10. A sequence of 1s
is interrupted by a 0, which signifies the allocation of a break during
that shift, i. e., 𝑏𝑖,2,6,𝑑 = 1. Each shift has its own distinct break window,
highlighted in gray. Examining shift 5, its break window spans from
period 5 (determined by 𝐵𝑝𝑟𝑒

5 = 2, considering the shift’s first working
period in Period 3) to Period 10 (𝐵𝑝𝑜𝑠𝑡

5 = 3). The specific break for
his shift is scheduled in period 7 as denoted by 𝑏𝑖,5,7,𝑑 = 1. It is

important to acknowledge that these shift-specific break windows may
be defined by the hospital administration, possibly based on factors like
shift duration, with shorter shifts having shorter break windows and
longer shifts having extended ones.

In practical terms, it is implausible for a physician to have an
equal probability of taking a break in each slot of the break window.
Factors such as the length of the surgery or the levels of demand can
influence this viability. As a remedy, we introduce the concept of a
break assignment viability 𝑜𝑛𝑠𝑝𝑑 , which is specific to the period, day, and
hift, considering a predefined set of scenarios denoted as 𝑁 . The set

of indices considered may vary depending on the context. For instance,
the viability could be unrelated to the shift if the responsibilities are
shared among all staff members. On the other hand, the viability may
be linked to the physician if the tasks that could result in a break are
influenced by the physician. To improve resilience, a safety threshold
𝛼 is defined to ensure a minimal level of break viability across all
scenarios. This approach promotes a more reliable placement of breaks,
increasing the likelihood that physicians can fulfill their mandatory
breaks. The number of scenarios taken into account is an important
factor and depends on the type of application. For example, variations
in a surgical schedule are limited on a two-week horizon, so that the
number of scenarios can be small. For applications where services are
unlikely to change at all, scenarios might be omitted. A more detailed
4

explanation will follow upon the introduction of the mathematical
formulation. The resulting work schedules are structured on the basis
of a diverse set of labor and governmental regulations. These work
schedules are allocated in a way that guarantees coverage of both total
demand 𝑅𝑡𝑜𝑡𝑎𝑙

𝑝𝑑 and specialist demand 𝑅𝑠𝑝𝑒𝑐
𝑝𝑑 during each period 𝑝 on all

days 𝑑 within the planning horizon.
In the following, we present our MIP model designed to generate

personalized work schedules while also considering the viability of
breaks. As our formulation addresses the optimization of physician
rosters, the objective function is made up of two components. Cost-
related measures accounting for an efficient matching of supply and
demand and physician-related measures ensuring personnel satisfaction
and job motivation. Therefore, the following notation is introduced:

Sets with indices
𝑖 ∈ 𝐼 set of physicians
𝑖 ∈ 𝐼𝑠𝑝𝑒𝑐 set of specialists (𝐼𝑠𝑝𝑒𝑐 ⊂ 𝐼)
𝑤 ∈ 𝑊 set of weeks
𝑑 ∈ 𝐷 set of days
𝑑 ∈ 𝐷𝑤 set of days within week 𝑤
𝑝 ∈ 𝑃 set of day-periods each 1 hour long
𝑠 ∈ 𝑆 set of shifts
𝑛 ∈ 𝑁 set of scenarios for the viability of a break

Parameters
𝑅𝑡𝑜𝑡𝑎𝑙

𝑝𝑑 total demand in period 𝑝 on day 𝑑
𝑅𝑠𝑝𝑒𝑐

𝑝𝑑 demand for specialists in period 𝑝 on day 𝑑
𝐴𝑠𝑝 1 if shift 𝑠 covers periods 𝑝, 0 otherwise
𝑉𝑖𝑑 1 if physician 𝑖 is available on day 𝑑, 0 otherwise
𝐾𝑖𝑑 1 if physician 𝑖 is on duty on day 𝑑, 0 otherwise
𝜔𝑖𝑤 number of working periods for physician 𝑖 in week 𝑤
𝐻𝑠 length of shift 𝑠 (working hours in periods)
𝐹𝑠 first working period of shift 𝑠
𝐿𝑠 last working period of shift 𝑠
𝐵𝑝𝑟𝑒
𝑠 minimum number of working periods before the break is allowed

to start
𝐵𝑝𝑜𝑠𝑡
𝑠 minimum number of working periods after the break ended

𝐵𝑟𝑒𝑠𝑡 minimum number of rest periods between two consecutive shift
assignments

𝑐𝑠ℎ𝑖𝑓 𝑡𝑖𝑠 preference score of physician 𝑖 for shift 𝑠
𝑐𝑜𝑣𝑒𝑟 penalty term for overstaffing in a period
𝑐𝑡𝑖𝑚𝑒 penalty term for deviation in shift start time window
𝑐ℎ𝑜𝑢𝑟 penalty term for overtime for a physician
𝑜𝑛𝑠𝑝𝑑 viability of taking a break in shift 𝑠 in period 𝑝 on day 𝑑 in

scenario 𝑛
𝜌𝑛 probability of scenario 𝑛
𝛼 average day specific safety level for break viability

Decision variables
𝑥𝑖𝑠𝑑 1 if physician 𝑖 is assigned to shift 𝑠 on day 𝑑, 0 otherwise
𝑏𝑖𝑠𝑝𝑑 1 if physician 𝑖 working shift 𝑠 on day 𝑑 gets a break assigned

in period 𝑝, 0 otherwise
𝑒𝑖𝑤 earliest shift start of the physician 𝑖 in week 𝑤
𝑙𝑖𝑤 latest shift start of the physician 𝑖 in week 𝑤
𝛥𝑡𝑖𝑚𝑒
𝑖𝑤 deviation from start time window constraints for the physician

𝑖 in week 𝑤
𝛥ℎ𝑜𝑢𝑟
𝑖𝑤 overtime of physician 𝑖 in week 𝑤
𝑜𝑣𝑒𝑟
𝛥𝑝𝑑 overstaffing in period 𝑝 on day 𝑑
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min
∑

𝑝∈𝑃

∑

𝑑∈𝐷
𝑐𝑜𝑣𝑒𝑟𝛥𝑜𝑣𝑒𝑟

𝑝𝑑 +
∑

𝑖∈𝐼

∑

𝑤∈𝑊
𝑐ℎ𝑜𝑢𝑟𝛥ℎ𝑜𝑢𝑟

𝑖𝑤

+
∑

𝑖∈𝐼

∑

𝑤∈𝑊
𝑐𝑡𝑖𝑚𝑒𝛥𝑡𝑖𝑚𝑒

𝑖𝑤

−
∑

𝑖∈𝑖

∑

𝑠∈𝑆

∑

𝑑∈𝐷
𝑐𝑠ℎ𝑖𝑓 𝑡𝑖𝑠 𝑥𝑖𝑠𝑑

−
∑

𝑖∈𝐼

∑

𝑠∈𝑆

∑

𝑝∈𝑃

∑

𝑑∈𝐷

∑

𝑛∈𝑁
𝜌𝑛𝑜

𝑛
𝑠𝑝𝑑𝑏𝑖𝑠𝑝𝑑 (1a)

s.t.
∑

𝑖∈𝐼

∑

𝑠∈𝑆
(𝐴𝑠𝑝𝑥𝑖𝑠𝑑 − 𝑏𝑖𝑠𝑝𝑑 ) − 𝛥𝑜𝑣𝑒𝑟

𝑝𝑑 = 𝑅𝑡𝑜𝑡𝑎𝑙
𝑝𝑑 ∀𝑝 ∈ 𝑃 , 𝑑 ∈ 𝐷 (1b)

∑

𝑖∈𝐼𝑠𝑝𝑒𝑐

∑

𝑠∈𝑆
(𝐴𝑠𝑝𝑥𝑖𝑠𝑑 − 𝑏𝑖𝑠𝑝𝑑 ) ≥ 𝑅𝑠𝑝𝑒𝑐

𝑝𝑑 ∀𝑝 ∈ 𝑃 , 𝑑 ∈ 𝐷 (1c)

∑

𝑠∈𝑆
𝑥𝑖𝑠𝑑 ≤ 𝑉𝑖𝑑 ∀𝑖 ∈ 𝐼, 𝑑 ∈ 𝐷 (1d)

𝐿𝑠−𝐵
𝑝𝑜𝑠𝑡
𝑠

∑

𝑝=𝐹𝑠+𝐵
𝑝𝑟𝑒
𝑠

𝑏𝑖𝑠𝑝𝑑 = 𝑥𝑖𝑠𝑑 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷 (1e)

𝐿𝑠−𝐵
𝑝𝑜𝑠𝑡
𝑠

∑

𝑝=𝐹𝑠+𝐵
𝑝𝑟𝑒
𝑠

∑

𝑛∈𝑁
𝜌𝑛𝑜

𝑛
𝑠𝑝𝑑𝑏𝑖𝑠𝑝𝑑 ≥ 𝛼𝑥𝑖𝑠𝑑 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷 (1f)

∑

𝑠∈𝑆

∑

𝑑∈𝐷𝑤

𝐻𝑠𝑥𝑖𝑠𝑑 − 𝛥ℎ𝑜𝑢𝑟
𝑖𝑤 = 𝜔𝑖𝑤 ∀𝑖 ∈ 𝐼,𝑤 ∈ 𝑊 (1g)

|𝑃 | −
∑

𝑠∈𝑆
𝐿𝑠𝑥𝑖𝑠𝑑 +

∑

𝑠∈𝑆
(𝐹𝑠 − 1)𝑥𝑖𝑠𝑑+1

≥ 𝐵𝑟𝑒𝑠𝑡
∑

𝑠∈𝑆
𝑥𝑖𝑠𝑑+1 ∀𝑖 ∈ 𝐼, 𝑑 ∈ 𝐷 ⧵ {|𝐷|} (1h)

𝑙𝑖𝑤 ≥
∑

𝑠∈𝑆
𝐹𝑠𝑥𝑖𝑠𝑑 ∀𝑖 ∈ 𝐼, 𝑑 ∈ 𝐷𝑤, 𝑤 ∈ 𝑊 (1i)

𝑒𝑖𝑤 ≤ |𝑃 | −
∑

𝑠∈𝑆
(|𝑃 | − 𝐹𝑠)𝑥𝑖𝑠𝑑 ∀𝑖 ∈ 𝐼, 𝑑 ∈ 𝐷𝑤, 𝑤 ∈ 𝑊 (1j)

‴𝑖𝑤 − 𝑒𝑖𝑤 ≤ 𝛥𝑡𝑖𝑚𝑒
𝑖𝑤 ∀𝑖 ∈ 𝐼,𝑤 ∈ 𝑊 (1k)

𝑥𝑖|𝑆|𝑑 ≥ 𝐾𝑖𝑑 ∀𝑖 ∈ 𝐼, 𝑑 ∈ 𝐷 (1l)

𝑥𝑖𝑠𝑑 , 𝑏𝑖𝑠𝑝𝑑 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 , 𝑑 ∈ 𝐷 (1m)

𝛥𝑜𝑣𝑒𝑟
𝑝𝑑 , 𝛥ℎ𝑜𝑢𝑟

𝑖𝑤 , 𝛥𝑡𝑖𝑚𝑒
𝑖𝑤 , 𝑒𝑖𝑤, 𝑙𝑖𝑤 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 , 𝑑 ∈ 𝐷,𝑤 ∈ 𝑊 (1n)

The objective function (1a) comprises five different parts: The first
term seeks to minimize the total cost associated with overstaffed peri-
ods throughout the planning horizon. Parts two and three collectively
minimize instances of overtime hours for physicians, although en-
suring compliance with predefined time window constraints for each
physician within each sequence of working days. The fourth part of
the objective function is dedicated to maximizing the overall shift
preference score. The final term is geared towards ensuring the highest
attainable level of break assignment viability.

It is worth emphasizing that this paper’s primary focus lies in
proposing novel data-driven break window designs, rather than exten-
sively delving into multiobjective optimization. Therefore, the balance
and weighting of these objectives must be thoughtfully tailored to
practical considerations. The range of all our objectives is as follows:
Overstaffing (𝛥𝑜𝑣𝑒𝑟

𝑝𝑑 ) varies from 0 to |𝐼|−𝑅𝑡𝑜𝑡𝑎𝑙
𝑝𝑑 for each period 𝑝 and day

𝑑. Overtime hours (𝛥ℎ𝑜𝑢𝑟
𝑖𝑤 ) are within the range of [0, |𝐷𝑤|max𝑠∈𝑆{𝐻𝑠}−

𝜔𝑖𝑤] for each physician 𝑖 and week 𝑤. Starting times (𝛥𝑡𝑖𝑚𝑒
𝑖𝑤 ) can fluc-

tuate between 0 and max𝑠∈𝑆{𝐹𝑠}−min𝑠∈𝑆{𝐹𝑠} for each physician 𝑖 and
week 𝑤. For the shift preferences, at most one shift can be selected
per day. The last term encompassing the viability of break assignments
spans from [𝛼|𝑁|, |𝑁|].

The initial set of Constraints (1b) and (1c) addresses the imperative
of fulfilling demand requirements for each period within the planning
horizon. Tailored to the level of expertise and the ensuing task capabil-
5

ities, a distinction is made between ‘‘regular’’ physicians/residents and
Table 2
Example of breaks adherence for shift type 1 using viability scores.

n\p 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 0.701 0.677 0.75 0.608 0.663 0 0 0 0 0 0
2 0 0 0.737 0.936 0.644 0.918 0.899 0 0 0 0 0 0
3 0 0 0.897 0.633 0.832 0.608 0.854 0 0 0 0 0 0

Avg. 0 0 0.779 0.749 0.742 0.711 0.805 0 0 0 0 0 0

‘‘specialists’’, i. e., the collective workforce and physicians who have
successfully completed their residency program. Consequently, two
distinct categories of demand constraints are required. The formulation
can be easily extended to accommodate additional levels of expertise.

Constraints (1b) ensure that regular demand is met in every period
of each day, excluding any instances of understaffing. The left-hand side
of these constraints aggregates all physicians assigned to shifts during
each period. As breaks are also assigned to each physician, the deduc-
tion of physicians taking breaks within a specific period is incorporated,
represented as ∑

𝑖∈𝐼
∑

𝑠∈𝑆 (𝐴𝑠𝑝𝑥𝑖𝑠𝑑 − 𝑏𝑖𝑠𝑝𝑑 ),∀𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃 . Furthermore,
an allowance for overstaffing, denoted as 𝛥𝑜𝑣𝑒𝑟

𝑝𝑑 , is introduced in each
period to account for situations where precise demand fulfillment is
infeasible.

Constraints (1c), similar in structure to Constraints (1b), refer to the
demand of specialists. In this case, only a lower bound is stipulated,
allowing for surpassing it without incurring penalties in the objective
function. This minimum number of specialists is vital because of their
roles in supervision and handling complex tasks.

Constraints (1d) secure the assignment of shifts exclusively to avail-
able staff. In other words, if a physician 𝑖 is available on day 𝑑,
indicated by the parameter 𝑉𝑖𝑑 = 1, the shifts can only be assigned
to physician 𝑖 for day 𝑑.

The subsequent set of Constraints (1e) and (1f) is dedicated to the
allocation of breaks for physicians working on a given shift 𝑠 on day
𝑑. Constraints (1e) ensure that a break is assigned for every physician
working on a shift, meaning that when 𝑥𝑖𝑠𝑑 = 1, then ∑𝐿𝑠−𝐵

𝑝𝑜𝑠𝑡
𝑠

𝑝=𝐹𝑠+𝐵
𝑝𝑟𝑒
𝑠

𝑏𝑖𝑠𝑝𝑑 =
must hold. Here, the placement of the break is endowed with flex-

bility within a predefined time window specified by parameters 𝐵𝑝𝑟𝑒
𝑠

nd 𝐵𝑝𝑜𝑠𝑡
𝑠 . The parameter 𝐵𝑝𝑟𝑒

𝑠 dictates the minimum number of working
eriods before the break assignment for a particular shift 𝑠, whereas
𝑝𝑜𝑠𝑡
𝑠 guarantees the minimum number of working periods after the
reak assignment. As the rigid block structure for breaks, as depicted
n Table 1, does not necessarily mirror practicality (i.e., it might be
lausible to take a break in period 6 for shift 5 but not in period 7),
onstraints (1f) are introduced to provide a more realistic depiction of

easible break periods.
These constraints incorporate a safety level 𝛼 to ensure the prac-

icability of break assignments that function as a lower bound. This
ype of constraint is largely driven by data. The left-hand sides of
hese constraints aggregate the viability scores of adhering to a break
ssignment in all scenarios in 𝑁 for each period within shifts. This sum
s mandated to be at least as high as the designated 𝛼 value. In this way,
e can ensure that every physician has the specified minimum viability

core of taking a break.
Consider the following example to illustrate this concept. Assume

𝑁| = 3, and the viability scores for taking a break for a shift beginning
n period 1 and ending in period 9 (as detailed in Table 1) are presented
n Table 2. For simplicity, we assume that the probabilities of each
cenario (𝜌𝑛) are the same. Applying a safety level of 𝛼 = 0.75 would
esult in feasible breaks occurring in periods 3 or 7. The viability scores
or the assignment of breaks can be derived using a survival regression
odel, as described in Section 4.2, to integrate real-world data in the

alculation of viability scores. Note that this step of evaluating the
easible break periods can be performed in a preprocessing.
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Constraints (1g) and (1h) are instrumental in the management of
governmental and labor-related working regulations. Constraints (1g)
ensure that maximum weekly working periods for personnel are not
exceeded. This consideration is crucial as we tackle a rostering problem,
accounting for individual working hour regulations 𝜔𝑖𝑤, applicable for
all physicians 𝑖 within a set 𝑊 . It is noteworthy that working hours
re contingent on the set 𝑊 as it needs to accommodate vacation and

absences in 𝜔𝑖𝑤. In pursuit of efficient alignment between demand and
supply, we exclusively allow weekly overtime periods 𝛥ℎ𝑜𝑢𝑟

𝑖𝑤 for each
physician. These overtime periods are subjected to penalties within
the objective function. Constraints (1h) require a minimum number of
rest periods 𝐵𝑟𝑒𝑠𝑡 between two consecutively assigned shifts for each
physician. As this minimum rest interval is a legal requirement, the
left-hand side of these constraints enumerates the number of off periods
between the last working period 𝐿𝑠 of one shift on day 𝑑 and the initial
working period 𝐹𝑠 of a shift on the consecutive day 𝑑+1. This count of
off periods must be equal to or exceed the value specified on the right-
hand side, i.e., 𝐵𝑟𝑒𝑠𝑡. In particular, 𝐵𝑟𝑒𝑠𝑡 requires customization based
on the set and dimension of 𝑃 , for example, accounting for one-hour
periods versus 15-minute intervals.

Moving to Constraints (1i) through (1k), this set defines the scope
for starting periods of consecutive shift assignments within a week,
encompassing a sequence of working days. Constraints (1i) and (1j)
determine the latest and earliest allowable shift start times for one
week. Subsequently, Constraints (1k) establish the range within which
the start time window of the shift must be confined, as represented
on the left-hand side of the constraints. Deviations from this range are
prohibited.

Constraints (1l) are formulated to handle overnight duty assign-
ments. These duties encompass a specific regular shift followed by an
on-call duty. If a physician is assigned an overnight duty on day 𝑑,
these constraints ensure appropriate shift assignment, specifically the
last shift in the set 𝑆. It is important to note that for physician 𝑖,
𝑉𝑖𝑑+1 = 0 if 𝐾𝑖𝑑 = 1, indicating unavailability on the subsequent day.

Ultimately, Constraints (1m) and (1n) define the domains of the
variables. It is pertinent to mention that the continuous variables will
be integer in a feasible solution.

4. Branch-and-price algorithm and survival regression models as
a solution approach

4.1. Branch-and-price algorithm

Model (1), which presents the compact formulation of the rostering
problem, encounters difficulties in producing feasible meaningful solu-
tions within a realistic timeframe using standard solvers. Consequently,
we have devised an alternative strategy to address this challenge in this
section.

Taking into account the inherent block structure of the problem, a
promising approach emerges: the adoption of a Dantzig–Wolfe reformu-
lation, as proposed in prior research [36–38]. Leveraging this concept,
we embark on the decomposition of the compact rostering problem (1)
through a Dantzig–Wolfe reformulation. Subsequently, we proceed to
construct a B&P algorithm, designed to achieve optimality by solving
this reformulated problem.

We decompose our model by physicians, acknowledging the inher-
ent heterogeneity among them in terms of working hours, availability,
and overnight duties. This precludes us from aggregation. The com-
pact formulation is decomposed into a master problem (MP) and |𝐼|
subproblems (SP(𝑖) ∀𝑖 ∈ 𝐼). Given that not all columns of the MP
re typically known in advance, a restricted MP is formulated, which
ncludes a subset of columns. In the following, the restricted MP will be
6

abeled as MP. In an iterative manner, the SPs are utilized to generate
new columns, with the dual solution of the MP steering this generation
process.

Decomposition of the rostering problem. For the formulation of the MP, a
new set of columns 𝐾𝑖 = {1,… , |𝐾𝑖|} must be introduced (representing
extreme points). Every 𝑘 ∈ 𝐾𝑖 specifies a feasible roster for a physician
𝑖 reserving individual working restrictions and overnight duties. Note
that the set 𝐾𝑖 is increasing during the solution process as new rosters
are generated in the SPs. Additionally, our reformulation does not
need extreme rays because SP(𝑖) is bounded [36]. The resulting MP
(extensive formulation) of our rostering problem can be formulated as
follows:

Additional sets with indices
𝑘 ∈ 𝐾𝑖 set of rosters for physician 𝑖

Additional parameters
𝑋𝑘

𝑝𝑑 1 if roster 𝑘 covers period 𝑝 on day 𝑑, 0 otherwise
𝑐𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑘 total cost of the roster 𝑘 (comprising costs derived from

overtime periods,
time window and shift preference violations, and break viability)

Additional decision variables
𝜆𝑖𝑘 1 if physician 𝑖 is assigned to the roster 𝑘, 0 otherwise

min
∑

𝑝∈𝑃

∑

𝑑∈𝐷
𝑐𝑜𝑣𝑒𝑟𝛥𝑜𝑣𝑒𝑟

𝑝𝑑 +
∑

𝑖∈𝐼

∑

𝑘∈𝐾𝑖

𝑐𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑘 𝜆𝑖𝑘 (2a)

s.t.
∑

𝑖∈𝐼

∑

𝑘∈𝐾𝑖

𝑋𝑘
𝑝𝑑𝜆𝑖𝑘 − 𝛥𝑜𝑣𝑒𝑟

𝑝𝑑 = 𝑅𝑡𝑜𝑡𝑎𝑙
𝑝𝑑 ∀𝑝 ∈ 𝑃 , 𝑑 ∈ 𝐷 (𝛱 𝑡𝑜𝑡𝑎𝑙

𝑝𝑑 ) (2b)

∑

𝑖∈𝐼𝑠𝑝𝑒𝑐

∑

𝑘∈𝐾𝑖

𝑋𝑘
𝑝𝑑𝜆𝑖𝑘 ≥ 𝑅𝑠𝑝𝑒𝑐

𝑝𝑑 ∀𝑝 ∈ 𝑃 , 𝑑 ∈ 𝐷 (𝛱𝑠𝑝𝑒𝑐
𝑝𝑑 ) (2c)

∑

𝑘∈𝐾𝑖

𝜆𝑖𝑘 = 1 ∀𝑖 ∈ 𝐼 (𝛱𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛
𝑖 ) (2d)

𝜆𝑖𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾𝑖 (2e)

𝛥𝑜𝑣𝑒𝑟
𝑝𝑑 ≥ 0 ∀𝑝 ∈ 𝑃 , 𝑑 ∈ 𝐷 (2f)

The objective function of the MP (2a) minimizes the total costs
of overstaffed periods within the planning horizon in addition to the
total costs of the assigned working patterns 𝑘 for the entire work-
force, i.e., 𝑐𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑘 contains overtime, time window, shift preference, and
break viability costs. Constraints (2b) ensure demand to be covered in
every period 𝑝 of every day 𝑑 within the planning horizon, whereas
Constraints (2c) account for a minimum number of specialists in each
period 𝑝 of every day 𝑑. The parameter 𝑋𝑘

𝑝𝑑 is analogous to the compact
formulation of ∑𝑠∈𝑆 𝐴𝑠𝑝𝑥𝑖𝑠𝑑 − 𝑏𝑖𝑠𝑝𝑑 representing whether a physician is
working in period 𝑝 on day 𝑑 or not. The values of parameter 𝑋 are
determined in the specific SP of physician 𝑖, i.e., SP(𝑖), as detailed in
the following paragraph. The convexity constraints for every physician
𝑖 are given in Constraints (2d) whereas variable domain definition is
defined in Constraints (2e) and (2f).

As the dual formulation of the MP does not provide relevant in-
sights, only the dual variables 𝛱 𝑡𝑜𝑡𝑎𝑙

𝑝𝑑 , 𝛱𝑠𝑝𝑒𝑐
𝑝𝑑 , 𝛱𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛

𝑖 of Constraints (2b)
to (2d) are detailed here. These will be used to determine the reduced
cost of a generic MP column and are considered in the objective
function of the SPs. Note that 𝛱 𝑡𝑜𝑡𝑎𝑙

𝑝𝑑 , 𝛱𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛
𝑖 ∈ R, whereas 𝛱𝑠𝑝𝑒𝑐

𝑝𝑑 ∈
R+. The generic reduced cost of a column (roster 𝑘 of physician 𝑖) can
be written as in (3).

𝑐𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑘 −
∑

𝑝∈𝑃

∑

𝑑∈𝐷
𝑋𝑘

𝑝𝑑 (𝛱
𝑡𝑜𝑡𝑎𝑙
𝑝𝑑 +𝛱𝑠𝑝𝑒𝑐

𝑝𝑑 ) −𝛱𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛
𝑖 (3)

Note that 𝛱𝑠𝑝𝑒𝑐
𝑝𝑑 is only part of the objective of SP(𝑖) if physician 𝑖

is a specialist, i. e., 𝑖 ∈ 𝐼𝑠𝑝𝑒𝑐 . The solution of SP(𝑖) can be interpreted

as a feasible roster for the complete time horizon. The parameters and
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variables in the SP will be the same as in the compact formulation (1)
of Section 3, except the dropping index 𝑖 of the decision variables. With
his in common, the SP(𝑖) can be formulated as:

in
∑

𝑤∈𝑊
𝑐ℎ𝑜𝑢𝑟𝛥ℎ𝑜𝑢𝑟

𝑤 +
∑

𝑤∈𝑊
𝑐𝑡𝑖𝑚𝑒𝛥𝑡𝑖𝑚𝑒

𝑤 −
∑

𝑠∈𝑆

∑

𝑑∈𝐷
𝑐𝑠ℎ𝑖𝑓 𝑡𝑖𝑠 𝑥𝑠𝑑

−
∑

𝑠∈𝑆

∑

𝑝∈𝑃

∑

𝑑∈𝐷

∑

𝑛∈𝑁
𝜌𝑛𝑜

𝑛
𝑠𝑝𝑑𝑏𝑠𝑝𝑑

−
∑

𝑠∈𝑆

∑

𝑝∈𝑃

∑

𝑑∈𝐷
(𝐴𝑠𝑝𝑥𝑠𝑑 − 𝑏𝑠𝑝𝑑 )(𝛱 𝑡𝑜𝑡𝑎𝑙

𝑝𝑑 +𝛱𝑠𝑝𝑒𝑐
𝑝𝑑 ) −𝛱𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛

𝑖 (4a)

s.t.
∑

𝑠∈𝑆
𝑥𝑠𝑑 ≤ 𝑉𝑖𝑑 ∀𝑑 ∈ 𝐷 (4b)

𝐿𝑠−𝐵
𝑝𝑜𝑠𝑡
𝑠

∑

𝑝=𝐹𝑠+𝐵
𝑝𝑟𝑒
𝑠

𝑏𝑠𝑝𝑑 = 𝑥𝑠𝑑 ∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷 (4c)

𝐿𝑠−𝐵
𝑝𝑜𝑠𝑡
𝑠

∑

𝑝=𝐹𝑠+𝐵
𝑝𝑟𝑒
𝑠

∑

𝑛∈𝑁
𝜌𝑛𝑜

𝑛
𝑠𝑝𝑑𝑏𝑠𝑝𝑑 ≥ 𝛼𝑥𝑠𝑑 ∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷 (4d)

∑

𝑠∈𝑆

∑

𝑑∈𝐷𝑤

𝐻𝑠𝑥𝑠𝑑 − 𝛥ℎ𝑜𝑢𝑟
𝑤 = 𝜔𝑖𝑤 ∀𝑤 ∈ 𝑊 (4e)

|𝑃 | −
∑

𝑠∈𝑆
𝐿𝑠𝑥𝑠𝑑 +

∑

𝑠∈𝑆
(𝐹𝑠 − 1)𝑥𝑠𝑑+1

≥ 𝐵𝑟𝑒𝑠𝑡
∑

𝑠∈𝑆
𝑥𝑖𝑠𝑑+1 ∀𝑑 ∈ 𝐷 ⧵ {|𝐷|} (4f)

𝑙𝑤 ≥
∑

𝑠∈𝑆
𝐹𝑠𝑥𝑠𝑑 ∀𝑑 ∈ 𝐷𝑤, 𝑤 ∈ 𝑊 (4g)

𝑒𝑤 ≤ |𝑃 | −
∑

𝑠∈𝑆
(|𝑃 | − 𝐹𝑠)𝑥𝑠𝑑 ∀𝑑 ∈ 𝐷𝑤, 𝑤 ∈ 𝑊 (4h)

‴𝑤 − 𝑒𝑤 ≤ 𝛥𝑡𝑖𝑚𝑒
𝑤 ∀𝑤 ∈ 𝑊 (4i)

𝑥
|𝑆|𝑑 ≥ 𝐾𝑖𝑑 ∀𝑑 ∈ 𝐷 (4j)

𝑥𝑠𝑑 , 𝑏𝑠𝑝𝑑 ∈ {0, 1} ∀𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 , 𝑑 ∈ 𝐷 (4k)

𝛥ℎ𝑜𝑢𝑟
𝑤 , 𝛥𝑡𝑖𝑚𝑒

𝑤 , 𝑒𝑤, 𝑙𝑤 ≥ 0 ∀𝑤 ∈ 𝑊 (4l)

As SP(𝑖) searches for a new promising column in each iteration, the
bjective function (4a) minimizes the reduced cost of the correspond-
ng column. Therefore, the dual values 𝛱 𝑡𝑜𝑡𝑎𝑙

𝑝𝑑 , 𝛱𝑠𝑝𝑒𝑐
𝑝𝑑 , and 𝛱𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛

𝑖
erived from Constraints (2b) to (2d) are in use. Thus, SP(𝑖) generates
ndividual work schedules that specify a sequence of shift and break
ssignments covering the entire planning horizon. The Constraints (4b)
o (4l) of the SP correspond to the Constraints (1d) to (1n) of our
ompact formulation in Section 3. As these constraints are already
iscussed in detail in a previous section, we do not explain them any
urther.

In the sense of column generation, any new feasible roster can be
ntegrated into the MP if and only if the objective value is smaller than
, i.e., a negative reduced cost column can be generated. In this case,
he values of 𝑋𝑘

𝑝𝑑 ∶=
∑

𝑠∈𝑆 𝐴𝑠𝑝𝑥𝑠𝑑−𝑏𝑠𝑝𝑑 for all 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃 define a new
olumn for a specific physician 𝑖 that is added to the set 𝐾𝑖 in MP. If the
educed costs are 0 for all SP(𝑖), then no promising column exists and
he column generation procedure terminates with the optimal linear
rogramming solution for MP.

inding integer solutions. To attain an optimal solution to the original
roblem, the column generation procedure must be embedded in a B&P
ramework, particularly when the 𝜆 variables lack integer values. The
se of an appropriate strategy for branching is a crucial element. How-
ver, this aspect has been extensively explored in the existing literature,
s discussed by Barnhart et al. [36], Vanderbeck [39], and Desrosiers
nd Lübbecke [40] among others.

In our approach, we have designed and tested a branching strategy
ooted in the work of Ryan and Foster [41], which was subsequently
xtended by Vanderbeck and Wolsey [42]. In this strategy, we con-
7

istently choose a single row associated with Constraints (2b) (for 𝑝
Fig. 1. Branching scheme based on the shifts of Table 1.

instance, row 𝑟) and another row linked with Constraints (2d) (for
instance, row 𝑠). As expounded by Barnhart et al. [36], this selection
yields a specialized branching scheme that naturally corresponds to the
original formulation. In essence, the decision is made as to whether
physician 𝑖 should work in period 𝑝 on day 𝑑 or not. The resulting pair
of branching constraints is given in (5).

∑

𝑘∈𝐾𝑖|𝑋𝑘
𝑝𝑑=1

𝜆𝑖𝑘 = 1 and
∑

𝑘∈𝐾𝑖|𝑋𝑘
𝑝𝑑=1

𝜆𝑖𝑘 = 0 (5)

Note that the row 𝑟 corresponds to a tuple of period 𝑝 and day 𝑑
and the row 𝑠 to a specific physician 𝑖. Additionally, Constraints (2c) do
not need to be considered in the branching scheme, because the values
become integer as soon as the values in Constraints (2b) are integer.

To implement the strategy, the corresponding bounds on the branch-
ing variables need to be imposed at every node of the branching tree.
Therefore, we first delete all patterns that do not satisfy the branching
condition. Second, we force the corresponding SP to generate only
patterns considering the branching decision. Therefore, we do not have
to extend our MP with additional constraints. Moreover, the structure of
the SPs is not changed because we only force a specific shift and break
to be chosen, i.e., invalid shifts are deleted from the set 𝑆 for a specific
ay 𝑑. Note that only for the left branch, i.e., ∑

𝑘∈𝐾𝑠|𝑋𝑘
𝑟 =1

𝜆𝑠𝑘 = 1, a
hysician is forced to work on a specific day.

In order to accelerate the branching scheme, we prioritize the
xamination of periods that identify distinct shifts. Subsequently, we
ddress the intermediate periods that denote individual breaks within
ach shift. As we have more day periods than start periods of shifts,
.e., |𝑃 | ≫ |𝑆|, we identified a special selection to build a more
alanced search tree for each physician with respect to the shifts.
ontinuing with the six shifts in Table 1, we evaluate for every day
and physician 𝑖 whether ∑𝑘∈𝐾 𝑋𝑘

𝑝𝑑𝜆𝑖𝑘 is fractional or not in the order
iven in Fig. 1 – the number in the vertices corresponds to the period
. If the corresponding sum is fractional in one stage, we perform the
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ranching in this period; we continue the tree otherwise. If there is no
ractional value, then we start branching on the break periods of the
emaining shift. Note that at most one shift is left when the branching
cheme is used. For example, let ∑𝑘∈𝐾𝑖

𝑋𝑘
𝑝𝑑𝜆𝑖𝑘 equal one for 𝑝 = 1 and

qual zero in 𝑝 = 12. In the next stage of the branching scheme we check
he same sum for period 𝑝 = 10. Let us assume this sum is fractional.
y performing the left branch (𝑋10,𝑑 = 1) we force the algorithm to use
hift 4. In the other branch (𝑋10,𝑑 = 0) only shift 1 can be used. Note

that in each stage, we bisect the number of feasible shifts.
In addition to the branching scheme, node selection is another

critical issue in developing a B&P algorithm. We implemented a depth-
first strategy to identify an upper bound early. In this approach, each
iteration involves the exploration of one of the successor nodes. In cases
where multiple nodes are viable options, we resolve ties by opting
for the node with the highest index. As a basic primal heuristic, we
solve the MP with all columns found so far as an MIP, whenever the
algorithm finds an integer solution. A flow chart of all the steps of the
B&P framework can be seen in Fig. 2.

4.2. Survival regression model

Survival regression models play a fundamental role in statistical
analysis when the focus is on the time until a specific event takes
place [43]. This is especially common in fields like medical research,
where the event could be mortality, recurrence, or, in our context,
the completion of a surgical procedure or the presence of an anes-
thesiologist. The rationale for utilizing survival regression models is
their ability to give the probability that an event occurred and to
consider various variables that could affect the duration of survival.
These models not only predict the survival function but also enable
the integration of covariates, offering insights into how different factors
influence the likelihood of survival as time progresses.

In a survival regression model, there are two primary components.
First, the survival function 𝑆(𝑡) offers the probability of survival in
a specific time period 𝑡. The second element is the hazard function
denoted as ℎ(𝑡), which indicates the rate at which the event occurs.
Essentially, it represents the speed at which an object, which is free
of the event at a particular time, will undergo the event. These two
functions are interlinked, and the hazard function reflects the rate at
8

a

which the survival function decreases over time. Applied to our case,
we would like to measure the probability that the obligatory presence
of an anesthesiologist will be expected at a certain point in time.

Accelerated failure time model. Depending on the assumptions made
regarding the distribution of survival time or the hazard function,
survival regression models can be categorized into non-parametric,
semi-parametric, and parametric models, each with its own advantages
and practical applications [44]. In our setting, parametric models are
preferred because the duration of surgery can often be accurately
estimated by fitting established distributions such as the normal or
lognormal distribution [45,46]. Another area of research focuses on
utilizing regression models for predicting surgery duration [47]. The
accelerated failure time (AFT) model is a specific form of parametric
survival regression model that closely resembles traditional linear re-
gression models. The AFT model posits a direct link between predictors
(input) 𝑧𝑗 and survival time.

The AFT model can generally be represented as shown in Eq. (6),
where the natural logarithm of the failure time 𝑡 is a linear combination
of the input variables 𝑧𝑗 with coefficients 𝛽𝑗 for all the inputs 𝑗 ∈ 𝐽 .
Note that the failure time 𝑡 can be projected in the periods 𝑝 ∈ 𝑃 of the
mathematical model (1). The error term 𝜖 is assumed to adhere to a par-
ticular parametric distribution. Note that the two key distinctions from
conventional regression models, apart from censored observations, are
that the input influences the event time multiplicatively and that the
error terms are not normally distributed [43].

ln (𝑡) = 𝛽1𝑧1 +⋯ + 𝛽
|𝐽 |𝑧|𝐽 | + ln (𝜖) (6)

Defining appropriate input variables. The input variables 𝑧𝑗 play a criti-
al role in predicting the duration of surgery. Since rosters are usually
enerated between one and two months in advance, the available input
ata are limited and subject to change, as planned (elective) patients
ay be rescheduled. Furthermore, the patient-anesthetist assignment

s not (always) known at this planning stage. Therefore, we will utilize
nly the information present at the time of roster preparation.

A commonly used method in hospitals to estimate the duration of
urgery is the Last-5-case approach, which indicates the average dura-
ion of the last five surgeries [43]. We will adopt this methodology and

ssess the effectiveness of various rolling horizons as input variables in
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Table 3
Input data for the computational study.
Specialists/ residents (𝐼) Working time (𝜔) Shifts (𝑆) Periods (𝑃 ) Scenarios (𝑁) Days (𝐷)

10∕10 40ℎ∕24ℎ 6 13 15 7∕14∕21∕28
our experimental study. We define the Last-𝛾-case as

̄ 𝑞+𝛾+1 =
∑𝛾

𝑟=1 𝑀𝑞+𝑟

𝛾
, (7)

here 𝑀𝑞 is the duration the anesthetist attended the 𝑞’s surgery and 𝛾
he number of previous surgeries that are taken into account. To enable
he model to capture trends, we will incorporate not only the current
verage duration but also the average duration from the preceding
urgery as input, i.e., �̄�𝑞+𝛾+1 and �̄�𝑞+𝛾 .

In addition to details specific to the surgical procedure, we will pro-
ide information related to temporal and patient-specific information.
emporal details include the day of the week for surgery and the sched-
led start time for the presence of the anesthesiologist. Patient-specific
etails cover age, sex, comorbidities, and the need for admission to the
ntensive care unit.

To address the various scales of the variables and enhance the
odel’s convergence and interpretability, we normalize all input (and

utput) variables to a range of 0 to 1. Categorical data are processed
sing one-hot encoding. This resulted in a total of 12 inputs that can
e combined to |𝐽 | = 4095 input variables.

. Experimental study

In this section, we apply our model in a real-world case study
oncerning rostering of anesthesiologists for the operating theater of
German training hospital with more than 1500 beds. An overview

f the input data for the computational study is given in Table 3. The
tudy considers 20 physicians, i.e., |𝐼| = 20. The workforce consists
f 10 specialists and 10 residents. Additionally, 5 residents are part-
ime, i.e., with a weekly working hour of 𝜔𝑖𝑤 = 24. The remaining 15
hysicians have a standard contract of 40 hours per week.

We have in total six different shifts as already presented in Table 1
f Section 3. To have a high flexibility, the number of working periods
efore and after a break is 2, i.e., 𝐵𝑝𝑟𝑒

𝑠 = 𝐵𝑝𝑜𝑠𝑡
𝑠 = 2 for all shifts.

dditionally, 15 scenarios are considered for breaks representing the
robability that a physician can take a break during a specific period
f a shift, i.e., |𝑁| = 15. The scenarios are generated based on our
FT model fitted by surgery data from more than 100,000 surgeries
nd will be described in Section 5.1. A basic construction algorithm for
enerating scenarios artificially is stated in Appendix A. The weights
or overstaffing (𝑐𝑜𝑣𝑒𝑟), overtime (𝑐𝑡𝑖𝑚𝑒), and variation in starting times
𝑐𝑠𝑡𝑎𝑟𝑡) are set to 1 unless otherwise specified. This allows us to focus on
he ergonomic aspects shift preferences and viability of breaks, without
gnoring overstaffing.

All calculations are performed on a 2.7 GHz (Intel® Core™ i7-
740QM CPU) with 16 GB RAM running on the Windows 8.1 Enterprise
perating system. The algorithm is coded in Python 3.5 and is linked
o Gurobi 9.0 to solve the LP-relaxation of the MP and the MIP SPs.
he default settings of Gurobi are used when solving MP and SP. SPs
re always solved to optimality with a gap of 𝜖 = 0.001, and only
he optimal solution is transformed into a new column of the MP if
he reduced costs are negative. The algorithm terminates when the
ptimal solution is found. In Section 5.2 we analyze our B&P algorithm
or different problem sizes in terms of the lengths of the considered
lanning horizon. The real-world case is evaluated and discussed in
ection 5.3.

.1. Evaluation of the accelerated failure time model

The AFT model is designed to give us the probability that the
9

resence of an anesthetist will no longer be required for a particular
Table 4
AFT model evaluation for the most common surgery.

Distribution AIC BIC Concordance
index

Weibull −3157.22 −3190.97 0.69
Log-normal −3081.10 −3114.85 0.69
Log–logistic −3782.22 −3835.97 0.78

surgery. To achieve this, we conduct training on our AFT model using
a data set that encompasses six years of surgical procedures at a
hospital in Germany, involving a total of 3723 distinct types of surgery
identifiable by their ICD codes, such as hip replacement surgery. The
typical duration an anesthetist dedicates to a single surgery is 135 min
on average, although this varies significantly depending on the type of
surgery (see Fig. 3). The left part highlights the presence (in minutes) of
anesthetists for all surgeries, and the right part highlights the presence
of anesthetists for the most common type of surgery. Due to these
variations, we developed a unique AFT model for each surgical type.
The data set for each surgical type was divided into 20% for testing
and 80% for training purposes.

Alongside the error term, the input variables and their interactions
significantly impact the efficacy of the AFT model. In a preliminary test,
we could identify a rolling horizon of 𝛾 = 3 to be the most accurate
for our approach. Throughout the process of refining our models, we
were able to pinpoint the significant input factors for our models.
Although we initially assumed that the day of the week would influence
performance, our model evaluations revealed that the most accurate
predictions are achieved with the inclusion of the following inputs:
scheduled start time for the presence of the anesthesiologist (Hour),
average duration of the Last-3-case (Rolling_avg) as well as the average
duration of the Last-3-case for the previous surgery (Rolling_avg_prev),
patient age (Age), number of comorbidities (Secondary), and planned
admission to the intensive care unit (ICU). This resulted in a total
number of input variables |𝐽 | = 32. A comprehensive description
of our AFT model for the most common surgery can be found in
Appendix B.

In Section 4.2, we described that the survival time in AFT models
follows a particular parametric distribution. Our investigation involved
testing three distinct distributions for our model: Weibull, Log–logistic,
and Log-normal. We compare the performance of the three distributions
using the Akaike Information Criterion (AIC) and the Bayesian Informa-
tion Criterion (BIC). The lower the value, the better the performance.
Additionally, we used the concordance index to measure the model’s
ability to correctly rank pairs of surgeries based on their predicted
survival times. The index can be between 0 and 1. A value of 0.5 is the
expected result from random predictions and a value of 1 represents
perfect concordance. Table 4 presents the evaluation of the three
distributions for the most common surgery.

All models demonstrated good performance in ranking various surg-
eries, achieving concordance indices of 0.69 and 0.78. Upon comparing
the models using their AIC and BIC scores, it becomes evident that
the optimal selection is the log–logistic model. This holds true across
various surgery types as well. The concordance index for the log–
logistic AFT model varies for different surgeries, ranging from 0.74 to
0.81.

Trained AFT models can offer the planner the probability that an
anesthetist is no longer required for a particular surgery. An illustration
of the survival function based on our model is presented in Fig. 4.

Combining this with the upcoming surgery schedule, we can determine
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Fig. 3. Histograms of the presence of anesthetists. left: for all surgeries (N=114,164); right: for the most common type of surgery (N=1,558).
Fig. 4. Survival functions of the test set for the most common type of surgery (N=312).
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he viability 𝑜𝑛𝑠𝑝𝑑 by adding the output of the AFT models for all
urgeries that are active during the specific period 𝑝 of a day 𝑑 and
ividing it by the number of active surgeries.

.2. Evaluation of the branch-and-price algorithm

In order to evaluate the performance of the B&P algorithm, we
est our model for different problem sizes. As the workforce is already
rovided on an operational level, we manipulate the size of the model
y varying the time horizon of our roster, i.e., the number of days |𝐷|.
ote that a detailed overview of the input parameters is given in Ap-
endix C. Although the standard time horizon of a roster is two weeks,
e will evaluate the performance for 7, 14, 21, and 28 days. Although a

our-week time interval seems attractive for physicians, schedules are
ften generated one week in advance due to high uncertainty [48]. For
ll time horizons, we perform ten runs using different shift preferences

for each physician 𝑖. Preferences are generated randomly for each
10

𝑖𝑠
nstance using a Bernoulli distribution for every physician 𝑖 and shift
𝑠 [33]. In order to have an effect on the instances, the weight 𝑐𝑖𝑠 of a
referred shift is set to 8 and 0 otherwise. The safety level 𝛼 is set to
.75. The aggregated results are given in Table 5. Note that we first
ist the average value over all ten instances followed by the maximum
alue.

The first column gives information on the time horizon, whereas the
econd column lists the GAP in percent. All 40 runs can be solved to
ptimality. The solution time of the MP in seconds is given in Column
whereas the average time of solving an MP once is given in Column
in milliseconds. Column 5 and 6 give the same information for the

SPs. Comparing the solution time of the MP and SP we can see that
the MP time is much more increasing than the SP time. For a time
horizon of 7 days, only 0.4𝑠 are needed for the MP, whereas 3.4𝑠 are
needed for the SPs. However, in a time horizon of 28 days, the time
spent in the MP is 272.5𝑠, while only 150.0𝑠 is spent in the SPs. One
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Table 5
Impact of different time horizons on the algorithm’s performance (𝑁 = 10).

No. of days GAP (%) MP Time (s) Avg. MP Time (ms) SP Time (s) Avg. SP Time (ms) No. columns gen. No. nodes expl.

7 0.0 0.4 | 0.5 11.5 | 14.4 3.4 | 3.6 5.8 | 6.1 585.5 | 588 12.7 | 13
14 0.0 9.0 | 13.7 71.2 | 84.8 18.8 | 26.5 10.1 | 12.2 1,812.6 | 2,215 33.9 | 57
21 0.0 112.4 | 142.3 292.9 | 316.3 81.0 | 93.8 15.5 | 16.4 5,232.0 | 5,995 94.6 | 112
28 0.0 272.5 | 347.7 512.4 | 557.9 150.0 | 208.6 22.4 | 26.4 6,680.1 | 7,889 123.8 | 148
Table 6
Impact of different weight factors on the algorithm’s performance (𝑁 = 10).

Weights GAP (%) MP Time (s) Avg. MP Time (ms) SP Time (s) Avg. SP Time (ms) No. columns gen. No. nodes expl.

1-1-1-1 0.0 9.0 | 13.7 71.2 | 84.8 18.8 | 26.5 10.1 | 12.2 1,812.6 | 2,215 33.9 | 57
10-1-1-1 0.1 13.5 | 16.8 111.6 | 127.4 48.1 | 59.9 24.4 | 29.5 1,970.0 | 2,104 50.0 | 50
1-10-1-1 0.0 4.7 | 5.9 39.1 | 44.0 41.0 | 51.7 32.0 | 36.5 1,341.8 | 1,449 37.1 | 44
1-1-10-1 0.1 15.5 | 27.5 115.9 | 147.8 58.9 | 101.6 28.2 | 36.2 2,045.9 | 2816 60.0 | 100
1-1-1-10 0.0 3.8 | 12.1 38.6 | 60.2 23.0 | 56.8 20.2 | 28.7 1,086.8 | 1,979 23.6 | 86
reason is that the number of constraints in the MP is increasing by 26
or every additional day, whereas the number of constraints in the SP
s increasing by 11. This effect can be seen by the average values for
he MP and SP solution time, i.e., Column 4 and 6. The solution time of
he SPs seems to increase linearly with the number of days, i.e., 5.8 ms
or 7 days, 10.1 ms for 14 days, and 22.4 ms for 28 days. This property
oes not exist for the average solution time of the MP, i.e., 11.5 ms for
days, 71.2 ms for 14 days, and 512.4 ms for 28 days. This increase

n solution time corresponds quite well to the number of generated
olumns that is given in Column 7. The number of explored nodes in
he B&P tree is given in Column 8. Although the algorithm can find the
ptimal solution for small instances quickly, i.e., on average 12.7 nodes
ntil termination for a 7-day time horizon, the algorithm searches on
verage more than 123 nodes to find the optimal solution. One reason
s that much more branching decisions need to be considered for large
nstances, i.e., for a 28 days time horizon.

In a subsequent experiment, our aim is to evaluate the effectiveness
f our algorithm by adjusting the weights in the objective function. The
tudy uses the same set of 10 instances as in the previous experiment,
panning a time horizon of 14 days. The baseline setting involves
ssigning equal weights, where 𝑐𝑜𝑣𝑒𝑟 = 𝑐𝑡𝑖𝑚𝑒 = 𝑐ℎ𝑜𝑢𝑟 = 1, and shift
references set to 8 and 0. Then we systematically vary each weight by
factor of 10. The aggregated results are detailed in Table 6, following
format similar to the previous analysis. The first column of the table

utlines the weight configurations in the objective function, denoted as
𝑜𝑣𝑒𝑟-𝑐𝑡𝑖𝑚𝑒-𝑐ℎ𝑜𝑢𝑟-𝑐𝑠ℎ𝑖𝑓 𝑡.

The first row highlights the base case. Instances with a focus on
overstaffing and overtime could only be solved in reasonable time by
adding a primal heuristic to the algorithm solving the master problem
as a binary program ever 50 nodes with all columns generated. For all
other instances/settings, the algorithm converged fast without using a
primal heuristic. This result highlights the challenge of dealing with
overstaffing and overtime. The average time to solve the MP increased
by 50% and 73%, respectively. Focusing on deviations in start times of
shifts or shift preferences, the performance improves compared to the
base case. The average number of columns needed to solve the problem
optimal decreases by 25% and 40%, respectively.

The results show that our algorithm performs well in different
problem sizes and objective weightings, and optimal solutions can be
found in minutes. However, putting a stronger focus on overstaffing
and overtime requires the use of a primal heuristic to speed up the
solution process. In the following section, we will analyze and discuss a
real-world situation of physician scheduling that focuses on a two-week
time horizon and adjusting the safety level 𝛼.
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Table 7
Responsibilities per physician using different break assignment strategies for the
real-world case.

Algorithm Average Maximum Minimum Break
assignment
viability score

B&P 0.69 1.00 0.17 129.54
FA 0.70 1.18 0.13 89.23
BA 0.67 1.08 0.15 99.63

5.3. Analysis of scheduling anesthesiologists using real-world data

This study focuses on rostering of anesthesiologists for the operating
room theater in a German training hospital with more than 1500 beds.
The rosters are generated for a time horizon of two weeks, i.e., |𝐷| = 14.
On each day, one of the physicians has an overnight duty. Based on
the different contract types, i.e., part- and full-time, the total working
hours are 1440. Analyzing the demand profile provided by the hospital,
we can see that at least 1536 h are needed to perform all operations
(see Appendix C). This will result in overtime for physicians and might
influence the attractiveness of the hospital as an employer. Addition-
ally, hospital management often accepts overtime, as physicians are
willing to work overtime, i.e., many contracts have a clause in which
the physician agrees to work overtime [49].

In the initial test, we will assess the effectiveness of our break-time
windows by comparing the optimal assignment from our model with
two common construction algorithms for breaks: a forward assignment
(FA) and a backward assignment (BA). Depending on the number of
physicians available per shift, we assign the first physician of the shift
to the earliest (latest) possible break period, the subsequent physician
to the second (second-to-last) possible break period, etc. If there are
more physicians than available break periods, we loop back to the first
(last) possible break period. This idea tries to spread breaks evenly in
their respective break windows. For each period in the schedule, we
will record the number of surgeries that an anesthetist is responsible
for. The aggregated results are detailed in Table 7.

The key point to note is that FA and BA lead to anesthetists being
responsible for multiple patients, as shown in the third column. In
general, both construction methods tend to exhibit more variability
when comparing the highest and lowest levels of responsibility against
the optimal outcome of the B&P. Obviously, our model excels in terms
of the objective value linked to the likelihood of breaks in the fifth
column (see Objective (1a)), with a reduction of up to 31%. A graphical
representation of the responsibilities on a particular day can be seen in
Fig. 5.
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Fig. 5. Responsibilities per anesthetist and period for one specific day.
Table 8
Responsibilities per physician using different break assignment strategies for the Monte
Carlo simulation (N=1,000).

Algorithm Average Maximum Minimum

B&P 0.49 1.15 0.00
FA 0.50 1.36 0.00
BA 0.48 1.25 0.00

It is evident that the bottlenecks occur in the morning hours before
oon. This is also the contributing factor to FA’s lower performance
ompared to BA. From 12 to 14 o’clock, B&P schedules breaks for all
nesthetists who are not needed.

To evaluate the impact of varying durations of a surgery, a Monte
arlo simulation was performed with 1000 iterations. The results are
etailed in Table 8. It is evident from the second column that the av-
rage responsibility per physician and period remains consistent across
ll break assignment strategies. Although the minimum responsibility
s uniformly 0 in all methods, variations in the maximum value are
bserved. In particular, our proposed model demonstrates the lowest
esponsibility at 1.15, compared to 1.36 and 1.25 for FA and BA,
espectively. These results suggest that our model outperforms common
onstruction heuristics, which might reflect real-world planning, in
ptimizing break times and provides a robust solution when surgery
urations change.

In a second test, we analyze the effect of different safety level in
onstraints (1f) by varying the 𝛼-value, i.e., 𝛼 ∈ {0.6, 0.7, 0.75, 0.8, 0.81,
.815}. Remember, the 𝛼-value can be seen as the average day specific
afety level for break viability, i.e., for 𝛼 = 0.8 a break can only be given

in period 𝑝 if the average viability score of being able to take a break
in period 𝑝 over all scenarios 𝑛 ∈ 𝑁 is greater than or equal to 0.8. As
the performance of the algorithm is evaluated in Section 5.2 only the
managerial results are given in Table 9. However, the computational
results are stated in Appendix D.

The identification of the instance is given in the first column by
labeling the 𝛼-value. Column 2 and 3 present the total number of over-
staffing, as well as the average overstaffing per period. As expected, the
overstaffing increases with the 𝛼-value, i.e., 182 periods of overstaffing
with 𝛼 = 0.6 in contrast to 266 periods of overstaffing with 𝛼 = 0.815.
The overtime hours of all physicians and the average overtime per
12
week are given in columns 4 and 5. Similarly to overstaffing, the value
increases with a higher 𝛼-value. However, the increase is not as strong
as for overstaffing, i.e., overstaffing increases by more than 46% and
overtime by 30%. The high overtime is no surprise because we have
already discussed that the workforce is not able to handle the complete
demand with the given contract types, i.e., 136 periods are not covered.
The last two columns present the difference in starting periods of the
given shifts. The impact of the 𝛼-value is quite high, i.e., the total value
is almost tripled. However, the difference in the starting time of a shift
is on average less than an hour for an individual physician. One reason
is that the roster of most physicians starts on the same period every day
of the week. For example, we have 8 physicians starting every day in
the same period in the optimal solution with 𝛼 = 0.8. Moreover, only
two physicians have a difference in their starting period that is larger
than 2 periods. The final schedule with 𝛼 = 0.8 is given in Table 10.
The numbers in the matrix indicate the specific shift for each physician
and day. As a first result, we can say that considering breaks does
influence the generated schedules and affects overstaffing as well as
overtime. With this information at hand, the hospital’s management is
able to define a price for breaks, e.g., increasing the viability of a break
by 5% generates 5 overtime hours. However, an important question
in this context is how demand should be determined. Given a fixed
shift system, it is important that the demand profiles, e.g., surgery
planning, consider the shift system of the employees, i.e., nurses and
physicians.

As the managerial performance of the generated rosters is not good
at all, i.e., high overstaffing and overtime hours, we will next analyze
possible opportunities for the hospital management. We will use the so-
lution with 𝛼 of 0.8 as the base case for the following tests. First, we will
evaluate the influence of using alternative contract types. Therefore, we
change the regular weekly working hours to 45 for full-time employees
and 30 for part-time employees (instance 1). Second, we analyze the
effect of not using part-time physicians at all, i.e., all 20 physicians are
full-timers (instance 2). Finally, we analyze the effect of using a new
6-hour shift for part-time physicians that will cover periods from 4 to 9
and do not need a break due to working regulations (instance 3), i. e.,
the new shift is not considered in the set 𝑆 of Constraints (4c) and
(4d) and is only available for part-timers in the set 𝐼 . An overview of
the different input parameters is given in Table 11 and the results are

stated in Table 12.
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Table 9
Managerial results with parameter variation in 𝛼.

Alpha Overstaffing Avg. overstaffing
per period

Overtime Avg. overtime
per week

Starting time
difference

Avg. starting
time difference
per week

0.6 182 1.0 278 7.0 11 0.3
0.7 182 1.0 278 7.0 11 0.3
0.75 182 1.0 278 7.0 11 0.3
0.8 204 1.1 300 7.5 20 0.5
0.81 238 1.3 334 8.4 32 0.8
0.815 266 1.5 362 9.1 31 0.8

Avg. 209.0 1.1 305.0 7.6 19.3 0.5
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Table 10
Final schedule of the base case.
𝑖\𝑑 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 6a – 1 2 1 – – – 1 6 4 4 – –
2 2 6a – 2 4 – – 2 2 2 2 2 – –
3 2 2 6a – 2 – – 3 3 3 3 3 – –
4 2 2 4 6a – – – 2 2 2 2 2 – –
5 2 1 2 2 6a – – 4 – 6 4 1 – –
6 2 2 1 2 4 b – 4 4 – 4 4 – –
7 2 1 1 2 4 – b – 4 4 4 4 – –
8 1 1 1 1 1 – – 6a – 1 1 1 – –
9 3 3 3 3 3 – – – 6a – 1 1 – –
10 3 3 3 3 2 – – 2 – 6a – 2 – –
11 1 4 4 4 4 – – 4 4 4 6a – – –
12 3 5 2 3 2 – – 2 – 5 2 6a – –
13 2 2 2 2 2 – – 2 2 2 2 2 b –
14 1 4 4 1 1 – – 1 1 1 1 1 – b

15 1 1 4 1 1 – – 3 3 3 3 3 – –
16 – 4 4 1 4 – – – 3 3 3 3 – –
17 3 – 3 3 3 – – 2 – 5 2 2 – –
18 2 2 – 2 2 – – 2 2 – 2 2 – –
19 4 4 4 – 4 – – 4 – 4 – 4 – –
20 2 2 2 2 – – – 2 1 1 1 – – –

a =̂duty.
=̂weekend duty.

Table 11
Overview of input variation for the case study.

Instance Full-/part-timer Working time Shifts

Base Case 15/5 40/24 6
1 15/5 45/30 6
2 20/0 40/24 6
3 15/5 40/24 7

The information of the instance is given in Column 1. Overstaffing
and the average overstaffing per period are given in Column 2 and
. A surprising result is that only the replacement of part-timer by
ull-timer (instance 2) gives a lower overstaffing compared to the
ase case. However, none of the alternative instances can reduce the
verstaffing significantly. The total overtime hours and the average
vertime per week and the physician are given in Column 4 and 5.
s expected, overtime can be reduced by increasing the total weekly
orking hours from 40 to 45 and 24 to 30 as well as by replacing part-

imers with full-time positions. However, generating a new six-hour
hift increases overtime hours because full-time positions compensate
or the reduction of working hours for part-timers by the new shift. The
ifference in starting periods of the given shifts is presented in Column
and the average difference in starting periods per day in Column 7.

or all instances, the value stays almost the same. However, a positive
ffect can be seen for instances that use different working hours.
13
From a managerial perspective, the consideration of breaks does
nfluence the generated schedules and affects overstaffing as well as
vertime. However, there is no possibility of ignoring them. In the
econd part of our study, we showed that the reduction of part-timers
ad a positive effect on overstaffing. Although this result is not valid
or any case, hospital management should consider this opportunity as
ell.

. Conclusion and future research

Scheduling physicians is a highly complex task, given the multitude
f individual requirements involved. Unfortunately, the importance of
ncorporating breaks into the scheduling process is often overlooked,
esulting in critical consequences, such as increased mortality rates due
o reduced attention. This paper has introduced a novel model and
ethod aimed at shedding light on this issue and provide an initial

olution for real-world applications.
The proposed model formulated as an MIP approach takes into

ccount the viability of breaks employing a new data-driven scoring
ethod. Given the complexity of the formulation, we have decomposed

he model and presented a B&P algorithm to effectively solve real-
orld instances. In particular, by implementing a problem-specific
ariable selection strategy for branching, the algorithm has proven to
e versatile enough to handle different time horizons, ranging from one
o four weeks. The performance of the algorithm using different weight
ombinations highlights the challenges when focusing on overstaffing
nd overtime.

We have developed a method and outlined its application to define
ppropriate scores for the viability of break periods using a survival
egression model. By understanding the likelihood of break times,
ospitals can more effectively plan their staffing needs. This can lead to
ore strategic scheduling that ensures coverage during peak demand

imes while still accommodating necessary breaks for staff. It can help
void understaffing or overstaffing situations, optimizing operational
osts. Professionals have the opportunity to utilize this concept and
mplement it in various contexts, considering changes in input variables
hat influence the break periods. Moreover, our method can be applied
n different planning settings. Although our study focused on the asyn-
hronous planning situation in which the rosters are planned before the
ask schedule (such as a surgery schedule), the other way around can
e easily applied, ignoring the different scenarios 𝑛 ∈ 𝑁 since each

task is planned and fixed. The same is true for an integrated planning
approach in which rosters and tasks are planned simultaneously.

Furthermore, we have employed various key performance indicators
to analyze the impact of considering the viability of breaks, revealing
its influence on mitigating both overstaffing and overtime hours in
hospitals. Although hospitals can estimate the financial cost of incorpo-

rating breaks, the consequences of disregarding them remain crucial.
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Table 12
Managerial results of different input settings.

Alpha Overstaffing Avg. overstaffing
per period

Overtime Avg. overtime
per week

Starting time
difference

Avg. starting
time difference
per week

Base Case 204 1.1 300 7.5 20 0.5
1 218 1.2 104 2.6 19 0.5
2 182 1.0 118 2.95 17 0.4
3 226 1.2 322 8.05 21 0.5
It is essential that hospital management is aware of this problem, as
breaks are legally mandated, yet often neglected because of planning
challenges. The fixed-shift system poses a particular challenge, empha-
sizing the need for demand profiles (e.g., surgery planning) that take
physicians’ shift schedules into account. This approach can effectively
reduce overstaffing while enhancing employee satisfaction.

Despite the practical relevance of breaks in the healthcare do-
main, the topic has not received sufficient attention in the physician
literature. This paper has focused on increasing the likelihood that
breaks occur during shifts by exploring various scenarios. A potential
extension to our formulation could involve considering a minimum
likelihood of breaks in each scenario, providing a different perspective
for analyzing the risks of not taking breaks. Additionally, it is crucial
to consider other aspects related to breaks. For instance, the impact
of impractical breaks should not be limited to individual physicians;
fairness, a commonly used metric for assessing ergonomic effects, could
serve as a useful tool for evaluating breaks’ effectiveness as well. Such
comprehensive considerations can further improve physician schedul-
ing practices and ultimately improve overall healthcare outcomes.
Integration of our concept into stochastic formulations could lead to a
better estimate of costs and a more realistic staffing. However, a better
evaluation of the impacts of integrating demand uncertainty in com-
bination with the viability score of break-time windows is necessary.
One way to address this problem is to simultaneously solve the surgery
scheduling problem with the physician scheduling problem. Although
there is no straightforward way to align the deadline and planning
horizons of the different approaches, other areas of application might
be able to handle this situation more effectively.
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Appendix A. Construction of the scenarios 𝑵

Algorithm 1 Generate 𝑜𝑛𝑠𝑝𝑑 for all scenarios

Require: 𝑃 ,𝐷, 𝑆,𝑁,𝐴𝑠𝑝, 𝐹𝑠, 𝐿𝑠,𝐻𝑠, 𝐵
𝑝𝑟𝑒
𝑠 , 𝐵𝑝𝑜𝑠𝑡

𝑠
Ensure: 𝑜𝑛𝑠𝑝𝑑 ∀𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 , 𝑑 ∈ 𝐷, 𝑛 ∈ 𝑁
for 𝑛 ∈ 𝑁 do
for 𝑠 ∈ 𝑆 do
for 𝑑 ∈ 𝐷 do
for 𝑝 ∈ 𝑃 do

𝑜𝑛𝑠𝑝𝑑 ← 0
if 𝑝 in break window of shift 𝑠 then

𝑜𝑛𝑠𝑝𝑑 = random.uniform(0.6; 1)
end if

end for
end for

end for
end for

Appendix B. AFT model parameters

See Table 13.

Appendix C. Data of the test instances

See Tables 14–17.

Appendix D. Computational results

See Table 18.
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Table 13
Log–logistic AFT model coefficients for the most common surgery.

coef exp(coef) se(coef) coef
lower
95%

coef
upper
95%

exp(coef)
lower
95%

exp(coef)
upper
95%

cmp to z p -log2(p)

Intercept −2.05 0.13 0.62 −3.27 −0.83 0.04 0.44 0.00 −3.28 <0.005 9.93
Hour −0.07 0.94 0.89 −1.80 1.67 0.17 5.32 0.00 −0.07 0.94 0.09
Rolling_avg 5.02 150.81 1.32 2.43 7.60 11.38 1998.66 0.00 3.80 <0.005 12.78
Age −0.28 0.76 0.72 −1.69 1.14 0.18 3.13 0.00 −0.38 0.70 0.51
Secondary 0.01 1.01 0.89 −1.74 1.75 0.18 5.78 0.00 0.01 0.99 0.01
Rolling_avg_prev −0.31 0.73 1.31 −2.88 2.26 0.06 9.62 0.00 −0.24 0.81 0.30
ICU −0.03 0.97 0.04 −0.10 0.04 0.91 1.05 0.00 −0.74 0.46 1.12
Hour:Rolling_avg 0.23 1.26 1.97 −3.63 4.10 0.03 60.29 0.00 0.12 0.91 0.14
Rolling_avg:Age 0.94 2.56 1.64 −2.27 4.15 0.10 63.46 0.00 0.57 0.57 0.82
Hour:Secondary 0.08 1.09 1.86 −3.56 3.73 0.03 41.55 0.00 0.05 0.96 0.05
Rolling_avg:Secondary 0.97 2.64 1.97 −2.89 4.83 0.06 124.74 0.00 0.49 0.62 0.68
Age:Secondary −0.43 0.65 1.27 −2.93 2.06 0.05 7.86 0.00 −0.34 0.73 0.45
Hour:Rolling_avg_prev −0.36 0.70 1.92 −4.12 3.40 0.02 29.92 0.00 −0.19 0.85 0.23
Rolling_avg:Rolling_avg_prev −3.81 0.02 2.20 −8.12 0.49 0.00 1.64 0.00 −1.74 0.08 3.60
Age:Rolling_avg_prev −0.12 0.89 1.62 −3.29 3.05 0.04 21.19 0.00 −0.07 0.94 0.09
Secondary:Rolling_avg_prev −0.53 0.59 1.98 −4.41 3.35 0.01 28.46 0.00 −0.27 0.79 0.34
Hour:Rolling_avg:Age 0.53 1.70 2.75 −4.86 5.92 0.01 373.88 0.00 0.19 0.85 0.24
Hour:Rolling_avg:Secondary 1.43 4.19 4.16 −6.72 9.58 0.00 14 504.69 0.00 0.34 0.73 0.45
Hour:Age:Secondary 0.07 1.07 2.67 −5.16 5.30 0.01 200.42 0.00 0.03 0.98 0.03
Rolling_avg:Age:Secondary 0.48 1.62 2.84 −5.07 6.04 0.01 420.82 0.00 0.17 0.86 0.21
Hour:Rolling_avg:Rolling_avg_prev −0.01 0.99 3.16 −6.20 6.17 0.00 480.27 0.00 −0.00 1.00 0.01
Hour:Age:Rolling_avg_prev 0.05 1.05 2.72 −5.29 5.38 0.01 217.33 0.00 0.02 0.99 0.02
Rolling_avg:Age:Rolling_avg_prev −0.96 0.38 2.66 −6.18 4.26 0.00 70.52 0.00 −0.36 0.72 0.48
Hour:Secondary:Rolling_avg_prev −2.03 0.13 4.22 −10.29 6.24 0.00 512.23 0.00 −0.48 0.63 0.66
Rolling_avg:Secondary:Rolling_avg_prev 0.07 1.07 3.29 −6.38 6.53 0.00 682.60 0.00 0.02 0.98 0.03
Age:Secondary:Rolling_avg_prev −0.96 0.38 2.92 −6.68 4.76 0.00 116.31 0.00 −0.33 0.74 0.43
Hour:Rolling_avg:Age:Secondary 0.02 1.02 6.07 −11.88 11.92 0.00 1.51e+05 0.00 0.00 1.00 0.00
Hour:Rolling_avg:Age:Rolling_avg_prev 0.02 1.02 4.62 −9.04 9.07 0.00 8699.72 0.00 0.00 1.00 0.00
Hour:Rolling_avg:Secondary:Rolling_avg_prev 0.02 1.02 7.17 −14.04 14.08 0.00 1.31e+06 0.00 0.00 1.00 0.00
Hour:Age:Secondary:Rolling_avg_prev −0.27 0.76 6.20 −12.42 11.88 0.00 1.45e+05 0.00 −0.04 0.97 0.05
Rolling_avg:Age:Secondary:Rolling_avg_prev 2.47 11.83 5.00 −7.33 12.27 0.00 2.14e+05 0.00 0.49 0.62 0.69
Hour:Rolling_avg:Age:Secondary:Rolling_avg_prev −0.03 0.97 10.52 −20.66 20.59 0.00 8.77e+08 0.00 −0.00 1.00 0.00

Intercept 2.90 18.26 0.02 2.86 2.95 17.41 19.14 0.00 120.07 <0.005 inf
Table 14
Demand profile for the test instances with 7, 14, 21, and 28 days.

𝑑\𝑝 1 2 3 4 5 6 7 8 9 10 11 12 13

1 6 7 11 12 14 14 14 14 14 14 6 5 5
2 9 11 13 14 14 14 14 14 14 14 5 4 3
3 11 11 11 12 14 14 14 14 14 14 3 2 1
4 6 7 11 12 14 14 14 14 14 14 6 5 5
5 11 11 11 12 14 14 14 14 14 14 3 2 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0
8 5 9 10 13 8 13 13 13 13 13 0 0 0
9 7 10 10 11 11 11 11 11 11 11 2 1 0

10 8 12 12 14 14 14 14 14 14 14 9 9 8
11 9 11 11 14 14 14 14 14 14 14 2 0 0
12 9 11 13 13 14 14 14 14 14 14 1 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0
15 9 9 12 13 13 13 13 12 12 11 4 2 2
16 5 7 13 13 13 13 11 11 11 11 4 3 1
17 5 12 13 13 13 12 11 11 11 11 7 5 2
18 8 9 12 12 13 11 11 11 11 11 9 5 5
19 10 12 12 13 13 13 13 13 12 12 2 2 2
20 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0
22 8 12 12 13 13 13 12 11 11 11 7 2 2
23 10 10 10 13 14 13 11 11 11 11 9 0 0
24 9 9 10 13 13 13 12 12 12 11 1 1 1
25 10 12 13 13 13 13 12 12 12 12 5 5 5
26 7 8 10 12 12 12 11 11 11 11 1 1 1
27 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0
15
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Table 15
Duty schedule (𝐾𝑖𝑑 ) for the test instances with 7, 14, 21, and 28 days.

𝑑\𝑖 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Table 16
Availability of physicians (𝑉𝑖𝑑 ) for the test instances with 7, 14, 21, and 28 days.

𝑑\𝑖 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
3 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
4 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
5 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1
9 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1

10 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1
11 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1
12 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1
17 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
18 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
19 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1
23 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1
24 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1
25 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1
26 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16
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Table 17
Shift matrix 𝐴𝑠𝑝 for the test instances with 7, 14, 21, and 28 days.

𝑠\𝑝 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1
Table 18
Computational results with parameter variation in 𝛼.

Alpha LB UB LB Root GAP (%) MP Time (s) Avg. MP
Time (ms)

SP Time (s) Avg. SP Time
(ms)

No. columns
gen

No. nodes
expl

0.6 −1,811.7 −1,811.6 −1,811.7 0.0 14.8 104.2 29.0 13.1 2,211 58
0.7 −1,811.7 −1,811.6 −1,811.7 0.0 31.2 120.9 54.3 16.5 3,286 107
0.75 −1,811.7 −1,811.7 −1,811.7 0.0 39.4 113.2 79.2 16.4 4,815 168
0.8 −1,780.9 −1,780.7 −1,780.9 0.0 14.4 84.7 44.4 20.2 2,196 69
0.81 −1,732.9 −1,732.4 −1,732.9 0.0 13.1 62.4 55.2 24.3 2,271 69
0.815 −1,687.1 −1,687.1 −1,687.1 0.0 24.6 87.9 102.9 31.7 3,243 225

Avg. −1,772.7 −1,772.5 −1,772.7 0.0 22.9 95.6 60.8 20.4 3,003.7 116.0
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